xref: /openbmc/linux/drivers/base/core.c (revision a17922de)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/fwnode.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/kdev_t.h>
19 #include <linux/notifier.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/genhd.h>
23 #include <linux/mutex.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/netdevice.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sysfs.h>
28 
29 #include "base.h"
30 #include "power/power.h"
31 
32 #ifdef CONFIG_SYSFS_DEPRECATED
33 #ifdef CONFIG_SYSFS_DEPRECATED_V2
34 long sysfs_deprecated = 1;
35 #else
36 long sysfs_deprecated = 0;
37 #endif
38 static int __init sysfs_deprecated_setup(char *arg)
39 {
40 	return kstrtol(arg, 10, &sysfs_deprecated);
41 }
42 early_param("sysfs.deprecated", sysfs_deprecated_setup);
43 #endif
44 
45 /* Device links support. */
46 
47 #ifdef CONFIG_SRCU
48 static DEFINE_MUTEX(device_links_lock);
49 DEFINE_STATIC_SRCU(device_links_srcu);
50 
51 static inline void device_links_write_lock(void)
52 {
53 	mutex_lock(&device_links_lock);
54 }
55 
56 static inline void device_links_write_unlock(void)
57 {
58 	mutex_unlock(&device_links_lock);
59 }
60 
61 int device_links_read_lock(void)
62 {
63 	return srcu_read_lock(&device_links_srcu);
64 }
65 
66 void device_links_read_unlock(int idx)
67 {
68 	srcu_read_unlock(&device_links_srcu, idx);
69 }
70 #else /* !CONFIG_SRCU */
71 static DECLARE_RWSEM(device_links_lock);
72 
73 static inline void device_links_write_lock(void)
74 {
75 	down_write(&device_links_lock);
76 }
77 
78 static inline void device_links_write_unlock(void)
79 {
80 	up_write(&device_links_lock);
81 }
82 
83 int device_links_read_lock(void)
84 {
85 	down_read(&device_links_lock);
86 	return 0;
87 }
88 
89 void device_links_read_unlock(int not_used)
90 {
91 	up_read(&device_links_lock);
92 }
93 #endif /* !CONFIG_SRCU */
94 
95 /**
96  * device_is_dependent - Check if one device depends on another one
97  * @dev: Device to check dependencies for.
98  * @target: Device to check against.
99  *
100  * Check if @target depends on @dev or any device dependent on it (its child or
101  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
102  */
103 static int device_is_dependent(struct device *dev, void *target)
104 {
105 	struct device_link *link;
106 	int ret;
107 
108 	if (WARN_ON(dev == target))
109 		return 1;
110 
111 	ret = device_for_each_child(dev, target, device_is_dependent);
112 	if (ret)
113 		return ret;
114 
115 	list_for_each_entry(link, &dev->links.consumers, s_node) {
116 		if (WARN_ON(link->consumer == target))
117 			return 1;
118 
119 		ret = device_is_dependent(link->consumer, target);
120 		if (ret)
121 			break;
122 	}
123 	return ret;
124 }
125 
126 static int device_reorder_to_tail(struct device *dev, void *not_used)
127 {
128 	struct device_link *link;
129 
130 	/*
131 	 * Devices that have not been registered yet will be put to the ends
132 	 * of the lists during the registration, so skip them here.
133 	 */
134 	if (device_is_registered(dev))
135 		devices_kset_move_last(dev);
136 
137 	if (device_pm_initialized(dev))
138 		device_pm_move_last(dev);
139 
140 	device_for_each_child(dev, NULL, device_reorder_to_tail);
141 	list_for_each_entry(link, &dev->links.consumers, s_node)
142 		device_reorder_to_tail(link->consumer, NULL);
143 
144 	return 0;
145 }
146 
147 /**
148  * device_pm_move_to_tail - Move set of devices to the end of device lists
149  * @dev: Device to move
150  *
151  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
152  *
153  * It moves the @dev along with all of its children and all of its consumers
154  * to the ends of the device_kset and dpm_list, recursively.
155  */
156 void device_pm_move_to_tail(struct device *dev)
157 {
158 	int idx;
159 
160 	idx = device_links_read_lock();
161 	device_pm_lock();
162 	device_reorder_to_tail(dev, NULL);
163 	device_pm_unlock();
164 	device_links_read_unlock(idx);
165 }
166 
167 /**
168  * device_link_add - Create a link between two devices.
169  * @consumer: Consumer end of the link.
170  * @supplier: Supplier end of the link.
171  * @flags: Link flags.
172  *
173  * The caller is responsible for the proper synchronization of the link creation
174  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
175  * runtime PM framework to take the link into account.  Second, if the
176  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
177  * be forced into the active metastate and reference-counted upon the creation
178  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
179  * ignored.
180  *
181  * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically
182  * when the consumer device driver unbinds from it.  The combination of both
183  * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL
184  * to be returned.
185  *
186  * A side effect of the link creation is re-ordering of dpm_list and the
187  * devices_kset list by moving the consumer device and all devices depending
188  * on it to the ends of these lists (that does not happen to devices that have
189  * not been registered when this function is called).
190  *
191  * The supplier device is required to be registered when this function is called
192  * and NULL will be returned if that is not the case.  The consumer device need
193  * not be registered, however.
194  */
195 struct device_link *device_link_add(struct device *consumer,
196 				    struct device *supplier, u32 flags)
197 {
198 	struct device_link *link;
199 
200 	if (!consumer || !supplier ||
201 	    ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE)))
202 		return NULL;
203 
204 	device_links_write_lock();
205 	device_pm_lock();
206 
207 	/*
208 	 * If the supplier has not been fully registered yet or there is a
209 	 * reverse dependency between the consumer and the supplier already in
210 	 * the graph, return NULL.
211 	 */
212 	if (!device_pm_initialized(supplier)
213 	    || device_is_dependent(consumer, supplier)) {
214 		link = NULL;
215 		goto out;
216 	}
217 
218 	list_for_each_entry(link, &supplier->links.consumers, s_node)
219 		if (link->consumer == consumer) {
220 			kref_get(&link->kref);
221 			goto out;
222 		}
223 
224 	link = kzalloc(sizeof(*link), GFP_KERNEL);
225 	if (!link)
226 		goto out;
227 
228 	if (flags & DL_FLAG_PM_RUNTIME) {
229 		if (flags & DL_FLAG_RPM_ACTIVE) {
230 			if (pm_runtime_get_sync(supplier) < 0) {
231 				pm_runtime_put_noidle(supplier);
232 				kfree(link);
233 				link = NULL;
234 				goto out;
235 			}
236 			link->rpm_active = true;
237 		}
238 		pm_runtime_new_link(consumer);
239 		/*
240 		 * If the link is being added by the consumer driver at probe
241 		 * time, balance the decrementation of the supplier's runtime PM
242 		 * usage counter after consumer probe in driver_probe_device().
243 		 */
244 		if (consumer->links.status == DL_DEV_PROBING)
245 			pm_runtime_get_noresume(supplier);
246 	}
247 	get_device(supplier);
248 	link->supplier = supplier;
249 	INIT_LIST_HEAD(&link->s_node);
250 	get_device(consumer);
251 	link->consumer = consumer;
252 	INIT_LIST_HEAD(&link->c_node);
253 	link->flags = flags;
254 	kref_init(&link->kref);
255 
256 	/* Determine the initial link state. */
257 	if (flags & DL_FLAG_STATELESS) {
258 		link->status = DL_STATE_NONE;
259 	} else {
260 		switch (supplier->links.status) {
261 		case DL_DEV_DRIVER_BOUND:
262 			switch (consumer->links.status) {
263 			case DL_DEV_PROBING:
264 				/*
265 				 * Some callers expect the link creation during
266 				 * consumer driver probe to resume the supplier
267 				 * even without DL_FLAG_RPM_ACTIVE.
268 				 */
269 				if (flags & DL_FLAG_PM_RUNTIME)
270 					pm_runtime_resume(supplier);
271 
272 				link->status = DL_STATE_CONSUMER_PROBE;
273 				break;
274 			case DL_DEV_DRIVER_BOUND:
275 				link->status = DL_STATE_ACTIVE;
276 				break;
277 			default:
278 				link->status = DL_STATE_AVAILABLE;
279 				break;
280 			}
281 			break;
282 		case DL_DEV_UNBINDING:
283 			link->status = DL_STATE_SUPPLIER_UNBIND;
284 			break;
285 		default:
286 			link->status = DL_STATE_DORMANT;
287 			break;
288 		}
289 	}
290 
291 	/*
292 	 * Move the consumer and all of the devices depending on it to the end
293 	 * of dpm_list and the devices_kset list.
294 	 *
295 	 * It is necessary to hold dpm_list locked throughout all that or else
296 	 * we may end up suspending with a wrong ordering of it.
297 	 */
298 	device_reorder_to_tail(consumer, NULL);
299 
300 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
301 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
302 
303 	dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
304 
305  out:
306 	device_pm_unlock();
307 	device_links_write_unlock();
308 	return link;
309 }
310 EXPORT_SYMBOL_GPL(device_link_add);
311 
312 static void device_link_free(struct device_link *link)
313 {
314 	put_device(link->consumer);
315 	put_device(link->supplier);
316 	kfree(link);
317 }
318 
319 #ifdef CONFIG_SRCU
320 static void __device_link_free_srcu(struct rcu_head *rhead)
321 {
322 	device_link_free(container_of(rhead, struct device_link, rcu_head));
323 }
324 
325 static void __device_link_del(struct kref *kref)
326 {
327 	struct device_link *link = container_of(kref, struct device_link, kref);
328 
329 	dev_info(link->consumer, "Dropping the link to %s\n",
330 		 dev_name(link->supplier));
331 
332 	if (link->flags & DL_FLAG_PM_RUNTIME)
333 		pm_runtime_drop_link(link->consumer);
334 
335 	list_del_rcu(&link->s_node);
336 	list_del_rcu(&link->c_node);
337 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
338 }
339 #else /* !CONFIG_SRCU */
340 static void __device_link_del(struct kref *kref)
341 {
342 	struct device_link *link = container_of(kref, struct device_link, kref);
343 
344 	dev_info(link->consumer, "Dropping the link to %s\n",
345 		 dev_name(link->supplier));
346 
347 	if (link->flags & DL_FLAG_PM_RUNTIME)
348 		pm_runtime_drop_link(link->consumer);
349 
350 	list_del(&link->s_node);
351 	list_del(&link->c_node);
352 	device_link_free(link);
353 }
354 #endif /* !CONFIG_SRCU */
355 
356 /**
357  * device_link_del - Delete a link between two devices.
358  * @link: Device link to delete.
359  *
360  * The caller must ensure proper synchronization of this function with runtime
361  * PM.  If the link was added multiple times, it needs to be deleted as often.
362  * Care is required for hotplugged devices:  Their links are purged on removal
363  * and calling device_link_del() is then no longer allowed.
364  */
365 void device_link_del(struct device_link *link)
366 {
367 	device_links_write_lock();
368 	device_pm_lock();
369 	kref_put(&link->kref, __device_link_del);
370 	device_pm_unlock();
371 	device_links_write_unlock();
372 }
373 EXPORT_SYMBOL_GPL(device_link_del);
374 
375 static void device_links_missing_supplier(struct device *dev)
376 {
377 	struct device_link *link;
378 
379 	list_for_each_entry(link, &dev->links.suppliers, c_node)
380 		if (link->status == DL_STATE_CONSUMER_PROBE)
381 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
382 }
383 
384 /**
385  * device_links_check_suppliers - Check presence of supplier drivers.
386  * @dev: Consumer device.
387  *
388  * Check links from this device to any suppliers.  Walk the list of the device's
389  * links to suppliers and see if all of them are available.  If not, simply
390  * return -EPROBE_DEFER.
391  *
392  * We need to guarantee that the supplier will not go away after the check has
393  * been positive here.  It only can go away in __device_release_driver() and
394  * that function  checks the device's links to consumers.  This means we need to
395  * mark the link as "consumer probe in progress" to make the supplier removal
396  * wait for us to complete (or bad things may happen).
397  *
398  * Links with the DL_FLAG_STATELESS flag set are ignored.
