1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/kstrtox.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/blkdev.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sched/mm.h> 30 #include <linux/string_helpers.h> 31 #include <linux/swiotlb.h> 32 #include <linux/sysfs.h> 33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 34 35 #include "base.h" 36 #include "physical_location.h" 37 #include "power/power.h" 38 39 /* Device links support. */ 40 static LIST_HEAD(deferred_sync); 41 static unsigned int defer_sync_state_count = 1; 42 static DEFINE_MUTEX(fwnode_link_lock); 43 static bool fw_devlink_is_permissive(void); 44 static void __fw_devlink_link_to_consumers(struct device *dev); 45 static bool fw_devlink_drv_reg_done; 46 static bool fw_devlink_best_effort; 47 static struct workqueue_struct *device_link_wq; 48 49 /** 50 * __fwnode_link_add - Create a link between two fwnode_handles. 51 * @con: Consumer end of the link. 52 * @sup: Supplier end of the link. 53 * 54 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 55 * represents the detail that the firmware lists @sup fwnode as supplying a 56 * resource to @con. 57 * 58 * The driver core will use the fwnode link to create a device link between the 59 * two device objects corresponding to @con and @sup when they are created. The 60 * driver core will automatically delete the fwnode link between @con and @sup 61 * after doing that. 62 * 63 * Attempts to create duplicate links between the same pair of fwnode handles 64 * are ignored and there is no reference counting. 65 */ 66 static int __fwnode_link_add(struct fwnode_handle *con, 67 struct fwnode_handle *sup, u8 flags) 68 { 69 struct fwnode_link *link; 70 71 list_for_each_entry(link, &sup->consumers, s_hook) 72 if (link->consumer == con) { 73 link->flags |= flags; 74 return 0; 75 } 76 77 link = kzalloc(sizeof(*link), GFP_KERNEL); 78 if (!link) 79 return -ENOMEM; 80 81 link->supplier = sup; 82 INIT_LIST_HEAD(&link->s_hook); 83 link->consumer = con; 84 INIT_LIST_HEAD(&link->c_hook); 85 link->flags = flags; 86 87 list_add(&link->s_hook, &sup->consumers); 88 list_add(&link->c_hook, &con->suppliers); 89 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n", 90 con, sup); 91 92 return 0; 93 } 94 95 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup) 96 { 97 int ret; 98 99 mutex_lock(&fwnode_link_lock); 100 ret = __fwnode_link_add(con, sup, 0); 101 mutex_unlock(&fwnode_link_lock); 102 return ret; 103 } 104 105 /** 106 * __fwnode_link_del - Delete a link between two fwnode_handles. 107 * @link: the fwnode_link to be deleted 108 * 109 * The fwnode_link_lock needs to be held when this function is called. 110 */ 111 static void __fwnode_link_del(struct fwnode_link *link) 112 { 113 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n", 114 link->consumer, link->supplier); 115 list_del(&link->s_hook); 116 list_del(&link->c_hook); 117 kfree(link); 118 } 119 120 /** 121 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle. 122 * @link: the fwnode_link to be marked 123 * 124 * The fwnode_link_lock needs to be held when this function is called. 125 */ 126 static void __fwnode_link_cycle(struct fwnode_link *link) 127 { 128 pr_debug("%pfwf: cycle: depends on %pfwf\n", 129 link->consumer, link->supplier); 130 link->flags |= FWLINK_FLAG_CYCLE; 131 } 132 133 /** 134 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 135 * @fwnode: fwnode whose supplier links need to be deleted 136 * 137 * Deletes all supplier links connecting directly to @fwnode. 138 */ 139 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 140 { 141 struct fwnode_link *link, *tmp; 142 143 mutex_lock(&fwnode_link_lock); 144 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 145 __fwnode_link_del(link); 146 mutex_unlock(&fwnode_link_lock); 147 } 148 149 /** 150 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 151 * @fwnode: fwnode whose consumer links need to be deleted 152 * 153 * Deletes all consumer links connecting directly to @fwnode. 154 */ 155 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 156 { 157 struct fwnode_link *link, *tmp; 158 159 mutex_lock(&fwnode_link_lock); 160 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 161 __fwnode_link_del(link); 162 mutex_unlock(&fwnode_link_lock); 163 } 164 165 /** 166 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 167 * @fwnode: fwnode whose links needs to be deleted 168 * 169 * Deletes all links connecting directly to a fwnode. 170 */ 171 void fwnode_links_purge(struct fwnode_handle *fwnode) 172 { 173 fwnode_links_purge_suppliers(fwnode); 174 fwnode_links_purge_consumers(fwnode); 175 } 176 177 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 178 { 179 struct fwnode_handle *child; 180 181 /* Don't purge consumer links of an added child */ 182 if (fwnode->dev) 183 return; 184 185 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 186 fwnode_links_purge_consumers(fwnode); 187 188 fwnode_for_each_available_child_node(fwnode, child) 189 fw_devlink_purge_absent_suppliers(child); 190 } 191 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 192 193 /** 194 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle 195 * @from: move consumers away from this fwnode 196 * @to: move consumers to this fwnode 197 * 198 * Move all consumer links from @from fwnode to @to fwnode. 199 */ 200 static void __fwnode_links_move_consumers(struct fwnode_handle *from, 201 struct fwnode_handle *to) 202 { 203 struct fwnode_link *link, *tmp; 204 205 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) { 206 __fwnode_link_add(link->consumer, to, link->flags); 207 __fwnode_link_del(link); 208 } 209 } 210 211 /** 212 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers 213 * @fwnode: fwnode from which to pick up dangling consumers 214 * @new_sup: fwnode of new supplier 215 * 216 * If the @fwnode has a corresponding struct device and the device supports 217 * probing (that is, added to a bus), then we want to let fw_devlink create 218 * MANAGED device links to this device, so leave @fwnode and its descendant's 219 * fwnode links alone. 220 * 221 * Otherwise, move its consumers to the new supplier @new_sup. 222 */ 223 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode, 224 struct fwnode_handle *new_sup) 225 { 226 struct fwnode_handle *child; 227 228 if (fwnode->dev && fwnode->dev->bus) 229 return; 230 231 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 232 __fwnode_links_move_consumers(fwnode, new_sup); 233 234 fwnode_for_each_available_child_node(fwnode, child) 235 __fw_devlink_pickup_dangling_consumers(child, new_sup); 236 } 237 238 static DEFINE_MUTEX(device_links_lock); 239 DEFINE_STATIC_SRCU(device_links_srcu); 240 241 static inline void device_links_write_lock(void) 242 { 243 mutex_lock(&device_links_lock); 244 } 245 246 static inline void device_links_write_unlock(void) 247 { 248 mutex_unlock(&device_links_lock); 249 } 250 251 int device_links_read_lock(void) __acquires(&device_links_srcu) 252 { 253 return srcu_read_lock(&device_links_srcu); 254 } 255 256 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 257 { 258 srcu_read_unlock(&device_links_srcu, idx); 259 } 260 261 int device_links_read_lock_held(void) 262 { 263 return srcu_read_lock_held(&device_links_srcu); 264 } 265 266 static void device_link_synchronize_removal(void) 267 { 268 synchronize_srcu(&device_links_srcu); 269 } 270 271 static void device_link_remove_from_lists(struct device_link *link) 272 { 273 list_del_rcu(&link->s_node); 274 list_del_rcu(&link->c_node); 275 } 276 277 static bool device_is_ancestor(struct device *dev, struct device *target) 278 { 279 while (target->parent) { 280 target = target->parent; 281 if (dev == target) 282 return true; 283 } 284 return false; 285 } 286 287 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \ 288 DL_FLAG_CYCLE | \ 289 DL_FLAG_MANAGED) 290 static inline bool device_link_flag_is_sync_state_only(u32 flags) 291 { 292 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY; 293 } 294 295 /** 296 * device_is_dependent - Check if one device depends on another one 297 * @dev: Device to check dependencies for. 298 * @target: Device to check against. 299 * 300 * Check if @target depends on @dev or any device dependent on it (its child or 301 * its consumer etc). Return 1 if that is the case or 0 otherwise. 302 */ 303 int device_is_dependent(struct device *dev, void *target) 304 { 305 struct device_link *link; 306 int ret; 307 308 /* 309 * The "ancestors" check is needed to catch the case when the target 310 * device has not been completely initialized yet and it is still 311 * missing from the list of children of its parent device. 312 */ 313 if (dev == target || device_is_ancestor(dev, target)) 314 return 1; 315 316 ret = device_for_each_child(dev, target, device_is_dependent); 317 if (ret) 318 return ret; 319 320 list_for_each_entry(link, &dev->links.consumers, s_node) { 321 if (device_link_flag_is_sync_state_only(link->flags)) 322 continue; 323 324 if (link->consumer == target) 325 return 1; 326 327 ret = device_is_dependent(link->consumer, target); 328 if (ret) 329 break; 330 } 331 return ret; 332 } 333 334 static void device_link_init_status(struct device_link *link, 335 struct device *consumer, 336 struct device *supplier) 337 { 338 switch (supplier->links.status) { 339 case DL_DEV_PROBING: 340 switch (consumer->links.status) { 341 case DL_DEV_PROBING: 342 /* 343 * A consumer driver can create a link to a supplier 344 * that has not completed its probing yet as long as it 345 * knows that the supplier is already functional (for 346 * example, it has just acquired some resources from the 347 * supplier). 348 */ 349 link->status = DL_STATE_CONSUMER_PROBE; 350 break; 351 default: 352 link->status = DL_STATE_DORMANT; 353 break; 354 } 355 break; 356 case DL_DEV_DRIVER_BOUND: 357 switch (consumer->links.status) { 358 case DL_DEV_PROBING: 359 link->status = DL_STATE_CONSUMER_PROBE; 360 break; 361 case DL_DEV_DRIVER_BOUND: 362 link->status = DL_STATE_ACTIVE; 363 break; 364 default: 365 link->status = DL_STATE_AVAILABLE; 366 break; 367 } 368 break; 369 case DL_DEV_UNBINDING: 370 link->status = DL_STATE_SUPPLIER_UNBIND; 371 break; 372 default: 373 link->status = DL_STATE_DORMANT; 374 break; 375 } 376 } 377 378 static int device_reorder_to_tail(struct device *dev, void *not_used) 379 { 380 struct device_link *link; 381 382 /* 383 * Devices that have not been registered yet will be put to the ends 384 * of the lists during the registration, so skip them here. 385 */ 386 if (device_is_registered(dev)) 387 devices_kset_move_last(dev); 388 389 if (device_pm_initialized(dev)) 390 device_pm_move_last(dev); 391 392 device_for_each_child(dev, NULL, device_reorder_to_tail); 393 list_for_each_entry(link, &dev->links.consumers, s_node) { 394 if (device_link_flag_is_sync_state_only(link->flags)) 395 continue; 396 device_reorder_to_tail(link->consumer, NULL); 397 } 398 399 return 0; 400 } 401 402 /** 403 * device_pm_move_to_tail - Move set of devices to the end of device lists 404 * @dev: Device to move 405 * 406 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 407 * 408 * It moves the @dev along with all of its children and all of its consumers 409 * to the ends of the device_kset and dpm_list, recursively. 410 */ 411 void device_pm_move_to_tail(struct device *dev) 412 { 413 int idx; 414 415 idx = device_links_read_lock(); 416 device_pm_lock(); 417 device_reorder_to_tail(dev, NULL); 418 device_pm_unlock(); 419 device_links_read_unlock(idx); 420 } 421 422 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 423 424 static ssize_t status_show(struct device *dev, 425 struct device_attribute *attr, char *buf) 426 { 427 const char *output; 428 429 switch (to_devlink(dev)->status) { 430 case DL_STATE_NONE: 431 output = "not tracked"; 432 break; 433 case DL_STATE_DORMANT: 434 output = "dormant"; 435 break; 436 case DL_STATE_AVAILABLE: 437 output = "available"; 438 break; 439 case DL_STATE_CONSUMER_PROBE: 440 output = "consumer probing"; 441 break; 442 case DL_STATE_ACTIVE: 443 output = "active"; 444 break; 445 case DL_STATE_SUPPLIER_UNBIND: 446 output = "supplier unbinding"; 447 break; 448 default: 449 output = "unknown"; 450 break; 451 } 452 453 return sysfs_emit(buf, "%s\n", output); 454 } 455 static DEVICE_ATTR_RO(status); 456 457 static ssize_t auto_remove_on_show(struct device *dev, 458 struct device_attribute *attr, char *buf) 459 { 460 struct device_link *link = to_devlink(dev); 461 const char *output; 462 463 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 464 output = "supplier unbind"; 465 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 466 output = "consumer unbind"; 467 else 468 output = "never"; 469 470 return sysfs_emit(buf, "%s\n", output); 471 } 472 static DEVICE_ATTR_RO(auto_remove_on); 473 474 static ssize_t runtime_pm_show(struct device *dev, 475 struct device_attribute *attr, char *buf) 476 { 477 struct device_link *link = to_devlink(dev); 478 479 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 480 } 481 static DEVICE_ATTR_RO(runtime_pm); 482 483 static ssize_t sync_state_only_show(struct device *dev, 484 struct device_attribute *attr, char *buf) 485 { 486 struct device_link *link = to_devlink(dev); 487 488 return sysfs_emit(buf, "%d\n", 489 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 490 } 491 static DEVICE_ATTR_RO(sync_state_only); 492 493 static struct attribute *devlink_attrs[] = { 494 &dev_attr_status.attr, 495 &dev_attr_auto_remove_on.attr, 496 &dev_attr_runtime_pm.attr, 497 &dev_attr_sync_state_only.attr, 498 NULL, 499 }; 500 ATTRIBUTE_GROUPS(devlink); 501 502 static void device_link_release_fn(struct work_struct *work) 503 { 504 struct device_link *link = container_of(work, struct device_link, rm_work); 505 506 /* Ensure that all references to the link object have been dropped. */ 507 device_link_synchronize_removal(); 508 509 pm_runtime_release_supplier(link); 510 /* 511 * If supplier_preactivated is set, the link has been dropped between 512 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 513 * in __driver_probe_device(). In that case, drop the supplier's 514 * PM-runtime usage counter to remove the reference taken by 515 * pm_runtime_get_suppliers(). 516 */ 517 if (link->supplier_preactivated) 518 pm_runtime_put_noidle(link->supplier); 519 520 pm_request_idle(link->supplier); 521 522 put_device(link->consumer); 523 put_device(link->supplier); 524 kfree(link); 525 } 526 527 static void devlink_dev_release(struct device *dev) 528 { 529 struct device_link *link = to_devlink(dev); 530 531 INIT_WORK(&link->rm_work, device_link_release_fn); 532 /* 533 * It may take a while to complete this work because of the SRCU 534 * synchronization in device_link_release_fn() and if the consumer or 535 * supplier devices get deleted when it runs, so put it into the 536 * dedicated workqueue. 537 */ 538 queue_work(device_link_wq, &link->rm_work); 539 } 540 541 /** 542 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate 543 */ 544 void device_link_wait_removal(void) 545 { 546 /* 547 * devlink removal jobs are queued in the dedicated work queue. 548 * To be sure that all removal jobs are terminated, ensure that any 549 * scheduled work has run to completion. 550 */ 551 flush_workqueue(device_link_wq); 552 } 553 EXPORT_SYMBOL_GPL(device_link_wait_removal); 554 555 static struct class devlink_class = { 556 .name = "devlink", 557 .dev_groups = devlink_groups, 558 .dev_release = devlink_dev_release, 559 }; 560 561 static int devlink_add_symlinks(struct device *dev) 562 { 563 int ret; 564 size_t len; 565 struct device_link *link = to_devlink(dev); 566 struct device *sup = link->supplier; 567 struct device *con = link->consumer; 568 char *buf; 569 570 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 571 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 572 len += strlen(":"); 573 len += strlen("supplier:") + 1; 574 buf = kzalloc(len, GFP_KERNEL); 575 if (!buf) 576 return -ENOMEM; 577 578 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 579 if (ret) 580 goto out; 581 582 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 583 if (ret) 584 goto err_con; 585 586 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 587 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 588 if (ret) 589 goto err_con_dev; 590 591 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 592 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 593 if (ret) 594 goto err_sup_dev; 595 596 goto out; 597 598 err_sup_dev: 599 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 600 sysfs_remove_link(&sup->kobj, buf); 601 err_con_dev: 602 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 603 err_con: 604 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 605 out: 606 kfree(buf); 607 return ret; 608 } 609 610 static void devlink_remove_symlinks(struct device *dev) 611 { 612 struct device_link *link = to_devlink(dev); 613 size_t len; 614 struct device *sup = link->supplier; 615 struct device *con = link->consumer; 616 char *buf; 617 618 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 619 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 620 621 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 622 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 623 len += strlen(":"); 624 len += strlen("supplier:") + 1; 625 buf = kzalloc(len, GFP_KERNEL); 626 if (!buf) { 627 WARN(1, "Unable to properly free device link symlinks!\n"); 628 return; 629 } 630 631 if (device_is_registered(con)) { 632 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 633 sysfs_remove_link(&con->kobj, buf); 634 } 635 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 636 sysfs_remove_link(&sup->kobj, buf); 637 kfree(buf); 638 } 639 640 static struct class_interface devlink_class_intf = { 641 .class = &devlink_class, 642 .add_dev = devlink_add_symlinks, 643 .remove_dev = devlink_remove_symlinks, 644 }; 645 646 static int __init devlink_class_init(void) 647 { 648 int ret; 649 650 ret = class_register(&devlink_class); 651 if (ret) 652 return ret; 653 654 ret = class_interface_register(&devlink_class_intf); 655 if (ret) 656 class_unregister(&devlink_class); 657 658 return ret; 659 } 660 postcore_initcall(devlink_class_init); 661 662 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 663 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 664 DL_FLAG_AUTOPROBE_CONSUMER | \ 665 DL_FLAG_SYNC_STATE_ONLY | \ 666 DL_FLAG_INFERRED | \ 667 DL_FLAG_CYCLE) 668 669 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 670 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 671 672 /** 673 * device_link_add - Create a link between two devices. 674 * @consumer: Consumer end of the link. 675 * @supplier: Supplier end of the link. 676 * @flags: Link flags. 677 * 678 * The caller is responsible for the proper synchronization of the link creation 679 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 680 * runtime PM framework to take the link into account. Second, if the 681 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 682 * be forced into the active meta state and reference-counted upon the creation 683 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 684 * ignored. 685 * 686 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 687 * expected to release the link returned by it directly with the help of either 688 * device_link_del() or device_link_remove(). 