xref: /openbmc/linux/drivers/base/core.c (revision a0ae2562c6c4b2721d9fddba63b7286c13517d9f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/fwnode.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/kdev_t.h>
19 #include <linux/notifier.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/genhd.h>
23 #include <linux/mutex.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/netdevice.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sysfs.h>
28 
29 #include "base.h"
30 #include "power/power.h"
31 
32 #ifdef CONFIG_SYSFS_DEPRECATED
33 #ifdef CONFIG_SYSFS_DEPRECATED_V2
34 long sysfs_deprecated = 1;
35 #else
36 long sysfs_deprecated = 0;
37 #endif
38 static int __init sysfs_deprecated_setup(char *arg)
39 {
40 	return kstrtol(arg, 10, &sysfs_deprecated);
41 }
42 early_param("sysfs.deprecated", sysfs_deprecated_setup);
43 #endif
44 
45 /* Device links support. */
46 
47 #ifdef CONFIG_SRCU
48 static DEFINE_MUTEX(device_links_lock);
49 DEFINE_STATIC_SRCU(device_links_srcu);
50 
51 static inline void device_links_write_lock(void)
52 {
53 	mutex_lock(&device_links_lock);
54 }
55 
56 static inline void device_links_write_unlock(void)
57 {
58 	mutex_unlock(&device_links_lock);
59 }
60 
61 int device_links_read_lock(void)
62 {
63 	return srcu_read_lock(&device_links_srcu);
64 }
65 
66 void device_links_read_unlock(int idx)
67 {
68 	srcu_read_unlock(&device_links_srcu, idx);
69 }
70 #else /* !CONFIG_SRCU */
71 static DECLARE_RWSEM(device_links_lock);
72 
73 static inline void device_links_write_lock(void)
74 {
75 	down_write(&device_links_lock);
76 }
77 
78 static inline void device_links_write_unlock(void)
79 {
80 	up_write(&device_links_lock);
81 }
82 
83 int device_links_read_lock(void)
84 {
85 	down_read(&device_links_lock);
86 	return 0;
87 }
88 
89 void device_links_read_unlock(int not_used)
90 {
91 	up_read(&device_links_lock);
92 }
93 #endif /* !CONFIG_SRCU */
94 
95 /**
96  * device_is_dependent - Check if one device depends on another one
97  * @dev: Device to check dependencies for.
98  * @target: Device to check against.
99  *
100  * Check if @target depends on @dev or any device dependent on it (its child or
101  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
102  */
103 static int device_is_dependent(struct device *dev, void *target)
104 {
105 	struct device_link *link;
106 	int ret;
107 
108 	if (WARN_ON(dev == target))
109 		return 1;
110 
111 	ret = device_for_each_child(dev, target, device_is_dependent);
112 	if (ret)
113 		return ret;
114 
115 	list_for_each_entry(link, &dev->links.consumers, s_node) {
116 		if (WARN_ON(link->consumer == target))
117 			return 1;
118 
119 		ret = device_is_dependent(link->consumer, target);
120 		if (ret)
121 			break;
122 	}
123 	return ret;
124 }
125 
126 static int device_reorder_to_tail(struct device *dev, void *not_used)
127 {
128 	struct device_link *link;
129 
130 	/*
131 	 * Devices that have not been registered yet will be put to the ends
132 	 * of the lists during the registration, so skip them here.
133 	 */
134 	if (device_is_registered(dev))
135 		devices_kset_move_last(dev);
136 
137 	if (device_pm_initialized(dev))
138 		device_pm_move_last(dev);
139 
140 	device_for_each_child(dev, NULL, device_reorder_to_tail);
141 	list_for_each_entry(link, &dev->links.consumers, s_node)
142 		device_reorder_to_tail(link->consumer, NULL);
143 
144 	return 0;
145 }
146 
147 /**
148  * device_pm_move_to_tail - Move set of devices to the end of device lists
149  * @dev: Device to move
150  *
151  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
152  *
153  * It moves the @dev along with all of its children and all of its consumers
154  * to the ends of the device_kset and dpm_list, recursively.
155  */
156 void device_pm_move_to_tail(struct device *dev)
157 {
158 	int idx;
159 
160 	idx = device_links_read_lock();
161 	device_pm_lock();
162 	device_reorder_to_tail(dev, NULL);
163 	device_pm_unlock();
164 	device_links_read_unlock(idx);
165 }
166 
167 /**
168  * device_link_add - Create a link between two devices.
169  * @consumer: Consumer end of the link.
170  * @supplier: Supplier end of the link.
171  * @flags: Link flags.
172  *
173  * The caller is responsible for the proper synchronization of the link creation
174  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
175  * runtime PM framework to take the link into account.  Second, if the
176  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
177  * be forced into the active metastate and reference-counted upon the creation
178  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
179  * ignored.
180  *
181  * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically
182  * when the consumer device driver unbinds from it.  The combination of both
183  * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL
184  * to be returned.
185  *
186  * A side effect of the link creation is re-ordering of dpm_list and the
187  * devices_kset list by moving the consumer device and all devices depending
188  * on it to the ends of these lists (that does not happen to devices that have
189  * not been registered when this function is called).
190  *
191  * The supplier device is required to be registered when this function is called
192  * and NULL will be returned if that is not the case.  The consumer device need
193  * not be registered, however.
194  */
195 struct device_link *device_link_add(struct device *consumer,
196 				    struct device *supplier, u32 flags)
197 {
198 	struct device_link *link;
199 
200 	if (!consumer || !supplier ||
201 	    ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE)))
202 		return NULL;
203 
204 	device_links_write_lock();
205 	device_pm_lock();
206 
207 	/*
208 	 * If the supplier has not been fully registered yet or there is a
209 	 * reverse dependency between the consumer and the supplier already in
210 	 * the graph, return NULL.
211 	 */
212 	if (!device_pm_initialized(supplier)
213 	    || device_is_dependent(consumer, supplier)) {
214 		link = NULL;
215 		goto out;
216 	}
217 
218 	list_for_each_entry(link, &supplier->links.consumers, s_node)
219 		if (link->consumer == consumer) {
220 			kref_get(&link->kref);
221 			goto out;
222 		}
223 
224 	link = kzalloc(sizeof(*link), GFP_KERNEL);
225 	if (!link)
226 		goto out;
227 
228 	if (flags & DL_FLAG_PM_RUNTIME) {
229 		if (flags & DL_FLAG_RPM_ACTIVE) {
230 			if (pm_runtime_get_sync(supplier) < 0) {
231 				pm_runtime_put_noidle(supplier);
232 				kfree(link);
233 				link = NULL;
234 				goto out;
235 			}
236 			link->rpm_active = true;
237 		}
238 		pm_runtime_new_link(consumer);
239 		/*
240 		 * If the link is being added by the consumer driver at probe
241 		 * time, balance the decrementation of the supplier's runtime PM
242 		 * usage counter after consumer probe in driver_probe_device().
243 		 */
244 		if (consumer->links.status == DL_DEV_PROBING)
245 			pm_runtime_get_noresume(supplier);
246 	}
247 	get_device(supplier);
248 	link->supplier = supplier;
249 	INIT_LIST_HEAD(&link->s_node);
250 	get_device(consumer);
251 	link->consumer = consumer;
252 	INIT_LIST_HEAD(&link->c_node);
253 	link->flags = flags;
254 	kref_init(&link->kref);
255 
256 	/* Determine the initial link state. */
257 	if (flags & DL_FLAG_STATELESS) {
258 		link->status = DL_STATE_NONE;
259 	} else {
260 		switch (supplier->links.status) {
261 		case DL_DEV_DRIVER_BOUND:
262 			switch (consumer->links.status) {
263 			case DL_DEV_PROBING:
264 				/*
265 				 * Some callers expect the link creation during
266 				 * consumer driver probe to resume the supplier
267 				 * even without DL_FLAG_RPM_ACTIVE.
268 				 */
269 				if (flags & DL_FLAG_PM_RUNTIME)
270 					pm_runtime_resume(supplier);
271 
272 				link->status = DL_STATE_CONSUMER_PROBE;
273 				break;
274 			case DL_DEV_DRIVER_BOUND:
275 				link->status = DL_STATE_ACTIVE;
276 				break;
277 			default:
278 				link->status = DL_STATE_AVAILABLE;
279 				break;
280 			}
281 			break;
282 		case DL_DEV_UNBINDING:
283 			link->status = DL_STATE_SUPPLIER_UNBIND;
284 			break;
285 		default:
286 			link->status = DL_STATE_DORMANT;
287 			break;
288 		}
289 	}
290 
291 	/*
292 	 * Move the consumer and all of the devices depending on it to the end
293 	 * of dpm_list and the devices_kset list.
294 	 *
295 	 * It is necessary to hold dpm_list locked throughout all that or else
296 	 * we may end up suspending with a wrong ordering of it.
297 	 */
298 	device_reorder_to_tail(consumer, NULL);
299 
300 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
301 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
302 
303 	dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
304 
305  out:
306 	device_pm_unlock();
307 	device_links_write_unlock();
308 	return link;
309 }
310 EXPORT_SYMBOL_GPL(device_link_add);
311 
312 static void device_link_free(struct device_link *link)
313 {
314 	put_device(link->consumer);
315 	put_device(link->supplier);
316 	kfree(link);
317 }
318 
319 #ifdef CONFIG_SRCU
320 static void __device_link_free_srcu(struct rcu_head *rhead)
321 {
322 	device_link_free(container_of(rhead, struct device_link, rcu_head));
323 }
324 
325 static void __device_link_del(struct kref *kref)
326 {
327 	struct device_link *link = container_of(kref, struct device_link, kref);
328 
329 	dev_info(link->consumer, "Dropping the link to %s\n",
330 		 dev_name(link->supplier));
331 
332 	if (link->flags & DL_FLAG_PM_RUNTIME)
333 		pm_runtime_drop_link(link->consumer);
334 
335 	list_del_rcu(&link->s_node);
336 	list_del_rcu(&link->c_node);
337 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
338 }
339 #else /* !CONFIG_SRCU */
340 static void __device_link_del(struct kref *kref)
341 {
342 	struct device_link *link = container_of(kref, struct device_link, kref);
343 
344 	dev_info(link->consumer, "Dropping the link to %s\n",
345 		 dev_name(link->supplier));
346 
347 	if (link->flags & DL_FLAG_PM_RUNTIME)
348 		pm_runtime_drop_link(link->consumer);
349 
350 	list_del(&link->s_node);
351 	list_del(&link->c_node);
352 	device_link_free(link);
353 }
354 #endif /* !CONFIG_SRCU */
355 
356 /**
357  * device_link_del - Delete a link between two devices.
358  * @link: Device link to delete.
359  *
360  * The caller must ensure proper synchronization of this function with runtime
361  * PM.  If the link was added multiple times, it needs to be deleted as often.
362  * Care is required for hotplugged devices:  Their links are purged on removal
363  * and calling device_link_del() is then no longer allowed.
364  */
365 void device_link_del(struct device_link *link)
366 {
367 	device_links_write_lock();
368 	device_pm_lock();
369 	kref_put(&link->kref, __device_link_del);
370 	device_pm_unlock();
371 	device_links_write_unlock();
372 }
373 EXPORT_SYMBOL_GPL(device_link_del);
374 
375 static void device_links_missing_supplier(struct device *dev)
376 {
377 	struct device_link *link;
378 
379 	list_for_each_entry(link, &dev->links.suppliers, c_node)
380 		if (link->status == DL_STATE_CONSUMER_PROBE)
381 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
382 }
383 
384 /**
385  * device_links_check_suppliers - Check presence of supplier drivers.
386  * @dev: Consumer device.
387  *
388  * Check links from this device to any suppliers.  Walk the list of the device's
389  * links to suppliers and see if all of them are available.  If not, simply
390  * return -EPROBE_DEFER.
391  *
392  * We need to guarantee that the supplier will not go away after the check has
393  * been positive here.  It only can go away in __device_release_driver() and
394  * that function  checks the device's links to consumers.  This means we need to
395  * mark the link as "consumer probe in progress" to make the supplier removal
396  * wait for us to complete (or bad things may happen).
397  *
398  * Links with the DL_FLAG_STATELESS flag set are ignored.
