xref: /openbmc/linux/drivers/base/core.c (revision a31edb20)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sysfs.h>
30 
31 #include "base.h"
32 #include "power/power.h"
33 
34 #ifdef CONFIG_SYSFS_DEPRECATED
35 #ifdef CONFIG_SYSFS_DEPRECATED_V2
36 long sysfs_deprecated = 1;
37 #else
38 long sysfs_deprecated = 0;
39 #endif
40 static int __init sysfs_deprecated_setup(char *arg)
41 {
42 	return kstrtol(arg, 10, &sysfs_deprecated);
43 }
44 early_param("sysfs.deprecated", sysfs_deprecated_setup);
45 #endif
46 
47 /* Device links support. */
48 static LIST_HEAD(wait_for_suppliers);
49 static DEFINE_MUTEX(wfs_lock);
50 static LIST_HEAD(deferred_sync);
51 static unsigned int defer_sync_state_count = 1;
52 static unsigned int defer_fw_devlink_count;
53 static LIST_HEAD(deferred_fw_devlink);
54 static DEFINE_MUTEX(defer_fw_devlink_lock);
55 static bool fw_devlink_is_permissive(void);
56 
57 #ifdef CONFIG_SRCU
58 static DEFINE_MUTEX(device_links_lock);
59 DEFINE_STATIC_SRCU(device_links_srcu);
60 
61 static inline void device_links_write_lock(void)
62 {
63 	mutex_lock(&device_links_lock);
64 }
65 
66 static inline void device_links_write_unlock(void)
67 {
68 	mutex_unlock(&device_links_lock);
69 }
70 
71 int device_links_read_lock(void) __acquires(&device_links_srcu)
72 {
73 	return srcu_read_lock(&device_links_srcu);
74 }
75 
76 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
77 {
78 	srcu_read_unlock(&device_links_srcu, idx);
79 }
80 
81 int device_links_read_lock_held(void)
82 {
83 	return srcu_read_lock_held(&device_links_srcu);
84 }
85 #else /* !CONFIG_SRCU */
86 static DECLARE_RWSEM(device_links_lock);
87 
88 static inline void device_links_write_lock(void)
89 {
90 	down_write(&device_links_lock);
91 }
92 
93 static inline void device_links_write_unlock(void)
94 {
95 	up_write(&device_links_lock);
96 }
97 
98 int device_links_read_lock(void)
99 {
100 	down_read(&device_links_lock);
101 	return 0;
102 }
103 
104 void device_links_read_unlock(int not_used)
105 {
106 	up_read(&device_links_lock);
107 }
108 
109 #ifdef CONFIG_DEBUG_LOCK_ALLOC
110 int device_links_read_lock_held(void)
111 {
112 	return lockdep_is_held(&device_links_lock);
113 }
114 #endif
115 #endif /* !CONFIG_SRCU */
116 
117 /**
118  * device_is_dependent - Check if one device depends on another one
119  * @dev: Device to check dependencies for.
120  * @target: Device to check against.
121  *
122  * Check if @target depends on @dev or any device dependent on it (its child or
123  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
124  */
125 static int device_is_dependent(struct device *dev, void *target)
126 {
127 	struct device_link *link;
128 	int ret;
129 
130 	if (dev == target)
131 		return 1;
132 
133 	ret = device_for_each_child(dev, target, device_is_dependent);
134 	if (ret)
135 		return ret;
136 
137 	list_for_each_entry(link, &dev->links.consumers, s_node) {
138 		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
139 			continue;
140 
141 		if (link->consumer == target)
142 			return 1;
143 
144 		ret = device_is_dependent(link->consumer, target);
145 		if (ret)
146 			break;
147 	}
148 	return ret;
149 }
150 
151 static void device_link_init_status(struct device_link *link,
152 				    struct device *consumer,
153 				    struct device *supplier)
154 {
155 	switch (supplier->links.status) {
156 	case DL_DEV_PROBING:
157 		switch (consumer->links.status) {
158 		case DL_DEV_PROBING:
159 			/*
160 			 * A consumer driver can create a link to a supplier
161 			 * that has not completed its probing yet as long as it
162 			 * knows that the supplier is already functional (for
163 			 * example, it has just acquired some resources from the
164 			 * supplier).
165 			 */
166 			link->status = DL_STATE_CONSUMER_PROBE;
167 			break;
168 		default:
169 			link->status = DL_STATE_DORMANT;
170 			break;
171 		}
172 		break;
173 	case DL_DEV_DRIVER_BOUND:
174 		switch (consumer->links.status) {
175 		case DL_DEV_PROBING:
176 			link->status = DL_STATE_CONSUMER_PROBE;
177 			break;
178 		case DL_DEV_DRIVER_BOUND:
179 			link->status = DL_STATE_ACTIVE;
180 			break;
181 		default:
182 			link->status = DL_STATE_AVAILABLE;
183 			break;
184 		}
185 		break;
186 	case DL_DEV_UNBINDING:
187 		link->status = DL_STATE_SUPPLIER_UNBIND;
188 		break;
189 	default:
190 		link->status = DL_STATE_DORMANT;
191 		break;
192 	}
193 }
194 
195 static int device_reorder_to_tail(struct device *dev, void *not_used)
196 {
197 	struct device_link *link;
198 
199 	/*
200 	 * Devices that have not been registered yet will be put to the ends
201 	 * of the lists during the registration, so skip them here.
202 	 */
203 	if (device_is_registered(dev))
204 		devices_kset_move_last(dev);
205 
206 	if (device_pm_initialized(dev))
207 		device_pm_move_last(dev);
208 
209 	device_for_each_child(dev, NULL, device_reorder_to_tail);
210 	list_for_each_entry(link, &dev->links.consumers, s_node) {
211 		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
212 			continue;
213 		device_reorder_to_tail(link->consumer, NULL);
214 	}
215 
216 	return 0;
217 }
218 
219 /**
220  * device_pm_move_to_tail - Move set of devices to the end of device lists
221  * @dev: Device to move
222  *
223  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
224  *
225  * It moves the @dev along with all of its children and all of its consumers
226  * to the ends of the device_kset and dpm_list, recursively.
227  */
228 void device_pm_move_to_tail(struct device *dev)
229 {
230 	int idx;
231 
232 	idx = device_links_read_lock();
233 	device_pm_lock();
234 	device_reorder_to_tail(dev, NULL);
235 	device_pm_unlock();
236 	device_links_read_unlock(idx);
237 }
238 
239 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
240 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
241 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
242 			       DL_FLAG_SYNC_STATE_ONLY)
243 
244 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
245 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
246 
247 /**
248  * device_link_add - Create a link between two devices.
249  * @consumer: Consumer end of the link.
250  * @supplier: Supplier end of the link.
251  * @flags: Link flags.
252  *
253  * The caller is responsible for the proper synchronization of the link creation
254  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
255  * runtime PM framework to take the link into account.  Second, if the
256  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
257  * be forced into the active metastate and reference-counted upon the creation
258  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
259  * ignored.
260  *
261  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
262  * expected to release the link returned by it directly with the help of either
263  * device_link_del() or device_link_remove().
264  *
265  * If that flag is not set, however, the caller of this function is handing the
266  * management of the link over to the driver core entirely and its return value
267  * can only be used to check whether or not the link is present.  In that case,
268  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
269  * flags can be used to indicate to the driver core when the link can be safely
270  * deleted.  Namely, setting one of them in @flags indicates to the driver core
271  * that the link is not going to be used (by the given caller of this function)
272  * after unbinding the consumer or supplier driver, respectively, from its
273  * device, so the link can be deleted at that point.  If none of them is set,
274  * the link will be maintained until one of the devices pointed to by it (either
275  * the consumer or the supplier) is unregistered.
276  *
277  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
278  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
279  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
280  * be used to request the driver core to automaticall probe for a consmer
281  * driver after successfully binding a driver to the supplier device.
282  *
283  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
284  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
285  * the same time is invalid and will cause NULL to be returned upfront.
286  * However, if a device link between the given @consumer and @supplier pair
287  * exists already when this function is called for them, the existing link will
288  * be returned regardless of its current type and status (the link's flags may
289  * be modified then).  The caller of this function is then expected to treat
290  * the link as though it has just been created, so (in particular) if
291  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
292  * explicitly when not needed any more (as stated above).
293  *
294  * A side effect of the link creation is re-ordering of dpm_list and the
295  * devices_kset list by moving the consumer device and all devices depending
296  * on it to the ends of these lists (that does not happen to devices that have
297  * not been registered when this function is called).
298  *
299  * The supplier device is required to be registered when this function is called
300  * and NULL will be returned if that is not the case.  The consumer device need
301  * not be registered, however.
302  */
303 struct device_link *device_link_add(struct device *consumer,
304 				    struct device *supplier, u32 flags)
305 {
306 	struct device_link *link;
307 
308 	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
309 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
310 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
311 	     flags != DL_FLAG_SYNC_STATE_ONLY) ||
312 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
313 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
314 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
315 		return NULL;
316 
317 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
318 		if (pm_runtime_get_sync(supplier) < 0) {
319 			pm_runtime_put_noidle(supplier);
320 			return NULL;
321 		}
322 	}
323 
324 	if (!(flags & DL_FLAG_STATELESS))
325 		flags |= DL_FLAG_MANAGED;
326 
327 	device_links_write_lock();
328 	device_pm_lock();
329 
330 	/*
331 	 * If the supplier has not been fully registered yet or there is a
332 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
333 	 * the supplier already in the graph, return NULL. If the link is a
334 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
335 	 * because it only affects sync_state() callbacks.
336 	 */
337 	if (!device_pm_initialized(supplier)
338 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
339 		  device_is_dependent(consumer, supplier))) {
340 		link = NULL;
341 		goto out;
342 	}
343 
344 	/*
345 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
346 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
347 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
348 	 */
349 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
350 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
351 
352 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
353 		if (link->consumer != consumer)
354 			continue;
355 
356 		if (flags & DL_FLAG_PM_RUNTIME) {
357 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
358 				pm_runtime_new_link(consumer);
359 				link->flags |= DL_FLAG_PM_RUNTIME;
360 			}
361 			if (flags & DL_FLAG_RPM_ACTIVE)
362 				refcount_inc(&link->rpm_active);
363 		}
364 
365 		if (flags & DL_FLAG_STATELESS) {
366 			kref_get(&link->kref);
367 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
368 			    !(link->flags & DL_FLAG_STATELESS)) {
369 				link->flags |= DL_FLAG_STATELESS;
370 				goto reorder;
371 			} else {
372 				link->flags |= DL_FLAG_STATELESS;
373 				goto out;
374 			}
375 		}
376 
377 		/*
378 		 * If the life time of the link following from the new flags is
379 		 * longer than indicated by the flags of the existing link,
380 		 * update the existing link to stay around longer.
381 		 */
382 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
383 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
384 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
385 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
386 			}
387 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
388 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
389 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
390 		}
391 		if (!(link->flags & DL_FLAG_MANAGED)) {
392 			kref_get(&link->kref);
393 			link->flags |= DL_FLAG_MANAGED;
394 			device_link_init_status(link, consumer, supplier);
395 		}
396 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
397 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
398 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
399 			goto reorder;
400 		}
401 
402 		goto out;
403 	}
404 
405 	link = kzalloc(sizeof(*link), GFP_KERNEL);
406 	if (!link)
407 		goto out;
408 
409 	refcount_set(&link->rpm_active, 1);
410 
411 	if (flags & DL_FLAG_PM_RUNTIME) {
412 		if (flags & DL_FLAG_RPM_ACTIVE)
413 			refcount_inc(&link->rpm_active);
414 
415 		pm_runtime_new_link(consumer);
416 	}
417 
418 	get_device(supplier);
419 	link->supplier = supplier;
420 	INIT_LIST_HEAD(&link->s_node);
421 	get_device(consumer);
422 	link->consumer = consumer;
423 	INIT_LIST_HEAD(&link->c_node);
424 	link->flags = flags;
425 	kref_init(&link->kref);
426 
427 	/* Determine the initial link state. */
428 	if (flags & DL_FLAG_STATELESS)
429 		link->status = DL_STATE_NONE;
430 	else
431 		device_link_init_status(link, consumer, supplier);
432 
433 	/*
434 	 * Some callers expect the link creation during consumer driver probe to
435 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
436 	 */
437 	if (link->status == DL_STATE_CONSUMER_PROBE &&
438 	    flags & DL_FLAG_PM_RUNTIME)
439 		pm_runtime_resume(supplier);
440 
441 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
442 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
443 
444 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
445 		dev_dbg(consumer,
446 			"Linked as a sync state only consumer to %s\n",
447 			dev_name(supplier));
448 		goto out;
449 	}
450 
451 reorder:
452 	/*
453 	 * Move the consumer and all of the devices depending on it to the end
454 	 * of dpm_list and the devices_kset list.
455 	 *
456 	 * It is necessary to hold dpm_list locked throughout all that or else
457 	 * we may end up suspending with a wrong ordering of it.
458 	 */
459 	device_reorder_to_tail(consumer, NULL);
460 
461 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
462 
463 out:
464 	device_pm_unlock();
465 	device_links_write_unlock();
466 
467 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
468 		pm_runtime_put(supplier);
469 
470 	return link;
471 }
472 EXPORT_SYMBOL_GPL(device_link_add);
473 
474 /**
475  * device_link_wait_for_supplier - Add device to wait_for_suppliers list
476  * @consumer: Consumer device
477  *
478  * Marks the @consumer device as waiting for suppliers to become available by
479  * adding it to the wait_for_suppliers list. The consumer device will never be
480  * probed until it's removed from the wait_for_suppliers list.
481  *
482  * The caller is responsible for adding the links to the supplier devices once
483  * they are available and removing the @consumer device from the
484  * wait_for_suppliers list once links to all the suppliers have been created.
485  *
486  * This function is NOT meant to be called from the probe function of the
487  * consumer but rather from code that creates/adds the consumer device.
488  */
489 static void device_link_wait_for_supplier(struct device *consumer,
490 					  bool need_for_probe)
491 {
492 	mutex_lock(&wfs_lock);
493 	list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
494 	consumer->links.need_for_probe = need_for_probe;
495 	mutex_unlock(&wfs_lock);
496 }
497 
498 static void device_link_wait_for_mandatory_supplier(struct device *consumer)
499 {
500 	device_link_wait_for_supplier(consumer, true);
501 }
502 
503 static void device_link_wait_for_optional_supplier(struct device *consumer)
504 {
505 	device_link_wait_for_supplier(consumer, false);
506 }
507 
508 /**
509  * device_link_add_missing_supplier_links - Add links from consumer devices to
510  *					    supplier devices, leaving any
511  *					    consumer with inactive suppliers on
512  *					    the wait_for_suppliers list
513  *
514  * Loops through all consumers waiting on suppliers and tries to add all their
515  * supplier links. If that succeeds, the consumer device is removed from
516  * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
517  * list.  Devices left on the wait_for_suppliers list will not be probed.
518  *
519  * The fwnode add_links callback is expected to return 0 if it has found and
520  * added all the supplier links for the consumer device. It should return an
521  * error if it isn't able to do so.
522  *
523  * The caller of device_link_wait_for_supplier() is expected to call this once
524  * it's aware of potential suppliers becoming available.
