1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sysfs.h> 30 31 #include "base.h" 32 #include "power/power.h" 33 34 #ifdef CONFIG_SYSFS_DEPRECATED 35 #ifdef CONFIG_SYSFS_DEPRECATED_V2 36 long sysfs_deprecated = 1; 37 #else 38 long sysfs_deprecated = 0; 39 #endif 40 static int __init sysfs_deprecated_setup(char *arg) 41 { 42 return kstrtol(arg, 10, &sysfs_deprecated); 43 } 44 early_param("sysfs.deprecated", sysfs_deprecated_setup); 45 #endif 46 47 /* Device links support. */ 48 static LIST_HEAD(wait_for_suppliers); 49 static DEFINE_MUTEX(wfs_lock); 50 static LIST_HEAD(deferred_sync); 51 static unsigned int defer_sync_state_count = 1; 52 static unsigned int defer_fw_devlink_count; 53 static LIST_HEAD(deferred_fw_devlink); 54 static DEFINE_MUTEX(defer_fw_devlink_lock); 55 static bool fw_devlink_is_permissive(void); 56 57 #ifdef CONFIG_SRCU 58 static DEFINE_MUTEX(device_links_lock); 59 DEFINE_STATIC_SRCU(device_links_srcu); 60 61 static inline void device_links_write_lock(void) 62 { 63 mutex_lock(&device_links_lock); 64 } 65 66 static inline void device_links_write_unlock(void) 67 { 68 mutex_unlock(&device_links_lock); 69 } 70 71 int device_links_read_lock(void) __acquires(&device_links_srcu) 72 { 73 return srcu_read_lock(&device_links_srcu); 74 } 75 76 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 77 { 78 srcu_read_unlock(&device_links_srcu, idx); 79 } 80 81 int device_links_read_lock_held(void) 82 { 83 return srcu_read_lock_held(&device_links_srcu); 84 } 85 #else /* !CONFIG_SRCU */ 86 static DECLARE_RWSEM(device_links_lock); 87 88 static inline void device_links_write_lock(void) 89 { 90 down_write(&device_links_lock); 91 } 92 93 static inline void device_links_write_unlock(void) 94 { 95 up_write(&device_links_lock); 96 } 97 98 int device_links_read_lock(void) 99 { 100 down_read(&device_links_lock); 101 return 0; 102 } 103 104 void device_links_read_unlock(int not_used) 105 { 106 up_read(&device_links_lock); 107 } 108 109 #ifdef CONFIG_DEBUG_LOCK_ALLOC 110 int device_links_read_lock_held(void) 111 { 112 return lockdep_is_held(&device_links_lock); 113 } 114 #endif 115 #endif /* !CONFIG_SRCU */ 116 117 /** 118 * device_is_dependent - Check if one device depends on another one 119 * @dev: Device to check dependencies for. 120 * @target: Device to check against. 121 * 122 * Check if @target depends on @dev or any device dependent on it (its child or 123 * its consumer etc). Return 1 if that is the case or 0 otherwise. 124 */ 125 static int device_is_dependent(struct device *dev, void *target) 126 { 127 struct device_link *link; 128 int ret; 129 130 if (dev == target) 131 return 1; 132 133 ret = device_for_each_child(dev, target, device_is_dependent); 134 if (ret) 135 return ret; 136 137 list_for_each_entry(link, &dev->links.consumers, s_node) { 138 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 139 continue; 140 141 if (link->consumer == target) 142 return 1; 143 144 ret = device_is_dependent(link->consumer, target); 145 if (ret) 146 break; 147 } 148 return ret; 149 } 150 151 static void device_link_init_status(struct device_link *link, 152 struct device *consumer, 153 struct device *supplier) 154 { 155 switch (supplier->links.status) { 156 case DL_DEV_PROBING: 157 switch (consumer->links.status) { 158 case DL_DEV_PROBING: 159 /* 160 * A consumer driver can create a link to a supplier 161 * that has not completed its probing yet as long as it 162 * knows that the supplier is already functional (for 163 * example, it has just acquired some resources from the 164 * supplier). 165 */ 166 link->status = DL_STATE_CONSUMER_PROBE; 167 break; 168 default: 169 link->status = DL_STATE_DORMANT; 170 break; 171 } 172 break; 173 case DL_DEV_DRIVER_BOUND: 174 switch (consumer->links.status) { 175 case DL_DEV_PROBING: 176 link->status = DL_STATE_CONSUMER_PROBE; 177 break; 178 case DL_DEV_DRIVER_BOUND: 179 link->status = DL_STATE_ACTIVE; 180 break; 181 default: 182 link->status = DL_STATE_AVAILABLE; 183 break; 184 } 185 break; 186 case DL_DEV_UNBINDING: 187 link->status = DL_STATE_SUPPLIER_UNBIND; 188 break; 189 default: 190 link->status = DL_STATE_DORMANT; 191 break; 192 } 193 } 194 195 static int device_reorder_to_tail(struct device *dev, void *not_used) 196 { 197 struct device_link *link; 198 199 /* 200 * Devices that have not been registered yet will be put to the ends 201 * of the lists during the registration, so skip them here. 202 */ 203 if (device_is_registered(dev)) 204 devices_kset_move_last(dev); 205 206 if (device_pm_initialized(dev)) 207 device_pm_move_last(dev); 208 209 device_for_each_child(dev, NULL, device_reorder_to_tail); 210 list_for_each_entry(link, &dev->links.consumers, s_node) { 211 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 212 continue; 213 device_reorder_to_tail(link->consumer, NULL); 214 } 215 216 return 0; 217 } 218 219 /** 220 * device_pm_move_to_tail - Move set of devices to the end of device lists 221 * @dev: Device to move 222 * 223 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 224 * 225 * It moves the @dev along with all of its children and all of its consumers 226 * to the ends of the device_kset and dpm_list, recursively. 227 */ 228 void device_pm_move_to_tail(struct device *dev) 229 { 230 int idx; 231 232 idx = device_links_read_lock(); 233 device_pm_lock(); 234 device_reorder_to_tail(dev, NULL); 235 device_pm_unlock(); 236 device_links_read_unlock(idx); 237 } 238 239 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 240 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 241 DL_FLAG_AUTOPROBE_CONSUMER | \ 242 DL_FLAG_SYNC_STATE_ONLY) 243 244 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 245 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 246 247 /** 248 * device_link_add - Create a link between two devices. 249 * @consumer: Consumer end of the link. 250 * @supplier: Supplier end of the link. 251 * @flags: Link flags. 252 * 253 * The caller is responsible for the proper synchronization of the link creation 254 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 255 * runtime PM framework to take the link into account. Second, if the 256 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 257 * be forced into the active metastate and reference-counted upon the creation 258 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 259 * ignored. 260 * 261 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 262 * expected to release the link returned by it directly with the help of either 263 * device_link_del() or device_link_remove(). 264 * 265 * If that flag is not set, however, the caller of this function is handing the 266 * management of the link over to the driver core entirely and its return value 267 * can only be used to check whether or not the link is present. In that case, 268 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 269 * flags can be used to indicate to the driver core when the link can be safely 270 * deleted. Namely, setting one of them in @flags indicates to the driver core 271 * that the link is not going to be used (by the given caller of this function) 272 * after unbinding the consumer or supplier driver, respectively, from its 273 * device, so the link can be deleted at that point. If none of them is set, 274 * the link will be maintained until one of the devices pointed to by it (either 275 * the consumer or the supplier) is unregistered. 276 * 277 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 278 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 279 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 280 * be used to request the driver core to automaticall probe for a consmer 281 * driver after successfully binding a driver to the supplier device. 282 * 283 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 284 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 285 * the same time is invalid and will cause NULL to be returned upfront. 286 * However, if a device link between the given @consumer and @supplier pair 287 * exists already when this function is called for them, the existing link will 288 * be returned regardless of its current type and status (the link's flags may 289 * be modified then). The caller of this function is then expected to treat 290 * the link as though it has just been created, so (in particular) if 291 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 292 * explicitly when not needed any more (as stated above). 293 * 294 * A side effect of the link creation is re-ordering of dpm_list and the 295 * devices_kset list by moving the consumer device and all devices depending 296 * on it to the ends of these lists (that does not happen to devices that have 297 * not been registered when this function is called). 298 * 299 * The supplier device is required to be registered when this function is called 300 * and NULL will be returned if that is not the case. The consumer device need 301 * not be registered, however. 302 */ 303 struct device_link *device_link_add(struct device *consumer, 304 struct device *supplier, u32 flags) 305 { 306 struct device_link *link; 307 308 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS || 309 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 310 (flags & DL_FLAG_SYNC_STATE_ONLY && 311 flags != DL_FLAG_SYNC_STATE_ONLY) || 312 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 313 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 314 DL_FLAG_AUTOREMOVE_SUPPLIER))) 315 return NULL; 316 317 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 318 if (pm_runtime_get_sync(supplier) < 0) { 319 pm_runtime_put_noidle(supplier); 320 return NULL; 321 } 322 } 323 324 if (!(flags & DL_FLAG_STATELESS)) 325 flags |= DL_FLAG_MANAGED; 326 327 device_links_write_lock(); 328 device_pm_lock(); 329 330 /* 331 * If the supplier has not been fully registered yet or there is a 332 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 333 * the supplier already in the graph, return NULL. If the link is a 334 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 335 * because it only affects sync_state() callbacks. 336 */ 337 if (!device_pm_initialized(supplier) 338 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 339 device_is_dependent(consumer, supplier))) { 340 link = NULL; 341 goto out; 342 } 343 344 /* 345 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 346 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 347 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 348 */ 349 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 350 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 351 352 list_for_each_entry(link, &supplier->links.consumers, s_node) { 353 if (link->consumer != consumer) 354 continue; 355 356 if (flags & DL_FLAG_PM_RUNTIME) { 357 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 358 pm_runtime_new_link(consumer); 359 link->flags |= DL_FLAG_PM_RUNTIME; 360 } 361 if (flags & DL_FLAG_RPM_ACTIVE) 362 refcount_inc(&link->rpm_active); 363 } 364 365 if (flags & DL_FLAG_STATELESS) { 366 kref_get(&link->kref); 367 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 368 !(link->flags & DL_FLAG_STATELESS)) { 369 link->flags |= DL_FLAG_STATELESS; 370 goto reorder; 371 } else { 372 link->flags |= DL_FLAG_STATELESS; 373 goto out; 374 } 375 } 376 377 /* 378 * If the life time of the link following from the new flags is 379 * longer than indicated by the flags of the existing link, 380 * update the existing link to stay around longer. 381 */ 382 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 383 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 384 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 385 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 386 } 387 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 388 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 389 DL_FLAG_AUTOREMOVE_SUPPLIER); 390 } 391 if (!(link->flags & DL_FLAG_MANAGED)) { 392 kref_get(&link->kref); 393 link->flags |= DL_FLAG_MANAGED; 394 device_link_init_status(link, consumer, supplier); 395 } 396 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 397 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 398 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 399 goto reorder; 400 } 401 402 goto out; 403 } 404 405 link = kzalloc(sizeof(*link), GFP_KERNEL); 406 if (!link) 407 goto out; 408 409 refcount_set(&link->rpm_active, 1); 410 411 if (flags & DL_FLAG_PM_RUNTIME) { 412 if (flags & DL_FLAG_RPM_ACTIVE) 413 refcount_inc(&link->rpm_active); 414 415 pm_runtime_new_link(consumer); 416 } 417 418 get_device(supplier); 419 link->supplier = supplier; 420 INIT_LIST_HEAD(&link->s_node); 421 get_device(consumer); 422 link->consumer = consumer; 423 INIT_LIST_HEAD(&link->c_node); 424 link->flags = flags; 425 kref_init(&link->kref); 426 427 /* Determine the initial link state. */ 428 if (flags & DL_FLAG_STATELESS) 429 link->status = DL_STATE_NONE; 430 else 431 device_link_init_status(link, consumer, supplier); 432 433 /* 434 * Some callers expect the link creation during consumer driver probe to 435 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 436 */ 437 if (link->status == DL_STATE_CONSUMER_PROBE && 438 flags & DL_FLAG_PM_RUNTIME) 439 pm_runtime_resume(supplier); 440 441 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 442 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 443 444 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 445 dev_dbg(consumer, 446 "Linked as a sync state only consumer to %s\n", 447 dev_name(supplier)); 448 goto out; 449 } 450 451 reorder: 452 /* 453 * Move the consumer and all of the devices depending on it to the end 454 * of dpm_list and the devices_kset list. 455 * 456 * It is necessary to hold dpm_list locked throughout all that or else 457 * we may end up suspending with a wrong ordering of it. 458 */ 459 device_reorder_to_tail(consumer, NULL); 460 461 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 462 463 out: 464 device_pm_unlock(); 465 device_links_write_unlock(); 466 467 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 468 pm_runtime_put(supplier); 469 470 return link; 471 } 472 EXPORT_SYMBOL_GPL(device_link_add); 473 474 /** 475 * device_link_wait_for_supplier - Add device to wait_for_suppliers list 476 * @consumer: Consumer device 477 * 478 * Marks the @consumer device as waiting for suppliers to become available by 479 * adding it to the wait_for_suppliers list. The consumer device will never be 480 * probed until it's removed from the wait_for_suppliers list. 481 * 482 * The caller is responsible for adding the links to the supplier devices once 483 * they are available and removing the @consumer device from the 484 * wait_for_suppliers list once links to all the suppliers have been created. 485 * 486 * This function is NOT meant to be called from the probe function of the 487 * consumer but rather from code that creates/adds the consumer device. 