xref: /openbmc/linux/drivers/base/core.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sysfs.h>
31 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
32 
33 #include "base.h"
34 #include "power/power.h"
35 
36 #ifdef CONFIG_SYSFS_DEPRECATED
37 #ifdef CONFIG_SYSFS_DEPRECATED_V2
38 long sysfs_deprecated = 1;
39 #else
40 long sysfs_deprecated = 0;
41 #endif
42 static int __init sysfs_deprecated_setup(char *arg)
43 {
44 	return kstrtol(arg, 10, &sysfs_deprecated);
45 }
46 early_param("sysfs.deprecated", sysfs_deprecated_setup);
47 #endif
48 
49 /* Device links support. */
50 static LIST_HEAD(deferred_sync);
51 static unsigned int defer_sync_state_count = 1;
52 static DEFINE_MUTEX(fwnode_link_lock);
53 static bool fw_devlink_is_permissive(void);
54 static bool fw_devlink_drv_reg_done;
55 
56 /**
57  * fwnode_link_add - Create a link between two fwnode_handles.
58  * @con: Consumer end of the link.
59  * @sup: Supplier end of the link.
60  *
61  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
62  * represents the detail that the firmware lists @sup fwnode as supplying a
63  * resource to @con.
64  *
65  * The driver core will use the fwnode link to create a device link between the
66  * two device objects corresponding to @con and @sup when they are created. The
67  * driver core will automatically delete the fwnode link between @con and @sup
68  * after doing that.
69  *
70  * Attempts to create duplicate links between the same pair of fwnode handles
71  * are ignored and there is no reference counting.
72  */
73 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
74 {
75 	struct fwnode_link *link;
76 	int ret = 0;
77 
78 	mutex_lock(&fwnode_link_lock);
79 
80 	list_for_each_entry(link, &sup->consumers, s_hook)
81 		if (link->consumer == con)
82 			goto out;
83 
84 	link = kzalloc(sizeof(*link), GFP_KERNEL);
85 	if (!link) {
86 		ret = -ENOMEM;
87 		goto out;
88 	}
89 
90 	link->supplier = sup;
91 	INIT_LIST_HEAD(&link->s_hook);
92 	link->consumer = con;
93 	INIT_LIST_HEAD(&link->c_hook);
94 
95 	list_add(&link->s_hook, &sup->consumers);
96 	list_add(&link->c_hook, &con->suppliers);
97 out:
98 	mutex_unlock(&fwnode_link_lock);
99 
100 	return ret;
101 }
102 
103 /**
104  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
105  * @fwnode: fwnode whose supplier links need to be deleted
106  *
107  * Deletes all supplier links connecting directly to @fwnode.
108  */
109 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
110 {
111 	struct fwnode_link *link, *tmp;
112 
113 	mutex_lock(&fwnode_link_lock);
114 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
115 		list_del(&link->s_hook);
116 		list_del(&link->c_hook);
117 		kfree(link);
118 	}
119 	mutex_unlock(&fwnode_link_lock);
120 }
121 
122 /**
123  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
124  * @fwnode: fwnode whose consumer links need to be deleted
125  *
126  * Deletes all consumer links connecting directly to @fwnode.
127  */
128 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
129 {
130 	struct fwnode_link *link, *tmp;
131 
132 	mutex_lock(&fwnode_link_lock);
133 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
134 		list_del(&link->s_hook);
135 		list_del(&link->c_hook);
136 		kfree(link);
137 	}
138 	mutex_unlock(&fwnode_link_lock);
139 }
140 
141 /**
142  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
143  * @fwnode: fwnode whose links needs to be deleted
144  *
145  * Deletes all links connecting directly to a fwnode.
146  */
147 void fwnode_links_purge(struct fwnode_handle *fwnode)
148 {
149 	fwnode_links_purge_suppliers(fwnode);
150 	fwnode_links_purge_consumers(fwnode);
151 }
152 
153 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
154 {
155 	struct fwnode_handle *child;
156 
157 	/* Don't purge consumer links of an added child */
158 	if (fwnode->dev)
159 		return;
160 
161 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
162 	fwnode_links_purge_consumers(fwnode);
163 
164 	fwnode_for_each_available_child_node(fwnode, child)
165 		fw_devlink_purge_absent_suppliers(child);
166 }
167 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
168 
169 #ifdef CONFIG_SRCU
170 static DEFINE_MUTEX(device_links_lock);
171 DEFINE_STATIC_SRCU(device_links_srcu);
172 
173 static inline void device_links_write_lock(void)
174 {
175 	mutex_lock(&device_links_lock);
176 }
177 
178 static inline void device_links_write_unlock(void)
179 {
180 	mutex_unlock(&device_links_lock);
181 }
182 
183 int device_links_read_lock(void) __acquires(&device_links_srcu)
184 {
185 	return srcu_read_lock(&device_links_srcu);
186 }
187 
188 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
189 {
190 	srcu_read_unlock(&device_links_srcu, idx);
191 }
192 
193 int device_links_read_lock_held(void)
194 {
195 	return srcu_read_lock_held(&device_links_srcu);
196 }
197 
198 static void device_link_synchronize_removal(void)
199 {
200 	synchronize_srcu(&device_links_srcu);
201 }
202 
203 static void device_link_remove_from_lists(struct device_link *link)
204 {
205 	list_del_rcu(&link->s_node);
206 	list_del_rcu(&link->c_node);
207 }
208 #else /* !CONFIG_SRCU */
209 static DECLARE_RWSEM(device_links_lock);
210 
211 static inline void device_links_write_lock(void)
212 {
213 	down_write(&device_links_lock);
214 }
215 
216 static inline void device_links_write_unlock(void)
217 {
218 	up_write(&device_links_lock);
219 }
220 
221 int device_links_read_lock(void)
222 {
223 	down_read(&device_links_lock);
224 	return 0;
225 }
226 
227 void device_links_read_unlock(int not_used)
228 {
229 	up_read(&device_links_lock);
230 }
231 
232 #ifdef CONFIG_DEBUG_LOCK_ALLOC
233 int device_links_read_lock_held(void)
234 {
235 	return lockdep_is_held(&device_links_lock);
236 }
237 #endif
238 
239 static inline void device_link_synchronize_removal(void)
240 {
241 }
242 
243 static void device_link_remove_from_lists(struct device_link *link)
244 {
245 	list_del(&link->s_node);
246 	list_del(&link->c_node);
247 }
248 #endif /* !CONFIG_SRCU */
249 
250 static bool device_is_ancestor(struct device *dev, struct device *target)
251 {
252 	while (target->parent) {
253 		target = target->parent;
254 		if (dev == target)
255 			return true;
256 	}
257 	return false;
258 }
259 
260 /**
261  * device_is_dependent - Check if one device depends on another one
262  * @dev: Device to check dependencies for.
263  * @target: Device to check against.
264  *
265  * Check if @target depends on @dev or any device dependent on it (its child or
266  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
267  */
268 int device_is_dependent(struct device *dev, void *target)
269 {
270 	struct device_link *link;
271 	int ret;
272 
273 	/*
274 	 * The "ancestors" check is needed to catch the case when the target
275 	 * device has not been completely initialized yet and it is still
276 	 * missing from the list of children of its parent device.
277 	 */
278 	if (dev == target || device_is_ancestor(dev, target))
279 		return 1;
280 
281 	ret = device_for_each_child(dev, target, device_is_dependent);
282 	if (ret)
283 		return ret;
284 
285 	list_for_each_entry(link, &dev->links.consumers, s_node) {
286 		if ((link->flags & ~DL_FLAG_INFERRED) ==
287 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
288 			continue;
289 
290 		if (link->consumer == target)
291 			return 1;
292 
293 		ret = device_is_dependent(link->consumer, target);
294 		if (ret)
295 			break;
296 	}
297 	return ret;
298 }
299 
300 static void device_link_init_status(struct device_link *link,
301 				    struct device *consumer,
302 				    struct device *supplier)
303 {
304 	switch (supplier->links.status) {
305 	case DL_DEV_PROBING:
306 		switch (consumer->links.status) {
307 		case DL_DEV_PROBING:
308 			/*
309 			 * A consumer driver can create a link to a supplier
310 			 * that has not completed its probing yet as long as it
311 			 * knows that the supplier is already functional (for
312 			 * example, it has just acquired some resources from the
313 			 * supplier).
314 			 */
315 			link->status = DL_STATE_CONSUMER_PROBE;
316 			break;
317 		default:
318 			link->status = DL_STATE_DORMANT;
319 			break;
320 		}
321 		break;
322 	case DL_DEV_DRIVER_BOUND:
323 		switch (consumer->links.status) {
324 		case DL_DEV_PROBING:
325 			link->status = DL_STATE_CONSUMER_PROBE;
326 			break;
327 		case DL_DEV_DRIVER_BOUND:
328 			link->status = DL_STATE_ACTIVE;
329 			break;
330 		default:
331 			link->status = DL_STATE_AVAILABLE;
332 			break;
333 		}
334 		break;
335 	case DL_DEV_UNBINDING:
336 		link->status = DL_STATE_SUPPLIER_UNBIND;
337 		break;
338 	default:
339 		link->status = DL_STATE_DORMANT;
340 		break;
341 	}
342 }
343 
344 static int device_reorder_to_tail(struct device *dev, void *not_used)
345 {
346 	struct device_link *link;
347 
348 	/*
349 	 * Devices that have not been registered yet will be put to the ends
350 	 * of the lists during the registration, so skip them here.
351 	 */
352 	if (device_is_registered(dev))
353 		devices_kset_move_last(dev);
354 
355 	if (device_pm_initialized(dev))
356 		device_pm_move_last(dev);
357 
358 	device_for_each_child(dev, NULL, device_reorder_to_tail);
359 	list_for_each_entry(link, &dev->links.consumers, s_node) {
360 		if ((link->flags & ~DL_FLAG_INFERRED) ==
361 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
362 			continue;
363 		device_reorder_to_tail(link->consumer, NULL);
364 	}
365 
366 	return 0;
367 }
368 
369 /**
370  * device_pm_move_to_tail - Move set of devices to the end of device lists
371  * @dev: Device to move
372  *
373  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
374  *
375  * It moves the @dev along with all of its children and all of its consumers
376  * to the ends of the device_kset and dpm_list, recursively.