399  */
400 int device_links_check_suppliers(struct device *dev)
401 {
402 	struct device_link *link;
403 	int ret = 0;
404 
405 	device_links_write_lock();
406 
407 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
408 		if (link->flags & DL_FLAG_STATELESS)
409 			continue;
410 
411 		if (link->status != DL_STATE_AVAILABLE) {
412 			device_links_missing_supplier(dev);
413 			ret = -EPROBE_DEFER;
414 			break;
415 		}
416 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
417 	}
418 	dev->links.status = DL_DEV_PROBING;
419 
420 	device_links_write_unlock();
421 	return ret;
422 }
423 
424 /**
425  * device_links_driver_bound - Update device links after probing its driver.
426  * @dev: Device to update the links for.
427  *
428  * The probe has been successful, so update links from this device to any
429  * consumers by changing their status to "available".
430  *
431  * Also change the status of @dev's links to suppliers to "active".
432  *
433  * Links with the DL_FLAG_STATELESS flag set are ignored.
434  */
435 void device_links_driver_bound(struct device *dev)
436 {
437 	struct device_link *link;
438 
439 	device_links_write_lock();
440 
441 	list_for_each_entry(link, &dev->links.consumers, s_node) {
442 		if (link->flags & DL_FLAG_STATELESS)
443 			continue;
444 
445 		WARN_ON(link->status != DL_STATE_DORMANT);
446 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
447 	}
448 
449 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
450 		if (link->flags & DL_FLAG_STATELESS)
451 			continue;
452 
453 		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
454 		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
455 	}
456 
457 	dev->links.status = DL_DEV_DRIVER_BOUND;
458 
459 	device_links_write_unlock();
460 }
461 
462 /**
463  * __device_links_no_driver - Update links of a device without a driver.
464  * @dev: Device without a drvier.
465  *
466  * Delete all non-persistent links from this device to any suppliers.
467  *
468  * Persistent links stay around, but their status is changed to "available",
469  * unless they already are in the "supplier unbind in progress" state in which
470  * case they need not be updated.
471  *
472  * Links with the DL_FLAG_STATELESS flag set are ignored.
473  */
474 static void __device_links_no_driver(struct device *dev)
475 {
476 	struct device_link *link, *ln;
477 
478 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
479 		if (link->flags & DL_FLAG_STATELESS)
480 			continue;
481 
482 		if (link->flags & DL_FLAG_AUTOREMOVE)
483 			kref_put(&link->kref, __device_link_del);
484 		else if (link->status != DL_STATE_SUPPLIER_UNBIND)
485 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
486 	}
487 
488 	dev->links.status = DL_DEV_NO_DRIVER;
489 }
490 
491 void device_links_no_driver(struct device *dev)
492 {
493 	device_links_write_lock();
494 	__device_links_no_driver(dev);
495 	device_links_write_unlock();
496 }
497 
498 /**
499  * device_links_driver_cleanup - Update links after driver removal.
500  * @dev: Device whose driver has just gone away.
501  *
502  * Update links to consumers for @dev by changing their status to "dormant" and
503  * invoke %__device_links_no_driver() to update links to suppliers for it as
504  * appropriate.
505  *
506  * Links with the DL_FLAG_STATELESS flag set are ignored.
507  */
508 void device_links_driver_cleanup(struct device *dev)
509 {
510 	struct device_link *link;
511 
512 	device_links_write_lock();
513 
514 	list_for_each_entry(link, &dev->links.consumers, s_node) {
515 		if (link->flags & DL_FLAG_STATELESS)
516 			continue;
517 
518 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE);
519 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
520 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
521 	}
522 
523 	__device_links_no_driver(dev);
524 
525 	device_links_write_unlock();
526 }
527 
528 /**
529  * device_links_busy - Check if there are any busy links to consumers.
530  * @dev: Device to check.
531  *
532  * Check each consumer of the device and return 'true' if its link's status
533  * is one of "consumer probe" or "active" (meaning that the given consumer is
534  * probing right now or its driver is present).  Otherwise, change the link
535  * state to "supplier unbind" to prevent the consumer from being probed
536  * successfully going forward.
537  *
538  * Return 'false' if there are no probing or active consumers.
539  *
540  * Links with the DL_FLAG_STATELESS flag set are ignored.
541  */
542 bool device_links_busy(struct device *dev)
543 {
544 	struct device_link *link;
545 	bool ret = false;
546 
547 	device_links_write_lock();
548 
549 	list_for_each_entry(link, &dev->links.consumers, s_node) {
550 		if (link->flags & DL_FLAG_STATELESS)
551 			continue;
552 
553 		if (link->status == DL_STATE_CONSUMER_PROBE
554 		    || link->status == DL_STATE_ACTIVE) {
555 			ret = true;
556 			break;
557 		}
558 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
559 	}
560 
561 	dev->links.status = DL_DEV_UNBINDING;
562 
563 	device_links_write_unlock();
564 	return ret;
565 }
566 
567 /**
568  * device_links_unbind_consumers - Force unbind consumers of the given device.
569  * @dev: Device to unbind the consumers of.
570  *
571  * Walk the list of links to consumers for @dev and if any of them is in the
572  * "consumer probe" state, wait for all device probes in progress to complete
573  * and start over.
574  *
575  * If that's not the case, change the status of the link to "supplier unbind"
576  * and check if the link was in the "active" state.  If so, force the consumer
577  * driver to unbind and start over (the consumer will not re-probe as we have
578  * changed the state of the link already).
579  *
580  * Links with the DL_FLAG_STATELESS flag set are ignored.
581  */
582 void device_links_unbind_consumers(struct device *dev)
583 {
584 	struct device_link *link;
585 
586  start:
587 	device_links_write_lock();
588 
589 	list_for_each_entry(link, &dev->links.consumers, s_node) {
590 		enum device_link_state status;
591 
592 		if (link->flags & DL_FLAG_STATELESS)
593 			continue;
594 
595 		status = link->status;
596 		if (status == DL_STATE_CONSUMER_PROBE) {
597 			device_links_write_unlock();
598 
599 			wait_for_device_probe();
600 			goto start;
601 		}
602 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
603 		if (status == DL_STATE_ACTIVE) {
604 			struct device *consumer = link->consumer;
605 
606 			get_device(consumer);
607 
608 			device_links_write_unlock();
609 
610 			device_release_driver_internal(consumer, NULL,
611 						       consumer->parent);
612 			put_device(consumer);
613 			goto start;
614 		}
615 	}
616 
617 	device_links_write_unlock();
618 }
619 
620 /**
621  * device_links_purge - Delete existing links to other devices.
622  * @dev: Target device.
623  */
624 static void device_links_purge(struct device *dev)
625 {
626 	struct device_link *link, *ln;
627 
628 	/*
629 	 * Delete all of the remaining links from this device to any other
630 	 * devices (either consumers or suppliers).
631 	 */
632 	device_links_write_lock();
633 
634 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
635 		WARN_ON(link->status == DL_STATE_ACTIVE);
636 		__device_link_del(&link->kref);
637 	}
638 
639 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
640 		WARN_ON(link->status != DL_STATE_DORMANT &&
641 			link->status != DL_STATE_NONE);
642 		__device_link_del(&link->kref);
643 	}
644 
645 	device_links_write_unlock();
646 }
647 
648 /* Device links support end. */
649 
650 int (*platform_notify)(struct device *dev) = NULL;
651 int (*platform_notify_remove)(struct device *dev) = NULL;
652 static struct kobject *dev_kobj;
653 struct kobject *sysfs_dev_char_kobj;
654 struct kobject *sysfs_dev_block_kobj;
655 
656 static DEFINE_MUTEX(device_hotplug_lock);
657 
658 void lock_device_hotplug(void)
659 {
660 	mutex_lock(&device_hotplug_lock);
661 }
662 
663 void unlock_device_hotplug(void)
664 {
665 	mutex_unlock(&device_hotplug_lock);
666 }
667 
668 int lock_device_hotplug_sysfs(void)
669 {
670 	if (mutex_trylock(&device_hotplug_lock))
671 		return 0;
672 
673 	/* Avoid busy looping (5 ms of sleep should do). */
674 	msleep(5);
675 	return restart_syscall();
676 }
677 
678 #ifdef CONFIG_BLOCK
679 static inline int device_is_not_partition(struct device *dev)
680 {
681 	return !(dev->type == &part_type);
682 }
683 #else
684 static inline int device_is_not_partition(struct device *dev)
685 {
686 	return 1;
687 }
688 #endif
689 
690 /**
691  * dev_driver_string - Return a device's driver name, if at all possible
692  * @dev: struct device to get the name of
693  *
694  * Will return the device's driver's name if it is bound to a device.  If
695  * the device is not bound to a driver, it will return the name of the bus
696  * it is attached to.  If it is not attached to a bus either, an empty
697  * string will be returned.
698  */
699 const char *dev_driver_string(const struct device *dev)
700 {
701 	struct device_driver *drv;
702 
703 	/* dev->driver can change to NULL underneath us because of unbinding,
704 	 * so be careful about accessing it.  dev->bus and dev->class should
705 	 * never change once they are set, so they don't need special care.
706 	 */
707 	drv = READ_ONCE(dev->driver);
708 	return drv ? drv->name :
709 			(dev->bus ? dev->bus->name :
710 			(dev->class ? dev->class->name : ""));
711 }
712 EXPORT_SYMBOL(dev_driver_string);
713 
714 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
715 
716 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
717 			     char *buf)
718 {
719 	struct device_attribute *dev_attr = to_dev_attr(attr);
720 	struct device *dev = kobj_to_dev(kobj);
721 	ssize_t ret = -EIO;
722 
723 	if (dev_attr->show)
724 		ret = dev_attr->show(dev, dev_attr, buf);
725 	if (ret >= (ssize_t)PAGE_SIZE) {
726 		printk("dev_attr_show: %pS returned bad count\n",
727 				dev_attr->show);
728 	}
729 	return ret;
730 }
731 
732 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
733 			      const char *buf, size_t count)
734 {
735 	struct device_attribute *dev_attr = to_dev_attr(attr);
736 	struct device *dev = kobj_to_dev(kobj);
737 	ssize_t ret = -EIO;
738 
739 	if (dev_attr->store)
740 		ret = dev_attr->store(dev, dev_attr, buf, count);
741 	return ret;
742 }
743 
744 static const struct sysfs_ops dev_sysfs_ops = {
745 	.show	= dev_attr_show,
746 	.store	= dev_attr_store,
747 };
748 
749 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
750 
751 ssize_t device_store_ulong(struct device *dev,
752 			   struct device_attribute *attr,
753 			   const char *buf, size_t size)
754 {
755 	struct dev_ext_attribute *ea = to_ext_attr(attr);
756 	char *end;
757 	unsigned long new = simple_strtoul(buf, &end, 0);
758 	if (end == buf)
759 		return -EINVAL;
760 	*(unsigned long *)(ea->var) = new;
761 	/* Always return full write size even if we didn't consume all */
762 	return size;
763 }
764 EXPORT_SYMBOL_GPL(device_store_ulong);
765 
766 ssize_t device_show_ulong(struct device *dev,
767 			  struct device_attribute *attr,
768 			  char *buf)
769 {
770 	struct dev_ext_attribute *ea = to_ext_attr(attr);
771 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
772 }
773 EXPORT_SYMBOL_GPL(device_show_ulong);
774 
775 ssize_t device_store_int(struct device *dev,
776 			 struct device_attribute *attr,
777 			 const char *buf, size_t size)
778 {
779 	struct dev_ext_attribute *ea = to_ext_attr(attr);
780 	char *end;
781 	long new = simple_strtol(buf, &end, 0);
782 	if (end == buf || new > INT_MAX || new < INT_MIN)
783 		return -EINVAL;
784 	*(int *)(ea->var) = new;
785 	/* Always return full write size even if we didn't consume all */
786 	return size;
787 }
788 EXPORT_SYMBOL_GPL(device_store_int);
789 
790 ssize_t device_show_int(struct device *dev,
791 			struct device_attribute *attr,
792 			char *buf)
793 {
794 	struct dev_ext_attribute *ea = to_ext_attr(attr);
795 
796 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
797 }
798 EXPORT_SYMBOL_GPL(device_show_int);
799 
800 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
801 			  const char *buf, size_t size)
802 {
803 	struct dev_ext_attribute *ea = to_ext_attr(attr);
804 
805 	if (strtobool(buf, ea->var) < 0)
806 		return -EINVAL;
807 
808 	return size;
809 }
810 EXPORT_SYMBOL_GPL(device_store_bool);
811 
812 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
813 			 char *buf)
814 {
815 	struct dev_ext_attribute *ea = to_ext_attr(attr);
816 
817 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
818 }
819 EXPORT_SYMBOL_GPL(device_show_bool);
820 
821 /**
822  * device_release - free device structure.