488 */ 489 static void device_link_wait_for_supplier(struct device *consumer, 490 bool need_for_probe) 491 { 492 mutex_lock(&wfs_lock); 493 list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers); 494 consumer->links.need_for_probe = need_for_probe; 495 mutex_unlock(&wfs_lock); 496 } 497 498 static void device_link_wait_for_mandatory_supplier(struct device *consumer) 499 { 500 device_link_wait_for_supplier(consumer, true); 501 } 502 503 static void device_link_wait_for_optional_supplier(struct device *consumer) 504 { 505 device_link_wait_for_supplier(consumer, false); 506 } 507 508 /** 509 * device_link_add_missing_supplier_links - Add links from consumer devices to 510 * supplier devices, leaving any 511 * consumer with inactive suppliers on 512 * the wait_for_suppliers list 513 * 514 * Loops through all consumers waiting on suppliers and tries to add all their 515 * supplier links. If that succeeds, the consumer device is removed from 516 * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers 517 * list. Devices left on the wait_for_suppliers list will not be probed. 518 * 519 * The fwnode add_links callback is expected to return 0 if it has found and 520 * added all the supplier links for the consumer device. It should return an 521 * error if it isn't able to do so. 522 * 523 * The caller of device_link_wait_for_supplier() is expected to call this once 524 * it's aware of potential suppliers becoming available. 525 */ 526 static void device_link_add_missing_supplier_links(void) 527 { 528 struct device *dev, *tmp; 529 530 mutex_lock(&wfs_lock); 531 list_for_each_entry_safe(dev, tmp, &wait_for_suppliers, 532 links.needs_suppliers) { 533 int ret = fwnode_call_int_op(dev->fwnode, add_links, dev); 534 if (!ret) 535 list_del_init(&dev->links.needs_suppliers); 536 else if (ret != -ENODEV || fw_devlink_is_permissive()) 537 dev->links.need_for_probe = false; 538 } 539 mutex_unlock(&wfs_lock); 540 } 541 542 static void device_link_free(struct device_link *link) 543 { 544 while (refcount_dec_not_one(&link->rpm_active)) 545 pm_runtime_put(link->supplier); 546 547 put_device(link->consumer); 548 put_device(link->supplier); 549 kfree(link); 550 } 551 552 #ifdef CONFIG_SRCU 553 static void __device_link_free_srcu(struct rcu_head *rhead) 554 { 555 device_link_free(container_of(rhead, struct device_link, rcu_head)); 556 } 557 558 static void __device_link_del(struct kref *kref) 559 { 560 struct device_link *link = container_of(kref, struct device_link, kref); 561 562 dev_dbg(link->consumer, "Dropping the link to %s\n", 563 dev_name(link->supplier)); 564 565 if (link->flags & DL_FLAG_PM_RUNTIME) 566 pm_runtime_drop_link(link->consumer); 567 568 list_del_rcu(&link->s_node); 569 list_del_rcu(&link->c_node); 570 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu); 571 } 572 #else /* !CONFIG_SRCU */ 573 static void __device_link_del(struct kref *kref) 574 { 575 struct device_link *link = container_of(kref, struct device_link, kref); 576 577 dev_info(link->consumer, "Dropping the link to %s\n", 578 dev_name(link->supplier)); 579 580 if (link->flags & DL_FLAG_PM_RUNTIME) 581 pm_runtime_drop_link(link->consumer); 582 583 list_del(&link->s_node); 584 list_del(&link->c_node); 585 device_link_free(link); 586 } 587 #endif /* !CONFIG_SRCU */ 588 589 static void device_link_put_kref(struct device_link *link) 590 { 591 if (link->flags & DL_FLAG_STATELESS) 592 kref_put(&link->kref, __device_link_del); 593 else 594 WARN(1, "Unable to drop a managed device link reference\n"); 595 } 596 597 /** 598 * device_link_del - Delete a stateless link between two devices. 599 * @link: Device link to delete. 600 * 601 * The caller must ensure proper synchronization of this function with runtime 602 * PM. If the link was added multiple times, it needs to be deleted as often. 603 * Care is required for hotplugged devices: Their links are purged on removal 604 * and calling device_link_del() is then no longer allowed. 605 */ 606 void device_link_del(struct device_link *link) 607 { 608 device_links_write_lock(); 609 device_pm_lock(); 610 device_link_put_kref(link); 611 device_pm_unlock(); 612 device_links_write_unlock(); 613 } 614 EXPORT_SYMBOL_GPL(device_link_del); 615 616 /** 617 * device_link_remove - Delete a stateless link between two devices. 618 * @consumer: Consumer end of the link. 619 * @supplier: Supplier end of the link. 620 * 621 * The caller must ensure proper synchronization of this function with runtime 622 * PM. 623 */ 624 void device_link_remove(void *consumer, struct device *supplier) 625 { 626 struct device_link *link; 627 628 if (WARN_ON(consumer == supplier)) 629 return; 630 631 device_links_write_lock(); 632 device_pm_lock(); 633 634 list_for_each_entry(link, &supplier->links.consumers, s_node) { 635 if (link->consumer == consumer) { 636 device_link_put_kref(link); 637 break; 638 } 639 } 640 641 device_pm_unlock(); 642 device_links_write_unlock(); 643 } 644 EXPORT_SYMBOL_GPL(device_link_remove); 645 646 static void device_links_missing_supplier(struct device *dev) 647 { 648 struct device_link *link; 649 650 list_for_each_entry(link, &dev->links.suppliers, c_node) { 651 if (link->status != DL_STATE_CONSUMER_PROBE) 652 continue; 653 654 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 655 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 656 } else { 657 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 658 WRITE_ONCE(link->status, DL_STATE_DORMANT); 659 } 660 } 661 } 662 663 /** 664 * device_links_check_suppliers - Check presence of supplier drivers. 665 * @dev: Consumer device. 666 * 667 * Check links from this device to any suppliers. Walk the list of the device's 668 * links to suppliers and see if all of them are available. If not, simply 669 * return -EPROBE_DEFER. 670 * 671 * We need to guarantee that the supplier will not go away after the check has 672 * been positive here. It only can go away in __device_release_driver() and 673 * that function checks the device's links to consumers. This means we need to 674 * mark the link as "consumer probe in progress" to make the supplier removal 675 * wait for us to complete (or bad things may happen). 676 * 677 * Links without the DL_FLAG_MANAGED flag set are ignored. 678 */ 679 int device_links_check_suppliers(struct device *dev) 680 { 681 struct device_link *link; 682 int ret = 0; 683 684 /* 685 * Device waiting for supplier to become available is not allowed to 686 * probe. 687 */ 688 mutex_lock(&wfs_lock); 689 if (!list_empty(&dev->links.needs_suppliers) && 690 dev->links.need_for_probe) { 691 mutex_unlock(&wfs_lock); 692 return -EPROBE_DEFER; 693 } 694 mutex_unlock(&wfs_lock); 695 696 device_links_write_lock(); 697 698 list_for_each_entry(link, &dev->links.suppliers, c_node) { 699 if (!(link->flags & DL_FLAG_MANAGED)) 700 continue; 701 702 if (link->status != DL_STATE_AVAILABLE && 703 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 704 device_links_missing_supplier(dev); 705 ret = -EPROBE_DEFER; 706 break; 707 } 708 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 709 } 710 dev->links.status = DL_DEV_PROBING; 711 712 device_links_write_unlock(); 713 return ret; 714 } 715 716 /** 717 * __device_links_queue_sync_state - Queue a device for sync_state() callback 718 * @dev: Device to call sync_state() on 719 * @list: List head to queue the @dev on 720 * 721 * Queues a device for a sync_state() callback when the device links write lock 722 * isn't held. This allows the sync_state() execution flow to use device links 723 * APIs. The caller must ensure this function is called with 724 * device_links_write_lock() held. 725 * 726 * This function does a get_device() to make sure the device is not freed while 727 * on this list. 728 * 729 * So the caller must also ensure that device_links_flush_sync_list() is called 730 * as soon as the caller releases device_links_write_lock(). This is necessary 731 * to make sure the sync_state() is called in a timely fashion and the 732 * put_device() is called on this device. 733 */ 734 static void __device_links_queue_sync_state(struct device *dev, 735 struct list_head *list) 736 { 737 struct device_link *link; 738 739 if (!dev_has_sync_state(dev)) 740 return; 741 if (dev->state_synced) 742 return; 743 744 list_for_each_entry(link, &dev->links.consumers, s_node) { 745 if (!(link->flags & DL_FLAG_MANAGED)) 746 continue; 747 if (link->status != DL_STATE_ACTIVE) 748 return; 749 } 750 751 /* 752 * Set the flag here to avoid adding the same device to a list more 753 * than once. This can happen if new consumers get added to the device 754 * and probed before the list is flushed. 755 */ 756 dev->state_synced = true; 757 758 if (WARN_ON(!list_empty(&dev->links.defer_hook))) 759 return; 760 761 get_device(dev); 762 list_add_tail(&dev->links.defer_hook, list); 763 } 764 765 /** 766 * device_links_flush_sync_list - Call sync_state() on a list of devices 767 * @list: List of devices to call sync_state() on 768 * @dont_lock_dev: Device for which lock is already held by the caller 769 * 770 * Calls sync_state() on all the devices that have been queued for it. This 771 * function is used in conjunction with __device_links_queue_sync_state(). The 772 * @dont_lock_dev parameter is useful when this function is called from a 773 * context where a device lock is already held. 774 */ 775 static void device_links_flush_sync_list(struct list_head *list, 776 struct device *dont_lock_dev) 777 { 778 struct device *dev, *tmp; 779 780 list_for_each_entry_safe(dev, tmp, list, links.defer_hook) { 781 list_del_init(&dev->links.defer_hook); 782 783 if (dev != dont_lock_dev) 784 device_lock(dev); 785 786 if (dev->bus->sync_state) 787 dev->bus->sync_state(dev); 788 else if (dev->driver && dev->driver->sync_state) 789 dev->driver->sync_state(dev); 790 791 if (dev != dont_lock_dev) 792 device_unlock(dev); 793 794 put_device(dev); 795 } 796 } 797 798 void device_links_supplier_sync_state_pause(void) 799 { 800 device_links_write_lock(); 801 defer_sync_state_count++; 802 device_links_write_unlock(); 803 } 804 805 void device_links_supplier_sync_state_resume(void) 806 { 807 struct device *dev, *tmp; 808 LIST_HEAD(sync_list); 809 810 device_links_write_lock(); 811 if (!defer_sync_state_count) { 812 WARN(true, "Unmatched sync_state pause/resume!"); 813 goto out; 814 } 815 defer_sync_state_count--; 816 if (defer_sync_state_count) 817 goto out; 818 819 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_hook) { 820 /* 821 * Delete from deferred_sync list before queuing it to 822 * sync_list because defer_hook is used for both lists. 823 */ 824 list_del_init(&dev->links.defer_hook); 825 __device_links_queue_sync_state(dev, &sync_list); 826 } 827 out: 828 device_links_write_unlock(); 829 830 device_links_flush_sync_list(&sync_list, NULL); 831 } 832 833 static int sync_state_resume_initcall(void) 834 { 835 device_links_supplier_sync_state_resume(); 836 return 0; 837 } 838 late_initcall(sync_state_resume_initcall); 839 840 static void __device_links_supplier_defer_sync(struct device *sup) 841 { 842 if (list_empty(&sup->links.defer_hook) && dev_has_sync_state(sup)) 843 list_add_tail(&sup->links.defer_hook, &deferred_sync); 844 } 845 846 static void device_link_drop_managed(struct device_link *link) 847 { 848 link->flags &= ~DL_FLAG_MANAGED; 849 WRITE_ONCE(link->status, DL_STATE_NONE); 850 kref_put(&link->kref, __device_link_del); 851 } 852 853 /** 854 * device_links_driver_bound - Update device links after probing its driver. 855 * @dev: Device to update the links for. 856 * 857 * The probe has been successful, so update links from this device to any 858 * consumers by changing their status to "available". 859 * 860 * Also change the status of @dev's links to suppliers to "active". 861 * 862 * Links without the DL_FLAG_MANAGED flag set are ignored. 863 */ 864 void device_links_driver_bound(struct device *dev) 865 { 866 struct device_link *link, *ln; 867 LIST_HEAD(sync_list); 868 869 /* 870 * If a device probes successfully, it's expected to have created all 871 * the device links it needs to or make new device links as it needs 872 * them. So, it no longer needs to wait on any suppliers. 873 */ 874 mutex_lock(&wfs_lock); 875 list_del_init(&dev->links.needs_suppliers); 876 mutex_unlock(&wfs_lock); 877 878 device_links_write_lock(); 879 880 list_for_each_entry(link, &dev->links.consumers, s_node) { 881 if (!(link->flags & DL_FLAG_MANAGED)) 882 continue; 883 884 /* 885 * Links created during consumer probe may be in the "consumer 886 * probe" state to start with if the supplier is still probing 887 * when they are created and they may become "active" if the 888 * consumer probe returns first. Skip them here. 889 */ 890 if (link->status == DL_STATE_CONSUMER_PROBE || 891 link->status == DL_STATE_ACTIVE) 892 continue; 893 894 WARN_ON(link->status != DL_STATE_DORMANT); 895 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 896 897 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 898 driver_deferred_probe_add(link->consumer); 899 } 900 901 if (defer_sync_state_count) 902 __device_links_supplier_defer_sync(dev); 903 else 904 __device_links_queue_sync_state(dev, &sync_list); 905 906 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 907 struct device *supplier; 908 909 if (!(link->flags & DL_FLAG_MANAGED)) 910 continue; 911 912 supplier = link->supplier; 913 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 914 /* 915 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 916 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 917 * save to drop the managed link completely. 918 */ 919 device_link_drop_managed(link); 920 } else { 921 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 922 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 923 } 924 925 /* 926 * This needs to be done even for the deleted 927 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 928 * device link that was preventing the supplier from getting a 929 * sync_state() call. 930 */ 931 if (defer_sync_state_count) 932 __device_links_supplier_defer_sync(supplier); 933 else 934 __device_links_queue_sync_state(supplier, &sync_list); 935 } 936 937 dev->links.status = DL_DEV_DRIVER_BOUND; 938 939 device_links_write_unlock(); 940 941 device_links_flush_sync_list(&sync_list, dev); 942 } 943 944 /** 945 * __device_links_no_driver - Update links of a device without a driver. 946 * @dev: Device without a drvier. 947 * 948 * Delete all non-persistent links from this device to any suppliers. 949 * 950 * Persistent links stay around, but their status is changed to "available", 951 * unless they already are in the "supplier unbind in progress" state in which 952 * case they need not be updated. 953 * 954 * Links without the DL_FLAG_MANAGED flag set are ignored. 955 */ 956 static void __device_links_no_driver(struct device *dev) 957 { 958 struct device_link *link, *ln; 959 960 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 961 if (!(link->flags & DL_FLAG_MANAGED)) 962 continue; 963 964 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 965 device_link_drop_managed(link); 966 continue; 967 } 968 969 if (link->status != DL_STATE_CONSUMER_PROBE && 970 link->status != DL_STATE_ACTIVE) 971 continue; 972 973 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 974 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 975 } else { 976 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 977 WRITE_ONCE(link->status, DL_STATE_DORMANT); 978 } 979 } 980 981 dev->links.status = DL_DEV_NO_DRIVER; 982 } 983 984 /** 985 * device_links_no_driver - Update links after failing driver probe. 986 * @dev: Device whose driver has just failed to probe. 987 * 988 * Clean up leftover links to consumers for @dev and invoke 989 * %__device_links_no_driver() to update links to suppliers for it as 990 * appropriate. 991 * 992 * Links without the DL_FLAG_MANAGED flag set are ignored. 