689 * 690 * If that flag is not set, however, the caller of this function is handing the 691 * management of the link over to the driver core entirely and its return value 692 * can only be used to check whether or not the link is present. In that case, 693 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 694 * flags can be used to indicate to the driver core when the link can be safely 695 * deleted. Namely, setting one of them in @flags indicates to the driver core 696 * that the link is not going to be used (by the given caller of this function) 697 * after unbinding the consumer or supplier driver, respectively, from its 698 * device, so the link can be deleted at that point. If none of them is set, 699 * the link will be maintained until one of the devices pointed to by it (either 700 * the consumer or the supplier) is unregistered. 701 * 702 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 703 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 704 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 705 * be used to request the driver core to automatically probe for a consumer 706 * driver after successfully binding a driver to the supplier device. 707 * 708 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 709 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 710 * the same time is invalid and will cause NULL to be returned upfront. 711 * However, if a device link between the given @consumer and @supplier pair 712 * exists already when this function is called for them, the existing link will 713 * be returned regardless of its current type and status (the link's flags may 714 * be modified then). The caller of this function is then expected to treat 715 * the link as though it has just been created, so (in particular) if 716 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 717 * explicitly when not needed any more (as stated above). 718 * 719 * A side effect of the link creation is re-ordering of dpm_list and the 720 * devices_kset list by moving the consumer device and all devices depending 721 * on it to the ends of these lists (that does not happen to devices that have 722 * not been registered when this function is called). 723 * 724 * The supplier device is required to be registered when this function is called 725 * and NULL will be returned if that is not the case. The consumer device need 726 * not be registered, however. 727 */ 728 struct device_link *device_link_add(struct device *consumer, 729 struct device *supplier, u32 flags) 730 { 731 struct device_link *link; 732 733 if (!consumer || !supplier || consumer == supplier || 734 flags & ~DL_ADD_VALID_FLAGS || 735 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 736 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 737 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 738 DL_FLAG_AUTOREMOVE_SUPPLIER))) 739 return NULL; 740 741 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 742 if (pm_runtime_get_sync(supplier) < 0) { 743 pm_runtime_put_noidle(supplier); 744 return NULL; 745 } 746 } 747 748 if (!(flags & DL_FLAG_STATELESS)) 749 flags |= DL_FLAG_MANAGED; 750 751 if (flags & DL_FLAG_SYNC_STATE_ONLY && 752 !device_link_flag_is_sync_state_only(flags)) 753 return NULL; 754 755 device_links_write_lock(); 756 device_pm_lock(); 757 758 /* 759 * If the supplier has not been fully registered yet or there is a 760 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 761 * the supplier already in the graph, return NULL. If the link is a 762 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 763 * because it only affects sync_state() callbacks. 764 */ 765 if (!device_pm_initialized(supplier) 766 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 767 device_is_dependent(consumer, supplier))) { 768 link = NULL; 769 goto out; 770 } 771 772 /* 773 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 774 * So, only create it if the consumer hasn't probed yet. 775 */ 776 if (flags & DL_FLAG_SYNC_STATE_ONLY && 777 consumer->links.status != DL_DEV_NO_DRIVER && 778 consumer->links.status != DL_DEV_PROBING) { 779 link = NULL; 780 goto out; 781 } 782 783 /* 784 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 785 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 786 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 787 */ 788 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 789 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 790 791 list_for_each_entry(link, &supplier->links.consumers, s_node) { 792 if (link->consumer != consumer) 793 continue; 794 795 if (link->flags & DL_FLAG_INFERRED && 796 !(flags & DL_FLAG_INFERRED)) 797 link->flags &= ~DL_FLAG_INFERRED; 798 799 if (flags & DL_FLAG_PM_RUNTIME) { 800 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 801 pm_runtime_new_link(consumer); 802 link->flags |= DL_FLAG_PM_RUNTIME; 803 } 804 if (flags & DL_FLAG_RPM_ACTIVE) 805 refcount_inc(&link->rpm_active); 806 } 807 808 if (flags & DL_FLAG_STATELESS) { 809 kref_get(&link->kref); 810 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 811 !(link->flags & DL_FLAG_STATELESS)) { 812 link->flags |= DL_FLAG_STATELESS; 813 goto reorder; 814 } else { 815 link->flags |= DL_FLAG_STATELESS; 816 goto out; 817 } 818 } 819 820 /* 821 * If the life time of the link following from the new flags is 822 * longer than indicated by the flags of the existing link, 823 * update the existing link to stay around longer. 824 */ 825 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 826 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 827 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 828 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 829 } 830 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 831 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 832 DL_FLAG_AUTOREMOVE_SUPPLIER); 833 } 834 if (!(link->flags & DL_FLAG_MANAGED)) { 835 kref_get(&link->kref); 836 link->flags |= DL_FLAG_MANAGED; 837 device_link_init_status(link, consumer, supplier); 838 } 839 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 840 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 841 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 842 goto reorder; 843 } 844 845 goto out; 846 } 847 848 link = kzalloc(sizeof(*link), GFP_KERNEL); 849 if (!link) 850 goto out; 851 852 refcount_set(&link->rpm_active, 1); 853 854 get_device(supplier); 855 link->supplier = supplier; 856 INIT_LIST_HEAD(&link->s_node); 857 get_device(consumer); 858 link->consumer = consumer; 859 INIT_LIST_HEAD(&link->c_node); 860 link->flags = flags; 861 kref_init(&link->kref); 862 863 link->link_dev.class = &devlink_class; 864 device_set_pm_not_required(&link->link_dev); 865 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 866 dev_bus_name(supplier), dev_name(supplier), 867 dev_bus_name(consumer), dev_name(consumer)); 868 if (device_register(&link->link_dev)) { 869 put_device(&link->link_dev); 870 link = NULL; 871 goto out; 872 } 873 874 if (flags & DL_FLAG_PM_RUNTIME) { 875 if (flags & DL_FLAG_RPM_ACTIVE) 876 refcount_inc(&link->rpm_active); 877 878 pm_runtime_new_link(consumer); 879 } 880 881 /* Determine the initial link state. */ 882 if (flags & DL_FLAG_STATELESS) 883 link->status = DL_STATE_NONE; 884 else 885 device_link_init_status(link, consumer, supplier); 886 887 /* 888 * Some callers expect the link creation during consumer driver probe to 889 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 890 */ 891 if (link->status == DL_STATE_CONSUMER_PROBE && 892 flags & DL_FLAG_PM_RUNTIME) 893 pm_runtime_resume(supplier); 894 895 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 896 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 897 898 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 899 dev_dbg(consumer, 900 "Linked as a sync state only consumer to %s\n", 901 dev_name(supplier)); 902 goto out; 903 } 904 905 reorder: 906 /* 907 * Move the consumer and all of the devices depending on it to the end 908 * of dpm_list and the devices_kset list. 909 * 910 * It is necessary to hold dpm_list locked throughout all that or else 911 * we may end up suspending with a wrong ordering of it. 912 */ 913 device_reorder_to_tail(consumer, NULL); 914 915 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 916 917 out: 918 device_pm_unlock(); 919 device_links_write_unlock(); 920 921 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 922 pm_runtime_put(supplier); 923 924 return link; 925 } 926 EXPORT_SYMBOL_GPL(device_link_add); 927 928 static void __device_link_del(struct kref *kref) 929 { 930 struct device_link *link = container_of(kref, struct device_link, kref); 931 932 dev_dbg(link->consumer, "Dropping the link to %s\n", 933 dev_name(link->supplier)); 934 935 pm_runtime_drop_link(link); 936 937 device_link_remove_from_lists(link); 938 device_unregister(&link->link_dev); 939 } 940 941 static void device_link_put_kref(struct device_link *link) 942 { 943 if (link->flags & DL_FLAG_STATELESS) 944 kref_put(&link->kref, __device_link_del); 945 else if (!device_is_registered(link->consumer)) 946 __device_link_del(&link->kref); 947 else 948 WARN(1, "Unable to drop a managed device link reference\n"); 949 } 950 951 /** 952 * device_link_del - Delete a stateless link between two devices. 953 * @link: Device link to delete. 954 * 955 * The caller must ensure proper synchronization of this function with runtime 956 * PM. If the link was added multiple times, it needs to be deleted as often. 957 * Care is required for hotplugged devices: Their links are purged on removal 958 * and calling device_link_del() is then no longer allowed. 959 */ 960 void device_link_del(struct device_link *link) 961 { 962 device_links_write_lock(); 963 device_link_put_kref(link); 964 device_links_write_unlock(); 965 } 966 EXPORT_SYMBOL_GPL(device_link_del); 967 968 /** 969 * device_link_remove - Delete a stateless link between two devices. 970 * @consumer: Consumer end of the link. 971 * @supplier: Supplier end of the link. 972 * 973 * The caller must ensure proper synchronization of this function with runtime 974 * PM. 975 */ 976 void device_link_remove(void *consumer, struct device *supplier) 977 { 978 struct device_link *link; 979 980 if (WARN_ON(consumer == supplier)) 981 return; 982 983 device_links_write_lock(); 984 985 list_for_each_entry(link, &supplier->links.consumers, s_node) { 986 if (link->consumer == consumer) { 987 device_link_put_kref(link); 988 break; 989 } 990 } 991 992 device_links_write_unlock(); 993 } 994 EXPORT_SYMBOL_GPL(device_link_remove); 995 996 static void device_links_missing_supplier(struct device *dev) 997 { 998 struct device_link *link; 999 1000 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1001 if (link->status != DL_STATE_CONSUMER_PROBE) 1002 continue; 1003 1004 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1005 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1006 } else { 1007 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1008 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1009 } 1010 } 1011 } 1012 1013 static bool dev_is_best_effort(struct device *dev) 1014 { 1015 return (fw_devlink_best_effort && dev->can_match) || 1016 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT)); 1017 } 1018 1019 static struct fwnode_handle *fwnode_links_check_suppliers( 1020 struct fwnode_handle *fwnode) 1021 { 1022 struct fwnode_link *link; 1023 1024 if (!fwnode || fw_devlink_is_permissive()) 1025 return NULL; 1026 1027 list_for_each_entry(link, &fwnode->suppliers, c_hook) 1028 if (!(link->flags & 1029 (FWLINK_FLAG_CYCLE | FWLINK_FLAG_IGNORE))) 1030 return link->supplier; 1031 1032 return NULL; 1033 } 1034 1035 /** 1036 * device_links_check_suppliers - Check presence of supplier drivers. 1037 * @dev: Consumer device. 1038 * 1039 * Check links from this device to any suppliers. Walk the list of the device's 1040 * links to suppliers and see if all of them are available. If not, simply 1041 * return -EPROBE_DEFER. 1042 * 1043 * We need to guarantee that the supplier will not go away after the check has 1044 * been positive here. It only can go away in __device_release_driver() and 1045 * that function checks the device's links to consumers. This means we need to 1046 * mark the link as "consumer probe in progress" to make the supplier removal 1047 * wait for us to complete (or bad things may happen). 1048 * 1049 * Links without the DL_FLAG_MANAGED flag set are ignored. 1050 */ 1051 int device_links_check_suppliers(struct device *dev) 1052 { 1053 struct device_link *link; 1054 int ret = 0, fwnode_ret = 0; 1055 struct fwnode_handle *sup_fw; 1056 1057 /* 1058 * Device waiting for supplier to become available is not allowed to 1059 * probe. 1060 */ 1061 mutex_lock(&fwnode_link_lock); 1062 sup_fw = fwnode_links_check_suppliers(dev->fwnode); 1063 if (sup_fw) { 1064 if (!dev_is_best_effort(dev)) { 1065 fwnode_ret = -EPROBE_DEFER; 1066 dev_err_probe(dev, -EPROBE_DEFER, 1067 "wait for supplier %pfwf\n", sup_fw); 1068 } else { 1069 fwnode_ret = -EAGAIN; 1070 } 1071 } 1072 mutex_unlock(&fwnode_link_lock); 1073 if (fwnode_ret == -EPROBE_DEFER) 1074 return fwnode_ret; 1075 1076 device_links_write_lock(); 1077 1078 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1079 if (!(link->flags & DL_FLAG_MANAGED)) 1080 continue; 1081 1082 if (link->status != DL_STATE_AVAILABLE && 1083 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1084 1085 if (dev_is_best_effort(dev) && 1086 link->flags & DL_FLAG_INFERRED && 1087 !link->supplier->can_match) { 1088 ret = -EAGAIN; 1089 continue; 1090 } 1091 1092 device_links_missing_supplier(dev); 1093 dev_err_probe(dev, -EPROBE_DEFER, 1094 "supplier %s not ready\n", 1095 dev_name(link->supplier)); 1096 ret = -EPROBE_DEFER; 1097 break; 1098 } 1099 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1100 } 1101 dev->links.status = DL_DEV_PROBING; 1102 1103 device_links_write_unlock(); 1104 1105 return ret ? ret : fwnode_ret; 1106 } 1107 1108 /** 1109 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1110 * @dev: Device to call sync_state() on 1111 * @list: List head to queue the @dev on 1112 * 1113 * Queues a device for a sync_state() callback when the device links write lock 1114 * isn't held. This allows the sync_state() execution flow to use device links 1115 * APIs. The caller must ensure this function is called with 1116 * device_links_write_lock() held. 1117 * 1118 * This function does a get_device() to make sure the device is not freed while 1119 * on this list. 1120 * 1121 * So the caller must also ensure that device_links_flush_sync_list() is called 1122 * as soon as the caller releases device_links_write_lock(). This is necessary 1123 * to make sure the sync_state() is called in a timely fashion and the 1124 * put_device() is called on this device. 1125 */ 1126 static void __device_links_queue_sync_state(struct device *dev, 1127 struct list_head *list) 1128 { 1129 struct device_link *link; 1130 1131 if (!dev_has_sync_state(dev)) 1132 return; 1133 if (dev->state_synced) 1134 return; 1135 1136 list_for_each_entry(link, &dev->links.consumers, s_node) { 1137 if (!(link->flags & DL_FLAG_MANAGED)) 1138 continue; 1139 if (link->status != DL_STATE_ACTIVE) 1140 return; 1141 } 1142 1143 /* 1144 * Set the flag here to avoid adding the same device to a list more 1145 * than once. This can happen if new consumers get added to the device 1146 * and probed before the list is flushed. 1147 */ 1148 dev->state_synced = true; 1149 1150 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1151 return; 1152 1153 get_device(dev); 1154 list_add_tail(&dev->links.defer_sync, list); 1155 } 1156 1157 /** 1158 * device_links_flush_sync_list - Call sync_state() on a list of devices 1159 * @list: List of devices to call sync_state() on 1160 * @dont_lock_dev: Device for which lock is already held by the caller 1161 * 1162 * Calls sync_state() on all the devices that have been queued for it. This 1163 * function is used in conjunction with __device_links_queue_sync_state(). The 1164 * @dont_lock_dev parameter is useful when this function is called from a 1165 * context where a device lock is already held. 1166 */ 1167 static void device_links_flush_sync_list(struct list_head *list, 1168 struct device *dont_lock_dev) 1169 { 1170 struct device *dev, *tmp; 1171 1172 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1173 list_del_init(&dev->links.defer_sync); 1174 1175 if (dev != dont_lock_dev) 1176 device_lock(dev); 1177 1178 dev_sync_state(dev); 1179 1180 if (dev != dont_lock_dev) 1181 device_unlock(dev); 1182 1183 put_device(dev); 1184 } 1185 } 1186 1187 void device_links_supplier_sync_state_pause(void) 1188 { 1189 device_links_write_lock(); 1190 defer_sync_state_count++; 1191 device_links_write_unlock(); 1192 } 1193 1194 void device_links_supplier_sync_state_resume(void) 1195 { 1196 struct device *dev, *tmp; 1197 LIST_HEAD(sync_list); 1198 1199 device_links_write_lock(); 1200 if (!defer_sync_state_count) { 1201 WARN(true, "Unmatched sync_state pause/resume!"); 1202 goto out; 1203 } 1204 defer_sync_state_count--; 1205 if (defer_sync_state_count) 1206 goto out; 1207 1208 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1209 /* 1210 * Delete from deferred_sync list before queuing it to 1211 * sync_list because defer_sync is used for both lists. 1212 */ 1213 list_del_init(&dev->links.defer_sync); 1214 __device_links_queue_sync_state(dev, &sync_list); 1215 } 1216 out: 1217 device_links_write_unlock(); 1218 1219 device_links_flush_sync_list(&sync_list, NULL); 1220 } 1221 1222 static int sync_state_resume_initcall(void) 1223 { 1224 device_links_supplier_sync_state_resume(); 1225 return 0; 1226 } 1227 late_initcall(sync_state_resume_initcall); 1228 1229 static void __device_links_supplier_defer_sync(struct device *sup) 1230 { 1231 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1232 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1233 } 1234 1235 static void device_link_drop_managed(struct device_link *link) 1236 { 1237 link->flags &= ~DL_FLAG_MANAGED; 1238 WRITE_ONCE(link->status, DL_STATE_NONE); 1239 kref_put(&link->kref, __device_link_del); 1240 } 1241 1242 static ssize_t waiting_for_supplier_show(struct device *dev, 1243 struct device_attribute *attr, 1244 char *buf) 1245 { 1246 bool val; 1247 1248 device_lock(dev); 1249 mutex_lock(&fwnode_link_lock); 1250 val = !!fwnode_links_check_suppliers(dev->fwnode); 1251 mutex_unlock(&fwnode_link_lock); 1252 device_unlock(dev); 1253 return sysfs_emit(buf, "%u\n", val); 1254 } 1255 static DEVICE_ATTR_RO(waiting_for_supplier); 1256 1257 /** 1258 * device_links_force_bind - Prepares device to be force bound 1259 * @dev: Consumer device. 1260 * 1261 * device_bind_driver() force binds a device to a driver without calling any 1262 * driver probe functions. So the consumer really isn't going to wait for any 1263 * supplier before it's bound to the driver. We still want the device link 1264 * states to be sensible when this happens. 1265 * 1266 * In preparation for device_bind_driver(), this function goes through each 1267 * supplier device links and checks if the supplier is bound. If it is, then 1268 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1269 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1270 */ 1271 void device_links_force_bind(struct device *dev) 1272 { 1273 struct device_link *link, *ln; 1274 1275 device_links_write_lock(); 1276 1277 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1278 if (!(link->flags & DL_FLAG_MANAGED)) 1279 continue; 1280 1281 if (link->status != DL_STATE_AVAILABLE) { 1282 device_link_drop_managed(link); 1283 continue; 1284 } 1285 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1286 } 1287 dev->links.status = DL_DEV_PROBING; 1288 1289 device_links_write_unlock(); 1290 } 1291 1292 /** 1293 * device_links_driver_bound - Update device links after probing its driver. 1294 * @dev: Device to update the links for. 1295 * 1296 * The probe has been successful, so update links from this device to any 1297 * consumers by changing their status to "available". 