823  * @kobj: device's kobject.
824  *
825  * This is called once the reference count for the object
826  * reaches 0. We forward the call to the device's release
827  * method, which should handle actually freeing the structure.
828  */
829 static void device_release(struct kobject *kobj)
830 {
831 	struct device *dev = kobj_to_dev(kobj);
832 	struct device_private *p = dev->p;
833 
834 	/*
835 	 * Some platform devices are driven without driver attached
836 	 * and managed resources may have been acquired.  Make sure
837 	 * all resources are released.
838 	 *
839 	 * Drivers still can add resources into device after device
840 	 * is deleted but alive, so release devres here to avoid
841 	 * possible memory leak.
842 	 */
843 	devres_release_all(dev);
844 
845 	if (dev->release)
846 		dev->release(dev);
847 	else if (dev->type && dev->type->release)
848 		dev->type->release(dev);
849 	else if (dev->class && dev->class->dev_release)
850 		dev->class->dev_release(dev);
851 	else
852 		WARN(1, KERN_ERR "Device '%s' does not have a release() "
853 			"function, it is broken and must be fixed.\n",
854 			dev_name(dev));
855 	kfree(p);
856 }
857 
858 static const void *device_namespace(struct kobject *kobj)
859 {
860 	struct device *dev = kobj_to_dev(kobj);
861 	const void *ns = NULL;
862 
863 	if (dev->class && dev->class->ns_type)
864 		ns = dev->class->namespace(dev);
865 
866 	return ns;
867 }
868 
869 static struct kobj_type device_ktype = {
870 	.release	= device_release,
871 	.sysfs_ops	= &dev_sysfs_ops,
872 	.namespace	= device_namespace,
873 };
874 
875 
876 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
877 {
878 	struct kobj_type *ktype = get_ktype(kobj);
879 
880 	if (ktype == &device_ktype) {
881 		struct device *dev = kobj_to_dev(kobj);
882 		if (dev->bus)
883 			return 1;
884 		if (dev->class)
885 			return 1;
886 	}
887 	return 0;
888 }
889 
890 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
891 {
892 	struct device *dev = kobj_to_dev(kobj);
893 
894 	if (dev->bus)
895 		return dev->bus->name;
896 	if (dev->class)
897 		return dev->class->name;
898 	return NULL;
899 }
900 
901 static int dev_uevent(struct kset *kset, struct kobject *kobj,
902 		      struct kobj_uevent_env *env)
903 {
904 	struct device *dev = kobj_to_dev(kobj);
905 	int retval = 0;
906 
907 	/* add device node properties if present */
908 	if (MAJOR(dev->devt)) {
909 		const char *tmp;
910 		const char *name;
911 		umode_t mode = 0;
912 		kuid_t uid = GLOBAL_ROOT_UID;
913 		kgid_t gid = GLOBAL_ROOT_GID;
914 
915 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
916 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
917 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
918 		if (name) {
919 			add_uevent_var(env, "DEVNAME=%s", name);
920 			if (mode)
921 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
922 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
923 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
924 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
925 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
926 			kfree(tmp);
927 		}
928 	}
929 
930 	if (dev->type && dev->type->name)
931 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
932 
933 	if (dev->driver)
934 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
935 
936 	/* Add common DT information about the device */
937 	of_device_uevent(dev, env);
938 
939 	/* have the bus specific function add its stuff */
940 	if (dev->bus && dev->bus->uevent) {
941 		retval = dev->bus->uevent(dev, env);
942 		if (retval)
943 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
944 				 dev_name(dev), __func__, retval);
945 	}
946 
947 	/* have the class specific function add its stuff */
948 	if (dev->class && dev->class->dev_uevent) {
949 		retval = dev->class->dev_uevent(dev, env);
950 		if (retval)
951 			pr_debug("device: '%s': %s: class uevent() "
952 				 "returned %d\n", dev_name(dev),
953 				 __func__, retval);
954 	}
955 
956 	/* have the device type specific function add its stuff */
957 	if (dev->type && dev->type->uevent) {
958 		retval = dev->type->uevent(dev, env);
959 		if (retval)
960 			pr_debug("device: '%s': %s: dev_type uevent() "
961 				 "returned %d\n", dev_name(dev),
962 				 __func__, retval);
963 	}
964 
965 	return retval;
966 }
967 
968 static const struct kset_uevent_ops device_uevent_ops = {
969 	.filter =	dev_uevent_filter,
970 	.name =		dev_uevent_name,
971 	.uevent =	dev_uevent,
972 };
973 
974 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
975 			   char *buf)
976 {
977 	struct kobject *top_kobj;
978 	struct kset *kset;
979 	struct kobj_uevent_env *env = NULL;
980 	int i;
981 	size_t count = 0;
982 	int retval;
983 
984 	/* search the kset, the device belongs to */
985 	top_kobj = &dev->kobj;
986 	while (!top_kobj->kset && top_kobj->parent)
987 		top_kobj = top_kobj->parent;
988 	if (!top_kobj->kset)
989 		goto out;
990 
991 	kset = top_kobj->kset;
992 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
993 		goto out;
994 
995 	/* respect filter */
996 	if (kset->uevent_ops && kset->uevent_ops->filter)
997 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
998 			goto out;
999 
1000 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1001 	if (!env)
1002 		return -ENOMEM;
1003 
1004 	/* let the kset specific function add its keys */
1005 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1006 	if (retval)
1007 		goto out;
1008 
1009 	/* copy keys to file */
1010 	for (i = 0; i < env->envp_idx; i++)
1011 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1012 out:
1013 	kfree(env);
1014 	return count;
1015 }
1016 
1017 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1018 			    const char *buf, size_t count)
1019 {
1020 	if (kobject_synth_uevent(&dev->kobj, buf, count))
1021 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1022 
1023 	return count;
1024 }
1025 static DEVICE_ATTR_RW(uevent);
1026 
1027 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1028 			   char *buf)
1029 {
1030 	bool val;
1031 
1032 	device_lock(dev);
1033 	val = !dev->offline;
1034 	device_unlock(dev);
1035 	return sprintf(buf, "%u\n", val);
1036 }
1037 
1038 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1039 			    const char *buf, size_t count)
1040 {
1041 	bool val;
1042 	int ret;
1043 
1044 	ret = strtobool(buf, &val);
1045 	if (ret < 0)
1046 		return ret;
1047 
1048 	ret = lock_device_hotplug_sysfs();
1049 	if (ret)
1050 		return ret;
1051 
1052 	ret = val ? device_online(dev) : device_offline(dev);
1053 	unlock_device_hotplug();
1054 	return ret < 0 ? ret : count;
1055 }
1056 static DEVICE_ATTR_RW(online);
1057 
1058 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1059 {
1060 	return sysfs_create_groups(&dev->kobj, groups);
1061 }
1062 EXPORT_SYMBOL_GPL(device_add_groups);
1063 
1064 void device_remove_groups(struct device *dev,
1065 			  const struct attribute_group **groups)
1066 {
1067 	sysfs_remove_groups(&dev->kobj, groups);
1068 }
1069 EXPORT_SYMBOL_GPL(device_remove_groups);
1070 
1071 union device_attr_group_devres {
1072 	const struct attribute_group *group;
1073 	const struct attribute_group **groups;
1074 };
1075 
1076 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1077 {
1078 	return ((union device_attr_group_devres *)res)->group == data;
1079 }
1080 
1081 static void devm_attr_group_remove(struct device *dev, void *res)
1082 {
1083 	union device_attr_group_devres *devres = res;
1084 	const struct attribute_group *group = devres->group;
1085 
1086 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1087 	sysfs_remove_group(&dev->kobj, group);
1088 }
1089 
1090 static void devm_attr_groups_remove(struct device *dev, void *res)
1091 {
1092 	union device_attr_group_devres *devres = res;
1093 	const struct attribute_group **groups = devres->groups;
1094 
1095 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1096 	sysfs_remove_groups(&dev->kobj, groups);
1097 }
1098 
1099 /**
1100  * devm_device_add_group - given a device, create a managed attribute group
1101  * @dev:	The device to create the group for
1102  * @grp:	The attribute group to create
1103  *
1104  * This function creates a group for the first time.  It will explicitly
1105  * warn and error if any of the attribute files being created already exist.
1106  *
1107  * Returns 0 on success or error code on failure.
1108  */
1109 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1110 {
1111 	union device_attr_group_devres *devres;
1112 	int error;
1113 
1114 	devres = devres_alloc(devm_attr_group_remove,
1115 			      sizeof(*devres), GFP_KERNEL);
1116 	if (!devres)
1117 		return -ENOMEM;
1118 
1119 	error = sysfs_create_group(&dev->kobj, grp);
1120 	if (error) {
1121 		devres_free(devres);
1122 		return error;
1123 	}
1124 
1125 	devres->group = grp;
1126 	devres_add(dev, devres);
1127 	return 0;
1128 }
1129 EXPORT_SYMBOL_GPL(devm_device_add_group);
1130 
1131 /**
1132  * devm_device_remove_group: remove a managed group from a device
1133  * @dev:	device to remove the group from
1134  * @grp:	group to remove
1135  *
1136  * This function removes a group of attributes from a device. The attributes
1137  * previously have to have been created for this group, otherwise it will fail.
1138  */
1139 void devm_device_remove_group(struct device *dev,
1140 			      const struct attribute_group *grp)
1141 {
1142 	WARN_ON(devres_release(dev, devm_attr_group_remove,
1143 			       devm_attr_group_match,
1144 			       /* cast away const */ (void *)grp));
1145 }
1146 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1147 
1148 /**
1149  * devm_device_add_groups - create a bunch of managed attribute groups
1150  * @dev:	The device to create the group for
1151  * @groups:	The attribute groups to create, NULL terminated
1152  *
1153  * This function creates a bunch of managed attribute groups.  If an error
1154  * occurs when creating a group, all previously created groups will be
1155  * removed, unwinding everything back to the original state when this
1156  * function was called.  It will explicitly warn and error if any of the
1157  * attribute files being created already exist.
1158  *
1159  * Returns 0 on success or error code from sysfs_create_group on failure.
1160  */
1161 int devm_device_add_groups(struct device *dev,
1162 			   const struct attribute_group **groups)
1163 {
1164 	union device_attr_group_devres *devres;
1165 	int error;
1166 
1167 	devres = devres_alloc(devm_attr_groups_remove,
1168 			      sizeof(*devres), GFP_KERNEL);
1169 	if (!devres)
1170 		return -ENOMEM;
1171 
1172 	error = sysfs_create_groups(&dev->kobj, groups);
1173 	if (error) {
1174 		devres_free(devres);
1175 		return error;
1176 	}
1177 
1178 	devres->groups = groups;
1179 	devres_add(dev, devres);
1180 	return 0;
1181 }
1182 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1183 
1184 /**
1185  * devm_device_remove_groups - remove a list of managed groups
1186  *
1187  * @dev:	The device for the groups to be removed from
1188  * @groups:	NULL terminated list of groups to be removed
1189  *
1190  * If groups is not NULL, remove the specified groups from the device.
