1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/kstrtox.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/blkdev.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sched/mm.h> 30 #include <linux/string_helpers.h> 31 #include <linux/swiotlb.h> 32 #include <linux/sysfs.h> 33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 34 35 #include "base.h" 36 #include "physical_location.h" 37 #include "power/power.h" 38 39 /* Device links support. */ 40 static LIST_HEAD(deferred_sync); 41 static unsigned int defer_sync_state_count = 1; 42 static DEFINE_MUTEX(fwnode_link_lock); 43 static bool fw_devlink_is_permissive(void); 44 static void __fw_devlink_link_to_consumers(struct device *dev); 45 static bool fw_devlink_drv_reg_done; 46 static bool fw_devlink_best_effort; 47 static struct workqueue_struct *device_link_wq; 48 49 /** 50 * __fwnode_link_add - Create a link between two fwnode_handles. 51 * @con: Consumer end of the link. 52 * @sup: Supplier end of the link. 53 * 54 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 55 * represents the detail that the firmware lists @sup fwnode as supplying a 56 * resource to @con. 57 * 58 * The driver core will use the fwnode link to create a device link between the 59 * two device objects corresponding to @con and @sup when they are created. The 60 * driver core will automatically delete the fwnode link between @con and @sup 61 * after doing that. 62 * 63 * Attempts to create duplicate links between the same pair of fwnode handles 64 * are ignored and there is no reference counting. 65 */ 66 static int __fwnode_link_add(struct fwnode_handle *con, 67 struct fwnode_handle *sup, u8 flags) 68 { 69 struct fwnode_link *link; 70 71 list_for_each_entry(link, &sup->consumers, s_hook) 72 if (link->consumer == con) { 73 link->flags |= flags; 74 return 0; 75 } 76 77 link = kzalloc(sizeof(*link), GFP_KERNEL); 78 if (!link) 79 return -ENOMEM; 80 81 link->supplier = sup; 82 INIT_LIST_HEAD(&link->s_hook); 83 link->consumer = con; 84 INIT_LIST_HEAD(&link->c_hook); 85 link->flags = flags; 86 87 list_add(&link->s_hook, &sup->consumers); 88 list_add(&link->c_hook, &con->suppliers); 89 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n", 90 con, sup); 91 92 return 0; 93 } 94 95 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup) 96 { 97 int ret; 98 99 mutex_lock(&fwnode_link_lock); 100 ret = __fwnode_link_add(con, sup, 0); 101 mutex_unlock(&fwnode_link_lock); 102 return ret; 103 } 104 105 /** 106 * __fwnode_link_del - Delete a link between two fwnode_handles. 107 * @link: the fwnode_link to be deleted 108 * 109 * The fwnode_link_lock needs to be held when this function is called. 110 */ 111 static void __fwnode_link_del(struct fwnode_link *link) 112 { 113 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n", 114 link->consumer, link->supplier); 115 list_del(&link->s_hook); 116 list_del(&link->c_hook); 117 kfree(link); 118 } 119 120 /** 121 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle. 122 * @link: the fwnode_link to be marked 123 * 124 * The fwnode_link_lock needs to be held when this function is called. 125 */ 126 static void __fwnode_link_cycle(struct fwnode_link *link) 127 { 128 pr_debug("%pfwf: Relaxing link with %pfwf\n", 129 link->consumer, link->supplier); 130 link->flags |= FWLINK_FLAG_CYCLE; 131 } 132 133 /** 134 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 135 * @fwnode: fwnode whose supplier links need to be deleted 136 * 137 * Deletes all supplier links connecting directly to @fwnode. 138 */ 139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 140 { 141 struct fwnode_link *link, *tmp; 142 143 mutex_lock(&fwnode_link_lock); 144 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 145 __fwnode_link_del(link); 146 mutex_unlock(&fwnode_link_lock); 147 } 148 149 /** 150 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 151 * @fwnode: fwnode whose consumer links need to be deleted 152 * 153 * Deletes all consumer links connecting directly to @fwnode. 154 */ 155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 156 { 157 struct fwnode_link *link, *tmp; 158 159 mutex_lock(&fwnode_link_lock); 160 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 161 __fwnode_link_del(link); 162 mutex_unlock(&fwnode_link_lock); 163 } 164 165 /** 166 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 167 * @fwnode: fwnode whose links needs to be deleted 168 * 169 * Deletes all links connecting directly to a fwnode. 170 */ 171 void fwnode_links_purge(struct fwnode_handle *fwnode) 172 { 173 fwnode_links_purge_suppliers(fwnode); 174 fwnode_links_purge_consumers(fwnode); 175 } 176 177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 178 { 179 struct fwnode_handle *child; 180 181 /* Don't purge consumer links of an added child */ 182 if (fwnode->dev) 183 return; 184 185 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 186 fwnode_links_purge_consumers(fwnode); 187 188 fwnode_for_each_available_child_node(fwnode, child) 189 fw_devlink_purge_absent_suppliers(child); 190 } 191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 192 193 /** 194 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle 195 * @from: move consumers away from this fwnode 196 * @to: move consumers to this fwnode 197 * 198 * Move all consumer links from @from fwnode to @to fwnode. 199 */ 200 static void __fwnode_links_move_consumers(struct fwnode_handle *from, 201 struct fwnode_handle *to) 202 { 203 struct fwnode_link *link, *tmp; 204 205 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) { 206 __fwnode_link_add(link->consumer, to, link->flags); 207 __fwnode_link_del(link); 208 } 209 } 210 211 /** 212 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers 213 * @fwnode: fwnode from which to pick up dangling consumers 214 * @new_sup: fwnode of new supplier 215 * 216 * If the @fwnode has a corresponding struct device and the device supports 217 * probing (that is, added to a bus), then we want to let fw_devlink create 218 * MANAGED device links to this device, so leave @fwnode and its descendant's 219 * fwnode links alone. 220 * 221 * Otherwise, move its consumers to the new supplier @new_sup. 222 */ 223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode, 224 struct fwnode_handle *new_sup) 225 { 226 struct fwnode_handle *child; 227 228 if (fwnode->dev && fwnode->dev->bus) 229 return; 230 231 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 232 __fwnode_links_move_consumers(fwnode, new_sup); 233 234 fwnode_for_each_available_child_node(fwnode, child) 235 __fw_devlink_pickup_dangling_consumers(child, new_sup); 236 } 237 238 static DEFINE_MUTEX(device_links_lock); 239 DEFINE_STATIC_SRCU(device_links_srcu); 240 241 static inline void device_links_write_lock(void) 242 { 243 mutex_lock(&device_links_lock); 244 } 245 246 static inline void device_links_write_unlock(void) 247 { 248 mutex_unlock(&device_links_lock); 249 } 250 251 int device_links_read_lock(void) __acquires(&device_links_srcu) 252 { 253 return srcu_read_lock(&device_links_srcu); 254 } 255 256 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 257 { 258 srcu_read_unlock(&device_links_srcu, idx); 259 } 260 261 int device_links_read_lock_held(void) 262 { 263 return srcu_read_lock_held(&device_links_srcu); 264 } 265 266 static void device_link_synchronize_removal(void) 267 { 268 synchronize_srcu(&device_links_srcu); 269 } 270 271 static void device_link_remove_from_lists(struct device_link *link) 272 { 273 list_del_rcu(&link->s_node); 274 list_del_rcu(&link->c_node); 275 } 276 277 static bool device_is_ancestor(struct device *dev, struct device *target) 278 { 279 while (target->parent) { 280 target = target->parent; 281 if (dev == target) 282 return true; 283 } 284 return false; 285 } 286 287 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \ 288 DL_FLAG_CYCLE | \ 289 DL_FLAG_MANAGED) 290 static inline bool device_link_flag_is_sync_state_only(u32 flags) 291 { 292 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY; 293 } 294 295 /** 296 * device_is_dependent - Check if one device depends on another one 297 * @dev: Device to check dependencies for. 298 * @target: Device to check against. 299 * 300 * Check if @target depends on @dev or any device dependent on it (its child or 301 * its consumer etc). Return 1 if that is the case or 0 otherwise. 302 */ 303 int device_is_dependent(struct device *dev, void *target) 304 { 305 struct device_link *link; 306 int ret; 307 308 /* 309 * The "ancestors" check is needed to catch the case when the target 310 * device has not been completely initialized yet and it is still 311 * missing from the list of children of its parent device. 312 */ 313 if (dev == target || device_is_ancestor(dev, target)) 314 return 1; 315 316 ret = device_for_each_child(dev, target, device_is_dependent); 317 if (ret) 318 return ret; 319 320 list_for_each_entry(link, &dev->links.consumers, s_node) { 321 if (device_link_flag_is_sync_state_only(link->flags)) 322 continue; 323 324 if (link->consumer == target) 325 return 1; 326 327 ret = device_is_dependent(link->consumer, target); 328 if (ret) 329 break; 330 } 331 return ret; 332 } 333 334 static void device_link_init_status(struct device_link *link, 335 struct device *consumer, 336 struct device *supplier) 337 { 338 switch (supplier->links.status) { 339 case DL_DEV_PROBING: 340 switch (consumer->links.status) { 341 case DL_DEV_PROBING: 342 /* 343 * A consumer driver can create a link to a supplier 344 * that has not completed its probing yet as long as it 345 * knows that the supplier is already functional (for 346 * example, it has just acquired some resources from the 347 * supplier). 348 */ 349 link->status = DL_STATE_CONSUMER_PROBE; 350 break; 351 default: 352 link->status = DL_STATE_DORMANT; 353 break; 354 } 355 break; 356 case DL_DEV_DRIVER_BOUND: 357 switch (consumer->links.status) { 358 case DL_DEV_PROBING: 359 link->status = DL_STATE_CONSUMER_PROBE; 360 break; 361 case DL_DEV_DRIVER_BOUND: 362 link->status = DL_STATE_ACTIVE; 363 break; 364 default: 365 link->status = DL_STATE_AVAILABLE; 366 break; 367 } 368 break; 369 case DL_DEV_UNBINDING: 370 link->status = DL_STATE_SUPPLIER_UNBIND; 371 break; 372 default: 373 link->status = DL_STATE_DORMANT; 374 break; 375 } 376 } 377 378 static int device_reorder_to_tail(struct device *dev, void *not_used) 379 { 380 struct device_link *link; 381 382 /* 383 * Devices that have not been registered yet will be put to the ends 384 * of the lists during the registration, so skip them here. 385 */ 386 if (device_is_registered(dev)) 387 devices_kset_move_last(dev); 388 389 if (device_pm_initialized(dev)) 390 device_pm_move_last(dev); 391 392 device_for_each_child(dev, NULL, device_reorder_to_tail); 393 list_for_each_entry(link, &dev->links.consumers, s_node) { 394 if (device_link_flag_is_sync_state_only(link->flags)) 395 continue; 396 device_reorder_to_tail(link->consumer, NULL); 397 } 398 399 return 0; 400 } 401 402 /** 403 * device_pm_move_to_tail - Move set of devices to the end of device lists 404 * @dev: Device to move 405 * 406 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 407 * 408 * It moves the @dev along with all of its children and all of its consumers 409 * to the ends of the device_kset and dpm_list, recursively. 410 */ 411 void device_pm_move_to_tail(struct device *dev) 412 { 413 int idx; 414 415 idx = device_links_read_lock(); 416 device_pm_lock(); 417 device_reorder_to_tail(dev, NULL); 418 device_pm_unlock(); 419 device_links_read_unlock(idx); 420 } 421 422 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 423 424 static ssize_t status_show(struct device *dev, 425 struct device_attribute *attr, char *buf) 426 { 427 const char *output; 428 429 switch (to_devlink(dev)->status) { 430 case DL_STATE_NONE: 431 output = "not tracked"; 432 break; 433 case DL_STATE_DORMANT: 434 output = "dormant"; 435 break; 436 case DL_STATE_AVAILABLE: 437 output = "available"; 438 break; 439 case DL_STATE_CONSUMER_PROBE: 440 output = "consumer probing"; 441 break; 442 case DL_STATE_ACTIVE: 443 output = "active"; 444 break; 445 case DL_STATE_SUPPLIER_UNBIND: 446 output = "supplier unbinding"; 447 break; 448 default: 449 output = "unknown"; 450 break; 451 } 452 453 return sysfs_emit(buf, "%s\n", output); 454 } 455 static DEVICE_ATTR_RO(status); 456 457 static ssize_t auto_remove_on_show(struct device *dev, 458 struct device_attribute *attr, char *buf) 459 { 460 struct device_link *link = to_devlink(dev); 461 const char *output; 462 463 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 464 output = "supplier unbind"; 465 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 466 output = "consumer unbind"; 467 else 468 output = "never"; 469 470 return sysfs_emit(buf, "%s\n", output); 471 } 472 static DEVICE_ATTR_RO(auto_remove_on); 473 474 static ssize_t runtime_pm_show(struct device *dev, 475 struct device_attribute *attr, char *buf) 476 { 477 struct device_link *link = to_devlink(dev); 478 479 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 480 } 481 static DEVICE_ATTR_RO(runtime_pm); 482 483 static ssize_t sync_state_only_show(struct device *dev, 484 struct device_attribute *attr, char *buf) 485 { 486 struct device_link *link = to_devlink(dev); 487 488 return sysfs_emit(buf, "%d\n", 489 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 490 } 491 static DEVICE_ATTR_RO(sync_state_only); 492 493 static struct attribute *devlink_attrs[] = { 494 &dev_attr_status.attr, 495 &dev_attr_auto_remove_on.attr, 496 &dev_attr_runtime_pm.attr, 497 &dev_attr_sync_state_only.attr, 498 NULL, 499 }; 500 ATTRIBUTE_GROUPS(devlink); 501 502 static void device_link_release_fn(struct work_struct *work) 503 { 504 struct device_link *link = container_of(work, struct device_link, rm_work); 505 506 /* Ensure that all references to the link object have been dropped. */ 507 device_link_synchronize_removal(); 508 509 pm_runtime_release_supplier(link); 510 /* 511 * If supplier_preactivated is set, the link has been dropped between 512 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 513 * in __driver_probe_device(). In that case, drop the supplier's 514 * PM-runtime usage counter to remove the reference taken by 515 * pm_runtime_get_suppliers(). 516 */ 517 if (link->supplier_preactivated) 518 pm_runtime_put_noidle(link->supplier); 519 520 pm_request_idle(link->supplier); 521 522 put_device(link->consumer); 523 put_device(link->supplier); 524 kfree(link); 525 } 526 527 static void devlink_dev_release(struct device *dev) 528 { 529 struct device_link *link = to_devlink(dev); 530 531 INIT_WORK(&link->rm_work, device_link_release_fn); 532 /* 533 * It may take a while to complete this work because of the SRCU 534 * synchronization in device_link_release_fn() and if the consumer or 535 * supplier devices get deleted when it runs, so put it into the 536 * dedicated workqueue. 537 */ 538 queue_work(device_link_wq, &link->rm_work); 539 } 540 541 /** 542 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate 543 */ 544 void device_link_wait_removal(void) 545 { 546 /* 547 * devlink removal jobs are queued in the dedicated work queue. 548 * To be sure that all removal jobs are terminated, ensure that any 549 * scheduled work has run to completion. 550 */ 551 flush_workqueue(device_link_wq); 552 } 553 EXPORT_SYMBOL_GPL(device_link_wait_removal); 554 555 static struct class devlink_class = { 556 .name = "devlink", 557 .dev_groups = devlink_groups, 558 .dev_release = devlink_dev_release, 559 }; 560 561 static int devlink_add_symlinks(struct device *dev) 562 { 563 int ret; 564 size_t len; 565 struct device_link *link = to_devlink(dev); 566 struct device *sup = link->supplier; 567 struct device *con = link->consumer; 568 char *buf; 569 570 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 571 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 572 len += strlen(":"); 573 len += strlen("supplier:") + 1; 574 buf = kzalloc(len, GFP_KERNEL); 575 if (!buf) 576 return -ENOMEM; 577 578 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 579 if (ret) 580 goto out; 581 582 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 583 if (ret) 584 goto err_con; 585 586 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 587 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 588 if (ret) 589 goto err_con_dev; 590 591 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 592 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 593 if (ret) 594 goto err_sup_dev; 595 596 goto out; 597 598 err_sup_dev: 599 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 600 sysfs_remove_link(&sup->kobj, buf); 601 err_con_dev: 602 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 603 err_con: 604 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 605 out: 606 kfree(buf); 607 return ret; 608 } 609 610 static void devlink_remove_symlinks(struct device *dev) 611 { 612 struct device_link *link = to_devlink(dev); 613 size_t len; 614 struct device *sup = link->supplier; 615 struct device *con = link->consumer; 616 char *buf; 617 618 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 619 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 620 621 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 622 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 623 len += strlen(":"); 624 len += strlen("supplier:") + 1; 625 buf = kzalloc(len, GFP_KERNEL); 626 if (!buf) { 627 WARN(1, "Unable to properly free device link symlinks!\n"); 628 return; 629 } 630 631 if (device_is_registered(con)) { 632 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 633 sysfs_remove_link(&con->kobj, buf); 634 } 635 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 636 sysfs_remove_link(&sup->kobj, buf); 637 kfree(buf); 638 } 639 640 static struct class_interface devlink_class_intf = { 641 .class = &devlink_class, 642 .add_dev = devlink_add_symlinks, 643 .remove_dev = devlink_remove_symlinks, 644 }; 645 646 static int __init devlink_class_init(void) 647 { 648 int ret; 649 650 ret = class_register(&devlink_class); 651 if (ret) 652 return ret; 653 654 ret = class_interface_register(&devlink_class_intf); 655 if (ret) 656 class_unregister(&devlink_class); 657 658 return ret; 659 } 660 postcore_initcall(devlink_class_init); 661 662 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 663 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 664 DL_FLAG_AUTOPROBE_CONSUMER | \ 665 DL_FLAG_SYNC_STATE_ONLY | \ 666 DL_FLAG_INFERRED | \ 667 DL_FLAG_CYCLE) 668 669 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 670 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 671 672 /** 673 * device_link_add - Create a link between two devices. 674 * @consumer: Consumer end of the link. 675 * @supplier: Supplier end of the link. 676 * @flags: Link flags. 677 * 678 * The caller is responsible for the proper synchronization of the link creation 679 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 680 * runtime PM framework to take the link into account. Second, if the 681 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 682 * be forced into the active meta state and reference-counted upon the creation 683 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 684 * ignored. 685 * 686 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 687 * expected to release the link returned by it directly with the help of either 688 * device_link_del() or device_link_remove(). 