1298 * 1299 * Also change the status of @dev's links to suppliers to "active". 1300 * 1301 * Links without the DL_FLAG_MANAGED flag set are ignored. 1302 */ 1303 void device_links_driver_bound(struct device *dev) 1304 { 1305 struct device_link *link, *ln; 1306 LIST_HEAD(sync_list); 1307 1308 /* 1309 * If a device binds successfully, it's expected to have created all 1310 * the device links it needs to or make new device links as it needs 1311 * them. So, fw_devlink no longer needs to create device links to any 1312 * of the device's suppliers. 1313 * 1314 * Also, if a child firmware node of this bound device is not added as a 1315 * device by now, assume it is never going to be added. Make this bound 1316 * device the fallback supplier to the dangling consumers of the child 1317 * firmware node because this bound device is probably implementing the 1318 * child firmware node functionality and we don't want the dangling 1319 * consumers to defer probe indefinitely waiting for a device for the 1320 * child firmware node. 1321 */ 1322 if (dev->fwnode && dev->fwnode->dev == dev) { 1323 struct fwnode_handle *child; 1324 fwnode_links_purge_suppliers(dev->fwnode); 1325 mutex_lock(&fwnode_link_lock); 1326 fwnode_for_each_available_child_node(dev->fwnode, child) 1327 __fw_devlink_pickup_dangling_consumers(child, 1328 dev->fwnode); 1329 __fw_devlink_link_to_consumers(dev); 1330 mutex_unlock(&fwnode_link_lock); 1331 } 1332 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1333 1334 device_links_write_lock(); 1335 1336 list_for_each_entry(link, &dev->links.consumers, s_node) { 1337 if (!(link->flags & DL_FLAG_MANAGED)) 1338 continue; 1339 1340 /* 1341 * Links created during consumer probe may be in the "consumer 1342 * probe" state to start with if the supplier is still probing 1343 * when they are created and they may become "active" if the 1344 * consumer probe returns first. Skip them here. 1345 */ 1346 if (link->status == DL_STATE_CONSUMER_PROBE || 1347 link->status == DL_STATE_ACTIVE) 1348 continue; 1349 1350 WARN_ON(link->status != DL_STATE_DORMANT); 1351 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1352 1353 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1354 driver_deferred_probe_add(link->consumer); 1355 } 1356 1357 if (defer_sync_state_count) 1358 __device_links_supplier_defer_sync(dev); 1359 else 1360 __device_links_queue_sync_state(dev, &sync_list); 1361 1362 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1363 struct device *supplier; 1364 1365 if (!(link->flags & DL_FLAG_MANAGED)) 1366 continue; 1367 1368 supplier = link->supplier; 1369 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1370 /* 1371 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1372 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1373 * save to drop the managed link completely. 1374 */ 1375 device_link_drop_managed(link); 1376 } else if (dev_is_best_effort(dev) && 1377 link->flags & DL_FLAG_INFERRED && 1378 link->status != DL_STATE_CONSUMER_PROBE && 1379 !link->supplier->can_match) { 1380 /* 1381 * When dev_is_best_effort() is true, we ignore device 1382 * links to suppliers that don't have a driver. If the 1383 * consumer device still managed to probe, there's no 1384 * point in maintaining a device link in a weird state 1385 * (consumer probed before supplier). So delete it. 1386 */ 1387 device_link_drop_managed(link); 1388 } else { 1389 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1390 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1391 } 1392 1393 /* 1394 * This needs to be done even for the deleted 1395 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1396 * device link that was preventing the supplier from getting a 1397 * sync_state() call. 1398 */ 1399 if (defer_sync_state_count) 1400 __device_links_supplier_defer_sync(supplier); 1401 else 1402 __device_links_queue_sync_state(supplier, &sync_list); 1403 } 1404 1405 dev->links.status = DL_DEV_DRIVER_BOUND; 1406 1407 device_links_write_unlock(); 1408 1409 device_links_flush_sync_list(&sync_list, dev); 1410 } 1411 1412 /** 1413 * __device_links_no_driver - Update links of a device without a driver. 1414 * @dev: Device without a drvier. 1415 * 1416 * Delete all non-persistent links from this device to any suppliers. 1417 * 1418 * Persistent links stay around, but their status is changed to "available", 1419 * unless they already are in the "supplier unbind in progress" state in which 1420 * case they need not be updated. 1421 * 1422 * Links without the DL_FLAG_MANAGED flag set are ignored. 1423 */ 1424 static void __device_links_no_driver(struct device *dev) 1425 { 1426 struct device_link *link, *ln; 1427 1428 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1429 if (!(link->flags & DL_FLAG_MANAGED)) 1430 continue; 1431 1432 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1433 device_link_drop_managed(link); 1434 continue; 1435 } 1436 1437 if (link->status != DL_STATE_CONSUMER_PROBE && 1438 link->status != DL_STATE_ACTIVE) 1439 continue; 1440 1441 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1442 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1443 } else { 1444 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1445 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1446 } 1447 } 1448 1449 dev->links.status = DL_DEV_NO_DRIVER; 1450 } 1451 1452 /** 1453 * device_links_no_driver - Update links after failing driver probe. 1454 * @dev: Device whose driver has just failed to probe. 1455 * 1456 * Clean up leftover links to consumers for @dev and invoke 1457 * %__device_links_no_driver() to update links to suppliers for it as 1458 * appropriate. 1459 * 1460 * Links without the DL_FLAG_MANAGED flag set are ignored. 1461 */ 1462 void device_links_no_driver(struct device *dev) 1463 { 1464 struct device_link *link; 1465 1466 device_links_write_lock(); 1467 1468 list_for_each_entry(link, &dev->links.consumers, s_node) { 1469 if (!(link->flags & DL_FLAG_MANAGED)) 1470 continue; 1471 1472 /* 1473 * The probe has failed, so if the status of the link is 1474 * "consumer probe" or "active", it must have been added by 1475 * a probing consumer while this device was still probing. 1476 * Change its state to "dormant", as it represents a valid 1477 * relationship, but it is not functionally meaningful. 1478 */ 1479 if (link->status == DL_STATE_CONSUMER_PROBE || 1480 link->status == DL_STATE_ACTIVE) 1481 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1482 } 1483 1484 __device_links_no_driver(dev); 1485 1486 device_links_write_unlock(); 1487 } 1488 1489 /** 1490 * device_links_driver_cleanup - Update links after driver removal. 1491 * @dev: Device whose driver has just gone away. 1492 * 1493 * Update links to consumers for @dev by changing their status to "dormant" and 1494 * invoke %__device_links_no_driver() to update links to suppliers for it as 1495 * appropriate. 1496 * 1497 * Links without the DL_FLAG_MANAGED flag set are ignored. 1498 */ 1499 void device_links_driver_cleanup(struct device *dev) 1500 { 1501 struct device_link *link, *ln; 1502 1503 device_links_write_lock(); 1504 1505 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1506 if (!(link->flags & DL_FLAG_MANAGED)) 1507 continue; 1508 1509 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1510 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1511 1512 /* 1513 * autoremove the links between this @dev and its consumer 1514 * devices that are not active, i.e. where the link state 1515 * has moved to DL_STATE_SUPPLIER_UNBIND. 1516 */ 1517 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1518 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1519 device_link_drop_managed(link); 1520 1521 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1522 } 1523 1524 list_del_init(&dev->links.defer_sync); 1525 __device_links_no_driver(dev); 1526 1527 device_links_write_unlock(); 1528 } 1529 1530 /** 1531 * device_links_busy - Check if there are any busy links to consumers. 1532 * @dev: Device to check. 1533 * 1534 * Check each consumer of the device and return 'true' if its link's status 1535 * is one of "consumer probe" or "active" (meaning that the given consumer is 1536 * probing right now or its driver is present). Otherwise, change the link 1537 * state to "supplier unbind" to prevent the consumer from being probed 1538 * successfully going forward. 1539 * 1540 * Return 'false' if there are no probing or active consumers. 1541 * 1542 * Links without the DL_FLAG_MANAGED flag set are ignored. 1543 */ 1544 bool device_links_busy(struct device *dev) 1545 { 1546 struct device_link *link; 1547 bool ret = false; 1548 1549 device_links_write_lock(); 1550 1551 list_for_each_entry(link, &dev->links.consumers, s_node) { 1552 if (!(link->flags & DL_FLAG_MANAGED)) 1553 continue; 1554 1555 if (link->status == DL_STATE_CONSUMER_PROBE 1556 || link->status == DL_STATE_ACTIVE) { 1557 ret = true; 1558 break; 1559 } 1560 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1561 } 1562 1563 dev->links.status = DL_DEV_UNBINDING; 1564 1565 device_links_write_unlock(); 1566 return ret; 1567 } 1568 1569 /** 1570 * device_links_unbind_consumers - Force unbind consumers of the given device. 1571 * @dev: Device to unbind the consumers of. 1572 * 1573 * Walk the list of links to consumers for @dev and if any of them is in the 1574 * "consumer probe" state, wait for all device probes in progress to complete 1575 * and start over. 1576 * 1577 * If that's not the case, change the status of the link to "supplier unbind" 1578 * and check if the link was in the "active" state. If so, force the consumer 1579 * driver to unbind and start over (the consumer will not re-probe as we have 1580 * changed the state of the link already). 1581 * 1582 * Links without the DL_FLAG_MANAGED flag set are ignored. 1583 */ 1584 void device_links_unbind_consumers(struct device *dev) 1585 { 1586 struct device_link *link; 1587 1588 start: 1589 device_links_write_lock(); 1590 1591 list_for_each_entry(link, &dev->links.consumers, s_node) { 1592 enum device_link_state status; 1593 1594 if (!(link->flags & DL_FLAG_MANAGED) || 1595 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1596 continue; 1597 1598 status = link->status; 1599 if (status == DL_STATE_CONSUMER_PROBE) { 1600 device_links_write_unlock(); 1601 1602 wait_for_device_probe(); 1603 goto start; 1604 } 1605 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1606 if (status == DL_STATE_ACTIVE) { 1607 struct device *consumer = link->consumer; 1608 1609 get_device(consumer); 1610 1611 device_links_write_unlock(); 1612 1613 device_release_driver_internal(consumer, NULL, 1614 consumer->parent); 1615 put_device(consumer); 1616 goto start; 1617 } 1618 } 1619 1620 device_links_write_unlock(); 1621 } 1622 1623 /** 1624 * device_links_purge - Delete existing links to other devices. 1625 * @dev: Target device. 1626 */ 1627 static void device_links_purge(struct device *dev) 1628 { 1629 struct device_link *link, *ln; 1630 1631 if (dev->class == &devlink_class) 1632 return; 1633 1634 /* 1635 * Delete all of the remaining links from this device to any other 1636 * devices (either consumers or suppliers). 1637 */ 1638 device_links_write_lock(); 1639 1640 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1641 WARN_ON(link->status == DL_STATE_ACTIVE); 1642 __device_link_del(&link->kref); 1643 } 1644 1645 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1646 WARN_ON(link->status != DL_STATE_DORMANT && 1647 link->status != DL_STATE_NONE); 1648 __device_link_del(&link->kref); 1649 } 1650 1651 device_links_write_unlock(); 1652 } 1653 1654 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1655 DL_FLAG_SYNC_STATE_ONLY) 1656 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1657 DL_FLAG_AUTOPROBE_CONSUMER) 1658 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1659 DL_FLAG_PM_RUNTIME) 1660 1661 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1662 static int __init fw_devlink_setup(char *arg) 1663 { 1664 if (!arg) 1665 return -EINVAL; 1666 1667 if (strcmp(arg, "off") == 0) { 1668 fw_devlink_flags = 0; 1669 } else if (strcmp(arg, "permissive") == 0) { 1670 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1671 } else if (strcmp(arg, "on") == 0) { 1672 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1673 } else if (strcmp(arg, "rpm") == 0) { 1674 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1675 } 1676 return 0; 1677 } 1678 early_param("fw_devlink", fw_devlink_setup); 1679 1680 static bool fw_devlink_strict; 1681 static int __init fw_devlink_strict_setup(char *arg) 1682 { 1683 return kstrtobool(arg, &fw_devlink_strict); 1684 } 1685 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1686 1687 #define FW_DEVLINK_SYNC_STATE_STRICT 0 1688 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1 1689 1690 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT 1691 static int fw_devlink_sync_state; 1692 #else 1693 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1694 #endif 1695 1696 static int __init fw_devlink_sync_state_setup(char *arg) 1697 { 1698 if (!arg) 1699 return -EINVAL; 1700 1701 if (strcmp(arg, "strict") == 0) { 1702 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT; 1703 return 0; 1704 } else if (strcmp(arg, "timeout") == 0) { 1705 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1706 return 0; 1707 } 1708 return -EINVAL; 1709 } 1710 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup); 1711 1712 static inline u32 fw_devlink_get_flags(u8 fwlink_flags) 1713 { 1714 if (fwlink_flags & FWLINK_FLAG_CYCLE) 1715 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE; 1716 1717 return fw_devlink_flags; 1718 } 1719 1720 static bool fw_devlink_is_permissive(void) 1721 { 1722 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1723 } 1724 1725 bool fw_devlink_is_strict(void) 1726 { 1727 return fw_devlink_strict && !fw_devlink_is_permissive(); 1728 } 1729 1730 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1731 { 1732 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1733 return; 1734 1735 fwnode_call_int_op(fwnode, add_links); 1736 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1737 } 1738 1739 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1740 { 1741 struct fwnode_handle *child = NULL; 1742 1743 fw_devlink_parse_fwnode(fwnode); 1744 1745 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1746 fw_devlink_parse_fwtree(child); 1747 } 1748 1749 static void fw_devlink_relax_link(struct device_link *link) 1750 { 1751 if (!(link->flags & DL_FLAG_INFERRED)) 1752 return; 1753 1754 if (device_link_flag_is_sync_state_only(link->flags)) 1755 return; 1756 1757 pm_runtime_drop_link(link); 1758 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1759 dev_dbg(link->consumer, "Relaxing link with %s\n", 1760 dev_name(link->supplier)); 1761 } 1762 1763 static int fw_devlink_no_driver(struct device *dev, void *data) 1764 { 1765 struct device_link *link = to_devlink(dev); 1766 1767 if (!link->supplier->can_match) 1768 fw_devlink_relax_link(link); 1769 1770 return 0; 1771 } 1772 1773 void fw_devlink_drivers_done(void) 1774 { 1775 fw_devlink_drv_reg_done = true; 1776 device_links_write_lock(); 1777 class_for_each_device(&devlink_class, NULL, NULL, 1778 fw_devlink_no_driver); 1779 device_links_write_unlock(); 1780 } 1781 1782 static int fw_devlink_dev_sync_state(struct device *dev, void *data) 1783 { 1784 struct device_link *link = to_devlink(dev); 1785 struct device *sup = link->supplier; 1786 1787 if (!(link->flags & DL_FLAG_MANAGED) || 1788 link->status == DL_STATE_ACTIVE || sup->state_synced || 1789 !dev_has_sync_state(sup)) 1790 return 0; 1791 1792 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) { 1793 dev_warn(sup, "sync_state() pending due to %s\n", 1794 dev_name(link->consumer)); 1795 return 0; 1796 } 1797 1798 if (!list_empty(&sup->links.defer_sync)) 1799 return 0; 1800 1801 dev_warn(sup, "Timed out. Forcing sync_state()\n"); 1802 sup->state_synced = true; 1803 get_device(sup); 1804 list_add_tail(&sup->links.defer_sync, data); 1805 1806 return 0; 1807 } 1808 1809 void fw_devlink_probing_done(void) 1810 { 1811 LIST_HEAD(sync_list); 1812 1813 device_links_write_lock(); 1814 class_for_each_device(&devlink_class, NULL, &sync_list, 1815 fw_devlink_dev_sync_state); 1816 device_links_write_unlock(); 1817 device_links_flush_sync_list(&sync_list, NULL); 1818 } 1819 1820 /** 1821 * wait_for_init_devices_probe - Try to probe any device needed for init 1822 * 1823 * Some devices might need to be probed and bound successfully before the kernel 1824 * boot sequence can finish and move on to init/userspace. For example, a 1825 * network interface might need to be bound to be able to mount a NFS rootfs. 1826 * 1827 * With fw_devlink=on by default, some of these devices might be blocked from 1828 * probing because they are waiting on a optional supplier that doesn't have a 1829 * driver. While fw_devlink will eventually identify such devices and unblock 1830 * the probing automatically, it might be too late by the time it unblocks the 1831 * probing of devices. For example, the IP4 autoconfig might timeout before 1832 * fw_devlink unblocks probing of the network interface. 1833 * 1834 * This function is available to temporarily try and probe all devices that have 1835 * a driver even if some of their suppliers haven't been added or don't have 1836 * drivers. 1837 * 1838 * The drivers can then decide which of the suppliers are optional vs mandatory 1839 * and probe the device if possible. By the time this function returns, all such 1840 * "best effort" probes are guaranteed to be completed. If a device successfully 1841 * probes in this mode, we delete all fw_devlink discovered dependencies of that 1842 * device where the supplier hasn't yet probed successfully because they have to 1843 * be optional dependencies. 1844 * 1845 * Any devices that didn't successfully probe go back to being treated as if 1846 * this function was never called. 1847 * 1848 * This also means that some devices that aren't needed for init and could have 1849 * waited for their optional supplier to probe (when the supplier's module is 1850 * loaded later on) would end up probing prematurely with limited functionality. 1851 * So call this function only when boot would fail without it. 1852 */ 1853 void __init wait_for_init_devices_probe(void) 1854 { 1855 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1856 return; 1857 1858 /* 1859 * Wait for all ongoing probes to finish so that the "best effort" is 1860 * only applied to devices that can't probe otherwise. 1861 */ 1862 wait_for_device_probe(); 1863 1864 pr_info("Trying to probe devices needed for running init ...\n"); 1865 fw_devlink_best_effort = true; 1866 driver_deferred_probe_trigger(); 1867 1868 /* 1869 * Wait for all "best effort" probes to finish before going back to 1870 * normal enforcement. 1871 */ 1872 wait_for_device_probe(); 1873 fw_devlink_best_effort = false; 1874 } 1875 1876 static void fw_devlink_unblock_consumers(struct device *dev) 1877 { 1878 struct device_link *link; 1879 1880 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1881 return; 1882 1883 device_links_write_lock(); 1884 list_for_each_entry(link, &dev->links.consumers, s_node) 1885 fw_devlink_relax_link(link); 1886 device_links_write_unlock(); 1887 } 1888 1889 1890 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode) 1891 { 1892 struct device *dev; 1893 bool ret; 1894 1895 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED)) 1896 return false; 1897 1898 dev = get_dev_from_fwnode(fwnode); 1899 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER; 1900 put_device(dev); 1901 1902 return ret; 1903 } 1904 1905 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode) 1906 { 1907 struct fwnode_handle *parent; 1908 1909 fwnode_for_each_parent_node(fwnode, parent) { 1910 if (fwnode_init_without_drv(parent)) { 1911 fwnode_handle_put(parent); 1912 return true; 1913 } 1914 } 1915 1916 return false; 1917 } 1918 1919 /** 1920 * __fw_devlink_relax_cycles - Relax and mark dependency cycles. 