377  */
378 void device_pm_move_to_tail(struct device *dev)
379 {
380 	int idx;
381 
382 	idx = device_links_read_lock();
383 	device_pm_lock();
384 	device_reorder_to_tail(dev, NULL);
385 	device_pm_unlock();
386 	device_links_read_unlock(idx);
387 }
388 
389 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
390 
391 static ssize_t status_show(struct device *dev,
392 			   struct device_attribute *attr, char *buf)
393 {
394 	const char *output;
395 
396 	switch (to_devlink(dev)->status) {
397 	case DL_STATE_NONE:
398 		output = "not tracked";
399 		break;
400 	case DL_STATE_DORMANT:
401 		output = "dormant";
402 		break;
403 	case DL_STATE_AVAILABLE:
404 		output = "available";
405 		break;
406 	case DL_STATE_CONSUMER_PROBE:
407 		output = "consumer probing";
408 		break;
409 	case DL_STATE_ACTIVE:
410 		output = "active";
411 		break;
412 	case DL_STATE_SUPPLIER_UNBIND:
413 		output = "supplier unbinding";
414 		break;
415 	default:
416 		output = "unknown";
417 		break;
418 	}
419 
420 	return sysfs_emit(buf, "%s\n", output);
421 }
422 static DEVICE_ATTR_RO(status);
423 
424 static ssize_t auto_remove_on_show(struct device *dev,
425 				   struct device_attribute *attr, char *buf)
426 {
427 	struct device_link *link = to_devlink(dev);
428 	const char *output;
429 
430 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
431 		output = "supplier unbind";
432 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
433 		output = "consumer unbind";
434 	else
435 		output = "never";
436 
437 	return sysfs_emit(buf, "%s\n", output);
438 }
439 static DEVICE_ATTR_RO(auto_remove_on);
440 
441 static ssize_t runtime_pm_show(struct device *dev,
442 			       struct device_attribute *attr, char *buf)
443 {
444 	struct device_link *link = to_devlink(dev);
445 
446 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
447 }
448 static DEVICE_ATTR_RO(runtime_pm);
449 
450 static ssize_t sync_state_only_show(struct device *dev,
451 				    struct device_attribute *attr, char *buf)
452 {
453 	struct device_link *link = to_devlink(dev);
454 
455 	return sysfs_emit(buf, "%d\n",
456 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
457 }
458 static DEVICE_ATTR_RO(sync_state_only);
459 
460 static struct attribute *devlink_attrs[] = {
461 	&dev_attr_status.attr,
462 	&dev_attr_auto_remove_on.attr,
463 	&dev_attr_runtime_pm.attr,
464 	&dev_attr_sync_state_only.attr,
465 	NULL,
466 };
467 ATTRIBUTE_GROUPS(devlink);
468 
469 static void device_link_release_fn(struct work_struct *work)
470 {
471 	struct device_link *link = container_of(work, struct device_link, rm_work);
472 
473 	/* Ensure that all references to the link object have been dropped. */
474 	device_link_synchronize_removal();
475 
476 	while (refcount_dec_not_one(&link->rpm_active))
477 		pm_runtime_put(link->supplier);
478 
479 	put_device(link->consumer);
480 	put_device(link->supplier);
481 	kfree(link);
482 }
483 
484 static void devlink_dev_release(struct device *dev)
485 {
486 	struct device_link *link = to_devlink(dev);
487 
488 	INIT_WORK(&link->rm_work, device_link_release_fn);
489 	/*
490 	 * It may take a while to complete this work because of the SRCU
491 	 * synchronization in device_link_release_fn() and if the consumer or
492 	 * supplier devices get deleted when it runs, so put it into the "long"
493 	 * workqueue.
494 	 */
495 	queue_work(system_long_wq, &link->rm_work);
496 }
497 
498 static struct class devlink_class = {
499 	.name = "devlink",
500 	.owner = THIS_MODULE,
501 	.dev_groups = devlink_groups,
502 	.dev_release = devlink_dev_release,
503 };
504 
505 static int devlink_add_symlinks(struct device *dev,
506 				struct class_interface *class_intf)
507 {
508 	int ret;
509 	size_t len;
510 	struct device_link *link = to_devlink(dev);
511 	struct device *sup = link->supplier;
512 	struct device *con = link->consumer;
513 	char *buf;
514 
515 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
516 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
517 	len += strlen(":");
518 	len += strlen("supplier:") + 1;
519 	buf = kzalloc(len, GFP_KERNEL);
520 	if (!buf)
521 		return -ENOMEM;
522 
523 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
524 	if (ret)
525 		goto out;
526 
527 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
528 	if (ret)
529 		goto err_con;
530 
531 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
532 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
533 	if (ret)
534 		goto err_con_dev;
535 
536 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
537 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
538 	if (ret)
539 		goto err_sup_dev;
540 
541 	goto out;
542 
543 err_sup_dev:
544 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
545 	sysfs_remove_link(&sup->kobj, buf);
546 err_con_dev:
547 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
548 err_con:
549 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
550 out:
551 	kfree(buf);
552 	return ret;
553 }
554 
555 static void devlink_remove_symlinks(struct device *dev,
556 				   struct class_interface *class_intf)
557 {
558 	struct device_link *link = to_devlink(dev);
559 	size_t len;
560 	struct device *sup = link->supplier;
561 	struct device *con = link->consumer;
562 	char *buf;
563 
564 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
565 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
566 
567 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
568 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
569 	len += strlen(":");
570 	len += strlen("supplier:") + 1;
571 	buf = kzalloc(len, GFP_KERNEL);
572 	if (!buf) {
573 		WARN(1, "Unable to properly free device link symlinks!\n");
574 		return;
575 	}
576 
577 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
578 	sysfs_remove_link(&con->kobj, buf);
579 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
580 	sysfs_remove_link(&sup->kobj, buf);
581 	kfree(buf);
582 }
583 
584 static struct class_interface devlink_class_intf = {
585 	.class = &devlink_class,
586 	.add_dev = devlink_add_symlinks,
587 	.remove_dev = devlink_remove_symlinks,
588 };
589 
590 static int __init devlink_class_init(void)
591 {
592 	int ret;
593 
594 	ret = class_register(&devlink_class);
595 	if (ret)
596 		return ret;
597 
598 	ret = class_interface_register(&devlink_class_intf);
599 	if (ret)
600 		class_unregister(&devlink_class);
601 
602 	return ret;
603 }
604 postcore_initcall(devlink_class_init);
605 
606 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
607 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
608 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
609 			       DL_FLAG_SYNC_STATE_ONLY | \
610 			       DL_FLAG_INFERRED)
611 
612 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
613 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
614 
615 /**
616  * device_link_add - Create a link between two devices.
617  * @consumer: Consumer end of the link.
618  * @supplier: Supplier end of the link.
619  * @flags: Link flags.
620  *
621  * The caller is responsible for the proper synchronization of the link creation
622  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
623  * runtime PM framework to take the link into account.  Second, if the
624  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
625  * be forced into the active meta state and reference-counted upon the creation
626  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
627  * ignored.
628  *
629  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
630  * expected to release the link returned by it directly with the help of either
631  * device_link_del() or device_link_remove().
632  *
633  * If that flag is not set, however, the caller of this function is handing the
634  * management of the link over to the driver core entirely and its return value
635  * can only be used to check whether or not the link is present.  In that case,
636  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
637  * flags can be used to indicate to the driver core when the link can be safely
638  * deleted.  Namely, setting one of them in @flags indicates to the driver core
639  * that the link is not going to be used (by the given caller of this function)
640  * after unbinding the consumer or supplier driver, respectively, from its
641  * device, so the link can be deleted at that point.  If none of them is set,
642  * the link will be maintained until one of the devices pointed to by it (either
643  * the consumer or the supplier) is unregistered.
644  *
645  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
646  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
647  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
648  * be used to request the driver core to automatically probe for a consumer
649  * driver after successfully binding a driver to the supplier device.
650  *
651  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
652  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
653  * the same time is invalid and will cause NULL to be returned upfront.
654  * However, if a device link between the given @consumer and @supplier pair
655  * exists already when this function is called for them, the existing link will
656  * be returned regardless of its current type and status (the link's flags may
657  * be modified then).  The caller of this function is then expected to treat
658  * the link as though it has just been created, so (in particular) if
659  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
660  * explicitly when not needed any more (as stated above).
661  *
662  * A side effect of the link creation is re-ordering of dpm_list and the
663  * devices_kset list by moving the consumer device and all devices depending
664  * on it to the ends of these lists (that does not happen to devices that have
665  * not been registered when this function is called).
666  *
667  * The supplier device is required to be registered when this function is called
668  * and NULL will be returned if that is not the case.  The consumer device need
669  * not be registered, however.
670  */
671 struct device_link *device_link_add(struct device *consumer,
672 				    struct device *supplier, u32 flags)
673 {
674 	struct device_link *link;
675 
676 	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
677 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
678 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
679 	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
680 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
681 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
682 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
683 		return NULL;
684 
685 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
686 		if (pm_runtime_get_sync(supplier) < 0) {
687 			pm_runtime_put_noidle(supplier);
688 			return NULL;
689 		}
690 	}
691 
692 	if (!(flags & DL_FLAG_STATELESS))
693 		flags |= DL_FLAG_MANAGED;
694 
695 	device_links_write_lock();
696 	device_pm_lock();
697 
698 	/*
699 	 * If the supplier has not been fully registered yet or there is a
700 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
701 	 * the supplier already in the graph, return NULL. If the link is a
702 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
703 	 * because it only affects sync_state() callbacks.
704 	 */
705 	if (!device_pm_initialized(supplier)
706 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
707 		  device_is_dependent(consumer, supplier))) {
708 		link = NULL;
709 		goto out;
710 	}
711 
712 	/*
713 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
714 	 * So, only create it if the consumer hasn't probed yet.
715 	 */
716 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
717 	    consumer->links.status != DL_DEV_NO_DRIVER &&
718 	    consumer->links.status != DL_DEV_PROBING) {
719 		link = NULL;
720 		goto out;
721 	}
722 
723 	/*
724 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
725 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
726 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
727 	 */
728 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
729 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
730 
731 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
732 		if (link->consumer != consumer)
733 			continue;
734 
735 		if (link->flags & DL_FLAG_INFERRED &&
736 		    !(flags & DL_FLAG_INFERRED))
737 			link->flags &= ~DL_FLAG_INFERRED;
738 
739 		if (flags & DL_FLAG_PM_RUNTIME) {
740 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
741 				pm_runtime_new_link(consumer);
742 				link->flags |= DL_FLAG_PM_RUNTIME;
743 			}
744 			if (flags & DL_FLAG_RPM_ACTIVE)
745 				refcount_inc(&link->rpm_active);
746 		}
747 
748 		if (flags & DL_FLAG_STATELESS) {
749 			kref_get(&link->kref);
750 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
751 			    !(link->flags & DL_FLAG_STATELESS)) {
752 				link->flags |= DL_FLAG_STATELESS;
753 				goto reorder;
754 			} else {
755 				link->flags |= DL_FLAG_STATELESS;
756 				goto out;
757 			}
758 		}
759 
760 		/*
761 		 * If the life time of the link following from the new flags is
762 		 * longer than indicated by the flags of the existing link,
763 		 * update the existing link to stay around longer.