689 * 690 * If that flag is not set, however, the caller of this function is handing the 691 * management of the link over to the driver core entirely and its return value 692 * can only be used to check whether or not the link is present. In that case, 693 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 694 * flags can be used to indicate to the driver core when the link can be safely 695 * deleted. Namely, setting one of them in @flags indicates to the driver core 696 * that the link is not going to be used (by the given caller of this function) 697 * after unbinding the consumer or supplier driver, respectively, from its 698 * device, so the link can be deleted at that point. If none of them is set, 699 * the link will be maintained until one of the devices pointed to by it (either 700 * the consumer or the supplier) is unregistered. 701 * 702 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 703 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 704 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 705 * be used to request the driver core to automatically probe for a consumer 706 * driver after successfully binding a driver to the supplier device. 707 * 708 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 709 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 710 * the same time is invalid and will cause NULL to be returned upfront. 711 * However, if a device link between the given @consumer and @supplier pair 712 * exists already when this function is called for them, the existing link will 713 * be returned regardless of its current type and status (the link's flags may 714 * be modified then). The caller of this function is then expected to treat 715 * the link as though it has just been created, so (in particular) if 716 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 717 * explicitly when not needed any more (as stated above). 718 * 719 * A side effect of the link creation is re-ordering of dpm_list and the 720 * devices_kset list by moving the consumer device and all devices depending 721 * on it to the ends of these lists (that does not happen to devices that have 722 * not been registered when this function is called). 723 * 724 * The supplier device is required to be registered when this function is called 725 * and NULL will be returned if that is not the case. The consumer device need 726 * not be registered, however. 727 */ 728 struct device_link *device_link_add(struct device *consumer, 729 struct device *supplier, u32 flags) 730 { 731 struct device_link *link; 732 733 if (!consumer || !supplier || consumer == supplier || 734 flags & ~DL_ADD_VALID_FLAGS || 735 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 736 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 737 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 738 DL_FLAG_AUTOREMOVE_SUPPLIER))) 739 return NULL; 740 741 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 742 if (pm_runtime_get_sync(supplier) < 0) { 743 pm_runtime_put_noidle(supplier); 744 return NULL; 745 } 746 } 747 748 if (!(flags & DL_FLAG_STATELESS)) 749 flags |= DL_FLAG_MANAGED; 750 751 if (flags & DL_FLAG_SYNC_STATE_ONLY && 752 !device_link_flag_is_sync_state_only(flags)) 753 return NULL; 754 755 device_links_write_lock(); 756 device_pm_lock(); 757 758 /* 759 * If the supplier has not been fully registered yet or there is a 760 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 761 * the supplier already in the graph, return NULL. If the link is a 762 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 763 * because it only affects sync_state() callbacks. 764 */ 765 if (!device_pm_initialized(supplier) 766 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 767 device_is_dependent(consumer, supplier))) { 768 link = NULL; 769 goto out; 770 } 771 772 /* 773 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 774 * So, only create it if the consumer hasn't probed yet. 775 */ 776 if (flags & DL_FLAG_SYNC_STATE_ONLY && 777 consumer->links.status != DL_DEV_NO_DRIVER && 778 consumer->links.status != DL_DEV_PROBING) { 779 link = NULL; 780 goto out; 781 } 782 783 /* 784 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 785 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 786 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 787 */ 788 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 789 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 790 791 list_for_each_entry(link, &supplier->links.consumers, s_node) { 792 if (link->consumer != consumer) 793 continue; 794 795 if (link->flags & DL_FLAG_INFERRED && 796 !(flags & DL_FLAG_INFERRED)) 797 link->flags &= ~DL_FLAG_INFERRED; 798 799 if (flags & DL_FLAG_PM_RUNTIME) { 800 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 801 pm_runtime_new_link(consumer); 802 link->flags |= DL_FLAG_PM_RUNTIME; 803 } 804 if (flags & DL_FLAG_RPM_ACTIVE) 805 refcount_inc(&link->rpm_active); 806 } 807 808 if (flags & DL_FLAG_STATELESS) { 809 kref_get(&link->kref); 810 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 811 !(link->flags & DL_FLAG_STATELESS)) { 812 link->flags |= DL_FLAG_STATELESS; 813 goto reorder; 814 } else { 815 link->flags |= DL_FLAG_STATELESS; 816 goto out; 817 } 818 } 819 820 /* 821 * If the life time of the link following from the new flags is 822 * longer than indicated by the flags of the existing link, 823 * update the existing link to stay around longer. 824 */ 825 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 826 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 827 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 828 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 829 } 830 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 831 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 832 DL_FLAG_AUTOREMOVE_SUPPLIER); 833 } 834 if (!(link->flags & DL_FLAG_MANAGED)) { 835 kref_get(&link->kref); 836 link->flags |= DL_FLAG_MANAGED; 837 device_link_init_status(link, consumer, supplier); 838 } 839 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 840 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 841 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 842 goto reorder; 843 } 844 845 goto out; 846 } 847 848 link = kzalloc(sizeof(*link), GFP_KERNEL); 849 if (!link) 850 goto out; 851 852 refcount_set(&link->rpm_active, 1); 853 854 get_device(supplier); 855 link->supplier = supplier; 856 INIT_LIST_HEAD(&link->s_node); 857 get_device(consumer); 858 link->consumer = consumer; 859 INIT_LIST_HEAD(&link->c_node); 860 link->flags = flags; 861 kref_init(&link->kref); 862 863 link->link_dev.class = &devlink_class; 864 device_set_pm_not_required(&link->link_dev); 865 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 866 dev_bus_name(supplier), dev_name(supplier), 867 dev_bus_name(consumer), dev_name(consumer)); 868 if (device_register(&link->link_dev)) { 869 put_device(&link->link_dev); 870 link = NULL; 871 goto out; 872 } 873 874 if (flags & DL_FLAG_PM_RUNTIME) { 875 if (flags & DL_FLAG_RPM_ACTIVE) 876 refcount_inc(&link->rpm_active); 877 878 pm_runtime_new_link(consumer); 879 } 880 881 /* Determine the initial link state. */ 882 if (flags & DL_FLAG_STATELESS) 883 link->status = DL_STATE_NONE; 884 else 885 device_link_init_status(link, consumer, supplier); 886 887 /* 888 * Some callers expect the link creation during consumer driver probe to 889 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 890 */ 891 if (link->status == DL_STATE_CONSUMER_PROBE && 892 flags & DL_FLAG_PM_RUNTIME) 893 pm_runtime_resume(supplier); 894 895 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 896 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 897 898 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 899 dev_dbg(consumer, 900 "Linked as a sync state only consumer to %s\n", 901 dev_name(supplier)); 902 goto out; 903 } 904 905 reorder: 906 /* 907 * Move the consumer and all of the devices depending on it to the end 908 * of dpm_list and the devices_kset list. 909 * 910 * It is necessary to hold dpm_list locked throughout all that or else 911 * we may end up suspending with a wrong ordering of it. 912 */ 913 device_reorder_to_tail(consumer, NULL); 914 915 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 916 917 out: 918 device_pm_unlock(); 919 device_links_write_unlock(); 920 921 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 922 pm_runtime_put(supplier); 923 924 return link; 925 } 926 EXPORT_SYMBOL_GPL(device_link_add); 927 928 static void __device_link_del(struct kref *kref) 929 { 930 struct device_link *link = container_of(kref, struct device_link, kref); 931 932 dev_dbg(link->consumer, "Dropping the link to %s\n", 933 dev_name(link->supplier)); 934 935 pm_runtime_drop_link(link); 936 937 device_link_remove_from_lists(link); 938 device_unregister(&link->link_dev); 939 } 940 941 static void device_link_put_kref(struct device_link *link) 942 { 943 if (link->flags & DL_FLAG_STATELESS) 944 kref_put(&link->kref, __device_link_del); 945 else if (!device_is_registered(link->consumer)) 946 __device_link_del(&link->kref); 947 else 948 WARN(1, "Unable to drop a managed device link reference\n"); 949 } 950 951 /** 952 * device_link_del - Delete a stateless link between two devices. 953 * @link: Device link to delete. 954 * 955 * The caller must ensure proper synchronization of this function with runtime 956 * PM. If the link was added multiple times, it needs to be deleted as often. 957 * Care is required for hotplugged devices: Their links are purged on removal 958 * and calling device_link_del() is then no longer allowed. 959 */ 960 void device_link_del(struct device_link *link) 961 { 962 device_links_write_lock(); 963 device_link_put_kref(link); 964 device_links_write_unlock(); 965 } 966 EXPORT_SYMBOL_GPL(device_link_del); 967 968 /** 969 * device_link_remove - Delete a stateless link between two devices. 970 * @consumer: Consumer end of the link. 971 * @supplier: Supplier end of the link. 972 * 973 * The caller must ensure proper synchronization of this function with runtime 974 * PM. 975 */ 976 void device_link_remove(void *consumer, struct device *supplier) 977 { 978 struct device_link *link; 979 980 if (WARN_ON(consumer == supplier)) 981 return; 982 983 device_links_write_lock(); 984 985 list_for_each_entry(link, &supplier->links.consumers, s_node) { 986 if (link->consumer == consumer) { 987 device_link_put_kref(link); 988 break; 989 } 990 } 991 992 device_links_write_unlock(); 993 } 994 EXPORT_SYMBOL_GPL(device_link_remove); 995 996 static void device_links_missing_supplier(struct device *dev) 997 { 998 struct device_link *link; 999 1000 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1001 if (link->status != DL_STATE_CONSUMER_PROBE) 1002 continue; 1003 1004 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1005 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1006 } else { 1007 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1008 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1009 } 1010 } 1011 } 1012 1013 static bool dev_is_best_effort(struct device *dev) 1014 { 1015 return (fw_devlink_best_effort && dev->can_match) || 1016 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT)); 1017 } 1018 1019 static struct fwnode_handle *fwnode_links_check_suppliers( 1020 struct fwnode_handle *fwnode) 1021 { 1022 struct fwnode_link *link; 1023 1024 if (!fwnode || fw_devlink_is_permissive()) 1025 return NULL; 1026 1027 list_for_each_entry(link, &fwnode->suppliers, c_hook) 1028 if (!(link->flags & FWLINK_FLAG_CYCLE)) 1029 return link->supplier; 1030 1031 return NULL; 1032 } 1033 1034 /** 1035 * device_links_check_suppliers - Check presence of supplier drivers. 1036 * @dev: Consumer device. 1037 * 1038 * Check links from this device to any suppliers. Walk the list of the device's 1039 * links to suppliers and see if all of them are available. If not, simply 1040 * return -EPROBE_DEFER. 1041 * 1042 * We need to guarantee that the supplier will not go away after the check has 1043 * been positive here. It only can go away in __device_release_driver() and 1044 * that function checks the device's links to consumers. This means we need to 1045 * mark the link as "consumer probe in progress" to make the supplier removal 1046 * wait for us to complete (or bad things may happen). 1047 * 1048 * Links without the DL_FLAG_MANAGED flag set are ignored. 1049 */ 1050 int device_links_check_suppliers(struct device *dev) 1051 { 1052 struct device_link *link; 1053 int ret = 0, fwnode_ret = 0; 1054 struct fwnode_handle *sup_fw; 1055 1056 /* 1057 * Device waiting for supplier to become available is not allowed to 1058 * probe. 1059 */ 1060 mutex_lock(&fwnode_link_lock); 1061 sup_fw = fwnode_links_check_suppliers(dev->fwnode); 1062 if (sup_fw) { 1063 if (!dev_is_best_effort(dev)) { 1064 fwnode_ret = -EPROBE_DEFER; 1065 dev_err_probe(dev, -EPROBE_DEFER, 1066 "wait for supplier %pfwf\n", sup_fw); 1067 } else { 1068 fwnode_ret = -EAGAIN; 1069 } 1070 } 1071 mutex_unlock(&fwnode_link_lock); 1072 if (fwnode_ret == -EPROBE_DEFER) 1073 return fwnode_ret; 1074 1075 device_links_write_lock(); 1076 1077 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1078 if (!(link->flags & DL_FLAG_MANAGED)) 1079 continue; 1080 1081 if (link->status != DL_STATE_AVAILABLE && 1082 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1083 1084 if (dev_is_best_effort(dev) && 1085 link->flags & DL_FLAG_INFERRED && 1086 !link->supplier->can_match) { 1087 ret = -EAGAIN; 1088 continue; 1089 } 1090 1091 device_links_missing_supplier(dev); 1092 dev_err_probe(dev, -EPROBE_DEFER, 1093 "supplier %s not ready\n", 1094 dev_name(link->supplier)); 1095 ret = -EPROBE_DEFER; 1096 break; 1097 } 1098 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1099 } 1100 dev->links.status = DL_DEV_PROBING; 1101 1102 device_links_write_unlock(); 1103 1104 return ret ? ret : fwnode_ret; 1105 } 1106 1107 /** 1108 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1109 * @dev: Device to call sync_state() on 1110 * @list: List head to queue the @dev on 1111 * 1112 * Queues a device for a sync_state() callback when the device links write lock 1113 * isn't held. This allows the sync_state() execution flow to use device links 1114 * APIs. The caller must ensure this function is called with 1115 * device_links_write_lock() held. 1116 * 1117 * This function does a get_device() to make sure the device is not freed while 1118 * on this list. 1119 * 1120 * So the caller must also ensure that device_links_flush_sync_list() is called 1121 * as soon as the caller releases device_links_write_lock(). This is necessary 1122 * to make sure the sync_state() is called in a timely fashion and the 1123 * put_device() is called on this device. 1124 */ 1125 static void __device_links_queue_sync_state(struct device *dev, 1126 struct list_head *list) 1127 { 1128 struct device_link *link; 1129 1130 if (!dev_has_sync_state(dev)) 1131 return; 1132 if (dev->state_synced) 1133 return; 1134 1135 list_for_each_entry(link, &dev->links.consumers, s_node) { 1136 if (!(link->flags & DL_FLAG_MANAGED)) 1137 continue; 1138 if (link->status != DL_STATE_ACTIVE) 1139 return; 1140 } 1141 1142 /* 1143 * Set the flag here to avoid adding the same device to a list more 1144 * than once. This can happen if new consumers get added to the device 1145 * and probed before the list is flushed. 1146 */ 1147 dev->state_synced = true; 1148 1149 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1150 return; 1151 1152 get_device(dev); 1153 list_add_tail(&dev->links.defer_sync, list); 1154 } 1155 1156 /** 1157 * device_links_flush_sync_list - Call sync_state() on a list of devices 1158 * @list: List of devices to call sync_state() on 1159 * @dont_lock_dev: Device for which lock is already held by the caller 1160 * 1161 * Calls sync_state() on all the devices that have been queued for it. This 1162 * function is used in conjunction with __device_links_queue_sync_state(). The 1163 * @dont_lock_dev parameter is useful when this function is called from a 1164 * context where a device lock is already held. 1165 */ 1166 static void device_links_flush_sync_list(struct list_head *list, 1167 struct device *dont_lock_dev) 1168 { 1169 struct device *dev, *tmp; 1170 1171 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1172 list_del_init(&dev->links.defer_sync); 1173 1174 if (dev != dont_lock_dev) 1175 device_lock(dev); 1176 1177 dev_sync_state(dev); 1178 1179 if (dev != dont_lock_dev) 1180 device_unlock(dev); 1181 1182 put_device(dev); 1183 } 1184 } 1185 1186 void device_links_supplier_sync_state_pause(void) 1187 { 1188 device_links_write_lock(); 1189 defer_sync_state_count++; 1190 device_links_write_unlock(); 1191 } 1192 1193 void device_links_supplier_sync_state_resume(void) 1194 { 1195 struct device *dev, *tmp; 1196 LIST_HEAD(sync_list); 1197 1198 device_links_write_lock(); 1199 if (!defer_sync_state_count) { 1200 WARN(true, "Unmatched sync_state pause/resume!"); 1201 goto out; 1202 } 1203 defer_sync_state_count--; 1204 if (defer_sync_state_count) 1205 goto out; 1206 1207 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1208 /* 1209 * Delete from deferred_sync list before queuing it to 1210 * sync_list because defer_sync is used for both lists. 1211 */ 1212 list_del_init(&dev->links.defer_sync); 1213 __device_links_queue_sync_state(dev, &sync_list); 1214 } 1215 out: 1216 device_links_write_unlock(); 1217 1218 device_links_flush_sync_list(&sync_list, NULL); 1219 } 1220 1221 static int sync_state_resume_initcall(void) 1222 { 1223 device_links_supplier_sync_state_resume(); 1224 return 0; 1225 } 1226 late_initcall(sync_state_resume_initcall); 1227 1228 static void __device_links_supplier_defer_sync(struct device *sup) 1229 { 1230 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1231 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1232 } 1233 1234 static void device_link_drop_managed(struct device_link *link) 1235 { 1236 link->flags &= ~DL_FLAG_MANAGED; 1237 WRITE_ONCE(link->status, DL_STATE_NONE); 1238 kref_put(&link->kref, __device_link_del); 1239 } 1240 1241 static ssize_t waiting_for_supplier_show(struct device *dev, 1242 struct device_attribute *attr, 1243 char *buf) 1244 { 1245 bool val; 1246 1247 device_lock(dev); 1248 mutex_lock(&fwnode_link_lock); 1249 val = !!fwnode_links_check_suppliers(dev->fwnode); 1250 mutex_unlock(&fwnode_link_lock); 1251 device_unlock(dev); 1252 return sysfs_emit(buf, "%u\n", val); 1253 } 1254 static DEVICE_ATTR_RO(waiting_for_supplier); 1255 1256 /** 1257 * device_links_force_bind - Prepares device to be force bound 1258 * @dev: Consumer device. 1259 * 1260 * device_bind_driver() force binds a device to a driver without calling any 1261 * driver probe functions. So the consumer really isn't going to wait for any 1262 * supplier before it's bound to the driver. We still want the device link 1263 * states to be sensible when this happens. 1264 * 1265 * In preparation for device_bind_driver(), this function goes through each 1266 * supplier device links and checks if the supplier is bound. If it is, then 1267 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1268 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1269 */ 1270 void device_links_force_bind(struct device *dev) 1271 { 1272 struct device_link *link, *ln; 1273 1274 device_links_write_lock(); 1275 1276 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1277 if (!