399  */
400 int device_links_check_suppliers(struct device *dev)
401 {
402 	struct device_link *link;
403 	int ret = 0;
404 
405 	device_links_write_lock();
406 
407 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
408 		if (link->flags & DL_FLAG_STATELESS)
409 			continue;
410 
411 		if (link->status != DL_STATE_AVAILABLE) {
412 			device_links_missing_supplier(dev);
413 			ret = -EPROBE_DEFER;
414 			break;
415 		}
416 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
417 	}
418 	dev->links.status = DL_DEV_PROBING;
419 
420 	device_links_write_unlock();
421 	return ret;
422 }
423 
424 /**
425  * device_links_driver_bound - Update device links after probing its driver.
426  * @dev: Device to update the links for.
427  *
428  * The probe has been successful, so update links from this device to any
429  * consumers by changing their status to "available".
430  *
431  * Also change the status of @dev's links to suppliers to "active".
432  *
433  * Links with the DL_FLAG_STATELESS flag set are ignored.
434  */
435 void device_links_driver_bound(struct device *dev)
436 {
437 	struct device_link *link;
438 
439 	device_links_write_lock();
440 
441 	list_for_each_entry(link, &dev->links.consumers, s_node) {
442 		if (link->flags & DL_FLAG_STATELESS)
443 			continue;
444 
445 		WARN_ON(link->status != DL_STATE_DORMANT);
446 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
447 	}
448 
449 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
450 		if (link->flags & DL_FLAG_STATELESS)
451 			continue;
452 
453 		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
454 		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
455 	}
456 
457 	dev->links.status = DL_DEV_DRIVER_BOUND;
458 
459 	device_links_write_unlock();
460 }
461 
462 /**
463  * __device_links_no_driver - Update links of a device without a driver.
464  * @dev: Device without a drvier.
465  *
466  * Delete all non-persistent links from this device to any suppliers.
467  *
468  * Persistent links stay around, but their status is changed to "available",
469  * unless they already are in the "supplier unbind in progress" state in which
470  * case they need not be updated.
471  *
472  * Links with the DL_FLAG_STATELESS flag set are ignored.
473  */
474 static void __device_links_no_driver(struct device *dev)
475 {
476 	struct device_link *link, *ln;
477 
478 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
479 		if (link->flags & DL_FLAG_STATELESS)
480 			continue;
481 
482 		if (link->flags & DL_FLAG_AUTOREMOVE)
483 			kref_put(&link->kref, __device_link_del);
484 		else if (link->status != DL_STATE_SUPPLIER_UNBIND)
485 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
486 	}
487 
488 	dev->links.status = DL_DEV_NO_DRIVER;
489 }
490 
491 void device_links_no_driver(struct device *dev)
492 {
493 	device_links_write_lock();
494 	__device_links_no_driver(dev);
495 	device_links_write_unlock();
496 }
497 
498 /**
499  * device_links_driver_cleanup - Update links after driver removal.
500  * @dev: Device whose driver has just gone away.
501  *
502  * Update links to consumers for @dev by changing their status to "dormant" and
503  * invoke %__device_links_no_driver() to update links to suppliers for it as
504  * appropriate.
505  *
506  * Links with the DL_FLAG_STATELESS flag set are ignored.
507  */
508 void device_links_driver_cleanup(struct device *dev)
509 {
510 	struct device_link *link;
511 
512 	device_links_write_lock();
513 
514 	list_for_each_entry(link, &dev->links.consumers, s_node) {
515 		if (link->flags & DL_FLAG_STATELESS)
516 			continue;
517 
518 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE);
519 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
520 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
521 	}
522 
523 	__device_links_no_driver(dev);
524 
525 	device_links_write_unlock();
526 }
527 
528 /**
529  * device_links_busy - Check if there are any busy links to consumers.
530  * @dev: Device to check.
531  *
532  * Check each consumer of the device and return 'true' if its link's status
533  * is one of "consumer probe" or "active" (meaning that the given consumer is
534  * probing right now or its driver is present).  Otherwise, change the link
535  * state to "supplier unbind" to prevent the consumer from being probed
536  * successfully going forward.
537  *
538  * Return 'false' if there are no probing or active consumers.
539  *
540  * Links with the DL_FLAG_STATELESS flag set are ignored.
541  */
542 bool device_links_busy(struct device *dev)
543 {
544 	struct device_link *link;
545 	bool ret = false;
546 
547 	device_links_write_lock();
548 
549 	list_for_each_entry(link, &dev->links.consumers, s_node) {
550 		if (link->flags & DL_FLAG_STATELESS)
551 			continue;
552 
553 		if (link->status == DL_STATE_CONSUMER_PROBE
554 		    || link->status == DL_STATE_ACTIVE) {
555 			ret = true;
556 			break;
557 		}
558 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
559 	}
560 
561 	dev->links.status = DL_DEV_UNBINDING;
562 
563 	device_links_write_unlock();
564 	return ret;
565 }
566 
567 /**
568  * device_links_unbind_consumers - Force unbind consumers of the given device.
569  * @dev: Device to unbind the consumers of.
570  *
571  * Walk the list of links to consumers for @dev and if any of them is in the
572  * "consumer probe" state, wait for all device probes in progress to complete
573  * and start over.
574  *
575  * If that's not the case, change the status of the link to "supplier unbind"
576  * and check if the link was in the "active" state.  If so, force the consumer
577  * driver to unbind and start over (the consumer will not re-probe as we have
578  * changed the state of the link already).
579  *
580  * Links with the DL_FLAG_STATELESS flag set are ignored.
581  */
582 void device_links_unbind_consumers(struct device *dev)
583 {
584 	struct device_link *link;
585 
586  start:
587 	device_links_write_lock();
588 
589 	list_for_each_entry(link, &dev->links.consumers, s_node) {
590 		enum device_link_state status;
591 
592 		if (link->flags & DL_FLAG_STATELESS)
593 			continue;
594 
595 		status = link->status;
596 		if (status == DL_STATE_CONSUMER_PROBE) {
597 			device_links_write_unlock();
598 
599 			wait_for_device_probe();
600 			goto start;
601 		}
602 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
603 		if (status == DL_STATE_ACTIVE) {
604 			struct device *consumer = link->consumer;
605 
606 			get_device(consumer);
607 
608 			device_links_write_unlock();
609 
610 			device_release_driver_internal(consumer, NULL,
611 						       consumer->parent);
612 			put_device(consumer);
613 			goto start;
614 		}
615 	}
616 
617 	device_links_write_unlock();
618 }
619 
620 /**
621  * device_links_purge - Delete existing links to other devices.
622  * @dev: Target device.
623  */
624 static void device_links_purge(struct device *dev)
625 {
626 	struct device_link *link, *ln;
627 
628 	/*
629 	 * Delete all of the remaining links from this device to any other
630 	 * devices (either consumers or suppliers).
631 	 */
632 	device_links_write_lock();
633 
634 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
635 		WARN_ON(link->status == DL_STATE_ACTIVE);
636 		__device_link_del(&link->kref);
637 	}
638 
639 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
640 		WARN_ON(link->status != DL_STATE_DORMANT &&
641 			link->status != DL_STATE_NONE);
642 		__device_link_del(&link->kref);
643 	}
644 
645 	device_links_write_unlock();
646 }
647 
648 /* Device links support end. */
649 
650 int (*platform_notify)(struct device *dev) = NULL;
651 int (*platform_notify_remove)(struct device *dev) = NULL;
652 static struct kobject *dev_kobj;
653 struct kobject *sysfs_dev_char_kobj;
654 struct kobject *sysfs_dev_block_kobj;
655 
656 static DEFINE_MUTEX(device_hotplug_lock);
657 
658 void lock_device_hotplug(void)
659 {
660 	mutex_lock(&device_hotplug_lock);
661 }
662 
663 void unlock_device_hotplug(void)
664 {
665 	mutex_unlock(&device_hotplug_lock);
666 }
667 
668 int lock_device_hotplug_sysfs(void)
669 {
670 	if (mutex_trylock(&device_hotplug_lock))
671 		return 0;
672 
673 	/* Avoid busy looping (5 ms of sleep should do). */
674 	msleep(5);
675 	return restart_syscall();
676 }
677 
678 #ifdef CONFIG_BLOCK
679 static inline int device_is_not_partition(struct device *dev)
680 {
681 	return !(dev->type == &part_type);
682 }
683 #else
684 static inline int device_is_not_partition(struct device *dev)
685 {
686 	return 1;
687 }
688 #endif
689 
690 /**
691  * dev_driver_string - Return a device's driver name, if at all possible
692  * @dev: struct device to get the name of
693  *
694  * Will return the device's driver's name if it is bound to a device.  If
695  * the device is not bound to a driver, it will return the name of the bus
696  * it is attached to.  If it is not attached to a bus either, an empty
697  * string will be returned.
698  */
699 const char *dev_driver_string(const struct device *dev)
700 {
701 	struct device_driver *drv;
702 
703 	/* dev->driver can change to NULL underneath us because of unbinding,
704 	 * so be careful about accessing it.  dev->bus and dev->class should
705 	 * never change once they are set, so they don't need special care.
706 	 */
707 	drv = READ_ONCE(dev->driver);
708 	return drv ? drv->name :
709 			(dev->bus ? dev->bus->name :
710 			(dev->class ? dev->class->name : ""));
711 }
712 EXPORT_SYMBOL(dev_driver_string);
713 
714 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
715 
716 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
717 			     char *buf)
718 {
719 	struct device_attribute *dev_attr = to_dev_attr(attr);
720 	struct device *dev = kobj_to_dev(kobj);
721 	ssize_t ret = -EIO;
722 
723 	if (dev_attr->show)
724 		ret = dev_attr->show(dev, dev_attr, buf);
725 	if (ret >= (ssize_t)PAGE_SIZE) {
726 		printk("dev_attr_show: %pS returned bad count\n",
727 				dev_attr->show);
728 	}
729 	return ret;
730 }
731 
732 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
733 			      const char *buf, size_t count)
734 {
735 	struct device_attribute *dev_attr = to_dev_attr(attr);
736 	struct device *dev = kobj_to_dev(kobj);
737 	ssize_t ret = -EIO;
738 
739 	if (dev_attr->store)
740 		ret = dev_attr->store(dev, dev_attr, buf, count);
741 	return ret;
742 }
743 
744 static const struct sysfs_ops dev_sysfs_ops = {
745 	.show	= dev_attr_show,
746 	.store	= dev_attr_store,
747 };
748 
749 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
750 
751 ssize_t device_store_ulong(struct device *dev,
752 			   struct device_attribute *attr,
753 			   const char *buf, size_t size)
754 {
755 	struct dev_ext_attribute *ea = to_ext_attr(attr);
756 	char *end;
757 	unsigned long new = simple_strtoul(buf, &end, 0);
758 	if (end == buf)
759 		return -EINVAL;
760 	*(unsigned long *)(ea->var) = new;
761 	/* Always return full write size even if we didn't consume all */
762 	return size;
763 }
764 EXPORT_SYMBOL_GPL(device_store_ulong);
765 
766 ssize_t device_show_ulong(struct device *dev,
767 			  struct device_attribute *attr,
768 			  char *buf)
769 {
770 	struct dev_ext_attribute *ea = to_ext_attr(attr);
771 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
772 }
773 EXPORT_SYMBOL_GPL(device_show_ulong);
774 
775 ssize_t device_store_int(struct device *dev,
776 			 struct device_attribute *attr,
777 			 const char *buf, size_t size)
778 {
779 	struct dev_ext_attribute *ea = to_ext_attr(attr);
780 	char *end;
781 	long new = simple_strtol(buf, &end, 0);
782 	if (end == buf || new > INT_MAX || new < INT_MIN)
783 		return -EINVAL;
784 	*(int *)(ea->var) = new;
785 	/* Always return full write size even if we didn't consume all */
786 	return size;
787 }
788 EXPORT_SYMBOL_GPL(device_store_int);
789 
790 ssize_t device_show_int(struct device *dev,
791 			struct device_attribute *attr,
792 			char *buf)
793 {
794 	struct dev_ext_attribute *ea = to_ext_attr(attr);
795 
796 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
797 }
798 EXPORT_SYMBOL_GPL(device_show_int);
799 
800 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
801 			  const char *buf, size_t size)
802 {
803 	struct dev_ext_attribute *ea = to_ext_attr(attr);
804 
805 	if (strtobool(buf, ea->var) < 0)
806 		return -EINVAL;
807 
808 	return size;
809 }
810 EXPORT_SYMBOL_GPL(device_store_bool);
811 
812 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
813 			 char *buf)
814 {
815 	struct dev_ext_attribute *ea = to_ext_attr(attr);
816 
817 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
818 }
819 EXPORT_SYMBOL_GPL(device_show_bool);
820 
821 /**
822  * device_release - free device structure.