1191  */
1192 void devm_device_remove_groups(struct device *dev,
1193 			       const struct attribute_group **groups)
1194 {
1195 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1196 			       devm_attr_group_match,
1197 			       /* cast away const */ (void *)groups));
1198 }
1199 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1200 
1201 static int device_add_attrs(struct device *dev)
1202 {
1203 	struct class *class = dev->class;
1204 	const struct device_type *type = dev->type;
1205 	int error;
1206 
1207 	if (class) {
1208 		error = device_add_groups(dev, class->dev_groups);
1209 		if (error)
1210 			return error;
1211 	}
1212 
1213 	if (type) {
1214 		error = device_add_groups(dev, type->groups);
1215 		if (error)
1216 			goto err_remove_class_groups;
1217 	}
1218 
1219 	error = device_add_groups(dev, dev->groups);
1220 	if (error)
1221 		goto err_remove_type_groups;
1222 
1223 	if (device_supports_offline(dev) && !dev->offline_disabled) {
1224 		error = device_create_file(dev, &dev_attr_online);
1225 		if (error)
1226 			goto err_remove_dev_groups;
1227 	}
1228 
1229 	return 0;
1230 
1231  err_remove_dev_groups:
1232 	device_remove_groups(dev, dev->groups);
1233  err_remove_type_groups:
1234 	if (type)
1235 		device_remove_groups(dev, type->groups);
1236  err_remove_class_groups:
1237 	if (class)
1238 		device_remove_groups(dev, class->dev_groups);
1239 
1240 	return error;
1241 }
1242 
1243 static void device_remove_attrs(struct device *dev)
1244 {
1245 	struct class *class = dev->class;
1246 	const struct device_type *type = dev->type;
1247 
1248 	device_remove_file(dev, &dev_attr_online);
1249 	device_remove_groups(dev, dev->groups);
1250 
1251 	if (type)
1252 		device_remove_groups(dev, type->groups);
1253 
1254 	if (class)
1255 		device_remove_groups(dev, class->dev_groups);
1256 }
1257 
1258 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1259 			char *buf)
1260 {
1261 	return print_dev_t(buf, dev->devt);
1262 }
1263 static DEVICE_ATTR_RO(dev);
1264 
1265 /* /sys/devices/ */
1266 struct kset *devices_kset;
1267 
1268 /**
1269  * devices_kset_move_before - Move device in the devices_kset's list.
1270  * @deva: Device to move.
1271  * @devb: Device @deva should come before.
1272  */
1273 static void devices_kset_move_before(struct device *deva, struct device *devb)
1274 {
1275 	if (!devices_kset)
1276 		return;
1277 	pr_debug("devices_kset: Moving %s before %s\n",
1278 		 dev_name(deva), dev_name(devb));
1279 	spin_lock(&devices_kset->list_lock);
1280 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1281 	spin_unlock(&devices_kset->list_lock);
1282 }
1283 
1284 /**
1285  * devices_kset_move_after - Move device in the devices_kset's list.
1286  * @deva: Device to move
1287  * @devb: Device @deva should come after.
1288  */
1289 static void devices_kset_move_after(struct device *deva, struct device *devb)
1290 {
1291 	if (!devices_kset)
1292 		return;
1293 	pr_debug("devices_kset: Moving %s after %s\n",
1294 		 dev_name(deva), dev_name(devb));
1295 	spin_lock(&devices_kset->list_lock);
1296 	list_move(&deva->kobj.entry, &devb->kobj.entry);
1297 	spin_unlock(&devices_kset->list_lock);
1298 }
1299 
1300 /**
1301  * devices_kset_move_last - move the device to the end of devices_kset's list.
1302  * @dev: device to move
1303  */
1304 void devices_kset_move_last(struct device *dev)
1305 {
1306 	if (!devices_kset)
1307 		return;
1308 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1309 	spin_lock(&devices_kset->list_lock);
1310 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1311 	spin_unlock(&devices_kset->list_lock);
1312 }
1313 
1314 /**
1315  * device_create_file - create sysfs attribute file for device.
1316  * @dev: device.
1317  * @attr: device attribute descriptor.
1318  */
1319 int device_create_file(struct device *dev,
1320 		       const struct device_attribute *attr)
1321 {
1322 	int error = 0;
1323 
1324 	if (dev) {
1325 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1326 			"Attribute %s: write permission without 'store'\n",
1327 			attr->attr.name);
1328 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1329 			"Attribute %s: read permission without 'show'\n",
1330 			attr->attr.name);
1331 		error = sysfs_create_file(&dev->kobj, &attr->attr);
1332 	}
1333 
1334 	return error;
1335 }
1336 EXPORT_SYMBOL_GPL(device_create_file);
1337 
1338 /**
1339  * device_remove_file - remove sysfs attribute file.
1340  * @dev: device.
1341  * @attr: device attribute descriptor.
1342  */
1343 void device_remove_file(struct device *dev,
1344 			const struct device_attribute *attr)
1345 {
1346 	if (dev)
1347 		sysfs_remove_file(&dev->kobj, &attr->attr);
1348 }
1349 EXPORT_SYMBOL_GPL(device_remove_file);
1350 
1351 /**
1352  * device_remove_file_self - remove sysfs attribute file from its own method.
1353  * @dev: device.
1354  * @attr: device attribute descriptor.
1355  *
1356  * See kernfs_remove_self() for details.
1357  */
1358 bool device_remove_file_self(struct device *dev,
1359 			     const struct device_attribute *attr)
1360 {
1361 	if (dev)
1362 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1363 	else
1364 		return false;
1365 }
1366 EXPORT_SYMBOL_GPL(device_remove_file_self);
1367 
1368 /**
1369  * device_create_bin_file - create sysfs binary attribute file for device.
1370  * @dev: device.
1371  * @attr: device binary attribute descriptor.
1372  */
1373 int device_create_bin_file(struct device *dev,
1374 			   const struct bin_attribute *attr)
1375 {
1376 	int error = -EINVAL;
1377 	if (dev)
1378 		error = sysfs_create_bin_file(&dev->kobj, attr);
1379 	return error;
1380 }
1381 EXPORT_SYMBOL_GPL(device_create_bin_file);
1382 
1383 /**
1384  * device_remove_bin_file - remove sysfs binary attribute file
1385  * @dev: device.
1386  * @attr: device binary attribute descriptor.
1387  */
1388 void device_remove_bin_file(struct device *dev,
1389 			    const struct bin_attribute *attr)
1390 {
1391 	if (dev)
1392 		sysfs_remove_bin_file(&dev->kobj, attr);
1393 }
1394 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1395 
1396 static void klist_children_get(struct klist_node *n)
1397 {
1398 	struct device_private *p = to_device_private_parent(n);
1399 	struct device *dev = p->device;
1400 
1401 	get_device(dev);
1402 }
1403 
1404 static void klist_children_put(struct klist_node *n)
1405 {
1406 	struct device_private *p = to_device_private_parent(n);
1407 	struct device *dev = p->device;
1408 
1409 	put_device(dev);
1410 }
1411 
1412 /**
1413  * device_initialize - init device structure.
1414  * @dev: device.
1415  *
1416  * This prepares the device for use by other layers by initializing
1417  * its fields.
1418  * It is the first half of device_register(), if called by
1419  * that function, though it can also be called separately, so one
1420  * may use @dev's fields. In particular, get_device()/put_device()
1421  * may be used for reference counting of @dev after calling this
1422  * function.
1423  *
1424  * All fields in @dev must be initialized by the caller to 0, except
1425  * for those explicitly set to some other value.  The simplest
1426  * approach is to use kzalloc() to allocate the structure containing
1427  * @dev.
1428  *
1429  * NOTE: Use put_device() to give up your reference instead of freeing
1430  * @dev directly once you have called this function.
1431  */
1432 void device_initialize(struct device *dev)
1433 {
1434 	dev->kobj.kset = devices_kset;
1435 	kobject_init(&dev->kobj, &device_ktype);
1436 	INIT_LIST_HEAD(&dev->dma_pools);
1437 	mutex_init(&dev->mutex);
1438 	lockdep_set_novalidate_class(&dev->mutex);
1439 	spin_lock_init(&dev->devres_lock);
1440 	INIT_LIST_HEAD(&dev->devres_head);
1441 	device_pm_init(dev);
1442 	set_dev_node(dev, -1);
1443 #ifdef CONFIG_GENERIC_MSI_IRQ
1444 	INIT_LIST_HEAD(&dev->msi_list);
1445 #endif
1446 	INIT_LIST_HEAD(&dev->links.consumers);
1447 	INIT_LIST_HEAD(&dev->links.suppliers);
1448 	dev->links.status = DL_DEV_NO_DRIVER;
1449 }
1450 EXPORT_SYMBOL_GPL(device_initialize);
1451 
1452 struct kobject *virtual_device_parent(struct device *dev)
1453 {
1454 	static struct kobject *virtual_dir = NULL;
1455 
1456 	if (!virtual_dir)
1457 		virtual_dir = kobject_create_and_add("virtual",
1458 						     &devices_kset->kobj);
1459 
1460 	return virtual_dir;
1461 }
1462 
1463 struct class_dir {
1464 	struct kobject kobj;
1465 	struct class *class;
1466 };
1467 
1468 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1469 
1470 static void class_dir_release(struct kobject *kobj)
1471 {
1472 	struct class_dir *dir = to_class_dir(kobj);
1473 	kfree(dir);
1474 }
1475 
1476 static const
1477 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1478 {
1479 	struct class_dir *dir = to_class_dir(kobj);
1480 	return dir->class->ns_type;
1481 }
1482 
1483 static struct kobj_type class_dir_ktype = {
1484 	.release	= class_dir_release,
1485 	.sysfs_ops	= &kobj_sysfs_ops,
1486 	.child_ns_type	= class_dir_child_ns_type
1487 };
1488 
1489 static struct kobject *
1490 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1491 {
1492 	struct class_dir *dir;
1493 	int retval;
1494 
1495 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1496 	if (!dir)
1497 		return ERR_PTR(-ENOMEM);
1498 
1499 	dir->class = class;
1500 	kobject_init(&dir->kobj, &class_dir_ktype);
1501 
1502 	dir->kobj.kset = &class->p->glue_dirs;
1503 
1504 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1505 	if (retval < 0) {
1506 		kobject_put(&dir->kobj);
1507 		return ERR_PTR(retval);
1508 	}
1509 	return &dir->kobj;
1510 }
1511 
1512 static DEFINE_MUTEX(gdp_mutex);
1513 
1514 static struct kobject *get_device_parent(struct device *dev,
1515 					 struct device *parent)
1516 {
1517 	if (dev->class) {
1518 		struct kobject *kobj = NULL;
1519 		struct kobject *parent_kobj;
1520 		struct kobject *k;
1521 
1522 #ifdef CONFIG_BLOCK
1523 		/* block disks show up in /sys/block */
1524 		if (sysfs_deprecated && dev->class == &block_class) {
1525 			if (parent && parent->class == &block_class)
1526 				return &parent->kobj;
1527 			return &block_class.p->subsys.kobj;
1528 		}
1529 #endif
1530 
1531 		/*
1532 		 * If we have no parent, we live in "virtual".
1533 		 * Class-devices with a non class-device as parent, live
1534 		 * in a "glue" directory to prevent namespace collisions.