1921 * @con: Potential consumer device. 1922 * @sup_handle: Potential supplier's fwnode. 1923 * 1924 * Needs to be called with fwnode_lock and device link lock held. 1925 * 1926 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly 1927 * depend on @con. This function can detect multiple cyles between @sup_handle 1928 * and @con. When such dependency cycles are found, convert all device links 1929 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark 1930 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are 1931 * converted into a device link in the future, they are created as 1932 * SYNC_STATE_ONLY device links. This is the equivalent of doing 1933 * fw_devlink=permissive just between the devices in the cycle. We need to do 1934 * this because, at this point, fw_devlink can't tell which of these 1935 * dependencies is not a real dependency. 1936 * 1937 * Return true if one or more cycles were found. Otherwise, return false. 1938 */ 1939 static bool __fw_devlink_relax_cycles(struct fwnode_handle *con_handle, 1940 struct fwnode_handle *sup_handle) 1941 { 1942 struct device *sup_dev = NULL, *par_dev = NULL, *con_dev = NULL; 1943 struct fwnode_link *link; 1944 struct device_link *dev_link; 1945 bool ret = false; 1946 1947 if (!sup_handle) 1948 return false; 1949 1950 /* 1951 * We aren't trying to find all cycles. Just a cycle between con and 1952 * sup_handle. 1953 */ 1954 if (sup_handle->flags & FWNODE_FLAG_VISITED) 1955 return false; 1956 1957 sup_handle->flags |= FWNODE_FLAG_VISITED; 1958 1959 /* Termination condition. */ 1960 if (sup_handle == con_handle) { 1961 pr_debug("----- cycle: start -----\n"); 1962 ret = true; 1963 goto out; 1964 } 1965 1966 sup_dev = get_dev_from_fwnode(sup_handle); 1967 con_dev = get_dev_from_fwnode(con_handle); 1968 /* 1969 * If sup_dev is bound to a driver and @con hasn't started binding to a 1970 * driver, sup_dev can't be a consumer of @con. So, no need to check 1971 * further. 1972 */ 1973 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND && 1974 con_dev && con_dev->links.status == DL_DEV_NO_DRIVER) { 1975 ret = false; 1976 goto out; 1977 } 1978 1979 list_for_each_entry(link, &sup_handle->suppliers, c_hook) { 1980 if (link->flags & FWLINK_FLAG_IGNORE) 1981 continue; 1982 1983 if (__fw_devlink_relax_cycles(con_handle, link->supplier)) { 1984 __fwnode_link_cycle(link); 1985 ret = true; 1986 } 1987 } 1988 1989 /* 1990 * Give priority to device parent over fwnode parent to account for any 1991 * quirks in how fwnodes are converted to devices. 1992 */ 1993 if (sup_dev) 1994 par_dev = get_device(sup_dev->parent); 1995 else 1996 par_dev = fwnode_get_next_parent_dev(sup_handle); 1997 1998 if (par_dev && __fw_devlink_relax_cycles(con_handle, par_dev->fwnode)) { 1999 pr_debug("%pfwf: cycle: child of %pfwf\n", sup_handle, 2000 par_dev->fwnode); 2001 ret = true; 2002 } 2003 2004 if (!sup_dev) 2005 goto out; 2006 2007 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) { 2008 /* 2009 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as 2010 * such due to a cycle. 2011 */ 2012 if (device_link_flag_is_sync_state_only(dev_link->flags) && 2013 !(dev_link->flags & DL_FLAG_CYCLE)) 2014 continue; 2015 2016 if (__fw_devlink_relax_cycles(con_handle, 2017 dev_link->supplier->fwnode)) { 2018 pr_debug("%pfwf: cycle: depends on %pfwf\n", sup_handle, 2019 dev_link->supplier->fwnode); 2020 fw_devlink_relax_link(dev_link); 2021 dev_link->flags |= DL_FLAG_CYCLE; 2022 ret = true; 2023 } 2024 } 2025 2026 out: 2027 sup_handle->flags &= ~FWNODE_FLAG_VISITED; 2028 put_device(sup_dev); 2029 put_device(par_dev); 2030 return ret; 2031 } 2032 2033 /** 2034 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 2035 * @con: consumer device for the device link 2036 * @sup_handle: fwnode handle of supplier 2037 * @link: fwnode link that's being converted to a device link 2038 * 2039 * This function will try to create a device link between the consumer device 2040 * @con and the supplier device represented by @sup_handle. 2041 * 2042 * The supplier has to be provided as a fwnode because incorrect cycles in 2043 * fwnode links can sometimes cause the supplier device to never be created. 2044 * This function detects such cases and returns an error if it cannot create a 2045 * device link from the consumer to a missing supplier. 2046 * 2047 * Returns, 2048 * 0 on successfully creating a device link 2049 * -EINVAL if the device link cannot be created as expected 2050 * -EAGAIN if the device link cannot be created right now, but it may be 2051 * possible to do that in the future 2052 */ 2053 static int fw_devlink_create_devlink(struct device *con, 2054 struct fwnode_handle *sup_handle, 2055 struct fwnode_link *link) 2056 { 2057 struct device *sup_dev; 2058 int ret = 0; 2059 u32 flags; 2060 2061 if (link->flags & FWLINK_FLAG_IGNORE) 2062 return 0; 2063 2064 /* 2065 * In some cases, a device P might also be a supplier to its child node 2066 * C. However, this would defer the probe of C until the probe of P 2067 * completes successfully. This is perfectly fine in the device driver 2068 * model. device_add() doesn't guarantee probe completion of the device 2069 * by the time it returns. 2070 * 2071 * However, there are a few drivers that assume C will finish probing 2072 * as soon as it's added and before P finishes probing. So, we provide 2073 * a flag to let fw_devlink know not to delay the probe of C until the 2074 * probe of P completes successfully. 2075 * 2076 * When such a flag is set, we can't create device links where P is the 2077 * supplier of C as that would delay the probe of C. 2078 */ 2079 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 2080 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 2081 return -EINVAL; 2082 2083 /* 2084 * Don't try to optimize by not calling the cycle detection logic under 2085 * certain conditions. There's always some corner case that won't get 2086 * detected. 2087 */ 2088 device_links_write_lock(); 2089 if (__fw_devlink_relax_cycles(link->consumer, sup_handle)) { 2090 __fwnode_link_cycle(link); 2091 pr_debug("----- cycle: end -----\n"); 2092 pr_info("%pfwf: Fixed dependency cycle(s) with %pfwf\n", 2093 link->consumer, sup_handle); 2094 } 2095 device_links_write_unlock(); 2096 2097 if (con->fwnode == link->consumer) 2098 flags = fw_devlink_get_flags(link->flags); 2099 else 2100 flags = FW_DEVLINK_FLAGS_PERMISSIVE; 2101 2102 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE) 2103 sup_dev = fwnode_get_next_parent_dev(sup_handle); 2104 else 2105 sup_dev = get_dev_from_fwnode(sup_handle); 2106 2107 if (sup_dev) { 2108 /* 2109 * If it's one of those drivers that don't actually bind to 2110 * their device using driver core, then don't wait on this 2111 * supplier device indefinitely. 2112 */ 2113 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 2114 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 2115 dev_dbg(con, 2116 "Not linking %pfwf - dev might never probe\n", 2117 sup_handle); 2118 ret = -EINVAL; 2119 goto out; 2120 } 2121 2122 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) { 2123 dev_err(con, "Failed to create device link (0x%x) with %s\n", 2124 flags, dev_name(sup_dev)); 2125 ret = -EINVAL; 2126 } 2127 2128 goto out; 2129 } 2130 2131 /* 2132 * Supplier or supplier's ancestor already initialized without a struct 2133 * device or being probed by a driver. 2134 */ 2135 if (fwnode_init_without_drv(sup_handle) || 2136 fwnode_ancestor_init_without_drv(sup_handle)) { 2137 dev_dbg(con, "Not linking %pfwf - might never become dev\n", 2138 sup_handle); 2139 return -EINVAL; 2140 } 2141 2142 ret = -EAGAIN; 2143 out: 2144 put_device(sup_dev); 2145 return ret; 2146 } 2147 2148 /** 2149 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 2150 * @dev: Device that needs to be linked to its consumers 2151 * 2152 * This function looks at all the consumer fwnodes of @dev and creates device 2153 * links between the consumer device and @dev (supplier). 2154 * 2155 * If the consumer device has not been added yet, then this function creates a 2156 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 2157 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 2158 * sync_state() callback before the real consumer device gets to be added and 2159 * then probed. 2160 * 2161 * Once device links are created from the real consumer to @dev (supplier), the 2162 * fwnode links are deleted. 2163 */ 2164 static void __fw_devlink_link_to_consumers(struct device *dev) 2165 { 2166 struct fwnode_handle *fwnode = dev->fwnode; 2167 struct fwnode_link *link, *tmp; 2168 2169 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 2170 struct device *con_dev; 2171 bool own_link = true; 2172 int ret; 2173 2174 con_dev = get_dev_from_fwnode(link->consumer); 2175 /* 2176 * If consumer device is not available yet, make a "proxy" 2177 * SYNC_STATE_ONLY link from the consumer's parent device to 2178 * the supplier device. This is necessary to make sure the 2179 * supplier doesn't get a sync_state() callback before the real 2180 * consumer can create a device link to the supplier. 2181 * 2182 * This proxy link step is needed to handle the case where the 2183 * consumer's parent device is added before the supplier. 2184 */ 2185 if (!con_dev) { 2186 con_dev = fwnode_get_next_parent_dev(link->consumer); 2187 /* 2188 * However, if the consumer's parent device is also the 2189 * parent of the supplier, don't create a 2190 * consumer-supplier link from the parent to its child 2191 * device. Such a dependency is impossible. 2192 */ 2193 if (con_dev && 2194 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 2195 put_device(con_dev); 2196 con_dev = NULL; 2197 } else { 2198 own_link = false; 2199 } 2200 } 2201 2202 if (!con_dev) 2203 continue; 2204 2205 ret = fw_devlink_create_devlink(con_dev, fwnode, link); 2206 put_device(con_dev); 2207 if (!own_link || ret == -EAGAIN) 2208 continue; 2209 2210 __fwnode_link_del(link); 2211 } 2212 } 2213 2214 /** 2215 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 2216 * @dev: The consumer device that needs to be linked to its suppliers 2217 * @fwnode: Root of the fwnode tree that is used to create device links 2218 * 2219 * This function looks at all the supplier fwnodes of fwnode tree rooted at 2220 * @fwnode and creates device links between @dev (consumer) and all the 2221 * supplier devices of the entire fwnode tree at @fwnode. 2222 * 2223 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 2224 * and the real suppliers of @dev. Once these device links are created, the 2225 * fwnode links are deleted. 2226 * 2227 * In addition, it also looks at all the suppliers of the entire fwnode tree 2228 * because some of the child devices of @dev that have not been added yet 2229 * (because @dev hasn't probed) might already have their suppliers added to 2230 * driver core. So, this function creates SYNC_STATE_ONLY device links between 2231 * @dev (consumer) and these suppliers to make sure they don't execute their 2232 * sync_state() callbacks before these child devices have a chance to create 2233 * their device links. The fwnode links that correspond to the child devices 2234 * aren't delete because they are needed later to create the device links 2235 * between the real consumer and supplier devices. 2236 */ 2237 static void __fw_devlink_link_to_suppliers(struct device *dev, 2238 struct fwnode_handle *fwnode) 2239 { 2240 bool own_link = (dev->fwnode == fwnode); 2241 struct fwnode_link *link, *tmp; 2242 struct fwnode_handle *child = NULL; 2243 2244 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 2245 int ret; 2246 struct fwnode_handle *sup = link->supplier; 2247 2248 ret = fw_devlink_create_devlink(dev, sup, link); 2249 if (!own_link || ret == -EAGAIN) 2250 continue; 2251 2252 __fwnode_link_del(link); 2253 } 2254 2255 /* 2256 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 2257 * all the descendants. This proxy link step is needed to handle the 2258 * case where the supplier is added before the consumer's parent device 2259 * (@dev). 2260 */ 2261 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 2262 __fw_devlink_link_to_suppliers(dev, child); 2263 } 2264 2265 static void fw_devlink_link_device(struct device *dev) 2266 { 2267 struct fwnode_handle *fwnode = dev->fwnode; 2268 2269 if (!fw_devlink_flags) 2270 return; 2271 2272 fw_devlink_parse_fwtree(fwnode); 2273 2274 mutex_lock(&fwnode_link_lock); 2275 __fw_devlink_link_to_consumers(dev); 2276 __fw_devlink_link_to_suppliers(dev, fwnode); 2277 mutex_unlock(&fwnode_link_lock); 2278 } 2279 2280 /* Device links support end. */ 2281 2282 int (*platform_notify)(struct device *dev) = NULL; 2283 int (*platform_notify_remove)(struct device *dev) = NULL; 2284 static struct kobject *dev_kobj; 2285 2286 /* /sys/dev/char */ 2287 static struct kobject *sysfs_dev_char_kobj; 2288 2289 /* /sys/dev/block */ 2290 static struct kobject *sysfs_dev_block_kobj; 2291 2292 static DEFINE_MUTEX(device_hotplug_lock); 2293 2294 void lock_device_hotplug(void) 2295 { 2296 mutex_lock(&device_hotplug_lock); 2297 } 2298 2299 void unlock_device_hotplug(void) 2300 { 2301 mutex_unlock(&device_hotplug_lock); 2302 } 2303 2304 int lock_device_hotplug_sysfs(void) 2305 { 2306 if (mutex_trylock(&device_hotplug_lock)) 2307 return 0; 2308 2309 /* Avoid busy looping (5 ms of sleep should do). */ 2310 msleep(5); 2311 return restart_syscall(); 2312 } 2313 2314 #ifdef CONFIG_BLOCK 2315 static inline int device_is_not_partition(struct device *dev) 2316 { 2317 return !(dev->type == &part_type); 2318 } 2319 #else 2320 static inline int device_is_not_partition(struct device *dev) 2321 { 2322 return 1; 2323 } 2324 #endif 2325 2326 static void device_platform_notify(struct device *dev) 2327 { 2328 acpi_device_notify(dev); 2329 2330 software_node_notify(dev); 2331 2332 if (platform_notify) 2333 platform_notify(dev); 2334 } 2335 2336 static void device_platform_notify_remove(struct device *dev) 2337 { 2338 if (platform_notify_remove) 2339 platform_notify_remove(dev); 2340 2341 software_node_notify_remove(dev); 2342 2343 acpi_device_notify_remove(dev); 2344 } 2345 2346 /** 2347 * dev_driver_string - Return a device's driver name, if at all possible 2348 * @dev: struct device to get the name of 2349 * 2350 * Will return the device's driver's name if it is bound to a device. If 2351 * the device is not bound to a driver, it will return the name of the bus 2352 * it is attached to. If it is not attached to a bus either, an empty 2353 * string will be returned. 2354 */ 2355 const char *dev_driver_string(const struct device *dev) 2356 { 2357 struct device_driver *drv; 2358 2359 /* dev->driver can change to NULL underneath us because of unbinding, 2360 * so be careful about accessing it. dev->bus and dev->class should 2361 * never change once they are set, so they don't need special care. 2362 */ 2363 drv = READ_ONCE(dev->driver); 2364 return drv ? drv->name : dev_bus_name(dev); 2365 } 2366 EXPORT_SYMBOL(dev_driver_string); 2367 2368 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2369 2370 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2371 char *buf) 2372 { 2373 struct device_attribute *dev_attr = to_dev_attr(attr); 2374 struct device *dev = kobj_to_dev(kobj); 2375 ssize_t ret = -EIO; 2376 2377 if (dev_attr->show) 2378 ret = dev_attr->show(dev, dev_attr, buf); 2379 if (ret >= (ssize_t)PAGE_SIZE) { 2380 printk("dev_attr_show: %pS returned bad count\n", 2381 dev_attr->show); 2382 } 2383 return ret; 2384 } 2385 2386 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2387 const char *buf, size_t count) 2388 { 2389 struct device_attribute *dev_attr = to_dev_attr(attr); 2390 struct device *dev = kobj_to_dev(kobj); 2391 ssize_t ret = -EIO; 2392 2393 if (dev_attr->store) 2394 ret = dev_attr->store(dev, dev_attr, buf, count); 2395 return ret; 2396 } 2397 2398 static const struct sysfs_ops dev_sysfs_ops = { 2399 .show = dev_attr_show, 2400 .store = dev_attr_store, 2401 }; 2402 2403 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2404 2405 ssize_t device_store_ulong(struct device *dev, 2406 struct device_attribute *attr, 2407 const char *buf, size_t size) 2408 { 2409 struct dev_ext_attribute *ea = to_ext_attr(attr); 2410 int ret; 2411 unsigned long new; 2412 2413 ret = kstrtoul(buf, 0, &new); 2414 if (ret) 2415 return ret; 2416 *(unsigned long *)(ea->var) = new; 2417 /* Always return full write size even if we didn't consume all */ 2418 return size; 2419 } 2420 EXPORT_SYMBOL_GPL(device_store_ulong); 2421 2422 ssize_t device_show_ulong(struct device *dev, 2423 struct device_attribute *attr, 2424 char *buf) 2425 { 2426 struct dev_ext_attribute *ea = to_ext_attr(attr); 2427 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2428 } 2429 EXPORT_SYMBOL_GPL(device_show_ulong); 2430 2431 ssize_t device_store_int(struct device *dev, 2432 struct device_attribute *attr, 2433 const char *buf, size_t size) 2434 { 2435 struct dev_ext_attribute *ea = to_ext_attr(attr); 2436 int ret; 2437 long new; 2438 2439 ret = kstrtol(buf, 0, &new); 2440 if (ret) 2441 return ret; 2442 2443 if (new > INT_MAX || new < INT_MIN) 2444 return -EINVAL; 2445 *(int *)(ea->var) = new; 2446 /* Always return full write size even if we didn't consume all */ 2447 return size; 2448 } 2449 EXPORT_SYMBOL_GPL(device_store_int); 2450 2451 ssize_t device_show_int(struct device *dev, 2452 struct device_attribute *attr, 2453 char *buf) 2454 { 2455 struct dev_ext_attribute *ea = to_ext_attr(attr); 2456 2457 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2458 } 2459 EXPORT_SYMBOL_GPL(device_show_int); 2460 2461 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2462 const char *buf, size_t size) 2463 { 2464 struct dev_ext_attribute *ea = to_ext_attr(attr); 2465 2466 if (kstrtobool(buf, ea->var) < 0) 2467 return -EINVAL; 2468 2469 return size; 2470 } 2471 EXPORT_SYMBOL_GPL(device_store_bool); 2472 2473 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2474 char *buf) 2475 { 2476 struct dev_ext_attribute *ea = to_ext_attr(attr); 2477 2478 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2479 } 2480 EXPORT_SYMBOL_GPL(device_show_bool); 2481 2482 /** 2483 * device_release - free device structure. 2484 * @kobj: device's kobject. 2485 * 2486 * This is called once the reference count for the object 2487 * reaches 0. We forward the call to the device's release 2488 * method, which should handle actually freeing the structure. 2489 */ 2490 static void device_release(struct kobject *kobj) 2491 { 2492 struct device *dev = kobj_to_dev(kobj); 2493 struct device_private *p = dev->p; 2494 2495 /* 2496 * Some platform devices are driven without driver attached 2497 * and managed resources may have been acquired. Make sure 2498 * all resources are released. 