525  */
526 static void device_link_add_missing_supplier_links(void)
527 {
528 	struct device *dev, *tmp;
529 
530 	mutex_lock(&wfs_lock);
531 	list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
532 				 links.needs_suppliers) {
533 		int ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
534 		if (!ret)
535 			list_del_init(&dev->links.needs_suppliers);
536 		else if (ret != -ENODEV || fw_devlink_is_permissive())
537 			dev->links.need_for_probe = false;
538 	}
539 	mutex_unlock(&wfs_lock);
540 }
541 
542 static void device_link_free(struct device_link *link)
543 {
544 	while (refcount_dec_not_one(&link->rpm_active))
545 		pm_runtime_put(link->supplier);
546 
547 	put_device(link->consumer);
548 	put_device(link->supplier);
549 	kfree(link);
550 }
551 
552 #ifdef CONFIG_SRCU
553 static void __device_link_free_srcu(struct rcu_head *rhead)
554 {
555 	device_link_free(container_of(rhead, struct device_link, rcu_head));
556 }
557 
558 static void __device_link_del(struct kref *kref)
559 {
560 	struct device_link *link = container_of(kref, struct device_link, kref);
561 
562 	dev_dbg(link->consumer, "Dropping the link to %s\n",
563 		dev_name(link->supplier));
564 
565 	if (link->flags & DL_FLAG_PM_RUNTIME)
566 		pm_runtime_drop_link(link->consumer);
567 
568 	list_del_rcu(&link->s_node);
569 	list_del_rcu(&link->c_node);
570 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
571 }
572 #else /* !CONFIG_SRCU */
573 static void __device_link_del(struct kref *kref)
574 {
575 	struct device_link *link = container_of(kref, struct device_link, kref);
576 
577 	dev_info(link->consumer, "Dropping the link to %s\n",
578 		 dev_name(link->supplier));
579 
580 	if (link->flags & DL_FLAG_PM_RUNTIME)
581 		pm_runtime_drop_link(link->consumer);
582 
583 	list_del(&link->s_node);
584 	list_del(&link->c_node);
585 	device_link_free(link);
586 }
587 #endif /* !CONFIG_SRCU */
588 
589 static void device_link_put_kref(struct device_link *link)
590 {
591 	if (link->flags & DL_FLAG_STATELESS)
592 		kref_put(&link->kref, __device_link_del);
593 	else
594 		WARN(1, "Unable to drop a managed device link reference\n");
595 }
596 
597 /**
598  * device_link_del - Delete a stateless link between two devices.
599  * @link: Device link to delete.
600  *
601  * The caller must ensure proper synchronization of this function with runtime
602  * PM.  If the link was added multiple times, it needs to be deleted as often.
603  * Care is required for hotplugged devices:  Their links are purged on removal
604  * and calling device_link_del() is then no longer allowed.
605  */
606 void device_link_del(struct device_link *link)
607 {
608 	device_links_write_lock();
609 	device_pm_lock();
610 	device_link_put_kref(link);
611 	device_pm_unlock();
612 	device_links_write_unlock();
613 }
614 EXPORT_SYMBOL_GPL(device_link_del);
615 
616 /**
617  * device_link_remove - Delete a stateless link between two devices.
618  * @consumer: Consumer end of the link.
619  * @supplier: Supplier end of the link.
620  *
621  * The caller must ensure proper synchronization of this function with runtime
622  * PM.
623  */
624 void device_link_remove(void *consumer, struct device *supplier)
625 {
626 	struct device_link *link;
627 
628 	if (WARN_ON(consumer == supplier))
629 		return;
630 
631 	device_links_write_lock();
632 	device_pm_lock();
633 
634 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
635 		if (link->consumer == consumer) {
636 			device_link_put_kref(link);
637 			break;
638 		}
639 	}
640 
641 	device_pm_unlock();
642 	device_links_write_unlock();
643 }
644 EXPORT_SYMBOL_GPL(device_link_remove);
645 
646 static void device_links_missing_supplier(struct device *dev)
647 {
648 	struct device_link *link;
649 
650 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
651 		if (link->status != DL_STATE_CONSUMER_PROBE)
652 			continue;
653 
654 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
655 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
656 		} else {
657 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
658 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
659 		}
660 	}
661 }
662 
663 /**
664  * device_links_check_suppliers - Check presence of supplier drivers.
665  * @dev: Consumer device.
666  *
667  * Check links from this device to any suppliers.  Walk the list of the device's
668  * links to suppliers and see if all of them are available.  If not, simply
669  * return -EPROBE_DEFER.
670  *
671  * We need to guarantee that the supplier will not go away after the check has
672  * been positive here.  It only can go away in __device_release_driver() and
673  * that function  checks the device's links to consumers.  This means we need to
674  * mark the link as "consumer probe in progress" to make the supplier removal
675  * wait for us to complete (or bad things may happen).
676  *
677  * Links without the DL_FLAG_MANAGED flag set are ignored.
678  */
679 int device_links_check_suppliers(struct device *dev)
680 {
681 	struct device_link *link;
682 	int ret = 0;
683 
684 	/*
685 	 * Device waiting for supplier to become available is not allowed to
686 	 * probe.
687 	 */
688 	mutex_lock(&wfs_lock);
689 	if (!list_empty(&dev->links.needs_suppliers) &&
690 	    dev->links.need_for_probe) {
691 		mutex_unlock(&wfs_lock);
692 		return -EPROBE_DEFER;
693 	}
694 	mutex_unlock(&wfs_lock);
695 
696 	device_links_write_lock();
697 
698 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
699 		if (!(link->flags & DL_FLAG_MANAGED))
700 			continue;
701 
702 		if (link->status != DL_STATE_AVAILABLE &&
703 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
704 			device_links_missing_supplier(dev);
705 			ret = -EPROBE_DEFER;
706 			break;
707 		}
708 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
709 	}
710 	dev->links.status = DL_DEV_PROBING;
711 
712 	device_links_write_unlock();
713 	return ret;
714 }
715 
716 /**
717  * __device_links_queue_sync_state - Queue a device for sync_state() callback
718  * @dev: Device to call sync_state() on
719  * @list: List head to queue the @dev on
720  *
721  * Queues a device for a sync_state() callback when the device links write lock
722  * isn't held. This allows the sync_state() execution flow to use device links
723  * APIs.  The caller must ensure this function is called with
724  * device_links_write_lock() held.
725  *
726  * This function does a get_device() to make sure the device is not freed while
727  * on this list.
728  *
729  * So the caller must also ensure that device_links_flush_sync_list() is called
730  * as soon as the caller releases device_links_write_lock().  This is necessary
731  * to make sure the sync_state() is called in a timely fashion and the
732  * put_device() is called on this device.
733  */
734 static void __device_links_queue_sync_state(struct device *dev,
735 					    struct list_head *list)
736 {
737 	struct device_link *link;
738 
739 	if (!dev_has_sync_state(dev))
740 		return;
741 	if (dev->state_synced)
742 		return;
743 
744 	list_for_each_entry(link, &dev->links.consumers, s_node) {
745 		if (!(link->flags & DL_FLAG_MANAGED))
746 			continue;
747 		if (link->status != DL_STATE_ACTIVE)
748 			return;
749 	}
750 
751 	/*
752 	 * Set the flag here to avoid adding the same device to a list more
753 	 * than once. This can happen if new consumers get added to the device
754 	 * and probed before the list is flushed.
755 	 */
756 	dev->state_synced = true;
757 
758 	if (WARN_ON(!list_empty(&dev->links.defer_hook)))
759 		return;
760 
761 	get_device(dev);
762 	list_add_tail(&dev->links.defer_hook, list);
763 }
764 
765 /**
766  * device_links_flush_sync_list - Call sync_state() on a list of devices
767  * @list: List of devices to call sync_state() on
768  * @dont_lock_dev: Device for which lock is already held by the caller
769  *
770  * Calls sync_state() on all the devices that have been queued for it. This
771  * function is used in conjunction with __device_links_queue_sync_state(). The
772  * @dont_lock_dev parameter is useful when this function is called from a
773  * context where a device lock is already held.
774  */
775 static void device_links_flush_sync_list(struct list_head *list,
776 					 struct device *dont_lock_dev)
777 {
778 	struct device *dev, *tmp;
779 
780 	list_for_each_entry_safe(dev, tmp, list, links.defer_hook) {
781 		list_del_init(&dev->links.defer_hook);
782 
783 		if (dev != dont_lock_dev)
784 			device_lock(dev);
785 
786 		if (dev->bus->sync_state)
787 			dev->bus->sync_state(dev);
788 		else if (dev->driver && dev->driver->sync_state)
789 			dev->driver->sync_state(dev);
790 
791 		if (dev != dont_lock_dev)
792 			device_unlock(dev);
793 
794 		put_device(dev);
795 	}
796 }
797 
798 void device_links_supplier_sync_state_pause(void)
799 {
800 	device_links_write_lock();
801 	defer_sync_state_count++;
802 	device_links_write_unlock();
803 }
804 
805 void device_links_supplier_sync_state_resume(void)
806 {
807 	struct device *dev, *tmp;
808 	LIST_HEAD(sync_list);
809 
810 	device_links_write_lock();
811 	if (!defer_sync_state_count) {
812 		WARN(true, "Unmatched sync_state pause/resume!");
813 		goto out;
814 	}
815 	defer_sync_state_count--;
816 	if (defer_sync_state_count)
817 		goto out;
818 
819 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_hook) {
820 		/*
821 		 * Delete from deferred_sync list before queuing it to
822 		 * sync_list because defer_hook is used for both lists.
823 		 */
824 		list_del_init(&dev->links.defer_hook);
825 		__device_links_queue_sync_state(dev, &sync_list);
826 	}
827 out:
828 	device_links_write_unlock();
829 
830 	device_links_flush_sync_list(&sync_list, NULL);
831 }
832 
833 static int sync_state_resume_initcall(void)
834 {
835 	device_links_supplier_sync_state_resume();
836 	return 0;
837 }
838 late_initcall(sync_state_resume_initcall);
839 
840 static void __device_links_supplier_defer_sync(struct device *sup)
841 {
842 	if (list_empty(&sup->links.defer_hook) && dev_has_sync_state(sup))
843 		list_add_tail(&sup->links.defer_hook, &deferred_sync);
844 }
845 
846 static void device_link_drop_managed(struct device_link *link)
847 {
848 	link->flags &= ~DL_FLAG_MANAGED;
849 	WRITE_ONCE(link->status, DL_STATE_NONE);
850 	kref_put(&link->kref, __device_link_del);
851 }
852 
853 /**
854  * device_links_driver_bound - Update device links after probing its driver.
855  * @dev: Device to update the links for.
856  *
857  * The probe has been successful, so update links from this device to any
858  * consumers by changing their status to "available".
859  *
860  * Also change the status of @dev's links to suppliers to "active".
861  *
862  * Links without the DL_FLAG_MANAGED flag set are ignored.
863  */
864 void device_links_driver_bound(struct device *dev)
865 {
866 	struct device_link *link, *ln;
867 	LIST_HEAD(sync_list);
868 
869 	/*
870 	 * If a device probes successfully, it's expected to have created all
871 	 * the device links it needs to or make new device links as it needs
872 	 * them. So, it no longer needs to wait on any suppliers.
873 	 */
874 	mutex_lock(&wfs_lock);
875 	list_del_init(&dev->links.needs_suppliers);
876 	mutex_unlock(&wfs_lock);
877 
878 	device_links_write_lock();
879 
880 	list_for_each_entry(link, &dev->links.consumers, s_node) {
881 		if (!(link->flags & DL_FLAG_MANAGED))
882 			continue;
883 
884 		/*
885 		 * Links created during consumer probe may be in the "consumer
886 		 * probe" state to start with if the supplier is still probing
887 		 * when they are created and they may become "active" if the
888 		 * consumer probe returns first.  Skip them here.
889 		 */
890 		if (link->status == DL_STATE_CONSUMER_PROBE ||
891 		    link->status == DL_STATE_ACTIVE)
892 			continue;
893 
894 		WARN_ON(link->status != DL_STATE_DORMANT);
895 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
896 
897 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
898 			driver_deferred_probe_add(link->consumer);
899 	}
900 
901 	if (defer_sync_state_count)
902 		__device_links_supplier_defer_sync(dev);
903 	else
904 		__device_links_queue_sync_state(dev, &sync_list);
905 
906 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
907 		struct device *supplier;
908 
909 		if (!(link->flags & DL_FLAG_MANAGED))
910 			continue;
911 
912 		supplier = link->supplier;
913 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
914 			/*
915 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
916 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
917 			 * save to drop the managed link completely.
918 			 */
919 			device_link_drop_managed(link);
920 		} else {
921 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
922 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
923 		}
924 
925 		/*
926 		 * This needs to be done even for the deleted
927 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
928 		 * device link that was preventing the supplier from getting a
929 		 * sync_state() call.
930 		 */
931 		if (defer_sync_state_count)
932 			__device_links_supplier_defer_sync(supplier);
933 		else
934 			__device_links_queue_sync_state(supplier, &sync_list);
935 	}
936 
937 	dev->links.status = DL_DEV_DRIVER_BOUND;
938 
939 	device_links_write_unlock();
940 
941 	device_links_flush_sync_list(&sync_list, dev);
942 }
943 
944 /**
945  * __device_links_no_driver - Update links of a device without a driver.
946  * @dev: Device without a drvier.
947  *
948  * Delete all non-persistent links from this device to any suppliers.
949  *
950  * Persistent links stay around, but their status is changed to "available",
951  * unless they already are in the "supplier unbind in progress" state in which
952  * case they need not be updated.
953  *
954  * Links without the DL_FLAG_MANAGED flag set are ignored.
955  */
956 static void __device_links_no_driver(struct device *dev)
957 {
958 	struct device_link *link, *ln;
959 
960 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
961 		if (!(link->flags & DL_FLAG_MANAGED))
962 			continue;
963 
964 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
965 			device_link_drop_managed(link);
966 			continue;
967 		}
968 
969 		if (link->status != DL_STATE_CONSUMER_PROBE &&
970 		    link->status != DL_STATE_ACTIVE)
971 			continue;
972 
973 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
974 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
975 		} else {
976 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
977 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
978 		}
979 	}
980 
981 	dev->links.status = DL_DEV_NO_DRIVER;
982 }
983 
984 /**
985  * device_links_no_driver - Update links after failing driver probe.
986  * @dev: Device whose driver has just failed to probe.
987  *
988  * Clean up leftover links to consumers for @dev and invoke
989  * %__device_links_no_driver() to update links to suppliers for it as
990  * appropriate.
991  *
992  * Links without the DL_FLAG_MANAGED flag set are ignored.
993  */
994 void device_links_no_driver(struct device *dev)
995 {
996 	struct device_link *link;
997 
998 	device_links_write_lock();
999 
1000 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1001 		if (!(link->flags & DL_FLAG_MANAGED))
1002 			continue;
1003 
1004 		/*
1005 		 * The probe has failed, so if the status of the link is
1006 		 * "consumer probe" or "active", it must have been added by
1007 		 * a probing consumer while this device was still probing.
1008 		 * Change its state to "dormant", as it represents a valid
1009 		 * relationship, but it is not functionally meaningful.
1010 		 */
1011 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1012 		    link->status == DL_STATE_ACTIVE)
1013 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1014 	}
1015 
1016 	__device_links_no_driver(dev);
1017 
1018 	device_links_write_unlock();
1019 }
1020 
1021 /**
1022  * device_links_driver_cleanup - Update links after driver removal.
1023  * @dev: Device whose driver has just gone away.
1024  *
1025  * Update links to consumers for @dev by changing their status to "dormant" and
1026  * invoke %__device_links_no_driver() to update links to suppliers for it as
1027  * appropriate.
1028  *
1029  * Links without the DL_FLAG_MANAGED flag set are ignored.
1030  */
1031 void device_links_driver_cleanup(struct device *dev)
1032 {
1033 	struct device_link *link, *ln;
1034 
1035 	device_links_write_lock();
1036 
1037 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1038 		if (!(link->flags & DL_FLAG_MANAGED))
1039 			continue;
1040 
1041 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1042 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1043 
1044 		/*
1045 		 * autoremove the links between this @dev and its consumer
1046 		 * devices that are not active, i.e. where the link state
1047 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1048 		 */
1049 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1050 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1051 			device_link_drop_managed(link);
1052 
1053 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1054 	}
1055 
1056 	list_del_init(&dev->links.defer_hook);
1057 	__device_links_no_driver(dev);
1058 
1059 	device_links_write_unlock();
1060 }
1061 
1062 /**
1063  * device_links_busy - Check if there are any busy links to consumers.
1064  * @dev: Device to check.
1065  *
1066  * Check each consumer of the device and return 'true' if its link's status
1067  * is one of "consumer probe" or "active" (meaning that the given consumer is
1068  * probing right now or its driver is present).  Otherwise, change the link
1069  * state to "supplier unbind" to prevent the consumer from being probed
1070  * successfully going forward.
1071  *
1072  * Return 'false' if there are no probing or active consumers.
1073  *
1074  * Links without the DL_FLAG_MANAGED flag set are ignored.