(link->flags & DL_FLAG_MANAGED)) 1278 continue; 1279 1280 if (link->status != DL_STATE_AVAILABLE) { 1281 device_link_drop_managed(link); 1282 continue; 1283 } 1284 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1285 } 1286 dev->links.status = DL_DEV_PROBING; 1287 1288 device_links_write_unlock(); 1289 } 1290 1291 /** 1292 * device_links_driver_bound - Update device links after probing its driver. 1293 * @dev: Device to update the links for. 1294 * 1295 * The probe has been successful, so update links from this device to any 1296 * consumers by changing their status to "available". 1297 * 1298 * Also change the status of @dev's links to suppliers to "active". 1299 * 1300 * Links without the DL_FLAG_MANAGED flag set are ignored. 1301 */ 1302 void device_links_driver_bound(struct device *dev) 1303 { 1304 struct device_link *link, *ln; 1305 LIST_HEAD(sync_list); 1306 1307 /* 1308 * If a device binds successfully, it's expected to have created all 1309 * the device links it needs to or make new device links as it needs 1310 * them. So, fw_devlink no longer needs to create device links to any 1311 * of the device's suppliers. 1312 * 1313 * Also, if a child firmware node of this bound device is not added as a 1314 * device by now, assume it is never going to be added. Make this bound 1315 * device the fallback supplier to the dangling consumers of the child 1316 * firmware node because this bound device is probably implementing the 1317 * child firmware node functionality and we don't want the dangling 1318 * consumers to defer probe indefinitely waiting for a device for the 1319 * child firmware node. 1320 */ 1321 if (dev->fwnode && dev->fwnode->dev == dev) { 1322 struct fwnode_handle *child; 1323 fwnode_links_purge_suppliers(dev->fwnode); 1324 mutex_lock(&fwnode_link_lock); 1325 fwnode_for_each_available_child_node(dev->fwnode, child) 1326 __fw_devlink_pickup_dangling_consumers(child, 1327 dev->fwnode); 1328 __fw_devlink_link_to_consumers(dev); 1329 mutex_unlock(&fwnode_link_lock); 1330 } 1331 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1332 1333 device_links_write_lock(); 1334 1335 list_for_each_entry(link, &dev->links.consumers, s_node) { 1336 if (!(link->flags & DL_FLAG_MANAGED)) 1337 continue; 1338 1339 /* 1340 * Links created during consumer probe may be in the "consumer 1341 * probe" state to start with if the supplier is still probing 1342 * when they are created and they may become "active" if the 1343 * consumer probe returns first. Skip them here. 1344 */ 1345 if (link->status == DL_STATE_CONSUMER_PROBE || 1346 link->status == DL_STATE_ACTIVE) 1347 continue; 1348 1349 WARN_ON(link->status != DL_STATE_DORMANT); 1350 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1351 1352 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1353 driver_deferred_probe_add(link->consumer); 1354 } 1355 1356 if (defer_sync_state_count) 1357 __device_links_supplier_defer_sync(dev); 1358 else 1359 __device_links_queue_sync_state(dev, &sync_list); 1360 1361 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1362 struct device *supplier; 1363 1364 if (!(link->flags & DL_FLAG_MANAGED)) 1365 continue; 1366 1367 supplier = link->supplier; 1368 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1369 /* 1370 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1371 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1372 * save to drop the managed link completely. 1373 */ 1374 device_link_drop_managed(link); 1375 } else if (dev_is_best_effort(dev) && 1376 link->flags & DL_FLAG_INFERRED && 1377 link->status != DL_STATE_CONSUMER_PROBE && 1378 !link->supplier->can_match) { 1379 /* 1380 * When dev_is_best_effort() is true, we ignore device 1381 * links to suppliers that don't have a driver. If the 1382 * consumer device still managed to probe, there's no 1383 * point in maintaining a device link in a weird state 1384 * (consumer probed before supplier). So delete it. 1385 */ 1386 device_link_drop_managed(link); 1387 } else { 1388 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1389 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1390 } 1391 1392 /* 1393 * This needs to be done even for the deleted 1394 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1395 * device link that was preventing the supplier from getting a 1396 * sync_state() call. 1397 */ 1398 if (defer_sync_state_count) 1399 __device_links_supplier_defer_sync(supplier); 1400 else 1401 __device_links_queue_sync_state(supplier, &sync_list); 1402 } 1403 1404 dev->links.status = DL_DEV_DRIVER_BOUND; 1405 1406 device_links_write_unlock(); 1407 1408 device_links_flush_sync_list(&sync_list, dev); 1409 } 1410 1411 /** 1412 * __device_links_no_driver - Update links of a device without a driver. 1413 * @dev: Device without a drvier. 1414 * 1415 * Delete all non-persistent links from this device to any suppliers. 1416 * 1417 * Persistent links stay around, but their status is changed to "available", 1418 * unless they already are in the "supplier unbind in progress" state in which 1419 * case they need not be updated. 1420 * 1421 * Links without the DL_FLAG_MANAGED flag set are ignored. 1422 */ 1423 static void __device_links_no_driver(struct device *dev) 1424 { 1425 struct device_link *link, *ln; 1426 1427 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1428 if (!(link->flags & DL_FLAG_MANAGED)) 1429 continue; 1430 1431 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1432 device_link_drop_managed(link); 1433 continue; 1434 } 1435 1436 if (link->status != DL_STATE_CONSUMER_PROBE && 1437 link->status != DL_STATE_ACTIVE) 1438 continue; 1439 1440 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1441 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1442 } else { 1443 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1444 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1445 } 1446 } 1447 1448 dev->links.status = DL_DEV_NO_DRIVER; 1449 } 1450 1451 /** 1452 * device_links_no_driver - Update links after failing driver probe. 1453 * @dev: Device whose driver has just failed to probe. 1454 * 1455 * Clean up leftover links to consumers for @dev and invoke 1456 * %__device_links_no_driver() to update links to suppliers for it as 1457 * appropriate. 1458 * 1459 * Links without the DL_FLAG_MANAGED flag set are ignored. 1460 */ 1461 void device_links_no_driver(struct device *dev) 1462 { 1463 struct device_link *link; 1464 1465 device_links_write_lock(); 1466 1467 list_for_each_entry(link, &dev->links.consumers, s_node) { 1468 if (!(link->flags & DL_FLAG_MANAGED)) 1469 continue; 1470 1471 /* 1472 * The probe has failed, so if the status of the link is 1473 * "consumer probe" or "active", it must have been added by 1474 * a probing consumer while this device was still probing. 1475 * Change its state to "dormant", as it represents a valid 1476 * relationship, but it is not functionally meaningful. 1477 */ 1478 if (link->status == DL_STATE_CONSUMER_PROBE || 1479 link->status == DL_STATE_ACTIVE) 1480 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1481 } 1482 1483 __device_links_no_driver(dev); 1484 1485 device_links_write_unlock(); 1486 } 1487 1488 /** 1489 * device_links_driver_cleanup - Update links after driver removal. 1490 * @dev: Device whose driver has just gone away. 1491 * 1492 * Update links to consumers for @dev by changing their status to "dormant" and 1493 * invoke %__device_links_no_driver() to update links to suppliers for it as 1494 * appropriate. 1495 * 1496 * Links without the DL_FLAG_MANAGED flag set are ignored. 1497 */ 1498 void device_links_driver_cleanup(struct device *dev) 1499 { 1500 struct device_link *link, *ln; 1501 1502 device_links_write_lock(); 1503 1504 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1505 if (!(link->flags & DL_FLAG_MANAGED)) 1506 continue; 1507 1508 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1509 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1510 1511 /* 1512 * autoremove the links between this @dev and its consumer 1513 * devices that are not active, i.e. where the link state 1514 * has moved to DL_STATE_SUPPLIER_UNBIND. 1515 */ 1516 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1517 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1518 device_link_drop_managed(link); 1519 1520 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1521 } 1522 1523 list_del_init(&dev->links.defer_sync); 1524 __device_links_no_driver(dev); 1525 1526 device_links_write_unlock(); 1527 } 1528 1529 /** 1530 * device_links_busy - Check if there are any busy links to consumers. 1531 * @dev: Device to check. 1532 * 1533 * Check each consumer of the device and return 'true' if its link's status 1534 * is one of "consumer probe" or "active" (meaning that the given consumer is 1535 * probing right now or its driver is present). Otherwise, change the link 1536 * state to "supplier unbind" to prevent the consumer from being probed 1537 * successfully going forward. 1538 * 1539 * Return 'false' if there are no probing or active consumers. 1540 * 1541 * Links without the DL_FLAG_MANAGED flag set are ignored. 1542 */ 1543 bool device_links_busy(struct device *dev) 1544 { 1545 struct device_link *link; 1546 bool ret = false; 1547 1548 device_links_write_lock(); 1549 1550 list_for_each_entry(link, &dev->links.consumers, s_node) { 1551 if (!(link->flags & DL_FLAG_MANAGED)) 1552 continue; 1553 1554 if (link->status == DL_STATE_CONSUMER_PROBE 1555 || link->status == DL_STATE_ACTIVE) { 1556 ret = true; 1557 break; 1558 } 1559 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1560 } 1561 1562 dev->links.status = DL_DEV_UNBINDING; 1563 1564 device_links_write_unlock(); 1565 return ret; 1566 } 1567 1568 /** 1569 * device_links_unbind_consumers - Force unbind consumers of the given device. 1570 * @dev: Device to unbind the consumers of. 1571 * 1572 * Walk the list of links to consumers for @dev and if any of them is in the 1573 * "consumer probe" state, wait for all device probes in progress to complete 1574 * and start over. 1575 * 1576 * If that's not the case, change the status of the link to "supplier unbind" 1577 * and check if the link was in the "active" state. If so, force the consumer 1578 * driver to unbind and start over (the consumer will not re-probe as we have 1579 * changed the state of the link already). 1580 * 1581 * Links without the DL_FLAG_MANAGED flag set are ignored. 1582 */ 1583 void device_links_unbind_consumers(struct device *dev) 1584 { 1585 struct device_link *link; 1586 1587 start: 1588 device_links_write_lock(); 1589 1590 list_for_each_entry(link, &dev->links.consumers, s_node) { 1591 enum device_link_state status; 1592 1593 if (!(link->flags & DL_FLAG_MANAGED) || 1594 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1595 continue; 1596 1597 status = link->status; 1598 if (status == DL_STATE_CONSUMER_PROBE) { 1599 device_links_write_unlock(); 1600 1601 wait_for_device_probe(); 1602 goto start; 1603 } 1604 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1605 if (status == DL_STATE_ACTIVE) { 1606 struct device *consumer = link->consumer; 1607 1608 get_device(consumer); 1609 1610 device_links_write_unlock(); 1611 1612 device_release_driver_internal(consumer, NULL, 1613 consumer->parent); 1614 put_device(consumer); 1615 goto start; 1616 } 1617 } 1618 1619 device_links_write_unlock(); 1620 } 1621 1622 /** 1623 * device_links_purge - Delete existing links to other devices. 1624 * @dev: Target device. 1625 */ 1626 static void device_links_purge(struct device *dev) 1627 { 1628 struct device_link *link, *ln; 1629 1630 if (dev->class == &devlink_class) 1631 return; 1632 1633 /* 1634 * Delete all of the remaining links from this device to any other 1635 * devices (either consumers or suppliers). 1636 */ 1637 device_links_write_lock(); 1638 1639 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1640 WARN_ON(link->status == DL_STATE_ACTIVE); 1641 __device_link_del(&link->kref); 1642 } 1643 1644 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1645 WARN_ON(link->status != DL_STATE_DORMANT && 1646 link->status != DL_STATE_NONE); 1647 __device_link_del(&link->kref); 1648 } 1649 1650 device_links_write_unlock(); 1651 } 1652 1653 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1654 DL_FLAG_SYNC_STATE_ONLY) 1655 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1656 DL_FLAG_AUTOPROBE_CONSUMER) 1657 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1658 DL_FLAG_PM_RUNTIME) 1659 1660 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1661 static int __init fw_devlink_setup(char *arg) 1662 { 1663 if (!arg) 1664 return -EINVAL; 1665 1666 if (strcmp(arg, "off") == 0) { 1667 fw_devlink_flags = 0; 1668 } else if (strcmp(arg, "permissive") == 0) { 1669 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1670 } else if (strcmp(arg, "on") == 0) { 1671 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1672 } else if (strcmp(arg, "rpm") == 0) { 1673 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1674 } 1675 return 0; 1676 } 1677 early_param("fw_devlink", fw_devlink_setup); 1678 1679 static bool fw_devlink_strict; 1680 static int __init fw_devlink_strict_setup(char *arg) 1681 { 1682 return kstrtobool(arg, &fw_devlink_strict); 1683 } 1684 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1685 1686 #define FW_DEVLINK_SYNC_STATE_STRICT 0 1687 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1 1688 1689 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT 1690 static int fw_devlink_sync_state; 1691 #else 1692 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1693 #endif 1694 1695 static int __init fw_devlink_sync_state_setup(char *arg) 1696 { 1697 if (!arg) 1698 return -EINVAL; 1699 1700 if (strcmp(arg, "strict") == 0) { 1701 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT; 1702 return 0; 1703 } else if (strcmp(arg, "timeout") == 0) { 1704 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1705 return 0; 1706 } 1707 return -EINVAL; 1708 } 1709 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup); 1710 1711 static inline u32 fw_devlink_get_flags(u8 fwlink_flags) 1712 { 1713 if (fwlink_flags & FWLINK_FLAG_CYCLE) 1714 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE; 1715 1716 return fw_devlink_flags; 1717 } 1718 1719 static bool fw_devlink_is_permissive(void) 1720 { 1721 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1722 } 1723 1724 bool fw_devlink_is_strict(void) 1725 { 1726 return fw_devlink_strict && !fw_devlink_is_permissive(); 1727 } 1728 1729 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1730 { 1731 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1732 return; 1733 1734 fwnode_call_int_op(fwnode, add_links); 1735 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1736 } 1737 1738 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1739 { 1740 struct fwnode_handle *child = NULL; 1741 1742 fw_devlink_parse_fwnode(fwnode); 1743 1744 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1745 fw_devlink_parse_fwtree(child); 1746 } 1747 1748 static void fw_devlink_relax_link(struct device_link *link) 1749 { 1750 if (!(link->flags & DL_FLAG_INFERRED)) 1751 return; 1752 1753 if (device_link_flag_is_sync_state_only(link->flags)) 1754 return; 1755 1756 pm_runtime_drop_link(link); 1757 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1758 dev_dbg(link->consumer, "Relaxing link with %s\n", 1759 dev_name(link->supplier)); 1760 } 1761 1762 static int fw_devlink_no_driver(struct device *dev, void *data) 1763 { 1764 struct device_link *link = to_devlink(dev); 1765 1766 if (!link->supplier->can_match) 1767 fw_devlink_relax_link(link); 1768 1769 return 0; 1770 } 1771 1772 void fw_devlink_drivers_done(void) 1773 { 1774 fw_devlink_drv_reg_done = true; 1775 device_links_write_lock(); 1776 class_for_each_device(&devlink_class, NULL, NULL, 1777 fw_devlink_no_driver); 1778 device_links_write_unlock(); 1779 } 1780 1781 static int fw_devlink_dev_sync_state(struct device *dev, void *data) 1782 { 1783 struct device_link *link = to_devlink(dev); 1784 struct device *sup = link->supplier; 1785 1786 if (!(link->flags & DL_FLAG_MANAGED) || 1787 link->status == DL_STATE_ACTIVE || sup->state_synced || 1788 !dev_has_sync_state(sup)) 1789 return 0; 1790 1791 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) { 1792 dev_warn(sup, "sync_state() pending due to %s\n", 1793 dev_name(link->consumer)); 1794 return 0; 1795 } 1796 1797 if (!list_empty(&sup->links.defer_sync)) 1798 return 0; 1799 1800 dev_warn(sup, "Timed out. Forcing sync_state()\n"); 1801 sup->state_synced = true; 1802 get_device(sup); 1803 list_add_tail(&sup->links.defer_sync, data); 1804 1805 return 0; 1806 } 1807 1808 void fw_devlink_probing_done(void) 1809 { 1810 LIST_HEAD(sync_list); 1811 1812 device_links_write_lock(); 1813 class_for_each_device(&devlink_class, NULL, &sync_list, 1814 fw_devlink_dev_sync_state); 1815 device_links_write_unlock(); 1816 device_links_flush_sync_list(&sync_list, NULL); 1817 } 1818 1819 /** 1820 * wait_for_init_devices_probe - Try to probe any device needed for init 1821 * 1822 * Some devices might need to be probed and bound successfully before the kernel 1823 * boot sequence can finish and move on to init/userspace. For example, a 1824 * network interface might need to be bound to be able to mount a NFS rootfs. 1825 * 1826 * With fw_devlink=on by default, some of these devices might be blocked from 1827 * probing because they are waiting on a optional supplier that doesn't have a 1828 * driver. While fw_devlink will eventually identify such devices and unblock 1829 * the probing automatically, it might be too late by the time it unblocks the 1830 * probing of devices. For example, the IP4 autoconfig might timeout before 1831 * fw_devlink unblocks probing of the network interface. 1832 * 1833 * This function is available to temporarily try and probe all devices that have 1834 * a driver even if some of their suppliers haven't been added or don't have 1835 * drivers. 1836 * 1837 * The drivers can then decide which of the suppliers are optional vs mandatory 1838 * and probe the device if possible. By the time this function returns, all such 1839 * "best effort" probes are guaranteed to be completed. If a device successfully 1840 * probes in this mode, we delete all fw_devlink discovered dependencies of that 1841 * device where the supplier hasn't yet probed successfully because they have to 1842 * be optional dependencies. 1843 * 1844 * Any devices that didn't successfully probe go back to being treated as if 1845 * this function was never called. 1846 * 1847 * This also means that some devices that aren't needed for init and could have 1848 * waited for their optional supplier to probe (when the supplier's module is 1849 * loaded later on) would end up probing prematurely with limited functionality. 1850 * So call this function only when boot would fail without it. 1851 */ 1852 void __init wait_for_init_devices_probe(void) 1853 { 1854 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1855 return; 1856 1857 /* 1858 * Wait for all ongoing probes to finish so that the "best effort" is 1859 * only applied to devices that can't probe otherwise. 1860 */ 1861 wait_for_device_probe(); 1862 1863 pr_info("Trying to probe devices needed for running init ...\n"); 1864 fw_devlink_best_effort = true; 1865 driver_deferred_probe_trigger(); 1866 1867 /* 1868 * Wait for all "best effort" probes to finish before going back to 1869 * normal enforcement. 