2499 * 2500 * Drivers still can add resources into device after device 2501 * is deleted but alive, so release devres here to avoid 2502 * possible memory leak. 2503 */ 2504 devres_release_all(dev); 2505 2506 kfree(dev->dma_range_map); 2507 2508 if (dev->release) 2509 dev->release(dev); 2510 else if (dev->type && dev->type->release) 2511 dev->type->release(dev); 2512 else if (dev->class && dev->class->dev_release) 2513 dev->class->dev_release(dev); 2514 else 2515 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2516 dev_name(dev)); 2517 kfree(p); 2518 } 2519 2520 static const void *device_namespace(const struct kobject *kobj) 2521 { 2522 const struct device *dev = kobj_to_dev(kobj); 2523 const void *ns = NULL; 2524 2525 if (dev->class && dev->class->ns_type) 2526 ns = dev->class->namespace(dev); 2527 2528 return ns; 2529 } 2530 2531 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2532 { 2533 const struct device *dev = kobj_to_dev(kobj); 2534 2535 if (dev->class && dev->class->get_ownership) 2536 dev->class->get_ownership(dev, uid, gid); 2537 } 2538 2539 static const struct kobj_type device_ktype = { 2540 .release = device_release, 2541 .sysfs_ops = &dev_sysfs_ops, 2542 .namespace = device_namespace, 2543 .get_ownership = device_get_ownership, 2544 }; 2545 2546 2547 static int dev_uevent_filter(const struct kobject *kobj) 2548 { 2549 const struct kobj_type *ktype = get_ktype(kobj); 2550 2551 if (ktype == &device_ktype) { 2552 const struct device *dev = kobj_to_dev(kobj); 2553 if (dev->bus) 2554 return 1; 2555 if (dev->class) 2556 return 1; 2557 } 2558 return 0; 2559 } 2560 2561 static const char *dev_uevent_name(const struct kobject *kobj) 2562 { 2563 const struct device *dev = kobj_to_dev(kobj); 2564 2565 if (dev->bus) 2566 return dev->bus->name; 2567 if (dev->class) 2568 return dev->class->name; 2569 return NULL; 2570 } 2571 2572 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 2573 { 2574 const struct device *dev = kobj_to_dev(kobj); 2575 int retval = 0; 2576 2577 /* add device node properties if present */ 2578 if (MAJOR(dev->devt)) { 2579 const char *tmp; 2580 const char *name; 2581 umode_t mode = 0; 2582 kuid_t uid = GLOBAL_ROOT_UID; 2583 kgid_t gid = GLOBAL_ROOT_GID; 2584 2585 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2586 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2587 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2588 if (name) { 2589 add_uevent_var(env, "DEVNAME=%s", name); 2590 if (mode) 2591 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2592 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2593 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2594 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2595 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2596 kfree(tmp); 2597 } 2598 } 2599 2600 if (dev->type && dev->type->name) 2601 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2602 2603 if (dev->driver) 2604 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2605 2606 /* Add common DT information about the device */ 2607 of_device_uevent(dev, env); 2608 2609 /* have the bus specific function add its stuff */ 2610 if (dev->bus && dev->bus->uevent) { 2611 retval = dev->bus->uevent(dev, env); 2612 if (retval) 2613 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2614 dev_name(dev), __func__, retval); 2615 } 2616 2617 /* have the class specific function add its stuff */ 2618 if (dev->class && dev->class->dev_uevent) { 2619 retval = dev->class->dev_uevent(dev, env); 2620 if (retval) 2621 pr_debug("device: '%s': %s: class uevent() " 2622 "returned %d\n", dev_name(dev), 2623 __func__, retval); 2624 } 2625 2626 /* have the device type specific function add its stuff */ 2627 if (dev->type && dev->type->uevent) { 2628 retval = dev->type->uevent(dev, env); 2629 if (retval) 2630 pr_debug("device: '%s': %s: dev_type uevent() " 2631 "returned %d\n", dev_name(dev), 2632 __func__, retval); 2633 } 2634 2635 return retval; 2636 } 2637 2638 static const struct kset_uevent_ops device_uevent_ops = { 2639 .filter = dev_uevent_filter, 2640 .name = dev_uevent_name, 2641 .uevent = dev_uevent, 2642 }; 2643 2644 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2645 char *buf) 2646 { 2647 struct kobject *top_kobj; 2648 struct kset *kset; 2649 struct kobj_uevent_env *env = NULL; 2650 int i; 2651 int len = 0; 2652 int retval; 2653 2654 /* search the kset, the device belongs to */ 2655 top_kobj = &dev->kobj; 2656 while (!top_kobj->kset && top_kobj->parent) 2657 top_kobj = top_kobj->parent; 2658 if (!top_kobj->kset) 2659 goto out; 2660 2661 kset = top_kobj->kset; 2662 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2663 goto out; 2664 2665 /* respect filter */ 2666 if (kset->uevent_ops && kset->uevent_ops->filter) 2667 if (!kset->uevent_ops->filter(&dev->kobj)) 2668 goto out; 2669 2670 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2671 if (!env) 2672 return -ENOMEM; 2673 2674 /* Synchronize with really_probe() */ 2675 device_lock(dev); 2676 /* let the kset specific function add its keys */ 2677 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2678 device_unlock(dev); 2679 if (retval) 2680 goto out; 2681 2682 /* copy keys to file */ 2683 for (i = 0; i < env->envp_idx; i++) 2684 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2685 out: 2686 kfree(env); 2687 return len; 2688 } 2689 2690 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2691 const char *buf, size_t count) 2692 { 2693 int rc; 2694 2695 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2696 2697 if (rc) { 2698 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc); 2699 return rc; 2700 } 2701 2702 return count; 2703 } 2704 static DEVICE_ATTR_RW(uevent); 2705 2706 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2707 char *buf) 2708 { 2709 bool val; 2710 2711 device_lock(dev); 2712 val = !dev->offline; 2713 device_unlock(dev); 2714 return sysfs_emit(buf, "%u\n", val); 2715 } 2716 2717 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2718 const char *buf, size_t count) 2719 { 2720 bool val; 2721 int ret; 2722 2723 ret = kstrtobool(buf, &val); 2724 if (ret < 0) 2725 return ret; 2726 2727 ret = lock_device_hotplug_sysfs(); 2728 if (ret) 2729 return ret; 2730 2731 ret = val ? device_online(dev) : device_offline(dev); 2732 unlock_device_hotplug(); 2733 return ret < 0 ? ret : count; 2734 } 2735 static DEVICE_ATTR_RW(online); 2736 2737 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2738 char *buf) 2739 { 2740 const char *loc; 2741 2742 switch (dev->removable) { 2743 case DEVICE_REMOVABLE: 2744 loc = "removable"; 2745 break; 2746 case DEVICE_FIXED: 2747 loc = "fixed"; 2748 break; 2749 default: 2750 loc = "unknown"; 2751 } 2752 return sysfs_emit(buf, "%s\n", loc); 2753 } 2754 static DEVICE_ATTR_RO(removable); 2755 2756 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2757 { 2758 return sysfs_create_groups(&dev->kobj, groups); 2759 } 2760 EXPORT_SYMBOL_GPL(device_add_groups); 2761 2762 void device_remove_groups(struct device *dev, 2763 const struct attribute_group **groups) 2764 { 2765 sysfs_remove_groups(&dev->kobj, groups); 2766 } 2767 EXPORT_SYMBOL_GPL(device_remove_groups); 2768 2769 union device_attr_group_devres { 2770 const struct attribute_group *group; 2771 const struct attribute_group **groups; 2772 }; 2773 2774 static void devm_attr_group_remove(struct device *dev, void *res) 2775 { 2776 union device_attr_group_devres *devres = res; 2777 const struct attribute_group *group = devres->group; 2778 2779 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2780 sysfs_remove_group(&dev->kobj, group); 2781 } 2782 2783 static void devm_attr_groups_remove(struct device *dev, void *res) 2784 { 2785 union device_attr_group_devres *devres = res; 2786 const struct attribute_group **groups = devres->groups; 2787 2788 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2789 sysfs_remove_groups(&dev->kobj, groups); 2790 } 2791 2792 /** 2793 * devm_device_add_group - given a device, create a managed attribute group 2794 * @dev: The device to create the group for 2795 * @grp: The attribute group to create 2796 * 2797 * This function creates a group for the first time. It will explicitly 2798 * warn and error if any of the attribute files being created already exist. 2799 * 2800 * Returns 0 on success or error code on failure. 2801 */ 2802 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2803 { 2804 union device_attr_group_devres *devres; 2805 int error; 2806 2807 devres = devres_alloc(devm_attr_group_remove, 2808 sizeof(*devres), GFP_KERNEL); 2809 if (!devres) 2810 return -ENOMEM; 2811 2812 error = sysfs_create_group(&dev->kobj, grp); 2813 if (error) { 2814 devres_free(devres); 2815 return error; 2816 } 2817 2818 devres->group = grp; 2819 devres_add(dev, devres); 2820 return 0; 2821 } 2822 EXPORT_SYMBOL_GPL(devm_device_add_group); 2823 2824 /** 2825 * devm_device_add_groups - create a bunch of managed attribute groups 2826 * @dev: The device to create the group for 2827 * @groups: The attribute groups to create, NULL terminated 2828 * 2829 * This function creates a bunch of managed attribute groups. If an error 2830 * occurs when creating a group, all previously created groups will be 2831 * removed, unwinding everything back to the original state when this 2832 * function was called. It will explicitly warn and error if any of the 2833 * attribute files being created already exist. 2834 * 2835 * Returns 0 on success or error code from sysfs_create_group on failure. 2836 */ 2837 int devm_device_add_groups(struct device *dev, 2838 const struct attribute_group **groups) 2839 { 2840 union device_attr_group_devres *devres; 2841 int error; 2842 2843 devres = devres_alloc(devm_attr_groups_remove, 2844 sizeof(*devres), GFP_KERNEL); 2845 if (!devres) 2846 return -ENOMEM; 2847 2848 error = sysfs_create_groups(&dev->kobj, groups); 2849 if (error) { 2850 devres_free(devres); 2851 return error; 2852 } 2853 2854 devres->groups = groups; 2855 devres_add(dev, devres); 2856 return 0; 2857 } 2858 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2859 2860 static int device_add_attrs(struct device *dev) 2861 { 2862 const struct class *class = dev->class; 2863 const struct device_type *type = dev->type; 2864 int error; 2865 2866 if (class) { 2867 error = device_add_groups(dev, class->dev_groups); 2868 if (error) 2869 return error; 2870 } 2871 2872 if (type) { 2873 error = device_add_groups(dev, type->groups); 2874 if (error) 2875 goto err_remove_class_groups; 2876 } 2877 2878 error = device_add_groups(dev, dev->groups); 2879 if (error) 2880 goto err_remove_type_groups; 2881 2882 if (device_supports_offline(dev) && !dev->offline_disabled) { 2883 error = device_create_file(dev, &dev_attr_online); 2884 if (error) 2885 goto err_remove_dev_groups; 2886 } 2887 2888 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2889 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2890 if (error) 2891 goto err_remove_dev_online; 2892 } 2893 2894 if (dev_removable_is_valid(dev)) { 2895 error = device_create_file(dev, &dev_attr_removable); 2896 if (error) 2897 goto err_remove_dev_waiting_for_supplier; 2898 } 2899 2900 if (dev_add_physical_location(dev)) { 2901 error = device_add_group(dev, 2902 &dev_attr_physical_location_group); 2903 if (error) 2904 goto err_remove_dev_removable; 2905 } 2906 2907 return 0; 2908 2909 err_remove_dev_removable: 2910 device_remove_file(dev, &dev_attr_removable); 2911 err_remove_dev_waiting_for_supplier: 2912 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2913 err_remove_dev_online: 2914 device_remove_file(dev, &dev_attr_online); 2915 err_remove_dev_groups: 2916 device_remove_groups(dev, dev->groups); 2917 err_remove_type_groups: 2918 if (type) 2919 device_remove_groups(dev, type->groups); 2920 err_remove_class_groups: 2921 if (class) 2922 device_remove_groups(dev, class->dev_groups); 2923 2924 return error; 2925 } 2926 2927 static void device_remove_attrs(struct device *dev) 2928 { 2929 const struct class *class = dev->class; 2930 const struct device_type *type = dev->type; 2931 2932 if (dev->physical_location) { 2933 device_remove_group(dev, &dev_attr_physical_location_group); 2934 kfree(dev->physical_location); 2935 } 2936 2937 device_remove_file(dev, &dev_attr_removable); 2938 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2939 device_remove_file(dev, &dev_attr_online); 2940 device_remove_groups(dev, dev->groups); 2941 2942 if (type) 2943 device_remove_groups(dev, type->groups); 2944 2945 if (class) 2946 device_remove_groups(dev, class->dev_groups); 2947 } 2948 2949 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2950 char *buf) 2951 { 2952 return print_dev_t(buf, dev->devt); 2953 } 2954 static DEVICE_ATTR_RO(dev); 2955 2956 /* /sys/devices/ */ 2957 struct kset *devices_kset; 2958 2959 /** 2960 * devices_kset_move_before - Move device in the devices_kset's list. 2961 * @deva: Device to move. 2962 * @devb: Device @deva should come before. 2963 */ 2964 static void devices_kset_move_before(struct device *deva, struct device *devb) 2965 { 2966 if (!devices_kset) 2967 return; 2968 pr_debug("devices_kset: Moving %s before %s\n", 2969 dev_name(deva), dev_name(devb)); 2970 spin_lock(&devices_kset->list_lock); 2971 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2972 spin_unlock(&devices_kset->list_lock); 2973 } 2974 2975 /** 2976 * devices_kset_move_after - Move device in the devices_kset's list. 2977 * @deva: Device to move 2978 * @devb: Device @deva should come after. 2979 */ 2980 static void devices_kset_move_after(struct device *deva, struct device *devb) 2981 { 2982 if (!devices_kset) 2983 return; 2984 pr_debug("devices_kset: Moving %s after %s\n", 2985 dev_name(deva), dev_name(devb)); 2986 spin_lock(&devices_kset->list_lock); 2987 list_move(&deva->kobj.entry, &devb->kobj.entry); 2988 spin_unlock(&devices_kset->list_lock); 2989 } 2990 2991 /** 2992 * devices_kset_move_last - move the device to the end of devices_kset's list. 2993 * @dev: device to move 2994 */ 2995 void devices_kset_move_last(struct device *dev) 2996 { 2997 if (!devices_kset) 2998 return; 2999 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 3000 spin_lock(&devices_kset->list_lock); 3001 list_move_tail(&dev->kobj.entry, &devices_kset->list); 3002 spin_unlock(&devices_kset->list_lock); 3003 } 3004 3005 /** 3006 * device_create_file - create sysfs attribute file for device. 3007 * @dev: device. 3008 * @attr: device attribute descriptor. 3009 */ 3010 int device_create_file(struct device *dev, 3011 const struct device_attribute *attr) 3012 { 3013 int error = 0; 3014 3015 if (dev) { 3016 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 3017 "Attribute %s: write permission without 'store'\n", 3018 attr->attr.name); 3019 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 3020 "Attribute %s: read permission without 'show'\n", 3021 attr->attr.name); 3022 error = sysfs_create_file(&dev->kobj, &attr->attr); 3023 } 3024 3025 return error; 3026 } 3027 EXPORT_SYMBOL_GPL(device_create_file); 3028 3029 /** 3030 * device_remove_file - remove sysfs attribute file. 3031 * @dev: device. 3032 * @attr: device attribute descriptor. 3033 */ 3034 void device_remove_file(struct device *dev, 3035 const struct device_attribute *attr) 3036 { 3037 if (dev) 3038 sysfs_remove_file(&dev->kobj, &attr->attr); 3039 } 3040 EXPORT_SYMBOL_GPL(device_remove_file); 3041 3042 /** 3043 * device_remove_file_self - remove sysfs attribute file from its own method. 3044 * @dev: device. 3045 * @attr: device attribute descriptor. 3046 * 3047 * See kernfs_remove_self() for details. 3048 */ 3049 bool device_remove_file_self(struct device *dev, 3050 const struct device_attribute *attr) 3051 { 3052 if (dev) 3053 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 3054 else 3055 return false; 3056 } 3057 EXPORT_SYMBOL_GPL(device_remove_file_self); 3058 3059 /** 3060 * device_create_bin_file - create sysfs binary attribute file for device. 3061 * @dev: device. 3062 * @attr: device binary attribute descriptor. 3063 */ 3064 int device_create_bin_file(struct device *dev, 3065 const struct bin_attribute *attr) 3066 { 3067 int error = -EINVAL; 3068 if (dev) 3069 error = sysfs_create_bin_file(&dev->kobj, attr); 3070 return error; 3071 } 3072 EXPORT_SYMBOL_GPL(device_create_bin_file); 3073 3074 /** 3075 * device_remove_bin_file - remove sysfs binary attribute file 3076 * @dev: device. 3077 * @attr: device binary attribute descriptor. 3078 */ 3079 void device_remove_bin_file(struct device *dev, 3080 const struct bin_attribute *attr) 3081 { 3082 if (dev) 3083 sysfs_remove_bin_file(&dev->kobj, attr); 3084 } 3085 EXPORT_SYMBOL_GPL(device_remove_bin_file); 3086 3087 static void klist_children_get(struct klist_node *n) 3088 { 3089 struct device_private *p = to_device_private_parent(n); 3090 struct device *dev = p->device; 3091 3092 get_device(dev); 3093 } 3094 3095 static void klist_children_put(struct klist_node *n) 3096 { 3097 struct device_private *p = to_device_private_parent(n); 3098 struct device *dev = p->device; 3099 3100 put_device(dev); 3101 } 3102 3103 /** 3104 * device_initialize - init device structure. 3105 * @dev: device. 3106 * 3107 * This prepares the device for use by other layers by initializing 3108 * its fields. 3109 * It is the first half of device_register(), if called by 3110 * that function, though it can also be called separately, so one 3111 * may use @dev's fields. In particular, get_device()/put_device() 3112 * may be used for reference counting of @dev after calling this 3113 * function. 3114 * 3115 * All fields in @dev must be initialized by the caller to 0, except 3116 * for those explicitly set to some other value. The simplest 3117 * approach is to use kzalloc() to allocate the structure containing 3118 * @dev. 3119 * 3120 * NOTE: Use put_device() to give up your reference instead of freeing 3121 * @dev directly once you have called this function. 3122 */ 3123 void device_initialize(struct device *dev) 3124 { 3125 dev->kobj.kset = devices_kset; 3126 kobject_init(&dev->kobj, &device_ktype); 3127 INIT_LIST_HEAD(&dev->dma_pools); 3128 mutex_init(&dev->mutex); 3129 lockdep_set_novalidate_class(&dev->mutex); 3130 spin_lock_init(&dev->devres_lock); 3131 INIT_LIST_HEAD(&dev->devres_head); 3132 device_pm_init(dev); 3133 set_dev_node(dev, NUMA_NO_NODE); 3134 INIT_LIST_HEAD(&dev->links.consumers); 3135 INIT_LIST_HEAD(&dev->links.suppliers); 3136 INIT_LIST_HEAD(&dev->links.defer_sync); 3137 dev->links.status = DL_DEV_NO_DRIVER; 3138 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 3139 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 3140 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 3141 dev->dma_coherent = dma_default_coherent; 3142 #endif 3143 swiotlb_dev_init(dev); 3144 } 3145 EXPORT_SYMBOL_GPL(device_initialize); 3146 3147 struct kobject *virtual_device_parent(struct device *dev) 3148 { 3149 static struct kobject *virtual_dir = NULL; 3150 3151 if (!virtual_dir) 3152 virtual_dir = kobject_create_and_add("virtual", 3153 &devices_kset->kobj); 3154 3155 return virtual_dir; 3156 } 3157 3158 struct class_dir { 3159 struct kobject kobj; 3160 const struct class *class; 3161 }; 3162 3163 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 3164 3165 static void class_dir_release(struct kobject *kobj) 3166 { 3167 struct class_dir *dir = to_class_dir(kobj); 3168 kfree(dir); 3169 } 3170 3171 static const 3172 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj) 3173 { 3174 const struct class_dir *dir = to_class_dir(kobj); 3175 return dir->class->ns_type; 3176 } 3177 3178 static const struct kobj_type class_dir_ktype = { 3179 .release = class_dir_release, 3180 .sysfs_ops = &kobj_sysfs_ops, 3181 .child_ns_type = class_dir_child_ns_type 3182 }; 3183 3184 static struct kobject *class_dir_create_and_add(struct subsys_private *sp, 3185 struct kobject *parent_kobj) 3186 { 3187 struct class_dir *dir; 3188 int retval; 3189 3190 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 3191 if (!dir) 3192 return ERR_PTR(-ENOMEM); 3193 3194 dir->class = sp->class; 3195 kobject_init(&dir->kobj, &class_dir_ktype); 3196 3197 dir->kobj.kset = &sp->glue_dirs; 3198 3199 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name); 3200 if (retval < 0) { 3201 kobject_put(&dir->kobj); 3202 return ERR_PTR(retval); 3203 } 3204 return &dir->kobj; 3205 } 3206 3207 static DEFINE_MUTEX(gdp_mutex); 3208 3209 static struct kobject *get_device_parent(struct device *dev, 3210 struct device *parent) 3211 { 3212 struct subsys_private *sp = class_to_subsys(dev->class); 3213 struct kobject *kobj = NULL; 3214 3215 if (sp) { 3216 struct kobject *parent_kobj; 3217 struct kobject *k; 3218 3219 /* 3220 * If we have no parent, we live in "virtual". 