823  * @kobj: device's kobject.
824  *
825  * This is called once the reference count for the object
826  * reaches 0. We forward the call to the device's release
827  * method, which should handle actually freeing the structure.
828  */
829 static void device_release(struct kobject *kobj)
830 {
831 	struct device *dev = kobj_to_dev(kobj);
832 	struct device_private *p = dev->p;
833 
834 	/*
835 	 * Some platform devices are driven without driver attached
836 	 * and managed resources may have been acquired.  Make sure
837 	 * all resources are released.
838 	 *
839 	 * Drivers still can add resources into device after device
840 	 * is deleted but alive, so release devres here to avoid
841 	 * possible memory leak.
842 	 */
843 	devres_release_all(dev);
844 
845 	if (dev->release)
846 		dev->release(dev);
847 	else if (dev->type && dev->type->release)
848 		dev->type->release(dev);
849 	else if (dev->class && dev->class->dev_release)
850 		dev->class->dev_release(dev);
851 	else
852 		WARN(1, KERN_ERR "Device '%s' does not have a release() "
853 			"function, it is broken and must be fixed.\n",
854 			dev_name(dev));
855 	kfree(p);
856 }
857 
858 static const void *device_namespace(struct kobject *kobj)
859 {
860 	struct device *dev = kobj_to_dev(kobj);
861 	const void *ns = NULL;
862 
863 	if (dev->class && dev->class->ns_type)
864 		ns = dev->class->namespace(dev);
865 
866 	return ns;
867 }
868 
869 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
870 {
871 	struct device *dev = kobj_to_dev(kobj);
872 
873 	if (dev->class && dev->class->get_ownership)
874 		dev->class->get_ownership(dev, uid, gid);
875 }
876 
877 static struct kobj_type device_ktype = {
878 	.release	= device_release,
879 	.sysfs_ops	= &dev_sysfs_ops,
880 	.namespace	= device_namespace,
881 	.get_ownership	= device_get_ownership,
882 };
883 
884 
885 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
886 {
887 	struct kobj_type *ktype = get_ktype(kobj);
888 
889 	if (ktype == &device_ktype) {
890 		struct device *dev = kobj_to_dev(kobj);
891 		if (dev->bus)
892 			return 1;
893 		if (dev->class)
894 			return 1;
895 	}
896 	return 0;
897 }
898 
899 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
900 {
901 	struct device *dev = kobj_to_dev(kobj);
902 
903 	if (dev->bus)
904 		return dev->bus->name;
905 	if (dev->class)
906 		return dev->class->name;
907 	return NULL;
908 }
909 
910 static int dev_uevent(struct kset *kset, struct kobject *kobj,
911 		      struct kobj_uevent_env *env)
912 {
913 	struct device *dev = kobj_to_dev(kobj);
914 	int retval = 0;
915 
916 	/* add device node properties if present */
917 	if (MAJOR(dev->devt)) {
918 		const char *tmp;
919 		const char *name;
920 		umode_t mode = 0;
921 		kuid_t uid = GLOBAL_ROOT_UID;
922 		kgid_t gid = GLOBAL_ROOT_GID;
923 
924 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
925 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
926 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
927 		if (name) {
928 			add_uevent_var(env, "DEVNAME=%s", name);
929 			if (mode)
930 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
931 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
932 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
933 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
934 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
935 			kfree(tmp);
936 		}
937 	}
938 
939 	if (dev->type && dev->type->name)
940 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
941 
942 	if (dev->driver)
943 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
944 
945 	/* Add common DT information about the device */
946 	of_device_uevent(dev, env);
947 
948 	/* have the bus specific function add its stuff */
949 	if (dev->bus && dev->bus->uevent) {
950 		retval = dev->bus->uevent(dev, env);
951 		if (retval)
952 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
953 				 dev_name(dev), __func__, retval);
954 	}
955 
956 	/* have the class specific function add its stuff */
957 	if (dev->class && dev->class->dev_uevent) {
958 		retval = dev->class->dev_uevent(dev, env);
959 		if (retval)
960 			pr_debug("device: '%s': %s: class uevent() "
961 				 "returned %d\n", dev_name(dev),
962 				 __func__, retval);
963 	}
964 
965 	/* have the device type specific function add its stuff */
966 	if (dev->type && dev->type->uevent) {
967 		retval = dev->type->uevent(dev, env);
968 		if (retval)
969 			pr_debug("device: '%s': %s: dev_type uevent() "
970 				 "returned %d\n", dev_name(dev),
971 				 __func__, retval);
972 	}
973 
974 	return retval;
975 }
976 
977 static const struct kset_uevent_ops device_uevent_ops = {
978 	.filter =	dev_uevent_filter,
979 	.name =		dev_uevent_name,
980 	.uevent =	dev_uevent,
981 };
982 
983 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
984 			   char *buf)
985 {
986 	struct kobject *top_kobj;
987 	struct kset *kset;
988 	struct kobj_uevent_env *env = NULL;
989 	int i;
990 	size_t count = 0;
991 	int retval;
992 
993 	/* search the kset, the device belongs to */
994 	top_kobj = &dev->kobj;
995 	while (!top_kobj->kset && top_kobj->parent)
996 		top_kobj = top_kobj->parent;
997 	if (!top_kobj->kset)
998 		goto out;
999 
1000 	kset = top_kobj->kset;
1001 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1002 		goto out;
1003 
1004 	/* respect filter */
1005 	if (kset->uevent_ops && kset->uevent_ops->filter)
1006 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1007 			goto out;
1008 
1009 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1010 	if (!env)
1011 		return -ENOMEM;
1012 
1013 	/* let the kset specific function add its keys */
1014 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1015 	if (retval)
1016 		goto out;
1017 
1018 	/* copy keys to file */
1019 	for (i = 0; i < env->envp_idx; i++)
1020 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1021 out:
1022 	kfree(env);
1023 	return count;
1024 }
1025 
1026 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1027 			    const char *buf, size_t count)
1028 {
1029 	if (kobject_synth_uevent(&dev->kobj, buf, count))
1030 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1031 
1032 	return count;
1033 }
1034 static DEVICE_ATTR_RW(uevent);
1035 
1036 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1037 			   char *buf)
1038 {
1039 	bool val;
1040 
1041 	device_lock(dev);
1042 	val = !dev->offline;
1043 	device_unlock(dev);
1044 	return sprintf(buf, "%u\n", val);
1045 }
1046 
1047 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1048 			    const char *buf, size_t count)
1049 {
1050 	bool val;
1051 	int ret;
1052 
1053 	ret = strtobool(buf, &val);
1054 	if (ret < 0)
1055 		return ret;
1056 
1057 	ret = lock_device_hotplug_sysfs();
1058 	if (ret)
1059 		return ret;
1060 
1061 	ret = val ? device_online(dev) : device_offline(dev);
1062 	unlock_device_hotplug();
1063 	return ret < 0 ? ret : count;
1064 }
1065 static DEVICE_ATTR_RW(online);
1066 
1067 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1068 {
1069 	return sysfs_create_groups(&dev->kobj, groups);
1070 }
1071 EXPORT_SYMBOL_GPL(device_add_groups);
1072 
1073 void device_remove_groups(struct device *dev,
1074 			  const struct attribute_group **groups)
1075 {
1076 	sysfs_remove_groups(&dev->kobj, groups);
1077 }
1078 EXPORT_SYMBOL_GPL(device_remove_groups);
1079 
1080 union device_attr_group_devres {
1081 	const struct attribute_group *group;
1082 	const struct attribute_group **groups;
1083 };
1084 
1085 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1086 {
1087 	return ((union device_attr_group_devres *)res)->group == data;
1088 }
1089 
1090 static void devm_attr_group_remove(struct device *dev, void *res)
1091 {
1092 	union device_attr_group_devres *devres = res;
1093 	const struct attribute_group *group = devres->group;
1094 
1095 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1096 	sysfs_remove_group(&dev->kobj, group);
1097 }
1098 
1099 static void devm_attr_groups_remove(struct device *dev, void *res)
1100 {
1101 	union device_attr_group_devres *devres = res;
1102 	const struct attribute_group **groups = devres->groups;
1103 
1104 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1105 	sysfs_remove_groups(&dev->kobj, groups);
1106 }
1107 
1108 /**
1109  * devm_device_add_group - given a device, create a managed attribute group
1110  * @dev:	The device to create the group for
1111  * @grp:	The attribute group to create
1112  *
1113  * This function creates a group for the first time.  It will explicitly
1114  * warn and error if any of the attribute files being created already exist.
1115  *
1116  * Returns 0 on success or error code on failure.
1117  */
1118 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1119 {
1120 	union device_attr_group_devres *devres;
1121 	int error;
1122 
1123 	devres = devres_alloc(devm_attr_group_remove,
1124 			      sizeof(*devres), GFP_KERNEL);
1125 	if (!devres)
1126 		return -ENOMEM;
1127 
1128 	error = sysfs_create_group(&dev->kobj, grp);
1129 	if (error) {
1130 		devres_free(devres);
1131 		return error;
1132 	}
1133 
1134 	devres->group = grp;
1135 	devres_add(dev, devres);
1136 	return 0;
1137 }
1138 EXPORT_SYMBOL_GPL(devm_device_add_group);
1139 
1140 /**
1141  * devm_device_remove_group: remove a managed group from a device
1142  * @dev:	device to remove the group from
1143  * @grp:	group to remove
1144  *
1145  * This function removes a group of attributes from a device. The attributes
1146  * previously have to have been created for this group, otherwise it will fail.
1147  */
1148 void devm_device_remove_group(struct device *dev,
1149 			      const struct attribute_group *grp)
1150 {
1151 	WARN_ON(devres_release(dev, devm_attr_group_remove,
1152 			       devm_attr_group_match,
1153 			       /* cast away const */ (void *)grp));
1154 }
1155 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1156 
1157 /**
1158  * devm_device_add_groups - create a bunch of managed attribute groups
1159  * @dev:	The device to create the group for
1160  * @groups:	The attribute groups to create, NULL terminated
1161  *
1162  * This function creates a bunch of managed attribute groups.  If an error
1163  * occurs when creating a group, all previously created groups will be
1164  * removed, unwinding everything back to the original state when this
1165  * function was called.  It will explicitly warn and error if any of the
1166  * attribute files being created already exist.
1167  *
1168  * Returns 0 on success or error code from sysfs_create_group on failure.
1169  */
1170 int devm_device_add_groups(struct device *dev,
1171 			   const struct attribute_group **groups)
1172 {
1173 	union device_attr_group_devres *devres;
1174 	int error;
1175 
1176 	devres = devres_alloc(devm_attr_groups_remove,
1177 			      sizeof(*devres), GFP_KERNEL);
1178 	if (!devres)
1179 		return -ENOMEM;
1180 
1181 	error = sysfs_create_groups(&dev->kobj, groups);
1182 	if (error) {
1183 		devres_free(devres);
1184 		return error;
1185 	}
1186 
1187 	devres->groups = groups;
1188 	devres_add(dev, devres);
1189 	return 0;
1190 }
1191 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1192 
1193 /**
1194  * devm_device_remove_groups - remove a list of managed groups
1195  *
1196  * @dev:	The device for the groups to be removed from
1197  * @groups:	NULL terminated list of groups to be removed
1198  *
1199  * If groups is not NULL, remove the specified groups from the device.