1870 */ 1871 wait_for_device_probe(); 1872 fw_devlink_best_effort = false; 1873 } 1874 1875 static void fw_devlink_unblock_consumers(struct device *dev) 1876 { 1877 struct device_link *link; 1878 1879 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1880 return; 1881 1882 device_links_write_lock(); 1883 list_for_each_entry(link, &dev->links.consumers, s_node) 1884 fw_devlink_relax_link(link); 1885 device_links_write_unlock(); 1886 } 1887 1888 1889 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode) 1890 { 1891 struct device *dev; 1892 bool ret; 1893 1894 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED)) 1895 return false; 1896 1897 dev = get_dev_from_fwnode(fwnode); 1898 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER; 1899 put_device(dev); 1900 1901 return ret; 1902 } 1903 1904 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode) 1905 { 1906 struct fwnode_handle *parent; 1907 1908 fwnode_for_each_parent_node(fwnode, parent) { 1909 if (fwnode_init_without_drv(parent)) { 1910 fwnode_handle_put(parent); 1911 return true; 1912 } 1913 } 1914 1915 return false; 1916 } 1917 1918 /** 1919 * __fw_devlink_relax_cycles - Relax and mark dependency cycles. 1920 * @con: Potential consumer device. 1921 * @sup_handle: Potential supplier's fwnode. 1922 * 1923 * Needs to be called with fwnode_lock and device link lock held. 1924 * 1925 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly 1926 * depend on @con. This function can detect multiple cyles between @sup_handle 1927 * and @con. When such dependency cycles are found, convert all device links 1928 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark 1929 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are 1930 * converted into a device link in the future, they are created as 1931 * SYNC_STATE_ONLY device links. This is the equivalent of doing 1932 * fw_devlink=permissive just between the devices in the cycle. We need to do 1933 * this because, at this point, fw_devlink can't tell which of these 1934 * dependencies is not a real dependency. 1935 * 1936 * Return true if one or more cycles were found. Otherwise, return false. 1937 */ 1938 static bool __fw_devlink_relax_cycles(struct device *con, 1939 struct fwnode_handle *sup_handle) 1940 { 1941 struct device *sup_dev = NULL, *par_dev = NULL; 1942 struct fwnode_link *link; 1943 struct device_link *dev_link; 1944 bool ret = false; 1945 1946 if (!sup_handle) 1947 return false; 1948 1949 /* 1950 * We aren't trying to find all cycles. Just a cycle between con and 1951 * sup_handle. 1952 */ 1953 if (sup_handle->flags & FWNODE_FLAG_VISITED) 1954 return false; 1955 1956 sup_handle->flags |= FWNODE_FLAG_VISITED; 1957 1958 sup_dev = get_dev_from_fwnode(sup_handle); 1959 1960 /* Termination condition. */ 1961 if (sup_dev == con) { 1962 ret = true; 1963 goto out; 1964 } 1965 1966 /* 1967 * If sup_dev is bound to a driver and @con hasn't started binding to a 1968 * driver, sup_dev can't be a consumer of @con. So, no need to check 1969 * further. 1970 */ 1971 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND && 1972 con->links.status == DL_DEV_NO_DRIVER) { 1973 ret = false; 1974 goto out; 1975 } 1976 1977 list_for_each_entry(link, &sup_handle->suppliers, c_hook) { 1978 if (__fw_devlink_relax_cycles(con, link->supplier)) { 1979 __fwnode_link_cycle(link); 1980 ret = true; 1981 } 1982 } 1983 1984 /* 1985 * Give priority to device parent over fwnode parent to account for any 1986 * quirks in how fwnodes are converted to devices. 1987 */ 1988 if (sup_dev) 1989 par_dev = get_device(sup_dev->parent); 1990 else 1991 par_dev = fwnode_get_next_parent_dev(sup_handle); 1992 1993 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) 1994 ret = true; 1995 1996 if (!sup_dev) 1997 goto out; 1998 1999 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) { 2000 /* 2001 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as 2002 * such due to a cycle. 2003 */ 2004 if (device_link_flag_is_sync_state_only(dev_link->flags) && 2005 !(dev_link->flags & DL_FLAG_CYCLE)) 2006 continue; 2007 2008 if (__fw_devlink_relax_cycles(con, 2009 dev_link->supplier->fwnode)) { 2010 fw_devlink_relax_link(dev_link); 2011 dev_link->flags |= DL_FLAG_CYCLE; 2012 ret = true; 2013 } 2014 } 2015 2016 out: 2017 sup_handle->flags &= ~FWNODE_FLAG_VISITED; 2018 put_device(sup_dev); 2019 put_device(par_dev); 2020 return ret; 2021 } 2022 2023 /** 2024 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 2025 * @con: consumer device for the device link 2026 * @sup_handle: fwnode handle of supplier 2027 * @link: fwnode link that's being converted to a device link 2028 * 2029 * This function will try to create a device link between the consumer device 2030 * @con and the supplier device represented by @sup_handle. 2031 * 2032 * The supplier has to be provided as a fwnode because incorrect cycles in 2033 * fwnode links can sometimes cause the supplier device to never be created. 2034 * This function detects such cases and returns an error if it cannot create a 2035 * device link from the consumer to a missing supplier. 2036 * 2037 * Returns, 2038 * 0 on successfully creating a device link 2039 * -EINVAL if the device link cannot be created as expected 2040 * -EAGAIN if the device link cannot be created right now, but it may be 2041 * possible to do that in the future 2042 */ 2043 static int fw_devlink_create_devlink(struct device *con, 2044 struct fwnode_handle *sup_handle, 2045 struct fwnode_link *link) 2046 { 2047 struct device *sup_dev; 2048 int ret = 0; 2049 u32 flags; 2050 2051 if (con->fwnode == link->consumer) 2052 flags = fw_devlink_get_flags(link->flags); 2053 else 2054 flags = FW_DEVLINK_FLAGS_PERMISSIVE; 2055 2056 /* 2057 * In some cases, a device P might also be a supplier to its child node 2058 * C. However, this would defer the probe of C until the probe of P 2059 * completes successfully. This is perfectly fine in the device driver 2060 * model. device_add() doesn't guarantee probe completion of the device 2061 * by the time it returns. 2062 * 2063 * However, there are a few drivers that assume C will finish probing 2064 * as soon as it's added and before P finishes probing. So, we provide 2065 * a flag to let fw_devlink know not to delay the probe of C until the 2066 * probe of P completes successfully. 2067 * 2068 * When such a flag is set, we can't create device links where P is the 2069 * supplier of C as that would delay the probe of C. 2070 */ 2071 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 2072 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 2073 return -EINVAL; 2074 2075 /* 2076 * SYNC_STATE_ONLY device links don't block probing and supports cycles. 2077 * So, one might expect that cycle detection isn't necessary for them. 2078 * However, if the device link was marked as SYNC_STATE_ONLY because 2079 * it's part of a cycle, then we still need to do cycle detection. This 2080 * is because the consumer and supplier might be part of multiple cycles 2081 * and we need to detect all those cycles. 2082 */ 2083 if (!device_link_flag_is_sync_state_only(flags) || 2084 flags & DL_FLAG_CYCLE) { 2085 device_links_write_lock(); 2086 if (__fw_devlink_relax_cycles(con, sup_handle)) { 2087 __fwnode_link_cycle(link); 2088 flags = fw_devlink_get_flags(link->flags); 2089 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n", 2090 sup_handle); 2091 } 2092 device_links_write_unlock(); 2093 } 2094 2095 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE) 2096 sup_dev = fwnode_get_next_parent_dev(sup_handle); 2097 else 2098 sup_dev = get_dev_from_fwnode(sup_handle); 2099 2100 if (sup_dev) { 2101 /* 2102 * If it's one of those drivers that don't actually bind to 2103 * their device using driver core, then don't wait on this 2104 * supplier device indefinitely. 2105 */ 2106 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 2107 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 2108 dev_dbg(con, 2109 "Not linking %pfwf - dev might never probe\n", 2110 sup_handle); 2111 ret = -EINVAL; 2112 goto out; 2113 } 2114 2115 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) { 2116 dev_err(con, "Failed to create device link (0x%x) with %s\n", 2117 flags, dev_name(sup_dev)); 2118 ret = -EINVAL; 2119 } 2120 2121 goto out; 2122 } 2123 2124 /* 2125 * Supplier or supplier's ancestor already initialized without a struct 2126 * device or being probed by a driver. 2127 */ 2128 if (fwnode_init_without_drv(sup_handle) || 2129 fwnode_ancestor_init_without_drv(sup_handle)) { 2130 dev_dbg(con, "Not linking %pfwf - might never become dev\n", 2131 sup_handle); 2132 return -EINVAL; 2133 } 2134 2135 ret = -EAGAIN; 2136 out: 2137 put_device(sup_dev); 2138 return ret; 2139 } 2140 2141 /** 2142 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 2143 * @dev: Device that needs to be linked to its consumers 2144 * 2145 * This function looks at all the consumer fwnodes of @dev and creates device 2146 * links between the consumer device and @dev (supplier). 2147 * 2148 * If the consumer device has not been added yet, then this function creates a 2149 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 2150 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 2151 * sync_state() callback before the real consumer device gets to be added and 2152 * then probed. 2153 * 2154 * Once device links are created from the real consumer to @dev (supplier), the 2155 * fwnode links are deleted. 2156 */ 2157 static void __fw_devlink_link_to_consumers(struct device *dev) 2158 { 2159 struct fwnode_handle *fwnode = dev->fwnode; 2160 struct fwnode_link *link, *tmp; 2161 2162 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 2163 struct device *con_dev; 2164 bool own_link = true; 2165 int ret; 2166 2167 con_dev = get_dev_from_fwnode(link->consumer); 2168 /* 2169 * If consumer device is not available yet, make a "proxy" 2170 * SYNC_STATE_ONLY link from the consumer's parent device to 2171 * the supplier device. This is necessary to make sure the 2172 * supplier doesn't get a sync_state() callback before the real 2173 * consumer can create a device link to the supplier. 2174 * 2175 * This proxy link step is needed to handle the case where the 2176 * consumer's parent device is added before the supplier. 2177 */ 2178 if (!con_dev) { 2179 con_dev = fwnode_get_next_parent_dev(link->consumer); 2180 /* 2181 * However, if the consumer's parent device is also the 2182 * parent of the supplier, don't create a 2183 * consumer-supplier link from the parent to its child 2184 * device. Such a dependency is impossible. 2185 */ 2186 if (con_dev && 2187 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 2188 put_device(con_dev); 2189 con_dev = NULL; 2190 } else { 2191 own_link = false; 2192 } 2193 } 2194 2195 if (!con_dev) 2196 continue; 2197 2198 ret = fw_devlink_create_devlink(con_dev, fwnode, link); 2199 put_device(con_dev); 2200 if (!own_link || ret == -EAGAIN) 2201 continue; 2202 2203 __fwnode_link_del(link); 2204 } 2205 } 2206 2207 /** 2208 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 2209 * @dev: The consumer device that needs to be linked to its suppliers 2210 * @fwnode: Root of the fwnode tree that is used to create device links 2211 * 2212 * This function looks at all the supplier fwnodes of fwnode tree rooted at 2213 * @fwnode and creates device links between @dev (consumer) and all the 2214 * supplier devices of the entire fwnode tree at @fwnode. 2215 * 2216 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 2217 * and the real suppliers of @dev. Once these device links are created, the 2218 * fwnode links are deleted. 2219 * 2220 * In addition, it also looks at all the suppliers of the entire fwnode tree 2221 * because some of the child devices of @dev that have not been added yet 2222 * (because @dev hasn't probed) might already have their suppliers added to 2223 * driver core. So, this function creates SYNC_STATE_ONLY device links between 2224 * @dev (consumer) and these suppliers to make sure they don't execute their 2225 * sync_state() callbacks before these child devices have a chance to create 2226 * their device links. The fwnode links that correspond to the child devices 2227 * aren't delete because they are needed later to create the device links 2228 * between the real consumer and supplier devices. 2229 */ 2230 static void __fw_devlink_link_to_suppliers(struct device *dev, 2231 struct fwnode_handle *fwnode) 2232 { 2233 bool own_link = (dev->fwnode == fwnode); 2234 struct fwnode_link *link, *tmp; 2235 struct fwnode_handle *child = NULL; 2236 2237 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 2238 int ret; 2239 struct fwnode_handle *sup = link->supplier; 2240 2241 ret = fw_devlink_create_devlink(dev, sup, link); 2242 if (!own_link || ret == -EAGAIN) 2243 continue; 2244 2245 __fwnode_link_del(link); 2246 } 2247 2248 /* 2249 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 2250 * all the descendants. This proxy link step is needed to handle the 2251 * case where the supplier is added before the consumer's parent device 2252 * (@dev). 2253 */ 2254 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 2255 __fw_devlink_link_to_suppliers(dev, child); 2256 } 2257 2258 static void fw_devlink_link_device(struct device *dev) 2259 { 2260 struct fwnode_handle *fwnode = dev->fwnode; 2261 2262 if (!fw_devlink_flags) 2263 return; 2264 2265 fw_devlink_parse_fwtree(fwnode); 2266 2267 mutex_lock(&fwnode_link_lock); 2268 __fw_devlink_link_to_consumers(dev); 2269 __fw_devlink_link_to_suppliers(dev, fwnode); 2270 mutex_unlock(&fwnode_link_lock); 2271 } 2272 2273 /* Device links support end. */ 2274 2275 int (*platform_notify)(struct device *dev) = NULL; 2276 int (*platform_notify_remove)(struct device *dev) = NULL; 2277 static struct kobject *dev_kobj; 2278 2279 /* /sys/dev/char */ 2280 static struct kobject *sysfs_dev_char_kobj; 2281 2282 /* /sys/dev/block */ 2283 static struct kobject *sysfs_dev_block_kobj; 2284 2285 static DEFINE_MUTEX(device_hotplug_lock); 2286 2287 void lock_device_hotplug(void) 2288 { 2289 mutex_lock(&device_hotplug_lock); 2290 } 2291 2292 void unlock_device_hotplug(void) 2293 { 2294 mutex_unlock(&device_hotplug_lock); 2295 } 2296 2297 int lock_device_hotplug_sysfs(void) 2298 { 2299 if (mutex_trylock(&device_hotplug_lock)) 2300 return 0; 2301 2302 /* Avoid busy looping (5 ms of sleep should do). */ 2303 msleep(5); 2304 return restart_syscall(); 2305 } 2306 2307 #ifdef CONFIG_BLOCK 2308 static inline int device_is_not_partition(struct device *dev) 2309 { 2310 return !(dev->type == &part_type); 2311 } 2312 #else 2313 static inline int device_is_not_partition(struct device *dev) 2314 { 2315 return 1; 2316 } 2317 #endif 2318 2319 static void device_platform_notify(struct device *dev) 2320 { 2321 acpi_device_notify(dev); 2322 2323 software_node_notify(dev); 2324 2325 if (platform_notify) 2326 platform_notify(dev); 2327 } 2328 2329 static void device_platform_notify_remove(struct device *dev) 2330 { 2331 if (platform_notify_remove) 2332 platform_notify_remove(dev); 2333 2334 software_node_notify_remove(dev); 2335 2336 acpi_device_notify_remove(dev); 2337 } 2338 2339 /** 2340 * dev_driver_string - Return a device's driver name, if at all possible 2341 * @dev: struct device to get the name of 2342 * 2343 * Will return the device's driver's name if it is bound to a device. If 2344 * the device is not bound to a driver, it will return the name of the bus 2345 * it is attached to. If it is not attached to a bus either, an empty 2346 * string will be returned. 2347 */ 2348 const char *dev_driver_string(const struct device *dev) 2349 { 2350 struct device_driver *drv; 2351 2352 /* dev->driver can change to NULL underneath us because of unbinding, 2353 * so be careful about accessing it. dev->bus and dev->class should 2354 * never change once they are set, so they don't need special care. 2355 */ 2356 drv = READ_ONCE(dev->driver); 2357 return drv ? drv->name : dev_bus_name(dev); 2358 } 2359 EXPORT_SYMBOL(dev_driver_string); 2360 2361 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2362 2363 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2364 char *buf) 2365 { 2366 struct device_attribute *dev_attr = to_dev_attr(attr); 2367 struct device *dev = kobj_to_dev(kobj); 2368 ssize_t ret = -EIO; 2369 2370 if (dev_attr->show) 2371 ret = dev_attr->show(dev, dev_attr, buf); 2372 if (ret >= (ssize_t)PAGE_SIZE) { 2373 printk("dev_attr_show: %pS returned bad count\n", 2374 dev_attr->show); 2375 } 2376 return ret; 2377 } 2378 2379 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2380 const char *buf, size_t count) 2381 { 2382 struct device_attribute *dev_attr = to_dev_attr(attr); 2383 struct device *dev = kobj_to_dev(kobj); 2384 ssize_t ret = -EIO; 2385 2386 if (dev_attr->store) 2387 ret = dev_attr->store(dev, dev_attr, buf, count); 2388 return ret; 2389 } 2390 2391 static const struct sysfs_ops dev_sysfs_ops = { 2392 .show = dev_attr_show, 2393 .store = dev_attr_store, 2394 }; 2395 2396 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2397 2398 ssize_t device_store_ulong(struct device *dev, 2399 struct device_attribute *attr, 2400 const char *buf, size_t size) 2401 { 2402 struct dev_ext_attribute *ea = to_ext_attr(attr); 2403 int ret; 2404 unsigned long new; 2405 2406 ret = kstrtoul(buf, 0, &new); 2407 if (ret) 2408 return ret; 2409 *(unsigned long *)(ea->var) = new; 2410 /* Always return full write size even if we didn't consume all */ 2411 return size; 2412 } 2413 EXPORT_SYMBOL_GPL(device_store_ulong); 2414 2415 ssize_t device_show_ulong(struct device *dev, 2416 struct device_attribute *attr, 2417 char *buf) 2418 { 2419 struct dev_ext_attribute *ea = to_ext_attr(attr); 2420 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2421 } 2422 EXPORT_SYMBOL_GPL(device_show_ulong); 2423 2424 ssize_t device_store_int(struct device *dev, 2425 struct device_attribute *attr, 2426 const char *buf, size_t size) 2427 { 2428 struct dev_ext_attribute *ea = to_ext_attr(attr); 2429 int ret; 2430 long new; 2431 2432 ret = kstrtol(buf, 0, &new); 2433 if (ret) 2434 return ret; 2435 2436 if (new > INT_MAX || new < INT_MIN) 2437 return -EINVAL; 2438 *(int *)(ea->var) = new; 2439 /* Always return full write size even if we didn't consume all */ 2440 return size; 2441 } 2442 EXPORT_SYMBOL_GPL(device_store_int); 2443 2444 ssize_t device_show_int(struct device *dev, 2445 struct device_attribute *attr, 2446 char *buf) 2447 { 2448 struct dev_ext_attribute *ea = to_ext_attr(attr); 2449 2450 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2451 } 2452 EXPORT_SYMBOL_GPL(device_show_int); 2453 2454 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2455 const char *buf, size_t size) 2456 { 2457 struct dev_ext_attribute *ea = to_ext_attr(attr); 2458 2459 if (kstrtobool(buf, ea->var) < 0) 2460 return -EINVAL; 2461 2462 return size; 2463 } 2464 EXPORT_SYMBOL_GPL(device_store_bool); 2465 2466 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2467 char *buf) 2468 { 2469 struct dev_ext_attribute *ea = to_ext_attr(attr); 2470 2471 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2472 } 2473 EXPORT_SYMBOL_GPL(device_show_bool); 2474 2475 /** 2476 * device_release - free device structure. 2477 * @kobj: device's kobject. 2478 * 2479 * This is called once the reference count for the object 2480 * reaches 0. We forward the call to the device's release 2481 * method, which should handle actually freeing the structure. 2482 */ 2483 static void device_release(struct kobject *kobj) 2484 { 2485 struct device *dev = kobj_to_dev(kobj); 2486 struct device_private *p = dev->p; 2487 2488 /* 2489 * Some platform devices are driven without driver attached 2490 * and managed resources may have been acquired. Make sure 2491 * all resources are released. 