1535 		 */
1536 		if (parent == NULL)
1537 			parent_kobj = virtual_device_parent(dev);
1538 		else if (parent->class && !dev->class->ns_type)
1539 			return &parent->kobj;
1540 		else
1541 			parent_kobj = &parent->kobj;
1542 
1543 		mutex_lock(&gdp_mutex);
1544 
1545 		/* find our class-directory at the parent and reference it */
1546 		spin_lock(&dev->class->p->glue_dirs.list_lock);
1547 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1548 			if (k->parent == parent_kobj) {
1549 				kobj = kobject_get(k);
1550 				break;
1551 			}
1552 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1553 		if (kobj) {
1554 			mutex_unlock(&gdp_mutex);
1555 			return kobj;
1556 		}
1557 
1558 		/* or create a new class-directory at the parent device */
1559 		k = class_dir_create_and_add(dev->class, parent_kobj);
1560 		/* do not emit an uevent for this simple "glue" directory */
1561 		mutex_unlock(&gdp_mutex);
1562 		return k;
1563 	}
1564 
1565 	/* subsystems can specify a default root directory for their devices */
1566 	if (!parent && dev->bus && dev->bus->dev_root)
1567 		return &dev->bus->dev_root->kobj;
1568 
1569 	if (parent)
1570 		return &parent->kobj;
1571 	return NULL;
1572 }
1573 
1574 static inline bool live_in_glue_dir(struct kobject *kobj,
1575 				    struct device *dev)
1576 {
1577 	if (!kobj || !dev->class ||
1578 	    kobj->kset != &dev->class->p->glue_dirs)
1579 		return false;
1580 	return true;
1581 }
1582 
1583 static inline struct kobject *get_glue_dir(struct device *dev)
1584 {
1585 	return dev->kobj.parent;
1586 }
1587 
1588 /*
1589  * make sure cleaning up dir as the last step, we need to make
1590  * sure .release handler of kobject is run with holding the
1591  * global lock
1592  */
1593 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1594 {
1595 	/* see if we live in a "glue" directory */
1596 	if (!live_in_glue_dir(glue_dir, dev))
1597 		return;
1598 
1599 	mutex_lock(&gdp_mutex);
1600 	kobject_put(glue_dir);
1601 	mutex_unlock(&gdp_mutex);
1602 }
1603 
1604 static int device_add_class_symlinks(struct device *dev)
1605 {
1606 	struct device_node *of_node = dev_of_node(dev);
1607 	int error;
1608 
1609 	if (of_node) {
1610 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1611 		if (error)
1612 			dev_warn(dev, "Error %d creating of_node link\n",error);
1613 		/* An error here doesn't warrant bringing down the device */
1614 	}
1615 
1616 	if (!dev->class)
1617 		return 0;
1618 
1619 	error = sysfs_create_link(&dev->kobj,
1620 				  &dev->class->p->subsys.kobj,
1621 				  "subsystem");
1622 	if (error)
1623 		goto out_devnode;
1624 
1625 	if (dev->parent && device_is_not_partition(dev)) {
1626 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1627 					  "device");
1628 		if (error)
1629 			goto out_subsys;
1630 	}
1631 
1632 #ifdef CONFIG_BLOCK
1633 	/* /sys/block has directories and does not need symlinks */
1634 	if (sysfs_deprecated && dev->class == &block_class)
1635 		return 0;
1636 #endif
1637 
1638 	/* link in the class directory pointing to the device */
1639 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1640 				  &dev->kobj, dev_name(dev));
1641 	if (error)
1642 		goto out_device;
1643 
1644 	return 0;
1645 
1646 out_device:
1647 	sysfs_remove_link(&dev->kobj, "device");
1648 
1649 out_subsys:
1650 	sysfs_remove_link(&dev->kobj, "subsystem");
1651 out_devnode:
1652 	sysfs_remove_link(&dev->kobj, "of_node");
1653 	return error;
1654 }
1655 
1656 static void device_remove_class_symlinks(struct device *dev)
1657 {
1658 	if (dev_of_node(dev))
1659 		sysfs_remove_link(&dev->kobj, "of_node");
1660 
1661 	if (!dev->class)
1662 		return;
1663 
1664 	if (dev->parent && device_is_not_partition(dev))
1665 		sysfs_remove_link(&dev->kobj, "device");
1666 	sysfs_remove_link(&dev->kobj, "subsystem");
1667 #ifdef CONFIG_BLOCK
1668 	if (sysfs_deprecated && dev->class == &block_class)
1669 		return;
1670 #endif
1671 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1672 }
1673 
1674 /**
1675  * dev_set_name - set a device name
1676  * @dev: device
1677  * @fmt: format string for the device's name
1678  */
1679 int dev_set_name(struct device *dev, const char *fmt, ...)
1680 {
1681 	va_list vargs;
1682 	int err;
1683 
1684 	va_start(vargs, fmt);
1685 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1686 	va_end(vargs);
1687 	return err;
1688 }
1689 EXPORT_SYMBOL_GPL(dev_set_name);
1690 
1691 /**
1692  * device_to_dev_kobj - select a /sys/dev/ directory for the device
1693  * @dev: device
1694  *
1695  * By default we select char/ for new entries.  Setting class->dev_obj
1696  * to NULL prevents an entry from being created.  class->dev_kobj must
1697  * be set (or cleared) before any devices are registered to the class
1698  * otherwise device_create_sys_dev_entry() and
1699  * device_remove_sys_dev_entry() will disagree about the presence of
1700  * the link.
1701  */
1702 static struct kobject *device_to_dev_kobj(struct device *dev)
1703 {
1704 	struct kobject *kobj;
1705 
1706 	if (dev->class)
1707 		kobj = dev->class->dev_kobj;
1708 	else
1709 		kobj = sysfs_dev_char_kobj;
1710 
1711 	return kobj;
1712 }
1713 
1714 static int device_create_sys_dev_entry(struct device *dev)
1715 {
1716 	struct kobject *kobj = device_to_dev_kobj(dev);
1717 	int error = 0;
1718 	char devt_str[15];
1719 
1720 	if (kobj) {
1721 		format_dev_t(devt_str, dev->devt);
1722 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1723 	}
1724 
1725 	return error;
1726 }
1727 
1728 static void device_remove_sys_dev_entry(struct device *dev)
1729 {
1730 	struct kobject *kobj = device_to_dev_kobj(dev);
1731 	char devt_str[15];
1732 
1733 	if (kobj) {
1734 		format_dev_t(devt_str, dev->devt);
1735 		sysfs_remove_link(kobj, devt_str);
1736 	}
1737 }
1738 
1739 int device_private_init(struct device *dev)
1740 {
1741 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1742 	if (!dev->p)
1743 		return -ENOMEM;
1744 	dev->p->device = dev;
1745 	klist_init(&dev->p->klist_children, klist_children_get,
1746 		   klist_children_put);
1747 	INIT_LIST_HEAD(&dev->p->deferred_probe);
1748 	return 0;
1749 }
1750 
1751 /**
1752  * device_add - add device to device hierarchy.
1753  * @dev: device.
1754  *
1755  * This is part 2 of device_register(), though may be called
1756  * separately _iff_ device_initialize() has been called separately.
1757  *
1758  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1759  * to the global and sibling lists for the device, then
1760  * adds it to the other relevant subsystems of the driver model.
1761  *
1762  * Do not call this routine or device_register() more than once for
1763  * any device structure.  The driver model core is not designed to work
1764  * with devices that get unregistered and then spring back to life.
1765  * (Among other things, it's very hard to guarantee that all references
1766  * to the previous incarnation of @dev have been dropped.)  Allocate
1767  * and register a fresh new struct device instead.
1768  *
1769  * NOTE: _Never_ directly free @dev after calling this function, even
1770  * if it returned an error! Always use put_device() to give up your
1771  * reference instead.
1772  */
1773 int device_add(struct device *dev)
1774 {
1775 	struct device *parent;
1776 	struct kobject *kobj;
1777 	struct class_interface *class_intf;
1778 	int error = -EINVAL;
1779 	struct kobject *glue_dir = NULL;
1780 
1781 	dev = get_device(dev);
1782 	if (!dev)
1783 		goto done;
1784 
1785 	if (!dev->p) {
1786 		error = device_private_init(dev);
1787 		if (error)
1788 			goto done;
1789 	}
1790 
1791 	/*
1792 	 * for statically allocated devices, which should all be converted
1793 	 * some day, we need to initialize the name. We prevent reading back
1794 	 * the name, and force the use of dev_name()
1795 	 */
1796 	if (dev->init_name) {
1797 		dev_set_name(dev, "%s", dev->init_name);
1798 		dev->init_name = NULL;
1799 	}
1800 
1801 	/* subsystems can specify simple device enumeration */
1802 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1803 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1804 
1805 	if (!dev_name(dev)) {
1806 		error = -EINVAL;
1807 		goto name_error;
1808 	}
1809 
1810 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1811 
1812 	parent = get_device(dev->parent);
1813 	kobj = get_device_parent(dev, parent);
1814 	if (IS_ERR(kobj)) {
1815 		error = PTR_ERR(kobj);
1816 		goto parent_error;
1817 	}
1818 	if (kobj)
1819 		dev->kobj.parent = kobj;
1820 
1821 	/* use parent numa_node */
1822 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1823 		set_dev_node(dev, dev_to_node(parent));
1824 
1825 	/* first, register with generic layer. */
1826 	/* we require the name to be set before, and pass NULL */
1827 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1828 	if (error) {
1829 		glue_dir = get_glue_dir(dev);
1830 		goto Error;
1831 	}
1832 
1833 	/* notify platform of device entry */
1834 	if (platform_notify)
1835 		platform_notify(dev);
1836 
1837 	error = device_create_file(dev, &dev_attr_uevent);
1838 	if (error)
1839 		goto attrError;
1840 
1841 	error = device_add_class_symlinks(dev);
1842 	if (error)
1843 		goto SymlinkError;
1844 	error = device_add_attrs(dev);
1845 	if (error)
1846 		goto AttrsError;
1847 	error = bus_add_device(dev);
1848 	if (error)
1849 		goto BusError;
1850 	error = dpm_sysfs_add(dev);
1851 	if (error)
1852 		goto DPMError;
1853 	device_pm_add(dev);
1854 
1855 	if (MAJOR(dev->devt)) {
1856 		error = device_create_file(dev, &dev_attr_dev);
1857 		if (error)
1858 			goto DevAttrError;
1859 
1860 		error = device_create_sys_dev_entry(dev);
1861 		if (error)
1862 			goto SysEntryError;
1863 
1864 		devtmpfs_create_node(dev);
1865 	}
1866 
1867 	/* Notify clients of device addition.  This call must come
1868 	 * after dpm_sysfs_add() and before kobject_uevent().
1869 	 */
1870 	if (dev->bus)
1871 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1872 					     BUS_NOTIFY_ADD_DEVICE, dev);
1873 
1874 	kobject_uevent(&dev->kobj, KOBJ_ADD);
1875 	bus_probe_device(dev);
1876 	if (parent)
1877 		klist_add_tail(&dev->p->knode_parent,
1878 			       &parent->p->klist_children);
1879 
1880 	if (dev->class) {
1881 		mutex_lock(&dev->class->p->mutex);
1882 		/* tie the class to the device */
1883 		klist_add_tail(&dev->knode_class,
1884 			       &dev->class->p->klist_devices);
1885 
1886 		/* notify any interfaces that the device is here */
1887 		list_for_each_entry(class_intf,
1888 				    &dev->class->p->interfaces, node)
1889 			if (class_intf->add_dev)
1890 				class_intf->add_dev(dev, class_intf);
1891 		mutex_unlock(&dev->class->p->mutex);
1892 	}
1893 done:
1894 	put_device(dev);
1895 	return error;
1896  SysEntryError:
1897 	if (MAJOR(dev->devt))
1898 		device_remove_file(dev, &dev_attr_dev);
1899  DevAttrError:
1900 	device_pm_remove(dev);
1901 	dpm_sysfs_remove(dev);
1902  DPMError:
1903 	bus_remove_device(dev);
1904  BusError:
1905 	device_remove_attrs(dev);
1906  AttrsError:
1907 	device_remove_class_symlinks(dev);
1908  SymlinkError:
1909 	device_remove_file(dev, &dev_attr_uevent);
1910  attrError:
1911 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1912 	glue_dir = get_glue_dir(dev);
1913 	kobject_del(&dev->kobj);
1914  Error:
1915 	cleanup_glue_dir(dev, glue_dir);
1916 parent_error:
1917 	put_device(parent);
1918 name_error:
1919 	kfree(dev->p);
1920 	dev->p = NULL;
1921 	goto done;
1922 }
1923 EXPORT_SYMBOL_GPL(device_add);
1924 
1925 /**
1926  * device_register - register a device with the system.
1927  * @dev: pointer to the device structure
1928  *
1929  * This happens in two clean steps - initialize the device
1930  * and add it to the system. The two steps can be called
1931  * separately, but this is the easiest and most common.
1932  * I.e. you should only call the two helpers separately if
1933  * have a clearly defined need to use and refcount the device
1934  * before it is added to the hierarchy.
1935  *
1936  * For more information, see the kerneldoc for device_initialize()
1937  * and device_add().
1938  *
1939  * NOTE: _Never_ directly free @dev after calling this function, even
1940  * if it returned an error! Always use put_device() to give up the
1941  * reference initialized in this function instead.
1942  */
1943 int device_register(struct device *dev)
1944 {
1945 	device_initialize(dev);
1946 	return device_add(dev);
1947 }
1948 EXPORT_SYMBOL_GPL(device_register);
1949 
1950 /**
1951  * get_device - increment reference count for device.
1952  * @dev: device.
1953  *
1954  * This simply forwards the call to kobject_get(), though
1955  * we do take care to provide for the case that we get a NULL
1956  * pointer passed in.
1957  */
1958 struct device *get_device(struct device *dev)
1959 {
1960 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1961 }
1962 EXPORT_SYMBOL_GPL(get_device);
1963 
1964 /**
1965  * put_device - decrement reference count.
1966  * @dev: device in question.
1967  */
1968 void put_device(struct device *dev)
1969 {
1970 	/* might_sleep(); */
1971 	if (dev)
1972 		kobject_put(&dev->kobj);
1973 }
1974 EXPORT_SYMBOL_GPL(put_device);
1975 
1976 /**
1977  * device_del - delete device from system.