1075  */
1076 bool device_links_busy(struct device *dev)
1077 {
1078 	struct device_link *link;
1079 	bool ret = false;
1080 
1081 	device_links_write_lock();
1082 
1083 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1084 		if (!(link->flags & DL_FLAG_MANAGED))
1085 			continue;
1086 
1087 		if (link->status == DL_STATE_CONSUMER_PROBE
1088 		    || link->status == DL_STATE_ACTIVE) {
1089 			ret = true;
1090 			break;
1091 		}
1092 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1093 	}
1094 
1095 	dev->links.status = DL_DEV_UNBINDING;
1096 
1097 	device_links_write_unlock();
1098 	return ret;
1099 }
1100 
1101 /**
1102  * device_links_unbind_consumers - Force unbind consumers of the given device.
1103  * @dev: Device to unbind the consumers of.
1104  *
1105  * Walk the list of links to consumers for @dev and if any of them is in the
1106  * "consumer probe" state, wait for all device probes in progress to complete
1107  * and start over.
1108  *
1109  * If that's not the case, change the status of the link to "supplier unbind"
1110  * and check if the link was in the "active" state.  If so, force the consumer
1111  * driver to unbind and start over (the consumer will not re-probe as we have
1112  * changed the state of the link already).
1113  *
1114  * Links without the DL_FLAG_MANAGED flag set are ignored.
1115  */
1116 void device_links_unbind_consumers(struct device *dev)
1117 {
1118 	struct device_link *link;
1119 
1120  start:
1121 	device_links_write_lock();
1122 
1123 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1124 		enum device_link_state status;
1125 
1126 		if (!(link->flags & DL_FLAG_MANAGED) ||
1127 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1128 			continue;
1129 
1130 		status = link->status;
1131 		if (status == DL_STATE_CONSUMER_PROBE) {
1132 			device_links_write_unlock();
1133 
1134 			wait_for_device_probe();
1135 			goto start;
1136 		}
1137 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1138 		if (status == DL_STATE_ACTIVE) {
1139 			struct device *consumer = link->consumer;
1140 
1141 			get_device(consumer);
1142 
1143 			device_links_write_unlock();
1144 
1145 			device_release_driver_internal(consumer, NULL,
1146 						       consumer->parent);
1147 			put_device(consumer);
1148 			goto start;
1149 		}
1150 	}
1151 
1152 	device_links_write_unlock();
1153 }
1154 
1155 /**
1156  * device_links_purge - Delete existing links to other devices.
1157  * @dev: Target device.
1158  */
1159 static void device_links_purge(struct device *dev)
1160 {
1161 	struct device_link *link, *ln;
1162 
1163 	mutex_lock(&wfs_lock);
1164 	list_del(&dev->links.needs_suppliers);
1165 	mutex_unlock(&wfs_lock);
1166 
1167 	/*
1168 	 * Delete all of the remaining links from this device to any other
1169 	 * devices (either consumers or suppliers).
1170 	 */
1171 	device_links_write_lock();
1172 
1173 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1174 		WARN_ON(link->status == DL_STATE_ACTIVE);
1175 		__device_link_del(&link->kref);
1176 	}
1177 
1178 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1179 		WARN_ON(link->status != DL_STATE_DORMANT &&
1180 			link->status != DL_STATE_NONE);
1181 		__device_link_del(&link->kref);
1182 	}
1183 
1184 	device_links_write_unlock();
1185 }
1186 
1187 static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1188 static int __init fw_devlink_setup(char *arg)
1189 {
1190 	if (!arg)
1191 		return -EINVAL;
1192 
1193 	if (strcmp(arg, "off") == 0) {
1194 		fw_devlink_flags = 0;
1195 	} else if (strcmp(arg, "permissive") == 0) {
1196 		fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1197 	} else if (strcmp(arg, "on") == 0) {
1198 		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1199 	} else if (strcmp(arg, "rpm") == 0) {
1200 		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
1201 				   DL_FLAG_PM_RUNTIME;
1202 	}
1203 	return 0;
1204 }
1205 early_param("fw_devlink", fw_devlink_setup);
1206 
1207 u32 fw_devlink_get_flags(void)
1208 {
1209 	return fw_devlink_flags;
1210 }
1211 
1212 static bool fw_devlink_is_permissive(void)
1213 {
1214 	return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
1215 }
1216 
1217 static void fw_devlink_link_device(struct device *dev)
1218 {
1219 	int fw_ret;
1220 
1221 	if (!fw_devlink_flags)
1222 		return;
1223 
1224 	mutex_lock(&defer_fw_devlink_lock);
1225 	if (!defer_fw_devlink_count)
1226 		device_link_add_missing_supplier_links();
1227 
1228 	/*
1229 	 * The device's fwnode not having add_links() doesn't affect if other
1230 	 * consumers can find this device as a supplier.  So, this check is
1231 	 * intentionally placed after device_link_add_missing_supplier_links().
1232 	 */
1233 	if (!fwnode_has_op(dev->fwnode, add_links))
1234 		goto out;
1235 
1236 	/*
1237 	 * If fw_devlink is being deferred, assume all devices have mandatory
1238 	 * suppliers they need to link to later. Then, when the fw_devlink is
1239 	 * resumed, all these devices will get a chance to try and link to any
1240 	 * suppliers they have.
1241 	 */
1242 	if (!defer_fw_devlink_count) {
1243 		fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
1244 		if (fw_ret == -ENODEV && fw_devlink_is_permissive())
1245 			fw_ret = -EAGAIN;
1246 	} else {
1247 		fw_ret = -ENODEV;
1248 		/*
1249 		 * defer_hook is not used to add device to deferred_sync list
1250 		 * until device is bound. Since deferred fw devlink also blocks
1251 		 * probing, same list hook can be used for deferred_fw_devlink.
1252 		 */
1253 		list_add_tail(&dev->links.defer_hook, &deferred_fw_devlink);
1254 	}
1255 
1256 	if (fw_ret == -ENODEV)
1257 		device_link_wait_for_mandatory_supplier(dev);
1258 	else if (fw_ret)
1259 		device_link_wait_for_optional_supplier(dev);
1260 
1261 out:
1262 	mutex_unlock(&defer_fw_devlink_lock);
1263 }
1264 
1265 /**
1266  * fw_devlink_pause - Pause parsing of fwnode to create device links
1267  *
1268  * Calling this function defers any fwnode parsing to create device links until
1269  * fw_devlink_resume() is called. Both these functions are ref counted and the
1270  * caller needs to match the calls.
1271  *
1272  * While fw_devlink is paused:
1273  * - Any device that is added won't have its fwnode parsed to create device
1274  *   links.
1275  * - The probe of the device will also be deferred during this period.
1276  * - Any devices that were already added, but waiting for suppliers won't be
1277  *   able to link to newly added devices.
1278  *
1279  * Once fw_devlink_resume():
1280  * - All the fwnodes that was not parsed will be parsed.
1281  * - All the devices that were deferred probing will be reattempted if they
1282  *   aren't waiting for any more suppliers.
1283  *
1284  * This pair of functions, is mainly meant to optimize the parsing of fwnodes
1285  * when a lot of devices that need to link to each other are added in a short
1286  * interval of time. For example, adding all the top level devices in a system.
1287  *
1288  * For example, if N devices are added and:
1289  * - All the consumers are added before their suppliers
1290  * - All the suppliers of the N devices are part of the N devices
1291  *
1292  * Then:
1293  *
1294  * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device
1295  *   will only need one parsing of its fwnode because it is guaranteed to find
1296  *   all the supplier devices already registered and ready to link to. It won't
1297  *   have to do another pass later to find one or more suppliers it couldn't
1298  *   find in the first parse of the fwnode. So, we'll only need O(N) fwnode
1299  *   parses.
1300  *
1301  * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would
1302  *   end up doing O(N^2) parses of fwnodes because every device that's added is
1303  *   guaranteed to trigger a parse of the fwnode of every device added before
1304  *   it. This O(N^2) parse is made worse by the fact that when a fwnode of a
1305  *   device is parsed, all it descendant devices might need to have their
1306  *   fwnodes parsed too (even if the devices themselves aren't added).
1307  */
1308 void fw_devlink_pause(void)
1309 {
1310 	mutex_lock(&defer_fw_devlink_lock);
1311 	defer_fw_devlink_count++;
1312 	mutex_unlock(&defer_fw_devlink_lock);
1313 }
1314 
1315 /** fw_devlink_resume - Resume parsing of fwnode to create device links
1316  *
1317  * This function is used in conjunction with fw_devlink_pause() and is ref
1318  * counted. See documentation for fw_devlink_pause() for more details.
1319  */
1320 void fw_devlink_resume(void)
1321 {
1322 	struct device *dev, *tmp;
1323 	LIST_HEAD(probe_list);
1324 
1325 	mutex_lock(&defer_fw_devlink_lock);
1326 	if (!defer_fw_devlink_count) {
1327 		WARN(true, "Unmatched fw_devlink pause/resume!");
1328 		goto out;
1329 	}
1330 
1331 	defer_fw_devlink_count--;
1332 	if (defer_fw_devlink_count)
1333 		goto out;
1334 
1335 	device_link_add_missing_supplier_links();
1336 	list_splice_tail_init(&deferred_fw_devlink, &probe_list);
1337 out:
1338 	mutex_unlock(&defer_fw_devlink_lock);
1339 
1340 	/*
1341 	 * bus_probe_device() can cause new devices to get added and they'll
1342 	 * try to grab defer_fw_devlink_lock. So, this needs to be done outside
1343 	 * the defer_fw_devlink_lock.
1344 	 */
1345 	list_for_each_entry_safe(dev, tmp, &probe_list, links.defer_hook) {
1346 		list_del_init(&dev->links.defer_hook);
1347 		bus_probe_device(dev);
1348 	}
1349 }
1350 /* Device links support end. */
1351 
1352 int (*platform_notify)(struct device *dev) = NULL;
1353 int (*platform_notify_remove)(struct device *dev) = NULL;
1354 static struct kobject *dev_kobj;
1355 struct kobject *sysfs_dev_char_kobj;
1356 struct kobject *sysfs_dev_block_kobj;
1357 
1358 static DEFINE_MUTEX(device_hotplug_lock);
1359 
1360 void lock_device_hotplug(void)
1361 {
1362 	mutex_lock(&device_hotplug_lock);
1363 }
1364 
1365 void unlock_device_hotplug(void)
1366 {
1367 	mutex_unlock(&device_hotplug_lock);
1368 }
1369 
1370 int lock_device_hotplug_sysfs(void)
1371 {
1372 	if (mutex_trylock(&device_hotplug_lock))
1373 		return 0;
1374 
1375 	/* Avoid busy looping (5 ms of sleep should do). */
1376 	msleep(5);
1377 	return restart_syscall();
1378 }
1379 
1380 #ifdef CONFIG_BLOCK
1381 static inline int device_is_not_partition(struct device *dev)
1382 {
1383 	return !(dev->type == &part_type);
1384 }
1385 #else
1386 static inline int device_is_not_partition(struct device *dev)
1387 {
1388 	return 1;
1389 }
1390 #endif
1391 
1392 static int
1393 device_platform_notify(struct device *dev, enum kobject_action action)
1394 {
1395 	int ret;
1396 
1397 	ret = acpi_platform_notify(dev, action);
1398 	if (ret)
1399 		return ret;
1400 
1401 	ret = software_node_notify(dev, action);
1402 	if (ret)
1403 		return ret;
1404 
1405 	if (platform_notify && action == KOBJ_ADD)
1406 		platform_notify(dev);
1407 	else if (platform_notify_remove && action == KOBJ_REMOVE)
1408 		platform_notify_remove(dev);
1409 	return 0;
1410 }
1411 
1412 /**
1413  * dev_driver_string - Return a device's driver name, if at all possible
1414  * @dev: struct device to get the name of
1415  *
1416  * Will return the device's driver's name if it is bound to a device.  If
1417  * the device is not bound to a driver, it will return the name of the bus
1418  * it is attached to.  If it is not attached to a bus either, an empty
1419  * string will be returned.
1420  */
1421 const char *dev_driver_string(const struct device *dev)
1422 {
1423 	struct device_driver *drv;
1424 
1425 	/* dev->driver can change to NULL underneath us because of unbinding,
1426 	 * so be careful about accessing it.  dev->bus and dev->class should
1427 	 * never change once they are set, so they don't need special care.
1428 	 */
1429 	drv = READ_ONCE(dev->driver);
1430 	return drv ? drv->name :
1431 			(dev->bus ? dev->bus->name :
1432 			(dev->class ? dev->class->name : ""));
1433 }
1434 EXPORT_SYMBOL(dev_driver_string);
1435 
1436 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1437 
1438 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1439 			     char *buf)
1440 {
1441 	struct device_attribute *dev_attr = to_dev_attr(attr);
1442 	struct device *dev = kobj_to_dev(kobj);
1443 	ssize_t ret = -EIO;
1444 
1445 	if (dev_attr->show)
1446 		ret = dev_attr->show(dev, dev_attr, buf);
1447 	if (ret >= (ssize_t)PAGE_SIZE) {
1448 		printk("dev_attr_show: %pS returned bad count\n",
1449 				dev_attr->show);
1450 	}
1451 	return ret;
1452 }
1453 
1454 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1455 			      const char *buf, size_t count)
1456 {
1457 	struct device_attribute *dev_attr = to_dev_attr(attr);
1458 	struct device *dev = kobj_to_dev(kobj);
1459 	ssize_t ret = -EIO;
1460 
1461 	if (dev_attr->store)
1462 		ret = dev_attr->store(dev, dev_attr, buf, count);
1463 	return ret;
1464 }
1465 
1466 static const struct sysfs_ops dev_sysfs_ops = {
1467 	.show	= dev_attr_show,
1468 	.store	= dev_attr_store,
1469 };
1470 
1471 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1472 
1473 ssize_t device_store_ulong(struct device *dev,
1474 			   struct device_attribute *attr,
1475 			   const char *buf, size_t size)
1476 {
1477 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1478 	int ret;
1479 	unsigned long new;
1480 
1481 	ret = kstrtoul(buf, 0, &new);
1482 	if (ret)
1483 		return ret;
1484 	*(unsigned long *)(ea->var) = new;
1485 	/* Always return full write size even if we didn't consume all */
1486 	return size;
1487 }
1488 EXPORT_SYMBOL_GPL(device_store_ulong);
1489 
1490 ssize_t device_show_ulong(struct device *dev,
1491 			  struct device_attribute *attr,
1492 			  char *buf)
1493 {
1494 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1495 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1496 }
1497 EXPORT_SYMBOL_GPL(device_show_ulong);
1498 
1499 ssize_t device_store_int(struct device *dev,
1500 			 struct device_attribute *attr,
1501 			 const char *buf, size_t size)
1502 {
1503 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1504 	int ret;
1505 	long new;
1506 
1507 	ret = kstrtol(buf, 0, &new);
1508 	if (ret)
1509 		return ret;
1510 
1511 	if (new > INT_MAX || new < INT_MIN)
1512 		return -EINVAL;
1513 	*(int *)(ea->var) = new;
1514 	/* Always return full write size even if we didn't consume all */
1515 	return size;
1516 }
1517 EXPORT_SYMBOL_GPL(device_store_int);
1518 
1519 ssize_t device_show_int(struct device *dev,
1520 			struct device_attribute *attr,
1521 			char *buf)
1522 {
1523 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1524 
1525 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1526 }
1527 EXPORT_SYMBOL_GPL(device_show_int);
1528 
1529 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1530 			  const char *buf, size_t size)
1531 {
1532 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1533 
1534 	if (strtobool(buf, ea->var) < 0)
1535 		return -EINVAL;
1536 
1537 	return size;
1538 }
1539 EXPORT_SYMBOL_GPL(device_store_bool);
1540 
1541 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1542 			 char *buf)
1543 {
1544 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1545 
1546 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1547 }
1548 EXPORT_SYMBOL_GPL(device_show_bool);
1549 
1550 /**
1551  * device_release - free device structure.
1552  * @kobj: device's kobject.
1553  *
1554  * This is called once the reference count for the object
1555  * reaches 0. We forward the call to the device's release
1556  * method, which should handle actually freeing the structure.
1557  */
1558 static void device_release(struct kobject *kobj)
1559 {
1560 	struct device *dev = kobj_to_dev(kobj);
1561 	struct device_private *p = dev->p;
1562 
1563 	/*
1564 	 * Some platform devices are driven without driver attached
1565 	 * and managed resources may have been acquired.  Make sure
1566 	 * all resources are released.