2492 * 2493 * Drivers still can add resources into device after device 2494 * is deleted but alive, so release devres here to avoid 2495 * possible memory leak. 2496 */ 2497 devres_release_all(dev); 2498 2499 kfree(dev->dma_range_map); 2500 2501 if (dev->release) 2502 dev->release(dev); 2503 else if (dev->type && dev->type->release) 2504 dev->type->release(dev); 2505 else if (dev->class && dev->class->dev_release) 2506 dev->class->dev_release(dev); 2507 else 2508 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2509 dev_name(dev)); 2510 kfree(p); 2511 } 2512 2513 static const void *device_namespace(const struct kobject *kobj) 2514 { 2515 const struct device *dev = kobj_to_dev(kobj); 2516 const void *ns = NULL; 2517 2518 if (dev->class && dev->class->ns_type) 2519 ns = dev->class->namespace(dev); 2520 2521 return ns; 2522 } 2523 2524 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2525 { 2526 const struct device *dev = kobj_to_dev(kobj); 2527 2528 if (dev->class && dev->class->get_ownership) 2529 dev->class->get_ownership(dev, uid, gid); 2530 } 2531 2532 static const struct kobj_type device_ktype = { 2533 .release = device_release, 2534 .sysfs_ops = &dev_sysfs_ops, 2535 .namespace = device_namespace, 2536 .get_ownership = device_get_ownership, 2537 }; 2538 2539 2540 static int dev_uevent_filter(const struct kobject *kobj) 2541 { 2542 const struct kobj_type *ktype = get_ktype(kobj); 2543 2544 if (ktype == &device_ktype) { 2545 const struct device *dev = kobj_to_dev(kobj); 2546 if (dev->bus) 2547 return 1; 2548 if (dev->class) 2549 return 1; 2550 } 2551 return 0; 2552 } 2553 2554 static const char *dev_uevent_name(const struct kobject *kobj) 2555 { 2556 const struct device *dev = kobj_to_dev(kobj); 2557 2558 if (dev->bus) 2559 return dev->bus->name; 2560 if (dev->class) 2561 return dev->class->name; 2562 return NULL; 2563 } 2564 2565 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 2566 { 2567 const struct device *dev = kobj_to_dev(kobj); 2568 int retval = 0; 2569 2570 /* add device node properties if present */ 2571 if (MAJOR(dev->devt)) { 2572 const char *tmp; 2573 const char *name; 2574 umode_t mode = 0; 2575 kuid_t uid = GLOBAL_ROOT_UID; 2576 kgid_t gid = GLOBAL_ROOT_GID; 2577 2578 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2579 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2580 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2581 if (name) { 2582 add_uevent_var(env, "DEVNAME=%s", name); 2583 if (mode) 2584 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2585 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2586 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2587 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2588 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2589 kfree(tmp); 2590 } 2591 } 2592 2593 if (dev->type && dev->type->name) 2594 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2595 2596 if (dev->driver) 2597 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2598 2599 /* Add common DT information about the device */ 2600 of_device_uevent(dev, env); 2601 2602 /* have the bus specific function add its stuff */ 2603 if (dev->bus && dev->bus->uevent) { 2604 retval = dev->bus->uevent(dev, env); 2605 if (retval) 2606 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2607 dev_name(dev), __func__, retval); 2608 } 2609 2610 /* have the class specific function add its stuff */ 2611 if (dev->class && dev->class->dev_uevent) { 2612 retval = dev->class->dev_uevent(dev, env); 2613 if (retval) 2614 pr_debug("device: '%s': %s: class uevent() " 2615 "returned %d\n", dev_name(dev), 2616 __func__, retval); 2617 } 2618 2619 /* have the device type specific function add its stuff */ 2620 if (dev->type && dev->type->uevent) { 2621 retval = dev->type->uevent(dev, env); 2622 if (retval) 2623 pr_debug("device: '%s': %s: dev_type uevent() " 2624 "returned %d\n", dev_name(dev), 2625 __func__, retval); 2626 } 2627 2628 return retval; 2629 } 2630 2631 static const struct kset_uevent_ops device_uevent_ops = { 2632 .filter = dev_uevent_filter, 2633 .name = dev_uevent_name, 2634 .uevent = dev_uevent, 2635 }; 2636 2637 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2638 char *buf) 2639 { 2640 struct kobject *top_kobj; 2641 struct kset *kset; 2642 struct kobj_uevent_env *env = NULL; 2643 int i; 2644 int len = 0; 2645 int retval; 2646 2647 /* search the kset, the device belongs to */ 2648 top_kobj = &dev->kobj; 2649 while (!top_kobj->kset && top_kobj->parent) 2650 top_kobj = top_kobj->parent; 2651 if (!top_kobj->kset) 2652 goto out; 2653 2654 kset = top_kobj->kset; 2655 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2656 goto out; 2657 2658 /* respect filter */ 2659 if (kset->uevent_ops && kset->uevent_ops->filter) 2660 if (!kset->uevent_ops->filter(&dev->kobj)) 2661 goto out; 2662 2663 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2664 if (!env) 2665 return -ENOMEM; 2666 2667 /* Synchronize with really_probe() */ 2668 device_lock(dev); 2669 /* let the kset specific function add its keys */ 2670 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2671 device_unlock(dev); 2672 if (retval) 2673 goto out; 2674 2675 /* copy keys to file */ 2676 for (i = 0; i < env->envp_idx; i++) 2677 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2678 out: 2679 kfree(env); 2680 return len; 2681 } 2682 2683 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2684 const char *buf, size_t count) 2685 { 2686 int rc; 2687 2688 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2689 2690 if (rc) { 2691 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc); 2692 return rc; 2693 } 2694 2695 return count; 2696 } 2697 static DEVICE_ATTR_RW(uevent); 2698 2699 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2700 char *buf) 2701 { 2702 bool val; 2703 2704 device_lock(dev); 2705 val = !dev->offline; 2706 device_unlock(dev); 2707 return sysfs_emit(buf, "%u\n", val); 2708 } 2709 2710 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2711 const char *buf, size_t count) 2712 { 2713 bool val; 2714 int ret; 2715 2716 ret = kstrtobool(buf, &val); 2717 if (ret < 0) 2718 return ret; 2719 2720 ret = lock_device_hotplug_sysfs(); 2721 if (ret) 2722 return ret; 2723 2724 ret = val ? device_online(dev) : device_offline(dev); 2725 unlock_device_hotplug(); 2726 return ret < 0 ? ret : count; 2727 } 2728 static DEVICE_ATTR_RW(online); 2729 2730 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2731 char *buf) 2732 { 2733 const char *loc; 2734 2735 switch (dev->removable) { 2736 case DEVICE_REMOVABLE: 2737 loc = "removable"; 2738 break; 2739 case DEVICE_FIXED: 2740 loc = "fixed"; 2741 break; 2742 default: 2743 loc = "unknown"; 2744 } 2745 return sysfs_emit(buf, "%s\n", loc); 2746 } 2747 static DEVICE_ATTR_RO(removable); 2748 2749 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2750 { 2751 return sysfs_create_groups(&dev->kobj, groups); 2752 } 2753 EXPORT_SYMBOL_GPL(device_add_groups); 2754 2755 void device_remove_groups(struct device *dev, 2756 const struct attribute_group **groups) 2757 { 2758 sysfs_remove_groups(&dev->kobj, groups); 2759 } 2760 EXPORT_SYMBOL_GPL(device_remove_groups); 2761 2762 union device_attr_group_devres { 2763 const struct attribute_group *group; 2764 const struct attribute_group **groups; 2765 }; 2766 2767 static void devm_attr_group_remove(struct device *dev, void *res) 2768 { 2769 union device_attr_group_devres *devres = res; 2770 const struct attribute_group *group = devres->group; 2771 2772 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2773 sysfs_remove_group(&dev->kobj, group); 2774 } 2775 2776 static void devm_attr_groups_remove(struct device *dev, void *res) 2777 { 2778 union device_attr_group_devres *devres = res; 2779 const struct attribute_group **groups = devres->groups; 2780 2781 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2782 sysfs_remove_groups(&dev->kobj, groups); 2783 } 2784 2785 /** 2786 * devm_device_add_group - given a device, create a managed attribute group 2787 * @dev: The device to create the group for 2788 * @grp: The attribute group to create 2789 * 2790 * This function creates a group for the first time. It will explicitly 2791 * warn and error if any of the attribute files being created already exist. 2792 * 2793 * Returns 0 on success or error code on failure. 2794 */ 2795 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2796 { 2797 union device_attr_group_devres *devres; 2798 int error; 2799 2800 devres = devres_alloc(devm_attr_group_remove, 2801 sizeof(*devres), GFP_KERNEL); 2802 if (!devres) 2803 return -ENOMEM; 2804 2805 error = sysfs_create_group(&dev->kobj, grp); 2806 if (error) { 2807 devres_free(devres); 2808 return error; 2809 } 2810 2811 devres->group = grp; 2812 devres_add(dev, devres); 2813 return 0; 2814 } 2815 EXPORT_SYMBOL_GPL(devm_device_add_group); 2816 2817 /** 2818 * devm_device_add_groups - create a bunch of managed attribute groups 2819 * @dev: The device to create the group for 2820 * @groups: The attribute groups to create, NULL terminated 2821 * 2822 * This function creates a bunch of managed attribute groups. If an error 2823 * occurs when creating a group, all previously created groups will be 2824 * removed, unwinding everything back to the original state when this 2825 * function was called. It will explicitly warn and error if any of the 2826 * attribute files being created already exist. 2827 * 2828 * Returns 0 on success or error code from sysfs_create_group on failure. 2829 */ 2830 int devm_device_add_groups(struct device *dev, 2831 const struct attribute_group **groups) 2832 { 2833 union device_attr_group_devres *devres; 2834 int error; 2835 2836 devres = devres_alloc(devm_attr_groups_remove, 2837 sizeof(*devres), GFP_KERNEL); 2838 if (!devres) 2839 return -ENOMEM; 2840 2841 error = sysfs_create_groups(&dev->kobj, groups); 2842 if (error) { 2843 devres_free(devres); 2844 return error; 2845 } 2846 2847 devres->groups = groups; 2848 devres_add(dev, devres); 2849 return 0; 2850 } 2851 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2852 2853 static int device_add_attrs(struct device *dev) 2854 { 2855 const struct class *class = dev->class; 2856 const struct device_type *type = dev->type; 2857 int error; 2858 2859 if (class) { 2860 error = device_add_groups(dev, class->dev_groups); 2861 if (error) 2862 return error; 2863 } 2864 2865 if (type) { 2866 error = device_add_groups(dev, type->groups); 2867 if (error) 2868 goto err_remove_class_groups; 2869 } 2870 2871 error = device_add_groups(dev, dev->groups); 2872 if (error) 2873 goto err_remove_type_groups; 2874 2875 if (device_supports_offline(dev) && !dev->offline_disabled) { 2876 error = device_create_file(dev, &dev_attr_online); 2877 if (error) 2878 goto err_remove_dev_groups; 2879 } 2880 2881 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2882 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2883 if (error) 2884 goto err_remove_dev_online; 2885 } 2886 2887 if (dev_removable_is_valid(dev)) { 2888 error = device_create_file(dev, &dev_attr_removable); 2889 if (error) 2890 goto err_remove_dev_waiting_for_supplier; 2891 } 2892 2893 if (dev_add_physical_location(dev)) { 2894 error = device_add_group(dev, 2895 &dev_attr_physical_location_group); 2896 if (error) 2897 goto err_remove_dev_removable; 2898 } 2899 2900 return 0; 2901 2902 err_remove_dev_removable: 2903 device_remove_file(dev, &dev_attr_removable); 2904 err_remove_dev_waiting_for_supplier: 2905 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2906 err_remove_dev_online: 2907 device_remove_file(dev, &dev_attr_online); 2908 err_remove_dev_groups: 2909 device_remove_groups(dev, dev->groups); 2910 err_remove_type_groups: 2911 if (type) 2912 device_remove_groups(dev, type->groups); 2913 err_remove_class_groups: 2914 if (class) 2915 device_remove_groups(dev, class->dev_groups); 2916 2917 return error; 2918 } 2919 2920 static void device_remove_attrs(struct device *dev) 2921 { 2922 const struct class *class = dev->class; 2923 const struct device_type *type = dev->type; 2924 2925 if (dev->physical_location) { 2926 device_remove_group(dev, &dev_attr_physical_location_group); 2927 kfree(dev->physical_location); 2928 } 2929 2930 device_remove_file(dev, &dev_attr_removable); 2931 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2932 device_remove_file(dev, &dev_attr_online); 2933 device_remove_groups(dev, dev->groups); 2934 2935 if (type) 2936 device_remove_groups(dev, type->groups); 2937 2938 if (class) 2939 device_remove_groups(dev, class->dev_groups); 2940 } 2941 2942 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2943 char *buf) 2944 { 2945 return print_dev_t(buf, dev->devt); 2946 } 2947 static DEVICE_ATTR_RO(dev); 2948 2949 /* /sys/devices/ */ 2950 struct kset *devices_kset; 2951 2952 /** 2953 * devices_kset_move_before - Move device in the devices_kset's list. 2954 * @deva: Device to move. 2955 * @devb: Device @deva should come before. 2956 */ 2957 static void devices_kset_move_before(struct device *deva, struct device *devb) 2958 { 2959 if (!devices_kset) 2960 return; 2961 pr_debug("devices_kset: Moving %s before %s\n", 2962 dev_name(deva), dev_name(devb)); 2963 spin_lock(&devices_kset->list_lock); 2964 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2965 spin_unlock(&devices_kset->list_lock); 2966 } 2967 2968 /** 2969 * devices_kset_move_after - Move device in the devices_kset's list. 2970 * @deva: Device to move 2971 * @devb: Device @deva should come after. 2972 */ 2973 static void devices_kset_move_after(struct device *deva, struct device *devb) 2974 { 2975 if (!devices_kset) 2976 return; 2977 pr_debug("devices_kset: Moving %s after %s\n", 2978 dev_name(deva), dev_name(devb)); 2979 spin_lock(&devices_kset->list_lock); 2980 list_move(&deva->kobj.entry, &devb->kobj.entry); 2981 spin_unlock(&devices_kset->list_lock); 2982 } 2983 2984 /** 2985 * devices_kset_move_last - move the device to the end of devices_kset's list. 2986 * @dev: device to move 2987 */ 2988 void devices_kset_move_last(struct device *dev) 2989 { 2990 if (!devices_kset) 2991 return; 2992 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2993 spin_lock(&devices_kset->list_lock); 2994 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2995 spin_unlock(&devices_kset->list_lock); 2996 } 2997 2998 /** 2999 * device_create_file - create sysfs attribute file for device. 3000 * @dev: device. 3001 * @attr: device attribute descriptor. 3002 */ 3003 int device_create_file(struct device *dev, 3004 const struct device_attribute *attr) 3005 { 3006 int error = 0; 3007 3008 if (dev) { 3009 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 3010 "Attribute %s: write permission without 'store'\n", 3011 attr->attr.name); 3012 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 3013 "Attribute %s: read permission without 'show'\n", 3014 attr->attr.name); 3015 error = sysfs_create_file(&dev->kobj, &attr->attr); 3016 } 3017 3018 return error; 3019 } 3020 EXPORT_SYMBOL_GPL(device_create_file); 3021 3022 /** 3023 * device_remove_file - remove sysfs attribute file. 3024 * @dev: device. 3025 * @attr: device attribute descriptor. 3026 */ 3027 void device_remove_file(struct device *dev, 3028 const struct device_attribute *attr) 3029 { 3030 if (dev) 3031 sysfs_remove_file(&dev->kobj, &attr->attr); 3032 } 3033 EXPORT_SYMBOL_GPL(device_remove_file); 3034 3035 /** 3036 * device_remove_file_self - remove sysfs attribute file from its own method. 3037 * @dev: device. 3038 * @attr: device attribute descriptor. 3039 * 3040 * See kernfs_remove_self() for details. 3041 */ 3042 bool device_remove_file_self(struct device *dev, 3043 const struct device_attribute *attr) 3044 { 3045 if (dev) 3046 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 3047 else 3048 return false; 3049 } 3050 EXPORT_SYMBOL_GPL(device_remove_file_self); 3051 3052 /** 3053 * device_create_bin_file - create sysfs binary attribute file for device. 3054 * @dev: device. 3055 * @attr: device binary attribute descriptor. 3056 */ 3057 int device_create_bin_file(struct device *dev, 3058 const struct bin_attribute *attr) 3059 { 3060 int error = -EINVAL; 3061 if (dev) 3062 error = sysfs_create_bin_file(&dev->kobj, attr); 3063 return error; 3064 } 3065 EXPORT_SYMBOL_GPL(device_create_bin_file); 3066 3067 /** 3068 * device_remove_bin_file - remove sysfs binary attribute file 3069 * @dev: device. 3070 * @attr: device binary attribute descriptor. 3071 */ 3072 void device_remove_bin_file(struct device *dev, 3073 const struct bin_attribute *attr) 3074 { 3075 if (dev) 3076 sysfs_remove_bin_file(&dev->kobj, attr); 3077 } 3078 EXPORT_SYMBOL_GPL(device_remove_bin_file); 3079 3080 static void klist_children_get(struct klist_node *n) 3081 { 3082 struct device_private *p = to_device_private_parent(n); 3083 struct device *dev = p->device; 3084 3085 get_device(dev); 3086 } 3087 3088 static void klist_children_put(struct klist_node *n) 3089 { 3090 struct device_private *p = to_device_private_parent(n); 3091 struct device *dev = p->device; 3092 3093 put_device(dev); 3094 } 3095 3096 /** 3097 * device_initialize - init device structure. 3098 * @dev: device. 3099 * 3100 * This prepares the device for use by other layers by initializing 3101 * its fields. 3102 * It is the first half of device_register(), if called by 3103 * that function, though it can also be called separately, so one 3104 * may use @dev's fields. In particular, get_device()/put_device() 3105 * may be used for reference counting of @dev after calling this 3106 * function. 3107 * 3108 * All fields in @dev must be initialized by the caller to 0, except 3109 * for those explicitly set to some other value. The simplest 3110 * approach is to use kzalloc() to allocate the structure containing 3111 * @dev. 3112 * 3113 * NOTE: Use put_device() to give up your reference instead of freeing 3114 * @dev directly once you have called this function. 3115 */ 3116 void device_initialize(struct device *dev) 3117 { 3118 dev->kobj.kset = devices_kset; 3119 kobject_init(&dev->kobj, &device_ktype); 3120 INIT_LIST_HEAD(&dev->dma_pools); 3121 mutex_init(&dev->mutex); 3122 lockdep_set_novalidate_class(&dev->mutex); 3123 spin_lock_init(&dev->devres_lock); 3124 INIT_LIST_HEAD(&dev->devres_head); 3125 device_pm_init(dev); 3126 set_dev_node(dev, NUMA_NO_NODE); 3127 INIT_LIST_HEAD(&dev->links.consumers); 3128 INIT_LIST_HEAD(&dev->links.suppliers); 3129 INIT_LIST_HEAD(&dev->links.defer_sync); 3130 dev->links.status = DL_DEV_NO_DRIVER; 3131 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 3132 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 3133 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 3134 dev->dma_coherent = dma_default_coherent; 3135 #endif 3136 swiotlb_dev_init(dev); 3137 } 3138 EXPORT_SYMBOL_GPL(device_initialize); 3139 3140 struct kobject *virtual_device_parent(struct device *dev) 3141 { 3142 static struct kobject *virtual_dir = NULL; 3143 3144 if (!virtual_dir) 3145 virtual_dir = kobject_create_and_add("virtual", 3146 &devices_kset->kobj); 3147 3148 return virtual_dir; 3149 } 3150 3151 struct class_dir { 3152 struct kobject kobj; 3153 const struct class *class; 3154 }; 3155 3156 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 3157 3158 static void class_dir_release(struct kobject *kobj) 3159 { 3160 struct class_dir *dir = to_class_dir(kobj); 3161 kfree(dir); 3162 } 3163 3164 static const 3165 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj) 3166 { 3167 const struct class_dir *dir = to_class_dir(kobj); 3168 return dir->class->ns_type; 3169 } 3170 3171 static const struct kobj_type class_dir_ktype = { 3172 .release = class_dir_release, 3173 .sysfs_ops = &kobj_sysfs_ops, 3174 .child_ns_type = class_dir_child_ns_type 3175 }; 3176 3177 static struct kobject *class_dir_create_and_add(struct subsys_private *sp, 3178 struct kobject *parent_kobj) 3179 { 3180 struct class_dir *dir; 3181 int retval; 3182 3183 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 3184 if (!dir) 3185 return ERR_PTR(-ENOMEM); 3186 3187 dir->class = sp->class; 3188 kobject_init(&dir->kobj, &class_dir_ktype); 3189 3190 dir->kobj.kset = &sp->glue_dirs; 3191 3192 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name); 3193 if (retval < 0) { 3194 kobject_put(&dir->kobj); 3195 return ERR_PTR(retval); 3196 } 3197 return &dir->kobj; 3198 } 3199 3200 static DEFINE_MUTEX(gdp_mutex); 3201 3202 static struct kobject *get_device_parent(struct device *dev, 3203 struct device *parent) 3204 { 3205 struct subsys_private *sp = class_to_subsys(dev->class); 3206 struct kobject *kobj = NULL; 3207 3208 if (sp) { 3209 struct kobject *parent_kobj; 3210 struct kobject *k; 3211 3212 /* 3213 * If we have no parent, we live in "virtual". 