1200  */
1201 void devm_device_remove_groups(struct device *dev,
1202 			       const struct attribute_group **groups)
1203 {
1204 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1205 			       devm_attr_group_match,
1206 			       /* cast away const */ (void *)groups));
1207 }
1208 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1209 
1210 static int device_add_attrs(struct device *dev)
1211 {
1212 	struct class *class = dev->class;
1213 	const struct device_type *type = dev->type;
1214 	int error;
1215 
1216 	if (class) {
1217 		error = device_add_groups(dev, class->dev_groups);
1218 		if (error)
1219 			return error;
1220 	}
1221 
1222 	if (type) {
1223 		error = device_add_groups(dev, type->groups);
1224 		if (error)
1225 			goto err_remove_class_groups;
1226 	}
1227 
1228 	error = device_add_groups(dev, dev->groups);
1229 	if (error)
1230 		goto err_remove_type_groups;
1231 
1232 	if (device_supports_offline(dev) && !dev->offline_disabled) {
1233 		error = device_create_file(dev, &dev_attr_online);
1234 		if (error)
1235 			goto err_remove_dev_groups;
1236 	}
1237 
1238 	return 0;
1239 
1240  err_remove_dev_groups:
1241 	device_remove_groups(dev, dev->groups);
1242  err_remove_type_groups:
1243 	if (type)
1244 		device_remove_groups(dev, type->groups);
1245  err_remove_class_groups:
1246 	if (class)
1247 		device_remove_groups(dev, class->dev_groups);
1248 
1249 	return error;
1250 }
1251 
1252 static void device_remove_attrs(struct device *dev)
1253 {
1254 	struct class *class = dev->class;
1255 	const struct device_type *type = dev->type;
1256 
1257 	device_remove_file(dev, &dev_attr_online);
1258 	device_remove_groups(dev, dev->groups);
1259 
1260 	if (type)
1261 		device_remove_groups(dev, type->groups);
1262 
1263 	if (class)
1264 		device_remove_groups(dev, class->dev_groups);
1265 }
1266 
1267 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1268 			char *buf)
1269 {
1270 	return print_dev_t(buf, dev->devt);
1271 }
1272 static DEVICE_ATTR_RO(dev);
1273 
1274 /* /sys/devices/ */
1275 struct kset *devices_kset;
1276 
1277 /**
1278  * devices_kset_move_before - Move device in the devices_kset's list.
1279  * @deva: Device to move.
1280  * @devb: Device @deva should come before.
1281  */
1282 static void devices_kset_move_before(struct device *deva, struct device *devb)
1283 {
1284 	if (!devices_kset)
1285 		return;
1286 	pr_debug("devices_kset: Moving %s before %s\n",
1287 		 dev_name(deva), dev_name(devb));
1288 	spin_lock(&devices_kset->list_lock);
1289 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1290 	spin_unlock(&devices_kset->list_lock);
1291 }
1292 
1293 /**
1294  * devices_kset_move_after - Move device in the devices_kset's list.
1295  * @deva: Device to move
1296  * @devb: Device @deva should come after.
1297  */
1298 static void devices_kset_move_after(struct device *deva, struct device *devb)
1299 {
1300 	if (!devices_kset)
1301 		return;
1302 	pr_debug("devices_kset: Moving %s after %s\n",
1303 		 dev_name(deva), dev_name(devb));
1304 	spin_lock(&devices_kset->list_lock);
1305 	list_move(&deva->kobj.entry, &devb->kobj.entry);
1306 	spin_unlock(&devices_kset->list_lock);
1307 }
1308 
1309 /**
1310  * devices_kset_move_last - move the device to the end of devices_kset's list.
1311  * @dev: device to move
1312  */
1313 void devices_kset_move_last(struct device *dev)
1314 {
1315 	if (!devices_kset)
1316 		return;
1317 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1318 	spin_lock(&devices_kset->list_lock);
1319 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1320 	spin_unlock(&devices_kset->list_lock);
1321 }
1322 
1323 /**
1324  * device_create_file - create sysfs attribute file for device.
1325  * @dev: device.
1326  * @attr: device attribute descriptor.
1327  */
1328 int device_create_file(struct device *dev,
1329 		       const struct device_attribute *attr)
1330 {
1331 	int error = 0;
1332 
1333 	if (dev) {
1334 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1335 			"Attribute %s: write permission without 'store'\n",
1336 			attr->attr.name);
1337 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1338 			"Attribute %s: read permission without 'show'\n",
1339 			attr->attr.name);
1340 		error = sysfs_create_file(&dev->kobj, &attr->attr);
1341 	}
1342 
1343 	return error;
1344 }
1345 EXPORT_SYMBOL_GPL(device_create_file);
1346 
1347 /**
1348  * device_remove_file - remove sysfs attribute file.
1349  * @dev: device.
1350  * @attr: device attribute descriptor.
1351  */
1352 void device_remove_file(struct device *dev,
1353 			const struct device_attribute *attr)
1354 {
1355 	if (dev)
1356 		sysfs_remove_file(&dev->kobj, &attr->attr);
1357 }
1358 EXPORT_SYMBOL_GPL(device_remove_file);
1359 
1360 /**
1361  * device_remove_file_self - remove sysfs attribute file from its own method.
1362  * @dev: device.
1363  * @attr: device attribute descriptor.
1364  *
1365  * See kernfs_remove_self() for details.
1366  */
1367 bool device_remove_file_self(struct device *dev,
1368 			     const struct device_attribute *attr)
1369 {
1370 	if (dev)
1371 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1372 	else
1373 		return false;
1374 }
1375 EXPORT_SYMBOL_GPL(device_remove_file_self);
1376 
1377 /**
1378  * device_create_bin_file - create sysfs binary attribute file for device.
1379  * @dev: device.
1380  * @attr: device binary attribute descriptor.
1381  */
1382 int device_create_bin_file(struct device *dev,
1383 			   const struct bin_attribute *attr)
1384 {
1385 	int error = -EINVAL;
1386 	if (dev)
1387 		error = sysfs_create_bin_file(&dev->kobj, attr);
1388 	return error;
1389 }
1390 EXPORT_SYMBOL_GPL(device_create_bin_file);
1391 
1392 /**
1393  * device_remove_bin_file - remove sysfs binary attribute file
1394  * @dev: device.
1395  * @attr: device binary attribute descriptor.
1396  */
1397 void device_remove_bin_file(struct device *dev,
1398 			    const struct bin_attribute *attr)
1399 {
1400 	if (dev)
1401 		sysfs_remove_bin_file(&dev->kobj, attr);
1402 }
1403 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1404 
1405 static void klist_children_get(struct klist_node *n)
1406 {
1407 	struct device_private *p = to_device_private_parent(n);
1408 	struct device *dev = p->device;
1409 
1410 	get_device(dev);
1411 }
1412 
1413 static void klist_children_put(struct klist_node *n)
1414 {
1415 	struct device_private *p = to_device_private_parent(n);
1416 	struct device *dev = p->device;
1417 
1418 	put_device(dev);
1419 }
1420 
1421 /**
1422  * device_initialize - init device structure.
1423  * @dev: device.
1424  *
1425  * This prepares the device for use by other layers by initializing
1426  * its fields.
1427  * It is the first half of device_register(), if called by
1428  * that function, though it can also be called separately, so one
1429  * may use @dev's fields. In particular, get_device()/put_device()
1430  * may be used for reference counting of @dev after calling this
1431  * function.
1432  *
1433  * All fields in @dev must be initialized by the caller to 0, except
1434  * for those explicitly set to some other value.  The simplest
1435  * approach is to use kzalloc() to allocate the structure containing
1436  * @dev.
1437  *
1438  * NOTE: Use put_device() to give up your reference instead of freeing
1439  * @dev directly once you have called this function.
1440  */
1441 void device_initialize(struct device *dev)
1442 {
1443 	dev->kobj.kset = devices_kset;
1444 	kobject_init(&dev->kobj, &device_ktype);
1445 	INIT_LIST_HEAD(&dev->dma_pools);
1446 	mutex_init(&dev->mutex);
1447 	lockdep_set_novalidate_class(&dev->mutex);
1448 	spin_lock_init(&dev->devres_lock);
1449 	INIT_LIST_HEAD(&dev->devres_head);
1450 	device_pm_init(dev);
1451 	set_dev_node(dev, -1);
1452 #ifdef CONFIG_GENERIC_MSI_IRQ
1453 	INIT_LIST_HEAD(&dev->msi_list);
1454 #endif
1455 	INIT_LIST_HEAD(&dev->links.consumers);
1456 	INIT_LIST_HEAD(&dev->links.suppliers);
1457 	dev->links.status = DL_DEV_NO_DRIVER;
1458 }
1459 EXPORT_SYMBOL_GPL(device_initialize);
1460 
1461 struct kobject *virtual_device_parent(struct device *dev)
1462 {
1463 	static struct kobject *virtual_dir = NULL;
1464 
1465 	if (!virtual_dir)
1466 		virtual_dir = kobject_create_and_add("virtual",
1467 						     &devices_kset->kobj);
1468 
1469 	return virtual_dir;
1470 }
1471 
1472 struct class_dir {
1473 	struct kobject kobj;
1474 	struct class *class;
1475 };
1476 
1477 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1478 
1479 static void class_dir_release(struct kobject *kobj)
1480 {
1481 	struct class_dir *dir = to_class_dir(kobj);
1482 	kfree(dir);
1483 }
1484 
1485 static const
1486 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1487 {
1488 	struct class_dir *dir = to_class_dir(kobj);
1489 	return dir->class->ns_type;
1490 }
1491 
1492 static struct kobj_type class_dir_ktype = {
1493 	.release	= class_dir_release,
1494 	.sysfs_ops	= &kobj_sysfs_ops,
1495 	.child_ns_type	= class_dir_child_ns_type
1496 };
1497 
1498 static struct kobject *
1499 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1500 {
1501 	struct class_dir *dir;
1502 	int retval;
1503 
1504 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1505 	if (!dir)
1506 		return ERR_PTR(-ENOMEM);
1507 
1508 	dir->class = class;
1509 	kobject_init(&dir->kobj, &class_dir_ktype);
1510 
1511 	dir->kobj.kset = &class->p->glue_dirs;
1512 
1513 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1514 	if (retval < 0) {
1515 		kobject_put(&dir->kobj);
1516 		return ERR_PTR(retval);
1517 	}
1518 	return &dir->kobj;
1519 }
1520 
1521 static DEFINE_MUTEX(gdp_mutex);
1522 
1523 static struct kobject *get_device_parent(struct device *dev,
1524 					 struct device *parent)
1525 {
1526 	if (dev->class) {
1527 		struct kobject *kobj = NULL;
1528 		struct kobject *parent_kobj;
1529 		struct kobject *k;
1530 
1531 #ifdef CONFIG_BLOCK
1532 		/* block disks show up in /sys/block */
1533 		if (sysfs_deprecated && dev->class == &block_class) {
1534 			if (parent && parent->class == &block_class)
1535 				return &parent->kobj;
1536 			return &block_class.p->subsys.kobj;
1537 		}
1538 #endif
1539 
1540 		/*
1541 		 * If we have no parent, we live in "virtual".
1542 		 * Class-devices with a non class-device as parent, live
1543 		 * in a "glue" directory to prevent namespace collisions.