3221 * Class-devices with a non class-device as parent, live 3222 * in a "glue" directory to prevent namespace collisions. 3223 */ 3224 if (parent == NULL) 3225 parent_kobj = virtual_device_parent(dev); 3226 else if (parent->class && !dev->class->ns_type) { 3227 subsys_put(sp); 3228 return &parent->kobj; 3229 } else { 3230 parent_kobj = &parent->kobj; 3231 } 3232 3233 mutex_lock(&gdp_mutex); 3234 3235 /* find our class-directory at the parent and reference it */ 3236 spin_lock(&sp->glue_dirs.list_lock); 3237 list_for_each_entry(k, &sp->glue_dirs.list, entry) 3238 if (k->parent == parent_kobj) { 3239 kobj = kobject_get(k); 3240 break; 3241 } 3242 spin_unlock(&sp->glue_dirs.list_lock); 3243 if (kobj) { 3244 mutex_unlock(&gdp_mutex); 3245 subsys_put(sp); 3246 return kobj; 3247 } 3248 3249 /* or create a new class-directory at the parent device */ 3250 k = class_dir_create_and_add(sp, parent_kobj); 3251 /* do not emit an uevent for this simple "glue" directory */ 3252 mutex_unlock(&gdp_mutex); 3253 subsys_put(sp); 3254 return k; 3255 } 3256 3257 /* subsystems can specify a default root directory for their devices */ 3258 if (!parent && dev->bus) { 3259 struct device *dev_root = bus_get_dev_root(dev->bus); 3260 3261 if (dev_root) { 3262 kobj = &dev_root->kobj; 3263 put_device(dev_root); 3264 return kobj; 3265 } 3266 } 3267 3268 if (parent) 3269 return &parent->kobj; 3270 return NULL; 3271 } 3272 3273 static inline bool live_in_glue_dir(struct kobject *kobj, 3274 struct device *dev) 3275 { 3276 struct subsys_private *sp; 3277 bool retval; 3278 3279 if (!kobj || !dev->class) 3280 return false; 3281 3282 sp = class_to_subsys(dev->class); 3283 if (!sp) 3284 return false; 3285 3286 if (kobj->kset == &sp->glue_dirs) 3287 retval = true; 3288 else 3289 retval = false; 3290 3291 subsys_put(sp); 3292 return retval; 3293 } 3294 3295 static inline struct kobject *get_glue_dir(struct device *dev) 3296 { 3297 return dev->kobj.parent; 3298 } 3299 3300 /** 3301 * kobject_has_children - Returns whether a kobject has children. 3302 * @kobj: the object to test 3303 * 3304 * This will return whether a kobject has other kobjects as children. 3305 * 3306 * It does NOT account for the presence of attribute files, only sub 3307 * directories. It also assumes there is no concurrent addition or 3308 * removal of such children, and thus relies on external locking. 3309 */ 3310 static inline bool kobject_has_children(struct kobject *kobj) 3311 { 3312 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3313 3314 return kobj->sd && kobj->sd->dir.subdirs; 3315 } 3316 3317 /* 3318 * make sure cleaning up dir as the last step, we need to make 3319 * sure .release handler of kobject is run with holding the 3320 * global lock 3321 */ 3322 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3323 { 3324 unsigned int ref; 3325 3326 /* see if we live in a "glue" directory */ 3327 if (!live_in_glue_dir(glue_dir, dev)) 3328 return; 3329 3330 mutex_lock(&gdp_mutex); 3331 /** 3332 * There is a race condition between removing glue directory 3333 * and adding a new device under the glue directory. 3334 * 3335 * CPU1: CPU2: 3336 * 3337 * device_add() 3338 * get_device_parent() 3339 * class_dir_create_and_add() 3340 * kobject_add_internal() 3341 * create_dir() // create glue_dir 3342 * 3343 * device_add() 3344 * get_device_parent() 3345 * kobject_get() // get glue_dir 3346 * 3347 * device_del() 3348 * cleanup_glue_dir() 3349 * kobject_del(glue_dir) 3350 * 3351 * kobject_add() 3352 * kobject_add_internal() 3353 * create_dir() // in glue_dir 3354 * sysfs_create_dir_ns() 3355 * kernfs_create_dir_ns(sd) 3356 * 3357 * sysfs_remove_dir() // glue_dir->sd=NULL 3358 * sysfs_put() // free glue_dir->sd 3359 * 3360 * // sd is freed 3361 * kernfs_new_node(sd) 3362 * kernfs_get(glue_dir) 3363 * kernfs_add_one() 3364 * kernfs_put() 3365 * 3366 * Before CPU1 remove last child device under glue dir, if CPU2 add 3367 * a new device under glue dir, the glue_dir kobject reference count 3368 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3369 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3370 * and sysfs_put(). This result in glue_dir->sd is freed. 3371 * 3372 * Then the CPU2 will see a stale "empty" but still potentially used 3373 * glue dir around in kernfs_new_node(). 3374 * 3375 * In order to avoid this happening, we also should make sure that 3376 * kernfs_node for glue_dir is released in CPU1 only when refcount 3377 * for glue_dir kobj is 1. 3378 */ 3379 ref = kref_read(&glue_dir->kref); 3380 if (!kobject_has_children(glue_dir) && !--ref) 3381 kobject_del(glue_dir); 3382 kobject_put(glue_dir); 3383 mutex_unlock(&gdp_mutex); 3384 } 3385 3386 static int device_add_class_symlinks(struct device *dev) 3387 { 3388 struct device_node *of_node = dev_of_node(dev); 3389 struct subsys_private *sp; 3390 int error; 3391 3392 if (of_node) { 3393 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3394 if (error) 3395 dev_warn(dev, "Error %d creating of_node link\n",error); 3396 /* An error here doesn't warrant bringing down the device */ 3397 } 3398 3399 sp = class_to_subsys(dev->class); 3400 if (!sp) 3401 return 0; 3402 3403 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem"); 3404 if (error) 3405 goto out_devnode; 3406 3407 if (dev->parent && device_is_not_partition(dev)) { 3408 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3409 "device"); 3410 if (error) 3411 goto out_subsys; 3412 } 3413 3414 /* link in the class directory pointing to the device */ 3415 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3416 if (error) 3417 goto out_device; 3418 goto exit; 3419 3420 out_device: 3421 sysfs_remove_link(&dev->kobj, "device"); 3422 out_subsys: 3423 sysfs_remove_link(&dev->kobj, "subsystem"); 3424 out_devnode: 3425 sysfs_remove_link(&dev->kobj, "of_node"); 3426 exit: 3427 subsys_put(sp); 3428 return error; 3429 } 3430 3431 static void device_remove_class_symlinks(struct device *dev) 3432 { 3433 struct subsys_private *sp = class_to_subsys(dev->class); 3434 3435 if (dev_of_node(dev)) 3436 sysfs_remove_link(&dev->kobj, "of_node"); 3437 3438 if (!sp) 3439 return; 3440 3441 if (dev->parent && device_is_not_partition(dev)) 3442 sysfs_remove_link(&dev->kobj, "device"); 3443 sysfs_remove_link(&dev->kobj, "subsystem"); 3444 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3445 subsys_put(sp); 3446 } 3447 3448 /** 3449 * dev_set_name - set a device name 3450 * @dev: device 3451 * @fmt: format string for the device's name 3452 */ 3453 int dev_set_name(struct device *dev, const char *fmt, ...) 3454 { 3455 va_list vargs; 3456 int err; 3457 3458 va_start(vargs, fmt); 3459 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3460 va_end(vargs); 3461 return err; 3462 } 3463 EXPORT_SYMBOL_GPL(dev_set_name); 3464 3465 /* select a /sys/dev/ directory for the device */ 3466 static struct kobject *device_to_dev_kobj(struct device *dev) 3467 { 3468 if (is_blockdev(dev)) 3469 return sysfs_dev_block_kobj; 3470 else 3471 return sysfs_dev_char_kobj; 3472 } 3473 3474 static int device_create_sys_dev_entry(struct device *dev) 3475 { 3476 struct kobject *kobj = device_to_dev_kobj(dev); 3477 int error = 0; 3478 char devt_str[15]; 3479 3480 if (kobj) { 3481 format_dev_t(devt_str, dev->devt); 3482 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3483 } 3484 3485 return error; 3486 } 3487 3488 static void device_remove_sys_dev_entry(struct device *dev) 3489 { 3490 struct kobject *kobj = device_to_dev_kobj(dev); 3491 char devt_str[15]; 3492 3493 if (kobj) { 3494 format_dev_t(devt_str, dev->devt); 3495 sysfs_remove_link(kobj, devt_str); 3496 } 3497 } 3498 3499 static int device_private_init(struct device *dev) 3500 { 3501 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3502 if (!dev->p) 3503 return -ENOMEM; 3504 dev->p->device = dev; 3505 klist_init(&dev->p->klist_children, klist_children_get, 3506 klist_children_put); 3507 INIT_LIST_HEAD(&dev->p->deferred_probe); 3508 return 0; 3509 } 3510 3511 /** 3512 * device_add - add device to device hierarchy. 3513 * @dev: device. 3514 * 3515 * This is part 2 of device_register(), though may be called 3516 * separately _iff_ device_initialize() has been called separately. 3517 * 3518 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3519 * to the global and sibling lists for the device, then 3520 * adds it to the other relevant subsystems of the driver model. 3521 * 3522 * Do not call this routine or device_register() more than once for 3523 * any device structure. The driver model core is not designed to work 3524 * with devices that get unregistered and then spring back to life. 3525 * (Among other things, it's very hard to guarantee that all references 3526 * to the previous incarnation of @dev have been dropped.) Allocate 3527 * and register a fresh new struct device instead. 3528 * 3529 * NOTE: _Never_ directly free @dev after calling this function, even 3530 * if it returned an error! Always use put_device() to give up your 3531 * reference instead. 3532 * 3533 * Rule of thumb is: if device_add() succeeds, you should call 3534 * device_del() when you want to get rid of it. If device_add() has 3535 * *not* succeeded, use *only* put_device() to drop the reference 3536 * count. 3537 */ 3538 int device_add(struct device *dev) 3539 { 3540 struct subsys_private *sp; 3541 struct device *parent; 3542 struct kobject *kobj; 3543 struct class_interface *class_intf; 3544 int error = -EINVAL; 3545 struct kobject *glue_dir = NULL; 3546 3547 dev = get_device(dev); 3548 if (!dev) 3549 goto done; 3550 3551 if (!dev->p) { 3552 error = device_private_init(dev); 3553 if (error) 3554 goto done; 3555 } 3556 3557 /* 3558 * for statically allocated devices, which should all be converted 3559 * some day, we need to initialize the name. We prevent reading back 3560 * the name, and force the use of dev_name() 3561 */ 3562 if (dev->init_name) { 3563 error = dev_set_name(dev, "%s", dev->init_name); 3564 dev->init_name = NULL; 3565 } 3566 3567 if (dev_name(dev)) 3568 error = 0; 3569 /* subsystems can specify simple device enumeration */ 3570 else if (dev->bus && dev->bus->dev_name) 3571 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3572 else 3573 error = -EINVAL; 3574 if (error) 3575 goto name_error; 3576 3577 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3578 3579 parent = get_device(dev->parent); 3580 kobj = get_device_parent(dev, parent); 3581 if (IS_ERR(kobj)) { 3582 error = PTR_ERR(kobj); 3583 goto parent_error; 3584 } 3585 if (kobj) 3586 dev->kobj.parent = kobj; 3587 3588 /* use parent numa_node */ 3589 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3590 set_dev_node(dev, dev_to_node(parent)); 3591 3592 /* first, register with generic layer. */ 3593 /* we require the name to be set before, and pass NULL */ 3594 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3595 if (error) { 3596 glue_dir = kobj; 3597 goto Error; 3598 } 3599 3600 /* notify platform of device entry */ 3601 device_platform_notify(dev); 3602 3603 error = device_create_file(dev, &dev_attr_uevent); 3604 if (error) 3605 goto attrError; 3606 3607 error = device_add_class_symlinks(dev); 3608 if (error) 3609 goto SymlinkError; 3610 error = device_add_attrs(dev); 3611 if (error) 3612 goto AttrsError; 3613 error = bus_add_device(dev); 3614 if (error) 3615 goto BusError; 3616 error = dpm_sysfs_add(dev); 3617 if (error) 3618 goto DPMError; 3619 device_pm_add(dev); 3620 3621 if (MAJOR(dev->devt)) { 3622 error = device_create_file(dev, &dev_attr_dev); 3623 if (error) 3624 goto DevAttrError; 3625 3626 error = device_create_sys_dev_entry(dev); 3627 if (error) 3628 goto SysEntryError; 3629 3630 devtmpfs_create_node(dev); 3631 } 3632 3633 /* Notify clients of device addition. This call must come 3634 * after dpm_sysfs_add() and before kobject_uevent(). 3635 */ 3636 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE); 3637 kobject_uevent(&dev->kobj, KOBJ_ADD); 3638 3639 /* 3640 * Check if any of the other devices (consumers) have been waiting for 3641 * this device (supplier) to be added so that they can create a device 3642 * link to it. 3643 * 3644 * This needs to happen after device_pm_add() because device_link_add() 3645 * requires the supplier be registered before it's called. 3646 * 3647 * But this also needs to happen before bus_probe_device() to make sure 3648 * waiting consumers can link to it before the driver is bound to the 3649 * device and the driver sync_state callback is called for this device. 3650 */ 3651 if (dev->fwnode && !dev->fwnode->dev) { 3652 dev->fwnode->dev = dev; 3653 fw_devlink_link_device(dev); 3654 } 3655 3656 bus_probe_device(dev); 3657 3658 /* 3659 * If all driver registration is done and a newly added device doesn't 3660 * match with any driver, don't block its consumers from probing in 3661 * case the consumer device is able to operate without this supplier. 3662 */ 3663 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3664 fw_devlink_unblock_consumers(dev); 3665 3666 if (parent) 3667 klist_add_tail(&dev->p->knode_parent, 3668 &parent->p->klist_children); 3669 3670 sp = class_to_subsys(dev->class); 3671 if (sp) { 3672 mutex_lock(&sp->mutex); 3673 /* tie the class to the device */ 3674 klist_add_tail(&dev->p->knode_class, &sp->klist_devices); 3675 3676 /* notify any interfaces that the device is here */ 3677 list_for_each_entry(class_intf, &sp->interfaces, node) 3678 if (class_intf->add_dev) 3679 class_intf->add_dev(dev); 3680 mutex_unlock(&sp->mutex); 3681 subsys_put(sp); 3682 } 3683 done: 3684 put_device(dev); 3685 return error; 3686 SysEntryError: 3687 if (MAJOR(dev->devt)) 3688 device_remove_file(dev, &dev_attr_dev); 3689 DevAttrError: 3690 device_pm_remove(dev); 3691 dpm_sysfs_remove(dev); 3692 DPMError: 3693 dev->driver = NULL; 3694 bus_remove_device(dev); 3695 BusError: 3696 device_remove_attrs(dev); 3697 AttrsError: 3698 device_remove_class_symlinks(dev); 3699 SymlinkError: 3700 device_remove_file(dev, &dev_attr_uevent); 3701 attrError: 3702 device_platform_notify_remove(dev); 3703 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3704 glue_dir = get_glue_dir(dev); 3705 kobject_del(&dev->kobj); 3706 Error: 3707 cleanup_glue_dir(dev, glue_dir); 3708 parent_error: 3709 put_device(parent); 3710 name_error: 3711 kfree(dev->p); 3712 dev->p = NULL; 3713 goto done; 3714 } 3715 EXPORT_SYMBOL_GPL(device_add); 3716 3717 /** 3718 * device_register - register a device with the system. 3719 * @dev: pointer to the device structure 3720 * 3721 * This happens in two clean steps - initialize the device 3722 * and add it to the system. The two steps can be called 3723 * separately, but this is the easiest and most common. 3724 * I.e. you should only call the two helpers separately if 3725 * have a clearly defined need to use and refcount the device 3726 * before it is added to the hierarchy. 3727 * 3728 * For more information, see the kerneldoc for device_initialize() 3729 * and device_add(). 3730 * 3731 * NOTE: _Never_ directly free @dev after calling this function, even 3732 * if it returned an error! Always use put_device() to give up the 3733 * reference initialized in this function instead. 3734 */ 3735 int device_register(struct device *dev) 3736 { 3737 device_initialize(dev); 3738 return device_add(dev); 3739 } 3740 EXPORT_SYMBOL_GPL(device_register); 3741 3742 /** 3743 * get_device - increment reference count for device. 3744 * @dev: device. 3745 * 3746 * This simply forwards the call to kobject_get(), though 3747 * we do take care to provide for the case that we get a NULL 3748 * pointer passed in. 3749 */ 3750 struct device *get_device(struct device *dev) 3751 { 3752 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3753 } 3754 EXPORT_SYMBOL_GPL(get_device); 3755 3756 /** 3757 * put_device - decrement reference count. 3758 * @dev: device in question. 3759 */ 3760 void put_device(struct device *dev) 3761 { 3762 /* might_sleep(); */ 3763 if (dev) 3764 kobject_put(&dev->kobj); 3765 } 3766 EXPORT_SYMBOL_GPL(put_device); 3767 3768 bool kill_device(struct device *dev) 3769 { 3770 /* 3771 * Require the device lock and set the "dead" flag to guarantee that 3772 * the update behavior is consistent with the other bitfields near 3773 * it and that we cannot have an asynchronous probe routine trying 3774 * to run while we are tearing out the bus/class/sysfs from 3775 * underneath the device. 3776 */ 3777 device_lock_assert(dev); 3778 3779 if (dev->p->dead) 3780 return false; 3781 dev->p->dead = true; 3782 return true; 3783 } 3784 EXPORT_SYMBOL_GPL(kill_device); 3785 3786 /** 3787 * device_del - delete device from system. 3788 * @dev: device. 3789 * 3790 * This is the first part of the device unregistration 3791 * sequence. This removes the device from the lists we control 3792 * from here, has it removed from the other driver model 3793 * subsystems it was added to in device_add(), and removes it 3794 * from the kobject hierarchy. 3795 * 3796 * NOTE: this should be called manually _iff_ device_add() was 3797 * also called manually. 3798 */ 3799 void device_del(struct device *dev) 3800 { 3801 struct subsys_private *sp; 3802 struct device *parent = dev->parent; 3803 struct kobject *glue_dir = NULL; 3804 struct class_interface *class_intf; 3805 unsigned int noio_flag; 3806 3807 device_lock(dev); 3808 kill_device(dev); 3809 device_unlock(dev); 3810 3811 if (dev->fwnode && dev->fwnode->dev == dev) 3812 dev->fwnode->dev = NULL; 3813 3814 /* Notify clients of device removal. This call must come 3815 * before dpm_sysfs_remove(). 3816 */ 3817 noio_flag = memalloc_noio_save(); 3818 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE); 3819 3820 dpm_sysfs_remove(dev); 3821 if (parent) 3822 klist_del(&dev->p->knode_parent); 3823 if (MAJOR(dev->devt)) { 3824 devtmpfs_delete_node(dev); 3825 device_remove_sys_dev_entry(dev); 3826 device_remove_file(dev, &dev_attr_dev); 3827 } 3828 3829 sp = class_to_subsys(dev->class); 3830 if (sp) { 3831 device_remove_class_symlinks(dev); 3832 3833 mutex_lock(&sp->mutex); 3834 /* notify any interfaces that the device is now gone */ 3835 list_for_each_entry(class_intf, &sp->interfaces, node) 3836 if (class_intf->remove_dev) 3837 class_intf->remove_dev(dev); 3838 /* remove the device from the class list */ 3839 klist_del(&dev->p->knode_class); 3840 mutex_unlock(&sp->mutex); 3841 subsys_put(sp); 3842 } 3843 device_remove_file(dev, &dev_attr_uevent); 3844 device_remove_attrs(dev); 3845 bus_remove_device(dev); 3846 device_pm_remove(dev); 3847 driver_deferred_probe_del(dev); 3848 device_platform_notify_remove(dev); 3849 device_links_purge(dev); 3850 3851 /* 3852 * If a device does not have a driver attached, we need to clean 3853 * up any managed resources. We do this in device_release(), but 3854 * it's never called (and we leak the device) if a managed 3855 * resource holds a reference to the device. So release all 3856 * managed resources here, like we do in driver_detach(). We 3857 * still need to do so again in device_release() in case someone 3858 * adds a new resource after this point, though. 