764 		 */
765 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
766 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
767 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
768 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
769 			}
770 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
771 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
772 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
773 		}
774 		if (!(link->flags & DL_FLAG_MANAGED)) {
775 			kref_get(&link->kref);
776 			link->flags |= DL_FLAG_MANAGED;
777 			device_link_init_status(link, consumer, supplier);
778 		}
779 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
780 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
781 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
782 			goto reorder;
783 		}
784 
785 		goto out;
786 	}
787 
788 	link = kzalloc(sizeof(*link), GFP_KERNEL);
789 	if (!link)
790 		goto out;
791 
792 	refcount_set(&link->rpm_active, 1);
793 
794 	get_device(supplier);
795 	link->supplier = supplier;
796 	INIT_LIST_HEAD(&link->s_node);
797 	get_device(consumer);
798 	link->consumer = consumer;
799 	INIT_LIST_HEAD(&link->c_node);
800 	link->flags = flags;
801 	kref_init(&link->kref);
802 
803 	link->link_dev.class = &devlink_class;
804 	device_set_pm_not_required(&link->link_dev);
805 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
806 		     dev_bus_name(supplier), dev_name(supplier),
807 		     dev_bus_name(consumer), dev_name(consumer));
808 	if (device_register(&link->link_dev)) {
809 		put_device(consumer);
810 		put_device(supplier);
811 		kfree(link);
812 		link = NULL;
813 		goto out;
814 	}
815 
816 	if (flags & DL_FLAG_PM_RUNTIME) {
817 		if (flags & DL_FLAG_RPM_ACTIVE)
818 			refcount_inc(&link->rpm_active);
819 
820 		pm_runtime_new_link(consumer);
821 	}
822 
823 	/* Determine the initial link state. */
824 	if (flags & DL_FLAG_STATELESS)
825 		link->status = DL_STATE_NONE;
826 	else
827 		device_link_init_status(link, consumer, supplier);
828 
829 	/*
830 	 * Some callers expect the link creation during consumer driver probe to
831 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
832 	 */
833 	if (link->status == DL_STATE_CONSUMER_PROBE &&
834 	    flags & DL_FLAG_PM_RUNTIME)
835 		pm_runtime_resume(supplier);
836 
837 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
838 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
839 
840 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
841 		dev_dbg(consumer,
842 			"Linked as a sync state only consumer to %s\n",
843 			dev_name(supplier));
844 		goto out;
845 	}
846 
847 reorder:
848 	/*
849 	 * Move the consumer and all of the devices depending on it to the end
850 	 * of dpm_list and the devices_kset list.
851 	 *
852 	 * It is necessary to hold dpm_list locked throughout all that or else
853 	 * we may end up suspending with a wrong ordering of it.
854 	 */
855 	device_reorder_to_tail(consumer, NULL);
856 
857 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
858 
859 out:
860 	device_pm_unlock();
861 	device_links_write_unlock();
862 
863 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
864 		pm_runtime_put(supplier);
865 
866 	return link;
867 }
868 EXPORT_SYMBOL_GPL(device_link_add);
869 
870 static void __device_link_del(struct kref *kref)
871 {
872 	struct device_link *link = container_of(kref, struct device_link, kref);
873 
874 	dev_dbg(link->consumer, "Dropping the link to %s\n",
875 		dev_name(link->supplier));
876 
877 	pm_runtime_drop_link(link);
878 
879 	device_link_remove_from_lists(link);
880 	device_unregister(&link->link_dev);
881 }
882 
883 static void device_link_put_kref(struct device_link *link)
884 {
885 	if (link->flags & DL_FLAG_STATELESS)
886 		kref_put(&link->kref, __device_link_del);
887 	else
888 		WARN(1, "Unable to drop a managed device link reference\n");
889 }
890 
891 /**
892  * device_link_del - Delete a stateless link between two devices.
893  * @link: Device link to delete.
894  *
895  * The caller must ensure proper synchronization of this function with runtime
896  * PM.  If the link was added multiple times, it needs to be deleted as often.
897  * Care is required for hotplugged devices:  Their links are purged on removal
898  * and calling device_link_del() is then no longer allowed.
899  */
900 void device_link_del(struct device_link *link)
901 {
902 	device_links_write_lock();
903 	device_link_put_kref(link);
904 	device_links_write_unlock();
905 }
906 EXPORT_SYMBOL_GPL(device_link_del);
907 
908 /**
909  * device_link_remove - Delete a stateless link between two devices.
910  * @consumer: Consumer end of the link.
911  * @supplier: Supplier end of the link.
912  *
913  * The caller must ensure proper synchronization of this function with runtime
914  * PM.
915  */
916 void device_link_remove(void *consumer, struct device *supplier)
917 {
918 	struct device_link *link;
919 
920 	if (WARN_ON(consumer == supplier))
921 		return;
922 
923 	device_links_write_lock();
924 
925 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
926 		if (link->consumer == consumer) {
927 			device_link_put_kref(link);
928 			break;
929 		}
930 	}
931 
932 	device_links_write_unlock();
933 }
934 EXPORT_SYMBOL_GPL(device_link_remove);
935 
936 static void device_links_missing_supplier(struct device *dev)
937 {
938 	struct device_link *link;
939 
940 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
941 		if (link->status != DL_STATE_CONSUMER_PROBE)
942 			continue;
943 
944 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
945 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
946 		} else {
947 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
948 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
949 		}
950 	}
951 }
952 
953 /**
954  * device_links_check_suppliers - Check presence of supplier drivers.
955  * @dev: Consumer device.
956  *
957  * Check links from this device to any suppliers.  Walk the list of the device's
958  * links to suppliers and see if all of them are available.  If not, simply
959  * return -EPROBE_DEFER.
960  *
961  * We need to guarantee that the supplier will not go away after the check has
962  * been positive here.  It only can go away in __device_release_driver() and
963  * that function  checks the device's links to consumers.  This means we need to
964  * mark the link as "consumer probe in progress" to make the supplier removal
965  * wait for us to complete (or bad things may happen).
966  *
967  * Links without the DL_FLAG_MANAGED flag set are ignored.
968  */
969 int device_links_check_suppliers(struct device *dev)
970 {
971 	struct device_link *link;
972 	int ret = 0;
973 
974 	/*
975 	 * Device waiting for supplier to become available is not allowed to
976 	 * probe.
977 	 */
978 	mutex_lock(&fwnode_link_lock);
979 	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
980 	    !fw_devlink_is_permissive()) {
981 		dev_dbg(dev, "probe deferral - wait for supplier %pfwP\n",
982 			list_first_entry(&dev->fwnode->suppliers,
983 			struct fwnode_link,
984 			c_hook)->supplier);
985 		mutex_unlock(&fwnode_link_lock);
986 		return -EPROBE_DEFER;
987 	}
988 	mutex_unlock(&fwnode_link_lock);
989 
990 	device_links_write_lock();
991 
992 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
993 		if (!(link->flags & DL_FLAG_MANAGED))
994 			continue;
995 
996 		if (link->status != DL_STATE_AVAILABLE &&
997 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
998 			device_links_missing_supplier(dev);
999 			dev_dbg(dev, "probe deferral - supplier %s not ready\n",
1000 				dev_name(link->supplier));
1001 			ret = -EPROBE_DEFER;
1002 			break;
1003 		}
1004 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1005 	}
1006 	dev->links.status = DL_DEV_PROBING;
1007 
1008 	device_links_write_unlock();
1009 	return ret;
1010 }
1011 
1012 /**
1013  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1014  * @dev: Device to call sync_state() on
1015  * @list: List head to queue the @dev on
1016  *
1017  * Queues a device for a sync_state() callback when the device links write lock
1018  * isn't held. This allows the sync_state() execution flow to use device links
1019  * APIs.  The caller must ensure this function is called with
1020  * device_links_write_lock() held.
1021  *
1022  * This function does a get_device() to make sure the device is not freed while
1023  * on this list.
1024  *
1025  * So the caller must also ensure that device_links_flush_sync_list() is called
1026  * as soon as the caller releases device_links_write_lock().  This is necessary
1027  * to make sure the sync_state() is called in a timely fashion and the
1028  * put_device() is called on this device.
1029  */
1030 static void __device_links_queue_sync_state(struct device *dev,
1031 					    struct list_head *list)
1032 {
1033 	struct device_link *link;
1034 
1035 	if (!dev_has_sync_state(dev))
1036 		return;
1037 	if (dev->state_synced)
1038 		return;
1039 
1040 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1041 		if (!(link->flags & DL_FLAG_MANAGED))
1042 			continue;
1043 		if (link->status != DL_STATE_ACTIVE)
1044 			return;
1045 	}
1046 
1047 	/*
1048 	 * Set the flag here to avoid adding the same device to a list more
1049 	 * than once. This can happen if new consumers get added to the device
1050 	 * and probed before the list is flushed.
1051 	 */
1052 	dev->state_synced = true;
1053 
1054 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1055 		return;
1056 
1057 	get_device(dev);
1058 	list_add_tail(&dev->links.defer_sync, list);
1059 }
1060 
1061 /**
1062  * device_links_flush_sync_list - Call sync_state() on a list of devices
1063  * @list: List of devices to call sync_state() on
1064  * @dont_lock_dev: Device for which lock is already held by the caller
1065  *
1066  * Calls sync_state() on all the devices that have been queued for it. This
1067  * function is used in conjunction with __device_links_queue_sync_state(). The
1068  * @dont_lock_dev parameter is useful when this function is called from a
1069  * context where a device lock is already held.
1070  */
1071 static void device_links_flush_sync_list(struct list_head *list,
1072 					 struct device *dont_lock_dev)
1073 {
1074 	struct device *dev, *tmp;
1075 
1076 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1077 		list_del_init(&dev->links.defer_sync);
1078 
1079 		if (dev != dont_lock_dev)
1080 			device_lock(dev);
1081 
1082 		if (dev->bus->sync_state)
1083 			dev->bus->sync_state(dev);
1084 		else if (dev->driver && dev->driver->sync_state)
1085 			dev->driver->sync_state(dev);
1086 
1087 		if (dev != dont_lock_dev)
1088 			device_unlock(dev);
1089 
1090 		put_device(dev);
1091 	}
1092 }
1093 
1094 void device_links_supplier_sync_state_pause(void)
1095 {
1096 	device_links_write_lock();
1097 	defer_sync_state_count++;
1098 	device_links_write_unlock();
1099 }
1100 
1101 void device_links_supplier_sync_state_resume(void)
1102 {
1103 	struct device *dev, *tmp;
1104 	LIST_HEAD(sync_list);
1105 
1106 	device_links_write_lock();
1107 	if (!defer_sync_state_count) {
1108 		WARN(true, "Unmatched sync_state pause/resume!");
1109 		goto out;
1110 	}
1111 	defer_sync_state_count--;
1112 	if (defer_sync_state_count)
1113 		goto out;
1114 
1115 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1116 		/*
1117 		 * Delete from deferred_sync list before queuing it to
1118 		 * sync_list because defer_sync is used for both lists.
1119 		 */
1120 		list_del_init(&dev->links.defer_sync);
1121 		__device_links_queue_sync_state(dev, &sync_list);
1122 	}
1123 out:
1124 	device_links_write_unlock();
1125 
1126 	device_links_flush_sync_list(&sync_list, NULL);
1127 }
1128 
1129 static int sync_state_resume_initcall(void)
1130 {
1131 	device_links_supplier_sync_state_resume();
1132 	return 0;
1133 }
1134 late_initcall(sync_state_resume_initcall);
1135 
1136 static void __device_links_supplier_defer_sync(struct device *sup)
1137 {
1138 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1139 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1140 }
1141 
1142 static void device_link_drop_managed(struct device_link *link)
1143 {
1144 	link->flags &= ~DL_FLAG_MANAGED;
1145 	WRITE_ONCE(link->status, DL_STATE_NONE);
1146 	kref_put(&link->kref, __device_link_del);
1147 }
1148 
1149 static ssize_t waiting_for_supplier_show(struct device *dev,
1150 					 struct device_attribute *attr,
1151 					 char *buf)
1152 {
1153 	bool val;
1154 
1155 	device_lock(dev);
1156 	val = !list_empty(&dev->fwnode->suppliers);
1157 	device_unlock(dev);
1158 	return sysfs_emit(buf, "%u\n", val);
1159 }
1160 static DEVICE_ATTR_RO(waiting_for_supplier);
1161 
1162 /**
1163  * device_links_force_bind - Prepares device to be force bound
1164  * @dev: Consumer device.