1978  * @dev: device.
1979  *
1980  * This is the first part of the device unregistration
1981  * sequence. This removes the device from the lists we control
1982  * from here, has it removed from the other driver model
1983  * subsystems it was added to in device_add(), and removes it
1984  * from the kobject hierarchy.
1985  *
1986  * NOTE: this should be called manually _iff_ device_add() was
1987  * also called manually.
1988  */
1989 void device_del(struct device *dev)
1990 {
1991 	struct device *parent = dev->parent;
1992 	struct kobject *glue_dir = NULL;
1993 	struct class_interface *class_intf;
1994 
1995 	/* Notify clients of device removal.  This call must come
1996 	 * before dpm_sysfs_remove().
1997 	 */
1998 	if (dev->bus)
1999 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2000 					     BUS_NOTIFY_DEL_DEVICE, dev);
2001 
2002 	dpm_sysfs_remove(dev);
2003 	if (parent)
2004 		klist_del(&dev->p->knode_parent);
2005 	if (MAJOR(dev->devt)) {
2006 		devtmpfs_delete_node(dev);
2007 		device_remove_sys_dev_entry(dev);
2008 		device_remove_file(dev, &dev_attr_dev);
2009 	}
2010 	if (dev->class) {
2011 		device_remove_class_symlinks(dev);
2012 
2013 		mutex_lock(&dev->class->p->mutex);
2014 		/* notify any interfaces that the device is now gone */
2015 		list_for_each_entry(class_intf,
2016 				    &dev->class->p->interfaces, node)
2017 			if (class_intf->remove_dev)
2018 				class_intf->remove_dev(dev, class_intf);
2019 		/* remove the device from the class list */
2020 		klist_del(&dev->knode_class);
2021 		mutex_unlock(&dev->class->p->mutex);
2022 	}
2023 	device_remove_file(dev, &dev_attr_uevent);
2024 	device_remove_attrs(dev);
2025 	bus_remove_device(dev);
2026 	device_pm_remove(dev);
2027 	driver_deferred_probe_del(dev);
2028 	device_remove_properties(dev);
2029 	device_links_purge(dev);
2030 
2031 	/* Notify the platform of the removal, in case they
2032 	 * need to do anything...
2033 	 */
2034 	if (platform_notify_remove)
2035 		platform_notify_remove(dev);
2036 	if (dev->bus)
2037 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2038 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
2039 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2040 	glue_dir = get_glue_dir(dev);
2041 	kobject_del(&dev->kobj);
2042 	cleanup_glue_dir(dev, glue_dir);
2043 	put_device(parent);
2044 }
2045 EXPORT_SYMBOL_GPL(device_del);
2046 
2047 /**
2048  * device_unregister - unregister device from system.
2049  * @dev: device going away.
2050  *
2051  * We do this in two parts, like we do device_register(). First,
2052  * we remove it from all the subsystems with device_del(), then
2053  * we decrement the reference count via put_device(). If that
2054  * is the final reference count, the device will be cleaned up
2055  * via device_release() above. Otherwise, the structure will
2056  * stick around until the final reference to the device is dropped.
2057  */
2058 void device_unregister(struct device *dev)
2059 {
2060 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2061 	device_del(dev);
2062 	put_device(dev);
2063 }
2064 EXPORT_SYMBOL_GPL(device_unregister);
2065 
2066 static struct device *prev_device(struct klist_iter *i)
2067 {
2068 	struct klist_node *n = klist_prev(i);
2069 	struct device *dev = NULL;
2070 	struct device_private *p;
2071 
2072 	if (n) {
2073 		p = to_device_private_parent(n);
2074 		dev = p->device;
2075 	}
2076 	return dev;
2077 }
2078 
2079 static struct device *next_device(struct klist_iter *i)
2080 {
2081 	struct klist_node *n = klist_next(i);
2082 	struct device *dev = NULL;
2083 	struct device_private *p;
2084 
2085 	if (n) {
2086 		p = to_device_private_parent(n);
2087 		dev = p->device;
2088 	}
2089 	return dev;
2090 }
2091 
2092 /**
2093  * device_get_devnode - path of device node file
2094  * @dev: device
2095  * @mode: returned file access mode
2096  * @uid: returned file owner
2097  * @gid: returned file group
2098  * @tmp: possibly allocated string
2099  *
2100  * Return the relative path of a possible device node.
2101  * Non-default names may need to allocate a memory to compose
2102  * a name. This memory is returned in tmp and needs to be
2103  * freed by the caller.
2104  */
2105 const char *device_get_devnode(struct device *dev,
2106 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2107 			       const char **tmp)
2108 {
2109 	char *s;
2110 
2111 	*tmp = NULL;
2112 
2113 	/* the device type may provide a specific name */
2114 	if (dev->type && dev->type->devnode)
2115 		*tmp = dev->type->devnode(dev, mode, uid, gid);
2116 	if (*tmp)
2117 		return *tmp;
2118 
2119 	/* the class may provide a specific name */
2120 	if (dev->class && dev->class->devnode)
2121 		*tmp = dev->class->devnode(dev, mode);
2122 	if (*tmp)
2123 		return *tmp;
2124 
2125 	/* return name without allocation, tmp == NULL */
2126 	if (strchr(dev_name(dev), '!') == NULL)
2127 		return dev_name(dev);
2128 
2129 	/* replace '!' in the name with '/' */
2130 	s = kstrdup(dev_name(dev), GFP_KERNEL);
2131 	if (!s)
2132 		return NULL;
2133 	strreplace(s, '!', '/');
2134 	return *tmp = s;
2135 }
2136 
2137 /**
2138  * device_for_each_child - device child iterator.
2139  * @parent: parent struct device.
2140  * @fn: function to be called for each device.
2141  * @data: data for the callback.
2142  *
2143  * Iterate over @parent's child devices, and call @fn for each,
2144  * passing it @data.
2145  *
2146  * We check the return of @fn each time. If it returns anything
2147  * other than 0, we break out and return that value.
2148  */
2149 int device_for_each_child(struct device *parent, void *data,
2150 			  int (*fn)(struct device *dev, void *data))
2151 {
2152 	struct klist_iter i;
2153 	struct device *child;
2154 	int error = 0;
2155 
2156 	if (!parent->p)
2157 		return 0;
2158 
2159 	klist_iter_init(&parent->p->klist_children, &i);
2160 	while (!error && (child = next_device(&i)))
2161 		error = fn(child, data);
2162 	klist_iter_exit(&i);
2163 	return error;
2164 }
2165 EXPORT_SYMBOL_GPL(device_for_each_child);
2166 
2167 /**
2168  * device_for_each_child_reverse - device child iterator in reversed order.
2169  * @parent: parent struct device.
2170  * @fn: function to be called for each device.
2171  * @data: data for the callback.
2172  *
2173  * Iterate over @parent's child devices, and call @fn for each,
2174  * passing it @data.
2175  *
2176  * We check the return of @fn each time. If it returns anything
2177  * other than 0, we break out and return that value.
2178  */
2179 int device_for_each_child_reverse(struct device *parent, void *data,
2180 				  int (*fn)(struct device *dev, void *data))
2181 {
2182 	struct klist_iter i;
2183 	struct device *child;
2184 	int error = 0;
2185 
2186 	if (!parent->p)
2187 		return 0;
2188 
2189 	klist_iter_init(&parent->p->klist_children, &i);
2190 	while ((child = prev_device(&i)) && !error)
2191 		error = fn(child, data);
2192 	klist_iter_exit(&i);
2193 	return error;
2194 }
2195 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2196 
2197 /**
2198  * device_find_child - device iterator for locating a particular device.
2199  * @parent: parent struct device
2200  * @match: Callback function to check device
2201  * @data: Data to pass to match function
2202  *
2203  * This is similar to the device_for_each_child() function above, but it
2204  * returns a reference to a device that is 'found' for later use, as
2205  * determined by the @match callback.
2206  *
2207  * The callback should return 0 if the device doesn't match and non-zero
2208  * if it does.  If the callback returns non-zero and a reference to the
2209  * current device can be obtained, this function will return to the caller
2210  * and not iterate over any more devices.
2211  *
2212  * NOTE: you will need to drop the reference with put_device() after use.
2213  */
2214 struct device *device_find_child(struct device *parent, void *data,
2215 				 int (*match)(struct device *dev, void *data))
2216 {
2217 	struct klist_iter i;
2218 	struct device *child;
2219 
2220 	if (!parent)
2221 		return NULL;
2222 
2223 	klist_iter_init(&parent->p->klist_children, &i);
2224 	while ((child = next_device(&i)))
2225 		if (match(child, data) && get_device(child))
2226 			break;
2227 	klist_iter_exit(&i);
2228 	return child;
2229 }
2230 EXPORT_SYMBOL_GPL(device_find_child);
2231 
2232 int __init devices_init(void)
2233 {
2234 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2235 	if (!devices_kset)
2236 		return -ENOMEM;
2237 	dev_kobj = kobject_create_and_add("dev", NULL);
2238 	if (!dev_kobj)
2239 		goto dev_kobj_err;
2240 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2241 	if (!sysfs_dev_block_kobj)
2242 		goto block_kobj_err;
2243 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2244 	if (!sysfs_dev_char_kobj)
2245 		goto char_kobj_err;
2246 
2247 	return 0;
2248 
2249  char_kobj_err:
2250 	kobject_put(sysfs_dev_block_kobj);
2251  block_kobj_err:
2252 	kobject_put(dev_kobj);
2253  dev_kobj_err:
2254 	kset_unregister(devices_kset);
2255 	return -ENOMEM;
2256 }
2257 
2258 static int device_check_offline(struct device *dev, void *not_used)
2259 {
2260 	int ret;
2261 
2262 	ret = device_for_each_child(dev, NULL, device_check_offline);
2263 	if (ret)
2264 		return ret;
2265 
2266 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2267 }
2268 
2269 /**
2270  * device_offline - Prepare the device for hot-removal.
2271  * @dev: Device to be put offline.
2272  *
2273  * Execute the device bus type's .offline() callback, if present, to prepare
2274  * the device for a subsequent hot-removal.  If that succeeds, the device must
2275  * not be used until either it is removed or its bus type's .online() callback
2276  * is executed.
2277  *
2278  * Call under device_hotplug_lock.
2279  */
2280 int device_offline(struct device *dev)
2281 {
2282 	int ret;
2283 
2284 	if (dev->offline_disabled)
2285 		return -EPERM;
2286 
2287 	ret = device_for_each_child(dev, NULL, device_check_offline);
2288 	if (ret)
2289 		return ret;
2290 
2291 	device_lock(dev);
2292 	if (device_supports_offline(dev)) {
2293 		if (dev->offline) {
2294 			ret = 1;
2295 		} else {
2296 			ret = dev->bus->offline(dev);
2297 			if (!ret) {
2298 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2299 				dev->offline = true;
2300 			}
2301 		}
2302 	}
2303 	device_unlock(dev);
2304 
2305 	return ret;
2306 }
2307 
2308 /**
2309  * device_online - Put the device back online after successful device_offline().
2310  * @dev: Device to be put back online.
2311  *
2312  * If device_offline() has been successfully executed for @dev, but the device
2313  * has not been removed subsequently, execute its bus type's .online() callback
2314  * to indicate that the device can be used again.
2315  *
2316  * Call under device_hotplug_lock.
2317  */
2318 int device_online(struct device *dev)
2319 {
2320 	int ret = 0;
2321 
2322 	device_lock(dev);
2323 	if (device_supports_offline(dev)) {
2324 		if (dev->offline) {
2325 			ret = dev->bus->online(dev);
2326 			if (!ret) {
2327 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2328 				dev->offline = false;
2329 			}
2330 		} else {
2331 			ret = 1;
2332 		}
2333 	}
2334 	device_unlock(dev);
2335 
2336 	return ret;
2337 }
2338 
2339 struct root_device {
2340 	struct device dev;
2341 	struct module *owner;
2342 };
2343 
2344 static inline struct root_device *to_root_device(struct device *d)
2345 {
2346 	return container_of(d, struct root_device, dev);
2347 }
2348 
2349 static void root_device_release(struct device *dev)
2350 {
2351 	kfree(to_root_device(dev));
2352 }
2353 
2354 /**
2355  * __root_device_register - allocate and register a root device
2356  * @name: root device name
2357  * @owner: owner module of the root device, usually THIS_MODULE
2358  *
2359  * This function allocates a root device and registers it
2360  * using device_register(). In order to free the returned
2361  * device, use root_device_unregister().