1567 	 *
1568 	 * Drivers still can add resources into device after device
1569 	 * is deleted but alive, so release devres here to avoid
1570 	 * possible memory leak.
1571 	 */
1572 	devres_release_all(dev);
1573 
1574 	if (dev->release)
1575 		dev->release(dev);
1576 	else if (dev->type && dev->type->release)
1577 		dev->type->release(dev);
1578 	else if (dev->class && dev->class->dev_release)
1579 		dev->class->dev_release(dev);
1580 	else
1581 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
1582 			dev_name(dev));
1583 	kfree(p);
1584 }
1585 
1586 static const void *device_namespace(struct kobject *kobj)
1587 {
1588 	struct device *dev = kobj_to_dev(kobj);
1589 	const void *ns = NULL;
1590 
1591 	if (dev->class && dev->class->ns_type)
1592 		ns = dev->class->namespace(dev);
1593 
1594 	return ns;
1595 }
1596 
1597 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1598 {
1599 	struct device *dev = kobj_to_dev(kobj);
1600 
1601 	if (dev->class && dev->class->get_ownership)
1602 		dev->class->get_ownership(dev, uid, gid);
1603 }
1604 
1605 static struct kobj_type device_ktype = {
1606 	.release	= device_release,
1607 	.sysfs_ops	= &dev_sysfs_ops,
1608 	.namespace	= device_namespace,
1609 	.get_ownership	= device_get_ownership,
1610 };
1611 
1612 
1613 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1614 {
1615 	struct kobj_type *ktype = get_ktype(kobj);
1616 
1617 	if (ktype == &device_ktype) {
1618 		struct device *dev = kobj_to_dev(kobj);
1619 		if (dev->bus)
1620 			return 1;
1621 		if (dev->class)
1622 			return 1;
1623 	}
1624 	return 0;
1625 }
1626 
1627 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1628 {
1629 	struct device *dev = kobj_to_dev(kobj);
1630 
1631 	if (dev->bus)
1632 		return dev->bus->name;
1633 	if (dev->class)
1634 		return dev->class->name;
1635 	return NULL;
1636 }
1637 
1638 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1639 		      struct kobj_uevent_env *env)
1640 {
1641 	struct device *dev = kobj_to_dev(kobj);
1642 	int retval = 0;
1643 
1644 	/* add device node properties if present */
1645 	if (MAJOR(dev->devt)) {
1646 		const char *tmp;
1647 		const char *name;
1648 		umode_t mode = 0;
1649 		kuid_t uid = GLOBAL_ROOT_UID;
1650 		kgid_t gid = GLOBAL_ROOT_GID;
1651 
1652 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1653 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1654 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1655 		if (name) {
1656 			add_uevent_var(env, "DEVNAME=%s", name);
1657 			if (mode)
1658 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1659 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1660 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1661 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1662 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1663 			kfree(tmp);
1664 		}
1665 	}
1666 
1667 	if (dev->type && dev->type->name)
1668 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1669 
1670 	if (dev->driver)
1671 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1672 
1673 	/* Add common DT information about the device */
1674 	of_device_uevent(dev, env);
1675 
1676 	/* have the bus specific function add its stuff */
1677 	if (dev->bus && dev->bus->uevent) {
1678 		retval = dev->bus->uevent(dev, env);
1679 		if (retval)
1680 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1681 				 dev_name(dev), __func__, retval);
1682 	}
1683 
1684 	/* have the class specific function add its stuff */
1685 	if (dev->class && dev->class->dev_uevent) {
1686 		retval = dev->class->dev_uevent(dev, env);
1687 		if (retval)
1688 			pr_debug("device: '%s': %s: class uevent() "
1689 				 "returned %d\n", dev_name(dev),
1690 				 __func__, retval);
1691 	}
1692 
1693 	/* have the device type specific function add its stuff */
1694 	if (dev->type && dev->type->uevent) {
1695 		retval = dev->type->uevent(dev, env);
1696 		if (retval)
1697 			pr_debug("device: '%s': %s: dev_type uevent() "
1698 				 "returned %d\n", dev_name(dev),
1699 				 __func__, retval);
1700 	}
1701 
1702 	return retval;
1703 }
1704 
1705 static const struct kset_uevent_ops device_uevent_ops = {
1706 	.filter =	dev_uevent_filter,
1707 	.name =		dev_uevent_name,
1708 	.uevent =	dev_uevent,
1709 };
1710 
1711 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1712 			   char *buf)
1713 {
1714 	struct kobject *top_kobj;
1715 	struct kset *kset;
1716 	struct kobj_uevent_env *env = NULL;
1717 	int i;
1718 	size_t count = 0;
1719 	int retval;
1720 
1721 	/* search the kset, the device belongs to */
1722 	top_kobj = &dev->kobj;
1723 	while (!top_kobj->kset && top_kobj->parent)
1724 		top_kobj = top_kobj->parent;
1725 	if (!top_kobj->kset)
1726 		goto out;
1727 
1728 	kset = top_kobj->kset;
1729 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1730 		goto out;
1731 
1732 	/* respect filter */
1733 	if (kset->uevent_ops && kset->uevent_ops->filter)
1734 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1735 			goto out;
1736 
1737 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1738 	if (!env)
1739 		return -ENOMEM;
1740 
1741 	/* let the kset specific function add its keys */
1742 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1743 	if (retval)
1744 		goto out;
1745 
1746 	/* copy keys to file */
1747 	for (i = 0; i < env->envp_idx; i++)
1748 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1749 out:
1750 	kfree(env);
1751 	return count;
1752 }
1753 
1754 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1755 			    const char *buf, size_t count)
1756 {
1757 	int rc;
1758 
1759 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
1760 
1761 	if (rc) {
1762 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1763 		return rc;
1764 	}
1765 
1766 	return count;
1767 }
1768 static DEVICE_ATTR_RW(uevent);
1769 
1770 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1771 			   char *buf)
1772 {
1773 	bool val;
1774 
1775 	device_lock(dev);
1776 	val = !dev->offline;
1777 	device_unlock(dev);
1778 	return sprintf(buf, "%u\n", val);
1779 }
1780 
1781 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1782 			    const char *buf, size_t count)
1783 {
1784 	bool val;
1785 	int ret;
1786 
1787 	ret = strtobool(buf, &val);
1788 	if (ret < 0)
1789 		return ret;
1790 
1791 	ret = lock_device_hotplug_sysfs();
1792 	if (ret)
1793 		return ret;
1794 
1795 	ret = val ? device_online(dev) : device_offline(dev);
1796 	unlock_device_hotplug();
1797 	return ret < 0 ? ret : count;
1798 }
1799 static DEVICE_ATTR_RW(online);
1800 
1801 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1802 {
1803 	return sysfs_create_groups(&dev->kobj, groups);
1804 }
1805 EXPORT_SYMBOL_GPL(device_add_groups);
1806 
1807 void device_remove_groups(struct device *dev,
1808 			  const struct attribute_group **groups)
1809 {
1810 	sysfs_remove_groups(&dev->kobj, groups);
1811 }
1812 EXPORT_SYMBOL_GPL(device_remove_groups);
1813 
1814 union device_attr_group_devres {
1815 	const struct attribute_group *group;
1816 	const struct attribute_group **groups;
1817 };
1818 
1819 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1820 {
1821 	return ((union device_attr_group_devres *)res)->group == data;
1822 }
1823 
1824 static void devm_attr_group_remove(struct device *dev, void *res)
1825 {
1826 	union device_attr_group_devres *devres = res;
1827 	const struct attribute_group *group = devres->group;
1828 
1829 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1830 	sysfs_remove_group(&dev->kobj, group);
1831 }
1832 
1833 static void devm_attr_groups_remove(struct device *dev, void *res)
1834 {
1835 	union device_attr_group_devres *devres = res;
1836 	const struct attribute_group **groups = devres->groups;
1837 
1838 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1839 	sysfs_remove_groups(&dev->kobj, groups);
1840 }
1841 
1842 /**
1843  * devm_device_add_group - given a device, create a managed attribute group
1844  * @dev:	The device to create the group for
1845  * @grp:	The attribute group to create
1846  *
1847  * This function creates a group for the first time.  It will explicitly
1848  * warn and error if any of the attribute files being created already exist.
1849  *
1850  * Returns 0 on success or error code on failure.
1851  */
1852 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1853 {
1854 	union device_attr_group_devres *devres;
1855 	int error;
1856 
1857 	devres = devres_alloc(devm_attr_group_remove,
1858 			      sizeof(*devres), GFP_KERNEL);
1859 	if (!devres)
1860 		return -ENOMEM;
1861 
1862 	error = sysfs_create_group(&dev->kobj, grp);
1863 	if (error) {
1864 		devres_free(devres);
1865 		return error;
1866 	}
1867 
1868 	devres->group = grp;
1869 	devres_add(dev, devres);
1870 	return 0;
1871 }
1872 EXPORT_SYMBOL_GPL(devm_device_add_group);
1873 
1874 /**
1875  * devm_device_remove_group: remove a managed group from a device
1876  * @dev:	device to remove the group from
1877  * @grp:	group to remove
1878  *
1879  * This function removes a group of attributes from a device. The attributes
1880  * previously have to have been created for this group, otherwise it will fail.
1881  */
1882 void devm_device_remove_group(struct device *dev,
1883 			      const struct attribute_group *grp)
1884 {
1885 	WARN_ON(devres_release(dev, devm_attr_group_remove,
1886 			       devm_attr_group_match,
1887 			       /* cast away const */ (void *)grp));
1888 }
1889 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1890 
1891 /**
1892  * devm_device_add_groups - create a bunch of managed attribute groups
1893  * @dev:	The device to create the group for
1894  * @groups:	The attribute groups to create, NULL terminated
1895  *
1896  * This function creates a bunch of managed attribute groups.  If an error
1897  * occurs when creating a group, all previously created groups will be
1898  * removed, unwinding everything back to the original state when this
1899  * function was called.  It will explicitly warn and error if any of the
1900  * attribute files being created already exist.
1901  *
1902  * Returns 0 on success or error code from sysfs_create_group on failure.
1903  */
1904 int devm_device_add_groups(struct device *dev,
1905 			   const struct attribute_group **groups)
1906 {
1907 	union device_attr_group_devres *devres;
1908 	int error;
1909 
1910 	devres = devres_alloc(devm_attr_groups_remove,
1911 			      sizeof(*devres), GFP_KERNEL);
1912 	if (!devres)
1913 		return -ENOMEM;
1914 
1915 	error = sysfs_create_groups(&dev->kobj, groups);
1916 	if (error) {
1917 		devres_free(devres);
1918 		return error;
1919 	}
1920 
1921 	devres->groups = groups;
1922 	devres_add(dev, devres);
1923 	return 0;
1924 }
1925 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1926 
1927 /**
1928  * devm_device_remove_groups - remove a list of managed groups
1929  *
1930  * @dev:	The device for the groups to be removed from
1931  * @groups:	NULL terminated list of groups to be removed
1932  *
1933  * If groups is not NULL, remove the specified groups from the device.
1934  */
1935 void devm_device_remove_groups(struct device *dev,
1936 			       const struct attribute_group **groups)
1937 {
1938 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1939 			       devm_attr_group_match,
1940 			       /* cast away const */ (void *)groups));
1941 }
1942 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1943 
1944 static int device_add_attrs(struct device *dev)
1945 {
1946 	struct class *class = dev->class;
1947 	const struct device_type *type = dev->type;
1948 	int error;
1949 
1950 	if (class) {
1951 		error = device_add_groups(dev, class->dev_groups);
1952 		if (error)
1953 			return error;
1954 	}
1955 
1956 	if (type) {
1957 		error = device_add_groups(dev, type->groups);
1958 		if (error)
1959 			goto err_remove_class_groups;
1960 	}
1961 
1962 	error = device_add_groups(dev, dev->groups);
1963 	if (error)
1964 		goto err_remove_type_groups;
1965 
1966 	if (device_supports_offline(dev) && !dev->offline_disabled) {
1967 		error = device_create_file(dev, &dev_attr_online);
1968 		if (error)
1969 			goto err_remove_dev_groups;
1970 	}
1971 
1972 	return 0;
1973 
1974  err_remove_dev_groups:
1975 	device_remove_groups(dev, dev->groups);
1976  err_remove_type_groups:
1977 	if (type)
1978 		device_remove_groups(dev, type->groups);
1979  err_remove_class_groups:
1980 	if (class)
1981 		device_remove_groups(dev, class->dev_groups);
1982 
1983 	return error;
1984 }
1985 
1986 static void device_remove_attrs(struct device *dev)
1987 {
1988 	struct class *class = dev->class;
1989 	const struct device_type *type = dev->type;
1990 
1991 	device_remove_file(dev, &dev_attr_online);
1992 	device_remove_groups(dev, dev->groups);
1993 
1994 	if (type)
1995 		device_remove_groups(dev, type->groups);
1996 
1997 	if (class)
1998 		device_remove_groups(dev, class->dev_groups);
1999 }
2000 
2001 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2002 			char *buf)
2003 {
2004 	return print_dev_t(buf, dev->devt);
2005 }
2006 static DEVICE_ATTR_RO(dev);
2007 
2008 /* /sys/devices/ */
2009 struct kset *devices_kset;
2010 
2011 /**
2012  * devices_kset_move_before - Move device in the devices_kset's list.
2013  * @deva: Device to move.
2014  * @devb: Device @deva should come before.
2015  */
2016 static void devices_kset_move_before(struct device *deva, struct device *devb)
2017 {
2018 	if (!devices_kset)
2019 		return;
2020 	pr_debug("devices_kset: Moving %s before %s\n",
2021 		 dev_name(deva), dev_name(devb));
2022 	spin_lock(&devices_kset->list_lock);
2023 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2024 	spin_unlock(&devices_kset->list_lock);
2025 }
2026 
2027 /**
2028  * devices_kset_move_after - Move device in the devices_kset's list.
2029  * @deva: Device to move
2030  * @devb: Device @deva should come after.
2031  */
2032 static void devices_kset_move_after(struct device *deva, struct device *devb)
2033 {
2034 	if (!devices_kset)
2035 		return;
2036 	pr_debug("devices_kset: Moving %s after %s\n",
2037 		 dev_name(deva), dev_name(devb));
2038 	spin_lock(&devices_kset->list_lock);
2039 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2040 	spin_unlock(&devices_kset->list_lock);
2041 }
2042 
2043 /**
2044  * devices_kset_move_last - move the device to the end of devices_kset's list.
2045  * @dev: device to move
2046  */
2047 void devices_kset_move_last(struct device *dev)
2048 {
2049 	if (!devices_kset)
2050 		return;
2051 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2052 	spin_lock(&devices_kset->list_lock);
2053 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2054 	spin_unlock(&devices_kset->list_lock);
2055 }
2056 
2057 /**
2058  * device_create_file - create sysfs attribute file for device.
2059  * @dev: device.
2060  * @attr: device attribute descriptor.
2061  */
2062 int device_create_file(struct device *dev,
2063 		       const struct device_attribute *attr)
2064 {
2065 	int error = 0;
2066 
2067 	if (dev) {
2068 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2069 			"Attribute %s: write permission without 'store'\n",
2070 			attr->attr.name);
2071 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2072 			"Attribute %s: read permission without 'show'\n",
2073 			attr->attr.name);
2074 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2075 	}
2076 
2077 	return error;
2078 }
2079 EXPORT_SYMBOL_GPL(device_create_file);
2080 
2081 /**
2082  * device_remove_file - remove sysfs attribute file.
2083  * @dev: device.
2084  * @attr: device attribute descriptor.
2085  */
2086 void device_remove_file(struct device *dev,
2087 			const struct device_attribute *attr)
2088 {
2089 	if (dev)
2090 		sysfs_remove_file(&dev->kobj, &attr->attr);
2091 }
2092 EXPORT_SYMBOL_GPL(device_remove_file);
2093 
2094 /**
2095  * device_remove_file_self - remove sysfs attribute file from its own method.
2096  * @dev: device.
2097  * @attr: device attribute descriptor.
2098  *
2099  * See kernfs_remove_self() for details.