1165  *
1166  * device_bind_driver() force binds a device to a driver without calling any
1167  * driver probe functions. So the consumer really isn't going to wait for any
1168  * supplier before it's bound to the driver. We still want the device link
1169  * states to be sensible when this happens.
1170  *
1171  * In preparation for device_bind_driver(), this function goes through each
1172  * supplier device links and checks if the supplier is bound. If it is, then
1173  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1174  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1175  */
1176 void device_links_force_bind(struct device *dev)
1177 {
1178 	struct device_link *link, *ln;
1179 
1180 	device_links_write_lock();
1181 
1182 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1183 		if (!(link->flags & DL_FLAG_MANAGED))
1184 			continue;
1185 
1186 		if (link->status != DL_STATE_AVAILABLE) {
1187 			device_link_drop_managed(link);
1188 			continue;
1189 		}
1190 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1191 	}
1192 	dev->links.status = DL_DEV_PROBING;
1193 
1194 	device_links_write_unlock();
1195 }
1196 
1197 /**
1198  * device_links_driver_bound - Update device links after probing its driver.
1199  * @dev: Device to update the links for.
1200  *
1201  * The probe has been successful, so update links from this device to any
1202  * consumers by changing their status to "available".
1203  *
1204  * Also change the status of @dev's links to suppliers to "active".
1205  *
1206  * Links without the DL_FLAG_MANAGED flag set are ignored.
1207  */
1208 void device_links_driver_bound(struct device *dev)
1209 {
1210 	struct device_link *link, *ln;
1211 	LIST_HEAD(sync_list);
1212 
1213 	/*
1214 	 * If a device binds successfully, it's expected to have created all
1215 	 * the device links it needs to or make new device links as it needs
1216 	 * them. So, fw_devlink no longer needs to create device links to any
1217 	 * of the device's suppliers.
1218 	 *
1219 	 * Also, if a child firmware node of this bound device is not added as
1220 	 * a device by now, assume it is never going to be added and make sure
1221 	 * other devices don't defer probe indefinitely by waiting for such a
1222 	 * child device.
1223 	 */
1224 	if (dev->fwnode && dev->fwnode->dev == dev) {
1225 		struct fwnode_handle *child;
1226 		fwnode_links_purge_suppliers(dev->fwnode);
1227 		fwnode_for_each_available_child_node(dev->fwnode, child)
1228 			fw_devlink_purge_absent_suppliers(child);
1229 	}
1230 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1231 
1232 	device_links_write_lock();
1233 
1234 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1235 		if (!(link->flags & DL_FLAG_MANAGED))
1236 			continue;
1237 
1238 		/*
1239 		 * Links created during consumer probe may be in the "consumer
1240 		 * probe" state to start with if the supplier is still probing
1241 		 * when they are created and they may become "active" if the
1242 		 * consumer probe returns first.  Skip them here.
1243 		 */
1244 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1245 		    link->status == DL_STATE_ACTIVE)
1246 			continue;
1247 
1248 		WARN_ON(link->status != DL_STATE_DORMANT);
1249 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1250 
1251 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1252 			driver_deferred_probe_add(link->consumer);
1253 	}
1254 
1255 	if (defer_sync_state_count)
1256 		__device_links_supplier_defer_sync(dev);
1257 	else
1258 		__device_links_queue_sync_state(dev, &sync_list);
1259 
1260 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1261 		struct device *supplier;
1262 
1263 		if (!(link->flags & DL_FLAG_MANAGED))
1264 			continue;
1265 
1266 		supplier = link->supplier;
1267 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1268 			/*
1269 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1270 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1271 			 * save to drop the managed link completely.
1272 			 */
1273 			device_link_drop_managed(link);
1274 		} else {
1275 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1276 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1277 		}
1278 
1279 		/*
1280 		 * This needs to be done even for the deleted
1281 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1282 		 * device link that was preventing the supplier from getting a
1283 		 * sync_state() call.
1284 		 */
1285 		if (defer_sync_state_count)
1286 			__device_links_supplier_defer_sync(supplier);
1287 		else
1288 			__device_links_queue_sync_state(supplier, &sync_list);
1289 	}
1290 
1291 	dev->links.status = DL_DEV_DRIVER_BOUND;
1292 
1293 	device_links_write_unlock();
1294 
1295 	device_links_flush_sync_list(&sync_list, dev);
1296 }
1297 
1298 /**
1299  * __device_links_no_driver - Update links of a device without a driver.
1300  * @dev: Device without a drvier.
1301  *
1302  * Delete all non-persistent links from this device to any suppliers.
1303  *
1304  * Persistent links stay around, but their status is changed to "available",
1305  * unless they already are in the "supplier unbind in progress" state in which
1306  * case they need not be updated.
1307  *
1308  * Links without the DL_FLAG_MANAGED flag set are ignored.
1309  */
1310 static void __device_links_no_driver(struct device *dev)
1311 {
1312 	struct device_link *link, *ln;
1313 
1314 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1315 		if (!(link->flags & DL_FLAG_MANAGED))
1316 			continue;
1317 
1318 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1319 			device_link_drop_managed(link);
1320 			continue;
1321 		}
1322 
1323 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1324 		    link->status != DL_STATE_ACTIVE)
1325 			continue;
1326 
1327 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1328 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1329 		} else {
1330 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1331 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1332 		}
1333 	}
1334 
1335 	dev->links.status = DL_DEV_NO_DRIVER;
1336 }
1337 
1338 /**
1339  * device_links_no_driver - Update links after failing driver probe.
1340  * @dev: Device whose driver has just failed to probe.
1341  *
1342  * Clean up leftover links to consumers for @dev and invoke
1343  * %__device_links_no_driver() to update links to suppliers for it as
1344  * appropriate.
1345  *
1346  * Links without the DL_FLAG_MANAGED flag set are ignored.
1347  */
1348 void device_links_no_driver(struct device *dev)
1349 {
1350 	struct device_link *link;
1351 
1352 	device_links_write_lock();
1353 
1354 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1355 		if (!(link->flags & DL_FLAG_MANAGED))
1356 			continue;
1357 
1358 		/*
1359 		 * The probe has failed, so if the status of the link is
1360 		 * "consumer probe" or "active", it must have been added by
1361 		 * a probing consumer while this device was still probing.
1362 		 * Change its state to "dormant", as it represents a valid
1363 		 * relationship, but it is not functionally meaningful.
1364 		 */
1365 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1366 		    link->status == DL_STATE_ACTIVE)
1367 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1368 	}
1369 
1370 	__device_links_no_driver(dev);
1371 
1372 	device_links_write_unlock();
1373 }
1374 
1375 /**
1376  * device_links_driver_cleanup - Update links after driver removal.
1377  * @dev: Device whose driver has just gone away.
1378  *
1379  * Update links to consumers for @dev by changing their status to "dormant" and
1380  * invoke %__device_links_no_driver() to update links to suppliers for it as
1381  * appropriate.
1382  *
1383  * Links without the DL_FLAG_MANAGED flag set are ignored.
1384  */
1385 void device_links_driver_cleanup(struct device *dev)
1386 {
1387 	struct device_link *link, *ln;
1388 
1389 	device_links_write_lock();
1390 
1391 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1392 		if (!(link->flags & DL_FLAG_MANAGED))
1393 			continue;
1394 
1395 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1396 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1397 
1398 		/*
1399 		 * autoremove the links between this @dev and its consumer
1400 		 * devices that are not active, i.e. where the link state
1401 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1402 		 */
1403 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1404 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1405 			device_link_drop_managed(link);
1406 
1407 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1408 	}
1409 
1410 	list_del_init(&dev->links.defer_sync);
1411 	__device_links_no_driver(dev);
1412 
1413 	device_links_write_unlock();
1414 }
1415 
1416 /**
1417  * device_links_busy - Check if there are any busy links to consumers.
1418  * @dev: Device to check.
1419  *
1420  * Check each consumer of the device and return 'true' if its link's status
1421  * is one of "consumer probe" or "active" (meaning that the given consumer is
1422  * probing right now or its driver is present).  Otherwise, change the link
1423  * state to "supplier unbind" to prevent the consumer from being probed
1424  * successfully going forward.
1425  *
1426  * Return 'false' if there are no probing or active consumers.
1427  *
1428  * Links without the DL_FLAG_MANAGED flag set are ignored.
1429  */
1430 bool device_links_busy(struct device *dev)
1431 {
1432 	struct device_link *link;
1433 	bool ret = false;
1434 
1435 	device_links_write_lock();
1436 
1437 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1438 		if (!(link->flags & DL_FLAG_MANAGED))
1439 			continue;
1440 
1441 		if (link->status == DL_STATE_CONSUMER_PROBE
1442 		    || link->status == DL_STATE_ACTIVE) {
1443 			ret = true;
1444 			break;
1445 		}
1446 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1447 	}
1448 
1449 	dev->links.status = DL_DEV_UNBINDING;
1450 
1451 	device_links_write_unlock();
1452 	return ret;
1453 }
1454 
1455 /**
1456  * device_links_unbind_consumers - Force unbind consumers of the given device.
1457  * @dev: Device to unbind the consumers of.
1458  *
1459  * Walk the list of links to consumers for @dev and if any of them is in the
1460  * "consumer probe" state, wait for all device probes in progress to complete
1461  * and start over.
1462  *
1463  * If that's not the case, change the status of the link to "supplier unbind"
1464  * and check if the link was in the "active" state.  If so, force the consumer
1465  * driver to unbind and start over (the consumer will not re-probe as we have
1466  * changed the state of the link already).
1467  *
1468  * Links without the DL_FLAG_MANAGED flag set are ignored.
1469  */
1470 void device_links_unbind_consumers(struct device *dev)
1471 {
1472 	struct device_link *link;
1473 
1474  start:
1475 	device_links_write_lock();
1476 
1477 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1478 		enum device_link_state status;
1479 
1480 		if (!(link->flags & DL_FLAG_MANAGED) ||
1481 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1482 			continue;
1483 
1484 		status = link->status;
1485 		if (status == DL_STATE_CONSUMER_PROBE) {
1486 			device_links_write_unlock();
1487 
1488 			wait_for_device_probe();
1489 			goto start;
1490 		}
1491 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1492 		if (status == DL_STATE_ACTIVE) {
1493 			struct device *consumer = link->consumer;
1494 
1495 			get_device(consumer);
1496 
1497 			device_links_write_unlock();
1498 
1499 			device_release_driver_internal(consumer, NULL,
1500 						       consumer->parent);
1501 			put_device(consumer);
1502 			goto start;
1503 		}
1504 	}
1505 
1506 	device_links_write_unlock();
1507 }
1508 
1509 /**
1510  * device_links_purge - Delete existing links to other devices.
1511  * @dev: Target device.
1512  */
1513 static void device_links_purge(struct device *dev)
1514 {
1515 	struct device_link *link, *ln;
1516 
1517 	if (dev->class == &devlink_class)
1518 		return;
1519 
1520 	/*
1521 	 * Delete all of the remaining links from this device to any other
1522 	 * devices (either consumers or suppliers).