1544 		 */
1545 		if (parent == NULL)
1546 			parent_kobj = virtual_device_parent(dev);
1547 		else if (parent->class && !dev->class->ns_type)
1548 			return &parent->kobj;
1549 		else
1550 			parent_kobj = &parent->kobj;
1551 
1552 		mutex_lock(&gdp_mutex);
1553 
1554 		/* find our class-directory at the parent and reference it */
1555 		spin_lock(&dev->class->p->glue_dirs.list_lock);
1556 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1557 			if (k->parent == parent_kobj) {
1558 				kobj = kobject_get(k);
1559 				break;
1560 			}
1561 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1562 		if (kobj) {
1563 			mutex_unlock(&gdp_mutex);
1564 			return kobj;
1565 		}
1566 
1567 		/* or create a new class-directory at the parent device */
1568 		k = class_dir_create_and_add(dev->class, parent_kobj);
1569 		/* do not emit an uevent for this simple "glue" directory */
1570 		mutex_unlock(&gdp_mutex);
1571 		return k;
1572 	}
1573 
1574 	/* subsystems can specify a default root directory for their devices */
1575 	if (!parent && dev->bus && dev->bus->dev_root)
1576 		return &dev->bus->dev_root->kobj;
1577 
1578 	if (parent)
1579 		return &parent->kobj;
1580 	return NULL;
1581 }
1582 
1583 static inline bool live_in_glue_dir(struct kobject *kobj,
1584 				    struct device *dev)
1585 {
1586 	if (!kobj || !dev->class ||
1587 	    kobj->kset != &dev->class->p->glue_dirs)
1588 		return false;
1589 	return true;
1590 }
1591 
1592 static inline struct kobject *get_glue_dir(struct device *dev)
1593 {
1594 	return dev->kobj.parent;
1595 }
1596 
1597 /*
1598  * make sure cleaning up dir as the last step, we need to make
1599  * sure .release handler of kobject is run with holding the
1600  * global lock
1601  */
1602 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1603 {
1604 	/* see if we live in a "glue" directory */
1605 	if (!live_in_glue_dir(glue_dir, dev))
1606 		return;
1607 
1608 	mutex_lock(&gdp_mutex);
1609 	kobject_put(glue_dir);
1610 	mutex_unlock(&gdp_mutex);
1611 }
1612 
1613 static int device_add_class_symlinks(struct device *dev)
1614 {
1615 	struct device_node *of_node = dev_of_node(dev);
1616 	int error;
1617 
1618 	if (of_node) {
1619 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1620 		if (error)
1621 			dev_warn(dev, "Error %d creating of_node link\n",error);
1622 		/* An error here doesn't warrant bringing down the device */
1623 	}
1624 
1625 	if (!dev->class)
1626 		return 0;
1627 
1628 	error = sysfs_create_link(&dev->kobj,
1629 				  &dev->class->p->subsys.kobj,
1630 				  "subsystem");
1631 	if (error)
1632 		goto out_devnode;
1633 
1634 	if (dev->parent && device_is_not_partition(dev)) {
1635 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1636 					  "device");
1637 		if (error)
1638 			goto out_subsys;
1639 	}
1640 
1641 #ifdef CONFIG_BLOCK
1642 	/* /sys/block has directories and does not need symlinks */
1643 	if (sysfs_deprecated && dev->class == &block_class)
1644 		return 0;
1645 #endif
1646 
1647 	/* link in the class directory pointing to the device */
1648 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1649 				  &dev->kobj, dev_name(dev));
1650 	if (error)
1651 		goto out_device;
1652 
1653 	return 0;
1654 
1655 out_device:
1656 	sysfs_remove_link(&dev->kobj, "device");
1657 
1658 out_subsys:
1659 	sysfs_remove_link(&dev->kobj, "subsystem");
1660 out_devnode:
1661 	sysfs_remove_link(&dev->kobj, "of_node");
1662 	return error;
1663 }
1664 
1665 static void device_remove_class_symlinks(struct device *dev)
1666 {
1667 	if (dev_of_node(dev))
1668 		sysfs_remove_link(&dev->kobj, "of_node");
1669 
1670 	if (!dev->class)
1671 		return;
1672 
1673 	if (dev->parent && device_is_not_partition(dev))
1674 		sysfs_remove_link(&dev->kobj, "device");
1675 	sysfs_remove_link(&dev->kobj, "subsystem");
1676 #ifdef CONFIG_BLOCK
1677 	if (sysfs_deprecated && dev->class == &block_class)
1678 		return;
1679 #endif
1680 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1681 }
1682 
1683 /**
1684  * dev_set_name - set a device name
1685  * @dev: device
1686  * @fmt: format string for the device's name
1687  */
1688 int dev_set_name(struct device *dev, const char *fmt, ...)
1689 {
1690 	va_list vargs;
1691 	int err;
1692 
1693 	va_start(vargs, fmt);
1694 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1695 	va_end(vargs);
1696 	return err;
1697 }
1698 EXPORT_SYMBOL_GPL(dev_set_name);
1699 
1700 /**
1701  * device_to_dev_kobj - select a /sys/dev/ directory for the device
1702  * @dev: device
1703  *
1704  * By default we select char/ for new entries.  Setting class->dev_obj
1705  * to NULL prevents an entry from being created.  class->dev_kobj must
1706  * be set (or cleared) before any devices are registered to the class
1707  * otherwise device_create_sys_dev_entry() and
1708  * device_remove_sys_dev_entry() will disagree about the presence of
1709  * the link.
1710  */
1711 static struct kobject *device_to_dev_kobj(struct device *dev)
1712 {
1713 	struct kobject *kobj;
1714 
1715 	if (dev->class)
1716 		kobj = dev->class->dev_kobj;
1717 	else
1718 		kobj = sysfs_dev_char_kobj;
1719 
1720 	return kobj;
1721 }
1722 
1723 static int device_create_sys_dev_entry(struct device *dev)
1724 {
1725 	struct kobject *kobj = device_to_dev_kobj(dev);
1726 	int error = 0;
1727 	char devt_str[15];
1728 
1729 	if (kobj) {
1730 		format_dev_t(devt_str, dev->devt);
1731 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1732 	}
1733 
1734 	return error;
1735 }
1736 
1737 static void device_remove_sys_dev_entry(struct device *dev)
1738 {
1739 	struct kobject *kobj = device_to_dev_kobj(dev);
1740 	char devt_str[15];
1741 
1742 	if (kobj) {
1743 		format_dev_t(devt_str, dev->devt);
1744 		sysfs_remove_link(kobj, devt_str);
1745 	}
1746 }
1747 
1748 int device_private_init(struct device *dev)
1749 {
1750 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1751 	if (!dev->p)
1752 		return -ENOMEM;
1753 	dev->p->device = dev;
1754 	klist_init(&dev->p->klist_children, klist_children_get,
1755 		   klist_children_put);
1756 	INIT_LIST_HEAD(&dev->p->deferred_probe);
1757 	return 0;
1758 }
1759 
1760 /**
1761  * device_add - add device to device hierarchy.
1762  * @dev: device.
1763  *
1764  * This is part 2 of device_register(), though may be called
1765  * separately _iff_ device_initialize() has been called separately.
1766  *
1767  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1768  * to the global and sibling lists for the device, then
1769  * adds it to the other relevant subsystems of the driver model.
1770  *
1771  * Do not call this routine or device_register() more than once for
1772  * any device structure.  The driver model core is not designed to work
1773  * with devices that get unregistered and then spring back to life.
1774  * (Among other things, it's very hard to guarantee that all references
1775  * to the previous incarnation of @dev have been dropped.)  Allocate
1776  * and register a fresh new struct device instead.
1777  *
1778  * NOTE: _Never_ directly free @dev after calling this function, even
1779  * if it returned an error! Always use put_device() to give up your
1780  * reference instead.
1781  */
1782 int device_add(struct device *dev)
1783 {
1784 	struct device *parent;
1785 	struct kobject *kobj;
1786 	struct class_interface *class_intf;
1787 	int error = -EINVAL;
1788 	struct kobject *glue_dir = NULL;
1789 
1790 	dev = get_device(dev);
1791 	if (!dev)
1792 		goto done;
1793 
1794 	if (!dev->p) {
1795 		error = device_private_init(dev);
1796 		if (error)
1797 			goto done;
1798 	}
1799 
1800 	/*
1801 	 * for statically allocated devices, which should all be converted
1802 	 * some day, we need to initialize the name. We prevent reading back
1803 	 * the name, and force the use of dev_name()
1804 	 */
1805 	if (dev->init_name) {
1806 		dev_set_name(dev, "%s", dev->init_name);
1807 		dev->init_name = NULL;
1808 	}
1809 
1810 	/* subsystems can specify simple device enumeration */
1811 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1812 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1813 
1814 	if (!dev_name(dev)) {
1815 		error = -EINVAL;
1816 		goto name_error;
1817 	}
1818 
1819 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1820 
1821 	parent = get_device(dev->parent);
1822 	kobj = get_device_parent(dev, parent);
1823 	if (IS_ERR(kobj)) {
1824 		error = PTR_ERR(kobj);
1825 		goto parent_error;
1826 	}
1827 	if (kobj)
1828 		dev->kobj.parent = kobj;
1829 
1830 	/* use parent numa_node */
1831 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1832 		set_dev_node(dev, dev_to_node(parent));
1833 
1834 	/* first, register with generic layer. */
1835 	/* we require the name to be set before, and pass NULL */
1836 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1837 	if (error) {
1838 		glue_dir = get_glue_dir(dev);
1839 		goto Error;
1840 	}
1841 
1842 	/* notify platform of device entry */
1843 	if (platform_notify)
1844 		platform_notify(dev);
1845 
1846 	error = device_create_file(dev, &dev_attr_uevent);
1847 	if (error)
1848 		goto attrError;
1849 
1850 	error = device_add_class_symlinks(dev);
1851 	if (error)
1852 		goto SymlinkError;
1853 	error = device_add_attrs(dev);
1854 	if (error)
1855 		goto AttrsError;
1856 	error = bus_add_device(dev);
1857 	if (error)
1858 		goto BusError;
1859 	error = dpm_sysfs_add(dev);
1860 	if (error)
1861 		goto DPMError;
1862 	device_pm_add(dev);
1863 
1864 	if (MAJOR(dev->devt)) {
1865 		error = device_create_file(dev, &dev_attr_dev);
1866 		if (error)
1867 			goto DevAttrError;
1868 
1869 		error = device_create_sys_dev_entry(dev);
1870 		if (error)
1871 			goto SysEntryError;
1872 
1873 		devtmpfs_create_node(dev);
1874 	}
1875 
1876 	/* Notify clients of device addition.  This call must come
1877 	 * after dpm_sysfs_add() and before kobject_uevent().
1878 	 */
1879 	if (dev->bus)
1880 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1881 					     BUS_NOTIFY_ADD_DEVICE, dev);
1882 
1883 	kobject_uevent(&dev->kobj, KOBJ_ADD);
1884 	bus_probe_device(dev);
1885 	if (parent)
1886 		klist_add_tail(&dev->p->knode_parent,
1887 			       &parent->p->klist_children);
1888 
1889 	if (dev->class) {
1890 		mutex_lock(&dev->class->p->mutex);
1891 		/* tie the class to the device */
1892 		klist_add_tail(&dev->knode_class,
1893 			       &dev->class->p->klist_devices);
1894 
1895 		/* notify any interfaces that the device is here */
1896 		list_for_each_entry(class_intf,
1897 				    &dev->class->p->interfaces, node)
1898 			if (class_intf->add_dev)
1899 				class_intf->add_dev(dev, class_intf);
1900 		mutex_unlock(&dev->class->p->mutex);
1901 	}
1902 done:
1903 	put_device(dev);
1904 	return error;
1905  SysEntryError:
1906 	if (MAJOR(dev->devt))
1907 		device_remove_file(dev, &dev_attr_dev);
1908  DevAttrError:
1909 	device_pm_remove(dev);
1910 	dpm_sysfs_remove(dev);
1911  DPMError:
1912 	bus_remove_device(dev);
1913  BusError:
1914 	device_remove_attrs(dev);
1915  AttrsError:
1916 	device_remove_class_symlinks(dev);
1917  SymlinkError:
1918 	device_remove_file(dev, &dev_attr_uevent);
1919  attrError:
1920 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1921 	glue_dir = get_glue_dir(dev);
1922 	kobject_del(&dev->kobj);
1923  Error:
1924 	cleanup_glue_dir(dev, glue_dir);
1925 parent_error:
1926 	put_device(parent);
1927 name_error:
1928 	kfree(dev->p);
1929 	dev->p = NULL;
1930 	goto done;
1931 }
1932 EXPORT_SYMBOL_GPL(device_add);
1933 
1934 /**
1935  * device_register - register a device with the system.
1936  * @dev: pointer to the device structure
1937  *
1938  * This happens in two clean steps - initialize the device
1939  * and add it to the system. The two steps can be called
1940  * separately, but this is the easiest and most common.
1941  * I.e. you should only call the two helpers separately if
1942  * have a clearly defined need to use and refcount the device
1943  * before it is added to the hierarchy.
1944  *
1945  * For more information, see the kerneldoc for device_initialize()
1946  * and device_add().
1947  *
1948  * NOTE: _Never_ directly free @dev after calling this function, even
1949  * if it returned an error! Always use put_device() to give up the
1950  * reference initialized in this function instead.
1951  */
1952 int device_register(struct device *dev)
1953 {
1954 	device_initialize(dev);
1955 	return device_add(dev);
1956 }
1957 EXPORT_SYMBOL_GPL(device_register);
1958 
1959 /**
1960  * get_device - increment reference count for device.
1961  * @dev: device.
1962  *
1963  * This simply forwards the call to kobject_get(), though
1964  * we do take care to provide for the case that we get a NULL
1965  * pointer passed in.
1966  */
1967 struct device *get_device(struct device *dev)
1968 {
1969 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1970 }
1971 EXPORT_SYMBOL_GPL(get_device);
1972 
1973 /**
1974  * put_device - decrement reference count.
1975  * @dev: device in question.