2100  */
2101 bool device_remove_file_self(struct device *dev,
2102 			     const struct device_attribute *attr)
2103 {
2104 	if (dev)
2105 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2106 	else
2107 		return false;
2108 }
2109 EXPORT_SYMBOL_GPL(device_remove_file_self);
2110 
2111 /**
2112  * device_create_bin_file - create sysfs binary attribute file for device.
2113  * @dev: device.
2114  * @attr: device binary attribute descriptor.
2115  */
2116 int device_create_bin_file(struct device *dev,
2117 			   const struct bin_attribute *attr)
2118 {
2119 	int error = -EINVAL;
2120 	if (dev)
2121 		error = sysfs_create_bin_file(&dev->kobj, attr);
2122 	return error;
2123 }
2124 EXPORT_SYMBOL_GPL(device_create_bin_file);
2125 
2126 /**
2127  * device_remove_bin_file - remove sysfs binary attribute file
2128  * @dev: device.
2129  * @attr: device binary attribute descriptor.
2130  */
2131 void device_remove_bin_file(struct device *dev,
2132 			    const struct bin_attribute *attr)
2133 {
2134 	if (dev)
2135 		sysfs_remove_bin_file(&dev->kobj, attr);
2136 }
2137 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2138 
2139 static void klist_children_get(struct klist_node *n)
2140 {
2141 	struct device_private *p = to_device_private_parent(n);
2142 	struct device *dev = p->device;
2143 
2144 	get_device(dev);
2145 }
2146 
2147 static void klist_children_put(struct klist_node *n)
2148 {
2149 	struct device_private *p = to_device_private_parent(n);
2150 	struct device *dev = p->device;
2151 
2152 	put_device(dev);
2153 }
2154 
2155 /**
2156  * device_initialize - init device structure.
2157  * @dev: device.
2158  *
2159  * This prepares the device for use by other layers by initializing
2160  * its fields.
2161  * It is the first half of device_register(), if called by
2162  * that function, though it can also be called separately, so one
2163  * may use @dev's fields. In particular, get_device()/put_device()
2164  * may be used for reference counting of @dev after calling this
2165  * function.
2166  *
2167  * All fields in @dev must be initialized by the caller to 0, except
2168  * for those explicitly set to some other value.  The simplest
2169  * approach is to use kzalloc() to allocate the structure containing
2170  * @dev.
2171  *
2172  * NOTE: Use put_device() to give up your reference instead of freeing
2173  * @dev directly once you have called this function.
2174  */
2175 void device_initialize(struct device *dev)
2176 {
2177 	dev->kobj.kset = devices_kset;
2178 	kobject_init(&dev->kobj, &device_ktype);
2179 	INIT_LIST_HEAD(&dev->dma_pools);
2180 	mutex_init(&dev->mutex);
2181 #ifdef CONFIG_PROVE_LOCKING
2182 	mutex_init(&dev->lockdep_mutex);
2183 #endif
2184 	lockdep_set_novalidate_class(&dev->mutex);
2185 	spin_lock_init(&dev->devres_lock);
2186 	INIT_LIST_HEAD(&dev->devres_head);
2187 	device_pm_init(dev);
2188 	set_dev_node(dev, -1);
2189 #ifdef CONFIG_GENERIC_MSI_IRQ
2190 	INIT_LIST_HEAD(&dev->msi_list);
2191 #endif
2192 	INIT_LIST_HEAD(&dev->links.consumers);
2193 	INIT_LIST_HEAD(&dev->links.suppliers);
2194 	INIT_LIST_HEAD(&dev->links.needs_suppliers);
2195 	INIT_LIST_HEAD(&dev->links.defer_hook);
2196 	dev->links.status = DL_DEV_NO_DRIVER;
2197 }
2198 EXPORT_SYMBOL_GPL(device_initialize);
2199 
2200 struct kobject *virtual_device_parent(struct device *dev)
2201 {
2202 	static struct kobject *virtual_dir = NULL;
2203 
2204 	if (!virtual_dir)
2205 		virtual_dir = kobject_create_and_add("virtual",
2206 						     &devices_kset->kobj);
2207 
2208 	return virtual_dir;
2209 }
2210 
2211 struct class_dir {
2212 	struct kobject kobj;
2213 	struct class *class;
2214 };
2215 
2216 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2217 
2218 static void class_dir_release(struct kobject *kobj)
2219 {
2220 	struct class_dir *dir = to_class_dir(kobj);
2221 	kfree(dir);
2222 }
2223 
2224 static const
2225 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2226 {
2227 	struct class_dir *dir = to_class_dir(kobj);
2228 	return dir->class->ns_type;
2229 }
2230 
2231 static struct kobj_type class_dir_ktype = {
2232 	.release	= class_dir_release,
2233 	.sysfs_ops	= &kobj_sysfs_ops,
2234 	.child_ns_type	= class_dir_child_ns_type
2235 };
2236 
2237 static struct kobject *
2238 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2239 {
2240 	struct class_dir *dir;
2241 	int retval;
2242 
2243 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2244 	if (!dir)
2245 		return ERR_PTR(-ENOMEM);
2246 
2247 	dir->class = class;
2248 	kobject_init(&dir->kobj, &class_dir_ktype);
2249 
2250 	dir->kobj.kset = &class->p->glue_dirs;
2251 
2252 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2253 	if (retval < 0) {
2254 		kobject_put(&dir->kobj);
2255 		return ERR_PTR(retval);
2256 	}
2257 	return &dir->kobj;
2258 }
2259 
2260 static DEFINE_MUTEX(gdp_mutex);
2261 
2262 static struct kobject *get_device_parent(struct device *dev,
2263 					 struct device *parent)
2264 {
2265 	if (dev->class) {
2266 		struct kobject *kobj = NULL;
2267 		struct kobject *parent_kobj;
2268 		struct kobject *k;
2269 
2270 #ifdef CONFIG_BLOCK
2271 		/* block disks show up in /sys/block */
2272 		if (sysfs_deprecated && dev->class == &block_class) {
2273 			if (parent && parent->class == &block_class)
2274 				return &parent->kobj;
2275 			return &block_class.p->subsys.kobj;
2276 		}
2277 #endif
2278 
2279 		/*
2280 		 * If we have no parent, we live in "virtual".
2281 		 * Class-devices with a non class-device as parent, live
2282 		 * in a "glue" directory to prevent namespace collisions.
2283 		 */
2284 		if (parent == NULL)
2285 			parent_kobj = virtual_device_parent(dev);
2286 		else if (parent->class && !dev->class->ns_type)
2287 			return &parent->kobj;
2288 		else
2289 			parent_kobj = &parent->kobj;
2290 
2291 		mutex_lock(&gdp_mutex);
2292 
2293 		/* find our class-directory at the parent and reference it */
2294 		spin_lock(&dev->class->p->glue_dirs.list_lock);
2295 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2296 			if (k->parent == parent_kobj) {
2297 				kobj = kobject_get(k);
2298 				break;
2299 			}
2300 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2301 		if (kobj) {
2302 			mutex_unlock(&gdp_mutex);
2303 			return kobj;
2304 		}
2305 
2306 		/* or create a new class-directory at the parent device */
2307 		k = class_dir_create_and_add(dev->class, parent_kobj);
2308 		/* do not emit an uevent for this simple "glue" directory */
2309 		mutex_unlock(&gdp_mutex);
2310 		return k;
2311 	}
2312 
2313 	/* subsystems can specify a default root directory for their devices */
2314 	if (!parent && dev->bus && dev->bus->dev_root)
2315 		return &dev->bus->dev_root->kobj;
2316 
2317 	if (parent)
2318 		return &parent->kobj;
2319 	return NULL;
2320 }
2321 
2322 static inline bool live_in_glue_dir(struct kobject *kobj,
2323 				    struct device *dev)
2324 {
2325 	if (!kobj || !dev->class ||
2326 	    kobj->kset != &dev->class->p->glue_dirs)
2327 		return false;
2328 	return true;
2329 }
2330 
2331 static inline struct kobject *get_glue_dir(struct device *dev)
2332 {
2333 	return dev->kobj.parent;
2334 }
2335 
2336 /*
2337  * make sure cleaning up dir as the last step, we need to make
2338  * sure .release handler of kobject is run with holding the
2339  * global lock
2340  */
2341 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2342 {
2343 	unsigned int ref;
2344 
2345 	/* see if we live in a "glue" directory */
2346 	if (!live_in_glue_dir(glue_dir, dev))
2347 		return;
2348 
2349 	mutex_lock(&gdp_mutex);
2350 	/**
2351 	 * There is a race condition between removing glue directory
2352 	 * and adding a new device under the glue directory.
2353 	 *
2354 	 * CPU1:                                         CPU2:
2355 	 *
2356 	 * device_add()
2357 	 *   get_device_parent()
2358 	 *     class_dir_create_and_add()
2359 	 *       kobject_add_internal()
2360 	 *         create_dir()    // create glue_dir
2361 	 *
2362 	 *                                               device_add()
2363 	 *                                                 get_device_parent()
2364 	 *                                                   kobject_get() // get glue_dir
2365 	 *
2366 	 * device_del()
2367 	 *   cleanup_glue_dir()
2368 	 *     kobject_del(glue_dir)
2369 	 *
2370 	 *                                               kobject_add()
2371 	 *                                                 kobject_add_internal()
2372 	 *                                                   create_dir() // in glue_dir
2373 	 *                                                     sysfs_create_dir_ns()
2374 	 *                                                       kernfs_create_dir_ns(sd)
2375 	 *
2376 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
2377 	 *       sysfs_put()        // free glue_dir->sd
2378 	 *
2379 	 *                                                         // sd is freed
2380 	 *                                                         kernfs_new_node(sd)
2381 	 *                                                           kernfs_get(glue_dir)
2382 	 *                                                           kernfs_add_one()
2383 	 *                                                           kernfs_put()
2384 	 *
2385 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
2386 	 * a new device under glue dir, the glue_dir kobject reference count
2387 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2388 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2389 	 * and sysfs_put(). This result in glue_dir->sd is freed.
2390 	 *
2391 	 * Then the CPU2 will see a stale "empty" but still potentially used
2392 	 * glue dir around in kernfs_new_node().
2393 	 *
2394 	 * In order to avoid this happening, we also should make sure that
2395 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
2396 	 * for glue_dir kobj is 1.
2397 	 */
2398 	ref = kref_read(&glue_dir->kref);
2399 	if (!kobject_has_children(glue_dir) && !--ref)
2400 		kobject_del(glue_dir);
2401 	kobject_put(glue_dir);
2402 	mutex_unlock(&gdp_mutex);
2403 }
2404 
2405 static int device_add_class_symlinks(struct device *dev)
2406 {
2407 	struct device_node *of_node = dev_of_node(dev);
2408 	int error;
2409 
2410 	if (of_node) {
2411 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2412 		if (error)
2413 			dev_warn(dev, "Error %d creating of_node link\n",error);
2414 		/* An error here doesn't warrant bringing down the device */
2415 	}
2416 
2417 	if (!dev->class)
2418 		return 0;
2419 
2420 	error = sysfs_create_link(&dev->kobj,
2421 				  &dev->class->p->subsys.kobj,
2422 				  "subsystem");
2423 	if (error)
2424 		goto out_devnode;
2425 
2426 	if (dev->parent && device_is_not_partition(dev)) {
2427 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2428 					  "device");
2429 		if (error)
2430 			goto out_subsys;
2431 	}
2432 
2433 #ifdef CONFIG_BLOCK
2434 	/* /sys/block has directories and does not need symlinks */
2435 	if (sysfs_deprecated && dev->class == &block_class)
2436 		return 0;
2437 #endif
2438 
2439 	/* link in the class directory pointing to the device */
2440 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
2441 				  &dev->kobj, dev_name(dev));
2442 	if (error)
2443 		goto out_device;
2444 
2445 	return 0;
2446 
2447 out_device:
2448 	sysfs_remove_link(&dev->kobj, "device");
2449 
2450 out_subsys:
2451 	sysfs_remove_link(&dev->kobj, "subsystem");
2452 out_devnode:
2453 	sysfs_remove_link(&dev->kobj, "of_node");
2454 	return error;
2455 }
2456 
2457 static void device_remove_class_symlinks(struct device *dev)
2458 {
2459 	if (dev_of_node(dev))
2460 		sysfs_remove_link(&dev->kobj, "of_node");
2461 
2462 	if (!dev->class)
2463 		return;
2464 
2465 	if (dev->parent && device_is_not_partition(dev))
2466 		sysfs_remove_link(&dev->kobj, "device");
2467 	sysfs_remove_link(&dev->kobj, "subsystem");
2468 #ifdef CONFIG_BLOCK
2469 	if (sysfs_deprecated && dev->class == &block_class)
2470 		return;
2471 #endif
2472 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2473 }
2474 
2475 /**
2476  * dev_set_name - set a device name
2477  * @dev: device
2478  * @fmt: format string for the device's name
2479  */
2480 int dev_set_name(struct device *dev, const char *fmt, ...)
2481 {
2482 	va_list vargs;
2483 	int err;
2484 
2485 	va_start(vargs, fmt);
2486 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2487 	va_end(vargs);
2488 	return err;
2489 }
2490 EXPORT_SYMBOL_GPL(dev_set_name);
2491 
2492 /**
2493  * device_to_dev_kobj - select a /sys/dev/ directory for the device
2494  * @dev: device
2495  *
2496  * By default we select char/ for new entries.  Setting class->dev_obj
2497  * to NULL prevents an entry from being created.  class->dev_kobj must
2498  * be set (or cleared) before any devices are registered to the class
2499  * otherwise device_create_sys_dev_entry() and
2500  * device_remove_sys_dev_entry() will disagree about the presence of
2501  * the link.
2502  */
2503 static struct kobject *device_to_dev_kobj(struct device *dev)
2504 {
2505 	struct kobject *kobj;
2506 
2507 	if (dev->class)
2508 		kobj = dev->class->dev_kobj;
2509 	else
2510 		kobj = sysfs_dev_char_kobj;
2511 
2512 	return kobj;
2513 }
2514 
2515 static int device_create_sys_dev_entry(struct device *dev)
2516 {
2517 	struct kobject *kobj = device_to_dev_kobj(dev);
2518 	int error = 0;
2519 	char devt_str[15];
2520 
2521 	if (kobj) {
2522 		format_dev_t(devt_str, dev->devt);
2523 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2524 	}
2525 
2526 	return error;
2527 }
2528 
2529 static void device_remove_sys_dev_entry(struct device *dev)
2530 {
2531 	struct kobject *kobj = device_to_dev_kobj(dev);
2532 	char devt_str[15];
2533 
2534 	if (kobj) {
2535 		format_dev_t(devt_str, dev->devt);
2536 		sysfs_remove_link(kobj, devt_str);
2537 	}
2538 }
2539 
2540 static int device_private_init(struct device *dev)
2541 {
2542 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2543 	if (!dev->p)
2544 		return -ENOMEM;
2545 	dev->p->device = dev;
2546 	klist_init(&dev->p->klist_children, klist_children_get,
2547 		   klist_children_put);
2548 	INIT_LIST_HEAD(&dev->p->deferred_probe);
2549 	return 0;
2550 }
2551 
2552 /**
2553  * device_add - add device to device hierarchy.
2554  * @dev: device.
2555  *
2556  * This is part 2 of device_register(), though may be called
2557  * separately _iff_ device_initialize() has been called separately.
2558  *
2559  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2560  * to the global and sibling lists for the device, then
2561  * adds it to the other relevant subsystems of the driver model.
2562  *
2563  * Do not call this routine or device_register() more than once for
2564  * any device structure.  The driver model core is not designed to work
2565  * with devices that get unregistered and then spring back to life.
2566  * (Among other things, it's very hard to guarantee that all references
2567  * to the previous incarnation of @dev have been dropped.)  Allocate
2568  * and register a fresh new struct device instead.
2569  *
2570  * NOTE: _Never_ directly free @dev after calling this function, even
2571  * if it returned an error! Always use put_device() to give up your
2572  * reference instead.
2573  *
2574  * Rule of thumb is: if device_add() succeeds, you should call
2575  * device_del() when you want to get rid of it. If device_add() has
2576  * *not* succeeded, use *only* put_device() to drop the reference
2577  * count.