1523 	 */
1524 	device_links_write_lock();
1525 
1526 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1527 		WARN_ON(link->status == DL_STATE_ACTIVE);
1528 		__device_link_del(&link->kref);
1529 	}
1530 
1531 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1532 		WARN_ON(link->status != DL_STATE_DORMANT &&
1533 			link->status != DL_STATE_NONE);
1534 		__device_link_del(&link->kref);
1535 	}
1536 
1537 	device_links_write_unlock();
1538 }
1539 
1540 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1541 					 DL_FLAG_SYNC_STATE_ONLY)
1542 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1543 					 DL_FLAG_AUTOPROBE_CONSUMER)
1544 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1545 					 DL_FLAG_PM_RUNTIME)
1546 
1547 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1548 static int __init fw_devlink_setup(char *arg)
1549 {
1550 	if (!arg)
1551 		return -EINVAL;
1552 
1553 	if (strcmp(arg, "off") == 0) {
1554 		fw_devlink_flags = 0;
1555 	} else if (strcmp(arg, "permissive") == 0) {
1556 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1557 	} else if (strcmp(arg, "on") == 0) {
1558 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1559 	} else if (strcmp(arg, "rpm") == 0) {
1560 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1561 	}
1562 	return 0;
1563 }
1564 early_param("fw_devlink", fw_devlink_setup);
1565 
1566 static bool fw_devlink_strict;
1567 static int __init fw_devlink_strict_setup(char *arg)
1568 {
1569 	return strtobool(arg, &fw_devlink_strict);
1570 }
1571 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1572 
1573 u32 fw_devlink_get_flags(void)
1574 {
1575 	return fw_devlink_flags;
1576 }
1577 
1578 static bool fw_devlink_is_permissive(void)
1579 {
1580 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1581 }
1582 
1583 bool fw_devlink_is_strict(void)
1584 {
1585 	return fw_devlink_strict && !fw_devlink_is_permissive();
1586 }
1587 
1588 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1589 {
1590 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1591 		return;
1592 
1593 	fwnode_call_int_op(fwnode, add_links);
1594 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1595 }
1596 
1597 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1598 {
1599 	struct fwnode_handle *child = NULL;
1600 
1601 	fw_devlink_parse_fwnode(fwnode);
1602 
1603 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1604 		fw_devlink_parse_fwtree(child);
1605 }
1606 
1607 static void fw_devlink_relax_link(struct device_link *link)
1608 {
1609 	if (!(link->flags & DL_FLAG_INFERRED))
1610 		return;
1611 
1612 	if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1613 		return;
1614 
1615 	pm_runtime_drop_link(link);
1616 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1617 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1618 		dev_name(link->supplier));
1619 }
1620 
1621 static int fw_devlink_no_driver(struct device *dev, void *data)
1622 {
1623 	struct device_link *link = to_devlink(dev);
1624 
1625 	if (!link->supplier->can_match)
1626 		fw_devlink_relax_link(link);
1627 
1628 	return 0;
1629 }
1630 
1631 void fw_devlink_drivers_done(void)
1632 {
1633 	fw_devlink_drv_reg_done = true;
1634 	device_links_write_lock();
1635 	class_for_each_device(&devlink_class, NULL, NULL,
1636 			      fw_devlink_no_driver);
1637 	device_links_write_unlock();
1638 }
1639 
1640 static void fw_devlink_unblock_consumers(struct device *dev)
1641 {
1642 	struct device_link *link;
1643 
1644 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1645 		return;
1646 
1647 	device_links_write_lock();
1648 	list_for_each_entry(link, &dev->links.consumers, s_node)
1649 		fw_devlink_relax_link(link);
1650 	device_links_write_unlock();
1651 }
1652 
1653 /**
1654  * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1655  * @con: Device to check dependencies for.
1656  * @sup: Device to check against.
1657  *
1658  * Check if @sup depends on @con or any device dependent on it (its child or
1659  * its consumer etc).  When such a cyclic dependency is found, convert all
1660  * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1661  * This is the equivalent of doing fw_devlink=permissive just between the
1662  * devices in the cycle. We need to do this because, at this point, fw_devlink
1663  * can't tell which of these dependencies is not a real dependency.
1664  *
1665  * Return 1 if a cycle is found. Otherwise, return 0.
1666  */
1667 static int fw_devlink_relax_cycle(struct device *con, void *sup)
1668 {
1669 	struct device_link *link;
1670 	int ret;
1671 
1672 	if (con == sup)
1673 		return 1;
1674 
1675 	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1676 	if (ret)
1677 		return ret;
1678 
1679 	list_for_each_entry(link, &con->links.consumers, s_node) {
1680 		if ((link->flags & ~DL_FLAG_INFERRED) ==
1681 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1682 			continue;
1683 
1684 		if (!fw_devlink_relax_cycle(link->consumer, sup))
1685 			continue;
1686 
1687 		ret = 1;
1688 
1689 		fw_devlink_relax_link(link);
1690 	}
1691 	return ret;
1692 }
1693 
1694 /**
1695  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1696  * @con: consumer device for the device link
1697  * @sup_handle: fwnode handle of supplier
1698  * @flags: devlink flags
1699  *
1700  * This function will try to create a device link between the consumer device
1701  * @con and the supplier device represented by @sup_handle.
1702  *
1703  * The supplier has to be provided as a fwnode because incorrect cycles in
1704  * fwnode links can sometimes cause the supplier device to never be created.
1705  * This function detects such cases and returns an error if it cannot create a
1706  * device link from the consumer to a missing supplier.
1707  *
1708  * Returns,
1709  * 0 on successfully creating a device link
1710  * -EINVAL if the device link cannot be created as expected
1711  * -EAGAIN if the device link cannot be created right now, but it may be
1712  *  possible to do that in the future
1713  */
1714 static int fw_devlink_create_devlink(struct device *con,
1715 				     struct fwnode_handle *sup_handle, u32 flags)
1716 {
1717 	struct device *sup_dev;
1718 	int ret = 0;
1719 
1720 	sup_dev = get_dev_from_fwnode(sup_handle);
1721 	if (sup_dev) {
1722 		/*
1723 		 * If it's one of those drivers that don't actually bind to
1724 		 * their device using driver core, then don't wait on this
1725 		 * supplier device indefinitely.
1726 		 */
1727 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1728 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1729 			ret = -EINVAL;
1730 			goto out;
1731 		}
1732 
1733 		/*
1734 		 * If this fails, it is due to cycles in device links.  Just
1735 		 * give up on this link and treat it as invalid.
1736 		 */
1737 		if (!device_link_add(con, sup_dev, flags) &&
1738 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1739 			dev_info(con, "Fixing up cyclic dependency with %s\n",
1740 				 dev_name(sup_dev));
1741 			device_links_write_lock();
1742 			fw_devlink_relax_cycle(con, sup_dev);
1743 			device_links_write_unlock();
1744 			device_link_add(con, sup_dev,
1745 					FW_DEVLINK_FLAGS_PERMISSIVE);
1746 			ret = -EINVAL;
1747 		}
1748 
1749 		goto out;
1750 	}
1751 
1752 	/* Supplier that's already initialized without a struct device. */
1753 	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1754 		return -EINVAL;
1755 
1756 	/*
1757 	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1758 	 * cycles. So cycle detection isn't necessary and shouldn't be
1759 	 * done.
1760 	 */
1761 	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1762 		return -EAGAIN;
1763 
1764 	/*
1765 	 * If we can't find the supplier device from its fwnode, it might be
1766 	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1767 	 * be broken by applying logic. Check for these types of cycles and
1768 	 * break them so that devices in the cycle probe properly.
1769 	 *
1770 	 * If the supplier's parent is dependent on the consumer, then
1771 	 * the consumer-supplier dependency is a false dependency. So,
1772 	 * treat it as an invalid link.
1773 	 */
1774 	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1775 	if (sup_dev && device_is_dependent(con, sup_dev)) {
1776 		dev_dbg(con, "Not linking to %pfwP - False link\n",
1777 			sup_handle);
1778 		ret = -EINVAL;
1779 	} else {
1780 		/*
1781 		 * Can't check for cycles or no cycles. So let's try
1782 		 * again later.
1783 		 */
1784 		ret = -EAGAIN;
1785 	}
1786 
1787 out:
1788 	put_device(sup_dev);
1789 	return ret;
1790 }
1791 
1792 /**
1793  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1794  * @dev: Device that needs to be linked to its consumers
1795  *
1796  * This function looks at all the consumer fwnodes of @dev and creates device
1797  * links between the consumer device and @dev (supplier).
1798  *
1799  * If the consumer device has not been added yet, then this function creates a
1800  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1801  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1802  * sync_state() callback before the real consumer device gets to be added and
1803  * then probed.
1804  *
1805  * Once device links are created from the real consumer to @dev (supplier), the
1806  * fwnode links are deleted.
1807  */
1808 static void __fw_devlink_link_to_consumers(struct device *dev)
1809 {
1810 	struct fwnode_handle *fwnode = dev->fwnode;
1811 	struct fwnode_link *link, *tmp;
1812 
1813 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1814 		u32 dl_flags = fw_devlink_get_flags();
1815 		struct device *con_dev;
1816 		bool own_link = true;
1817 		int ret;
1818 
1819 		con_dev = get_dev_from_fwnode(link->consumer);
1820 		/*
1821 		 * If consumer device is not available yet, make a "proxy"
1822 		 * SYNC_STATE_ONLY link from the consumer's parent device to
1823 		 * the supplier device. This is necessary to make sure the
1824 		 * supplier doesn't get a sync_state() callback before the real
1825 		 * consumer can create a device link to the supplier.
1826 		 *
1827 		 * This proxy link step is needed to handle the case where the
1828 		 * consumer's parent device is added before the supplier.
1829 		 */
1830 		if (!con_dev) {
1831 			con_dev = fwnode_get_next_parent_dev(link->consumer);
1832 			/*
1833 			 * However, if the consumer's parent device is also the
1834 			 * parent of the supplier, don't create a
1835 			 * consumer-supplier link from the parent to its child
1836 			 * device. Such a dependency is impossible.
1837 			 */
1838 			if (con_dev &&
1839 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1840 				put_device(con_dev);
1841 				con_dev = NULL;
1842 			} else {
1843 				own_link = false;
1844 				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1845 			}
1846 		}
1847 
1848 		if (!con_dev)
1849 			continue;
1850 
1851 		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1852 		put_device(con_dev);
1853 		if (!own_link || ret == -EAGAIN)
1854 			continue;
1855 
1856 		list_del(&link->s_hook);
1857 		list_del(&link->c_hook);
1858 		kfree(link);
1859 	}
1860 }
1861 
1862 /**
1863  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1864  * @dev: The consumer device that needs to be linked to its suppliers
1865  * @fwnode: Root of the fwnode tree that is used to create device links
1866  *
1867  * This function looks at all the supplier fwnodes of fwnode tree rooted at
1868  * @fwnode and creates device links between @dev (consumer) and all the
1869  * supplier devices of the entire fwnode tree at @fwnode.