993 */ 994 void device_links_no_driver(struct device *dev) 995 { 996 struct device_link *link; 997 998 device_links_write_lock(); 999 1000 list_for_each_entry(link, &dev->links.consumers, s_node) { 1001 if (!(link->flags & DL_FLAG_MANAGED)) 1002 continue; 1003 1004 /* 1005 * The probe has failed, so if the status of the link is 1006 * "consumer probe" or "active", it must have been added by 1007 * a probing consumer while this device was still probing. 1008 * Change its state to "dormant", as it represents a valid 1009 * relationship, but it is not functionally meaningful. 1010 */ 1011 if (link->status == DL_STATE_CONSUMER_PROBE || 1012 link->status == DL_STATE_ACTIVE) 1013 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1014 } 1015 1016 __device_links_no_driver(dev); 1017 1018 device_links_write_unlock(); 1019 } 1020 1021 /** 1022 * device_links_driver_cleanup - Update links after driver removal. 1023 * @dev: Device whose driver has just gone away. 1024 * 1025 * Update links to consumers for @dev by changing their status to "dormant" and 1026 * invoke %__device_links_no_driver() to update links to suppliers for it as 1027 * appropriate. 1028 * 1029 * Links without the DL_FLAG_MANAGED flag set are ignored. 1030 */ 1031 void device_links_driver_cleanup(struct device *dev) 1032 { 1033 struct device_link *link, *ln; 1034 1035 device_links_write_lock(); 1036 1037 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1038 if (!(link->flags & DL_FLAG_MANAGED)) 1039 continue; 1040 1041 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1042 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1043 1044 /* 1045 * autoremove the links between this @dev and its consumer 1046 * devices that are not active, i.e. where the link state 1047 * has moved to DL_STATE_SUPPLIER_UNBIND. 1048 */ 1049 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1050 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1051 device_link_drop_managed(link); 1052 1053 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1054 } 1055 1056 list_del_init(&dev->links.defer_hook); 1057 __device_links_no_driver(dev); 1058 1059 device_links_write_unlock(); 1060 } 1061 1062 /** 1063 * device_links_busy - Check if there are any busy links to consumers. 1064 * @dev: Device to check. 1065 * 1066 * Check each consumer of the device and return 'true' if its link's status 1067 * is one of "consumer probe" or "active" (meaning that the given consumer is 1068 * probing right now or its driver is present). Otherwise, change the link 1069 * state to "supplier unbind" to prevent the consumer from being probed 1070 * successfully going forward. 1071 * 1072 * Return 'false' if there are no probing or active consumers. 1073 * 1074 * Links without the DL_FLAG_MANAGED flag set are ignored. 1075 */ 1076 bool device_links_busy(struct device *dev) 1077 { 1078 struct device_link *link; 1079 bool ret = false; 1080 1081 device_links_write_lock(); 1082 1083 list_for_each_entry(link, &dev->links.consumers, s_node) { 1084 if (!(link->flags & DL_FLAG_MANAGED)) 1085 continue; 1086 1087 if (link->status == DL_STATE_CONSUMER_PROBE 1088 || link->status == DL_STATE_ACTIVE) { 1089 ret = true; 1090 break; 1091 } 1092 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1093 } 1094 1095 dev->links.status = DL_DEV_UNBINDING; 1096 1097 device_links_write_unlock(); 1098 return ret; 1099 } 1100 1101 /** 1102 * device_links_unbind_consumers - Force unbind consumers of the given device. 1103 * @dev: Device to unbind the consumers of. 1104 * 1105 * Walk the list of links to consumers for @dev and if any of them is in the 1106 * "consumer probe" state, wait for all device probes in progress to complete 1107 * and start over. 1108 * 1109 * If that's not the case, change the status of the link to "supplier unbind" 1110 * and check if the link was in the "active" state. If so, force the consumer 1111 * driver to unbind and start over (the consumer will not re-probe as we have 1112 * changed the state of the link already). 1113 * 1114 * Links without the DL_FLAG_MANAGED flag set are ignored. 1115 */ 1116 void device_links_unbind_consumers(struct device *dev) 1117 { 1118 struct device_link *link; 1119 1120 start: 1121 device_links_write_lock(); 1122 1123 list_for_each_entry(link, &dev->links.consumers, s_node) { 1124 enum device_link_state status; 1125 1126 if (!(link->flags & DL_FLAG_MANAGED) || 1127 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1128 continue; 1129 1130 status = link->status; 1131 if (status == DL_STATE_CONSUMER_PROBE) { 1132 device_links_write_unlock(); 1133 1134 wait_for_device_probe(); 1135 goto start; 1136 } 1137 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1138 if (status == DL_STATE_ACTIVE) { 1139 struct device *consumer = link->consumer; 1140 1141 get_device(consumer); 1142 1143 device_links_write_unlock(); 1144 1145 device_release_driver_internal(consumer, NULL, 1146 consumer->parent); 1147 put_device(consumer); 1148 goto start; 1149 } 1150 } 1151 1152 device_links_write_unlock(); 1153 } 1154 1155 /** 1156 * device_links_purge - Delete existing links to other devices. 1157 * @dev: Target device. 1158 */ 1159 static void device_links_purge(struct device *dev) 1160 { 1161 struct device_link *link, *ln; 1162 1163 mutex_lock(&wfs_lock); 1164 list_del(&dev->links.needs_suppliers); 1165 mutex_unlock(&wfs_lock); 1166 1167 /* 1168 * Delete all of the remaining links from this device to any other 1169 * devices (either consumers or suppliers). 1170 */ 1171 device_links_write_lock(); 1172 1173 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1174 WARN_ON(link->status == DL_STATE_ACTIVE); 1175 __device_link_del(&link->kref); 1176 } 1177 1178 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1179 WARN_ON(link->status != DL_STATE_DORMANT && 1180 link->status != DL_STATE_NONE); 1181 __device_link_del(&link->kref); 1182 } 1183 1184 device_links_write_unlock(); 1185 } 1186 1187 static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY; 1188 static int __init fw_devlink_setup(char *arg) 1189 { 1190 if (!arg) 1191 return -EINVAL; 1192 1193 if (strcmp(arg, "off") == 0) { 1194 fw_devlink_flags = 0; 1195 } else if (strcmp(arg, "permissive") == 0) { 1196 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY; 1197 } else if (strcmp(arg, "on") == 0) { 1198 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER; 1199 } else if (strcmp(arg, "rpm") == 0) { 1200 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER | 1201 DL_FLAG_PM_RUNTIME; 1202 } 1203 return 0; 1204 } 1205 early_param("fw_devlink", fw_devlink_setup); 1206 1207 u32 fw_devlink_get_flags(void) 1208 { 1209 return fw_devlink_flags; 1210 } 1211 1212 static bool fw_devlink_is_permissive(void) 1213 { 1214 return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY; 1215 } 1216 1217 static void fw_devlink_link_device(struct device *dev) 1218 { 1219 int fw_ret; 1220 1221 if (!fw_devlink_flags) 1222 return; 1223 1224 mutex_lock(&defer_fw_devlink_lock); 1225 if (!defer_fw_devlink_count) 1226 device_link_add_missing_supplier_links(); 1227 1228 /* 1229 * The device's fwnode not having add_links() doesn't affect if other 1230 * consumers can find this device as a supplier. So, this check is 1231 * intentionally placed after device_link_add_missing_supplier_links(). 1232 */ 1233 if (!fwnode_has_op(dev->fwnode, add_links)) 1234 goto out; 1235 1236 /* 1237 * If fw_devlink is being deferred, assume all devices have mandatory 1238 * suppliers they need to link to later. Then, when the fw_devlink is 1239 * resumed, all these devices will get a chance to try and link to any 1240 * suppliers they have. 1241 */ 1242 if (!defer_fw_devlink_count) { 1243 fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev); 1244 if (fw_ret == -ENODEV && fw_devlink_is_permissive()) 1245 fw_ret = -EAGAIN; 1246 } else { 1247 fw_ret = -ENODEV; 1248 /* 1249 * defer_hook is not used to add device to deferred_sync list 1250 * until device is bound. Since deferred fw devlink also blocks 1251 * probing, same list hook can be used for deferred_fw_devlink. 1252 */ 1253 list_add_tail(&dev->links.defer_hook, &deferred_fw_devlink); 1254 } 1255 1256 if (fw_ret == -ENODEV) 1257 device_link_wait_for_mandatory_supplier(dev); 1258 else if (fw_ret) 1259 device_link_wait_for_optional_supplier(dev); 1260 1261 out: 1262 mutex_unlock(&defer_fw_devlink_lock); 1263 } 1264 1265 /** 1266 * fw_devlink_pause - Pause parsing of fwnode to create device links 1267 * 1268 * Calling this function defers any fwnode parsing to create device links until 1269 * fw_devlink_resume() is called. Both these functions are ref counted and the 1270 * caller needs to match the calls. 1271 * 1272 * While fw_devlink is paused: 1273 * - Any device that is added won't have its fwnode parsed to create device 1274 * links. 1275 * - The probe of the device will also be deferred during this period. 1276 * - Any devices that were already added, but waiting for suppliers won't be 1277 * able to link to newly added devices. 1278 * 1279 * Once fw_devlink_resume(): 1280 * - All the fwnodes that was not parsed will be parsed. 1281 * - All the devices that were deferred probing will be reattempted if they 1282 * aren't waiting for any more suppliers. 1283 * 1284 * This pair of functions, is mainly meant to optimize the parsing of fwnodes 1285 * when a lot of devices that need to link to each other are added in a short 1286 * interval of time. For example, adding all the top level devices in a system. 1287 * 1288 * For example, if N devices are added and: 1289 * - All the consumers are added before their suppliers 1290 * - All the suppliers of the N devices are part of the N devices 1291 * 1292 * Then: 1293 * 1294 * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device 1295 * will only need one parsing of its fwnode because it is guaranteed to find 1296 * all the supplier devices already registered and ready to link to. It won't 1297 * have to do another pass later to find one or more suppliers it couldn't 1298 * find in the first parse of the fwnode. So, we'll only need O(N) fwnode 1299 * parses. 1300 * 1301 * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would 1302 * end up doing O(N^2) parses of fwnodes because every device that's added is 1303 * guaranteed to trigger a parse of the fwnode of every device added before 1304 * it. This O(N^2) parse is made worse by the fact that when a fwnode of a 1305 * device is parsed, all it descendant devices might need to have their 1306 * fwnodes parsed too (even if the devices themselves aren't added). 1307 */ 1308 void fw_devlink_pause(void) 1309 { 1310 mutex_lock(&defer_fw_devlink_lock); 1311 defer_fw_devlink_count++; 1312 mutex_unlock(&defer_fw_devlink_lock); 1313 } 1314 1315 /** fw_devlink_resume - Resume parsing of fwnode to create device links 1316 * 1317 * This function is used in conjunction with fw_devlink_pause() and is ref 1318 * counted. See documentation for fw_devlink_pause() for more details. 1319 */ 1320 void fw_devlink_resume(void) 1321 { 1322 struct device *dev, *tmp; 1323 LIST_HEAD(probe_list); 1324 1325 mutex_lock(&defer_fw_devlink_lock); 1326 if (!defer_fw_devlink_count) { 1327 WARN(true, "Unmatched fw_devlink pause/resume!"); 1328 goto out; 1329 } 1330 1331 defer_fw_devlink_count--; 1332 if (defer_fw_devlink_count) 1333 goto out; 1334 1335 device_link_add_missing_supplier_links(); 1336 list_splice_tail_init(&deferred_fw_devlink, &probe_list); 1337 out: 1338 mutex_unlock(&defer_fw_devlink_lock); 1339 1340 /* 1341 * bus_probe_device() can cause new devices to get added and they'll 1342 * try to grab defer_fw_devlink_lock. So, this needs to be done outside 1343 * the defer_fw_devlink_lock. 1344 */ 1345 list_for_each_entry_safe(dev, tmp, &probe_list, links.defer_hook) { 1346 list_del_init(&dev->links.defer_hook); 1347 bus_probe_device(dev); 1348 } 1349 } 1350 /* Device links support end. */ 1351 1352 int (*platform_notify)(struct device *dev) = NULL; 1353 int (*platform_notify_remove)(struct device *dev) = NULL; 1354 static struct kobject *dev_kobj; 1355 struct kobject *sysfs_dev_char_kobj; 1356 struct kobject *sysfs_dev_block_kobj; 1357 1358 static DEFINE_MUTEX(device_hotplug_lock); 1359 1360 void lock_device_hotplug(void) 1361 { 1362 mutex_lock(&device_hotplug_lock); 1363 } 1364 1365 void unlock_device_hotplug(void) 1366 { 1367 mutex_unlock(&device_hotplug_lock); 1368 } 1369 1370 int lock_device_hotplug_sysfs(void) 1371 { 1372 if (mutex_trylock(&device_hotplug_lock)) 1373 return 0; 1374 1375 /* Avoid busy looping (5 ms of sleep should do). */ 1376 msleep(5); 1377 return restart_syscall(); 1378 } 1379 1380 #ifdef CONFIG_BLOCK 1381 static inline int device_is_not_partition(struct device *dev) 1382 { 1383 return !(dev->type == &part_type); 1384 } 1385 #else 1386 static inline int device_is_not_partition(struct device *dev) 1387 { 1388 return 1; 1389 } 1390 #endif 1391 1392 static int 1393 device_platform_notify(struct device *dev, enum kobject_action action) 1394 { 1395 int ret; 1396 1397 ret = acpi_platform_notify(dev, action); 1398 if (ret) 1399 return ret; 1400 1401 ret = software_node_notify(dev, action); 1402 if (ret) 1403 return ret; 1404 1405 if (platform_notify && action == KOBJ_ADD) 1406 platform_notify(dev); 1407 else if (platform_notify_remove && action == KOBJ_REMOVE) 1408 platform_notify_remove(dev); 1409 return 0; 1410 } 1411 1412 /** 1413 * dev_driver_string - Return a device's driver name, if at all possible 1414 * @dev: struct device to get the name of 1415 * 1416 * Will return the device's driver's name if it is bound to a device. If 1417 * the device is not bound to a driver, it will return the name of the bus 1418 * it is attached to. If it is not attached to a bus either, an empty 1419 * string will be returned. 