2578  */
2579 int device_add(struct device *dev)
2580 {
2581 	struct device *parent;
2582 	struct kobject *kobj;
2583 	struct class_interface *class_intf;
2584 	int error = -EINVAL;
2585 	struct kobject *glue_dir = NULL;
2586 
2587 	dev = get_device(dev);
2588 	if (!dev)
2589 		goto done;
2590 
2591 	if (!dev->p) {
2592 		error = device_private_init(dev);
2593 		if (error)
2594 			goto done;
2595 	}
2596 
2597 	/*
2598 	 * for statically allocated devices, which should all be converted
2599 	 * some day, we need to initialize the name. We prevent reading back
2600 	 * the name, and force the use of dev_name()
2601 	 */
2602 	if (dev->init_name) {
2603 		dev_set_name(dev, "%s", dev->init_name);
2604 		dev->init_name = NULL;
2605 	}
2606 
2607 	/* subsystems can specify simple device enumeration */
2608 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2609 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2610 
2611 	if (!dev_name(dev)) {
2612 		error = -EINVAL;
2613 		goto name_error;
2614 	}
2615 
2616 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2617 
2618 	parent = get_device(dev->parent);
2619 	kobj = get_device_parent(dev, parent);
2620 	if (IS_ERR(kobj)) {
2621 		error = PTR_ERR(kobj);
2622 		goto parent_error;
2623 	}
2624 	if (kobj)
2625 		dev->kobj.parent = kobj;
2626 
2627 	/* use parent numa_node */
2628 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2629 		set_dev_node(dev, dev_to_node(parent));
2630 
2631 	/* first, register with generic layer. */
2632 	/* we require the name to be set before, and pass NULL */
2633 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2634 	if (error) {
2635 		glue_dir = get_glue_dir(dev);
2636 		goto Error;
2637 	}
2638 
2639 	/* notify platform of device entry */
2640 	error = device_platform_notify(dev, KOBJ_ADD);
2641 	if (error)
2642 		goto platform_error;
2643 
2644 	error = device_create_file(dev, &dev_attr_uevent);
2645 	if (error)
2646 		goto attrError;
2647 
2648 	error = device_add_class_symlinks(dev);
2649 	if (error)
2650 		goto SymlinkError;
2651 	error = device_add_attrs(dev);
2652 	if (error)
2653 		goto AttrsError;
2654 	error = bus_add_device(dev);
2655 	if (error)
2656 		goto BusError;
2657 	error = dpm_sysfs_add(dev);
2658 	if (error)
2659 		goto DPMError;
2660 	device_pm_add(dev);
2661 
2662 	if (MAJOR(dev->devt)) {
2663 		error = device_create_file(dev, &dev_attr_dev);
2664 		if (error)
2665 			goto DevAttrError;
2666 
2667 		error = device_create_sys_dev_entry(dev);
2668 		if (error)
2669 			goto SysEntryError;
2670 
2671 		devtmpfs_create_node(dev);
2672 	}
2673 
2674 	/* Notify clients of device addition.  This call must come
2675 	 * after dpm_sysfs_add() and before kobject_uevent().
2676 	 */
2677 	if (dev->bus)
2678 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2679 					     BUS_NOTIFY_ADD_DEVICE, dev);
2680 
2681 	kobject_uevent(&dev->kobj, KOBJ_ADD);
2682 
2683 	/*
2684 	 * Check if any of the other devices (consumers) have been waiting for
2685 	 * this device (supplier) to be added so that they can create a device
2686 	 * link to it.
2687 	 *
2688 	 * This needs to happen after device_pm_add() because device_link_add()
2689 	 * requires the supplier be registered before it's called.
2690 	 *
2691 	 * But this also needs to happen before bus_probe_device() to make sure
2692 	 * waiting consumers can link to it before the driver is bound to the
2693 	 * device and the driver sync_state callback is called for this device.
2694 	 */
2695 	if (dev->fwnode && !dev->fwnode->dev) {
2696 		dev->fwnode->dev = dev;
2697 		fw_devlink_link_device(dev);
2698 	}
2699 
2700 	bus_probe_device(dev);
2701 	if (parent)
2702 		klist_add_tail(&dev->p->knode_parent,
2703 			       &parent->p->klist_children);
2704 
2705 	if (dev->class) {
2706 		mutex_lock(&dev->class->p->mutex);
2707 		/* tie the class to the device */
2708 		klist_add_tail(&dev->p->knode_class,
2709 			       &dev->class->p->klist_devices);
2710 
2711 		/* notify any interfaces that the device is here */
2712 		list_for_each_entry(class_intf,
2713 				    &dev->class->p->interfaces, node)
2714 			if (class_intf->add_dev)
2715 				class_intf->add_dev(dev, class_intf);
2716 		mutex_unlock(&dev->class->p->mutex);
2717 	}
2718 done:
2719 	put_device(dev);
2720 	return error;
2721  SysEntryError:
2722 	if (MAJOR(dev->devt))
2723 		device_remove_file(dev, &dev_attr_dev);
2724  DevAttrError:
2725 	device_pm_remove(dev);
2726 	dpm_sysfs_remove(dev);
2727  DPMError:
2728 	bus_remove_device(dev);
2729  BusError:
2730 	device_remove_attrs(dev);
2731  AttrsError:
2732 	device_remove_class_symlinks(dev);
2733  SymlinkError:
2734 	device_remove_file(dev, &dev_attr_uevent);
2735  attrError:
2736 	device_platform_notify(dev, KOBJ_REMOVE);
2737 platform_error:
2738 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2739 	glue_dir = get_glue_dir(dev);
2740 	kobject_del(&dev->kobj);
2741  Error:
2742 	cleanup_glue_dir(dev, glue_dir);
2743 parent_error:
2744 	put_device(parent);
2745 name_error:
2746 	kfree(dev->p);
2747 	dev->p = NULL;
2748 	goto done;
2749 }
2750 EXPORT_SYMBOL_GPL(device_add);
2751 
2752 /**
2753  * device_register - register a device with the system.
2754  * @dev: pointer to the device structure
2755  *
2756  * This happens in two clean steps - initialize the device
2757  * and add it to the system. The two steps can be called
2758  * separately, but this is the easiest and most common.
2759  * I.e. you should only call the two helpers separately if
2760  * have a clearly defined need to use and refcount the device
2761  * before it is added to the hierarchy.
2762  *
2763  * For more information, see the kerneldoc for device_initialize()
2764  * and device_add().
2765  *
2766  * NOTE: _Never_ directly free @dev after calling this function, even
2767  * if it returned an error! Always use put_device() to give up the
2768  * reference initialized in this function instead.
2769  */
2770 int device_register(struct device *dev)
2771 {
2772 	device_initialize(dev);
2773 	return device_add(dev);
2774 }
2775 EXPORT_SYMBOL_GPL(device_register);
2776 
2777 /**
2778  * get_device - increment reference count for device.
2779  * @dev: device.
2780  *
2781  * This simply forwards the call to kobject_get(), though
2782  * we do take care to provide for the case that we get a NULL
2783  * pointer passed in.
2784  */
2785 struct device *get_device(struct device *dev)
2786 {
2787 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2788 }
2789 EXPORT_SYMBOL_GPL(get_device);
2790 
2791 /**
2792  * put_device - decrement reference count.
2793  * @dev: device in question.
2794  */
2795 void put_device(struct device *dev)
2796 {
2797 	/* might_sleep(); */
2798 	if (dev)
2799 		kobject_put(&dev->kobj);
2800 }
2801 EXPORT_SYMBOL_GPL(put_device);
2802 
2803 bool kill_device(struct device *dev)
2804 {
2805 	/*
2806 	 * Require the device lock and set the "dead" flag to guarantee that
2807 	 * the update behavior is consistent with the other bitfields near
2808 	 * it and that we cannot have an asynchronous probe routine trying
2809 	 * to run while we are tearing out the bus/class/sysfs from
2810 	 * underneath the device.
2811 	 */
2812 	lockdep_assert_held(&dev->mutex);
2813 
2814 	if (dev->p->dead)
2815 		return false;
2816 	dev->p->dead = true;
2817 	return true;
2818 }
2819 EXPORT_SYMBOL_GPL(kill_device);
2820 
2821 /**
2822  * device_del - delete device from system.
2823  * @dev: device.
2824  *
2825  * This is the first part of the device unregistration
2826  * sequence. This removes the device from the lists we control
2827  * from here, has it removed from the other driver model
2828  * subsystems it was added to in device_add(), and removes it
2829  * from the kobject hierarchy.
2830  *
2831  * NOTE: this should be called manually _iff_ device_add() was
2832  * also called manually.
2833  */
2834 void device_del(struct device *dev)
2835 {
2836 	struct device *parent = dev->parent;
2837 	struct kobject *glue_dir = NULL;
2838 	struct class_interface *class_intf;
2839 
2840 	device_lock(dev);
2841 	kill_device(dev);
2842 	device_unlock(dev);
2843 
2844 	if (dev->fwnode && dev->fwnode->dev == dev)
2845 		dev->fwnode->dev = NULL;
2846 
2847 	/* Notify clients of device removal.  This call must come
2848 	 * before dpm_sysfs_remove().
2849 	 */
2850 	if (dev->bus)
2851 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2852 					     BUS_NOTIFY_DEL_DEVICE, dev);
2853 
2854 	dpm_sysfs_remove(dev);
2855 	if (parent)
2856 		klist_del(&dev->p->knode_parent);
2857 	if (MAJOR(dev->devt)) {
2858 		devtmpfs_delete_node(dev);
2859 		device_remove_sys_dev_entry(dev);
2860 		device_remove_file(dev, &dev_attr_dev);
2861 	}
2862 	if (dev->class) {
2863 		device_remove_class_symlinks(dev);
2864 
2865 		mutex_lock(&dev->class->p->mutex);
2866 		/* notify any interfaces that the device is now gone */
2867 		list_for_each_entry(class_intf,
2868 				    &dev->class->p->interfaces, node)
2869 			if (class_intf->remove_dev)
2870 				class_intf->remove_dev(dev, class_intf);
2871 		/* remove the device from the class list */
2872 		klist_del(&dev->p->knode_class);
2873 		mutex_unlock(&dev->class->p->mutex);
2874 	}
2875 	device_remove_file(dev, &dev_attr_uevent);
2876 	device_remove_attrs(dev);
2877 	bus_remove_device(dev);
2878 	device_pm_remove(dev);
2879 	driver_deferred_probe_del(dev);
2880 	device_platform_notify(dev, KOBJ_REMOVE);
2881 	device_remove_properties(dev);
2882 	device_links_purge(dev);
2883 
2884 	if (dev->bus)
2885 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2886 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
2887 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2888 	glue_dir = get_glue_dir(dev);
2889 	kobject_del(&dev->kobj);
2890 	cleanup_glue_dir(dev, glue_dir);
2891 	put_device(parent);
2892 }
2893 EXPORT_SYMBOL_GPL(device_del);
2894 
2895 /**
2896  * device_unregister - unregister device from system.
2897  * @dev: device going away.
2898  *
2899  * We do this in two parts, like we do device_register(). First,
2900  * we remove it from all the subsystems with device_del(), then
2901  * we decrement the reference count via put_device(). If that
2902  * is the final reference count, the device will be cleaned up
2903  * via device_release() above. Otherwise, the structure will
2904  * stick around until the final reference to the device is dropped.
2905  */
2906 void device_unregister(struct device *dev)
2907 {
2908 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2909 	device_del(dev);
2910 	put_device(dev);
2911 }
2912 EXPORT_SYMBOL_GPL(device_unregister);
2913 
2914 static struct device *prev_device(struct klist_iter *i)
2915 {
2916 	struct klist_node *n = klist_prev(i);
2917 	struct device *dev = NULL;
2918 	struct device_private *p;
2919 
2920 	if (n) {
2921 		p = to_device_private_parent(n);
2922 		dev = p->device;
2923 	}
2924 	return dev;
2925 }
2926 
2927 static struct device *next_device(struct klist_iter *i)
2928 {
2929 	struct klist_node *n = klist_next(i);
2930 	struct device *dev = NULL;
2931 	struct device_private *p;
2932 
2933 	if (n) {
2934 		p = to_device_private_parent(n);
2935 		dev = p->device;
2936 	}
2937 	return dev;
2938 }
2939 
2940 /**
2941  * device_get_devnode - path of device node file
2942  * @dev: device
2943  * @mode: returned file access mode
2944  * @uid: returned file owner
2945  * @gid: returned file group
2946  * @tmp: possibly allocated string
2947  *
2948  * Return the relative path of a possible device node.
2949  * Non-default names may need to allocate a memory to compose
2950  * a name. This memory is returned in tmp and needs to be
2951  * freed by the caller.
2952  */
2953 const char *device_get_devnode(struct device *dev,
2954 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2955 			       const char **tmp)
2956 {
2957 	char *s;
2958 
2959 	*tmp = NULL;
2960 
2961 	/* the device type may provide a specific name */
2962 	if (dev->type && dev->type->devnode)
2963 		*tmp = dev->type->devnode(dev, mode, uid, gid);
2964 	if (*tmp)
2965 		return *tmp;
2966 
2967 	/* the class may provide a specific name */
2968 	if (dev->class && dev->class->devnode)
2969 		*tmp = dev->class->devnode(dev, mode);
2970 	if (*tmp)
2971 		return *tmp;
2972 
2973 	/* return name without allocation, tmp == NULL */
2974 	if (strchr(dev_name(dev), '!') == NULL)
2975 		return dev_name(dev);
2976 
2977 	/* replace '!' in the name with '/' */
2978 	s = kstrdup(dev_name(dev), GFP_KERNEL);
2979 	if (!s)
2980 		return NULL;
2981 	strreplace(s, '!', '/');
2982 	return *tmp = s;
2983 }
2984 
2985 /**
2986  * device_for_each_child - device child iterator.
2987  * @parent: parent struct device.
2988  * @fn: function to be called for each device.
2989  * @data: data for the callback.
2990  *
2991  * Iterate over @parent's child devices, and call @fn for each,
2992  * passing it @data.
2993  *
2994  * We check the return of @fn each time. If it returns anything
2995  * other than 0, we break out and return that value.
2996  */
2997 int device_for_each_child(struct device *parent, void *data,
2998 			  int (*fn)(struct device *dev, void *data))
2999 {
3000 	struct klist_iter i;
3001 	struct device *child;
3002 	int error = 0;
3003 
3004 	if (!parent->p)
3005 		return 0;
3006 
3007 	klist_iter_init(&parent->p->klist_children, &i);
3008 	while (!error && (child = next_device(&i)))
3009 		error = fn(child, data);
3010 	klist_iter_exit(&i);
3011 	return error;
3012 }
3013 EXPORT_SYMBOL_GPL(device_for_each_child);
3014 
3015 /**
3016  * device_for_each_child_reverse - device child iterator in reversed order.
3017  * @parent: parent struct device.
3018  * @fn: function to be called for each device.
3019  * @data: data for the callback.
3020  *
3021  * Iterate over @parent's child devices, and call @fn for each,
3022  * passing it @data.
3023  *
3024  * We check the return of @fn each time. If it returns anything
3025  * other than 0, we break out and return that value.
3026  */
3027 int device_for_each_child_reverse(struct device *parent, void *data,
3028 				  int (*fn)(struct device *dev, void *data))
3029 {
3030 	struct klist_iter i;
3031 	struct device *child;
3032 	int error = 0;
3033 
3034 	if (!parent->p)
3035 		return 0;
3036 
3037 	klist_iter_init(&parent->p->klist_children, &i);
3038 	while ((child = prev_device(&i)) && !error)
3039 		error = fn(child, data);
3040 	klist_iter_exit(&i);
3041 	return error;
3042 }
3043 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3044 
3045 /**
3046  * device_find_child - device iterator for locating a particular device.
3047  * @parent: parent struct device
3048  * @match: Callback function to check device
3049  * @data: Data to pass to match function
3050  *
3051  * This is similar to the device_for_each_child() function above, but it
3052  * returns a reference to a device that is 'found' for later use, as
3053  * determined by the @match callback.
3054  *
3055  * The callback should return 0 if the device doesn't match and non-zero
3056  * if it does.  If the callback returns non-zero and a reference to the
3057  * current device can be obtained, this function will return to the caller
3058  * and not iterate over any more devices.
3059  *
3060  * NOTE: you will need to drop the reference with put_device() after use.