2362  *
2363  * Root devices are dummy devices which allow other devices
2364  * to be grouped under /sys/devices. Use this function to
2365  * allocate a root device and then use it as the parent of
2366  * any device which should appear under /sys/devices/{name}
2367  *
2368  * The /sys/devices/{name} directory will also contain a
2369  * 'module' symlink which points to the @owner directory
2370  * in sysfs.
2371  *
2372  * Returns &struct device pointer on success, or ERR_PTR() on error.
2373  *
2374  * Note: You probably want to use root_device_register().
2375  */
2376 struct device *__root_device_register(const char *name, struct module *owner)
2377 {
2378 	struct root_device *root;
2379 	int err = -ENOMEM;
2380 
2381 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2382 	if (!root)
2383 		return ERR_PTR(err);
2384 
2385 	err = dev_set_name(&root->dev, "%s", name);
2386 	if (err) {
2387 		kfree(root);
2388 		return ERR_PTR(err);
2389 	}
2390 
2391 	root->dev.release = root_device_release;
2392 
2393 	err = device_register(&root->dev);
2394 	if (err) {
2395 		put_device(&root->dev);
2396 		return ERR_PTR(err);
2397 	}
2398 
2399 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2400 	if (owner) {
2401 		struct module_kobject *mk = &owner->mkobj;
2402 
2403 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2404 		if (err) {
2405 			device_unregister(&root->dev);
2406 			return ERR_PTR(err);
2407 		}
2408 		root->owner = owner;
2409 	}
2410 #endif
2411 
2412 	return &root->dev;
2413 }
2414 EXPORT_SYMBOL_GPL(__root_device_register);
2415 
2416 /**
2417  * root_device_unregister - unregister and free a root device
2418  * @dev: device going away
2419  *
2420  * This function unregisters and cleans up a device that was created by
2421  * root_device_register().
2422  */
2423 void root_device_unregister(struct device *dev)
2424 {
2425 	struct root_device *root = to_root_device(dev);
2426 
2427 	if (root->owner)
2428 		sysfs_remove_link(&root->dev.kobj, "module");
2429 
2430 	device_unregister(dev);
2431 }
2432 EXPORT_SYMBOL_GPL(root_device_unregister);
2433 
2434 
2435 static void device_create_release(struct device *dev)
2436 {
2437 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2438 	kfree(dev);
2439 }
2440 
2441 static __printf(6, 0) struct device *
2442 device_create_groups_vargs(struct class *class, struct device *parent,
2443 			   dev_t devt, void *drvdata,
2444 			   const struct attribute_group **groups,
2445 			   const char *fmt, va_list args)
2446 {
2447 	struct device *dev = NULL;
2448 	int retval = -ENODEV;
2449 
2450 	if (class == NULL || IS_ERR(class))
2451 		goto error;
2452 
2453 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2454 	if (!dev) {
2455 		retval = -ENOMEM;
2456 		goto error;
2457 	}
2458 
2459 	device_initialize(dev);
2460 	dev->devt = devt;
2461 	dev->class = class;
2462 	dev->parent = parent;
2463 	dev->groups = groups;
2464 	dev->release = device_create_release;
2465 	dev_set_drvdata(dev, drvdata);
2466 
2467 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2468 	if (retval)
2469 		goto error;
2470 
2471 	retval = device_add(dev);
2472 	if (retval)
2473 		goto error;
2474 
2475 	return dev;
2476 
2477 error:
2478 	put_device(dev);
2479 	return ERR_PTR(retval);
2480 }
2481 
2482 /**
2483  * device_create_vargs - creates a device and registers it with sysfs
2484  * @class: pointer to the struct class that this device should be registered to
2485  * @parent: pointer to the parent struct device of this new device, if any
2486  * @devt: the dev_t for the char device to be added
2487  * @drvdata: the data to be added to the device for callbacks
2488  * @fmt: string for the device's name
2489  * @args: va_list for the device's name
2490  *
2491  * This function can be used by char device classes.  A struct device
2492  * will be created in sysfs, registered to the specified class.
2493  *
2494  * A "dev" file will be created, showing the dev_t for the device, if
2495  * the dev_t is not 0,0.
2496  * If a pointer to a parent struct device is passed in, the newly created
2497  * struct device will be a child of that device in sysfs.
2498  * The pointer to the struct device will be returned from the call.
2499  * Any further sysfs files that might be required can be created using this
2500  * pointer.
2501  *
2502  * Returns &struct device pointer on success, or ERR_PTR() on error.
2503  *
2504  * Note: the struct class passed to this function must have previously
2505  * been created with a call to class_create().
2506  */
2507 struct device *device_create_vargs(struct class *class, struct device *parent,
2508 				   dev_t devt, void *drvdata, const char *fmt,
2509 				   va_list args)
2510 {
2511 	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2512 					  fmt, args);
2513 }
2514 EXPORT_SYMBOL_GPL(device_create_vargs);
2515 
2516 /**
2517  * device_create - creates a device and registers it with sysfs
2518  * @class: pointer to the struct class that this device should be registered to
2519  * @parent: pointer to the parent struct device of this new device, if any
2520  * @devt: the dev_t for the char device to be added
2521  * @drvdata: the data to be added to the device for callbacks
2522  * @fmt: string for the device's name
2523  *
2524  * This function can be used by char device classes.  A struct device
2525  * will be created in sysfs, registered to the specified class.
2526  *
2527  * A "dev" file will be created, showing the dev_t for the device, if
2528  * the dev_t is not 0,0.
2529  * If a pointer to a parent struct device is passed in, the newly created
2530  * struct device will be a child of that device in sysfs.
2531  * The pointer to the struct device will be returned from the call.
2532  * Any further sysfs files that might be required can be created using this
2533  * pointer.
2534  *
2535  * Returns &struct device pointer on success, or ERR_PTR() on error.
2536  *
2537  * Note: the struct class passed to this function must have previously
2538  * been created with a call to class_create().
2539  */
2540 struct device *device_create(struct class *class, struct device *parent,
2541 			     dev_t devt, void *drvdata, const char *fmt, ...)
2542 {
2543 	va_list vargs;
2544 	struct device *dev;
2545 
2546 	va_start(vargs, fmt);
2547 	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2548 	va_end(vargs);
2549 	return dev;
2550 }
2551 EXPORT_SYMBOL_GPL(device_create);
2552 
2553 /**
2554  * device_create_with_groups - creates a device and registers it with sysfs
2555  * @class: pointer to the struct class that this device should be registered to
2556  * @parent: pointer to the parent struct device of this new device, if any
2557  * @devt: the dev_t for the char device to be added
2558  * @drvdata: the data to be added to the device for callbacks
2559  * @groups: NULL-terminated list of attribute groups to be created
2560  * @fmt: string for the device's name
2561  *
2562  * This function can be used by char device classes.  A struct device
2563  * will be created in sysfs, registered to the specified class.
2564  * Additional attributes specified in the groups parameter will also
2565  * be created automatically.
2566  *
2567  * A "dev" file will be created, showing the dev_t for the device, if
2568  * the dev_t is not 0,0.
2569  * If a pointer to a parent struct device is passed in, the newly created
2570  * struct device will be a child of that device in sysfs.
2571  * The pointer to the struct device will be returned from the call.
2572  * Any further sysfs files that might be required can be created using this
2573  * pointer.
2574  *
2575  * Returns &struct device pointer on success, or ERR_PTR() on error.
2576  *
2577  * Note: the struct class passed to this function must have previously
2578  * been created with a call to class_create().
2579  */
2580 struct device *device_create_with_groups(struct class *class,
2581 					 struct device *parent, dev_t devt,
2582 					 void *drvdata,
2583 					 const struct attribute_group **groups,
2584 					 const char *fmt, ...)
2585 {
2586 	va_list vargs;
2587 	struct device *dev;
2588 
2589 	va_start(vargs, fmt);
2590 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2591 					 fmt, vargs);
2592 	va_end(vargs);
2593 	return dev;
2594 }
2595 EXPORT_SYMBOL_GPL(device_create_with_groups);
2596 
2597 static int __match_devt(struct device *dev, const void *data)
2598 {
2599 	const dev_t *devt = data;
2600 
2601 	return dev->devt == *devt;
2602 }
2603 
2604 /**
2605  * device_destroy - removes a device that was created with device_create()
2606  * @class: pointer to the struct class that this device was registered with
2607  * @devt: the dev_t of the device that was previously registered
2608  *
2609  * This call unregisters and cleans up a device that was created with a
2610  * call to device_create().
2611  */
2612 void device_destroy(struct class *class, dev_t devt)
2613 {
2614 	struct device *dev;
2615 
2616 	dev = class_find_device(class, NULL, &devt, __match_devt);
2617 	if (dev) {
2618 		put_device(dev);
2619 		device_unregister(dev);
2620 	}
2621 }
2622 EXPORT_SYMBOL_GPL(device_destroy);
2623 
2624 /**
2625  * device_rename - renames a device
2626  * @dev: the pointer to the struct device to be renamed
2627  * @new_name: the new name of the device
2628  *
2629  * It is the responsibility of the caller to provide mutual
2630  * exclusion between two different calls of device_rename
2631  * on the same device to ensure that new_name is valid and
2632  * won't conflict with other devices.
2633  *
2634  * Note: Don't call this function.  Currently, the networking layer calls this
2635  * function, but that will change.  The following text from Kay Sievers offers
2636  * some insight:
2637  *
2638  * Renaming devices is racy at many levels, symlinks and other stuff are not
2639  * replaced atomically, and you get a "move" uevent, but it's not easy to
2640  * connect the event to the old and new device. Device nodes are not renamed at
2641  * all, there isn't even support for that in the kernel now.
2642  *
2643  * In the meantime, during renaming, your target name might be taken by another
2644  * driver, creating conflicts. Or the old name is taken directly after you
2645  * renamed it -- then you get events for the same DEVPATH, before you even see
2646  * the "move" event. It's just a mess, and nothing new should ever rely on
2647  * kernel device renaming. Besides that, it's not even implemented now for
2648  * other things than (driver-core wise very simple) network devices.
2649  *
2650  * We are currently about to change network renaming in udev to completely
2651  * disallow renaming of devices in the same namespace as the kernel uses,
2652  * because we can't solve the problems properly, that arise with swapping names
2653  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2654  * be allowed to some other name than eth[0-9]*, for the aforementioned
2655  * reasons.