1420 */ 1421 const char *dev_driver_string(const struct device *dev) 1422 { 1423 struct device_driver *drv; 1424 1425 /* dev->driver can change to NULL underneath us because of unbinding, 1426 * so be careful about accessing it. dev->bus and dev->class should 1427 * never change once they are set, so they don't need special care. 1428 */ 1429 drv = READ_ONCE(dev->driver); 1430 return drv ? drv->name : 1431 (dev->bus ? dev->bus->name : 1432 (dev->class ? dev->class->name : "")); 1433 } 1434 EXPORT_SYMBOL(dev_driver_string); 1435 1436 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 1437 1438 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 1439 char *buf) 1440 { 1441 struct device_attribute *dev_attr = to_dev_attr(attr); 1442 struct device *dev = kobj_to_dev(kobj); 1443 ssize_t ret = -EIO; 1444 1445 if (dev_attr->show) 1446 ret = dev_attr->show(dev, dev_attr, buf); 1447 if (ret >= (ssize_t)PAGE_SIZE) { 1448 printk("dev_attr_show: %pS returned bad count\n", 1449 dev_attr->show); 1450 } 1451 return ret; 1452 } 1453 1454 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 1455 const char *buf, size_t count) 1456 { 1457 struct device_attribute *dev_attr = to_dev_attr(attr); 1458 struct device *dev = kobj_to_dev(kobj); 1459 ssize_t ret = -EIO; 1460 1461 if (dev_attr->store) 1462 ret = dev_attr->store(dev, dev_attr, buf, count); 1463 return ret; 1464 } 1465 1466 static const struct sysfs_ops dev_sysfs_ops = { 1467 .show = dev_attr_show, 1468 .store = dev_attr_store, 1469 }; 1470 1471 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 1472 1473 ssize_t device_store_ulong(struct device *dev, 1474 struct device_attribute *attr, 1475 const char *buf, size_t size) 1476 { 1477 struct dev_ext_attribute *ea = to_ext_attr(attr); 1478 int ret; 1479 unsigned long new; 1480 1481 ret = kstrtoul(buf, 0, &new); 1482 if (ret) 1483 return ret; 1484 *(unsigned long *)(ea->var) = new; 1485 /* Always return full write size even if we didn't consume all */ 1486 return size; 1487 } 1488 EXPORT_SYMBOL_GPL(device_store_ulong); 1489 1490 ssize_t device_show_ulong(struct device *dev, 1491 struct device_attribute *attr, 1492 char *buf) 1493 { 1494 struct dev_ext_attribute *ea = to_ext_attr(attr); 1495 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var)); 1496 } 1497 EXPORT_SYMBOL_GPL(device_show_ulong); 1498 1499 ssize_t device_store_int(struct device *dev, 1500 struct device_attribute *attr, 1501 const char *buf, size_t size) 1502 { 1503 struct dev_ext_attribute *ea = to_ext_attr(attr); 1504 int ret; 1505 long new; 1506 1507 ret = kstrtol(buf, 0, &new); 1508 if (ret) 1509 return ret; 1510 1511 if (new > INT_MAX || new < INT_MIN) 1512 return -EINVAL; 1513 *(int *)(ea->var) = new; 1514 /* Always return full write size even if we didn't consume all */ 1515 return size; 1516 } 1517 EXPORT_SYMBOL_GPL(device_store_int); 1518 1519 ssize_t device_show_int(struct device *dev, 1520 struct device_attribute *attr, 1521 char *buf) 1522 { 1523 struct dev_ext_attribute *ea = to_ext_attr(attr); 1524 1525 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var)); 1526 } 1527 EXPORT_SYMBOL_GPL(device_show_int); 1528 1529 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 1530 const char *buf, size_t size) 1531 { 1532 struct dev_ext_attribute *ea = to_ext_attr(attr); 1533 1534 if (strtobool(buf, ea->var) < 0) 1535 return -EINVAL; 1536 1537 return size; 1538 } 1539 EXPORT_SYMBOL_GPL(device_store_bool); 1540 1541 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 1542 char *buf) 1543 { 1544 struct dev_ext_attribute *ea = to_ext_attr(attr); 1545 1546 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var)); 1547 } 1548 EXPORT_SYMBOL_GPL(device_show_bool); 1549 1550 /** 1551 * device_release - free device structure. 1552 * @kobj: device's kobject. 1553 * 1554 * This is called once the reference count for the object 1555 * reaches 0. We forward the call to the device's release 1556 * method, which should handle actually freeing the structure. 1557 */ 1558 static void device_release(struct kobject *kobj) 1559 { 1560 struct device *dev = kobj_to_dev(kobj); 1561 struct device_private *p = dev->p; 1562 1563 /* 1564 * Some platform devices are driven without driver attached 1565 * and managed resources may have been acquired. Make sure 1566 * all resources are released. 1567 * 1568 * Drivers still can add resources into device after device 1569 * is deleted but alive, so release devres here to avoid 1570 * possible memory leak. 1571 */ 1572 devres_release_all(dev); 1573 1574 if (dev->release) 1575 dev->release(dev); 1576 else if (dev->type && dev->type->release) 1577 dev->type->release(dev); 1578 else if (dev->class && dev->class->dev_release) 1579 dev->class->dev_release(dev); 1580 else 1581 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 1582 dev_name(dev)); 1583 kfree(p); 1584 } 1585 1586 static const void *device_namespace(struct kobject *kobj) 1587 { 1588 struct device *dev = kobj_to_dev(kobj); 1589 const void *ns = NULL; 1590 1591 if (dev->class && dev->class->ns_type) 1592 ns = dev->class->namespace(dev); 1593 1594 return ns; 1595 } 1596 1597 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) 1598 { 1599 struct device *dev = kobj_to_dev(kobj); 1600 1601 if (dev->class && dev->class->get_ownership) 1602 dev->class->get_ownership(dev, uid, gid); 1603 } 1604 1605 static struct kobj_type device_ktype = { 1606 .release = device_release, 1607 .sysfs_ops = &dev_sysfs_ops, 1608 .namespace = device_namespace, 1609 .get_ownership = device_get_ownership, 1610 }; 1611 1612 1613 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 1614 { 1615 struct kobj_type *ktype = get_ktype(kobj); 1616 1617 if (ktype == &device_ktype) { 1618 struct device *dev = kobj_to_dev(kobj); 1619 if (dev->bus) 1620 return 1; 1621 if (dev->class) 1622 return 1; 1623 } 1624 return 0; 1625 } 1626 1627 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 1628 { 1629 struct device *dev = kobj_to_dev(kobj); 1630 1631 if (dev->bus) 1632 return dev->bus->name; 1633 if (dev->class) 1634 return dev->class->name; 1635 return NULL; 1636 } 1637 1638 static int dev_uevent(struct kset *kset, struct kobject *kobj, 1639 struct kobj_uevent_env *env) 1640 { 1641 struct device *dev = kobj_to_dev(kobj); 1642 int retval = 0; 1643 1644 /* add device node properties if present */ 1645 if (MAJOR(dev->devt)) { 1646 const char *tmp; 1647 const char *name; 1648 umode_t mode = 0; 1649 kuid_t uid = GLOBAL_ROOT_UID; 1650 kgid_t gid = GLOBAL_ROOT_GID; 1651 1652 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 1653 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 1654 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 1655 if (name) { 1656 add_uevent_var(env, "DEVNAME=%s", name); 1657 if (mode) 1658 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 1659 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 1660 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 1661 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 1662 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 1663 kfree(tmp); 1664 } 1665 } 1666 1667 if (dev->type && dev->type->name) 1668 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 1669 1670 if (dev->driver) 1671 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 1672 1673 /* Add common DT information about the device */ 1674 of_device_uevent(dev, env); 1675 1676 /* have the bus specific function add its stuff */ 1677 if (dev->bus && dev->bus->uevent) { 1678 retval = dev->bus->uevent(dev, env); 1679 if (retval) 1680 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 1681 dev_name(dev), __func__, retval); 1682 } 1683 1684 /* have the class specific function add its stuff */ 1685 if (dev->class && dev->class->dev_uevent) { 1686 retval = dev->class->dev_uevent(dev, env); 1687 if (retval) 1688 pr_debug("device: '%s': %s: class uevent() " 1689 "returned %d\n", dev_name(dev), 1690 __func__, retval); 1691 } 1692 1693 /* have the device type specific function add its stuff */ 1694 if (dev->type && dev->type->uevent) { 1695 retval = dev->type->uevent(dev, env); 1696 if (retval) 1697 pr_debug("device: '%s': %s: dev_type uevent() " 1698 "returned %d\n", dev_name(dev), 1699 __func__, retval); 1700 } 1701 1702 return retval; 1703 } 1704 1705 static const struct kset_uevent_ops device_uevent_ops = { 1706 .filter = dev_uevent_filter, 1707 .name = dev_uevent_name, 1708 .uevent = dev_uevent, 1709 }; 1710 1711 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 1712 char *buf) 1713 { 1714 struct kobject *top_kobj; 1715 struct kset *kset; 1716 struct kobj_uevent_env *env = NULL; 1717 int i; 1718 size_t count = 0; 1719 int retval; 1720 1721 /* search the kset, the device belongs to */ 1722 top_kobj = &dev->kobj; 1723 while (!top_kobj->kset && top_kobj->parent) 1724 top_kobj = top_kobj->parent; 1725 if (!top_kobj->kset) 1726 goto out; 1727 1728 kset = top_kobj->kset; 1729 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 1730 goto out; 1731 1732 /* respect filter */ 1733 if (kset->uevent_ops && kset->uevent_ops->filter) 1734 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 1735 goto out; 1736 1737 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 1738 if (!env) 1739 return -ENOMEM; 1740 1741 /* let the kset specific function add its keys */ 1742 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 1743 if (retval) 1744 goto out; 1745 1746 /* copy keys to file */ 1747 for (i = 0; i < env->envp_idx; i++) 1748 count += sprintf(&buf[count], "%s\n", env->envp[i]); 1749 out: 1750 kfree(env); 1751 return count; 1752 } 1753 1754 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 1755 const char *buf, size_t count) 1756 { 1757 int rc; 1758 1759 rc = kobject_synth_uevent(&dev->kobj, buf, count); 1760 1761 if (rc) { 1762 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 1763 return rc; 1764 } 1765 1766 return count; 1767 } 1768 static DEVICE_ATTR_RW(uevent); 1769 1770 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 1771 char *buf) 1772 { 1773 bool val; 1774 1775 device_lock(dev); 1776 val = !dev->offline; 1777 device_unlock(dev); 1778 return sprintf(buf, "%u\n", val); 1779 } 1780 1781 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 1782 const char *buf, size_t count) 1783 { 1784 bool val; 1785 int ret; 1786 1787 ret = strtobool(buf, &val); 1788 if (ret < 0) 1789 return ret; 1790 1791 ret = lock_device_hotplug_sysfs(); 1792 if (ret) 1793 return ret; 1794 1795 ret = val ? device_online(dev) : device_offline(dev); 1796 unlock_device_hotplug(); 1797 return ret < 0 ? ret : count; 1798 } 1799 static DEVICE_ATTR_RW(online); 1800 1801 int device_add_groups(struct device *dev, const struct attribute_group **groups) 1802 { 1803 return sysfs_create_groups(&dev->kobj, groups); 1804 } 1805 EXPORT_SYMBOL_GPL(device_add_groups); 1806 1807 void device_remove_groups(struct device *dev, 1808 const struct attribute_group **groups) 1809 { 1810 sysfs_remove_groups(&dev->kobj, groups); 1811 } 1812 EXPORT_SYMBOL_GPL(device_remove_groups); 1813 1814 union device_attr_group_devres { 1815 const struct attribute_group *group; 1816 const struct attribute_group **groups; 1817 }; 1818 1819 static int devm_attr_group_match(struct device *dev, void *res, void *data) 1820 { 1821 return ((union device_attr_group_devres *)res)->group == data; 1822 } 1823 1824 static void devm_attr_group_remove(struct device *dev, void *res) 1825 { 1826 union device_attr_group_devres *devres = res; 1827 const struct attribute_group *group = devres->group; 1828 1829 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 1830 sysfs_remove_group(&dev->kobj, group); 1831 } 1832 1833 static void devm_attr_groups_remove(struct device *dev, void *res) 1834 { 1835 union device_attr_group_devres *devres = res; 1836 const struct attribute_group **groups = devres->groups; 1837 1838 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 1839 sysfs_remove_groups(&dev->kobj, groups); 1840 } 1841 1842 /** 1843 * devm_device_add_group - given a device, create a managed attribute group 1844 * @dev: The device to create the group for 1845 * @grp: The attribute group to create 1846 * 1847 * This function creates a group for the first time. It will explicitly 1848 * warn and error if any of the attribute files being created already exist. 1849 * 1850 * Returns 0 on success or error code on failure. 1851 */ 1852 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 1853 { 1854 union device_attr_group_devres *devres; 1855 int error; 1856 1857 devres = devres_alloc(devm_attr_group_remove, 1858 sizeof(*devres), GFP_KERNEL); 1859 if (!devres) 1860 return -ENOMEM; 1861 1862 error = sysfs_create_group(&dev->kobj, grp); 1863 if (error) { 1864 devres_free(devres); 1865 return error; 1866 } 1867 1868 devres->group = grp; 1869 devres_add(dev, devres); 1870 return 0; 1871 } 1872 EXPORT_SYMBOL_GPL(devm_device_add_group); 1873 1874 /** 1875 * devm_device_remove_group: remove a managed group from a device 1876 * @dev: device to remove the group from 1877 * @grp: group to remove 1878 * 1879 * This function removes a group of attributes from a device. The attributes 1880 * previously have to have been created for this group, otherwise it will fail. 1881 */ 1882 void devm_device_remove_group(struct device *dev, 1883 const struct attribute_group *grp) 1884 { 1885 WARN_ON(devres_release(dev, devm_attr_group_remove, 1886 devm_attr_group_match, 1887 /* cast away const */ (void *)grp)); 1888 } 1889 EXPORT_SYMBOL_GPL(devm_device_remove_group); 1890 1891 /** 1892 * devm_device_add_groups - create a bunch of managed attribute groups 1893 * @dev: The device to create the group for 1894 * @groups: The attribute groups to create, NULL terminated 1895 * 1896 * This function creates a bunch of managed attribute groups. If an error 1897 * occurs when creating a group, all previously created groups will be 1898 * removed, unwinding everything back to the original state when this 1899 * function was called. It will explicitly warn and error if any of the 1900 * attribute files being created already exist. 1901 * 1902 * Returns 0 on success or error code from sysfs_create_group on failure. 1903 */ 1904 int devm_device_add_groups(struct device *dev, 1905 const struct attribute_group **groups) 1906 { 1907 union device_attr_group_devres *devres; 1908 int error; 1909 1910 devres = devres_alloc(devm_attr_groups_remove, 1911 sizeof(*devres), GFP_KERNEL); 1912 if (!devres) 1913 return -ENOMEM; 1914 1915 error = sysfs_create_groups(&dev->kobj, groups); 1916 if (error) { 1917 devres_free(devres); 1918 return error; 1919 } 1920 1921 devres->groups = groups; 1922 devres_add(dev, devres); 1923 return 0; 1924 } 1925 EXPORT_SYMBOL_GPL(devm_device_add_groups); 1926 1927 /** 1928 * devm_device_remove_groups - remove a list of managed groups 1929 * 1930 * @dev: The device for the groups to be removed from 1931 * @groups: NULL terminated list of groups to be removed 1932 * 1933 * If groups is not NULL, remove the specified groups from the device. 1934 */ 1935 void devm_device_remove_groups(struct device *dev, 1936 const struct attribute_group **groups) 1937 { 1938 WARN_ON(devres_release(dev, devm_attr_groups_remove, 1939 devm_attr_group_match, 1940 /* cast away const */ (void *)groups)); 1941 } 1942 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 1943 1944 static int device_add_attrs(struct device *dev) 1945 { 1946 struct class *class = dev->class; 1947 const struct device_type *type = dev->type; 1948 int error; 1949 1950 if (class) { 1951 error = device_add_groups(dev, class->dev_groups); 1952 if (error) 1953 return error; 1954 } 1955 1956 if (type) { 1957 error = device_add_groups(dev, type->groups); 1958 if (error) 1959 goto err_remove_class_groups; 1960 } 1961 1962 error = device_add_groups(dev, dev->groups); 1963 if (error) 1964 goto err_remove_type_groups; 1965 1966 if (device_supports_offline(dev) && !dev->offline_disabled) { 1967 error = device_create_file(dev, &dev_attr_online); 1968 if (error) 1969 goto err_remove_dev_groups; 1970 } 1971 1972 return 0; 1973 1974 err_remove_dev_groups: 1975 device_remove_groups(dev, dev->groups); 1976 err_remove_type_groups: 1977 if (type) 1978 device_remove_groups(dev, type->groups); 1979 err_remove_class_groups: 1980 if (class) 1981 device_remove_groups(dev, class->dev_groups); 1982 1983 return error; 1984 } 1985 1986 static void device_remove_attrs(struct device *dev) 1987 { 1988 struct class *class = dev->class; 1989 const struct device_type *type = dev->type; 1990 1991 device_remove_file(dev, &dev_attr_online); 1992 device_remove_groups(dev, dev->groups); 1993 1994 if (type) 1995 device_remove_groups(dev, type->groups); 1996 1997 if (class) 1998 device_remove_groups(dev, class->dev_groups); 1999 } 2000 2001 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2002 char *buf) 2003 { 2004 return print_dev_t(buf, dev->devt); 2005 } 2006 static DEVICE_ATTR_RO(dev); 2007 2008 /* /sys/devices/ */ 2009 struct kset *devices_kset; 2010 2011 /** 2012 * devices_kset_move_before - Move device in the devices_kset's list. 2013 * @deva: Device to move. 2014 * @devb: Device @deva should come before. 