3061  */
3062 struct device *device_find_child(struct device *parent, void *data,
3063 				 int (*match)(struct device *dev, void *data))
3064 {
3065 	struct klist_iter i;
3066 	struct device *child;
3067 
3068 	if (!parent)
3069 		return NULL;
3070 
3071 	klist_iter_init(&parent->p->klist_children, &i);
3072 	while ((child = next_device(&i)))
3073 		if (match(child, data) && get_device(child))
3074 			break;
3075 	klist_iter_exit(&i);
3076 	return child;
3077 }
3078 EXPORT_SYMBOL_GPL(device_find_child);
3079 
3080 /**
3081  * device_find_child_by_name - device iterator for locating a child device.
3082  * @parent: parent struct device
3083  * @name: name of the child device
3084  *
3085  * This is similar to the device_find_child() function above, but it
3086  * returns a reference to a device that has the name @name.
3087  *
3088  * NOTE: you will need to drop the reference with put_device() after use.
3089  */
3090 struct device *device_find_child_by_name(struct device *parent,
3091 					 const char *name)
3092 {
3093 	struct klist_iter i;
3094 	struct device *child;
3095 
3096 	if (!parent)
3097 		return NULL;
3098 
3099 	klist_iter_init(&parent->p->klist_children, &i);
3100 	while ((child = next_device(&i)))
3101 		if (!strcmp(dev_name(child), name) && get_device(child))
3102 			break;
3103 	klist_iter_exit(&i);
3104 	return child;
3105 }
3106 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3107 
3108 int __init devices_init(void)
3109 {
3110 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3111 	if (!devices_kset)
3112 		return -ENOMEM;
3113 	dev_kobj = kobject_create_and_add("dev", NULL);
3114 	if (!dev_kobj)
3115 		goto dev_kobj_err;
3116 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3117 	if (!sysfs_dev_block_kobj)
3118 		goto block_kobj_err;
3119 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3120 	if (!sysfs_dev_char_kobj)
3121 		goto char_kobj_err;
3122 
3123 	return 0;
3124 
3125  char_kobj_err:
3126 	kobject_put(sysfs_dev_block_kobj);
3127  block_kobj_err:
3128 	kobject_put(dev_kobj);
3129  dev_kobj_err:
3130 	kset_unregister(devices_kset);
3131 	return -ENOMEM;
3132 }
3133 
3134 static int device_check_offline(struct device *dev, void *not_used)
3135 {
3136 	int ret;
3137 
3138 	ret = device_for_each_child(dev, NULL, device_check_offline);
3139 	if (ret)
3140 		return ret;
3141 
3142 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3143 }
3144 
3145 /**
3146  * device_offline - Prepare the device for hot-removal.
3147  * @dev: Device to be put offline.
3148  *
3149  * Execute the device bus type's .offline() callback, if present, to prepare
3150  * the device for a subsequent hot-removal.  If that succeeds, the device must
3151  * not be used until either it is removed or its bus type's .online() callback
3152  * is executed.
3153  *
3154  * Call under device_hotplug_lock.
3155  */
3156 int device_offline(struct device *dev)
3157 {
3158 	int ret;
3159 
3160 	if (dev->offline_disabled)
3161 		return -EPERM;
3162 
3163 	ret = device_for_each_child(dev, NULL, device_check_offline);
3164 	if (ret)
3165 		return ret;
3166 
3167 	device_lock(dev);
3168 	if (device_supports_offline(dev)) {
3169 		if (dev->offline) {
3170 			ret = 1;
3171 		} else {
3172 			ret = dev->bus->offline(dev);
3173 			if (!ret) {
3174 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3175 				dev->offline = true;
3176 			}
3177 		}
3178 	}
3179 	device_unlock(dev);
3180 
3181 	return ret;
3182 }
3183 
3184 /**
3185  * device_online - Put the device back online after successful device_offline().
3186  * @dev: Device to be put back online.
3187  *
3188  * If device_offline() has been successfully executed for @dev, but the device
3189  * has not been removed subsequently, execute its bus type's .online() callback
3190  * to indicate that the device can be used again.
3191  *
3192  * Call under device_hotplug_lock.
3193  */
3194 int device_online(struct device *dev)
3195 {
3196 	int ret = 0;
3197 
3198 	device_lock(dev);
3199 	if (device_supports_offline(dev)) {
3200 		if (dev->offline) {
3201 			ret = dev->bus->online(dev);
3202 			if (!ret) {
3203 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3204 				dev->offline = false;
3205 			}
3206 		} else {
3207 			ret = 1;
3208 		}
3209 	}
3210 	device_unlock(dev);
3211 
3212 	return ret;
3213 }
3214 
3215 struct root_device {
3216 	struct device dev;
3217 	struct module *owner;
3218 };
3219 
3220 static inline struct root_device *to_root_device(struct device *d)
3221 {
3222 	return container_of(d, struct root_device, dev);
3223 }
3224 
3225 static void root_device_release(struct device *dev)
3226 {
3227 	kfree(to_root_device(dev));
3228 }
3229 
3230 /**
3231  * __root_device_register - allocate and register a root device
3232  * @name: root device name
3233  * @owner: owner module of the root device, usually THIS_MODULE
3234  *
3235  * This function allocates a root device and registers it
3236  * using device_register(). In order to free the returned
3237  * device, use root_device_unregister().
3238  *
3239  * Root devices are dummy devices which allow other devices
3240  * to be grouped under /sys/devices. Use this function to
3241  * allocate a root device and then use it as the parent of
3242  * any device which should appear under /sys/devices/{name}
3243  *
3244  * The /sys/devices/{name} directory will also contain a
3245  * 'module' symlink which points to the @owner directory
3246  * in sysfs.
3247  *
3248  * Returns &struct device pointer on success, or ERR_PTR() on error.
3249  *
3250  * Note: You probably want to use root_device_register().
3251  */
3252 struct device *__root_device_register(const char *name, struct module *owner)
3253 {
3254 	struct root_device *root;
3255 	int err = -ENOMEM;
3256 
3257 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3258 	if (!root)
3259 		return ERR_PTR(err);
3260 
3261 	err = dev_set_name(&root->dev, "%s", name);
3262 	if (err) {
3263 		kfree(root);
3264 		return ERR_PTR(err);
3265 	}
3266 
3267 	root->dev.release = root_device_release;
3268 
3269 	err = device_register(&root->dev);
3270 	if (err) {
3271 		put_device(&root->dev);
3272 		return ERR_PTR(err);
3273 	}
3274 
3275 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3276 	if (owner) {
3277 		struct module_kobject *mk = &owner->mkobj;
3278 
3279 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3280 		if (err) {
3281 			device_unregister(&root->dev);
3282 			return ERR_PTR(err);
3283 		}
3284 		root->owner = owner;
3285 	}
3286 #endif
3287 
3288 	return &root->dev;
3289 }
3290 EXPORT_SYMBOL_GPL(__root_device_register);
3291 
3292 /**
3293  * root_device_unregister - unregister and free a root device
3294  * @dev: device going away
3295  *
3296  * This function unregisters and cleans up a device that was created by
3297  * root_device_register().
3298  */
3299 void root_device_unregister(struct device *dev)
3300 {
3301 	struct root_device *root = to_root_device(dev);
3302 
3303 	if (root->owner)
3304 		sysfs_remove_link(&root->dev.kobj, "module");
3305 
3306 	device_unregister(dev);
3307 }
3308 EXPORT_SYMBOL_GPL(root_device_unregister);
3309 
3310 
3311 static void device_create_release(struct device *dev)
3312 {
3313 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3314 	kfree(dev);
3315 }
3316 
3317 static __printf(6, 0) struct device *
3318 device_create_groups_vargs(struct class *class, struct device *parent,
3319 			   dev_t devt, void *drvdata,
3320 			   const struct attribute_group **groups,
3321 			   const char *fmt, va_list args)
3322 {
3323 	struct device *dev = NULL;
3324 	int retval = -ENODEV;
3325 
3326 	if (class == NULL || IS_ERR(class))
3327 		goto error;
3328 
3329 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3330 	if (!dev) {
3331 		retval = -ENOMEM;
3332 		goto error;
3333 	}
3334 
3335 	device_initialize(dev);
3336 	dev->devt = devt;
3337 	dev->class = class;
3338 	dev->parent = parent;
3339 	dev->groups = groups;
3340 	dev->release = device_create_release;
3341 	dev_set_drvdata(dev, drvdata);
3342 
3343 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3344 	if (retval)
3345 		goto error;
3346 
3347 	retval = device_add(dev);
3348 	if (retval)
3349 		goto error;
3350 
3351 	return dev;
3352 
3353 error:
3354 	put_device(dev);
3355 	return ERR_PTR(retval);
3356 }
3357 
3358 /**
3359  * device_create - creates a device and registers it with sysfs
3360  * @class: pointer to the struct class that this device should be registered to
3361  * @parent: pointer to the parent struct device of this new device, if any
3362  * @devt: the dev_t for the char device to be added
3363  * @drvdata: the data to be added to the device for callbacks
3364  * @fmt: string for the device's name
3365  *
3366  * This function can be used by char device classes.  A struct device
3367  * will be created in sysfs, registered to the specified class.
3368  *
3369  * A "dev" file will be created, showing the dev_t for the device, if
3370  * the dev_t is not 0,0.
3371  * If a pointer to a parent struct device is passed in, the newly created
3372  * struct device will be a child of that device in sysfs.
3373  * The pointer to the struct device will be returned from the call.
3374  * Any further sysfs files that might be required can be created using this
3375  * pointer.
3376  *
3377  * Returns &struct device pointer on success, or ERR_PTR() on error.
3378  *
3379  * Note: the struct class passed to this function must have previously
3380  * been created with a call to class_create().
3381  */
3382 struct device *device_create(struct class *class, struct device *parent,
3383 			     dev_t devt, void *drvdata, const char *fmt, ...)
3384 {
3385 	va_list vargs;
3386 	struct device *dev;
3387 
3388 	va_start(vargs, fmt);
3389 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3390 					  fmt, vargs);
3391 	va_end(vargs);
3392 	return dev;
3393 }
3394 EXPORT_SYMBOL_GPL(device_create);
3395 
3396 /**
3397  * device_create_with_groups - creates a device and registers it with sysfs
3398  * @class: pointer to the struct class that this device should be registered to
3399  * @parent: pointer to the parent struct device of this new device, if any
3400  * @devt: the dev_t for the char device to be added
3401  * @drvdata: the data to be added to the device for callbacks
3402  * @groups: NULL-terminated list of attribute groups to be created
3403  * @fmt: string for the device's name
3404  *
3405  * This function can be used by char device classes.  A struct device
3406  * will be created in sysfs, registered to the specified class.
3407  * Additional attributes specified in the groups parameter will also
3408  * be created automatically.
3409  *
3410  * A "dev" file will be created, showing the dev_t for the device, if
3411  * the dev_t is not 0,0.
3412  * If a pointer to a parent struct device is passed in, the newly created
3413  * struct device will be a child of that device in sysfs.
3414  * The pointer to the struct device will be returned from the call.
3415  * Any further sysfs files that might be required can be created using this
3416  * pointer.
3417  *
3418  * Returns &struct device pointer on success, or ERR_PTR() on error.
3419  *
3420  * Note: the struct class passed to this function must have previously
3421  * been created with a call to class_create().
3422  */
3423 struct device *device_create_with_groups(struct class *class,
3424 					 struct device *parent, dev_t devt,
3425 					 void *drvdata,
3426 					 const struct attribute_group **groups,
3427 					 const char *fmt, ...)
3428 {
3429 	va_list vargs;
3430 	struct device *dev;
3431 
3432 	va_start(vargs, fmt);
3433 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3434 					 fmt, vargs);
3435 	va_end(vargs);
3436 	return dev;
3437 }
3438 EXPORT_SYMBOL_GPL(device_create_with_groups);
3439 
3440 /**
3441  * device_destroy - removes a device that was created with device_create()
3442  * @class: pointer to the struct class that this device was registered with
3443  * @devt: the dev_t of the device that was previously registered
3444  *
3445  * This call unregisters and cleans up a device that was created with a
3446  * call to device_create().
3447  */
3448 void device_destroy(struct class *class, dev_t devt)
3449 {
3450 	struct device *dev;
3451 
3452 	dev = class_find_device_by_devt(class, devt);
3453 	if (dev) {
3454 		put_device(dev);
3455 		device_unregister(dev);
3456 	}
3457 }
3458 EXPORT_SYMBOL_GPL(device_destroy);
3459 
3460 /**
3461  * device_rename - renames a device
3462  * @dev: the pointer to the struct device to be renamed
3463  * @new_name: the new name of the device
3464  *
3465  * It is the responsibility of the caller to provide mutual
3466  * exclusion between two different calls of device_rename
3467  * on the same device to ensure that new_name is valid and
3468  * won't conflict with other devices.
3469  *
3470  * Note: Don't call this function.  Currently, the networking layer calls this
3471  * function, but that will change.  The following text from Kay Sievers offers
3472  * some insight:
3473  *
3474  * Renaming devices is racy at many levels, symlinks and other stuff are not
3475  * replaced atomically, and you get a "move" uevent, but it's not easy to
3476  * connect the event to the old and new device. Device nodes are not renamed at
3477  * all, there isn't even support for that in the kernel now.
3478  *
3479  * In the meantime, during renaming, your target name might be taken by another
3480  * driver, creating conflicts. Or the old name is taken directly after you
3481  * renamed it -- then you get events for the same DEVPATH, before you even see
3482  * the "move" event. It's just a mess, and nothing new should ever rely on
3483  * kernel device renaming. Besides that, it's not even implemented now for
3484  * other things than (driver-core wise very simple) network devices.
3485  *
3486  * We are currently about to change network renaming in udev to completely
3487  * disallow renaming of devices in the same namespace as the kernel uses,
3488  * because we can't solve the problems properly, that arise with swapping names
3489  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3490  * be allowed to some other name than eth[0-9]*, for the aforementioned
3491  * reasons.