1870  *
1871  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1872  * and the real suppliers of @dev. Once these device links are created, the
1873  * fwnode links are deleted. When such device links are successfully created,
1874  * this function is called recursively on those supplier devices. This is
1875  * needed to detect and break some invalid cycles in fwnode links.  See
1876  * fw_devlink_create_devlink() for more details.
1877  *
1878  * In addition, it also looks at all the suppliers of the entire fwnode tree
1879  * because some of the child devices of @dev that have not been added yet
1880  * (because @dev hasn't probed) might already have their suppliers added to
1881  * driver core. So, this function creates SYNC_STATE_ONLY device links between
1882  * @dev (consumer) and these suppliers to make sure they don't execute their
1883  * sync_state() callbacks before these child devices have a chance to create
1884  * their device links. The fwnode links that correspond to the child devices
1885  * aren't delete because they are needed later to create the device links
1886  * between the real consumer and supplier devices.
1887  */
1888 static void __fw_devlink_link_to_suppliers(struct device *dev,
1889 					   struct fwnode_handle *fwnode)
1890 {
1891 	bool own_link = (dev->fwnode == fwnode);
1892 	struct fwnode_link *link, *tmp;
1893 	struct fwnode_handle *child = NULL;
1894 	u32 dl_flags;
1895 
1896 	if (own_link)
1897 		dl_flags = fw_devlink_get_flags();
1898 	else
1899 		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1900 
1901 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1902 		int ret;
1903 		struct device *sup_dev;
1904 		struct fwnode_handle *sup = link->supplier;
1905 
1906 		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1907 		if (!own_link || ret == -EAGAIN)
1908 			continue;
1909 
1910 		list_del(&link->s_hook);
1911 		list_del(&link->c_hook);
1912 		kfree(link);
1913 
1914 		/* If no device link was created, nothing more to do. */
1915 		if (ret)
1916 			continue;
1917 
1918 		/*
1919 		 * If a device link was successfully created to a supplier, we
1920 		 * now need to try and link the supplier to all its suppliers.
1921 		 *
1922 		 * This is needed to detect and delete false dependencies in
1923 		 * fwnode links that haven't been converted to a device link
1924 		 * yet. See comments in fw_devlink_create_devlink() for more
1925 		 * details on the false dependency.
1926 		 *
1927 		 * Without deleting these false dependencies, some devices will
1928 		 * never probe because they'll keep waiting for their false
1929 		 * dependency fwnode links to be converted to device links.
1930 		 */
1931 		sup_dev = get_dev_from_fwnode(sup);
1932 		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1933 		put_device(sup_dev);
1934 	}
1935 
1936 	/*
1937 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1938 	 * all the descendants. This proxy link step is needed to handle the
1939 	 * case where the supplier is added before the consumer's parent device
1940 	 * (@dev).
1941 	 */
1942 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1943 		__fw_devlink_link_to_suppliers(dev, child);
1944 }
1945 
1946 static void fw_devlink_link_device(struct device *dev)
1947 {
1948 	struct fwnode_handle *fwnode = dev->fwnode;
1949 
1950 	if (!fw_devlink_flags)
1951 		return;
1952 
1953 	fw_devlink_parse_fwtree(fwnode);
1954 
1955 	mutex_lock(&fwnode_link_lock);
1956 	__fw_devlink_link_to_consumers(dev);
1957 	__fw_devlink_link_to_suppliers(dev, fwnode);
1958 	mutex_unlock(&fwnode_link_lock);
1959 }
1960 
1961 /* Device links support end. */
1962 
1963 int (*platform_notify)(struct device *dev) = NULL;
1964 int (*platform_notify_remove)(struct device *dev) = NULL;
1965 static struct kobject *dev_kobj;
1966 struct kobject *sysfs_dev_char_kobj;
1967 struct kobject *sysfs_dev_block_kobj;
1968 
1969 static DEFINE_MUTEX(device_hotplug_lock);
1970 
1971 void lock_device_hotplug(void)
1972 {
1973 	mutex_lock(&device_hotplug_lock);
1974 }
1975 
1976 void unlock_device_hotplug(void)
1977 {
1978 	mutex_unlock(&device_hotplug_lock);
1979 }
1980 
1981 int lock_device_hotplug_sysfs(void)
1982 {
1983 	if (mutex_trylock(&device_hotplug_lock))
1984 		return 0;
1985 
1986 	/* Avoid busy looping (5 ms of sleep should do). */
1987 	msleep(5);
1988 	return restart_syscall();
1989 }
1990 
1991 #ifdef CONFIG_BLOCK
1992 static inline int device_is_not_partition(struct device *dev)
1993 {
1994 	return !(dev->type == &part_type);
1995 }
1996 #else
1997 static inline int device_is_not_partition(struct device *dev)
1998 {
1999 	return 1;
2000 }
2001 #endif
2002 
2003 static int
2004 device_platform_notify(struct device *dev, enum kobject_action action)
2005 {
2006 	int ret;
2007 
2008 	ret = acpi_platform_notify(dev, action);
2009 	if (ret)
2010 		return ret;
2011 
2012 	ret = software_node_notify(dev, action);
2013 	if (ret)
2014 		return ret;
2015 
2016 	if (platform_notify && action == KOBJ_ADD)
2017 		platform_notify(dev);
2018 	else if (platform_notify_remove && action == KOBJ_REMOVE)
2019 		platform_notify_remove(dev);
2020 	return 0;
2021 }
2022 
2023 /**
2024  * dev_driver_string - Return a device's driver name, if at all possible
2025  * @dev: struct device to get the name of
2026  *
2027  * Will return the device's driver's name if it is bound to a device.  If
2028  * the device is not bound to a driver, it will return the name of the bus
2029  * it is attached to.  If it is not attached to a bus either, an empty
2030  * string will be returned.
2031  */
2032 const char *dev_driver_string(const struct device *dev)
2033 {
2034 	struct device_driver *drv;
2035 
2036 	/* dev->driver can change to NULL underneath us because of unbinding,
2037 	 * so be careful about accessing it.  dev->bus and dev->class should
2038 	 * never change once they are set, so they don't need special care.
2039 	 */
2040 	drv = READ_ONCE(dev->driver);
2041 	return drv ? drv->name : dev_bus_name(dev);
2042 }
2043 EXPORT_SYMBOL(dev_driver_string);
2044 
2045 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2046 
2047 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2048 			     char *buf)
2049 {
2050 	struct device_attribute *dev_attr = to_dev_attr(attr);
2051 	struct device *dev = kobj_to_dev(kobj);
2052 	ssize_t ret = -EIO;
2053 
2054 	if (dev_attr->show)
2055 		ret = dev_attr->show(dev, dev_attr, buf);
2056 	if (ret >= (ssize_t)PAGE_SIZE) {
2057 		printk("dev_attr_show: %pS returned bad count\n",
2058 				dev_attr->show);
2059 	}
2060 	return ret;
2061 }
2062 
2063 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2064 			      const char *buf, size_t count)
2065 {
2066 	struct device_attribute *dev_attr = to_dev_attr(attr);
2067 	struct device *dev = kobj_to_dev(kobj);
2068 	ssize_t ret = -EIO;
2069 
2070 	if (dev_attr->store)
2071 		ret = dev_attr->store(dev, dev_attr, buf, count);
2072 	return ret;
2073 }
2074 
2075 static const struct sysfs_ops dev_sysfs_ops = {
2076 	.show	= dev_attr_show,
2077 	.store	= dev_attr_store,
2078 };
2079 
2080 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2081 
2082 ssize_t device_store_ulong(struct device *dev,
2083 			   struct device_attribute *attr,
2084 			   const char *buf, size_t size)
2085 {
2086 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2087 	int ret;
2088 	unsigned long new;
2089 
2090 	ret = kstrtoul(buf, 0, &new);
2091 	if (ret)
2092 		return ret;
2093 	*(unsigned long *)(ea->var) = new;
2094 	/* Always return full write size even if we didn't consume all */
2095 	return size;
2096 }
2097 EXPORT_SYMBOL_GPL(device_store_ulong);
2098 
2099 ssize_t device_show_ulong(struct device *dev,
2100 			  struct device_attribute *attr,
2101 			  char *buf)
2102 {
2103 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2104 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2105 }
2106 EXPORT_SYMBOL_GPL(device_show_ulong);
2107 
2108 ssize_t device_store_int(struct device *dev,
2109 			 struct device_attribute *attr,
2110 			 const char *buf, size_t size)
2111 {
2112 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2113 	int ret;
2114 	long new;
2115 
2116 	ret = kstrtol(buf, 0, &new);
2117 	if (ret)
2118 		return ret;
2119 
2120 	if (new > INT_MAX || new < INT_MIN)
2121 		return -EINVAL;
2122 	*(int *)(ea->var) = new;
2123 	/* Always return full write size even if we didn't consume all */
2124 	return size;
2125 }
2126 EXPORT_SYMBOL_GPL(device_store_int);
2127 
2128 ssize_t device_show_int(struct device *dev,
2129 			struct device_attribute *attr,
2130 			char *buf)
2131 {
2132 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2133 
2134 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2135 }
2136 EXPORT_SYMBOL_GPL(device_show_int);
2137 
2138 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2139 			  const char *buf, size_t size)
2140 {
2141 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2142 
2143 	if (strtobool(buf, ea->var) < 0)
2144 		return -EINVAL;
2145 
2146 	return size;
2147 }
2148 EXPORT_SYMBOL_GPL(device_store_bool);
2149 
2150 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2151 			 char *buf)
2152 {
2153 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2154 
2155 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2156 }
2157 EXPORT_SYMBOL_GPL(device_show_bool);
2158 
2159 /**
2160  * device_release - free device structure.
2161  * @kobj: device's kobject.
2162  *
2163  * This is called once the reference count for the object
2164  * reaches 0. We forward the call to the device's release
2165  * method, which should handle actually freeing the structure.
2166  */
2167 static void device_release(struct kobject *kobj)
2168 {
2169 	struct device *dev = kobj_to_dev(kobj);
2170 	struct device_private *p = dev->p;
2171 
2172 	/*
2173 	 * Some platform devices are driven without driver attached
2174 	 * and managed resources may have been acquired.  Make sure
2175 	 * all resources are released.
2176 	 *
2177 	 * Drivers still can add resources into device after device
2178 	 * is deleted but alive, so release devres here to avoid
2179 	 * possible memory leak.