2015 */ 2016 static void devices_kset_move_before(struct device *deva, struct device *devb) 2017 { 2018 if (!devices_kset) 2019 return; 2020 pr_debug("devices_kset: Moving %s before %s\n", 2021 dev_name(deva), dev_name(devb)); 2022 spin_lock(&devices_kset->list_lock); 2023 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2024 spin_unlock(&devices_kset->list_lock); 2025 } 2026 2027 /** 2028 * devices_kset_move_after - Move device in the devices_kset's list. 2029 * @deva: Device to move 2030 * @devb: Device @deva should come after. 2031 */ 2032 static void devices_kset_move_after(struct device *deva, struct device *devb) 2033 { 2034 if (!devices_kset) 2035 return; 2036 pr_debug("devices_kset: Moving %s after %s\n", 2037 dev_name(deva), dev_name(devb)); 2038 spin_lock(&devices_kset->list_lock); 2039 list_move(&deva->kobj.entry, &devb->kobj.entry); 2040 spin_unlock(&devices_kset->list_lock); 2041 } 2042 2043 /** 2044 * devices_kset_move_last - move the device to the end of devices_kset's list. 2045 * @dev: device to move 2046 */ 2047 void devices_kset_move_last(struct device *dev) 2048 { 2049 if (!devices_kset) 2050 return; 2051 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2052 spin_lock(&devices_kset->list_lock); 2053 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2054 spin_unlock(&devices_kset->list_lock); 2055 } 2056 2057 /** 2058 * device_create_file - create sysfs attribute file for device. 2059 * @dev: device. 2060 * @attr: device attribute descriptor. 2061 */ 2062 int device_create_file(struct device *dev, 2063 const struct device_attribute *attr) 2064 { 2065 int error = 0; 2066 2067 if (dev) { 2068 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 2069 "Attribute %s: write permission without 'store'\n", 2070 attr->attr.name); 2071 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 2072 "Attribute %s: read permission without 'show'\n", 2073 attr->attr.name); 2074 error = sysfs_create_file(&dev->kobj, &attr->attr); 2075 } 2076 2077 return error; 2078 } 2079 EXPORT_SYMBOL_GPL(device_create_file); 2080 2081 /** 2082 * device_remove_file - remove sysfs attribute file. 2083 * @dev: device. 2084 * @attr: device attribute descriptor. 2085 */ 2086 void device_remove_file(struct device *dev, 2087 const struct device_attribute *attr) 2088 { 2089 if (dev) 2090 sysfs_remove_file(&dev->kobj, &attr->attr); 2091 } 2092 EXPORT_SYMBOL_GPL(device_remove_file); 2093 2094 /** 2095 * device_remove_file_self - remove sysfs attribute file from its own method. 2096 * @dev: device. 2097 * @attr: device attribute descriptor. 2098 * 2099 * See kernfs_remove_self() for details. 2100 */ 2101 bool device_remove_file_self(struct device *dev, 2102 const struct device_attribute *attr) 2103 { 2104 if (dev) 2105 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 2106 else 2107 return false; 2108 } 2109 EXPORT_SYMBOL_GPL(device_remove_file_self); 2110 2111 /** 2112 * device_create_bin_file - create sysfs binary attribute file for device. 2113 * @dev: device. 2114 * @attr: device binary attribute descriptor. 2115 */ 2116 int device_create_bin_file(struct device *dev, 2117 const struct bin_attribute *attr) 2118 { 2119 int error = -EINVAL; 2120 if (dev) 2121 error = sysfs_create_bin_file(&dev->kobj, attr); 2122 return error; 2123 } 2124 EXPORT_SYMBOL_GPL(device_create_bin_file); 2125 2126 /** 2127 * device_remove_bin_file - remove sysfs binary attribute file 2128 * @dev: device. 2129 * @attr: device binary attribute descriptor. 2130 */ 2131 void device_remove_bin_file(struct device *dev, 2132 const struct bin_attribute *attr) 2133 { 2134 if (dev) 2135 sysfs_remove_bin_file(&dev->kobj, attr); 2136 } 2137 EXPORT_SYMBOL_GPL(device_remove_bin_file); 2138 2139 static void klist_children_get(struct klist_node *n) 2140 { 2141 struct device_private *p = to_device_private_parent(n); 2142 struct device *dev = p->device; 2143 2144 get_device(dev); 2145 } 2146 2147 static void klist_children_put(struct klist_node *n) 2148 { 2149 struct device_private *p = to_device_private_parent(n); 2150 struct device *dev = p->device; 2151 2152 put_device(dev); 2153 } 2154 2155 /** 2156 * device_initialize - init device structure. 2157 * @dev: device. 2158 * 2159 * This prepares the device for use by other layers by initializing 2160 * its fields. 2161 * It is the first half of device_register(), if called by 2162 * that function, though it can also be called separately, so one 2163 * may use @dev's fields. In particular, get_device()/put_device() 2164 * may be used for reference counting of @dev after calling this 2165 * function. 2166 * 2167 * All fields in @dev must be initialized by the caller to 0, except 2168 * for those explicitly set to some other value. The simplest 2169 * approach is to use kzalloc() to allocate the structure containing 2170 * @dev. 2171 * 2172 * NOTE: Use put_device() to give up your reference instead of freeing 2173 * @dev directly once you have called this function. 2174 */ 2175 void device_initialize(struct device *dev) 2176 { 2177 dev->kobj.kset = devices_kset; 2178 kobject_init(&dev->kobj, &device_ktype); 2179 INIT_LIST_HEAD(&dev->dma_pools); 2180 mutex_init(&dev->mutex); 2181 #ifdef CONFIG_PROVE_LOCKING 2182 mutex_init(&dev->lockdep_mutex); 2183 #endif 2184 lockdep_set_novalidate_class(&dev->mutex); 2185 spin_lock_init(&dev->devres_lock); 2186 INIT_LIST_HEAD(&dev->devres_head); 2187 device_pm_init(dev); 2188 set_dev_node(dev, -1); 2189 #ifdef CONFIG_GENERIC_MSI_IRQ 2190 INIT_LIST_HEAD(&dev->msi_list); 2191 #endif 2192 INIT_LIST_HEAD(&dev->links.consumers); 2193 INIT_LIST_HEAD(&dev->links.suppliers); 2194 INIT_LIST_HEAD(&dev->links.needs_suppliers); 2195 INIT_LIST_HEAD(&dev->links.defer_hook); 2196 dev->links.status = DL_DEV_NO_DRIVER; 2197 } 2198 EXPORT_SYMBOL_GPL(device_initialize); 2199 2200 struct kobject *virtual_device_parent(struct device *dev) 2201 { 2202 static struct kobject *virtual_dir = NULL; 2203 2204 if (!virtual_dir) 2205 virtual_dir = kobject_create_and_add("virtual", 2206 &devices_kset->kobj); 2207 2208 return virtual_dir; 2209 } 2210 2211 struct class_dir { 2212 struct kobject kobj; 2213 struct class *class; 2214 }; 2215 2216 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 2217 2218 static void class_dir_release(struct kobject *kobj) 2219 { 2220 struct class_dir *dir = to_class_dir(kobj); 2221 kfree(dir); 2222 } 2223 2224 static const 2225 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 2226 { 2227 struct class_dir *dir = to_class_dir(kobj); 2228 return dir->class->ns_type; 2229 } 2230 2231 static struct kobj_type class_dir_ktype = { 2232 .release = class_dir_release, 2233 .sysfs_ops = &kobj_sysfs_ops, 2234 .child_ns_type = class_dir_child_ns_type 2235 }; 2236 2237 static struct kobject * 2238 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 2239 { 2240 struct class_dir *dir; 2241 int retval; 2242 2243 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 2244 if (!dir) 2245 return ERR_PTR(-ENOMEM); 2246 2247 dir->class = class; 2248 kobject_init(&dir->kobj, &class_dir_ktype); 2249 2250 dir->kobj.kset = &class->p->glue_dirs; 2251 2252 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 2253 if (retval < 0) { 2254 kobject_put(&dir->kobj); 2255 return ERR_PTR(retval); 2256 } 2257 return &dir->kobj; 2258 } 2259 2260 static DEFINE_MUTEX(gdp_mutex); 2261 2262 static struct kobject *get_device_parent(struct device *dev, 2263 struct device *parent) 2264 { 2265 if (dev->class) { 2266 struct kobject *kobj = NULL; 2267 struct kobject *parent_kobj; 2268 struct kobject *k; 2269 2270 #ifdef CONFIG_BLOCK 2271 /* block disks show up in /sys/block */ 2272 if (sysfs_deprecated && dev->class == &block_class) { 2273 if (parent && parent->class == &block_class) 2274 return &parent->kobj; 2275 return &block_class.p->subsys.kobj; 2276 } 2277 #endif 2278 2279 /* 2280 * If we have no parent, we live in "virtual". 2281 * Class-devices with a non class-device as parent, live 2282 * in a "glue" directory to prevent namespace collisions. 2283 */ 2284 if (parent == NULL) 2285 parent_kobj = virtual_device_parent(dev); 2286 else if (parent->class && !dev->class->ns_type) 2287 return &parent->kobj; 2288 else 2289 parent_kobj = &parent->kobj; 2290 2291 mutex_lock(&gdp_mutex); 2292 2293 /* find our class-directory at the parent and reference it */ 2294 spin_lock(&dev->class->p->glue_dirs.list_lock); 2295 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 2296 if (k->parent == parent_kobj) { 2297 kobj = kobject_get(k); 2298 break; 2299 } 2300 spin_unlock(&dev->class->p->glue_dirs.list_lock); 2301 if (kobj) { 2302 mutex_unlock(&gdp_mutex); 2303 return kobj; 2304 } 2305 2306 /* or create a new class-directory at the parent device */ 2307 k = class_dir_create_and_add(dev->class, parent_kobj); 2308 /* do not emit an uevent for this simple "glue" directory */ 2309 mutex_unlock(&gdp_mutex); 2310 return k; 2311 } 2312 2313 /* subsystems can specify a default root directory for their devices */ 2314 if (!parent && dev->bus && dev->bus->dev_root) 2315 return &dev->bus->dev_root->kobj; 2316 2317 if (parent) 2318 return &parent->kobj; 2319 return NULL; 2320 } 2321 2322 static inline bool live_in_glue_dir(struct kobject *kobj, 2323 struct device *dev) 2324 { 2325 if (!kobj || !dev->class || 2326 kobj->kset != &dev->class->p->glue_dirs) 2327 return false; 2328 return true; 2329 } 2330 2331 static inline struct kobject *get_glue_dir(struct device *dev) 2332 { 2333 return dev->kobj.parent; 2334 } 2335 2336 /* 2337 * make sure cleaning up dir as the last step, we need to make 2338 * sure .release handler of kobject is run with holding the 2339 * global lock 2340 */ 2341 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 2342 { 2343 unsigned int ref; 2344 2345 /* see if we live in a "glue" directory */ 2346 if (!live_in_glue_dir(glue_dir, dev)) 2347 return; 2348 2349 mutex_lock(&gdp_mutex); 2350 /** 2351 * There is a race condition between removing glue directory 2352 * and adding a new device under the glue directory. 2353 * 2354 * CPU1: CPU2: 2355 * 2356 * device_add() 2357 * get_device_parent() 2358 * class_dir_create_and_add() 2359 * kobject_add_internal() 2360 * create_dir() // create glue_dir 2361 * 2362 * device_add() 2363 * get_device_parent() 2364 * kobject_get() // get glue_dir 2365 * 2366 * device_del() 2367 * cleanup_glue_dir() 2368 * kobject_del(glue_dir) 2369 * 2370 * kobject_add() 2371 * kobject_add_internal() 2372 * create_dir() // in glue_dir 2373 * sysfs_create_dir_ns() 2374 * kernfs_create_dir_ns(sd) 2375 * 2376 * sysfs_remove_dir() // glue_dir->sd=NULL 2377 * sysfs_put() // free glue_dir->sd 2378 * 2379 * // sd is freed 2380 * kernfs_new_node(sd) 2381 * kernfs_get(glue_dir) 2382 * kernfs_add_one() 2383 * kernfs_put() 2384 * 2385 * Before CPU1 remove last child device under glue dir, if CPU2 add 2386 * a new device under glue dir, the glue_dir kobject reference count 2387 * will be increase to 2 in kobject_get(k). And CPU2 has been called 2388 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 2389 * and sysfs_put(). This result in glue_dir->sd is freed. 2390 * 2391 * Then the CPU2 will see a stale "empty" but still potentially used 2392 * glue dir around in kernfs_new_node(). 2393 * 2394 * In order to avoid this happening, we also should make sure that 2395 * kernfs_node for glue_dir is released in CPU1 only when refcount 2396 * for glue_dir kobj is 1. 2397 */ 2398 ref = kref_read(&glue_dir->kref); 2399 if (!kobject_has_children(glue_dir) && !--ref) 2400 kobject_del(glue_dir); 2401 kobject_put(glue_dir); 2402 mutex_unlock(&gdp_mutex); 2403 } 2404 2405 static int device_add_class_symlinks(struct device *dev) 2406 { 2407 struct device_node *of_node = dev_of_node(dev); 2408 int error; 2409 2410 if (of_node) { 2411 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 2412 if (error) 2413 dev_warn(dev, "Error %d creating of_node link\n",error); 2414 /* An error here doesn't warrant bringing down the device */ 2415 } 2416 2417 if (!dev->class) 2418 return 0; 2419 2420 error = sysfs_create_link(&dev->kobj, 2421 &dev->class->p->subsys.kobj, 2422 "subsystem"); 2423 if (error) 2424 goto out_devnode; 2425 2426 if (dev->parent && device_is_not_partition(dev)) { 2427 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 2428 "device"); 2429 if (error) 2430 goto out_subsys; 2431 } 2432 2433 #ifdef CONFIG_BLOCK 2434 /* /sys/block has directories and does not need symlinks */ 2435 if (sysfs_deprecated && dev->class == &block_class) 2436 return 0; 2437 #endif 2438 2439 /* link in the class directory pointing to the device */ 2440 error = sysfs_create_link(&dev->class->p->subsys.kobj, 2441 &dev->kobj, dev_name(dev)); 2442 if (error) 2443 goto out_device; 2444 2445 return 0; 2446 2447 out_device: 2448 sysfs_remove_link(&dev->kobj, "device"); 2449 2450 out_subsys: 2451 sysfs_remove_link(&dev->kobj, "subsystem"); 2452 out_devnode: 2453 sysfs_remove_link(&dev->kobj, "of_node"); 2454 return error; 2455 } 2456 2457 static void device_remove_class_symlinks(struct device *dev) 2458 { 2459 if (dev_of_node(dev)) 2460 sysfs_remove_link(&dev->kobj, "of_node"); 2461 2462 if (!dev->class) 2463 return; 2464 2465 if (dev->parent && device_is_not_partition(dev)) 2466 sysfs_remove_link(&dev->kobj, "device"); 2467 sysfs_remove_link(&dev->kobj, "subsystem"); 2468 #ifdef CONFIG_BLOCK 2469 if (sysfs_deprecated && dev->class == &block_class) 2470 return; 2471 #endif 2472 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 2473 } 2474 2475 /** 2476 * dev_set_name - set a device name 2477 * @dev: device 2478 * @fmt: format string for the device's name 2479 */ 2480 int dev_set_name(struct device *dev, const char *fmt, ...) 2481 { 2482 va_list vargs; 2483 int err; 2484 2485 va_start(vargs, fmt); 2486 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 2487 va_end(vargs); 2488 return err; 2489 } 2490 EXPORT_SYMBOL_GPL(dev_set_name); 2491 2492 /** 2493 * device_to_dev_kobj - select a /sys/dev/ directory for the device 2494 * @dev: device 2495 * 2496 * By default we select char/ for new entries. Setting class->dev_obj 2497 * to NULL prevents an entry from being created. class->dev_kobj must 2498 * be set (or cleared) before any devices are registered to the class 2499 * otherwise device_create_sys_dev_entry() and 2500 * device_remove_sys_dev_entry() will disagree about the presence of 2501 * the link. 2502 */ 2503 static struct kobject *device_to_dev_kobj(struct device *dev) 2504 { 2505 struct kobject *kobj; 2506 2507 if (dev->class) 2508 kobj = dev->class->dev_kobj; 2509 else 2510 kobj = sysfs_dev_char_kobj; 2511 2512 return kobj; 2513 } 2514 2515 static int device_create_sys_dev_entry(struct device *dev) 2516 { 2517 struct kobject *kobj = device_to_dev_kobj(dev); 2518 int error = 0; 2519 char devt_str[15]; 2520 2521 if (kobj) { 2522 format_dev_t(devt_str, dev->devt); 2523 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 2524 } 2525 2526 return error; 2527 } 2528 2529 static void device_remove_sys_dev_entry(struct device *dev) 2530 { 2531 struct kobject *kobj = device_to_dev_kobj(dev); 2532 char devt_str[15]; 2533 2534 if (kobj) { 2535 format_dev_t(devt_str, dev->devt); 2536 sysfs_remove_link(kobj, devt_str); 2537 } 2538 } 2539 2540 static int device_private_init(struct device *dev) 2541 { 2542 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 2543 if (!dev->p) 2544 return -ENOMEM; 2545 dev->p->device = dev; 2546 klist_init(&dev->p->klist_children, klist_children_get, 2547 klist_children_put); 2548 INIT_LIST_HEAD(&dev->p->deferred_probe); 2549 return 0; 2550 } 2551 2552 /** 2553 * device_add - add device to device hierarchy. 