3214 * Class-devices with a non class-device as parent, live 3215 * in a "glue" directory to prevent namespace collisions. 3216 */ 3217 if (parent == NULL) 3218 parent_kobj = virtual_device_parent(dev); 3219 else if (parent->class && !dev->class->ns_type) { 3220 subsys_put(sp); 3221 return &parent->kobj; 3222 } else { 3223 parent_kobj = &parent->kobj; 3224 } 3225 3226 mutex_lock(&gdp_mutex); 3227 3228 /* find our class-directory at the parent and reference it */ 3229 spin_lock(&sp->glue_dirs.list_lock); 3230 list_for_each_entry(k, &sp->glue_dirs.list, entry) 3231 if (k->parent == parent_kobj) { 3232 kobj = kobject_get(k); 3233 break; 3234 } 3235 spin_unlock(&sp->glue_dirs.list_lock); 3236 if (kobj) { 3237 mutex_unlock(&gdp_mutex); 3238 subsys_put(sp); 3239 return kobj; 3240 } 3241 3242 /* or create a new class-directory at the parent device */ 3243 k = class_dir_create_and_add(sp, parent_kobj); 3244 /* do not emit an uevent for this simple "glue" directory */ 3245 mutex_unlock(&gdp_mutex); 3246 subsys_put(sp); 3247 return k; 3248 } 3249 3250 /* subsystems can specify a default root directory for their devices */ 3251 if (!parent && dev->bus) { 3252 struct device *dev_root = bus_get_dev_root(dev->bus); 3253 3254 if (dev_root) { 3255 kobj = &dev_root->kobj; 3256 put_device(dev_root); 3257 return kobj; 3258 } 3259 } 3260 3261 if (parent) 3262 return &parent->kobj; 3263 return NULL; 3264 } 3265 3266 static inline bool live_in_glue_dir(struct kobject *kobj, 3267 struct device *dev) 3268 { 3269 struct subsys_private *sp; 3270 bool retval; 3271 3272 if (!kobj || !dev->class) 3273 return false; 3274 3275 sp = class_to_subsys(dev->class); 3276 if (!sp) 3277 return false; 3278 3279 if (kobj->kset == &sp->glue_dirs) 3280 retval = true; 3281 else 3282 retval = false; 3283 3284 subsys_put(sp); 3285 return retval; 3286 } 3287 3288 static inline struct kobject *get_glue_dir(struct device *dev) 3289 { 3290 return dev->kobj.parent; 3291 } 3292 3293 /** 3294 * kobject_has_children - Returns whether a kobject has children. 3295 * @kobj: the object to test 3296 * 3297 * This will return whether a kobject has other kobjects as children. 3298 * 3299 * It does NOT account for the presence of attribute files, only sub 3300 * directories. It also assumes there is no concurrent addition or 3301 * removal of such children, and thus relies on external locking. 3302 */ 3303 static inline bool kobject_has_children(struct kobject *kobj) 3304 { 3305 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3306 3307 return kobj->sd && kobj->sd->dir.subdirs; 3308 } 3309 3310 /* 3311 * make sure cleaning up dir as the last step, we need to make 3312 * sure .release handler of kobject is run with holding the 3313 * global lock 3314 */ 3315 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3316 { 3317 unsigned int ref; 3318 3319 /* see if we live in a "glue" directory */ 3320 if (!live_in_glue_dir(glue_dir, dev)) 3321 return; 3322 3323 mutex_lock(&gdp_mutex); 3324 /** 3325 * There is a race condition between removing glue directory 3326 * and adding a new device under the glue directory. 3327 * 3328 * CPU1: CPU2: 3329 * 3330 * device_add() 3331 * get_device_parent() 3332 * class_dir_create_and_add() 3333 * kobject_add_internal() 3334 * create_dir() // create glue_dir 3335 * 3336 * device_add() 3337 * get_device_parent() 3338 * kobject_get() // get glue_dir 3339 * 3340 * device_del() 3341 * cleanup_glue_dir() 3342 * kobject_del(glue_dir) 3343 * 3344 * kobject_add() 3345 * kobject_add_internal() 3346 * create_dir() // in glue_dir 3347 * sysfs_create_dir_ns() 3348 * kernfs_create_dir_ns(sd) 3349 * 3350 * sysfs_remove_dir() // glue_dir->sd=NULL 3351 * sysfs_put() // free glue_dir->sd 3352 * 3353 * // sd is freed 3354 * kernfs_new_node(sd) 3355 * kernfs_get(glue_dir) 3356 * kernfs_add_one() 3357 * kernfs_put() 3358 * 3359 * Before CPU1 remove last child device under glue dir, if CPU2 add 3360 * a new device under glue dir, the glue_dir kobject reference count 3361 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3362 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3363 * and sysfs_put(). This result in glue_dir->sd is freed. 3364 * 3365 * Then the CPU2 will see a stale "empty" but still potentially used 3366 * glue dir around in kernfs_new_node(). 3367 * 3368 * In order to avoid this happening, we also should make sure that 3369 * kernfs_node for glue_dir is released in CPU1 only when refcount 3370 * for glue_dir kobj is 1. 3371 */ 3372 ref = kref_read(&glue_dir->kref); 3373 if (!kobject_has_children(glue_dir) && !--ref) 3374 kobject_del(glue_dir); 3375 kobject_put(glue_dir); 3376 mutex_unlock(&gdp_mutex); 3377 } 3378 3379 static int device_add_class_symlinks(struct device *dev) 3380 { 3381 struct device_node *of_node = dev_of_node(dev); 3382 struct subsys_private *sp; 3383 int error; 3384 3385 if (of_node) { 3386 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3387 if (error) 3388 dev_warn(dev, "Error %d creating of_node link\n",error); 3389 /* An error here doesn't warrant bringing down the device */ 3390 } 3391 3392 sp = class_to_subsys(dev->class); 3393 if (!sp) 3394 return 0; 3395 3396 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem"); 3397 if (error) 3398 goto out_devnode; 3399 3400 if (dev->parent && device_is_not_partition(dev)) { 3401 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3402 "device"); 3403 if (error) 3404 goto out_subsys; 3405 } 3406 3407 /* link in the class directory pointing to the device */ 3408 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3409 if (error) 3410 goto out_device; 3411 goto exit; 3412 3413 out_device: 3414 sysfs_remove_link(&dev->kobj, "device"); 3415 out_subsys: 3416 sysfs_remove_link(&dev->kobj, "subsystem"); 3417 out_devnode: 3418 sysfs_remove_link(&dev->kobj, "of_node"); 3419 exit: 3420 subsys_put(sp); 3421 return error; 3422 } 3423 3424 static void device_remove_class_symlinks(struct device *dev) 3425 { 3426 struct subsys_private *sp = class_to_subsys(dev->class); 3427 3428 if (dev_of_node(dev)) 3429 sysfs_remove_link(&dev->kobj, "of_node"); 3430 3431 if (!sp) 3432 return; 3433 3434 if (dev->parent && device_is_not_partition(dev)) 3435 sysfs_remove_link(&dev->kobj, "device"); 3436 sysfs_remove_link(&dev->kobj, "subsystem"); 3437 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3438 subsys_put(sp); 3439 } 3440 3441 /** 3442 * dev_set_name - set a device name 3443 * @dev: device 3444 * @fmt: format string for the device's name 3445 */ 3446 int dev_set_name(struct device *dev, const char *fmt, ...) 3447 { 3448 va_list vargs; 3449 int err; 3450 3451 va_start(vargs, fmt); 3452 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3453 va_end(vargs); 3454 return err; 3455 } 3456 EXPORT_SYMBOL_GPL(dev_set_name); 3457 3458 /* select a /sys/dev/ directory for the device */ 3459 static struct kobject *device_to_dev_kobj(struct device *dev) 3460 { 3461 if (is_blockdev(dev)) 3462 return sysfs_dev_block_kobj; 3463 else 3464 return sysfs_dev_char_kobj; 3465 } 3466 3467 static int device_create_sys_dev_entry(struct device *dev) 3468 { 3469 struct kobject *kobj = device_to_dev_kobj(dev); 3470 int error = 0; 3471 char devt_str[15]; 3472 3473 if (kobj) { 3474 format_dev_t(devt_str, dev->devt); 3475 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3476 } 3477 3478 return error; 3479 } 3480 3481 static void device_remove_sys_dev_entry(struct device *dev) 3482 { 3483 struct kobject *kobj = device_to_dev_kobj(dev); 3484 char devt_str[15]; 3485 3486 if (kobj) { 3487 format_dev_t(devt_str, dev->devt); 3488 sysfs_remove_link(kobj, devt_str); 3489 } 3490 } 3491 3492 static int device_private_init(struct device *dev) 3493 { 3494 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3495 if (!dev->p) 3496 return -ENOMEM; 3497 dev->p->device = dev; 3498 klist_init(&dev->p->klist_children, klist_children_get, 3499 klist_children_put); 3500 INIT_LIST_HEAD(&dev->p->deferred_probe); 3501 return 0; 3502 } 3503 3504 /** 3505 * device_add - add device to device hierarchy. 3506 * @dev: device. 3507 * 3508 * This is part 2 of device_register(), though may be called 3509 * separately _iff_ device_initialize() has been called separately. 3510 * 3511 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3512 * to the global and sibling lists for the device, then 3513 * adds it to the other relevant subsystems of the driver model. 3514 * 3515 * Do not call this routine or device_register() more than once for 3516 * any device structure. The driver model core is not designed to work 3517 * with devices that get unregistered and then spring back to life. 3518 * (Among other things, it's very hard to guarantee that all references 3519 * to the previous incarnation of @dev have been dropped.) Allocate 3520 * and register a fresh new struct device instead. 3521 * 3522 * NOTE: _Never_ directly free @dev after calling this function, even 3523 * if it returned an error! Always use put_device() to give up your 3524 * reference instead. 3525 * 3526 * Rule of thumb is: if device_add() succeeds, you should call 3527 * device_del() when you want to get rid of it. If device_add() has 3528 * *not* succeeded, use *only* put_device() to drop the reference 3529 * count. 3530 */ 3531 int device_add(struct device *dev) 3532 { 3533 struct subsys_private *sp; 3534 struct device *parent; 3535 struct kobject *kobj; 3536 struct class_interface *class_intf; 3537 int error = -EINVAL; 3538 struct kobject *glue_dir = NULL; 3539 3540 dev = get_device(dev); 3541 if (!dev) 3542 goto done; 3543 3544 if (!dev->p) { 3545 error = device_private_init(dev); 3546 if (error) 3547 goto done; 3548 } 3549 3550 /* 3551 * for statically allocated devices, which should all be converted 3552 * some day, we need to initialize the name. We prevent reading back 3553 * the name, and force the use of dev_name() 3554 */ 3555 if (dev->init_name) { 3556 error = dev_set_name(dev, "%s", dev->init_name); 3557 dev->init_name = NULL; 3558 } 3559 3560 if (dev_name(dev)) 3561 error = 0; 3562 /* subsystems can specify simple device enumeration */ 3563 else if (dev->bus && dev->bus->dev_name) 3564 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3565 else 3566 error = -EINVAL; 3567 if (error) 3568 goto name_error; 3569 3570 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3571 3572 parent = get_device(dev->parent); 3573 kobj = get_device_parent(dev, parent); 3574 if (IS_ERR(kobj)) { 3575 error = PTR_ERR(kobj); 3576 goto parent_error; 3577 } 3578 if (kobj) 3579 dev->kobj.parent = kobj; 3580 3581 /* use parent numa_node */ 3582 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3583 set_dev_node(dev, dev_to_node(parent)); 3584 3585 /* first, register with generic layer. */ 3586 /* we require the name to be set before, and pass NULL */ 3587 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3588 if (error) { 3589 glue_dir = kobj; 3590 goto Error; 3591 } 3592 3593 /* notify platform of device entry */ 3594 device_platform_notify(dev); 3595 3596 error = device_create_file(dev, &dev_attr_uevent); 3597 if (error) 3598 goto attrError; 3599 3600 error = device_add_class_symlinks(dev); 3601 if (error) 3602 goto SymlinkError; 3603 error = device_add_attrs(dev); 3604 if (error) 3605 goto AttrsError; 3606 error = bus_add_device(dev); 3607 if (error) 3608 goto BusError; 3609 error = dpm_sysfs_add(dev); 3610 if (error) 3611 goto DPMError; 3612 device_pm_add(dev); 3613 3614 if (MAJOR(dev->devt)) { 3615 error = device_create_file(dev, &dev_attr_dev); 3616 if (error) 3617 goto DevAttrError; 3618 3619 error = device_create_sys_dev_entry(dev); 3620 if (error) 3621 goto SysEntryError; 3622 3623 devtmpfs_create_node(dev); 3624 } 3625 3626 /* Notify clients of device addition. This call must come 3627 * after dpm_sysfs_add() and before kobject_uevent(). 3628 */ 3629 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE); 3630 kobject_uevent(&dev->kobj, KOBJ_ADD); 3631 3632 /* 3633 * Check if any of the other devices (consumers) have been waiting for 3634 * this device (supplier) to be added so that they can create a device 3635 * link to it. 3636 * 3637 * This needs to happen after device_pm_add() because device_link_add() 3638 * requires the supplier be registered before it's called. 3639 * 3640 * But this also needs to happen before bus_probe_device() to make sure 3641 * waiting consumers can link to it before the driver is bound to the 3642 * device and the driver sync_state callback is called for this device. 3643 */ 3644 if (dev->fwnode && !dev->fwnode->dev) { 3645 dev->fwnode->dev = dev; 3646 fw_devlink_link_device(dev); 3647 } 3648 3649 bus_probe_device(dev); 3650 3651 /* 3652 * If all driver registration is done and a newly added device doesn't 3653 * match with any driver, don't block its consumers from probing in 3654 * case the consumer device is able to operate without this supplier. 3655 */ 3656 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3657 fw_devlink_unblock_consumers(dev); 3658 3659 if (parent) 3660 klist_add_tail(&dev->p->knode_parent, 3661 &parent->p->klist_children); 3662 3663 sp = class_to_subsys(dev->class); 3664 if (sp) { 3665 mutex_lock(&sp->mutex); 3666 /* tie the class to the device */ 3667 klist_add_tail(&dev->p->knode_class, &sp->klist_devices); 3668 3669 /* notify any interfaces that the device is here */ 3670 list_for_each_entry(class_intf, &sp->interfaces, node) 3671 if (class_intf->add_dev) 3672 class_intf->add_dev(dev); 3673 mutex_unlock(&sp->mutex); 3674 subsys_put(sp); 3675 } 3676 done: 3677 put_device(dev); 3678 return error; 3679 SysEntryError: 3680 if (MAJOR(dev->devt)) 3681 device_remove_file(dev, &dev_attr_dev); 3682 DevAttrError: 3683 device_pm_remove(dev); 3684 dpm_sysfs_remove(dev); 3685 DPMError: 3686 dev->driver = NULL; 3687 bus_remove_device(dev); 3688 BusError: 3689 device_remove_attrs(dev); 3690 AttrsError: 3691 device_remove_class_symlinks(dev); 3692 SymlinkError: 3693 device_remove_file(dev, &dev_attr_uevent); 3694 attrError: 3695 device_platform_notify_remove(dev); 3696 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3697 glue_dir = get_glue_dir(dev); 3698 kobject_del(&dev->kobj); 3699 Error: 3700 cleanup_glue_dir(dev, glue_dir); 3701 parent_error: 3702 put_device(parent); 3703 name_error: 3704 kfree(dev->p); 3705 dev->p = NULL; 3706 goto done; 3707 } 3708 EXPORT_SYMBOL_GPL(device_add); 3709 3710 /** 3711 * device_register - register a device with the system. 3712 * @dev: pointer to the device structure 3713 * 3714 * This happens in two clean steps - initialize the device 3715 * and add it to the system. The two steps can be called 3716 * separately, but this is the easiest and most common. 3717 * I.e. you should only call the two helpers separately if 3718 * have a clearly defined need to use and refcount the device 3719 * before it is added to the hierarchy. 3720 * 3721 * For more information, see the kerneldoc for device_initialize() 3722 * and device_add(). 3723 * 3724 * NOTE: _Never_ directly free @dev after calling this function, even 3725 * if it returned an error! Always use put_device() to give up the 3726 * reference initialized in this function instead. 3727 */ 3728 int device_register(struct device *dev) 3729 { 3730 device_initialize(dev); 3731 return device_add(dev); 3732 } 3733 EXPORT_SYMBOL_GPL(device_register); 3734 3735 /** 3736 * get_device - increment reference count for device. 3737 * @dev: device. 3738 * 3739 * This simply forwards the call to kobject_get(), though 3740 * we do take care to provide for the case that we get a NULL 3741 * pointer passed in. 3742 */ 3743 struct device *get_device(struct device *dev) 3744 { 3745 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3746 } 3747 EXPORT_SYMBOL_GPL(get_device); 3748 3749 /** 3750 * put_device - decrement reference count. 3751 * @dev: device in question. 3752 */ 3753 void put_device(struct device *dev) 3754 { 3755 /* might_sleep(); */ 3756 if (dev) 3757 kobject_put(&dev->kobj); 3758 } 3759 EXPORT_SYMBOL_GPL(put_device); 3760 3761 bool kill_device(struct device *dev) 3762 { 3763 /* 3764 * Require the device lock and set the "dead" flag to guarantee that 3765 * the update behavior is consistent with the other bitfields near 3766 * it and that we cannot have an asynchronous probe routine trying 3767 * to run while we are tearing out the bus/class/sysfs from 3768 * underneath the device. 3769 */ 3770 device_lock_assert(dev); 3771 3772 if (dev->p->dead) 3773 return false; 3774 dev->p->dead = true; 3775 return true; 3776 } 3777 EXPORT_SYMBOL_GPL(kill_device); 3778 3779 /** 3780 * device_del - delete device from system. 3781 * @dev: device. 3782 * 3783 * This is the first part of the device unregistration 3784 * sequence. This removes the device from the lists we control 3785 * from here, has it removed from the other driver model 3786 * subsystems it was added to in device_add(), and removes it 3787 * from the kobject hierarchy. 3788 * 3789 * NOTE: this should be called manually _iff_ device_add() was 3790 * also called manually. 3791 */ 3792 void device_del(struct device *dev) 3793 { 3794 struct subsys_private *sp; 3795 struct device *parent = dev->parent; 3796 struct kobject *glue_dir = NULL; 3797 struct class_interface *class_intf; 3798 unsigned int noio_flag; 3799 3800 device_lock(dev); 3801 kill_device(dev); 3802 device_unlock(dev); 3803 3804 if (dev->fwnode && dev->fwnode->dev == dev) 3805 dev->fwnode->dev = NULL; 3806 3807 /* Notify clients of device removal. This call must come 3808 * before dpm_sysfs_remove(). 