1976  */
1977 void put_device(struct device *dev)
1978 {
1979 	/* might_sleep(); */
1980 	if (dev)
1981 		kobject_put(&dev->kobj);
1982 }
1983 EXPORT_SYMBOL_GPL(put_device);
1984 
1985 /**
1986  * device_del - delete device from system.
1987  * @dev: device.
1988  *
1989  * This is the first part of the device unregistration
1990  * sequence. This removes the device from the lists we control
1991  * from here, has it removed from the other driver model
1992  * subsystems it was added to in device_add(), and removes it
1993  * from the kobject hierarchy.
1994  *
1995  * NOTE: this should be called manually _iff_ device_add() was
1996  * also called manually.
1997  */
1998 void device_del(struct device *dev)
1999 {
2000 	struct device *parent = dev->parent;
2001 	struct kobject *glue_dir = NULL;
2002 	struct class_interface *class_intf;
2003 
2004 	/* Notify clients of device removal.  This call must come
2005 	 * before dpm_sysfs_remove().
2006 	 */
2007 	if (dev->bus)
2008 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2009 					     BUS_NOTIFY_DEL_DEVICE, dev);
2010 
2011 	dpm_sysfs_remove(dev);
2012 	if (parent)
2013 		klist_del(&dev->p->knode_parent);
2014 	if (MAJOR(dev->devt)) {
2015 		devtmpfs_delete_node(dev);
2016 		device_remove_sys_dev_entry(dev);
2017 		device_remove_file(dev, &dev_attr_dev);
2018 	}
2019 	if (dev->class) {
2020 		device_remove_class_symlinks(dev);
2021 
2022 		mutex_lock(&dev->class->p->mutex);
2023 		/* notify any interfaces that the device is now gone */
2024 		list_for_each_entry(class_intf,
2025 				    &dev->class->p->interfaces, node)
2026 			if (class_intf->remove_dev)
2027 				class_intf->remove_dev(dev, class_intf);
2028 		/* remove the device from the class list */
2029 		klist_del(&dev->knode_class);
2030 		mutex_unlock(&dev->class->p->mutex);
2031 	}
2032 	device_remove_file(dev, &dev_attr_uevent);
2033 	device_remove_attrs(dev);
2034 	bus_remove_device(dev);
2035 	device_pm_remove(dev);
2036 	driver_deferred_probe_del(dev);
2037 	device_remove_properties(dev);
2038 	device_links_purge(dev);
2039 
2040 	/* Notify the platform of the removal, in case they
2041 	 * need to do anything...
2042 	 */
2043 	if (platform_notify_remove)
2044 		platform_notify_remove(dev);
2045 	if (dev->bus)
2046 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2047 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
2048 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2049 	glue_dir = get_glue_dir(dev);
2050 	kobject_del(&dev->kobj);
2051 	cleanup_glue_dir(dev, glue_dir);
2052 	put_device(parent);
2053 }
2054 EXPORT_SYMBOL_GPL(device_del);
2055 
2056 /**
2057  * device_unregister - unregister device from system.
2058  * @dev: device going away.
2059  *
2060  * We do this in two parts, like we do device_register(). First,
2061  * we remove it from all the subsystems with device_del(), then
2062  * we decrement the reference count via put_device(). If that
2063  * is the final reference count, the device will be cleaned up
2064  * via device_release() above. Otherwise, the structure will
2065  * stick around until the final reference to the device is dropped.
2066  */
2067 void device_unregister(struct device *dev)
2068 {
2069 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2070 	device_del(dev);
2071 	put_device(dev);
2072 }
2073 EXPORT_SYMBOL_GPL(device_unregister);
2074 
2075 static struct device *prev_device(struct klist_iter *i)
2076 {
2077 	struct klist_node *n = klist_prev(i);
2078 	struct device *dev = NULL;
2079 	struct device_private *p;
2080 
2081 	if (n) {
2082 		p = to_device_private_parent(n);
2083 		dev = p->device;
2084 	}
2085 	return dev;
2086 }
2087 
2088 static struct device *next_device(struct klist_iter *i)
2089 {
2090 	struct klist_node *n = klist_next(i);
2091 	struct device *dev = NULL;
2092 	struct device_private *p;
2093 
2094 	if (n) {
2095 		p = to_device_private_parent(n);
2096 		dev = p->device;
2097 	}
2098 	return dev;
2099 }
2100 
2101 /**
2102  * device_get_devnode - path of device node file
2103  * @dev: device
2104  * @mode: returned file access mode
2105  * @uid: returned file owner
2106  * @gid: returned file group
2107  * @tmp: possibly allocated string
2108  *
2109  * Return the relative path of a possible device node.
2110  * Non-default names may need to allocate a memory to compose
2111  * a name. This memory is returned in tmp and needs to be
2112  * freed by the caller.
2113  */
2114 const char *device_get_devnode(struct device *dev,
2115 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2116 			       const char **tmp)
2117 {
2118 	char *s;
2119 
2120 	*tmp = NULL;
2121 
2122 	/* the device type may provide a specific name */
2123 	if (dev->type && dev->type->devnode)
2124 		*tmp = dev->type->devnode(dev, mode, uid, gid);
2125 	if (*tmp)
2126 		return *tmp;
2127 
2128 	/* the class may provide a specific name */
2129 	if (dev->class && dev->class->devnode)
2130 		*tmp = dev->class->devnode(dev, mode);
2131 	if (*tmp)
2132 		return *tmp;
2133 
2134 	/* return name without allocation, tmp == NULL */
2135 	if (strchr(dev_name(dev), '!') == NULL)
2136 		return dev_name(dev);
2137 
2138 	/* replace '!' in the name with '/' */
2139 	s = kstrdup(dev_name(dev), GFP_KERNEL);
2140 	if (!s)
2141 		return NULL;
2142 	strreplace(s, '!', '/');
2143 	return *tmp = s;
2144 }
2145 
2146 /**
2147  * device_for_each_child - device child iterator.
2148  * @parent: parent struct device.
2149  * @fn: function to be called for each device.
2150  * @data: data for the callback.
2151  *
2152  * Iterate over @parent's child devices, and call @fn for each,
2153  * passing it @data.
2154  *
2155  * We check the return of @fn each time. If it returns anything
2156  * other than 0, we break out and return that value.
2157  */
2158 int device_for_each_child(struct device *parent, void *data,
2159 			  int (*fn)(struct device *dev, void *data))
2160 {
2161 	struct klist_iter i;
2162 	struct device *child;
2163 	int error = 0;
2164 
2165 	if (!parent->p)
2166 		return 0;
2167 
2168 	klist_iter_init(&parent->p->klist_children, &i);
2169 	while (!error && (child = next_device(&i)))
2170 		error = fn(child, data);
2171 	klist_iter_exit(&i);
2172 	return error;
2173 }
2174 EXPORT_SYMBOL_GPL(device_for_each_child);
2175 
2176 /**
2177  * device_for_each_child_reverse - device child iterator in reversed order.
2178  * @parent: parent struct device.
2179  * @fn: function to be called for each device.
2180  * @data: data for the callback.
2181  *
2182  * Iterate over @parent's child devices, and call @fn for each,
2183  * passing it @data.
2184  *
2185  * We check the return of @fn each time. If it returns anything
2186  * other than 0, we break out and return that value.
2187  */
2188 int device_for_each_child_reverse(struct device *parent, void *data,
2189 				  int (*fn)(struct device *dev, void *data))
2190 {
2191 	struct klist_iter i;
2192 	struct device *child;
2193 	int error = 0;
2194 
2195 	if (!parent->p)
2196 		return 0;
2197 
2198 	klist_iter_init(&parent->p->klist_children, &i);
2199 	while ((child = prev_device(&i)) && !error)
2200 		error = fn(child, data);
2201 	klist_iter_exit(&i);
2202 	return error;
2203 }
2204 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2205 
2206 /**
2207  * device_find_child - device iterator for locating a particular device.
2208  * @parent: parent struct device
2209  * @match: Callback function to check device
2210  * @data: Data to pass to match function
2211  *
2212  * This is similar to the device_for_each_child() function above, but it
2213  * returns a reference to a device that is 'found' for later use, as
2214  * determined by the @match callback.
2215  *
2216  * The callback should return 0 if the device doesn't match and non-zero
2217  * if it does.  If the callback returns non-zero and a reference to the
2218  * current device can be obtained, this function will return to the caller
2219  * and not iterate over any more devices.
2220  *
2221  * NOTE: you will need to drop the reference with put_device() after use.
2222  */
2223 struct device *device_find_child(struct device *parent, void *data,
2224 				 int (*match)(struct device *dev, void *data))
2225 {
2226 	struct klist_iter i;
2227 	struct device *child;
2228 
2229 	if (!parent)
2230 		return NULL;
2231 
2232 	klist_iter_init(&parent->p->klist_children, &i);
2233 	while ((child = next_device(&i)))
2234 		if (match(child, data) && get_device(child))
2235 			break;
2236 	klist_iter_exit(&i);
2237 	return child;
2238 }
2239 EXPORT_SYMBOL_GPL(device_find_child);
2240 
2241 int __init devices_init(void)
2242 {
2243 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2244 	if (!devices_kset)
2245 		return -ENOMEM;
2246 	dev_kobj = kobject_create_and_add("dev", NULL);
2247 	if (!dev_kobj)
2248 		goto dev_kobj_err;
2249 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2250 	if (!sysfs_dev_block_kobj)
2251 		goto block_kobj_err;
2252 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2253 	if (!sysfs_dev_char_kobj)
2254 		goto char_kobj_err;
2255 
2256 	return 0;
2257 
2258  char_kobj_err:
2259 	kobject_put(sysfs_dev_block_kobj);
2260  block_kobj_err:
2261 	kobject_put(dev_kobj);
2262  dev_kobj_err:
2263 	kset_unregister(devices_kset);
2264 	return -ENOMEM;
2265 }
2266 
2267 static int device_check_offline(struct device *dev, void *not_used)
2268 {
2269 	int ret;
2270 
2271 	ret = device_for_each_child(dev, NULL, device_check_offline);
2272 	if (ret)
2273 		return ret;
2274 
2275 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2276 }
2277 
2278 /**
2279  * device_offline - Prepare the device for hot-removal.
2280  * @dev: Device to be put offline.
2281  *
2282  * Execute the device bus type's .offline() callback, if present, to prepare
2283  * the device for a subsequent hot-removal.  If that succeeds, the device must
2284  * not be used until either it is removed or its bus type's .online() callback
2285  * is executed.
2286  *
2287  * Call under device_hotplug_lock.
2288  */
2289 int device_offline(struct device *dev)
2290 {
2291 	int ret;
2292 
2293 	if (dev->offline_disabled)
2294 		return -EPERM;
2295 
2296 	ret = device_for_each_child(dev, NULL, device_check_offline);
2297 	if (ret)
2298 		return ret;
2299 
2300 	device_lock(dev);
2301 	if (device_supports_offline(dev)) {
2302 		if (dev->offline) {
2303 			ret = 1;
2304 		} else {
2305 			ret = dev->bus->offline(dev);
2306 			if (!ret) {
2307 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2308 				dev->offline = true;
2309 			}
2310 		}
2311 	}
2312 	device_unlock(dev);
2313 
2314 	return ret;
2315 }
2316 
2317 /**
2318  * device_online - Put the device back online after successful device_offline().
2319  * @dev: Device to be put back online.
2320  *
2321  * If device_offline() has been successfully executed for @dev, but the device
2322  * has not been removed subsequently, execute its bus type's .online() callback
2323  * to indicate that the device can be used again.
2324  *
2325  * Call under device_hotplug_lock.
2326  */
2327 int device_online(struct device *dev)
2328 {
2329 	int ret = 0;
2330 
2331 	device_lock(dev);
2332 	if (device_supports_offline(dev)) {
2333 		if (dev->offline) {
2334 			ret = dev->bus->online(dev);
2335 			if (!ret) {
2336 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2337 				dev->offline = false;
2338 			}
2339 		} else {
2340 			ret = 1;
2341 		}
2342 	}
2343 	device_unlock(dev);
2344 
2345 	return ret;
2346 }
2347 
2348 struct root_device {
2349 	struct device dev;
2350 	struct module *owner;
2351 };
2352 
2353 static inline struct root_device *to_root_device(struct device *d)
2354 {
2355 	return container_of(d, struct root_device, dev);
2356 }
2357 
2358 static void root_device_release(struct device *dev)
2359 {
2360 	kfree(to_root_device(dev));
2361 }
2362 
2363 /**
2364  * __root_device_register - allocate and register a root device
2365  * @name: root device name
2366  * @owner: owner module of the root device, usually THIS_MODULE
2367  *
2368  * This function allocates a root device and registers it
2369  * using device_register(). In order to free the returned
2370  * device, use root_device_unregister().