2554 * @dev: device. 2555 * 2556 * This is part 2 of device_register(), though may be called 2557 * separately _iff_ device_initialize() has been called separately. 2558 * 2559 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 2560 * to the global and sibling lists for the device, then 2561 * adds it to the other relevant subsystems of the driver model. 2562 * 2563 * Do not call this routine or device_register() more than once for 2564 * any device structure. The driver model core is not designed to work 2565 * with devices that get unregistered and then spring back to life. 2566 * (Among other things, it's very hard to guarantee that all references 2567 * to the previous incarnation of @dev have been dropped.) Allocate 2568 * and register a fresh new struct device instead. 2569 * 2570 * NOTE: _Never_ directly free @dev after calling this function, even 2571 * if it returned an error! Always use put_device() to give up your 2572 * reference instead. 2573 * 2574 * Rule of thumb is: if device_add() succeeds, you should call 2575 * device_del() when you want to get rid of it. If device_add() has 2576 * *not* succeeded, use *only* put_device() to drop the reference 2577 * count. 2578 */ 2579 int device_add(struct device *dev) 2580 { 2581 struct device *parent; 2582 struct kobject *kobj; 2583 struct class_interface *class_intf; 2584 int error = -EINVAL; 2585 struct kobject *glue_dir = NULL; 2586 2587 dev = get_device(dev); 2588 if (!dev) 2589 goto done; 2590 2591 if (!dev->p) { 2592 error = device_private_init(dev); 2593 if (error) 2594 goto done; 2595 } 2596 2597 /* 2598 * for statically allocated devices, which should all be converted 2599 * some day, we need to initialize the name. We prevent reading back 2600 * the name, and force the use of dev_name() 2601 */ 2602 if (dev->init_name) { 2603 dev_set_name(dev, "%s", dev->init_name); 2604 dev->init_name = NULL; 2605 } 2606 2607 /* subsystems can specify simple device enumeration */ 2608 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 2609 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 2610 2611 if (!dev_name(dev)) { 2612 error = -EINVAL; 2613 goto name_error; 2614 } 2615 2616 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2617 2618 parent = get_device(dev->parent); 2619 kobj = get_device_parent(dev, parent); 2620 if (IS_ERR(kobj)) { 2621 error = PTR_ERR(kobj); 2622 goto parent_error; 2623 } 2624 if (kobj) 2625 dev->kobj.parent = kobj; 2626 2627 /* use parent numa_node */ 2628 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 2629 set_dev_node(dev, dev_to_node(parent)); 2630 2631 /* first, register with generic layer. */ 2632 /* we require the name to be set before, and pass NULL */ 2633 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 2634 if (error) { 2635 glue_dir = get_glue_dir(dev); 2636 goto Error; 2637 } 2638 2639 /* notify platform of device entry */ 2640 error = device_platform_notify(dev, KOBJ_ADD); 2641 if (error) 2642 goto platform_error; 2643 2644 error = device_create_file(dev, &dev_attr_uevent); 2645 if (error) 2646 goto attrError; 2647 2648 error = device_add_class_symlinks(dev); 2649 if (error) 2650 goto SymlinkError; 2651 error = device_add_attrs(dev); 2652 if (error) 2653 goto AttrsError; 2654 error = bus_add_device(dev); 2655 if (error) 2656 goto BusError; 2657 error = dpm_sysfs_add(dev); 2658 if (error) 2659 goto DPMError; 2660 device_pm_add(dev); 2661 2662 if (MAJOR(dev->devt)) { 2663 error = device_create_file(dev, &dev_attr_dev); 2664 if (error) 2665 goto DevAttrError; 2666 2667 error = device_create_sys_dev_entry(dev); 2668 if (error) 2669 goto SysEntryError; 2670 2671 devtmpfs_create_node(dev); 2672 } 2673 2674 /* Notify clients of device addition. This call must come 2675 * after dpm_sysfs_add() and before kobject_uevent(). 2676 */ 2677 if (dev->bus) 2678 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2679 BUS_NOTIFY_ADD_DEVICE, dev); 2680 2681 kobject_uevent(&dev->kobj, KOBJ_ADD); 2682 2683 /* 2684 * Check if any of the other devices (consumers) have been waiting for 2685 * this device (supplier) to be added so that they can create a device 2686 * link to it. 2687 * 2688 * This needs to happen after device_pm_add() because device_link_add() 2689 * requires the supplier be registered before it's called. 2690 * 2691 * But this also needs to happen before bus_probe_device() to make sure 2692 * waiting consumers can link to it before the driver is bound to the 2693 * device and the driver sync_state callback is called for this device. 2694 */ 2695 if (dev->fwnode && !dev->fwnode->dev) { 2696 dev->fwnode->dev = dev; 2697 fw_devlink_link_device(dev); 2698 } 2699 2700 bus_probe_device(dev); 2701 if (parent) 2702 klist_add_tail(&dev->p->knode_parent, 2703 &parent->p->klist_children); 2704 2705 if (dev->class) { 2706 mutex_lock(&dev->class->p->mutex); 2707 /* tie the class to the device */ 2708 klist_add_tail(&dev->p->knode_class, 2709 &dev->class->p->klist_devices); 2710 2711 /* notify any interfaces that the device is here */ 2712 list_for_each_entry(class_intf, 2713 &dev->class->p->interfaces, node) 2714 if (class_intf->add_dev) 2715 class_intf->add_dev(dev, class_intf); 2716 mutex_unlock(&dev->class->p->mutex); 2717 } 2718 done: 2719 put_device(dev); 2720 return error; 2721 SysEntryError: 2722 if (MAJOR(dev->devt)) 2723 device_remove_file(dev, &dev_attr_dev); 2724 DevAttrError: 2725 device_pm_remove(dev); 2726 dpm_sysfs_remove(dev); 2727 DPMError: 2728 bus_remove_device(dev); 2729 BusError: 2730 device_remove_attrs(dev); 2731 AttrsError: 2732 device_remove_class_symlinks(dev); 2733 SymlinkError: 2734 device_remove_file(dev, &dev_attr_uevent); 2735 attrError: 2736 device_platform_notify(dev, KOBJ_REMOVE); 2737 platform_error: 2738 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 2739 glue_dir = get_glue_dir(dev); 2740 kobject_del(&dev->kobj); 2741 Error: 2742 cleanup_glue_dir(dev, glue_dir); 2743 parent_error: 2744 put_device(parent); 2745 name_error: 2746 kfree(dev->p); 2747 dev->p = NULL; 2748 goto done; 2749 } 2750 EXPORT_SYMBOL_GPL(device_add); 2751 2752 /** 2753 * device_register - register a device with the system. 2754 * @dev: pointer to the device structure 2755 * 2756 * This happens in two clean steps - initialize the device 2757 * and add it to the system. The two steps can be called 2758 * separately, but this is the easiest and most common. 2759 * I.e. you should only call the two helpers separately if 2760 * have a clearly defined need to use and refcount the device 2761 * before it is added to the hierarchy. 2762 * 2763 * For more information, see the kerneldoc for device_initialize() 2764 * and device_add(). 2765 * 2766 * NOTE: _Never_ directly free @dev after calling this function, even 2767 * if it returned an error! Always use put_device() to give up the 2768 * reference initialized in this function instead. 2769 */ 2770 int device_register(struct device *dev) 2771 { 2772 device_initialize(dev); 2773 return device_add(dev); 2774 } 2775 EXPORT_SYMBOL_GPL(device_register); 2776 2777 /** 2778 * get_device - increment reference count for device. 2779 * @dev: device. 2780 * 2781 * This simply forwards the call to kobject_get(), though 2782 * we do take care to provide for the case that we get a NULL 2783 * pointer passed in. 2784 */ 2785 struct device *get_device(struct device *dev) 2786 { 2787 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 2788 } 2789 EXPORT_SYMBOL_GPL(get_device); 2790 2791 /** 2792 * put_device - decrement reference count. 2793 * @dev: device in question. 2794 */ 2795 void put_device(struct device *dev) 2796 { 2797 /* might_sleep(); */ 2798 if (dev) 2799 kobject_put(&dev->kobj); 2800 } 2801 EXPORT_SYMBOL_GPL(put_device); 2802 2803 bool kill_device(struct device *dev) 2804 { 2805 /* 2806 * Require the device lock and set the "dead" flag to guarantee that 2807 * the update behavior is consistent with the other bitfields near 2808 * it and that we cannot have an asynchronous probe routine trying 2809 * to run while we are tearing out the bus/class/sysfs from 2810 * underneath the device. 2811 */ 2812 lockdep_assert_held(&dev->mutex); 2813 2814 if (dev->p->dead) 2815 return false; 2816 dev->p->dead = true; 2817 return true; 2818 } 2819 EXPORT_SYMBOL_GPL(kill_device); 2820 2821 /** 2822 * device_del - delete device from system. 2823 * @dev: device. 2824 * 2825 * This is the first part of the device unregistration 2826 * sequence. This removes the device from the lists we control 2827 * from here, has it removed from the other driver model 2828 * subsystems it was added to in device_add(), and removes it 2829 * from the kobject hierarchy. 2830 * 2831 * NOTE: this should be called manually _iff_ device_add() was 2832 * also called manually. 2833 */ 2834 void device_del(struct device *dev) 2835 { 2836 struct device *parent = dev->parent; 2837 struct kobject *glue_dir = NULL; 2838 struct class_interface *class_intf; 2839 2840 device_lock(dev); 2841 kill_device(dev); 2842 device_unlock(dev); 2843 2844 if (dev->fwnode && dev->fwnode->dev == dev) 2845 dev->fwnode->dev = NULL; 2846 2847 /* Notify clients of device removal. This call must come 2848 * before dpm_sysfs_remove(). 2849 */ 2850 if (dev->bus) 2851 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2852 BUS_NOTIFY_DEL_DEVICE, dev); 2853 2854 dpm_sysfs_remove(dev); 2855 if (parent) 2856 klist_del(&dev->p->knode_parent); 2857 if (MAJOR(dev->devt)) { 2858 devtmpfs_delete_node(dev); 2859 device_remove_sys_dev_entry(dev); 2860 device_remove_file(dev, &dev_attr_dev); 2861 } 2862 if (dev->class) { 2863 device_remove_class_symlinks(dev); 2864 2865 mutex_lock(&dev->class->p->mutex); 2866 /* notify any interfaces that the device is now gone */ 2867 list_for_each_entry(class_intf, 2868 &dev->class->p->interfaces, node) 2869 if (class_intf->remove_dev) 2870 class_intf->remove_dev(dev, class_intf); 2871 /* remove the device from the class list */ 2872 klist_del(&dev->p->knode_class); 2873 mutex_unlock(&dev->class->p->mutex); 2874 } 2875 device_remove_file(dev, &dev_attr_uevent); 2876 device_remove_attrs(dev); 2877 bus_remove_device(dev); 2878 device_pm_remove(dev); 2879 driver_deferred_probe_del(dev); 2880 device_platform_notify(dev, KOBJ_REMOVE); 2881 device_remove_properties(dev); 2882 device_links_purge(dev); 2883 2884 if (dev->bus) 2885 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2886 BUS_NOTIFY_REMOVED_DEVICE, dev); 2887 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 2888 glue_dir = get_glue_dir(dev); 2889 kobject_del(&dev->kobj); 2890 cleanup_glue_dir(dev, glue_dir); 2891 put_device(parent); 2892 } 2893 EXPORT_SYMBOL_GPL(device_del); 2894 2895 /** 2896 * device_unregister - unregister device from system. 2897 * @dev: device going away. 2898 * 2899 * We do this in two parts, like we do device_register(). First, 2900 * we remove it from all the subsystems with device_del(), then 2901 * we decrement the reference count via put_device(). If that 2902 * is the final reference count, the device will be cleaned up 2903 * via device_release() above. Otherwise, the structure will 2904 * stick around until the final reference to the device is dropped. 2905 */ 2906 void device_unregister(struct device *dev) 2907 { 2908 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2909 device_del(dev); 2910 put_device(dev); 2911 } 2912 EXPORT_SYMBOL_GPL(device_unregister); 2913 2914 static struct device *prev_device(struct klist_iter *i) 2915 { 2916 struct klist_node *n = klist_prev(i); 2917 struct device *dev = NULL; 2918 struct device_private *p; 2919 2920 if (n) { 2921 p = to_device_private_parent(n); 2922 dev = p->device; 2923 } 2924 return dev; 2925 } 2926 2927 static struct device *next_device(struct klist_iter *i) 2928 { 2929 struct klist_node *n = klist_next(i); 2930 struct device *dev = NULL; 2931 struct device_private *p; 2932 2933 if (n) { 2934 p = to_device_private_parent(n); 2935 dev = p->device; 2936 } 2937 return dev; 2938 } 2939 2940 /** 2941 * device_get_devnode - path of device node file 2942 * @dev: device 2943 * @mode: returned file access mode 2944 * @uid: returned file owner 2945 * @gid: returned file group 2946 * @tmp: possibly allocated string 2947 * 2948 * Return the relative path of a possible device node. 2949 * Non-default names may need to allocate a memory to compose 2950 * a name. This memory is returned in tmp and needs to be 2951 * freed by the caller. 2952 */ 2953 const char *device_get_devnode(struct device *dev, 2954 umode_t *mode, kuid_t *uid, kgid_t *gid, 2955 const char **tmp) 2956 { 2957 char *s; 2958 2959 *tmp = NULL; 2960 2961 /* the device type may provide a specific name */ 2962 if (dev->type && dev->type->devnode) 2963 *tmp = dev->type->devnode(dev, mode, uid, gid); 2964 if (*tmp) 2965 return *tmp; 2966 2967 /* the class may provide a specific name */ 2968 if (dev->class && dev->class->devnode) 2969 *tmp = dev->class->devnode(dev, mode); 2970 if (*tmp) 2971 return *tmp; 2972 2973 /* return name without allocation, tmp == NULL */ 2974 if (strchr(dev_name(dev), '!') == NULL) 2975 return dev_name(dev); 2976 2977 /* replace '!' in the name with '/' */ 2978 s = kstrdup(dev_name(dev), GFP_KERNEL); 2979 if (!s) 2980 return NULL; 2981 strreplace(s, '!', '/'); 2982 return *tmp = s; 2983 } 2984 2985 /** 2986 * device_for_each_child - device child iterator. 2987 * @parent: parent struct device. 2988 * @fn: function to be called for each device. 2989 * @data: data for the callback. 2990 * 2991 * Iterate over @parent's child devices, and call @fn for each, 2992 * passing it @data. 2993 * 2994 * We check the return of @fn each time. If it returns anything 2995 * other than 0, we break out and return that value. 2996 */ 2997 int device_for_each_child(struct device *parent, void *data, 2998 int (*fn)(struct device *dev, void *data)) 2999 { 3000 struct klist_iter i; 3001 struct device *child; 3002 int error = 0; 3003 3004 if (!parent->p) 3005 return 0; 3006 3007 klist_iter_init(&parent->p->klist_children, &i); 3008 while (!error && (child = next_device(&i))) 3009 error = fn(child, data); 3010 klist_iter_exit(&i); 3011 return error; 3012 } 3013 EXPORT_SYMBOL_GPL(device_for_each_child); 3014 3015 /** 3016 * device_for_each_child_reverse - device child iterator in reversed order. 3017 * @parent: parent struct device. 3018 * @fn: function to be called for each device. 3019 * @data: data for the callback. 3020 * 3021 * Iterate over @parent's child devices, and call @fn for each, 3022 * passing it @data. 3023 * 3024 * We check the return of @fn each time. If it returns anything 3025 * other than 0, we break out and return that value. 3026 */ 3027 int device_for_each_child_reverse(struct device *parent, void *data, 3028 int (*fn)(struct device *dev, void *data)) 3029 { 3030 struct klist_iter i; 3031 struct device *child; 3032 int error = 0; 3033 3034 if (!parent->p) 3035 return 0; 3036 3037 klist_iter_init(&parent->p->klist_children, &i); 3038 while ((child = prev_device(&i)) && !error) 3039 error = fn(child, data); 3040 klist_iter_exit(&i); 3041 return error; 3042 } 3043 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 3044 3045 /** 3046 * device_find_child - device iterator for locating a particular device. 