3492  *
3493  * Make up a "real" name in the driver before you register anything, or add
3494  * some other attributes for userspace to find the device, or use udev to add
3495  * symlinks -- but never rename kernel devices later, it's a complete mess. We
3496  * don't even want to get into that and try to implement the missing pieces in
3497  * the core. We really have other pieces to fix in the driver core mess. :)
3498  */
3499 int device_rename(struct device *dev, const char *new_name)
3500 {
3501 	struct kobject *kobj = &dev->kobj;
3502 	char *old_device_name = NULL;
3503 	int error;
3504 
3505 	dev = get_device(dev);
3506 	if (!dev)
3507 		return -EINVAL;
3508 
3509 	dev_dbg(dev, "renaming to %s\n", new_name);
3510 
3511 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3512 	if (!old_device_name) {
3513 		error = -ENOMEM;
3514 		goto out;
3515 	}
3516 
3517 	if (dev->class) {
3518 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3519 					     kobj, old_device_name,
3520 					     new_name, kobject_namespace(kobj));
3521 		if (error)
3522 			goto out;
3523 	}
3524 
3525 	error = kobject_rename(kobj, new_name);
3526 	if (error)
3527 		goto out;
3528 
3529 out:
3530 	put_device(dev);
3531 
3532 	kfree(old_device_name);
3533 
3534 	return error;
3535 }
3536 EXPORT_SYMBOL_GPL(device_rename);
3537 
3538 static int device_move_class_links(struct device *dev,
3539 				   struct device *old_parent,
3540 				   struct device *new_parent)
3541 {
3542 	int error = 0;
3543 
3544 	if (old_parent)
3545 		sysfs_remove_link(&dev->kobj, "device");
3546 	if (new_parent)
3547 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3548 					  "device");
3549 	return error;
3550 }
3551 
3552 /**
3553  * device_move - moves a device to a new parent
3554  * @dev: the pointer to the struct device to be moved
3555  * @new_parent: the new parent of the device (can be NULL)
3556  * @dpm_order: how to reorder the dpm_list
3557  */
3558 int device_move(struct device *dev, struct device *new_parent,
3559 		enum dpm_order dpm_order)
3560 {
3561 	int error;
3562 	struct device *old_parent;
3563 	struct kobject *new_parent_kobj;
3564 
3565 	dev = get_device(dev);
3566 	if (!dev)
3567 		return -EINVAL;
3568 
3569 	device_pm_lock();
3570 	new_parent = get_device(new_parent);
3571 	new_parent_kobj = get_device_parent(dev, new_parent);
3572 	if (IS_ERR(new_parent_kobj)) {
3573 		error = PTR_ERR(new_parent_kobj);
3574 		put_device(new_parent);
3575 		goto out;
3576 	}
3577 
3578 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3579 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3580 	error = kobject_move(&dev->kobj, new_parent_kobj);
3581 	if (error) {
3582 		cleanup_glue_dir(dev, new_parent_kobj);
3583 		put_device(new_parent);
3584 		goto out;
3585 	}
3586 	old_parent = dev->parent;
3587 	dev->parent = new_parent;
3588 	if (old_parent)
3589 		klist_remove(&dev->p->knode_parent);
3590 	if (new_parent) {
3591 		klist_add_tail(&dev->p->knode_parent,
3592 			       &new_parent->p->klist_children);
3593 		set_dev_node(dev, dev_to_node(new_parent));
3594 	}
3595 
3596 	if (dev->class) {
3597 		error = device_move_class_links(dev, old_parent, new_parent);
3598 		if (error) {
3599 			/* We ignore errors on cleanup since we're hosed anyway... */
3600 			device_move_class_links(dev, new_parent, old_parent);
3601 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3602 				if (new_parent)
3603 					klist_remove(&dev->p->knode_parent);
3604 				dev->parent = old_parent;
3605 				if (old_parent) {
3606 					klist_add_tail(&dev->p->knode_parent,
3607 						       &old_parent->p->klist_children);
3608 					set_dev_node(dev, dev_to_node(old_parent));
3609 				}
3610 			}
3611 			cleanup_glue_dir(dev, new_parent_kobj);
3612 			put_device(new_parent);
3613 			goto out;
3614 		}
3615 	}
3616 	switch (dpm_order) {
3617 	case DPM_ORDER_NONE:
3618 		break;
3619 	case DPM_ORDER_DEV_AFTER_PARENT:
3620 		device_pm_move_after(dev, new_parent);
3621 		devices_kset_move_after(dev, new_parent);
3622 		break;
3623 	case DPM_ORDER_PARENT_BEFORE_DEV:
3624 		device_pm_move_before(new_parent, dev);
3625 		devices_kset_move_before(new_parent, dev);
3626 		break;
3627 	case DPM_ORDER_DEV_LAST:
3628 		device_pm_move_last(dev);
3629 		devices_kset_move_last(dev);
3630 		break;
3631 	}
3632 
3633 	put_device(old_parent);
3634 out:
3635 	device_pm_unlock();
3636 	put_device(dev);
3637 	return error;
3638 }
3639 EXPORT_SYMBOL_GPL(device_move);
3640 
3641 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
3642 				     kgid_t kgid)
3643 {
3644 	struct kobject *kobj = &dev->kobj;
3645 	struct class *class = dev->class;
3646 	const struct device_type *type = dev->type;
3647 	int error;
3648 
3649 	if (class) {
3650 		/*
3651 		 * Change the device groups of the device class for @dev to
3652 		 * @kuid/@kgid.
3653 		 */
3654 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
3655 						  kgid);
3656 		if (error)
3657 			return error;
3658 	}
3659 
3660 	if (type) {
3661 		/*
3662 		 * Change the device groups of the device type for @dev to
3663 		 * @kuid/@kgid.
3664 		 */
3665 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
3666 						  kgid);
3667 		if (error)
3668 			return error;
3669 	}
3670 
3671 	/* Change the device groups of @dev to @kuid/@kgid. */
3672 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
3673 	if (error)
3674 		return error;
3675 
3676 	if (device_supports_offline(dev) && !dev->offline_disabled) {
3677 		/* Change online device attributes of @dev to @kuid/@kgid. */
3678 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
3679 						kuid, kgid);
3680 		if (error)
3681 			return error;
3682 	}
3683 
3684 	return 0;
3685 }
3686 
3687 /**
3688  * device_change_owner - change the owner of an existing device.
3689  * @dev: device.
3690  * @kuid: new owner's kuid
3691  * @kgid: new owner's kgid
3692  *
3693  * This changes the owner of @dev and its corresponding sysfs entries to
3694  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
3695  * core.
3696  *
3697  * Returns 0 on success or error code on failure.
3698  */
3699 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
3700 {
3701 	int error;
3702 	struct kobject *kobj = &dev->kobj;
3703 
3704 	dev = get_device(dev);
3705 	if (!dev)
3706 		return -EINVAL;
3707 
3708 	/*
3709 	 * Change the kobject and the default attributes and groups of the
3710 	 * ktype associated with it to @kuid/@kgid.
3711 	 */
3712 	error = sysfs_change_owner(kobj, kuid, kgid);
3713 	if (error)
3714 		goto out;
3715 
3716 	/*
3717 	 * Change the uevent file for @dev to the new owner. The uevent file
3718 	 * was created in a separate step when @dev got added and we mirror
3719 	 * that step here.
3720 	 */
3721 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
3722 					kgid);
3723 	if (error)
3724 		goto out;
3725 
3726 	/*
3727 	 * Change the device groups, the device groups associated with the
3728 	 * device class, and the groups associated with the device type of @dev
3729 	 * to @kuid/@kgid.
3730 	 */
3731 	error = device_attrs_change_owner(dev, kuid, kgid);
3732 	if (error)
3733 		goto out;
3734 
3735 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
3736 	if (error)
3737 		goto out;
3738 
3739 #ifdef CONFIG_BLOCK
3740 	if (sysfs_deprecated && dev->class == &block_class)
3741 		goto out;
3742 #endif
3743 
3744 	/*
3745 	 * Change the owner of the symlink located in the class directory of
3746 	 * the device class associated with @dev which points to the actual
3747 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
3748 	 * symlink shows the same permissions as its target.
3749 	 */
3750 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
3751 					dev_name(dev), kuid, kgid);
3752 	if (error)
3753 		goto out;
3754 
3755 out:
3756 	put_device(dev);
3757 	return error;
3758 }
3759 EXPORT_SYMBOL_GPL(device_change_owner);
3760 
3761 /**
3762  * device_shutdown - call ->shutdown() on each device to shutdown.
3763  */
3764 void device_shutdown(void)
3765 {
3766 	struct device *dev, *parent;
3767 
3768 	wait_for_device_probe();
3769 	device_block_probing();
3770 
3771 	cpufreq_suspend();
3772 
3773 	spin_lock(&devices_kset->list_lock);
3774 	/*
3775 	 * Walk the devices list backward, shutting down each in turn.
3776 	 * Beware that device unplug events may also start pulling
3777 	 * devices offline, even as the system is shutting down.
3778 	 */
3779 	while (!list_empty(&devices_kset->list)) {
3780 		dev = list_entry(devices_kset->list.prev, struct device,
3781 				kobj.entry);
3782 
3783 		/*
3784 		 * hold reference count of device's parent to
3785 		 * prevent it from being freed because parent's
3786 		 * lock is to be held
3787 		 */
3788 		parent = get_device(dev->parent);
3789 		get_device(dev);
3790 		/*
3791 		 * Make sure the device is off the kset list, in the
3792 		 * event that dev->*->shutdown() doesn't remove it.
3793 		 */
3794 		list_del_init(&dev->kobj.entry);
3795 		spin_unlock(&devices_kset->list_lock);
3796 
3797 		/* hold lock to avoid race with probe/release */
3798 		if (parent)
3799 			device_lock(parent);
3800 		device_lock(dev);
3801 
3802 		/* Don't allow any more runtime suspends */
3803 		pm_runtime_get_noresume(dev);
3804 		pm_runtime_barrier(dev);
3805 
3806 		if (dev->class && dev->class->shutdown_pre) {
3807 			if (initcall_debug)
3808 				dev_info(dev, "shutdown_pre\n");
3809 			dev->class->shutdown_pre(dev);
3810 		}
3811 		if (dev->bus && dev->bus->shutdown) {
3812 			if (initcall_debug)
3813 				dev_info(dev, "shutdown\n");
3814 			dev->bus->shutdown(dev);
3815 		} else if (dev->driver && dev->driver->shutdown) {
3816 			if (initcall_debug)
3817 				dev_info(dev, "shutdown\n");
3818 			dev->driver->shutdown(dev);
3819 		}
3820 
3821 		device_unlock(dev);
3822 		if (parent)
3823 			device_unlock(parent);
3824 
3825 		put_device(dev);
3826 		put_device(parent);
3827 
3828 		spin_lock(&devices_kset->list_lock);
3829 	}
3830 	spin_unlock(&devices_kset->list_lock);
3831 }
3832 
3833 /*
3834  * Device logging functions
3835  */
3836 
3837 #ifdef CONFIG_PRINTK
3838 static int
3839 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
3840 {
3841 	const char *subsys;
3842 	size_t pos = 0;
3843 
3844 	if (dev->class)
3845 		subsys = dev->class->name;
3846 	else if (dev->bus)
3847 		subsys = dev->bus->name;
3848 	else
3849 		return 0;
3850 
3851 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
3852 	if (pos >= hdrlen)
3853 		goto overflow;
3854 
3855 	/*
3856 	 * Add device identifier DEVICE=:
3857 	 *   b12:8         block dev_t
3858 	 *   c127:3        char dev_t
3859 	 *   n8            netdev ifindex
3860 	 *   +sound:card0  subsystem:devname
3861 	 */
3862 	if (MAJOR(dev->devt)) {
3863 		char c;
3864 
3865 		if (strcmp(subsys, "block") == 0)
3866 			c = 'b';
3867 		else
3868 			c = 'c';
3869 		pos++;
3870 		pos += snprintf(hdr + pos, hdrlen - pos,
3871 				"DEVICE=%c%u:%u",
3872 				c, MAJOR(dev->devt), MINOR(dev->devt));
3873 	} else if (strcmp(subsys, "net") == 0) {
3874 		struct net_device *net = to_net_dev(dev);
3875 
3876 		pos++;
3877 		pos += snprintf(hdr + pos, hdrlen - pos,
3878 				"DEVICE=n%u", net->ifindex);
3879 	} else {
3880 		pos++;
3881 		pos += snprintf(hdr + pos, hdrlen - pos,
3882 				"DEVICE=+%s:%s", subsys, dev_name(dev));
3883 	}
3884 
3885 	if (pos >= hdrlen)
3886 		goto overflow;
3887 
3888 	return pos;
3889 
3890 overflow:
3891 	dev_WARN(dev, "device/subsystem name too long");
3892 	return 0;
3893 }
3894 
3895 int dev_vprintk_emit(int level, const struct device *dev,
3896 		     const char *fmt, va_list args)
3897 {
3898 	char hdr[128];
3899 	size_t hdrlen;
3900 
3901 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
3902 
3903 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
3904 }
3905 EXPORT_SYMBOL(dev_vprintk_emit);
3906 
3907 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3908 {
3909 	va_list args;
3910 	int r;
3911 
3912 	va_start(args, fmt);
3913 
3914 	r = dev_vprintk_emit(level, dev, fmt, args);
3915 
3916 	va_end(args);
3917 
3918 	return r;
3919 }
3920 EXPORT_SYMBOL(dev_printk_emit);
3921 
3922 static void __dev_printk(const char *level, const struct device *dev,
3923 			struct va_format *vaf)
3924 {
3925 	if (dev)
3926 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3927 				dev_driver_string(dev), dev_name(dev), vaf);
3928 	else
3929 		printk("%s(NULL device *): %pV", level, vaf);
3930 }
3931 
3932 void dev_printk(const char *level, const struct device *dev,
3933 		const char *fmt, ...)
3934 {
3935 	struct va_format vaf;
3936 	va_list args;
3937 
3938 	va_start(args, fmt);
3939 
3940 	vaf.fmt = fmt;
3941 	vaf.va = &args;
3942 
3943 	__dev_printk(level, dev, &vaf);
3944 
3945 	va_end(args);
3946 }
3947 EXPORT_SYMBOL(dev_printk);
3948 
3949 #define define_dev_printk_level(func, kern_level)		\
3950 void func(const struct device *dev, const char *fmt, ...)	\
3951 {								\
3952 	struct va_format vaf;					\
3953 	va_list args;						\
3954 								\
3955 	va_start(args, fmt);					\
3956 								\
3957 	vaf.fmt = fmt;						\
3958 	vaf.va = &args;						\
3959 								\
3960 	__dev_printk(kern_level, dev, &vaf);			\
3961 								\
3962 	va_end(args);						\
3963 }								\
3964 EXPORT_SYMBOL(func);
3965 
3966 define_dev_printk_level(_dev_emerg, KERN_EMERG);
3967 define_dev_printk_level(_dev_alert, KERN_ALERT);
3968 define_dev_printk_level(_dev_crit, KERN_CRIT);
3969 define_dev_printk_level(_dev_err, KERN_ERR);
3970 define_dev_printk_level(_dev_warn, KERN_WARNING);
3971 define_dev_printk_level(_dev_notice, KERN_NOTICE);
3972 define_dev_printk_level(_dev_info, KERN_INFO);
3973 
3974 #endif
3975 
3976 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3977 {
3978 	return fwnode && !IS_ERR(fwnode->secondary);
3979 }
3980 
3981 /**
3982  * set_primary_fwnode - Change the primary firmware node of a given device.
3983  * @dev: Device to handle.
3984  * @fwnode: New primary firmware node of the device.
3985  *
3986  * Set the device's firmware node pointer to @fwnode, but if a secondary
3987  * firmware node of the device is present, preserve it.
3988  */
3989 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3990 {
3991 	if (fwnode) {
3992 		struct fwnode_handle *fn = dev->fwnode;
3993 
3994 		if (fwnode_is_primary(fn))
3995 			fn = fn->secondary;
3996 
3997 		if (fn) {
3998 			WARN_ON(fwnode->secondary);
3999 			fwnode->secondary = fn;
4000 		}
4001 		dev->fwnode = fwnode;
4002 	} else {
4003 		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
4004 			dev->fwnode->secondary : NULL;
4005 	}
4006 }
4007 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4008 
4009 /**
4010  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4011  * @dev: Device to handle.
4012  * @fwnode: New secondary firmware node of the device.
4013  *
4014  * If a primary firmware node of the device is present, set its secondary
4015  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4016  * @fwnode.
4017  */
4018 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4019 {
4020 	if (fwnode)
4021 		fwnode->secondary = ERR_PTR(-ENODEV);
4022 
4023 	if (fwnode_is_primary(dev->fwnode))
4024 		dev->fwnode->secondary = fwnode;
4025 	else
4026 		dev->fwnode = fwnode;
4027 }
4028 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4029 
4030 /**
4031  * device_set_of_node_from_dev - reuse device-tree node of another device
4032  * @dev: device whose device-tree node is being set
4033  * @dev2: device whose device-tree node is being reused
4034  *
4035  * Takes another reference to the new device-tree node after first dropping
4036  * any reference held to the old node.
4037  */
4038 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4039 {
4040 	of_node_put(dev->of_node);
4041 	dev->of_node = of_node_get(dev2->of_node);
4042 	dev->of_node_reused = true;
4043 }
4044 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4045 
4046 int device_match_name(struct device *dev, const void *name)
4047 {
4048 	return sysfs_streq(dev_name(dev), name);
4049 }
4050 EXPORT_SYMBOL_GPL(device_match_name);
4051 
4052 int device_match_of_node(struct device *dev, const void *np)
4053 {
4054 	return dev->of_node == np;
4055 }
4056 EXPORT_SYMBOL_GPL(device_match_of_node);
4057 
4058 int device_match_fwnode(struct device *dev, const void *fwnode)
4059 {
4060 	return dev_fwnode(dev) == fwnode;
4061 }
4062 EXPORT_SYMBOL_GPL(device_match_fwnode);
4063 
4064 int device_match_devt(struct device *dev, const void *pdevt)
4065 {
4066 	return dev->devt == *(dev_t *)pdevt;
4067 }
4068 EXPORT_SYMBOL_GPL(device_match_devt);
4069 
4070 int device_match_acpi_dev(struct device *dev, const void *adev)
4071 {
4072 	return ACPI_COMPANION(dev) == adev;
4073 }
4074 EXPORT_SYMBOL(device_match_acpi_dev);
4075 
4076 int device_match_any(struct device *dev, const void *unused)
4077 {
4078 	return 1;
4079 }
4080 EXPORT_SYMBOL_GPL(device_match_any);
4081