2371  *
2372  * Root devices are dummy devices which allow other devices
2373  * to be grouped under /sys/devices. Use this function to
2374  * allocate a root device and then use it as the parent of
2375  * any device which should appear under /sys/devices/{name}
2376  *
2377  * The /sys/devices/{name} directory will also contain a
2378  * 'module' symlink which points to the @owner directory
2379  * in sysfs.
2380  *
2381  * Returns &struct device pointer on success, or ERR_PTR() on error.
2382  *
2383  * Note: You probably want to use root_device_register().
2384  */
2385 struct device *__root_device_register(const char *name, struct module *owner)
2386 {
2387 	struct root_device *root;
2388 	int err = -ENOMEM;
2389 
2390 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2391 	if (!root)
2392 		return ERR_PTR(err);
2393 
2394 	err = dev_set_name(&root->dev, "%s", name);
2395 	if (err) {
2396 		kfree(root);
2397 		return ERR_PTR(err);
2398 	}
2399 
2400 	root->dev.release = root_device_release;
2401 
2402 	err = device_register(&root->dev);
2403 	if (err) {
2404 		put_device(&root->dev);
2405 		return ERR_PTR(err);
2406 	}
2407 
2408 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2409 	if (owner) {
2410 		struct module_kobject *mk = &owner->mkobj;
2411 
2412 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2413 		if (err) {
2414 			device_unregister(&root->dev);
2415 			return ERR_PTR(err);
2416 		}
2417 		root->owner = owner;
2418 	}
2419 #endif
2420 
2421 	return &root->dev;
2422 }
2423 EXPORT_SYMBOL_GPL(__root_device_register);
2424 
2425 /**
2426  * root_device_unregister - unregister and free a root device
2427  * @dev: device going away
2428  *
2429  * This function unregisters and cleans up a device that was created by
2430  * root_device_register().
2431  */
2432 void root_device_unregister(struct device *dev)
2433 {
2434 	struct root_device *root = to_root_device(dev);
2435 
2436 	if (root->owner)
2437 		sysfs_remove_link(&root->dev.kobj, "module");
2438 
2439 	device_unregister(dev);
2440 }
2441 EXPORT_SYMBOL_GPL(root_device_unregister);
2442 
2443 
2444 static void device_create_release(struct device *dev)
2445 {
2446 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2447 	kfree(dev);
2448 }
2449 
2450 static __printf(6, 0) struct device *
2451 device_create_groups_vargs(struct class *class, struct device *parent,
2452 			   dev_t devt, void *drvdata,
2453 			   const struct attribute_group **groups,
2454 			   const char *fmt, va_list args)
2455 {
2456 	struct device *dev = NULL;
2457 	int retval = -ENODEV;
2458 
2459 	if (class == NULL || IS_ERR(class))
2460 		goto error;
2461 
2462 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2463 	if (!dev) {
2464 		retval = -ENOMEM;
2465 		goto error;
2466 	}
2467 
2468 	device_initialize(dev);
2469 	dev->devt = devt;
2470 	dev->class = class;
2471 	dev->parent = parent;
2472 	dev->groups = groups;
2473 	dev->release = device_create_release;
2474 	dev_set_drvdata(dev, drvdata);
2475 
2476 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2477 	if (retval)
2478 		goto error;
2479 
2480 	retval = device_add(dev);
2481 	if (retval)
2482 		goto error;
2483 
2484 	return dev;
2485 
2486 error:
2487 	put_device(dev);
2488 	return ERR_PTR(retval);
2489 }
2490 
2491 /**
2492  * device_create_vargs - creates a device and registers it with sysfs
2493  * @class: pointer to the struct class that this device should be registered to
2494  * @parent: pointer to the parent struct device of this new device, if any
2495  * @devt: the dev_t for the char device to be added
2496  * @drvdata: the data to be added to the device for callbacks
2497  * @fmt: string for the device's name
2498  * @args: va_list for the device's name
2499  *
2500  * This function can be used by char device classes.  A struct device
2501  * will be created in sysfs, registered to the specified class.
2502  *
2503  * A "dev" file will be created, showing the dev_t for the device, if
2504  * the dev_t is not 0,0.
2505  * If a pointer to a parent struct device is passed in, the newly created
2506  * struct device will be a child of that device in sysfs.
2507  * The pointer to the struct device will be returned from the call.
2508  * Any further sysfs files that might be required can be created using this
2509  * pointer.
2510  *
2511  * Returns &struct device pointer on success, or ERR_PTR() on error.
2512  *
2513  * Note: the struct class passed to this function must have previously
2514  * been created with a call to class_create().
2515  */
2516 struct device *device_create_vargs(struct class *class, struct device *parent,
2517 				   dev_t devt, void *drvdata, const char *fmt,
2518 				   va_list args)
2519 {
2520 	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2521 					  fmt, args);
2522 }
2523 EXPORT_SYMBOL_GPL(device_create_vargs);
2524 
2525 /**
2526  * device_create - creates a device and registers it with sysfs
2527  * @class: pointer to the struct class that this device should be registered to
2528  * @parent: pointer to the parent struct device of this new device, if any
2529  * @devt: the dev_t for the char device to be added
2530  * @drvdata: the data to be added to the device for callbacks
2531  * @fmt: string for the device's name
2532  *
2533  * This function can be used by char device classes.  A struct device
2534  * will be created in sysfs, registered to the specified class.
2535  *
2536  * A "dev" file will be created, showing the dev_t for the device, if
2537  * the dev_t is not 0,0.
2538  * If a pointer to a parent struct device is passed in, the newly created
2539  * struct device will be a child of that device in sysfs.
2540  * The pointer to the struct device will be returned from the call.
2541  * Any further sysfs files that might be required can be created using this
2542  * pointer.
2543  *
2544  * Returns &struct device pointer on success, or ERR_PTR() on error.
2545  *
2546  * Note: the struct class passed to this function must have previously
2547  * been created with a call to class_create().
2548  */
2549 struct device *device_create(struct class *class, struct device *parent,
2550 			     dev_t devt, void *drvdata, const char *fmt, ...)
2551 {
2552 	va_list vargs;
2553 	struct device *dev;
2554 
2555 	va_start(vargs, fmt);
2556 	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2557 	va_end(vargs);
2558 	return dev;
2559 }
2560 EXPORT_SYMBOL_GPL(device_create);
2561 
2562 /**
2563  * device_create_with_groups - creates a device and registers it with sysfs
2564  * @class: pointer to the struct class that this device should be registered to
2565  * @parent: pointer to the parent struct device of this new device, if any
2566  * @devt: the dev_t for the char device to be added
2567  * @drvdata: the data to be added to the device for callbacks
2568  * @groups: NULL-terminated list of attribute groups to be created
2569  * @fmt: string for the device's name
2570  *
2571  * This function can be used by char device classes.  A struct device
2572  * will be created in sysfs, registered to the specified class.
2573  * Additional attributes specified in the groups parameter will also
2574  * be created automatically.
2575  *
2576  * A "dev" file will be created, showing the dev_t for the device, if
2577  * the dev_t is not 0,0.
2578  * If a pointer to a parent struct device is passed in, the newly created
2579  * struct device will be a child of that device in sysfs.
2580  * The pointer to the struct device will be returned from the call.
2581  * Any further sysfs files that might be required can be created using this
2582  * pointer.
2583  *
2584  * Returns &struct device pointer on success, or ERR_PTR() on error.
2585  *
2586  * Note: the struct class passed to this function must have previously
2587  * been created with a call to class_create().
2588  */
2589 struct device *device_create_with_groups(struct class *class,
2590 					 struct device *parent, dev_t devt,
2591 					 void *drvdata,
2592 					 const struct attribute_group **groups,
2593 					 const char *fmt, ...)
2594 {
2595 	va_list vargs;
2596 	struct device *dev;
2597 
2598 	va_start(vargs, fmt);
2599 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2600 					 fmt, vargs);
2601 	va_end(vargs);
2602 	return dev;
2603 }
2604 EXPORT_SYMBOL_GPL(device_create_with_groups);
2605 
2606 static int __match_devt(struct device *dev, const void *data)
2607 {
2608 	const dev_t *devt = data;
2609 
2610 	return dev->devt == *devt;
2611 }
2612 
2613 /**
2614  * device_destroy - removes a device that was created with device_create()
2615  * @class: pointer to the struct class that this device was registered with
2616  * @devt: the dev_t of the device that was previously registered
2617  *
2618  * This call unregisters and cleans up a device that was created with a
2619  * call to device_create().
2620  */
2621 void device_destroy(struct class *class, dev_t devt)
2622 {
2623 	struct device *dev;
2624 
2625 	dev = class_find_device(class, NULL, &devt, __match_devt);
2626 	if (dev) {
2627 		put_device(dev);
2628 		device_unregister(dev);
2629 	}
2630 }
2631 EXPORT_SYMBOL_GPL(device_destroy);
2632 
2633 /**
2634  * device_rename - renames a device
2635  * @dev: the pointer to the struct device to be renamed
2636  * @new_name: the new name of the device
2637  *
2638  * It is the responsibility of the caller to provide mutual
2639  * exclusion between two different calls of device_rename
2640  * on the same device to ensure that new_name is valid and
2641  * won't conflict with other devices.
2642  *
2643  * Note: Don't call this function.  Currently, the networking layer calls this
2644  * function, but that will change.  The following text from Kay Sievers offers
2645  * some insight:
2646  *
2647  * Renaming devices is racy at many levels, symlinks and other stuff are not
2648  * replaced atomically, and you get a "move" uevent, but it's not easy to
2649  * connect the event to the old and new device. Device nodes are not renamed at
2650  * all, there isn't even support for that in the kernel now.
2651  *
2652  * In the meantime, during renaming, your target name might be taken by another
2653  * driver, creating conflicts. Or the old name is taken directly after you
2654  * renamed it -- then you get events for the same DEVPATH, before you even see
2655  * the "move" event. It's just a mess, and nothing new should ever rely on
2656  * kernel device renaming. Besides that, it's not even implemented now for
2657  * other things than (driver-core wise very simple) network devices.
2658  *
2659  * We are currently about to change network renaming in udev to completely
2660  * disallow renaming of devices in the same namespace as the kernel uses,
2661  * because we can't solve the problems properly, that arise with swapping names
2662  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2663  * be allowed to some other name than eth[0-9]*, for the aforementioned
2664  * reasons.