3047 * @parent: parent struct device 3048 * @match: Callback function to check device 3049 * @data: Data to pass to match function 3050 * 3051 * This is similar to the device_for_each_child() function above, but it 3052 * returns a reference to a device that is 'found' for later use, as 3053 * determined by the @match callback. 3054 * 3055 * The callback should return 0 if the device doesn't match and non-zero 3056 * if it does. If the callback returns non-zero and a reference to the 3057 * current device can be obtained, this function will return to the caller 3058 * and not iterate over any more devices. 3059 * 3060 * NOTE: you will need to drop the reference with put_device() after use. 3061 */ 3062 struct device *device_find_child(struct device *parent, void *data, 3063 int (*match)(struct device *dev, void *data)) 3064 { 3065 struct klist_iter i; 3066 struct device *child; 3067 3068 if (!parent) 3069 return NULL; 3070 3071 klist_iter_init(&parent->p->klist_children, &i); 3072 while ((child = next_device(&i))) 3073 if (match(child, data) && get_device(child)) 3074 break; 3075 klist_iter_exit(&i); 3076 return child; 3077 } 3078 EXPORT_SYMBOL_GPL(device_find_child); 3079 3080 /** 3081 * device_find_child_by_name - device iterator for locating a child device. 3082 * @parent: parent struct device 3083 * @name: name of the child device 3084 * 3085 * This is similar to the device_find_child() function above, but it 3086 * returns a reference to a device that has the name @name. 3087 * 3088 * NOTE: you will need to drop the reference with put_device() after use. 3089 */ 3090 struct device *device_find_child_by_name(struct device *parent, 3091 const char *name) 3092 { 3093 struct klist_iter i; 3094 struct device *child; 3095 3096 if (!parent) 3097 return NULL; 3098 3099 klist_iter_init(&parent->p->klist_children, &i); 3100 while ((child = next_device(&i))) 3101 if (!strcmp(dev_name(child), name) && get_device(child)) 3102 break; 3103 klist_iter_exit(&i); 3104 return child; 3105 } 3106 EXPORT_SYMBOL_GPL(device_find_child_by_name); 3107 3108 int __init devices_init(void) 3109 { 3110 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 3111 if (!devices_kset) 3112 return -ENOMEM; 3113 dev_kobj = kobject_create_and_add("dev", NULL); 3114 if (!dev_kobj) 3115 goto dev_kobj_err; 3116 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 3117 if (!sysfs_dev_block_kobj) 3118 goto block_kobj_err; 3119 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 3120 if (!sysfs_dev_char_kobj) 3121 goto char_kobj_err; 3122 3123 return 0; 3124 3125 char_kobj_err: 3126 kobject_put(sysfs_dev_block_kobj); 3127 block_kobj_err: 3128 kobject_put(dev_kobj); 3129 dev_kobj_err: 3130 kset_unregister(devices_kset); 3131 return -ENOMEM; 3132 } 3133 3134 static int device_check_offline(struct device *dev, void *not_used) 3135 { 3136 int ret; 3137 3138 ret = device_for_each_child(dev, NULL, device_check_offline); 3139 if (ret) 3140 return ret; 3141 3142 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 3143 } 3144 3145 /** 3146 * device_offline - Prepare the device for hot-removal. 3147 * @dev: Device to be put offline. 3148 * 3149 * Execute the device bus type's .offline() callback, if present, to prepare 3150 * the device for a subsequent hot-removal. If that succeeds, the device must 3151 * not be used until either it is removed or its bus type's .online() callback 3152 * is executed. 3153 * 3154 * Call under device_hotplug_lock. 3155 */ 3156 int device_offline(struct device *dev) 3157 { 3158 int ret; 3159 3160 if (dev->offline_disabled) 3161 return -EPERM; 3162 3163 ret = device_for_each_child(dev, NULL, device_check_offline); 3164 if (ret) 3165 return ret; 3166 3167 device_lock(dev); 3168 if (device_supports_offline(dev)) { 3169 if (dev->offline) { 3170 ret = 1; 3171 } else { 3172 ret = dev->bus->offline(dev); 3173 if (!ret) { 3174 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 3175 dev->offline = true; 3176 } 3177 } 3178 } 3179 device_unlock(dev); 3180 3181 return ret; 3182 } 3183 3184 /** 3185 * device_online - Put the device back online after successful device_offline(). 3186 * @dev: Device to be put back online. 3187 * 3188 * If device_offline() has been successfully executed for @dev, but the device 3189 * has not been removed subsequently, execute its bus type's .online() callback 3190 * to indicate that the device can be used again. 3191 * 3192 * Call under device_hotplug_lock. 3193 */ 3194 int device_online(struct device *dev) 3195 { 3196 int ret = 0; 3197 3198 device_lock(dev); 3199 if (device_supports_offline(dev)) { 3200 if (dev->offline) { 3201 ret = dev->bus->online(dev); 3202 if (!ret) { 3203 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 3204 dev->offline = false; 3205 } 3206 } else { 3207 ret = 1; 3208 } 3209 } 3210 device_unlock(dev); 3211 3212 return ret; 3213 } 3214 3215 struct root_device { 3216 struct device dev; 3217 struct module *owner; 3218 }; 3219 3220 static inline struct root_device *to_root_device(struct device *d) 3221 { 3222 return container_of(d, struct root_device, dev); 3223 } 3224 3225 static void root_device_release(struct device *dev) 3226 { 3227 kfree(to_root_device(dev)); 3228 } 3229 3230 /** 3231 * __root_device_register - allocate and register a root device 3232 * @name: root device name 3233 * @owner: owner module of the root device, usually THIS_MODULE 3234 * 3235 * This function allocates a root device and registers it 3236 * using device_register(). In order to free the returned 3237 * device, use root_device_unregister(). 3238 * 3239 * Root devices are dummy devices which allow other devices 3240 * to be grouped under /sys/devices. Use this function to 3241 * allocate a root device and then use it as the parent of 3242 * any device which should appear under /sys/devices/{name} 3243 * 3244 * The /sys/devices/{name} directory will also contain a 3245 * 'module' symlink which points to the @owner directory 3246 * in sysfs. 3247 * 3248 * Returns &struct device pointer on success, or ERR_PTR() on error. 3249 * 3250 * Note: You probably want to use root_device_register(). 3251 */ 3252 struct device *__root_device_register(const char *name, struct module *owner) 3253 { 3254 struct root_device *root; 3255 int err = -ENOMEM; 3256 3257 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 3258 if (!root) 3259 return ERR_PTR(err); 3260 3261 err = dev_set_name(&root->dev, "%s", name); 3262 if (err) { 3263 kfree(root); 3264 return ERR_PTR(err); 3265 } 3266 3267 root->dev.release = root_device_release; 3268 3269 err = device_register(&root->dev); 3270 if (err) { 3271 put_device(&root->dev); 3272 return ERR_PTR(err); 3273 } 3274 3275 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 3276 if (owner) { 3277 struct module_kobject *mk = &owner->mkobj; 3278 3279 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 3280 if (err) { 3281 device_unregister(&root->dev); 3282 return ERR_PTR(err); 3283 } 3284 root->owner = owner; 3285 } 3286 #endif 3287 3288 return &root->dev; 3289 } 3290 EXPORT_SYMBOL_GPL(__root_device_register); 3291 3292 /** 3293 * root_device_unregister - unregister and free a root device 3294 * @dev: device going away 3295 * 3296 * This function unregisters and cleans up a device that was created by 3297 * root_device_register(). 3298 */ 3299 void root_device_unregister(struct device *dev) 3300 { 3301 struct root_device *root = to_root_device(dev); 3302 3303 if (root->owner) 3304 sysfs_remove_link(&root->dev.kobj, "module"); 3305 3306 device_unregister(dev); 3307 } 3308 EXPORT_SYMBOL_GPL(root_device_unregister); 3309 3310 3311 static void device_create_release(struct device *dev) 3312 { 3313 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3314 kfree(dev); 3315 } 3316 3317 static __printf(6, 0) struct device * 3318 device_create_groups_vargs(struct class *class, struct device *parent, 3319 dev_t devt, void *drvdata, 3320 const struct attribute_group **groups, 3321 const char *fmt, va_list args) 3322 { 3323 struct device *dev = NULL; 3324 int retval = -ENODEV; 3325 3326 if (class == NULL || IS_ERR(class)) 3327 goto error; 3328 3329 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3330 if (!dev) { 3331 retval = -ENOMEM; 3332 goto error; 3333 } 3334 3335 device_initialize(dev); 3336 dev->devt = devt; 3337 dev->class = class; 3338 dev->parent = parent; 3339 dev->groups = groups; 3340 dev->release = device_create_release; 3341 dev_set_drvdata(dev, drvdata); 3342 3343 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 3344 if (retval) 3345 goto error; 3346 3347 retval = device_add(dev); 3348 if (retval) 3349 goto error; 3350 3351 return dev; 3352 3353 error: 3354 put_device(dev); 3355 return ERR_PTR(retval); 3356 } 3357 3358 /** 3359 * device_create - creates a device and registers it with sysfs 3360 * @class: pointer to the struct class that this device should be registered to 3361 * @parent: pointer to the parent struct device of this new device, if any 3362 * @devt: the dev_t for the char device to be added 3363 * @drvdata: the data to be added to the device for callbacks 3364 * @fmt: string for the device's name 3365 * 3366 * This function can be used by char device classes. A struct device 3367 * will be created in sysfs, registered to the specified class. 3368 * 3369 * A "dev" file will be created, showing the dev_t for the device, if 3370 * the dev_t is not 0,0. 3371 * If a pointer to a parent struct device is passed in, the newly created 3372 * struct device will be a child of that device in sysfs. 3373 * The pointer to the struct device will be returned from the call. 3374 * Any further sysfs files that might be required can be created using this 3375 * pointer. 3376 * 3377 * Returns &struct device pointer on success, or ERR_PTR() on error. 3378 * 3379 * Note: the struct class passed to this function must have previously 3380 * been created with a call to class_create(). 3381 */ 3382 struct device *device_create(struct class *class, struct device *parent, 3383 dev_t devt, void *drvdata, const char *fmt, ...) 3384 { 3385 va_list vargs; 3386 struct device *dev; 3387 3388 va_start(vargs, fmt); 3389 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 3390 fmt, vargs); 3391 va_end(vargs); 3392 return dev; 3393 } 3394 EXPORT_SYMBOL_GPL(device_create); 3395 3396 /** 3397 * device_create_with_groups - creates a device and registers it with sysfs 3398 * @class: pointer to the struct class that this device should be registered to 3399 * @parent: pointer to the parent struct device of this new device, if any 3400 * @devt: the dev_t for the char device to be added 3401 * @drvdata: the data to be added to the device for callbacks 3402 * @groups: NULL-terminated list of attribute groups to be created 3403 * @fmt: string for the device's name 3404 * 3405 * This function can be used by char device classes. A struct device 3406 * will be created in sysfs, registered to the specified class. 3407 * Additional attributes specified in the groups parameter will also 3408 * be created automatically. 3409 * 3410 * A "dev" file will be created, showing the dev_t for the device, if 3411 * the dev_t is not 0,0. 3412 * If a pointer to a parent struct device is passed in, the newly created 3413 * struct device will be a child of that device in sysfs. 3414 * The pointer to the struct device will be returned from the call. 3415 * Any further sysfs files that might be required can be created using this 3416 * pointer. 3417 * 3418 * Returns &struct device pointer on success, or ERR_PTR() on error. 3419 * 3420 * Note: the struct class passed to this function must have previously 3421 * been created with a call to class_create(). 3422 */ 3423 struct device *device_create_with_groups(struct class *class, 3424 struct device *parent, dev_t devt, 3425 void *drvdata, 3426 const struct attribute_group **groups, 3427 const char *fmt, ...) 3428 { 3429 va_list vargs; 3430 struct device *dev; 3431 3432 va_start(vargs, fmt); 3433 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 3434 fmt, vargs); 3435 va_end(vargs); 3436 return dev; 3437 } 3438 EXPORT_SYMBOL_GPL(device_create_with_groups); 3439 3440 /** 3441 * device_destroy - removes a device that was created with device_create() 3442 * @class: pointer to the struct class that this device was registered with 3443 * @devt: the dev_t of the device that was previously registered 3444 * 3445 * This call unregisters and cleans up a device that was created with a 3446 * call to device_create(). 3447 */ 3448 void device_destroy(struct class *class, dev_t devt) 3449 { 3450 struct device *dev; 3451 3452 dev = class_find_device_by_devt(class, devt); 3453 if (dev) { 3454 put_device(dev); 3455 device_unregister(dev); 3456 } 3457 } 3458 EXPORT_SYMBOL_GPL(device_destroy); 3459 3460 /** 3461 * device_rename - renames a device 3462 * @dev: the pointer to the struct device to be renamed 3463 * @new_name: the new name of the device 3464 * 3465 * It is the responsibility of the caller to provide mutual 3466 * exclusion between two different calls of device_rename 3467 * on the same device to ensure that new_name is valid and 3468 * won't conflict with other devices. 3469 * 3470 * Note: Don't call this function. Currently, the networking layer calls this 3471 * function, but that will change. The following text from Kay Sievers offers 3472 * some insight: 3473 * 3474 * Renaming devices is racy at many levels, symlinks and other stuff are not 3475 * replaced atomically, and you get a "move" uevent, but it's not easy to 3476 * connect the event to the old and new device. Device nodes are not renamed at 3477 * all, there isn't even support for that in the kernel now. 3478 * 3479 * In the meantime, during renaming, your target name might be taken by another 3480 * driver, creating conflicts. Or the old name is taken directly after you 3481 * renamed it -- then you get events for the same DEVPATH, before you even see 3482 * the "move" event. It's just a mess, and nothing new should ever rely on 3483 * kernel device renaming. Besides that, it's not even implemented now for 3484 * other things than (driver-core wise very simple) network devices. 3485 * 3486 * We are currently about to change network renaming in udev to completely 3487 * disallow renaming of devices in the same namespace as the kernel uses, 3488 * because we can't solve the problems properly, that arise with swapping names 3489 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 3490 * be allowed to some other name than eth[0-9]*, for the aforementioned 3491 * reasons. 