2656  *
2657  * Make up a "real" name in the driver before you register anything, or add
2658  * some other attributes for userspace to find the device, or use udev to add
2659  * symlinks -- but never rename kernel devices later, it's a complete mess. We
2660  * don't even want to get into that and try to implement the missing pieces in
2661  * the core. We really have other pieces to fix in the driver core mess. :)
2662  */
2663 int device_rename(struct device *dev, const char *new_name)
2664 {
2665 	struct kobject *kobj = &dev->kobj;
2666 	char *old_device_name = NULL;
2667 	int error;
2668 
2669 	dev = get_device(dev);
2670 	if (!dev)
2671 		return -EINVAL;
2672 
2673 	dev_dbg(dev, "renaming to %s\n", new_name);
2674 
2675 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2676 	if (!old_device_name) {
2677 		error = -ENOMEM;
2678 		goto out;
2679 	}
2680 
2681 	if (dev->class) {
2682 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2683 					     kobj, old_device_name,
2684 					     new_name, kobject_namespace(kobj));
2685 		if (error)
2686 			goto out;
2687 	}
2688 
2689 	error = kobject_rename(kobj, new_name);
2690 	if (error)
2691 		goto out;
2692 
2693 out:
2694 	put_device(dev);
2695 
2696 	kfree(old_device_name);
2697 
2698 	return error;
2699 }
2700 EXPORT_SYMBOL_GPL(device_rename);
2701 
2702 static int device_move_class_links(struct device *dev,
2703 				   struct device *old_parent,
2704 				   struct device *new_parent)
2705 {
2706 	int error = 0;
2707 
2708 	if (old_parent)
2709 		sysfs_remove_link(&dev->kobj, "device");
2710 	if (new_parent)
2711 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2712 					  "device");
2713 	return error;
2714 }
2715 
2716 /**
2717  * device_move - moves a device to a new parent
2718  * @dev: the pointer to the struct device to be moved
2719  * @new_parent: the new parent of the device (can be NULL)
2720  * @dpm_order: how to reorder the dpm_list
2721  */
2722 int device_move(struct device *dev, struct device *new_parent,
2723 		enum dpm_order dpm_order)
2724 {
2725 	int error;
2726 	struct device *old_parent;
2727 	struct kobject *new_parent_kobj;
2728 
2729 	dev = get_device(dev);
2730 	if (!dev)
2731 		return -EINVAL;
2732 
2733 	device_pm_lock();
2734 	new_parent = get_device(new_parent);
2735 	new_parent_kobj = get_device_parent(dev, new_parent);
2736 	if (IS_ERR(new_parent_kobj)) {
2737 		error = PTR_ERR(new_parent_kobj);
2738 		put_device(new_parent);
2739 		goto out;
2740 	}
2741 
2742 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2743 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2744 	error = kobject_move(&dev->kobj, new_parent_kobj);
2745 	if (error) {
2746 		cleanup_glue_dir(dev, new_parent_kobj);
2747 		put_device(new_parent);
2748 		goto out;
2749 	}
2750 	old_parent = dev->parent;
2751 	dev->parent = new_parent;
2752 	if (old_parent)
2753 		klist_remove(&dev->p->knode_parent);
2754 	if (new_parent) {
2755 		klist_add_tail(&dev->p->knode_parent,
2756 			       &new_parent->p->klist_children);
2757 		set_dev_node(dev, dev_to_node(new_parent));
2758 	}
2759 
2760 	if (dev->class) {
2761 		error = device_move_class_links(dev, old_parent, new_parent);
2762 		if (error) {
2763 			/* We ignore errors on cleanup since we're hosed anyway... */
2764 			device_move_class_links(dev, new_parent, old_parent);
2765 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2766 				if (new_parent)
2767 					klist_remove(&dev->p->knode_parent);
2768 				dev->parent = old_parent;
2769 				if (old_parent) {
2770 					klist_add_tail(&dev->p->knode_parent,
2771 						       &old_parent->p->klist_children);
2772 					set_dev_node(dev, dev_to_node(old_parent));
2773 				}
2774 			}
2775 			cleanup_glue_dir(dev, new_parent_kobj);
2776 			put_device(new_parent);
2777 			goto out;
2778 		}
2779 	}
2780 	switch (dpm_order) {
2781 	case DPM_ORDER_NONE:
2782 		break;
2783 	case DPM_ORDER_DEV_AFTER_PARENT:
2784 		device_pm_move_after(dev, new_parent);
2785 		devices_kset_move_after(dev, new_parent);
2786 		break;
2787 	case DPM_ORDER_PARENT_BEFORE_DEV:
2788 		device_pm_move_before(new_parent, dev);
2789 		devices_kset_move_before(new_parent, dev);
2790 		break;
2791 	case DPM_ORDER_DEV_LAST:
2792 		device_pm_move_last(dev);
2793 		devices_kset_move_last(dev);
2794 		break;
2795 	}
2796 
2797 	put_device(old_parent);
2798 out:
2799 	device_pm_unlock();
2800 	put_device(dev);
2801 	return error;
2802 }
2803 EXPORT_SYMBOL_GPL(device_move);
2804 
2805 /**
2806  * device_shutdown - call ->shutdown() on each device to shutdown.
2807  */
2808 void device_shutdown(void)
2809 {
2810 	struct device *dev, *parent;
2811 
2812 	spin_lock(&devices_kset->list_lock);
2813 	/*
2814 	 * Walk the devices list backward, shutting down each in turn.
2815 	 * Beware that device unplug events may also start pulling
2816 	 * devices offline, even as the system is shutting down.
2817 	 */
2818 	while (!list_empty(&devices_kset->list)) {
2819 		dev = list_entry(devices_kset->list.prev, struct device,
2820 				kobj.entry);
2821 
2822 		/*
2823 		 * hold reference count of device's parent to
2824 		 * prevent it from being freed because parent's
2825 		 * lock is to be held
2826 		 */
2827 		parent = get_device(dev->parent);
2828 		get_device(dev);
2829 		/*
2830 		 * Make sure the device is off the kset list, in the
2831 		 * event that dev->*->shutdown() doesn't remove it.
2832 		 */
2833 		list_del_init(&dev->kobj.entry);
2834 		spin_unlock(&devices_kset->list_lock);
2835 
2836 		/* hold lock to avoid race with probe/release */
2837 		if (parent)
2838 			device_lock(parent);
2839 		device_lock(dev);
2840 
2841 		/* Don't allow any more runtime suspends */
2842 		pm_runtime_get_noresume(dev);
2843 		pm_runtime_barrier(dev);
2844 
2845 		if (dev->class && dev->class->shutdown_pre) {
2846 			if (initcall_debug)
2847 				dev_info(dev, "shutdown_pre\n");
2848 			dev->class->shutdown_pre(dev);
2849 		}
2850 		if (dev->bus && dev->bus->shutdown) {
2851 			if (initcall_debug)
2852 				dev_info(dev, "shutdown\n");
2853 			dev->bus->shutdown(dev);
2854 		} else if (dev->driver && dev->driver->shutdown) {
2855 			if (initcall_debug)
2856 				dev_info(dev, "shutdown\n");
2857 			dev->driver->shutdown(dev);
2858 		}
2859 
2860 		device_unlock(dev);
2861 		if (parent)
2862 			device_unlock(parent);
2863 
2864 		put_device(dev);
2865 		put_device(parent);
2866 
2867 		spin_lock(&devices_kset->list_lock);
2868 	}
2869 	spin_unlock(&devices_kset->list_lock);
2870 }
2871 
2872 /*
2873  * Device logging functions
2874  */
2875 
2876 #ifdef CONFIG_PRINTK
2877 static int
2878 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2879 {
2880 	const char *subsys;
2881 	size_t pos = 0;
2882 
2883 	if (dev->class)
2884 		subsys = dev->class->name;
2885 	else if (dev->bus)
2886 		subsys = dev->bus->name;
2887 	else
2888 		return 0;
2889 
2890 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2891 	if (pos >= hdrlen)
2892 		goto overflow;
2893 
2894 	/*
2895 	 * Add device identifier DEVICE=:
2896 	 *   b12:8         block dev_t
2897 	 *   c127:3        char dev_t
2898 	 *   n8            netdev ifindex
2899 	 *   +sound:card0  subsystem:devname
2900 	 */
2901 	if (MAJOR(dev->devt)) {
2902 		char c;
2903 
2904 		if (strcmp(subsys, "block") == 0)
2905 			c = 'b';
2906 		else
2907 			c = 'c';
2908 		pos++;
2909 		pos += snprintf(hdr + pos, hdrlen - pos,
2910 				"DEVICE=%c%u:%u",
2911 				c, MAJOR(dev->devt), MINOR(dev->devt));
2912 	} else if (strcmp(subsys, "net") == 0) {
2913 		struct net_device *net = to_net_dev(dev);
2914 
2915 		pos++;
2916 		pos += snprintf(hdr + pos, hdrlen - pos,
2917 				"DEVICE=n%u", net->ifindex);
2918 	} else {
2919 		pos++;
2920 		pos += snprintf(hdr + pos, hdrlen - pos,
2921 				"DEVICE=+%s:%s", subsys, dev_name(dev));
2922 	}
2923 
2924 	if (pos >= hdrlen)
2925 		goto overflow;
2926 
2927 	return pos;
2928 
2929 overflow:
2930 	dev_WARN(dev, "device/subsystem name too long");
2931 	return 0;
2932 }
2933 
2934 int dev_vprintk_emit(int level, const struct device *dev,
2935 		     const char *fmt, va_list args)
2936 {
2937 	char hdr[128];
2938 	size_t hdrlen;
2939 
2940 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2941 
2942 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2943 }
2944 EXPORT_SYMBOL(dev_vprintk_emit);
2945 
2946 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2947 {
2948 	va_list args;
2949 	int r;
2950 
2951 	va_start(args, fmt);
2952 
2953 	r = dev_vprintk_emit(level, dev, fmt, args);
2954 
2955 	va_end(args);
2956 
2957 	return r;
2958 }
2959 EXPORT_SYMBOL(dev_printk_emit);
2960 
2961 static void __dev_printk(const char *level, const struct device *dev,
2962 			struct va_format *vaf)
2963 {
2964 	if (dev)
2965 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2966 				dev_driver_string(dev), dev_name(dev), vaf);
2967 	else
2968 		printk("%s(NULL device *): %pV", level, vaf);
2969 }
2970 
2971 void dev_printk(const char *level, const struct device *dev,
2972 		const char *fmt, ...)
2973 {
2974 	struct va_format vaf;
2975 	va_list args;
2976 
2977 	va_start(args, fmt);
2978 
2979 	vaf.fmt = fmt;
2980 	vaf.va = &args;
2981 
2982 	__dev_printk(level, dev, &vaf);
2983 
2984 	va_end(args);
2985 }
2986 EXPORT_SYMBOL(dev_printk);
2987 
2988 #define define_dev_printk_level(func, kern_level)		\
2989 void func(const struct device *dev, const char *fmt, ...)	\
2990 {								\
2991 	struct va_format vaf;					\
2992 	va_list args;						\
2993 								\
2994 	va_start(args, fmt);					\
2995 								\
2996 	vaf.fmt = fmt;						\
2997 	vaf.va = &args;						\
2998 								\
2999 	__dev_printk(kern_level, dev, &vaf);			\
3000 								\
3001 	va_end(args);						\
3002 }								\
3003 EXPORT_SYMBOL(func);
3004 
3005 define_dev_printk_level(dev_emerg, KERN_EMERG);
3006 define_dev_printk_level(dev_alert, KERN_ALERT);
3007 define_dev_printk_level(dev_crit, KERN_CRIT);
3008 define_dev_printk_level(dev_err, KERN_ERR);
3009 define_dev_printk_level(dev_warn, KERN_WARNING);
3010 define_dev_printk_level(dev_notice, KERN_NOTICE);
3011 define_dev_printk_level(_dev_info, KERN_INFO);
3012 
3013 #endif
3014 
3015 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3016 {
3017 	return fwnode && !IS_ERR(fwnode->secondary);
3018 }
3019 
3020 /**
3021  * set_primary_fwnode - Change the primary firmware node of a given device.
3022  * @dev: Device to handle.
3023  * @fwnode: New primary firmware node of the device.
3024  *
3025  * Set the device's firmware node pointer to @fwnode, but if a secondary
3026  * firmware node of the device is present, preserve it.
3027  */
3028 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3029 {
3030 	if (fwnode) {
3031 		struct fwnode_handle *fn = dev->fwnode;
3032 
3033 		if (fwnode_is_primary(fn))
3034 			fn = fn->secondary;
3035 
3036 		if (fn) {
3037 			WARN_ON(fwnode->secondary);
3038 			fwnode->secondary = fn;
3039 		}
3040 		dev->fwnode = fwnode;
3041 	} else {
3042 		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3043 			dev->fwnode->secondary : NULL;
3044 	}
3045 }
3046 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3047 
3048 /**
3049  * set_secondary_fwnode - Change the secondary firmware node of a given device.
3050  * @dev: Device to handle.
3051  * @fwnode: New secondary firmware node of the device.
3052  *
3053  * If a primary firmware node of the device is present, set its secondary
3054  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3055  * @fwnode.
3056  */
3057 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3058 {
3059 	if (fwnode)
3060 		fwnode->secondary = ERR_PTR(-ENODEV);
3061 
3062 	if (fwnode_is_primary(dev->fwnode))
3063 		dev->fwnode->secondary = fwnode;
3064 	else
3065 		dev->fwnode = fwnode;
3066 }
3067 
3068 /**
3069  * device_set_of_node_from_dev - reuse device-tree node of another device
3070  * @dev: device whose device-tree node is being set
3071  * @dev2: device whose device-tree node is being reused
3072  *
3073  * Takes another reference to the new device-tree node after first dropping
3074  * any reference held to the old node.
3075  */
3076 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3077 {
3078 	of_node_put(dev->of_node);
3079 	dev->of_node = of_node_get(dev2->of_node);
3080 	dev->of_node_reused = true;
3081 }
3082 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3083