2665  *
2666  * Make up a "real" name in the driver before you register anything, or add
2667  * some other attributes for userspace to find the device, or use udev to add
2668  * symlinks -- but never rename kernel devices later, it's a complete mess. We
2669  * don't even want to get into that and try to implement the missing pieces in
2670  * the core. We really have other pieces to fix in the driver core mess. :)
2671  */
2672 int device_rename(struct device *dev, const char *new_name)
2673 {
2674 	struct kobject *kobj = &dev->kobj;
2675 	char *old_device_name = NULL;
2676 	int error;
2677 
2678 	dev = get_device(dev);
2679 	if (!dev)
2680 		return -EINVAL;
2681 
2682 	dev_dbg(dev, "renaming to %s\n", new_name);
2683 
2684 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2685 	if (!old_device_name) {
2686 		error = -ENOMEM;
2687 		goto out;
2688 	}
2689 
2690 	if (dev->class) {
2691 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2692 					     kobj, old_device_name,
2693 					     new_name, kobject_namespace(kobj));
2694 		if (error)
2695 			goto out;
2696 	}
2697 
2698 	error = kobject_rename(kobj, new_name);
2699 	if (error)
2700 		goto out;
2701 
2702 out:
2703 	put_device(dev);
2704 
2705 	kfree(old_device_name);
2706 
2707 	return error;
2708 }
2709 EXPORT_SYMBOL_GPL(device_rename);
2710 
2711 static int device_move_class_links(struct device *dev,
2712 				   struct device *old_parent,
2713 				   struct device *new_parent)
2714 {
2715 	int error = 0;
2716 
2717 	if (old_parent)
2718 		sysfs_remove_link(&dev->kobj, "device");
2719 	if (new_parent)
2720 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2721 					  "device");
2722 	return error;
2723 }
2724 
2725 /**
2726  * device_move - moves a device to a new parent
2727  * @dev: the pointer to the struct device to be moved
2728  * @new_parent: the new parent of the device (can be NULL)
2729  * @dpm_order: how to reorder the dpm_list
2730  */
2731 int device_move(struct device *dev, struct device *new_parent,
2732 		enum dpm_order dpm_order)
2733 {
2734 	int error;
2735 	struct device *old_parent;
2736 	struct kobject *new_parent_kobj;
2737 
2738 	dev = get_device(dev);
2739 	if (!dev)
2740 		return -EINVAL;
2741 
2742 	device_pm_lock();
2743 	new_parent = get_device(new_parent);
2744 	new_parent_kobj = get_device_parent(dev, new_parent);
2745 	if (IS_ERR(new_parent_kobj)) {
2746 		error = PTR_ERR(new_parent_kobj);
2747 		put_device(new_parent);
2748 		goto out;
2749 	}
2750 
2751 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2752 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2753 	error = kobject_move(&dev->kobj, new_parent_kobj);
2754 	if (error) {
2755 		cleanup_glue_dir(dev, new_parent_kobj);
2756 		put_device(new_parent);
2757 		goto out;
2758 	}
2759 	old_parent = dev->parent;
2760 	dev->parent = new_parent;
2761 	if (old_parent)
2762 		klist_remove(&dev->p->knode_parent);
2763 	if (new_parent) {
2764 		klist_add_tail(&dev->p->knode_parent,
2765 			       &new_parent->p->klist_children);
2766 		set_dev_node(dev, dev_to_node(new_parent));
2767 	}
2768 
2769 	if (dev->class) {
2770 		error = device_move_class_links(dev, old_parent, new_parent);
2771 		if (error) {
2772 			/* We ignore errors on cleanup since we're hosed anyway... */
2773 			device_move_class_links(dev, new_parent, old_parent);
2774 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2775 				if (new_parent)
2776 					klist_remove(&dev->p->knode_parent);
2777 				dev->parent = old_parent;
2778 				if (old_parent) {
2779 					klist_add_tail(&dev->p->knode_parent,
2780 						       &old_parent->p->klist_children);
2781 					set_dev_node(dev, dev_to_node(old_parent));
2782 				}
2783 			}
2784 			cleanup_glue_dir(dev, new_parent_kobj);
2785 			put_device(new_parent);
2786 			goto out;
2787 		}
2788 	}
2789 	switch (dpm_order) {
2790 	case DPM_ORDER_NONE:
2791 		break;
2792 	case DPM_ORDER_DEV_AFTER_PARENT:
2793 		device_pm_move_after(dev, new_parent);
2794 		devices_kset_move_after(dev, new_parent);
2795 		break;
2796 	case DPM_ORDER_PARENT_BEFORE_DEV:
2797 		device_pm_move_before(new_parent, dev);
2798 		devices_kset_move_before(new_parent, dev);
2799 		break;
2800 	case DPM_ORDER_DEV_LAST:
2801 		device_pm_move_last(dev);
2802 		devices_kset_move_last(dev);
2803 		break;
2804 	}
2805 
2806 	put_device(old_parent);
2807 out:
2808 	device_pm_unlock();
2809 	put_device(dev);
2810 	return error;
2811 }
2812 EXPORT_SYMBOL_GPL(device_move);
2813 
2814 /**
2815  * device_shutdown - call ->shutdown() on each device to shutdown.
2816  */
2817 void device_shutdown(void)
2818 {
2819 	struct device *dev, *parent;
2820 
2821 	spin_lock(&devices_kset->list_lock);
2822 	/*
2823 	 * Walk the devices list backward, shutting down each in turn.
2824 	 * Beware that device unplug events may also start pulling
2825 	 * devices offline, even as the system is shutting down.
2826 	 */
2827 	while (!list_empty(&devices_kset->list)) {
2828 		dev = list_entry(devices_kset->list.prev, struct device,
2829 				kobj.entry);
2830 
2831 		/*
2832 		 * hold reference count of device's parent to
2833 		 * prevent it from being freed because parent's
2834 		 * lock is to be held
2835 		 */
2836 		parent = get_device(dev->parent);
2837 		get_device(dev);
2838 		/*
2839 		 * Make sure the device is off the kset list, in the
2840 		 * event that dev->*->shutdown() doesn't remove it.
2841 		 */
2842 		list_del_init(&dev->kobj.entry);
2843 		spin_unlock(&devices_kset->list_lock);
2844 
2845 		/* hold lock to avoid race with probe/release */
2846 		if (parent)
2847 			device_lock(parent);
2848 		device_lock(dev);
2849 
2850 		/* Don't allow any more runtime suspends */
2851 		pm_runtime_get_noresume(dev);
2852 		pm_runtime_barrier(dev);
2853 
2854 		if (dev->class && dev->class->shutdown_pre) {
2855 			if (initcall_debug)
2856 				dev_info(dev, "shutdown_pre\n");
2857 			dev->class->shutdown_pre(dev);
2858 		}
2859 		if (dev->bus && dev->bus->shutdown) {
2860 			if (initcall_debug)
2861 				dev_info(dev, "shutdown\n");
2862 			dev->bus->shutdown(dev);
2863 		} else if (dev->driver && dev->driver->shutdown) {
2864 			if (initcall_debug)
2865 				dev_info(dev, "shutdown\n");
2866 			dev->driver->shutdown(dev);
2867 		}
2868 
2869 		device_unlock(dev);
2870 		if (parent)
2871 			device_unlock(parent);
2872 
2873 		put_device(dev);
2874 		put_device(parent);
2875 
2876 		spin_lock(&devices_kset->list_lock);
2877 	}
2878 	spin_unlock(&devices_kset->list_lock);
2879 }
2880 
2881 /*
2882  * Device logging functions
2883  */
2884 
2885 #ifdef CONFIG_PRINTK
2886 static int
2887 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2888 {
2889 	const char *subsys;
2890 	size_t pos = 0;
2891 
2892 	if (dev->class)
2893 		subsys = dev->class->name;
2894 	else if (dev->bus)
2895 		subsys = dev->bus->name;
2896 	else
2897 		return 0;
2898 
2899 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2900 	if (pos >= hdrlen)
2901 		goto overflow;
2902 
2903 	/*
2904 	 * Add device identifier DEVICE=:
2905 	 *   b12:8         block dev_t
2906 	 *   c127:3        char dev_t
2907 	 *   n8            netdev ifindex
2908 	 *   +sound:card0  subsystem:devname
2909 	 */
2910 	if (MAJOR(dev->devt)) {
2911 		char c;
2912 
2913 		if (strcmp(subsys, "block") == 0)
2914 			c = 'b';
2915 		else
2916 			c = 'c';
2917 		pos++;
2918 		pos += snprintf(hdr + pos, hdrlen - pos,
2919 				"DEVICE=%c%u:%u",
2920 				c, MAJOR(dev->devt), MINOR(dev->devt));
2921 	} else if (strcmp(subsys, "net") == 0) {
2922 		struct net_device *net = to_net_dev(dev);
2923 
2924 		pos++;
2925 		pos += snprintf(hdr + pos, hdrlen - pos,
2926 				"DEVICE=n%u", net->ifindex);
2927 	} else {
2928 		pos++;
2929 		pos += snprintf(hdr + pos, hdrlen - pos,
2930 				"DEVICE=+%s:%s", subsys, dev_name(dev));
2931 	}
2932 
2933 	if (pos >= hdrlen)
2934 		goto overflow;
2935 
2936 	return pos;
2937 
2938 overflow:
2939 	dev_WARN(dev, "device/subsystem name too long");
2940 	return 0;
2941 }
2942 
2943 int dev_vprintk_emit(int level, const struct device *dev,
2944 		     const char *fmt, va_list args)
2945 {
2946 	char hdr[128];
2947 	size_t hdrlen;
2948 
2949 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2950 
2951 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2952 }
2953 EXPORT_SYMBOL(dev_vprintk_emit);
2954 
2955 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2956 {
2957 	va_list args;
2958 	int r;
2959 
2960 	va_start(args, fmt);
2961 
2962 	r = dev_vprintk_emit(level, dev, fmt, args);
2963 
2964 	va_end(args);
2965 
2966 	return r;
2967 }
2968 EXPORT_SYMBOL(dev_printk_emit);
2969 
2970 static void __dev_printk(const char *level, const struct device *dev,
2971 			struct va_format *vaf)
2972 {
2973 	if (dev)
2974 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2975 				dev_driver_string(dev), dev_name(dev), vaf);
2976 	else
2977 		printk("%s(NULL device *): %pV", level, vaf);
2978 }
2979 
2980 void dev_printk(const char *level, const struct device *dev,
2981 		const char *fmt, ...)
2982 {
2983 	struct va_format vaf;
2984 	va_list args;
2985 
2986 	va_start(args, fmt);
2987 
2988 	vaf.fmt = fmt;
2989 	vaf.va = &args;
2990 
2991 	__dev_printk(level, dev, &vaf);
2992 
2993 	va_end(args);
2994 }
2995 EXPORT_SYMBOL(dev_printk);
2996 
2997 #define define_dev_printk_level(func, kern_level)		\
2998 void func(const struct device *dev, const char *fmt, ...)	\
2999 {								\
3000 	struct va_format vaf;					\
3001 	va_list args;						\
3002 								\
3003 	va_start(args, fmt);					\
3004 								\
3005 	vaf.fmt = fmt;						\
3006 	vaf.va = &args;						\
3007 								\
3008 	__dev_printk(kern_level, dev, &vaf);			\
3009 								\
3010 	va_end(args);						\
3011 }								\
3012 EXPORT_SYMBOL(func);
3013 
3014 define_dev_printk_level(dev_emerg, KERN_EMERG);
3015 define_dev_printk_level(dev_alert, KERN_ALERT);
3016 define_dev_printk_level(dev_crit, KERN_CRIT);
3017 define_dev_printk_level(dev_err, KERN_ERR);
3018 define_dev_printk_level(dev_warn, KERN_WARNING);
3019 define_dev_printk_level(dev_notice, KERN_NOTICE);
3020 define_dev_printk_level(_dev_info, KERN_INFO);
3021 
3022 #endif
3023 
3024 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3025 {
3026 	return fwnode && !IS_ERR(fwnode->secondary);
3027 }
3028 
3029 /**
3030  * set_primary_fwnode - Change the primary firmware node of a given device.
3031  * @dev: Device to handle.
3032  * @fwnode: New primary firmware node of the device.
3033  *
3034  * Set the device's firmware node pointer to @fwnode, but if a secondary
3035  * firmware node of the device is present, preserve it.
3036  */
3037 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3038 {
3039 	if (fwnode) {
3040 		struct fwnode_handle *fn = dev->fwnode;
3041 
3042 		if (fwnode_is_primary(fn))
3043 			fn = fn->secondary;
3044 
3045 		if (fn) {
3046 			WARN_ON(fwnode->secondary);
3047 			fwnode->secondary = fn;
3048 		}
3049 		dev->fwnode = fwnode;
3050 	} else {
3051 		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3052 			dev->fwnode->secondary : NULL;
3053 	}
3054 }
3055 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3056 
3057 /**
3058  * set_secondary_fwnode - Change the secondary firmware node of a given device.
3059  * @dev: Device to handle.
3060  * @fwnode: New secondary firmware node of the device.
3061  *
3062  * If a primary firmware node of the device is present, set its secondary
3063  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3064  * @fwnode.
3065  */
3066 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3067 {
3068 	if (fwnode)
3069 		fwnode->secondary = ERR_PTR(-ENODEV);
3070 
3071 	if (fwnode_is_primary(dev->fwnode))
3072 		dev->fwnode->secondary = fwnode;
3073 	else
3074 		dev->fwnode = fwnode;
3075 }
3076 
3077 /**
3078  * device_set_of_node_from_dev - reuse device-tree node of another device
3079  * @dev: device whose device-tree node is being set
3080  * @dev2: device whose device-tree node is being reused
3081  *
3082  * Takes another reference to the new device-tree node after first dropping
3083  * any reference held to the old node.
3084  */
3085 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3086 {
3087 	of_node_put(dev->of_node);
3088 	dev->of_node = of_node_get(dev2->of_node);
3089 	dev->of_node_reused = true;
3090 }
3091 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3092