3492 * 3493 * Make up a "real" name in the driver before you register anything, or add 3494 * some other attributes for userspace to find the device, or use udev to add 3495 * symlinks -- but never rename kernel devices later, it's a complete mess. We 3496 * don't even want to get into that and try to implement the missing pieces in 3497 * the core. We really have other pieces to fix in the driver core mess. :) 3498 */ 3499 int device_rename(struct device *dev, const char *new_name) 3500 { 3501 struct kobject *kobj = &dev->kobj; 3502 char *old_device_name = NULL; 3503 int error; 3504 3505 dev = get_device(dev); 3506 if (!dev) 3507 return -EINVAL; 3508 3509 dev_dbg(dev, "renaming to %s\n", new_name); 3510 3511 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 3512 if (!old_device_name) { 3513 error = -ENOMEM; 3514 goto out; 3515 } 3516 3517 if (dev->class) { 3518 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 3519 kobj, old_device_name, 3520 new_name, kobject_namespace(kobj)); 3521 if (error) 3522 goto out; 3523 } 3524 3525 error = kobject_rename(kobj, new_name); 3526 if (error) 3527 goto out; 3528 3529 out: 3530 put_device(dev); 3531 3532 kfree(old_device_name); 3533 3534 return error; 3535 } 3536 EXPORT_SYMBOL_GPL(device_rename); 3537 3538 static int device_move_class_links(struct device *dev, 3539 struct device *old_parent, 3540 struct device *new_parent) 3541 { 3542 int error = 0; 3543 3544 if (old_parent) 3545 sysfs_remove_link(&dev->kobj, "device"); 3546 if (new_parent) 3547 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 3548 "device"); 3549 return error; 3550 } 3551 3552 /** 3553 * device_move - moves a device to a new parent 3554 * @dev: the pointer to the struct device to be moved 3555 * @new_parent: the new parent of the device (can be NULL) 3556 * @dpm_order: how to reorder the dpm_list 3557 */ 3558 int device_move(struct device *dev, struct device *new_parent, 3559 enum dpm_order dpm_order) 3560 { 3561 int error; 3562 struct device *old_parent; 3563 struct kobject *new_parent_kobj; 3564 3565 dev = get_device(dev); 3566 if (!dev) 3567 return -EINVAL; 3568 3569 device_pm_lock(); 3570 new_parent = get_device(new_parent); 3571 new_parent_kobj = get_device_parent(dev, new_parent); 3572 if (IS_ERR(new_parent_kobj)) { 3573 error = PTR_ERR(new_parent_kobj); 3574 put_device(new_parent); 3575 goto out; 3576 } 3577 3578 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 3579 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 3580 error = kobject_move(&dev->kobj, new_parent_kobj); 3581 if (error) { 3582 cleanup_glue_dir(dev, new_parent_kobj); 3583 put_device(new_parent); 3584 goto out; 3585 } 3586 old_parent = dev->parent; 3587 dev->parent = new_parent; 3588 if (old_parent) 3589 klist_remove(&dev->p->knode_parent); 3590 if (new_parent) { 3591 klist_add_tail(&dev->p->knode_parent, 3592 &new_parent->p->klist_children); 3593 set_dev_node(dev, dev_to_node(new_parent)); 3594 } 3595 3596 if (dev->class) { 3597 error = device_move_class_links(dev, old_parent, new_parent); 3598 if (error) { 3599 /* We ignore errors on cleanup since we're hosed anyway... */ 3600 device_move_class_links(dev, new_parent, old_parent); 3601 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 3602 if (new_parent) 3603 klist_remove(&dev->p->knode_parent); 3604 dev->parent = old_parent; 3605 if (old_parent) { 3606 klist_add_tail(&dev->p->knode_parent, 3607 &old_parent->p->klist_children); 3608 set_dev_node(dev, dev_to_node(old_parent)); 3609 } 3610 } 3611 cleanup_glue_dir(dev, new_parent_kobj); 3612 put_device(new_parent); 3613 goto out; 3614 } 3615 } 3616 switch (dpm_order) { 3617 case DPM_ORDER_NONE: 3618 break; 3619 case DPM_ORDER_DEV_AFTER_PARENT: 3620 device_pm_move_after(dev, new_parent); 3621 devices_kset_move_after(dev, new_parent); 3622 break; 3623 case DPM_ORDER_PARENT_BEFORE_DEV: 3624 device_pm_move_before(new_parent, dev); 3625 devices_kset_move_before(new_parent, dev); 3626 break; 3627 case DPM_ORDER_DEV_LAST: 3628 device_pm_move_last(dev); 3629 devices_kset_move_last(dev); 3630 break; 3631 } 3632 3633 put_device(old_parent); 3634 out: 3635 device_pm_unlock(); 3636 put_device(dev); 3637 return error; 3638 } 3639 EXPORT_SYMBOL_GPL(device_move); 3640 3641 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 3642 kgid_t kgid) 3643 { 3644 struct kobject *kobj = &dev->kobj; 3645 struct class *class = dev->class; 3646 const struct device_type *type = dev->type; 3647 int error; 3648 3649 if (class) { 3650 /* 3651 * Change the device groups of the device class for @dev to 3652 * @kuid/@kgid. 3653 */ 3654 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 3655 kgid); 3656 if (error) 3657 return error; 3658 } 3659 3660 if (type) { 3661 /* 3662 * Change the device groups of the device type for @dev to 3663 * @kuid/@kgid. 3664 */ 3665 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 3666 kgid); 3667 if (error) 3668 return error; 3669 } 3670 3671 /* Change the device groups of @dev to @kuid/@kgid. */ 3672 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 3673 if (error) 3674 return error; 3675 3676 if (device_supports_offline(dev) && !dev->offline_disabled) { 3677 /* Change online device attributes of @dev to @kuid/@kgid. */ 3678 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 3679 kuid, kgid); 3680 if (error) 3681 return error; 3682 } 3683 3684 return 0; 3685 } 3686 3687 /** 3688 * device_change_owner - change the owner of an existing device. 3689 * @dev: device. 3690 * @kuid: new owner's kuid 3691 * @kgid: new owner's kgid 3692 * 3693 * This changes the owner of @dev and its corresponding sysfs entries to 3694 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 3695 * core. 3696 * 3697 * Returns 0 on success or error code on failure. 3698 */ 3699 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 3700 { 3701 int error; 3702 struct kobject *kobj = &dev->kobj; 3703 3704 dev = get_device(dev); 3705 if (!dev) 3706 return -EINVAL; 3707 3708 /* 3709 * Change the kobject and the default attributes and groups of the 3710 * ktype associated with it to @kuid/@kgid. 3711 */ 3712 error = sysfs_change_owner(kobj, kuid, kgid); 3713 if (error) 3714 goto out; 3715 3716 /* 3717 * Change the uevent file for @dev to the new owner. The uevent file 3718 * was created in a separate step when @dev got added and we mirror 3719 * that step here. 3720 */ 3721 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 3722 kgid); 3723 if (error) 3724 goto out; 3725 3726 /* 3727 * Change the device groups, the device groups associated with the 3728 * device class, and the groups associated with the device type of @dev 3729 * to @kuid/@kgid. 3730 */ 3731 error = device_attrs_change_owner(dev, kuid, kgid); 3732 if (error) 3733 goto out; 3734 3735 error = dpm_sysfs_change_owner(dev, kuid, kgid); 3736 if (error) 3737 goto out; 3738 3739 #ifdef CONFIG_BLOCK 3740 if (sysfs_deprecated && dev->class == &block_class) 3741 goto out; 3742 #endif 3743 3744 /* 3745 * Change the owner of the symlink located in the class directory of 3746 * the device class associated with @dev which points to the actual 3747 * directory entry for @dev to @kuid/@kgid. This ensures that the 3748 * symlink shows the same permissions as its target. 3749 */ 3750 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj, 3751 dev_name(dev), kuid, kgid); 3752 if (error) 3753 goto out; 3754 3755 out: 3756 put_device(dev); 3757 return error; 3758 } 3759 EXPORT_SYMBOL_GPL(device_change_owner); 3760 3761 /** 3762 * device_shutdown - call ->shutdown() on each device to shutdown. 3763 */ 3764 void device_shutdown(void) 3765 { 3766 struct device *dev, *parent; 3767 3768 wait_for_device_probe(); 3769 device_block_probing(); 3770 3771 cpufreq_suspend(); 3772 3773 spin_lock(&devices_kset->list_lock); 3774 /* 3775 * Walk the devices list backward, shutting down each in turn. 3776 * Beware that device unplug events may also start pulling 3777 * devices offline, even as the system is shutting down. 3778 */ 3779 while (!list_empty(&devices_kset->list)) { 3780 dev = list_entry(devices_kset->list.prev, struct device, 3781 kobj.entry); 3782 3783 /* 3784 * hold reference count of device's parent to 3785 * prevent it from being freed because parent's 3786 * lock is to be held 3787 */ 3788 parent = get_device(dev->parent); 3789 get_device(dev); 3790 /* 3791 * Make sure the device is off the kset list, in the 3792 * event that dev->*->shutdown() doesn't remove it. 3793 */ 3794 list_del_init(&dev->kobj.entry); 3795 spin_unlock(&devices_kset->list_lock); 3796 3797 /* hold lock to avoid race with probe/release */ 3798 if (parent) 3799 device_lock(parent); 3800 device_lock(dev); 3801 3802 /* Don't allow any more runtime suspends */ 3803 pm_runtime_get_noresume(dev); 3804 pm_runtime_barrier(dev); 3805 3806 if (dev->class && dev->class->shutdown_pre) { 3807 if (initcall_debug) 3808 dev_info(dev, "shutdown_pre\n"); 3809 dev->class->shutdown_pre(dev); 3810 } 3811 if (dev->bus && dev->bus->shutdown) { 3812 if (initcall_debug) 3813 dev_info(dev, "shutdown\n"); 3814 dev->bus->shutdown(dev); 3815 } else if (dev->driver && dev->driver->shutdown) { 3816 if (initcall_debug) 3817 dev_info(dev, "shutdown\n"); 3818 dev->driver->shutdown(dev); 3819 } 3820 3821 device_unlock(dev); 3822 if (parent) 3823 device_unlock(parent); 3824 3825 put_device(dev); 3826 put_device(parent); 3827 3828 spin_lock(&devices_kset->list_lock); 3829 } 3830 spin_unlock(&devices_kset->list_lock); 3831 } 3832 3833 /* 3834 * Device logging functions 3835 */ 3836 3837 #ifdef CONFIG_PRINTK 3838 static int 3839 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen) 3840 { 3841 const char *subsys; 3842 size_t pos = 0; 3843 3844 if (dev->class) 3845 subsys = dev->class->name; 3846 else if (dev->bus) 3847 subsys = dev->bus->name; 3848 else 3849 return 0; 3850 3851 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys); 3852 if (pos >= hdrlen) 3853 goto overflow; 3854 3855 /* 3856 * Add device identifier DEVICE=: 3857 * b12:8 block dev_t 3858 * c127:3 char dev_t 3859 * n8 netdev ifindex 3860 * +sound:card0 subsystem:devname 3861 */ 3862 if (MAJOR(dev->devt)) { 3863 char c; 3864 3865 if (strcmp(subsys, "block") == 0) 3866 c = 'b'; 3867 else 3868 c = 'c'; 3869 pos++; 3870 pos += snprintf(hdr + pos, hdrlen - pos, 3871 "DEVICE=%c%u:%u", 3872 c, MAJOR(dev->devt), MINOR(dev->devt)); 3873 } else if (strcmp(subsys, "net") == 0) { 3874 struct net_device *net = to_net_dev(dev); 3875 3876 pos++; 3877 pos += snprintf(hdr + pos, hdrlen - pos, 3878 "DEVICE=n%u", net->ifindex); 3879 } else { 3880 pos++; 3881 pos += snprintf(hdr + pos, hdrlen - pos, 3882 "DEVICE=+%s:%s", subsys, dev_name(dev)); 3883 } 3884 3885 if (pos >= hdrlen) 3886 goto overflow; 3887 3888 return pos; 3889 3890 overflow: 3891 dev_WARN(dev, "device/subsystem name too long"); 3892 return 0; 3893 } 3894 3895 int dev_vprintk_emit(int level, const struct device *dev, 3896 const char *fmt, va_list args) 3897 { 3898 char hdr[128]; 3899 size_t hdrlen; 3900 3901 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr)); 3902 3903 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args); 3904 } 3905 EXPORT_SYMBOL(dev_vprintk_emit); 3906 3907 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 3908 { 3909 va_list args; 3910 int r; 3911 3912 va_start(args, fmt); 3913 3914 r = dev_vprintk_emit(level, dev, fmt, args); 3915 3916 va_end(args); 3917 3918 return r; 3919 } 3920 EXPORT_SYMBOL(dev_printk_emit); 3921 3922 static void __dev_printk(const char *level, const struct device *dev, 3923 struct va_format *vaf) 3924 { 3925 if (dev) 3926 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 3927 dev_driver_string(dev), dev_name(dev), vaf); 3928 else 3929 printk("%s(NULL device *): %pV", level, vaf); 3930 } 3931 3932 void dev_printk(const char *level, const struct device *dev, 3933 const char *fmt, ...) 3934 { 3935 struct va_format vaf; 3936 va_list args; 3937 3938 va_start(args, fmt); 3939 3940 vaf.fmt = fmt; 3941 vaf.va = &args; 3942 3943 __dev_printk(level, dev, &vaf); 3944 3945 va_end(args); 3946 } 3947 EXPORT_SYMBOL(dev_printk); 3948 3949 #define define_dev_printk_level(func, kern_level) \ 3950 void func(const struct device *dev, const char *fmt, ...) \ 3951 { \ 3952 struct va_format vaf; \ 3953 va_list args; \ 3954 \ 3955 va_start(args, fmt); \ 3956 \ 3957 vaf.fmt = fmt; \ 3958 vaf.va = &args; \ 3959 \ 3960 __dev_printk(kern_level, dev, &vaf); \ 3961 \ 3962 va_end(args); \ 3963 } \ 3964 EXPORT_SYMBOL(func); 3965 3966 define_dev_printk_level(_dev_emerg, KERN_EMERG); 3967 define_dev_printk_level(_dev_alert, KERN_ALERT); 3968 define_dev_printk_level(_dev_crit, KERN_CRIT); 3969 define_dev_printk_level(_dev_err, KERN_ERR); 3970 define_dev_printk_level(_dev_warn, KERN_WARNING); 3971 define_dev_printk_level(_dev_notice, KERN_NOTICE); 3972 define_dev_printk_level(_dev_info, KERN_INFO); 3973 3974 #endif 3975 3976 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 3977 { 3978 return fwnode && !IS_ERR(fwnode->secondary); 3979 } 3980 3981 /** 3982 * set_primary_fwnode - Change the primary firmware node of a given device. 3983 * @dev: Device to handle. 3984 * @fwnode: New primary firmware node of the device. 3985 * 3986 * Set the device's firmware node pointer to @fwnode, but if a secondary 3987 * firmware node of the device is present, preserve it. 3988 */ 3989 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 3990 { 3991 if (fwnode) { 3992 struct fwnode_handle *fn = dev->fwnode; 3993 3994 if (fwnode_is_primary(fn)) 3995 fn = fn->secondary; 3996 3997 if (fn) { 3998 WARN_ON(fwnode->secondary); 3999 fwnode->secondary = fn; 4000 } 4001 dev->fwnode = fwnode; 4002 } else { 4003 dev->fwnode = fwnode_is_primary(dev->fwnode) ? 4004 dev->fwnode->secondary : NULL; 4005 } 4006 } 4007 EXPORT_SYMBOL_GPL(set_primary_fwnode); 4008 4009 /** 4010 * set_secondary_fwnode - Change the secondary firmware node of a given device. 4011 * @dev: Device to handle. 4012 * @fwnode: New secondary firmware node of the device. 4013 * 4014 * If a primary firmware node of the device is present, set its secondary 4015 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 4016 * @fwnode. 4017 */ 4018 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4019 { 4020 if (fwnode) 4021 fwnode->secondary = ERR_PTR(-ENODEV); 4022 4023 if (fwnode_is_primary(dev->fwnode)) 4024 dev->fwnode->secondary = fwnode; 4025 else 4026 dev->fwnode = fwnode; 4027 } 4028 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 4029 4030 /** 4031 * device_set_of_node_from_dev - reuse device-tree node of another device 4032 * @dev: device whose device-tree node is being set 4033 * @dev2: device whose device-tree node is being reused 4034 * 4035 * Takes another reference to the new device-tree node after first dropping 4036 * any reference held to the old node. 4037 */ 4038 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 4039 { 4040 of_node_put(dev->of_node); 4041 dev->of_node = of_node_get(dev2->of_node); 4042 dev->of_node_reused = true; 4043 } 4044 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 4045 4046 int device_match_name(struct device *dev, const void *name) 4047 { 4048 return sysfs_streq(dev_name(dev), name); 4049 } 4050 EXPORT_SYMBOL_GPL(device_match_name); 4051 4052 int device_match_of_node(struct device *dev, const void *np) 4053 { 4054 return dev->of_node == np; 4055 } 4056 EXPORT_SYMBOL_GPL(device_match_of_node); 4057 4058 int device_match_fwnode(struct device *dev, const void *fwnode) 4059 { 4060 return dev_fwnode(dev) == fwnode; 4061 } 4062 EXPORT_SYMBOL_GPL(device_match_fwnode); 4063 4064 int device_match_devt(struct device *dev, const void *pdevt) 4065 { 4066 return dev->devt == *(dev_t *)pdevt; 4067 } 4068 EXPORT_SYMBOL_GPL(device_match_devt); 4069 4070 int device_match_acpi_dev(struct device *dev, const void *adev) 4071 { 4072 return ACPI_COMPANION(dev) == adev; 4073 } 4074 EXPORT_SYMBOL(device_match_acpi_dev); 4075 4076 int device_match_any(struct device *dev, const void *unused) 4077 { 4078 return 1; 4079 } 4080 EXPORT_SYMBOL_GPL(device_match_any); 4081