3859 */ 3860 devres_release_all(dev); 3861 3862 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE); 3863 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3864 glue_dir = get_glue_dir(dev); 3865 kobject_del(&dev->kobj); 3866 cleanup_glue_dir(dev, glue_dir); 3867 memalloc_noio_restore(noio_flag); 3868 put_device(parent); 3869 } 3870 EXPORT_SYMBOL_GPL(device_del); 3871 3872 /** 3873 * device_unregister - unregister device from system. 3874 * @dev: device going away. 3875 * 3876 * We do this in two parts, like we do device_register(). First, 3877 * we remove it from all the subsystems with device_del(), then 3878 * we decrement the reference count via put_device(). If that 3879 * is the final reference count, the device will be cleaned up 3880 * via device_release() above. Otherwise, the structure will 3881 * stick around until the final reference to the device is dropped. 3882 */ 3883 void device_unregister(struct device *dev) 3884 { 3885 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3886 device_del(dev); 3887 put_device(dev); 3888 } 3889 EXPORT_SYMBOL_GPL(device_unregister); 3890 3891 static struct device *prev_device(struct klist_iter *i) 3892 { 3893 struct klist_node *n = klist_prev(i); 3894 struct device *dev = NULL; 3895 struct device_private *p; 3896 3897 if (n) { 3898 p = to_device_private_parent(n); 3899 dev = p->device; 3900 } 3901 return dev; 3902 } 3903 3904 static struct device *next_device(struct klist_iter *i) 3905 { 3906 struct klist_node *n = klist_next(i); 3907 struct device *dev = NULL; 3908 struct device_private *p; 3909 3910 if (n) { 3911 p = to_device_private_parent(n); 3912 dev = p->device; 3913 } 3914 return dev; 3915 } 3916 3917 /** 3918 * device_get_devnode - path of device node file 3919 * @dev: device 3920 * @mode: returned file access mode 3921 * @uid: returned file owner 3922 * @gid: returned file group 3923 * @tmp: possibly allocated string 3924 * 3925 * Return the relative path of a possible device node. 3926 * Non-default names may need to allocate a memory to compose 3927 * a name. This memory is returned in tmp and needs to be 3928 * freed by the caller. 3929 */ 3930 const char *device_get_devnode(const struct device *dev, 3931 umode_t *mode, kuid_t *uid, kgid_t *gid, 3932 const char **tmp) 3933 { 3934 char *s; 3935 3936 *tmp = NULL; 3937 3938 /* the device type may provide a specific name */ 3939 if (dev->type && dev->type->devnode) 3940 *tmp = dev->type->devnode(dev, mode, uid, gid); 3941 if (*tmp) 3942 return *tmp; 3943 3944 /* the class may provide a specific name */ 3945 if (dev->class && dev->class->devnode) 3946 *tmp = dev->class->devnode(dev, mode); 3947 if (*tmp) 3948 return *tmp; 3949 3950 /* return name without allocation, tmp == NULL */ 3951 if (strchr(dev_name(dev), '!') == NULL) 3952 return dev_name(dev); 3953 3954 /* replace '!' in the name with '/' */ 3955 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL); 3956 if (!s) 3957 return NULL; 3958 return *tmp = s; 3959 } 3960 3961 /** 3962 * device_for_each_child - device child iterator. 3963 * @parent: parent struct device. 3964 * @fn: function to be called for each device. 3965 * @data: data for the callback. 3966 * 3967 * Iterate over @parent's child devices, and call @fn for each, 3968 * passing it @data. 3969 * 3970 * We check the return of @fn each time. If it returns anything 3971 * other than 0, we break out and return that value. 3972 */ 3973 int device_for_each_child(struct device *parent, void *data, 3974 int (*fn)(struct device *dev, void *data)) 3975 { 3976 struct klist_iter i; 3977 struct device *child; 3978 int error = 0; 3979 3980 if (!parent->p) 3981 return 0; 3982 3983 klist_iter_init(&parent->p->klist_children, &i); 3984 while (!error && (child = next_device(&i))) 3985 error = fn(child, data); 3986 klist_iter_exit(&i); 3987 return error; 3988 } 3989 EXPORT_SYMBOL_GPL(device_for_each_child); 3990 3991 /** 3992 * device_for_each_child_reverse - device child iterator in reversed order. 3993 * @parent: parent struct device. 3994 * @fn: function to be called for each device. 3995 * @data: data for the callback. 3996 * 3997 * Iterate over @parent's child devices, and call @fn for each, 3998 * passing it @data. 3999 * 4000 * We check the return of @fn each time. If it returns anything 4001 * other than 0, we break out and return that value. 4002 */ 4003 int device_for_each_child_reverse(struct device *parent, void *data, 4004 int (*fn)(struct device *dev, void *data)) 4005 { 4006 struct klist_iter i; 4007 struct device *child; 4008 int error = 0; 4009 4010 if (!parent->p) 4011 return 0; 4012 4013 klist_iter_init(&parent->p->klist_children, &i); 4014 while ((child = prev_device(&i)) && !error) 4015 error = fn(child, data); 4016 klist_iter_exit(&i); 4017 return error; 4018 } 4019 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 4020 4021 /** 4022 * device_for_each_child_reverse_from - device child iterator in reversed order. 4023 * @parent: parent struct device. 4024 * @from: optional starting point in child list 4025 * @fn: function to be called for each device. 4026 * @data: data for the callback. 4027 * 4028 * Iterate over @parent's child devices, starting at @from, and call @fn 4029 * for each, passing it @data. This helper is identical to 4030 * device_for_each_child_reverse() when @from is NULL. 4031 * 4032 * @fn is checked each iteration. If it returns anything other than 0, 4033 * iteration stop and that value is returned to the caller of 4034 * device_for_each_child_reverse_from(); 4035 */ 4036 int device_for_each_child_reverse_from(struct device *parent, 4037 struct device *from, const void *data, 4038 int (*fn)(struct device *, const void *)) 4039 { 4040 struct klist_iter i; 4041 struct device *child; 4042 int error = 0; 4043 4044 if (!parent->p) 4045 return 0; 4046 4047 klist_iter_init_node(&parent->p->klist_children, &i, 4048 (from ? &from->p->knode_parent : NULL)); 4049 while ((child = prev_device(&i)) && !error) 4050 error = fn(child, data); 4051 klist_iter_exit(&i); 4052 return error; 4053 } 4054 EXPORT_SYMBOL_GPL(device_for_each_child_reverse_from); 4055 4056 /** 4057 * device_find_child - device iterator for locating a particular device. 4058 * @parent: parent struct device 4059 * @match: Callback function to check device 4060 * @data: Data to pass to match function 4061 * 4062 * This is similar to the device_for_each_child() function above, but it 4063 * returns a reference to a device that is 'found' for later use, as 4064 * determined by the @match callback. 4065 * 4066 * The callback should return 0 if the device doesn't match and non-zero 4067 * if it does. If the callback returns non-zero and a reference to the 4068 * current device can be obtained, this function will return to the caller 4069 * and not iterate over any more devices. 4070 * 4071 * NOTE: you will need to drop the reference with put_device() after use. 4072 */ 4073 struct device *device_find_child(struct device *parent, void *data, 4074 int (*match)(struct device *dev, void *data)) 4075 { 4076 struct klist_iter i; 4077 struct device *child; 4078 4079 if (!parent) 4080 return NULL; 4081 4082 klist_iter_init(&parent->p->klist_children, &i); 4083 while ((child = next_device(&i))) 4084 if (match(child, data) && get_device(child)) 4085 break; 4086 klist_iter_exit(&i); 4087 return child; 4088 } 4089 EXPORT_SYMBOL_GPL(device_find_child); 4090 4091 /** 4092 * device_find_child_by_name - device iterator for locating a child device. 4093 * @parent: parent struct device 4094 * @name: name of the child device 4095 * 4096 * This is similar to the device_find_child() function above, but it 4097 * returns a reference to a device that has the name @name. 4098 * 4099 * NOTE: you will need to drop the reference with put_device() after use. 4100 */ 4101 struct device *device_find_child_by_name(struct device *parent, 4102 const char *name) 4103 { 4104 struct klist_iter i; 4105 struct device *child; 4106 4107 if (!parent) 4108 return NULL; 4109 4110 klist_iter_init(&parent->p->klist_children, &i); 4111 while ((child = next_device(&i))) 4112 if (sysfs_streq(dev_name(child), name) && get_device(child)) 4113 break; 4114 klist_iter_exit(&i); 4115 return child; 4116 } 4117 EXPORT_SYMBOL_GPL(device_find_child_by_name); 4118 4119 static int match_any(struct device *dev, void *unused) 4120 { 4121 return 1; 4122 } 4123 4124 /** 4125 * device_find_any_child - device iterator for locating a child device, if any. 4126 * @parent: parent struct device 4127 * 4128 * This is similar to the device_find_child() function above, but it 4129 * returns a reference to a child device, if any. 4130 * 4131 * NOTE: you will need to drop the reference with put_device() after use. 4132 */ 4133 struct device *device_find_any_child(struct device *parent) 4134 { 4135 return device_find_child(parent, NULL, match_any); 4136 } 4137 EXPORT_SYMBOL_GPL(device_find_any_child); 4138 4139 int __init devices_init(void) 4140 { 4141 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 4142 if (!devices_kset) 4143 return -ENOMEM; 4144 dev_kobj = kobject_create_and_add("dev", NULL); 4145 if (!dev_kobj) 4146 goto dev_kobj_err; 4147 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 4148 if (!sysfs_dev_block_kobj) 4149 goto block_kobj_err; 4150 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 4151 if (!sysfs_dev_char_kobj) 4152 goto char_kobj_err; 4153 device_link_wq = alloc_workqueue("device_link_wq", 0, 0); 4154 if (!device_link_wq) 4155 goto wq_err; 4156 4157 return 0; 4158 4159 wq_err: 4160 kobject_put(sysfs_dev_char_kobj); 4161 char_kobj_err: 4162 kobject_put(sysfs_dev_block_kobj); 4163 block_kobj_err: 4164 kobject_put(dev_kobj); 4165 dev_kobj_err: 4166 kset_unregister(devices_kset); 4167 return -ENOMEM; 4168 } 4169 4170 static int device_check_offline(struct device *dev, void *not_used) 4171 { 4172 int ret; 4173 4174 ret = device_for_each_child(dev, NULL, device_check_offline); 4175 if (ret) 4176 return ret; 4177 4178 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 4179 } 4180 4181 /** 4182 * device_offline - Prepare the device for hot-removal. 4183 * @dev: Device to be put offline. 4184 * 4185 * Execute the device bus type's .offline() callback, if present, to prepare 4186 * the device for a subsequent hot-removal. If that succeeds, the device must 4187 * not be used until either it is removed or its bus type's .online() callback 4188 * is executed. 4189 * 4190 * Call under device_hotplug_lock. 4191 */ 4192 int device_offline(struct device *dev) 4193 { 4194 int ret; 4195 4196 if (dev->offline_disabled) 4197 return -EPERM; 4198 4199 ret = device_for_each_child(dev, NULL, device_check_offline); 4200 if (ret) 4201 return ret; 4202 4203 device_lock(dev); 4204 if (device_supports_offline(dev)) { 4205 if (dev->offline) { 4206 ret = 1; 4207 } else { 4208 ret = dev->bus->offline(dev); 4209 if (!ret) { 4210 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 4211 dev->offline = true; 4212 } 4213 } 4214 } 4215 device_unlock(dev); 4216 4217 return ret; 4218 } 4219 4220 /** 4221 * device_online - Put the device back online after successful device_offline(). 4222 * @dev: Device to be put back online. 4223 * 4224 * If device_offline() has been successfully executed for @dev, but the device 4225 * has not been removed subsequently, execute its bus type's .online() callback 4226 * to indicate that the device can be used again. 4227 * 4228 * Call under device_hotplug_lock. 4229 */ 4230 int device_online(struct device *dev) 4231 { 4232 int ret = 0; 4233 4234 device_lock(dev); 4235 if (device_supports_offline(dev)) { 4236 if (dev->offline) { 4237 ret = dev->bus->online(dev); 4238 if (!ret) { 4239 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 4240 dev->offline = false; 4241 } 4242 } else { 4243 ret = 1; 4244 } 4245 } 4246 device_unlock(dev); 4247 4248 return ret; 4249 } 4250 4251 struct root_device { 4252 struct device dev; 4253 struct module *owner; 4254 }; 4255 4256 static inline struct root_device *to_root_device(struct device *d) 4257 { 4258 return container_of(d, struct root_device, dev); 4259 } 4260 4261 static void root_device_release(struct device *dev) 4262 { 4263 kfree(to_root_device(dev)); 4264 } 4265 4266 /** 4267 * __root_device_register - allocate and register a root device 4268 * @name: root device name 4269 * @owner: owner module of the root device, usually THIS_MODULE 4270 * 4271 * This function allocates a root device and registers it 4272 * using device_register(). In order to free the returned 4273 * device, use root_device_unregister(). 4274 * 4275 * Root devices are dummy devices which allow other devices 4276 * to be grouped under /sys/devices. Use this function to 4277 * allocate a root device and then use it as the parent of 4278 * any device which should appear under /sys/devices/{name} 4279 * 4280 * The /sys/devices/{name} directory will also contain a 4281 * 'module' symlink which points to the @owner directory 4282 * in sysfs. 4283 * 4284 * Returns &struct device pointer on success, or ERR_PTR() on error. 4285 * 4286 * Note: You probably want to use root_device_register(). 4287 */ 4288 struct device *__root_device_register(const char *name, struct module *owner) 4289 { 4290 struct root_device *root; 4291 int err = -ENOMEM; 4292 4293 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 4294 if (!root) 4295 return ERR_PTR(err); 4296 4297 err = dev_set_name(&root->dev, "%s", name); 4298 if (err) { 4299 kfree(root); 4300 return ERR_PTR(err); 4301 } 4302 4303 root->dev.release = root_device_release; 4304 4305 err = device_register(&root->dev); 4306 if (err) { 4307 put_device(&root->dev); 4308 return ERR_PTR(err); 4309 } 4310 4311 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4312 if (owner) { 4313 struct module_kobject *mk = &owner->mkobj; 4314 4315 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4316 if (err) { 4317 device_unregister(&root->dev); 4318 return ERR_PTR(err); 4319 } 4320 root->owner = owner; 4321 } 4322 #endif 4323 4324 return &root->dev; 4325 } 4326 EXPORT_SYMBOL_GPL(__root_device_register); 4327 4328 /** 4329 * root_device_unregister - unregister and free a root device 4330 * @dev: device going away 4331 * 4332 * This function unregisters and cleans up a device that was created by 4333 * root_device_register(). 4334 */ 4335 void root_device_unregister(struct device *dev) 4336 { 4337 struct root_device *root = to_root_device(dev); 4338 4339 if (root->owner) 4340 sysfs_remove_link(&root->dev.kobj, "module"); 4341 4342 device_unregister(dev); 4343 } 4344 EXPORT_SYMBOL_GPL(root_device_unregister); 4345 4346 4347 static void device_create_release(struct device *dev) 4348 { 4349 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4350 kfree(dev); 4351 } 4352 4353 static __printf(6, 0) struct device * 4354 device_create_groups_vargs(const struct class *class, struct device *parent, 4355 dev_t devt, void *drvdata, 4356 const struct attribute_group **groups, 4357 const char *fmt, va_list args) 4358 { 4359 struct device *dev = NULL; 4360 int retval = -ENODEV; 4361 4362 if (IS_ERR_OR_NULL(class)) 4363 goto error; 4364 4365 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4366 if (!dev) { 4367 retval = -ENOMEM; 4368 goto error; 4369 } 4370 4371 device_initialize(dev); 4372 dev->devt = devt; 4373 dev->class = class; 4374 dev->parent = parent; 4375 dev->groups = groups; 4376 dev->release = device_create_release; 4377 dev_set_drvdata(dev, drvdata); 4378 4379 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4380 if (retval) 4381 goto error; 4382 4383 retval = device_add(dev); 4384 if (retval) 4385 goto error; 4386 4387 return dev; 4388 4389 error: 4390 put_device(dev); 4391 return ERR_PTR(retval); 4392 } 4393 4394 /** 4395 * device_create - creates a device and registers it with sysfs 4396 * @class: pointer to the struct class that this device should be registered to 4397 * @parent: pointer to the parent struct device of this new device, if any 4398 * @devt: the dev_t for the char device to be added 4399 * @drvdata: the data to be added to the device for callbacks 4400 * @fmt: string for the device's name 4401 * 4402 * This function can be used by char device classes. A struct device 4403 * will be created in sysfs, registered to the specified class. 4404 * 4405 * A "dev" file will be created, showing the dev_t for the device, if 4406 * the dev_t is not 0,0. 4407 * If a pointer to a parent struct device is passed in, the newly created 4408 * struct device will be a child of that device in sysfs. 4409 * The pointer to the struct device will be returned from the call. 4410 * Any further sysfs files that might be required can be created using this 4411 * pointer. 4412 * 4413 * Returns &struct device pointer on success, or ERR_PTR() on error. 4414 */ 4415 struct device *device_create(const struct class *class, struct device *parent, 4416 dev_t devt, void *drvdata, const char *fmt, ...) 4417 { 4418 va_list vargs; 4419 struct device *dev; 4420 4421 va_start(vargs, fmt); 4422 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4423 fmt, vargs); 4424 va_end(vargs); 4425 return dev; 4426 } 4427 EXPORT_SYMBOL_GPL(device_create); 4428 4429 /** 4430 * device_create_with_groups - creates a device and registers it with sysfs 4431 * @class: pointer to the struct class that this device should be registered to 4432 * @parent: pointer to the parent struct device of this new device, if any 4433 * @devt: the dev_t for the char device to be added 4434 * @drvdata: the data to be added to the device for callbacks 4435 * @groups: NULL-terminated list of attribute groups to be created 4436 * @fmt: string for the device's name 4437 * 4438 * This function can be used by char device classes. A struct device 4439 * will be created in sysfs, registered to the specified class. 4440 * Additional attributes specified in the groups parameter will also 4441 * be created automatically. 4442 * 4443 * A "dev" file will be created, showing the dev_t for the device, if 4444 * the dev_t is not 0,0. 4445 * If a pointer to a parent struct device is passed in, the newly created 4446 * struct device will be a child of that device in sysfs. 4447 * The pointer to the struct device will be returned from the call. 4448 * Any further sysfs files that might be required can be created using this 4449 * pointer. 4450 * 4451 * Returns &struct device pointer on success, or ERR_PTR() on error. 4452 */ 4453 struct device *device_create_with_groups(const struct class *class, 4454 struct device *parent, dev_t devt, 4455 void *drvdata, 4456 const struct attribute_group **groups, 4457 const char *fmt, ...) 4458 { 4459 va_list vargs; 4460 struct device *dev; 4461 4462 va_start(vargs, fmt); 4463 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4464 fmt, vargs); 4465 va_end(vargs); 4466 return dev; 4467 } 4468 EXPORT_SYMBOL_GPL(device_create_with_groups); 4469 4470 /** 4471 * device_destroy - removes a device that was created with device_create() 4472 * @class: pointer to the struct class that this device was registered with 4473 * @devt: the dev_t of the device that was previously registered 4474 * 4475 * This call unregisters and cleans up a device that was created with a 4476 * call to device_create(). 4477 */ 4478 void device_destroy(const struct class *class, dev_t devt) 4479 { 4480 struct device *dev; 4481 4482 dev = class_find_device_by_devt(class, devt); 4483 if (dev) { 4484 put_device(dev); 4485 device_unregister(dev); 4486 } 4487 } 4488 EXPORT_SYMBOL_GPL(device_destroy); 4489 4490 /** 4491 * device_rename - renames a device 4492 * @dev: the pointer to the struct device to be renamed 4493 * @new_name: the new name of the device 4494 * 4495 * It is the responsibility of the caller to provide mutual 4496 * exclusion between two different calls of device_rename 4497 * on the same device to ensure that new_name is valid and 4498 * won't conflict with other devices. 