3809 */ 3810 noio_flag = memalloc_noio_save(); 3811 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE); 3812 3813 dpm_sysfs_remove(dev); 3814 if (parent) 3815 klist_del(&dev->p->knode_parent); 3816 if (MAJOR(dev->devt)) { 3817 devtmpfs_delete_node(dev); 3818 device_remove_sys_dev_entry(dev); 3819 device_remove_file(dev, &dev_attr_dev); 3820 } 3821 3822 sp = class_to_subsys(dev->class); 3823 if (sp) { 3824 device_remove_class_symlinks(dev); 3825 3826 mutex_lock(&sp->mutex); 3827 /* notify any interfaces that the device is now gone */ 3828 list_for_each_entry(class_intf, &sp->interfaces, node) 3829 if (class_intf->remove_dev) 3830 class_intf->remove_dev(dev); 3831 /* remove the device from the class list */ 3832 klist_del(&dev->p->knode_class); 3833 mutex_unlock(&sp->mutex); 3834 subsys_put(sp); 3835 } 3836 device_remove_file(dev, &dev_attr_uevent); 3837 device_remove_attrs(dev); 3838 bus_remove_device(dev); 3839 device_pm_remove(dev); 3840 driver_deferred_probe_del(dev); 3841 device_platform_notify_remove(dev); 3842 device_links_purge(dev); 3843 3844 /* 3845 * If a device does not have a driver attached, we need to clean 3846 * up any managed resources. We do this in device_release(), but 3847 * it's never called (and we leak the device) if a managed 3848 * resource holds a reference to the device. So release all 3849 * managed resources here, like we do in driver_detach(). We 3850 * still need to do so again in device_release() in case someone 3851 * adds a new resource after this point, though. 3852 */ 3853 devres_release_all(dev); 3854 3855 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE); 3856 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3857 glue_dir = get_glue_dir(dev); 3858 kobject_del(&dev->kobj); 3859 cleanup_glue_dir(dev, glue_dir); 3860 memalloc_noio_restore(noio_flag); 3861 put_device(parent); 3862 } 3863 EXPORT_SYMBOL_GPL(device_del); 3864 3865 /** 3866 * device_unregister - unregister device from system. 3867 * @dev: device going away. 3868 * 3869 * We do this in two parts, like we do device_register(). First, 3870 * we remove it from all the subsystems with device_del(), then 3871 * we decrement the reference count via put_device(). If that 3872 * is the final reference count, the device will be cleaned up 3873 * via device_release() above. Otherwise, the structure will 3874 * stick around until the final reference to the device is dropped. 3875 */ 3876 void device_unregister(struct device *dev) 3877 { 3878 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3879 device_del(dev); 3880 put_device(dev); 3881 } 3882 EXPORT_SYMBOL_GPL(device_unregister); 3883 3884 static struct device *prev_device(struct klist_iter *i) 3885 { 3886 struct klist_node *n = klist_prev(i); 3887 struct device *dev = NULL; 3888 struct device_private *p; 3889 3890 if (n) { 3891 p = to_device_private_parent(n); 3892 dev = p->device; 3893 } 3894 return dev; 3895 } 3896 3897 static struct device *next_device(struct klist_iter *i) 3898 { 3899 struct klist_node *n = klist_next(i); 3900 struct device *dev = NULL; 3901 struct device_private *p; 3902 3903 if (n) { 3904 p = to_device_private_parent(n); 3905 dev = p->device; 3906 } 3907 return dev; 3908 } 3909 3910 /** 3911 * device_get_devnode - path of device node file 3912 * @dev: device 3913 * @mode: returned file access mode 3914 * @uid: returned file owner 3915 * @gid: returned file group 3916 * @tmp: possibly allocated string 3917 * 3918 * Return the relative path of a possible device node. 3919 * Non-default names may need to allocate a memory to compose 3920 * a name. This memory is returned in tmp and needs to be 3921 * freed by the caller. 3922 */ 3923 const char *device_get_devnode(const struct device *dev, 3924 umode_t *mode, kuid_t *uid, kgid_t *gid, 3925 const char **tmp) 3926 { 3927 char *s; 3928 3929 *tmp = NULL; 3930 3931 /* the device type may provide a specific name */ 3932 if (dev->type && dev->type->devnode) 3933 *tmp = dev->type->devnode(dev, mode, uid, gid); 3934 if (*tmp) 3935 return *tmp; 3936 3937 /* the class may provide a specific name */ 3938 if (dev->class && dev->class->devnode) 3939 *tmp = dev->class->devnode(dev, mode); 3940 if (*tmp) 3941 return *tmp; 3942 3943 /* return name without allocation, tmp == NULL */ 3944 if (strchr(dev_name(dev), '!') == NULL) 3945 return dev_name(dev); 3946 3947 /* replace '!' in the name with '/' */ 3948 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL); 3949 if (!s) 3950 return NULL; 3951 return *tmp = s; 3952 } 3953 3954 /** 3955 * device_for_each_child - device child iterator. 3956 * @parent: parent struct device. 3957 * @fn: function to be called for each device. 3958 * @data: data for the callback. 3959 * 3960 * Iterate over @parent's child devices, and call @fn for each, 3961 * passing it @data. 3962 * 3963 * We check the return of @fn each time. If it returns anything 3964 * other than 0, we break out and return that value. 3965 */ 3966 int device_for_each_child(struct device *parent, void *data, 3967 int (*fn)(struct device *dev, void *data)) 3968 { 3969 struct klist_iter i; 3970 struct device *child; 3971 int error = 0; 3972 3973 if (!parent->p) 3974 return 0; 3975 3976 klist_iter_init(&parent->p->klist_children, &i); 3977 while (!error && (child = next_device(&i))) 3978 error = fn(child, data); 3979 klist_iter_exit(&i); 3980 return error; 3981 } 3982 EXPORT_SYMBOL_GPL(device_for_each_child); 3983 3984 /** 3985 * device_for_each_child_reverse - device child iterator in reversed order. 3986 * @parent: parent struct device. 3987 * @fn: function to be called for each device. 3988 * @data: data for the callback. 3989 * 3990 * Iterate over @parent's child devices, and call @fn for each, 3991 * passing it @data. 3992 * 3993 * We check the return of @fn each time. If it returns anything 3994 * other than 0, we break out and return that value. 3995 */ 3996 int device_for_each_child_reverse(struct device *parent, void *data, 3997 int (*fn)(struct device *dev, void *data)) 3998 { 3999 struct klist_iter i; 4000 struct device *child; 4001 int error = 0; 4002 4003 if (!parent->p) 4004 return 0; 4005 4006 klist_iter_init(&parent->p->klist_children, &i); 4007 while ((child = prev_device(&i)) && !error) 4008 error = fn(child, data); 4009 klist_iter_exit(&i); 4010 return error; 4011 } 4012 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 4013 4014 /** 4015 * device_find_child - device iterator for locating a particular device. 4016 * @parent: parent struct device 4017 * @match: Callback function to check device 4018 * @data: Data to pass to match function 4019 * 4020 * This is similar to the device_for_each_child() function above, but it 4021 * returns a reference to a device that is 'found' for later use, as 4022 * determined by the @match callback. 4023 * 4024 * The callback should return 0 if the device doesn't match and non-zero 4025 * if it does. If the callback returns non-zero and a reference to the 4026 * current device can be obtained, this function will return to the caller 4027 * and not iterate over any more devices. 4028 * 4029 * NOTE: you will need to drop the reference with put_device() after use. 4030 */ 4031 struct device *device_find_child(struct device *parent, void *data, 4032 int (*match)(struct device *dev, void *data)) 4033 { 4034 struct klist_iter i; 4035 struct device *child; 4036 4037 if (!parent) 4038 return NULL; 4039 4040 klist_iter_init(&parent->p->klist_children, &i); 4041 while ((child = next_device(&i))) 4042 if (match(child, data) && get_device(child)) 4043 break; 4044 klist_iter_exit(&i); 4045 return child; 4046 } 4047 EXPORT_SYMBOL_GPL(device_find_child); 4048 4049 /** 4050 * device_find_child_by_name - device iterator for locating a child device. 4051 * @parent: parent struct device 4052 * @name: name of the child device 4053 * 4054 * This is similar to the device_find_child() function above, but it 4055 * returns a reference to a device that has the name @name. 4056 * 4057 * NOTE: you will need to drop the reference with put_device() after use. 4058 */ 4059 struct device *device_find_child_by_name(struct device *parent, 4060 const char *name) 4061 { 4062 struct klist_iter i; 4063 struct device *child; 4064 4065 if (!parent) 4066 return NULL; 4067 4068 klist_iter_init(&parent->p->klist_children, &i); 4069 while ((child = next_device(&i))) 4070 if (sysfs_streq(dev_name(child), name) && get_device(child)) 4071 break; 4072 klist_iter_exit(&i); 4073 return child; 4074 } 4075 EXPORT_SYMBOL_GPL(device_find_child_by_name); 4076 4077 static int match_any(struct device *dev, void *unused) 4078 { 4079 return 1; 4080 } 4081 4082 /** 4083 * device_find_any_child - device iterator for locating a child device, if any. 4084 * @parent: parent struct device 4085 * 4086 * This is similar to the device_find_child() function above, but it 4087 * returns a reference to a child device, if any. 4088 * 4089 * NOTE: you will need to drop the reference with put_device() after use. 4090 */ 4091 struct device *device_find_any_child(struct device *parent) 4092 { 4093 return device_find_child(parent, NULL, match_any); 4094 } 4095 EXPORT_SYMBOL_GPL(device_find_any_child); 4096 4097 int __init devices_init(void) 4098 { 4099 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 4100 if (!devices_kset) 4101 return -ENOMEM; 4102 dev_kobj = kobject_create_and_add("dev", NULL); 4103 if (!dev_kobj) 4104 goto dev_kobj_err; 4105 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 4106 if (!sysfs_dev_block_kobj) 4107 goto block_kobj_err; 4108 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 4109 if (!sysfs_dev_char_kobj) 4110 goto char_kobj_err; 4111 device_link_wq = alloc_workqueue("device_link_wq", 0, 0); 4112 if (!device_link_wq) 4113 goto wq_err; 4114 4115 return 0; 4116 4117 wq_err: 4118 kobject_put(sysfs_dev_char_kobj); 4119 char_kobj_err: 4120 kobject_put(sysfs_dev_block_kobj); 4121 block_kobj_err: 4122 kobject_put(dev_kobj); 4123 dev_kobj_err: 4124 kset_unregister(devices_kset); 4125 return -ENOMEM; 4126 } 4127 4128 static int device_check_offline(struct device *dev, void *not_used) 4129 { 4130 int ret; 4131 4132 ret = device_for_each_child(dev, NULL, device_check_offline); 4133 if (ret) 4134 return ret; 4135 4136 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 4137 } 4138 4139 /** 4140 * device_offline - Prepare the device for hot-removal. 4141 * @dev: Device to be put offline. 4142 * 4143 * Execute the device bus type's .offline() callback, if present, to prepare 4144 * the device for a subsequent hot-removal. If that succeeds, the device must 4145 * not be used until either it is removed or its bus type's .online() callback 4146 * is executed. 4147 * 4148 * Call under device_hotplug_lock. 4149 */ 4150 int device_offline(struct device *dev) 4151 { 4152 int ret; 4153 4154 if (dev->offline_disabled) 4155 return -EPERM; 4156 4157 ret = device_for_each_child(dev, NULL, device_check_offline); 4158 if (ret) 4159 return ret; 4160 4161 device_lock(dev); 4162 if (device_supports_offline(dev)) { 4163 if (dev->offline) { 4164 ret = 1; 4165 } else { 4166 ret = dev->bus->offline(dev); 4167 if (!ret) { 4168 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 4169 dev->offline = true; 4170 } 4171 } 4172 } 4173 device_unlock(dev); 4174 4175 return ret; 4176 } 4177 4178 /** 4179 * device_online - Put the device back online after successful device_offline(). 4180 * @dev: Device to be put back online. 4181 * 4182 * If device_offline() has been successfully executed for @dev, but the device 4183 * has not been removed subsequently, execute its bus type's .online() callback 4184 * to indicate that the device can be used again. 4185 * 4186 * Call under device_hotplug_lock. 4187 */ 4188 int device_online(struct device *dev) 4189 { 4190 int ret = 0; 4191 4192 device_lock(dev); 4193 if (device_supports_offline(dev)) { 4194 if (dev->offline) { 4195 ret = dev->bus->online(dev); 4196 if (!ret) { 4197 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 4198 dev->offline = false; 4199 } 4200 } else { 4201 ret = 1; 4202 } 4203 } 4204 device_unlock(dev); 4205 4206 return ret; 4207 } 4208 4209 struct root_device { 4210 struct device dev; 4211 struct module *owner; 4212 }; 4213 4214 static inline struct root_device *to_root_device(struct device *d) 4215 { 4216 return container_of(d, struct root_device, dev); 4217 } 4218 4219 static void root_device_release(struct device *dev) 4220 { 4221 kfree(to_root_device(dev)); 4222 } 4223 4224 /** 4225 * __root_device_register - allocate and register a root device 4226 * @name: root device name 4227 * @owner: owner module of the root device, usually THIS_MODULE 4228 * 4229 * This function allocates a root device and registers it 4230 * using device_register(). In order to free the returned 4231 * device, use root_device_unregister(). 4232 * 4233 * Root devices are dummy devices which allow other devices 4234 * to be grouped under /sys/devices. Use this function to 4235 * allocate a root device and then use it as the parent of 4236 * any device which should appear under /sys/devices/{name} 4237 * 4238 * The /sys/devices/{name} directory will also contain a 4239 * 'module' symlink which points to the @owner directory 4240 * in sysfs. 4241 * 4242 * Returns &struct device pointer on success, or ERR_PTR() on error. 4243 * 4244 * Note: You probably want to use root_device_register(). 4245 */ 4246 struct device *__root_device_register(const char *name, struct module *owner) 4247 { 4248 struct root_device *root; 4249 int err = -ENOMEM; 4250 4251 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 4252 if (!root) 4253 return ERR_PTR(err); 4254 4255 err = dev_set_name(&root->dev, "%s", name); 4256 if (err) { 4257 kfree(root); 4258 return ERR_PTR(err); 4259 } 4260 4261 root->dev.release = root_device_release; 4262 4263 err = device_register(&root->dev); 4264 if (err) { 4265 put_device(&root->dev); 4266 return ERR_PTR(err); 4267 } 4268 4269 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4270 if (owner) { 4271 struct module_kobject *mk = &owner->mkobj; 4272 4273 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4274 if (err) { 4275 device_unregister(&root->dev); 4276 return ERR_PTR(err); 4277 } 4278 root->owner = owner; 4279 } 4280 #endif 4281 4282 return &root->dev; 4283 } 4284 EXPORT_SYMBOL_GPL(__root_device_register); 4285 4286 /** 4287 * root_device_unregister - unregister and free a root device 4288 * @dev: device going away 4289 * 4290 * This function unregisters and cleans up a device that was created by 4291 * root_device_register(). 4292 */ 4293 void root_device_unregister(struct device *dev) 4294 { 4295 struct root_device *root = to_root_device(dev); 4296 4297 if (root->owner) 4298 sysfs_remove_link(&root->dev.kobj, "module"); 4299 4300 device_unregister(dev); 4301 } 4302 EXPORT_SYMBOL_GPL(root_device_unregister); 4303 4304 4305 static void device_create_release(struct device *dev) 4306 { 4307 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4308 kfree(dev); 4309 } 4310 4311 static __printf(6, 0) struct device * 4312 device_create_groups_vargs(const struct class *class, struct device *parent, 4313 dev_t devt, void *drvdata, 4314 const struct attribute_group **groups, 4315 const char *fmt, va_list args) 4316 { 4317 struct device *dev = NULL; 4318 int retval = -ENODEV; 4319 4320 if (IS_ERR_OR_NULL(class)) 4321 goto error; 4322 4323 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4324 if (!dev) { 4325 retval = -ENOMEM; 4326 goto error; 4327 } 4328 4329 device_initialize(dev); 4330 dev->devt = devt; 4331 dev->class = class; 4332 dev->parent = parent; 4333 dev->groups = groups; 4334 dev->release = device_create_release; 4335 dev_set_drvdata(dev, drvdata); 4336 4337 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4338 if (retval) 4339 goto error; 4340 4341 retval = device_add(dev); 4342 if (retval) 4343 goto error; 4344 4345 return dev; 4346 4347 error: 4348 put_device(dev); 4349 return ERR_PTR(retval); 4350 } 4351 4352 /** 4353 * device_create - creates a device and registers it with sysfs 4354 * @class: pointer to the struct class that this device should be registered to 4355 * @parent: pointer to the parent struct device of this new device, if any 4356 * @devt: the dev_t for the char device to be added 4357 * @drvdata: the data to be added to the device for callbacks 4358 * @fmt: string for the device's name 4359 * 4360 * This function can be used by char device classes. A struct device 4361 * will be created in sysfs, registered to the specified class. 4362 * 4363 * A "dev" file will be created, showing the dev_t for the device, if 4364 * the dev_t is not 0,0. 4365 * If a pointer to a parent struct device is passed in, the newly created 4366 * struct device will be a child of that device in sysfs. 4367 * The pointer to the struct device will be returned from the call. 4368 * Any further sysfs files that might be required can be created using this 4369 * pointer. 4370 * 4371 * Returns &struct device pointer on success, or ERR_PTR() on error. 4372 */ 4373 struct device *device_create(const struct class *class, struct device *parent, 4374 dev_t devt, void *drvdata, const char *fmt, ...) 4375 { 4376 va_list vargs; 4377 struct device *dev; 4378 4379 va_start(vargs, fmt); 4380 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4381 fmt, vargs); 4382 va_end(vargs); 4383 return dev; 4384 } 4385 EXPORT_SYMBOL_GPL(device_create); 4386 4387 /** 4388 * device_create_with_groups - creates a device and registers it with sysfs 4389 * @class: pointer to the struct class that this device should be registered to 4390 * @parent: pointer to the parent struct device of this new device, if any 4391 * @devt: the dev_t for the char device to be added 4392 * @drvdata: the data to be added to the device for callbacks 4393 * @groups: NULL-terminated list of attribute groups to be created 4394 * @fmt: string for the device's name 4395 * 4396 * This function can be used by char device classes. A struct device 4397 * will be created in sysfs, registered to the specified class. 4398 * Additional attributes specified in the groups parameter will also 4399 * be created automatically. 4400 * 4401 * A "dev" file will be created, showing the dev_t for the device, if 4402 * the dev_t is not 0,0. 4403 * If a pointer to a parent struct device is passed in, the newly created 4404 * struct device will be a child of that device in sysfs. 4405 * The pointer to the struct device will be returned from the call. 4406 * Any further sysfs files that might be required can be created using this 4407 * pointer. 4408 * 4409 * Returns &struct device pointer on success, or ERR_PTR() on error. 4410 */ 4411 struct device *device_create_with_groups(const struct class *class, 4412 struct device *parent, dev_t devt, 4413 void *drvdata, 4414 const struct attribute_group **groups, 4415 const char *fmt, ...) 4416 { 4417 va_list vargs; 4418 struct device *dev; 4419 4420 va_start(vargs, fmt); 4421 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4422 fmt, vargs); 4423 va_end(vargs); 4424 return dev; 4425 } 4426 EXPORT_SYMBOL_GPL(device_create_with_groups); 4427 4428 /** 4429 * device_destroy - removes a device that was created with device_create() 4430 * @class: pointer to the struct class that this device was registered with 4431 * @devt: the dev_t of the device that was previously registered 4432 * 4433 * This call unregisters and cleans up a device that was created with a 4434 * call to device_create(). 4435 */ 4436 void device_destroy(const struct class *class, dev_t devt) 4437 { 4438 struct device *dev; 4439 4440 dev = class_find_device_by_devt(class, devt); 4441 if (dev) { 4442 put_device(dev); 4443 device_unregister(dev); 4444 } 4445 } 4446 EXPORT_SYMBOL_GPL(device_destroy); 4447 4448 /** 4449 * device_rename - renames a device 4450 * @dev: the pointer to the struct device to be renamed 4451 * @new_name: the new name of the device 4452 * 4453 * It is the responsibility of the caller to provide mutual 4454 * exclusion between two different calls of device_rename 4455 * on the same device to ensure that new_name is valid and 4456 * won't conflict with other devices. 