2180 	 */
2181 	devres_release_all(dev);
2182 
2183 	kfree(dev->dma_range_map);
2184 
2185 	if (dev->release)
2186 		dev->release(dev);
2187 	else if (dev->type && dev->type->release)
2188 		dev->type->release(dev);
2189 	else if (dev->class && dev->class->dev_release)
2190 		dev->class->dev_release(dev);
2191 	else
2192 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2193 			dev_name(dev));
2194 	kfree(p);
2195 }
2196 
2197 static const void *device_namespace(struct kobject *kobj)
2198 {
2199 	struct device *dev = kobj_to_dev(kobj);
2200 	const void *ns = NULL;
2201 
2202 	if (dev->class && dev->class->ns_type)
2203 		ns = dev->class->namespace(dev);
2204 
2205 	return ns;
2206 }
2207 
2208 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2209 {
2210 	struct device *dev = kobj_to_dev(kobj);
2211 
2212 	if (dev->class && dev->class->get_ownership)
2213 		dev->class->get_ownership(dev, uid, gid);
2214 }
2215 
2216 static struct kobj_type device_ktype = {
2217 	.release	= device_release,
2218 	.sysfs_ops	= &dev_sysfs_ops,
2219 	.namespace	= device_namespace,
2220 	.get_ownership	= device_get_ownership,
2221 };
2222 
2223 
2224 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
2225 {
2226 	struct kobj_type *ktype = get_ktype(kobj);
2227 
2228 	if (ktype == &device_ktype) {
2229 		struct device *dev = kobj_to_dev(kobj);
2230 		if (dev->bus)
2231 			return 1;
2232 		if (dev->class)
2233 			return 1;
2234 	}
2235 	return 0;
2236 }
2237 
2238 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2239 {
2240 	struct device *dev = kobj_to_dev(kobj);
2241 
2242 	if (dev->bus)
2243 		return dev->bus->name;
2244 	if (dev->class)
2245 		return dev->class->name;
2246 	return NULL;
2247 }
2248 
2249 static int dev_uevent(struct kset *kset, struct kobject *kobj,
2250 		      struct kobj_uevent_env *env)
2251 {
2252 	struct device *dev = kobj_to_dev(kobj);
2253 	int retval = 0;
2254 
2255 	/* add device node properties if present */
2256 	if (MAJOR(dev->devt)) {
2257 		const char *tmp;
2258 		const char *name;
2259 		umode_t mode = 0;
2260 		kuid_t uid = GLOBAL_ROOT_UID;
2261 		kgid_t gid = GLOBAL_ROOT_GID;
2262 
2263 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2264 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2265 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2266 		if (name) {
2267 			add_uevent_var(env, "DEVNAME=%s", name);
2268 			if (mode)
2269 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2270 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2271 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2272 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2273 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2274 			kfree(tmp);
2275 		}
2276 	}
2277 
2278 	if (dev->type && dev->type->name)
2279 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2280 
2281 	if (dev->driver)
2282 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2283 
2284 	/* Add common DT information about the device */
2285 	of_device_uevent(dev, env);
2286 
2287 	/* have the bus specific function add its stuff */
2288 	if (dev->bus && dev->bus->uevent) {
2289 		retval = dev->bus->uevent(dev, env);
2290 		if (retval)
2291 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2292 				 dev_name(dev), __func__, retval);
2293 	}
2294 
2295 	/* have the class specific function add its stuff */
2296 	if (dev->class && dev->class->dev_uevent) {
2297 		retval = dev->class->dev_uevent(dev, env);
2298 		if (retval)
2299 			pr_debug("device: '%s': %s: class uevent() "
2300 				 "returned %d\n", dev_name(dev),
2301 				 __func__, retval);
2302 	}
2303 
2304 	/* have the device type specific function add its stuff */
2305 	if (dev->type && dev->type->uevent) {
2306 		retval = dev->type->uevent(dev, env);
2307 		if (retval)
2308 			pr_debug("device: '%s': %s: dev_type uevent() "
2309 				 "returned %d\n", dev_name(dev),
2310 				 __func__, retval);
2311 	}
2312 
2313 	return retval;
2314 }
2315 
2316 static const struct kset_uevent_ops device_uevent_ops = {
2317 	.filter =	dev_uevent_filter,
2318 	.name =		dev_uevent_name,
2319 	.uevent =	dev_uevent,
2320 };
2321 
2322 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2323 			   char *buf)
2324 {
2325 	struct kobject *top_kobj;
2326 	struct kset *kset;
2327 	struct kobj_uevent_env *env = NULL;
2328 	int i;
2329 	int len = 0;
2330 	int retval;
2331 
2332 	/* search the kset, the device belongs to */
2333 	top_kobj = &dev->kobj;
2334 	while (!top_kobj->kset && top_kobj->parent)
2335 		top_kobj = top_kobj->parent;
2336 	if (!top_kobj->kset)
2337 		goto out;
2338 
2339 	kset = top_kobj->kset;
2340 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2341 		goto out;
2342 
2343 	/* respect filter */
2344 	if (kset->uevent_ops && kset->uevent_ops->filter)
2345 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
2346 			goto out;
2347 
2348 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2349 	if (!env)
2350 		return -ENOMEM;
2351 
2352 	/* let the kset specific function add its keys */
2353 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2354 	if (retval)
2355 		goto out;
2356 
2357 	/* copy keys to file */
2358 	for (i = 0; i < env->envp_idx; i++)
2359 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2360 out:
2361 	kfree(env);
2362 	return len;
2363 }
2364 
2365 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2366 			    const char *buf, size_t count)
2367 {
2368 	int rc;
2369 
2370 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2371 
2372 	if (rc) {
2373 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
2374 		return rc;
2375 	}
2376 
2377 	return count;
2378 }
2379 static DEVICE_ATTR_RW(uevent);
2380 
2381 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2382 			   char *buf)
2383 {
2384 	bool val;
2385 
2386 	device_lock(dev);
2387 	val = !dev->offline;
2388 	device_unlock(dev);
2389 	return sysfs_emit(buf, "%u\n", val);
2390 }
2391 
2392 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2393 			    const char *buf, size_t count)
2394 {
2395 	bool val;
2396 	int ret;
2397 
2398 	ret = strtobool(buf, &val);
2399 	if (ret < 0)
2400 		return ret;
2401 
2402 	ret = lock_device_hotplug_sysfs();
2403 	if (ret)
2404 		return ret;
2405 
2406 	ret = val ? device_online(dev) : device_offline(dev);
2407 	unlock_device_hotplug();
2408 	return ret < 0 ? ret : count;
2409 }
2410 static DEVICE_ATTR_RW(online);
2411 
2412 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2413 			      char *buf)
2414 {
2415 	const char *loc;
2416 
2417 	switch (dev->removable) {
2418 	case DEVICE_REMOVABLE:
2419 		loc = "removable";
2420 		break;
2421 	case DEVICE_FIXED:
2422 		loc = "fixed";
2423 		break;
2424 	default:
2425 		loc = "unknown";
2426 	}
2427 	return sysfs_emit(buf, "%s\n", loc);
2428 }
2429 static DEVICE_ATTR_RO(removable);
2430 
2431 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2432 {
2433 	return sysfs_create_groups(&dev->kobj, groups);
2434 }
2435 EXPORT_SYMBOL_GPL(device_add_groups);
2436 
2437 void device_remove_groups(struct device *dev,
2438 			  const struct attribute_group **groups)
2439 {
2440 	sysfs_remove_groups(&dev->kobj, groups);
2441 }
2442 EXPORT_SYMBOL_GPL(device_remove_groups);
2443 
2444 union device_attr_group_devres {
2445 	const struct attribute_group *group;
2446 	const struct attribute_group **groups;
2447 };
2448 
2449 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2450 {
2451 	return ((union device_attr_group_devres *)res)->group == data;
2452 }
2453 
2454 static void devm_attr_group_remove(struct device *dev, void *res)
2455 {
2456 	union device_attr_group_devres *devres = res;
2457 	const struct attribute_group *group = devres->group;
2458 
2459 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2460 	sysfs_remove_group(&dev->kobj, group);
2461 }
2462 
2463 static void devm_attr_groups_remove(struct device *dev, void *res)
2464 {
2465 	union device_attr_group_devres *devres = res;
2466 	const struct attribute_group **groups = devres->groups;
2467 
2468 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2469 	sysfs_remove_groups(&dev->kobj, groups);
2470 }
2471 
2472 /**
2473  * devm_device_add_group - given a device, create a managed attribute group
2474  * @dev:	The device to create the group for
2475  * @grp:	The attribute group to create
2476  *
2477  * This function creates a group for the first time.  It will explicitly
2478  * warn and error if any of the attribute files being created already exist.
2479  *
2480  * Returns 0 on success or error code on failure.
2481  */
2482 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2483 {
2484 	union device_attr_group_devres *devres;
2485 	int error;
2486 
2487 	devres = devres_alloc(devm_attr_group_remove,
2488 			      sizeof(*devres), GFP_KERNEL);
2489 	if (!devres)
2490 		return -ENOMEM;
2491 
2492 	error = sysfs_create_group(&dev->kobj, grp);
2493 	if (error) {
2494 		devres_free(devres);
2495 		return error;
2496 	}
2497 
2498 	devres->group = grp;
2499 	devres_add(dev, devres);
2500 	return 0;
2501 }
2502 EXPORT_SYMBOL_GPL(devm_device_add_group);
2503 
2504 /**
2505  * devm_device_remove_group: remove a managed group from a device
2506  * @dev:	device to remove the group from
2507  * @grp:	group to remove
2508  *
2509  * This function removes a group of attributes from a device. The attributes
2510  * previously have to have been created for this group, otherwise it will fail.
2511  */
2512 void devm_device_remove_group(struct device *dev,
2513 			      const struct attribute_group *grp)
2514 {
2515 	WARN_ON(devres_release(dev, devm_attr_group_remove,
2516 			       devm_attr_group_match,
2517 			       /* cast away const */ (void *)grp));
2518 }
2519 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2520 
2521 /**
2522  * devm_device_add_groups - create a bunch of managed attribute groups
2523  * @dev:	The device to create the group for
2524  * @groups:	The attribute groups to create, NULL terminated
2525  *
2526  * This function creates a bunch of managed attribute groups.  If an error
2527  * occurs when creating a group, all previously created groups will be
2528  * removed, unwinding everything back to the original state when this
2529  * function was called.  It will explicitly warn and error if any of the
2530  * attribute files being created already exist.
2531  *
2532  * Returns 0 on success or error code from sysfs_create_group on failure.
2533  */
2534 int devm_device_add_groups(struct device *dev,
2535 			   const struct attribute_group **groups)
2536 {
2537 	union device_attr_group_devres *devres;
2538 	int error;
2539 
2540 	devres = devres_alloc(devm_attr_groups_remove,
2541 			      sizeof(*devres), GFP_KERNEL);
2542 	if (!devres)
2543 		return -ENOMEM;
2544 
2545 	error = sysfs_create_groups(&dev->kobj, groups);
2546 	if (error) {
2547 		devres_free(devres);
2548 		return error;
2549 	}
2550 
2551 	devres->groups = groups;
2552 	devres_add(dev, devres);
2553 	return 0;
2554 }
2555 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2556 
2557 /**
2558  * devm_device_remove_groups - remove a list of managed groups
2559  *
2560  * @dev:	The device for the groups to be removed from
2561  * @groups:	NULL terminated list of groups to be removed
2562  *
2563  * If groups is not NULL, remove the specified groups from the device.