4499 * 4500 * Note: given that some subsystems (networking and infiniband) use this 4501 * function, with no immediate plans for this to change, we cannot assume or 4502 * require that this function not be called at all. 4503 * 4504 * However, if you're writing new code, do not call this function. The following 4505 * text from Kay Sievers offers some insight: 4506 * 4507 * Renaming devices is racy at many levels, symlinks and other stuff are not 4508 * replaced atomically, and you get a "move" uevent, but it's not easy to 4509 * connect the event to the old and new device. Device nodes are not renamed at 4510 * all, there isn't even support for that in the kernel now. 4511 * 4512 * In the meantime, during renaming, your target name might be taken by another 4513 * driver, creating conflicts. Or the old name is taken directly after you 4514 * renamed it -- then you get events for the same DEVPATH, before you even see 4515 * the "move" event. It's just a mess, and nothing new should ever rely on 4516 * kernel device renaming. Besides that, it's not even implemented now for 4517 * other things than (driver-core wise very simple) network devices. 4518 * 4519 * Make up a "real" name in the driver before you register anything, or add 4520 * some other attributes for userspace to find the device, or use udev to add 4521 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4522 * don't even want to get into that and try to implement the missing pieces in 4523 * the core. We really have other pieces to fix in the driver core mess. :) 4524 */ 4525 int device_rename(struct device *dev, const char *new_name) 4526 { 4527 struct subsys_private *sp = NULL; 4528 struct kobject *kobj = &dev->kobj; 4529 char *old_device_name = NULL; 4530 int error; 4531 bool is_link_renamed = false; 4532 4533 dev = get_device(dev); 4534 if (!dev) 4535 return -EINVAL; 4536 4537 dev_dbg(dev, "renaming to %s\n", new_name); 4538 4539 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4540 if (!old_device_name) { 4541 error = -ENOMEM; 4542 goto out; 4543 } 4544 4545 if (dev->class) { 4546 sp = class_to_subsys(dev->class); 4547 4548 if (!sp) { 4549 error = -EINVAL; 4550 goto out; 4551 } 4552 4553 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name, 4554 new_name, kobject_namespace(kobj)); 4555 if (error) 4556 goto out; 4557 4558 is_link_renamed = true; 4559 } 4560 4561 error = kobject_rename(kobj, new_name); 4562 out: 4563 if (error && is_link_renamed) 4564 sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name, 4565 old_device_name, kobject_namespace(kobj)); 4566 subsys_put(sp); 4567 4568 put_device(dev); 4569 4570 kfree(old_device_name); 4571 4572 return error; 4573 } 4574 EXPORT_SYMBOL_GPL(device_rename); 4575 4576 static int device_move_class_links(struct device *dev, 4577 struct device *old_parent, 4578 struct device *new_parent) 4579 { 4580 int error = 0; 4581 4582 if (old_parent) 4583 sysfs_remove_link(&dev->kobj, "device"); 4584 if (new_parent) 4585 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4586 "device"); 4587 return error; 4588 } 4589 4590 /** 4591 * device_move - moves a device to a new parent 4592 * @dev: the pointer to the struct device to be moved 4593 * @new_parent: the new parent of the device (can be NULL) 4594 * @dpm_order: how to reorder the dpm_list 4595 */ 4596 int device_move(struct device *dev, struct device *new_parent, 4597 enum dpm_order dpm_order) 4598 { 4599 int error; 4600 struct device *old_parent; 4601 struct kobject *new_parent_kobj; 4602 4603 dev = get_device(dev); 4604 if (!dev) 4605 return -EINVAL; 4606 4607 device_pm_lock(); 4608 new_parent = get_device(new_parent); 4609 new_parent_kobj = get_device_parent(dev, new_parent); 4610 if (IS_ERR(new_parent_kobj)) { 4611 error = PTR_ERR(new_parent_kobj); 4612 put_device(new_parent); 4613 goto out; 4614 } 4615 4616 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4617 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4618 error = kobject_move(&dev->kobj, new_parent_kobj); 4619 if (error) { 4620 cleanup_glue_dir(dev, new_parent_kobj); 4621 put_device(new_parent); 4622 goto out; 4623 } 4624 old_parent = dev->parent; 4625 dev->parent = new_parent; 4626 if (old_parent) 4627 klist_remove(&dev->p->knode_parent); 4628 if (new_parent) { 4629 klist_add_tail(&dev->p->knode_parent, 4630 &new_parent->p->klist_children); 4631 set_dev_node(dev, dev_to_node(new_parent)); 4632 } 4633 4634 if (dev->class) { 4635 error = device_move_class_links(dev, old_parent, new_parent); 4636 if (error) { 4637 /* We ignore errors on cleanup since we're hosed anyway... */ 4638 device_move_class_links(dev, new_parent, old_parent); 4639 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4640 if (new_parent) 4641 klist_remove(&dev->p->knode_parent); 4642 dev->parent = old_parent; 4643 if (old_parent) { 4644 klist_add_tail(&dev->p->knode_parent, 4645 &old_parent->p->klist_children); 4646 set_dev_node(dev, dev_to_node(old_parent)); 4647 } 4648 } 4649 cleanup_glue_dir(dev, new_parent_kobj); 4650 put_device(new_parent); 4651 goto out; 4652 } 4653 } 4654 switch (dpm_order) { 4655 case DPM_ORDER_NONE: 4656 break; 4657 case DPM_ORDER_DEV_AFTER_PARENT: 4658 device_pm_move_after(dev, new_parent); 4659 devices_kset_move_after(dev, new_parent); 4660 break; 4661 case DPM_ORDER_PARENT_BEFORE_DEV: 4662 device_pm_move_before(new_parent, dev); 4663 devices_kset_move_before(new_parent, dev); 4664 break; 4665 case DPM_ORDER_DEV_LAST: 4666 device_pm_move_last(dev); 4667 devices_kset_move_last(dev); 4668 break; 4669 } 4670 4671 put_device(old_parent); 4672 out: 4673 device_pm_unlock(); 4674 put_device(dev); 4675 return error; 4676 } 4677 EXPORT_SYMBOL_GPL(device_move); 4678 4679 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4680 kgid_t kgid) 4681 { 4682 struct kobject *kobj = &dev->kobj; 4683 const struct class *class = dev->class; 4684 const struct device_type *type = dev->type; 4685 int error; 4686 4687 if (class) { 4688 /* 4689 * Change the device groups of the device class for @dev to 4690 * @kuid/@kgid. 4691 */ 4692 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4693 kgid); 4694 if (error) 4695 return error; 4696 } 4697 4698 if (type) { 4699 /* 4700 * Change the device groups of the device type for @dev to 4701 * @kuid/@kgid. 4702 */ 4703 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4704 kgid); 4705 if (error) 4706 return error; 4707 } 4708 4709 /* Change the device groups of @dev to @kuid/@kgid. */ 4710 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4711 if (error) 4712 return error; 4713 4714 if (device_supports_offline(dev) && !dev->offline_disabled) { 4715 /* Change online device attributes of @dev to @kuid/@kgid. */ 4716 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4717 kuid, kgid); 4718 if (error) 4719 return error; 4720 } 4721 4722 return 0; 4723 } 4724 4725 /** 4726 * device_change_owner - change the owner of an existing device. 4727 * @dev: device. 4728 * @kuid: new owner's kuid 4729 * @kgid: new owner's kgid 4730 * 4731 * This changes the owner of @dev and its corresponding sysfs entries to 4732 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4733 * core. 4734 * 4735 * Returns 0 on success or error code on failure. 4736 */ 4737 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4738 { 4739 int error; 4740 struct kobject *kobj = &dev->kobj; 4741 struct subsys_private *sp; 4742 4743 dev = get_device(dev); 4744 if (!dev) 4745 return -EINVAL; 4746 4747 /* 4748 * Change the kobject and the default attributes and groups of the 4749 * ktype associated with it to @kuid/@kgid. 4750 */ 4751 error = sysfs_change_owner(kobj, kuid, kgid); 4752 if (error) 4753 goto out; 4754 4755 /* 4756 * Change the uevent file for @dev to the new owner. The uevent file 4757 * was created in a separate step when @dev got added and we mirror 4758 * that step here. 4759 */ 4760 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4761 kgid); 4762 if (error) 4763 goto out; 4764 4765 /* 4766 * Change the device groups, the device groups associated with the 4767 * device class, and the groups associated with the device type of @dev 4768 * to @kuid/@kgid. 4769 */ 4770 error = device_attrs_change_owner(dev, kuid, kgid); 4771 if (error) 4772 goto out; 4773 4774 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4775 if (error) 4776 goto out; 4777 4778 /* 4779 * Change the owner of the symlink located in the class directory of 4780 * the device class associated with @dev which points to the actual 4781 * directory entry for @dev to @kuid/@kgid. This ensures that the 4782 * symlink shows the same permissions as its target. 4783 */ 4784 sp = class_to_subsys(dev->class); 4785 if (!sp) { 4786 error = -EINVAL; 4787 goto out; 4788 } 4789 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid); 4790 subsys_put(sp); 4791 4792 out: 4793 put_device(dev); 4794 return error; 4795 } 4796 EXPORT_SYMBOL_GPL(device_change_owner); 4797 4798 /** 4799 * device_shutdown - call ->shutdown() on each device to shutdown. 4800 */ 4801 void device_shutdown(void) 4802 { 4803 struct device *dev, *parent; 4804 4805 wait_for_device_probe(); 4806 device_block_probing(); 4807 4808 cpufreq_suspend(); 4809 4810 spin_lock(&devices_kset->list_lock); 4811 /* 4812 * Walk the devices list backward, shutting down each in turn. 4813 * Beware that device unplug events may also start pulling 4814 * devices offline, even as the system is shutting down. 4815 */ 4816 while (!list_empty(&devices_kset->list)) { 4817 dev = list_entry(devices_kset->list.prev, struct device, 4818 kobj.entry); 4819 4820 /* 4821 * hold reference count of device's parent to 4822 * prevent it from being freed because parent's 4823 * lock is to be held 4824 */ 4825 parent = get_device(dev->parent); 4826 get_device(dev); 4827 /* 4828 * Make sure the device is off the kset list, in the 4829 * event that dev->*->shutdown() doesn't remove it. 4830 */ 4831 list_del_init(&dev->kobj.entry); 4832 spin_unlock(&devices_kset->list_lock); 4833 4834 /* hold lock to avoid race with probe/release */ 4835 if (parent) 4836 device_lock(parent); 4837 device_lock(dev); 4838 4839 /* Don't allow any more runtime suspends */ 4840 pm_runtime_get_noresume(dev); 4841 pm_runtime_barrier(dev); 4842 4843 if (dev->class && dev->class->shutdown_pre) { 4844 if (initcall_debug) 4845 dev_info(dev, "shutdown_pre\n"); 4846 dev->class->shutdown_pre(dev); 4847 } 4848 if (dev->bus && dev->bus->shutdown) { 4849 if (initcall_debug) 4850 dev_info(dev, "shutdown\n"); 4851 dev->bus->shutdown(dev); 4852 } else if (dev->driver && dev->driver->shutdown) { 4853 if (initcall_debug) 4854 dev_info(dev, "shutdown\n"); 4855 dev->driver->shutdown(dev); 4856 } 4857 4858 device_unlock(dev); 4859 if (parent) 4860 device_unlock(parent); 4861 4862 put_device(dev); 4863 put_device(parent); 4864 4865 spin_lock(&devices_kset->list_lock); 4866 } 4867 spin_unlock(&devices_kset->list_lock); 4868 } 4869 4870 /* 4871 * Device logging functions 4872 */ 4873 4874 #ifdef CONFIG_PRINTK 4875 static void 4876 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4877 { 4878 const char *subsys; 4879 4880 memset(dev_info, 0, sizeof(*dev_info)); 4881 4882 if (dev->class) 4883 subsys = dev->class->name; 4884 else if (dev->bus) 4885 subsys = dev->bus->name; 4886 else 4887 return; 4888 4889 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4890 4891 /* 4892 * Add device identifier DEVICE=: 4893 * b12:8 block dev_t 4894 * c127:3 char dev_t 4895 * n8 netdev ifindex 4896 * +sound:card0 subsystem:devname 4897 */ 4898 if (MAJOR(dev->devt)) { 4899 char c; 4900 4901 if (strcmp(subsys, "block") == 0) 4902 c = 'b'; 4903 else 4904 c = 'c'; 4905 4906 snprintf(dev_info->device, sizeof(dev_info->device), 4907 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4908 } else if (strcmp(subsys, "net") == 0) { 4909 struct net_device *net = to_net_dev(dev); 4910 4911 snprintf(dev_info->device, sizeof(dev_info->device), 4912 "n%u", net->ifindex); 4913 } else { 4914 snprintf(dev_info->device, sizeof(dev_info->device), 4915 "+%s:%s", subsys, dev_name(dev)); 4916 } 4917 } 4918 4919 int dev_vprintk_emit(int level, const struct device *dev, 4920 const char *fmt, va_list args) 4921 { 4922 struct dev_printk_info dev_info; 4923 4924 set_dev_info(dev, &dev_info); 4925 4926 return vprintk_emit(0, level, &dev_info, fmt, args); 4927 } 4928 EXPORT_SYMBOL(dev_vprintk_emit); 4929 4930 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4931 { 4932 va_list args; 4933 int r; 4934 4935 va_start(args, fmt); 4936 4937 r = dev_vprintk_emit(level, dev, fmt, args); 4938 4939 va_end(args); 4940 4941 return r; 4942 } 4943 EXPORT_SYMBOL(dev_printk_emit); 4944 4945 static void __dev_printk(const char *level, const struct device *dev, 4946 struct va_format *vaf) 4947 { 4948 if (dev) 4949 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4950 dev_driver_string(dev), dev_name(dev), vaf); 4951 else 4952 printk("%s(NULL device *): %pV", level, vaf); 4953 } 4954 4955 void _dev_printk(const char *level, const struct device *dev, 4956 const char *fmt, ...) 4957 { 4958 struct va_format vaf; 4959 va_list args; 4960 4961 va_start(args, fmt); 4962 4963 vaf.fmt = fmt; 4964 vaf.va = &args; 4965 4966 __dev_printk(level, dev, &vaf); 4967 4968 va_end(args); 4969 } 4970 EXPORT_SYMBOL(_dev_printk); 4971 4972 #define define_dev_printk_level(func, kern_level) \ 4973 void func(const struct device *dev, const char *fmt, ...) \ 4974 { \ 4975 struct va_format vaf; \ 4976 va_list args; \ 4977 \ 4978 va_start(args, fmt); \ 4979 \ 4980 vaf.fmt = fmt; \ 4981 vaf.va = &args; \ 4982 \ 4983 __dev_printk(kern_level, dev, &vaf); \ 4984 \ 4985 va_end(args); \ 4986 } \ 4987 EXPORT_SYMBOL(func); 4988 4989 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4990 define_dev_printk_level(_dev_alert, KERN_ALERT); 4991 define_dev_printk_level(_dev_crit, KERN_CRIT); 4992 define_dev_printk_level(_dev_err, KERN_ERR); 4993 define_dev_printk_level(_dev_warn, KERN_WARNING); 4994 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4995 define_dev_printk_level(_dev_info, KERN_INFO); 4996 4997 #endif 4998 4999 /** 5000 * dev_err_probe - probe error check and log helper 5001 * @dev: the pointer to the struct device 5002 * @err: error value to test 5003 * @fmt: printf-style format string 5004 * @...: arguments as specified in the format string 5005 * 5006 * This helper implements common pattern present in probe functions for error 5007 * checking: print debug or error message depending if the error value is 5008 * -EPROBE_DEFER and propagate error upwards. 5009 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 5010 * checked later by reading devices_deferred debugfs attribute. 5011 * It replaces code sequence:: 5012 * 5013 * if (err != -EPROBE_DEFER) 5014 * dev_err(dev, ...); 5015 * else 5016 * dev_dbg(dev, ...); 5017 * return err; 5018 * 5019 * with:: 5020 * 5021 * return dev_err_probe(dev, err, ...); 5022 * 5023 * Note that it is deemed acceptable to use this function for error 5024 * prints during probe even if the @err is known to never be -EPROBE_DEFER. 5025 * The benefit compared to a normal dev_err() is the standardized format 5026 * of the error code and the fact that the error code is returned. 5027 * 5028 * Returns @err. 5029 * 5030 */ 5031 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 5032 { 5033 struct va_format vaf; 5034 va_list args; 5035 5036 va_start(args, fmt); 5037 vaf.fmt = fmt; 5038 vaf.va = &args; 5039 5040 if (err != -EPROBE_DEFER) { 5041 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5042 } else { 5043 device_set_deferred_probe_reason(dev, &vaf); 5044 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5045 } 5046 5047 va_end(args); 5048 5049 return err; 5050 } 5051 EXPORT_SYMBOL_GPL(dev_err_probe); 5052 5053 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 5054 { 5055 return fwnode && !IS_ERR(fwnode->secondary); 5056 } 5057 5058 /** 5059 * set_primary_fwnode - Change the primary firmware node of a given device. 5060 * @dev: Device to handle. 5061 * @fwnode: New primary firmware node of the device. 5062 * 5063 * Set the device's firmware node pointer to @fwnode, but if a secondary 5064 * firmware node of the device is present, preserve it. 5065 * 5066 * Valid fwnode cases are: 5067 * - primary --> secondary --> -ENODEV 5068 * - primary --> NULL 5069 * - secondary --> -ENODEV 5070 * - NULL 5071 */ 5072 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5073 { 5074 struct device *parent = dev->parent; 5075 struct fwnode_handle *fn = dev->fwnode; 5076 5077 if (fwnode) { 5078 if (fwnode_is_primary(fn)) 5079 fn = fn->secondary; 5080 5081 if (fn) { 5082 WARN_ON(fwnode->secondary); 5083 fwnode->secondary = fn; 5084 } 5085 dev->fwnode = fwnode; 5086 } else { 5087 if (fwnode_is_primary(fn)) { 5088 dev->fwnode = fn->secondary; 5089 5090 /* Skip nullifying fn->secondary if the primary is shared */ 5091 if (parent && fn == parent->fwnode) 5092 return; 5093 5094 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 5095 fn->secondary = NULL; 5096 } else { 5097 dev->fwnode = NULL; 5098 } 5099 } 5100 } 5101 EXPORT_SYMBOL_GPL(set_primary_fwnode); 5102 5103 /** 5104 * set_secondary_fwnode - Change the secondary firmware node of a given device. 5105 * @dev: Device to handle. 5106 * @fwnode: New secondary firmware node of the device. 5107 * 5108 * If a primary firmware node of the device is present, set its secondary 5109 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 5110 * @fwnode. 5111 */ 5112 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5113 { 5114 if (fwnode) 5115 fwnode->secondary = ERR_PTR(-ENODEV); 5116 5117 if (fwnode_is_primary(dev->fwnode)) 5118 dev->fwnode->secondary = fwnode; 5119 else 5120 dev->fwnode = fwnode; 5121 } 5122 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 5123 5124 /** 5125 * device_set_of_node_from_dev - reuse device-tree node of another device 5126 * @dev: device whose device-tree node is being set 5127 * @dev2: device whose device-tree node is being reused 5128 * 5129 * Takes another reference to the new device-tree node after first dropping 5130 * any reference held to the old node. 5131 */ 5132 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 5133 { 5134 of_node_put(dev->of_node); 5135 dev->of_node = of_node_get(dev2->of_node); 5136 dev->of_node_reused = true; 5137 } 5138 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 5139 5140 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 5141 { 5142 dev->fwnode = fwnode; 5143 dev->of_node = to_of_node(fwnode); 5144 } 5145 EXPORT_SYMBOL_GPL(device_set_node); 5146 5147 int device_match_name(struct device *dev, const void *name) 5148 { 5149 return sysfs_streq(dev_name(dev), name); 5150 } 5151 EXPORT_SYMBOL_GPL(device_match_name); 5152 5153 int device_match_of_node(struct device *dev, const void *np) 5154 { 5155 return dev->of_node == np; 5156 } 5157 EXPORT_SYMBOL_GPL(device_match_of_node); 5158 5159 int device_match_fwnode(struct device *dev, const void *fwnode) 5160 { 5161 return dev_fwnode(dev) == fwnode; 5162 } 5163 EXPORT_SYMBOL_GPL(device_match_fwnode); 5164 5165 int device_match_devt(struct device *dev, const void *pdevt) 5166 { 5167 return dev->devt == *(dev_t *)pdevt; 5168 } 5169 EXPORT_SYMBOL_GPL(device_match_devt); 5170 5171 int device_match_acpi_dev(struct device *dev, const void *adev) 5172 { 5173 return ACPI_COMPANION(dev) == adev; 5174 } 5175 EXPORT_SYMBOL(device_match_acpi_dev); 5176 5177 int device_match_acpi_handle(struct device *dev, const void *handle) 5178 { 5179 return ACPI_HANDLE(dev) == handle; 5180 } 5181 EXPORT_SYMBOL(device_match_acpi_handle); 5182 5183 int device_match_any(struct device *dev, const void *unused) 5184 { 5185 return 1; 5186 } 5187 EXPORT_SYMBOL_GPL(device_match_any); 5188