4457 * 4458 * Note: given that some subsystems (networking and infiniband) use this 4459 * function, with no immediate plans for this to change, we cannot assume or 4460 * require that this function not be called at all. 4461 * 4462 * However, if you're writing new code, do not call this function. The following 4463 * text from Kay Sievers offers some insight: 4464 * 4465 * Renaming devices is racy at many levels, symlinks and other stuff are not 4466 * replaced atomically, and you get a "move" uevent, but it's not easy to 4467 * connect the event to the old and new device. Device nodes are not renamed at 4468 * all, there isn't even support for that in the kernel now. 4469 * 4470 * In the meantime, during renaming, your target name might be taken by another 4471 * driver, creating conflicts. Or the old name is taken directly after you 4472 * renamed it -- then you get events for the same DEVPATH, before you even see 4473 * the "move" event. It's just a mess, and nothing new should ever rely on 4474 * kernel device renaming. Besides that, it's not even implemented now for 4475 * other things than (driver-core wise very simple) network devices. 4476 * 4477 * Make up a "real" name in the driver before you register anything, or add 4478 * some other attributes for userspace to find the device, or use udev to add 4479 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4480 * don't even want to get into that and try to implement the missing pieces in 4481 * the core. We really have other pieces to fix in the driver core mess. :) 4482 */ 4483 int device_rename(struct device *dev, const char *new_name) 4484 { 4485 struct kobject *kobj = &dev->kobj; 4486 char *old_device_name = NULL; 4487 int error; 4488 4489 dev = get_device(dev); 4490 if (!dev) 4491 return -EINVAL; 4492 4493 dev_dbg(dev, "renaming to %s\n", new_name); 4494 4495 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4496 if (!old_device_name) { 4497 error = -ENOMEM; 4498 goto out; 4499 } 4500 4501 if (dev->class) { 4502 struct subsys_private *sp = class_to_subsys(dev->class); 4503 4504 if (!sp) { 4505 error = -EINVAL; 4506 goto out; 4507 } 4508 4509 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name, 4510 new_name, kobject_namespace(kobj)); 4511 subsys_put(sp); 4512 if (error) 4513 goto out; 4514 } 4515 4516 error = kobject_rename(kobj, new_name); 4517 if (error) 4518 goto out; 4519 4520 out: 4521 put_device(dev); 4522 4523 kfree(old_device_name); 4524 4525 return error; 4526 } 4527 EXPORT_SYMBOL_GPL(device_rename); 4528 4529 static int device_move_class_links(struct device *dev, 4530 struct device *old_parent, 4531 struct device *new_parent) 4532 { 4533 int error = 0; 4534 4535 if (old_parent) 4536 sysfs_remove_link(&dev->kobj, "device"); 4537 if (new_parent) 4538 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4539 "device"); 4540 return error; 4541 } 4542 4543 /** 4544 * device_move - moves a device to a new parent 4545 * @dev: the pointer to the struct device to be moved 4546 * @new_parent: the new parent of the device (can be NULL) 4547 * @dpm_order: how to reorder the dpm_list 4548 */ 4549 int device_move(struct device *dev, struct device *new_parent, 4550 enum dpm_order dpm_order) 4551 { 4552 int error; 4553 struct device *old_parent; 4554 struct kobject *new_parent_kobj; 4555 4556 dev = get_device(dev); 4557 if (!dev) 4558 return -EINVAL; 4559 4560 device_pm_lock(); 4561 new_parent = get_device(new_parent); 4562 new_parent_kobj = get_device_parent(dev, new_parent); 4563 if (IS_ERR(new_parent_kobj)) { 4564 error = PTR_ERR(new_parent_kobj); 4565 put_device(new_parent); 4566 goto out; 4567 } 4568 4569 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4570 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4571 error = kobject_move(&dev->kobj, new_parent_kobj); 4572 if (error) { 4573 cleanup_glue_dir(dev, new_parent_kobj); 4574 put_device(new_parent); 4575 goto out; 4576 } 4577 old_parent = dev->parent; 4578 dev->parent = new_parent; 4579 if (old_parent) 4580 klist_remove(&dev->p->knode_parent); 4581 if (new_parent) { 4582 klist_add_tail(&dev->p->knode_parent, 4583 &new_parent->p->klist_children); 4584 set_dev_node(dev, dev_to_node(new_parent)); 4585 } 4586 4587 if (dev->class) { 4588 error = device_move_class_links(dev, old_parent, new_parent); 4589 if (error) { 4590 /* We ignore errors on cleanup since we're hosed anyway... */ 4591 device_move_class_links(dev, new_parent, old_parent); 4592 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4593 if (new_parent) 4594 klist_remove(&dev->p->knode_parent); 4595 dev->parent = old_parent; 4596 if (old_parent) { 4597 klist_add_tail(&dev->p->knode_parent, 4598 &old_parent->p->klist_children); 4599 set_dev_node(dev, dev_to_node(old_parent)); 4600 } 4601 } 4602 cleanup_glue_dir(dev, new_parent_kobj); 4603 put_device(new_parent); 4604 goto out; 4605 } 4606 } 4607 switch (dpm_order) { 4608 case DPM_ORDER_NONE: 4609 break; 4610 case DPM_ORDER_DEV_AFTER_PARENT: 4611 device_pm_move_after(dev, new_parent); 4612 devices_kset_move_after(dev, new_parent); 4613 break; 4614 case DPM_ORDER_PARENT_BEFORE_DEV: 4615 device_pm_move_before(new_parent, dev); 4616 devices_kset_move_before(new_parent, dev); 4617 break; 4618 case DPM_ORDER_DEV_LAST: 4619 device_pm_move_last(dev); 4620 devices_kset_move_last(dev); 4621 break; 4622 } 4623 4624 put_device(old_parent); 4625 out: 4626 device_pm_unlock(); 4627 put_device(dev); 4628 return error; 4629 } 4630 EXPORT_SYMBOL_GPL(device_move); 4631 4632 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4633 kgid_t kgid) 4634 { 4635 struct kobject *kobj = &dev->kobj; 4636 const struct class *class = dev->class; 4637 const struct device_type *type = dev->type; 4638 int error; 4639 4640 if (class) { 4641 /* 4642 * Change the device groups of the device class for @dev to 4643 * @kuid/@kgid. 4644 */ 4645 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4646 kgid); 4647 if (error) 4648 return error; 4649 } 4650 4651 if (type) { 4652 /* 4653 * Change the device groups of the device type for @dev to 4654 * @kuid/@kgid. 4655 */ 4656 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4657 kgid); 4658 if (error) 4659 return error; 4660 } 4661 4662 /* Change the device groups of @dev to @kuid/@kgid. */ 4663 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4664 if (error) 4665 return error; 4666 4667 if (device_supports_offline(dev) && !dev->offline_disabled) { 4668 /* Change online device attributes of @dev to @kuid/@kgid. */ 4669 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4670 kuid, kgid); 4671 if (error) 4672 return error; 4673 } 4674 4675 return 0; 4676 } 4677 4678 /** 4679 * device_change_owner - change the owner of an existing device. 4680 * @dev: device. 4681 * @kuid: new owner's kuid 4682 * @kgid: new owner's kgid 4683 * 4684 * This changes the owner of @dev and its corresponding sysfs entries to 4685 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4686 * core. 4687 * 4688 * Returns 0 on success or error code on failure. 4689 */ 4690 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4691 { 4692 int error; 4693 struct kobject *kobj = &dev->kobj; 4694 struct subsys_private *sp; 4695 4696 dev = get_device(dev); 4697 if (!dev) 4698 return -EINVAL; 4699 4700 /* 4701 * Change the kobject and the default attributes and groups of the 4702 * ktype associated with it to @kuid/@kgid. 4703 */ 4704 error = sysfs_change_owner(kobj, kuid, kgid); 4705 if (error) 4706 goto out; 4707 4708 /* 4709 * Change the uevent file for @dev to the new owner. The uevent file 4710 * was created in a separate step when @dev got added and we mirror 4711 * that step here. 4712 */ 4713 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4714 kgid); 4715 if (error) 4716 goto out; 4717 4718 /* 4719 * Change the device groups, the device groups associated with the 4720 * device class, and the groups associated with the device type of @dev 4721 * to @kuid/@kgid. 4722 */ 4723 error = device_attrs_change_owner(dev, kuid, kgid); 4724 if (error) 4725 goto out; 4726 4727 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4728 if (error) 4729 goto out; 4730 4731 /* 4732 * Change the owner of the symlink located in the class directory of 4733 * the device class associated with @dev which points to the actual 4734 * directory entry for @dev to @kuid/@kgid. This ensures that the 4735 * symlink shows the same permissions as its target. 4736 */ 4737 sp = class_to_subsys(dev->class); 4738 if (!sp) { 4739 error = -EINVAL; 4740 goto out; 4741 } 4742 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid); 4743 subsys_put(sp); 4744 4745 out: 4746 put_device(dev); 4747 return error; 4748 } 4749 EXPORT_SYMBOL_GPL(device_change_owner); 4750 4751 /** 4752 * device_shutdown - call ->shutdown() on each device to shutdown. 4753 */ 4754 void device_shutdown(void) 4755 { 4756 struct device *dev, *parent; 4757 4758 wait_for_device_probe(); 4759 device_block_probing(); 4760 4761 cpufreq_suspend(); 4762 4763 spin_lock(&devices_kset->list_lock); 4764 /* 4765 * Walk the devices list backward, shutting down each in turn. 4766 * Beware that device unplug events may also start pulling 4767 * devices offline, even as the system is shutting down. 4768 */ 4769 while (!list_empty(&devices_kset->list)) { 4770 dev = list_entry(devices_kset->list.prev, struct device, 4771 kobj.entry); 4772 4773 /* 4774 * hold reference count of device's parent to 4775 * prevent it from being freed because parent's 4776 * lock is to be held 4777 */ 4778 parent = get_device(dev->parent); 4779 get_device(dev); 4780 /* 4781 * Make sure the device is off the kset list, in the 4782 * event that dev->*->shutdown() doesn't remove it. 4783 */ 4784 list_del_init(&dev->kobj.entry); 4785 spin_unlock(&devices_kset->list_lock); 4786 4787 /* hold lock to avoid race with probe/release */ 4788 if (parent) 4789 device_lock(parent); 4790 device_lock(dev); 4791 4792 /* Don't allow any more runtime suspends */ 4793 pm_runtime_get_noresume(dev); 4794 pm_runtime_barrier(dev); 4795 4796 if (dev->class && dev->class->shutdown_pre) { 4797 if (initcall_debug) 4798 dev_info(dev, "shutdown_pre\n"); 4799 dev->class->shutdown_pre(dev); 4800 } 4801 if (dev->bus && dev->bus->shutdown) { 4802 if (initcall_debug) 4803 dev_info(dev, "shutdown\n"); 4804 dev->bus->shutdown(dev); 4805 } else if (dev->driver && dev->driver->shutdown) { 4806 if (initcall_debug) 4807 dev_info(dev, "shutdown\n"); 4808 dev->driver->shutdown(dev); 4809 } 4810 4811 device_unlock(dev); 4812 if (parent) 4813 device_unlock(parent); 4814 4815 put_device(dev); 4816 put_device(parent); 4817 4818 spin_lock(&devices_kset->list_lock); 4819 } 4820 spin_unlock(&devices_kset->list_lock); 4821 } 4822 4823 /* 4824 * Device logging functions 4825 */ 4826 4827 #ifdef CONFIG_PRINTK 4828 static void 4829 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4830 { 4831 const char *subsys; 4832 4833 memset(dev_info, 0, sizeof(*dev_info)); 4834 4835 if (dev->class) 4836 subsys = dev->class->name; 4837 else if (dev->bus) 4838 subsys = dev->bus->name; 4839 else 4840 return; 4841 4842 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4843 4844 /* 4845 * Add device identifier DEVICE=: 4846 * b12:8 block dev_t 4847 * c127:3 char dev_t 4848 * n8 netdev ifindex 4849 * +sound:card0 subsystem:devname 4850 */ 4851 if (MAJOR(dev->devt)) { 4852 char c; 4853 4854 if (strcmp(subsys, "block") == 0) 4855 c = 'b'; 4856 else 4857 c = 'c'; 4858 4859 snprintf(dev_info->device, sizeof(dev_info->device), 4860 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4861 } else if (strcmp(subsys, "net") == 0) { 4862 struct net_device *net = to_net_dev(dev); 4863 4864 snprintf(dev_info->device, sizeof(dev_info->device), 4865 "n%u", net->ifindex); 4866 } else { 4867 snprintf(dev_info->device, sizeof(dev_info->device), 4868 "+%s:%s", subsys, dev_name(dev)); 4869 } 4870 } 4871 4872 int dev_vprintk_emit(int level, const struct device *dev, 4873 const char *fmt, va_list args) 4874 { 4875 struct dev_printk_info dev_info; 4876 4877 set_dev_info(dev, &dev_info); 4878 4879 return vprintk_emit(0, level, &dev_info, fmt, args); 4880 } 4881 EXPORT_SYMBOL(dev_vprintk_emit); 4882 4883 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4884 { 4885 va_list args; 4886 int r; 4887 4888 va_start(args, fmt); 4889 4890 r = dev_vprintk_emit(level, dev, fmt, args); 4891 4892 va_end(args); 4893 4894 return r; 4895 } 4896 EXPORT_SYMBOL(dev_printk_emit); 4897 4898 static void __dev_printk(const char *level, const struct device *dev, 4899 struct va_format *vaf) 4900 { 4901 if (dev) 4902 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4903 dev_driver_string(dev), dev_name(dev), vaf); 4904 else 4905 printk("%s(NULL device *): %pV", level, vaf); 4906 } 4907 4908 void _dev_printk(const char *level, const struct device *dev, 4909 const char *fmt, ...) 4910 { 4911 struct va_format vaf; 4912 va_list args; 4913 4914 va_start(args, fmt); 4915 4916 vaf.fmt = fmt; 4917 vaf.va = &args; 4918 4919 __dev_printk(level, dev, &vaf); 4920 4921 va_end(args); 4922 } 4923 EXPORT_SYMBOL(_dev_printk); 4924 4925 #define define_dev_printk_level(func, kern_level) \ 4926 void func(const struct device *dev, const char *fmt, ...) \ 4927 { \ 4928 struct va_format vaf; \ 4929 va_list args; \ 4930 \ 4931 va_start(args, fmt); \ 4932 \ 4933 vaf.fmt = fmt; \ 4934 vaf.va = &args; \ 4935 \ 4936 __dev_printk(kern_level, dev, &vaf); \ 4937 \ 4938 va_end(args); \ 4939 } \ 4940 EXPORT_SYMBOL(func); 4941 4942 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4943 define_dev_printk_level(_dev_alert, KERN_ALERT); 4944 define_dev_printk_level(_dev_crit, KERN_CRIT); 4945 define_dev_printk_level(_dev_err, KERN_ERR); 4946 define_dev_printk_level(_dev_warn, KERN_WARNING); 4947 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4948 define_dev_printk_level(_dev_info, KERN_INFO); 4949 4950 #endif 4951 4952 /** 4953 * dev_err_probe - probe error check and log helper 4954 * @dev: the pointer to the struct device 4955 * @err: error value to test 4956 * @fmt: printf-style format string 4957 * @...: arguments as specified in the format string 4958 * 4959 * This helper implements common pattern present in probe functions for error 4960 * checking: print debug or error message depending if the error value is 4961 * -EPROBE_DEFER and propagate error upwards. 4962 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4963 * checked later by reading devices_deferred debugfs attribute. 4964 * It replaces code sequence:: 4965 * 4966 * if (err != -EPROBE_DEFER) 4967 * dev_err(dev, ...); 4968 * else 4969 * dev_dbg(dev, ...); 4970 * return err; 4971 * 4972 * with:: 4973 * 4974 * return dev_err_probe(dev, err, ...); 4975 * 4976 * Note that it is deemed acceptable to use this function for error 4977 * prints during probe even if the @err is known to never be -EPROBE_DEFER. 4978 * The benefit compared to a normal dev_err() is the standardized format 4979 * of the error code and the fact that the error code is returned. 4980 * 4981 * Returns @err. 4982 * 4983 */ 4984 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4985 { 4986 struct va_format vaf; 4987 va_list args; 4988 4989 va_start(args, fmt); 4990 vaf.fmt = fmt; 4991 vaf.va = &args; 4992 4993 if (err != -EPROBE_DEFER) { 4994 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4995 } else { 4996 device_set_deferred_probe_reason(dev, &vaf); 4997 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4998 } 4999 5000 va_end(args); 5001 5002 return err; 5003 } 5004 EXPORT_SYMBOL_GPL(dev_err_probe); 5005 5006 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 5007 { 5008 return fwnode && !IS_ERR(fwnode->secondary); 5009 } 5010 5011 /** 5012 * set_primary_fwnode - Change the primary firmware node of a given device. 5013 * @dev: Device to handle. 5014 * @fwnode: New primary firmware node of the device. 5015 * 5016 * Set the device's firmware node pointer to @fwnode, but if a secondary 5017 * firmware node of the device is present, preserve it. 5018 * 5019 * Valid fwnode cases are: 5020 * - primary --> secondary --> -ENODEV 5021 * - primary --> NULL 5022 * - secondary --> -ENODEV 5023 * - NULL 5024 */ 5025 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5026 { 5027 struct device *parent = dev->parent; 5028 struct fwnode_handle *fn = dev->fwnode; 5029 5030 if (fwnode) { 5031 if (fwnode_is_primary(fn)) 5032 fn = fn->secondary; 5033 5034 if (fn) { 5035 WARN_ON(fwnode->secondary); 5036 fwnode->secondary = fn; 5037 } 5038 dev->fwnode = fwnode; 5039 } else { 5040 if (fwnode_is_primary(fn)) { 5041 dev->fwnode = fn->secondary; 5042 5043 /* Skip nullifying fn->secondary if the primary is shared */ 5044 if (parent && fn == parent->fwnode) 5045 return; 5046 5047 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 5048 fn->secondary = NULL; 5049 } else { 5050 dev->fwnode = NULL; 5051 } 5052 } 5053 } 5054 EXPORT_SYMBOL_GPL(set_primary_fwnode); 5055 5056 /** 5057 * set_secondary_fwnode - Change the secondary firmware node of a given device. 5058 * @dev: Device to handle. 5059 * @fwnode: New secondary firmware node of the device. 5060 * 5061 * If a primary firmware node of the device is present, set its secondary 5062 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 5063 * @fwnode. 5064 */ 5065 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5066 { 5067 if (fwnode) 5068 fwnode->secondary = ERR_PTR(-ENODEV); 5069 5070 if (fwnode_is_primary(dev->fwnode)) 5071 dev->fwnode->secondary = fwnode; 5072 else 5073 dev->fwnode = fwnode; 5074 } 5075 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 5076 5077 /** 5078 * device_set_of_node_from_dev - reuse device-tree node of another device 5079 * @dev: device whose device-tree node is being set 5080 * @dev2: device whose device-tree node is being reused 5081 * 5082 * Takes another reference to the new device-tree node after first dropping 5083 * any reference held to the old node. 5084 */ 5085 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 5086 { 5087 of_node_put(dev->of_node); 5088 dev->of_node = of_node_get(dev2->of_node); 5089 dev->of_node_reused = true; 5090 } 5091 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 5092 5093 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 5094 { 5095 dev->fwnode = fwnode; 5096 dev->of_node = to_of_node(fwnode); 5097 } 5098 EXPORT_SYMBOL_GPL(device_set_node); 5099 5100 int device_match_name(struct device *dev, const void *name) 5101 { 5102 return sysfs_streq(dev_name(dev), name); 5103 } 5104 EXPORT_SYMBOL_GPL(device_match_name); 5105 5106 int device_match_of_node(struct device *dev, const void *np) 5107 { 5108 return dev->of_node == np; 5109 } 5110 EXPORT_SYMBOL_GPL(device_match_of_node); 5111 5112 int device_match_fwnode(struct device *dev, const void *fwnode) 5113 { 5114 return dev_fwnode(dev) == fwnode; 5115 } 5116 EXPORT_SYMBOL_GPL(device_match_fwnode); 5117 5118 int device_match_devt(struct device *dev, const void *pdevt) 5119 { 5120 return dev->devt == *(dev_t *)pdevt; 5121 } 5122 EXPORT_SYMBOL_GPL(device_match_devt); 5123 5124 int device_match_acpi_dev(struct device *dev, const void *adev) 5125 { 5126 return ACPI_COMPANION(dev) == adev; 5127 } 5128 EXPORT_SYMBOL(device_match_acpi_dev); 5129 5130 int device_match_acpi_handle(struct device *dev, const void *handle) 5131 { 5132 return ACPI_HANDLE(dev) == handle; 5133 } 5134 EXPORT_SYMBOL(device_match_acpi_handle); 5135 5136 int device_match_any(struct device *dev, const void *unused) 5137 { 5138 return 1; 5139 } 5140 EXPORT_SYMBOL_GPL(device_match_any); 5141