2564  */
2565 void devm_device_remove_groups(struct device *dev,
2566 			       const struct attribute_group **groups)
2567 {
2568 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2569 			       devm_attr_group_match,
2570 			       /* cast away const */ (void *)groups));
2571 }
2572 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2573 
2574 static int device_add_attrs(struct device *dev)
2575 {
2576 	struct class *class = dev->class;
2577 	const struct device_type *type = dev->type;
2578 	int error;
2579 
2580 	if (class) {
2581 		error = device_add_groups(dev, class->dev_groups);
2582 		if (error)
2583 			return error;
2584 	}
2585 
2586 	if (type) {
2587 		error = device_add_groups(dev, type->groups);
2588 		if (error)
2589 			goto err_remove_class_groups;
2590 	}
2591 
2592 	error = device_add_groups(dev, dev->groups);
2593 	if (error)
2594 		goto err_remove_type_groups;
2595 
2596 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2597 		error = device_create_file(dev, &dev_attr_online);
2598 		if (error)
2599 			goto err_remove_dev_groups;
2600 	}
2601 
2602 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2603 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2604 		if (error)
2605 			goto err_remove_dev_online;
2606 	}
2607 
2608 	if (dev_removable_is_valid(dev)) {
2609 		error = device_create_file(dev, &dev_attr_removable);
2610 		if (error)
2611 			goto err_remove_dev_waiting_for_supplier;
2612 	}
2613 
2614 	return 0;
2615 
2616  err_remove_dev_waiting_for_supplier:
2617 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2618  err_remove_dev_online:
2619 	device_remove_file(dev, &dev_attr_online);
2620  err_remove_dev_groups:
2621 	device_remove_groups(dev, dev->groups);
2622  err_remove_type_groups:
2623 	if (type)
2624 		device_remove_groups(dev, type->groups);
2625  err_remove_class_groups:
2626 	if (class)
2627 		device_remove_groups(dev, class->dev_groups);
2628 
2629 	return error;
2630 }
2631 
2632 static void device_remove_attrs(struct device *dev)
2633 {
2634 	struct class *class = dev->class;
2635 	const struct device_type *type = dev->type;
2636 
2637 	device_remove_file(dev, &dev_attr_removable);
2638 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2639 	device_remove_file(dev, &dev_attr_online);
2640 	device_remove_groups(dev, dev->groups);
2641 
2642 	if (type)
2643 		device_remove_groups(dev, type->groups);
2644 
2645 	if (class)
2646 		device_remove_groups(dev, class->dev_groups);
2647 }
2648 
2649 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2650 			char *buf)
2651 {
2652 	return print_dev_t(buf, dev->devt);
2653 }
2654 static DEVICE_ATTR_RO(dev);
2655 
2656 /* /sys/devices/ */
2657 struct kset *devices_kset;
2658 
2659 /**
2660  * devices_kset_move_before - Move device in the devices_kset's list.
2661  * @deva: Device to move.
2662  * @devb: Device @deva should come before.
2663  */
2664 static void devices_kset_move_before(struct device *deva, struct device *devb)
2665 {
2666 	if (!devices_kset)
2667 		return;
2668 	pr_debug("devices_kset: Moving %s before %s\n",
2669 		 dev_name(deva), dev_name(devb));
2670 	spin_lock(&devices_kset->list_lock);
2671 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2672 	spin_unlock(&devices_kset->list_lock);
2673 }
2674 
2675 /**
2676  * devices_kset_move_after - Move device in the devices_kset's list.
2677  * @deva: Device to move
2678  * @devb: Device @deva should come after.
2679  */
2680 static void devices_kset_move_after(struct device *deva, struct device *devb)
2681 {
2682 	if (!devices_kset)
2683 		return;
2684 	pr_debug("devices_kset: Moving %s after %s\n",
2685 		 dev_name(deva), dev_name(devb));
2686 	spin_lock(&devices_kset->list_lock);
2687 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2688 	spin_unlock(&devices_kset->list_lock);
2689 }
2690 
2691 /**
2692  * devices_kset_move_last - move the device to the end of devices_kset's list.
2693  * @dev: device to move
2694  */
2695 void devices_kset_move_last(struct device *dev)
2696 {
2697 	if (!devices_kset)
2698 		return;
2699 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2700 	spin_lock(&devices_kset->list_lock);
2701 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2702 	spin_unlock(&devices_kset->list_lock);
2703 }
2704 
2705 /**
2706  * device_create_file - create sysfs attribute file for device.
2707  * @dev: device.
2708  * @attr: device attribute descriptor.
2709  */
2710 int device_create_file(struct device *dev,
2711 		       const struct device_attribute *attr)
2712 {
2713 	int error = 0;
2714 
2715 	if (dev) {
2716 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2717 			"Attribute %s: write permission without 'store'\n",
2718 			attr->attr.name);
2719 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2720 			"Attribute %s: read permission without 'show'\n",
2721 			attr->attr.name);
2722 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2723 	}
2724 
2725 	return error;
2726 }
2727 EXPORT_SYMBOL_GPL(device_create_file);
2728 
2729 /**
2730  * device_remove_file - remove sysfs attribute file.
2731  * @dev: device.
2732  * @attr: device attribute descriptor.
2733  */
2734 void device_remove_file(struct device *dev,
2735 			const struct device_attribute *attr)
2736 {
2737 	if (dev)
2738 		sysfs_remove_file(&dev->kobj, &attr->attr);
2739 }
2740 EXPORT_SYMBOL_GPL(device_remove_file);
2741 
2742 /**
2743  * device_remove_file_self - remove sysfs attribute file from its own method.
2744  * @dev: device.
2745  * @attr: device attribute descriptor.
2746  *
2747  * See kernfs_remove_self() for details.
2748  */
2749 bool device_remove_file_self(struct device *dev,
2750 			     const struct device_attribute *attr)
2751 {
2752 	if (dev)
2753 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2754 	else
2755 		return false;
2756 }
2757 EXPORT_SYMBOL_GPL(device_remove_file_self);
2758 
2759 /**
2760  * device_create_bin_file - create sysfs binary attribute file for device.
2761  * @dev: device.
2762  * @attr: device binary attribute descriptor.
2763  */
2764 int device_create_bin_file(struct device *dev,
2765 			   const struct bin_attribute *attr)
2766 {
2767 	int error = -EINVAL;
2768 	if (dev)
2769 		error = sysfs_create_bin_file(&dev->kobj, attr);
2770 	return error;
2771 }
2772 EXPORT_SYMBOL_GPL(device_create_bin_file);
2773 
2774 /**
2775  * device_remove_bin_file - remove sysfs binary attribute file
2776  * @dev: device.
2777  * @attr: device binary attribute descriptor.
2778  */
2779 void device_remove_bin_file(struct device *dev,
2780 			    const struct bin_attribute *attr)
2781 {
2782 	if (dev)
2783 		sysfs_remove_bin_file(&dev->kobj, attr);
2784 }
2785 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2786 
2787 static void klist_children_get(struct klist_node *n)
2788 {
2789 	struct device_private *p = to_device_private_parent(n);
2790 	struct device *dev = p->device;
2791 
2792 	get_device(dev);
2793 }
2794 
2795 static void klist_children_put(struct klist_node *n)
2796 {
2797 	struct device_private *p = to_device_private_parent(n);
2798 	struct device *dev = p->device;
2799 
2800 	put_device(dev);
2801 }
2802 
2803 /**
2804  * device_initialize - init device structure.
2805  * @dev: device.
2806  *
2807  * This prepares the device for use by other layers by initializing
2808  * its fields.
2809  * It is the first half of device_register(), if called by
2810  * that function, though it can also be called separately, so one
2811  * may use @dev's fields. In particular, get_device()/put_device()
2812  * may be used for reference counting of @dev after calling this
2813  * function.
2814  *
2815  * All fields in @dev must be initialized by the caller to 0, except
2816  * for those explicitly set to some other value.  The simplest
2817  * approach is to use kzalloc() to allocate the structure containing
2818  * @dev.
2819  *
2820  * NOTE: Use put_device() to give up your reference instead of freeing
2821  * @dev directly once you have called this function.
2822  */
2823 void device_initialize(struct device *dev)
2824 {
2825 	dev->kobj.kset = devices_kset;
2826 	kobject_init(&dev->kobj, &device_ktype);
2827 	INIT_LIST_HEAD(&dev->dma_pools);
2828 	mutex_init(&dev->mutex);
2829 #ifdef CONFIG_PROVE_LOCKING
2830 	mutex_init(&dev->lockdep_mutex);
2831 #endif
2832 	lockdep_set_novalidate_class(&dev->mutex);
2833 	spin_lock_init(&dev->devres_lock);
2834 	INIT_LIST_HEAD(&dev->devres_head);
2835 	device_pm_init(dev);
2836 	set_dev_node(dev, -1);
2837 #ifdef CONFIG_GENERIC_MSI_IRQ
2838 	INIT_LIST_HEAD(&dev->msi_list);
2839 #endif
2840 	INIT_LIST_HEAD(&dev->links.consumers);
2841 	INIT_LIST_HEAD(&dev->links.suppliers);
2842 	INIT_LIST_HEAD(&dev->links.defer_sync);
2843 	dev->links.status = DL_DEV_NO_DRIVER;
2844 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2845     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2846     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2847 	dev->dma_coherent = dma_default_coherent;
2848 #endif
2849 }
2850 EXPORT_SYMBOL_GPL(device_initialize);
2851 
2852 struct kobject *virtual_device_parent(struct device *dev)
2853 {
2854 	static struct kobject *virtual_dir = NULL;
2855 
2856 	if (!virtual_dir)
2857 		virtual_dir = kobject_create_and_add("virtual",
2858 						     &devices_kset->kobj);
2859 
2860 	return virtual_dir;
2861 }
2862 
2863 struct class_dir {
2864 	struct kobject kobj;
2865 	struct class *class;
2866 };
2867 
2868 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2869 
2870 static void class_dir_release(struct kobject *kobj)
2871 {
2872 	struct class_dir *dir = to_class_dir(kobj);
2873 	kfree(dir);
2874 }
2875 
2876 static const
2877 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2878 {
2879 	struct class_dir *dir = to_class_dir(kobj);
2880 	return dir->class->ns_type;
2881 }
2882 
2883 static struct kobj_type class_dir_ktype = {
2884 	.release	= class_dir_release,
2885 	.sysfs_ops	= &kobj_sysfs_ops,
2886 	.child_ns_type	= class_dir_child_ns_type
2887 };
2888 
2889 static struct kobject *
2890 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2891 {
2892 	struct class_dir *dir;
2893 	int retval;
2894 
2895 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2896 	if (!dir)
2897 		return ERR_PTR(-ENOMEM);
2898 
2899 	dir->class = class;
2900 	kobject_init(&dir->kobj, &class_dir_ktype);
2901 
2902 	dir->kobj.kset = &class->p->glue_dirs;
2903 
2904 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2905 	if (retval < 0) {
2906 		kobject_put(&dir->kobj);
2907 		return ERR_PTR(retval);
2908 	}
2909 	return &dir->kobj;
2910 }
2911 
2912 static DEFINE_MUTEX(gdp_mutex);
2913 
2914 static struct kobject *get_device_parent(struct device *dev,
2915 					 struct device *parent)
2916 {
2917 	if (dev->class) {
2918 		struct kobject *kobj = NULL;
2919 		struct kobject *parent_kobj;
2920 		struct kobject *k;
2921 
2922 #ifdef CONFIG_BLOCK
2923 		/* block disks show up in /sys/block */
2924 		if (sysfs_deprecated && dev->class == &block_class) {
2925 			if (parent && parent->class == &block_class)
2926 				return &parent->kobj;
2927 			return &block_class.p->subsys.kobj;
2928 		}
2929 #endif
2930 
2931 		/*
2932 		 * If we have no parent, we live in "virtual".
2933 		 * Class-devices with a non class-device as parent, live
2934 		 * in a "glue" directory to prevent namespace collisions.
2935 		 */
2936 		if (parent == NULL)
2937 			parent_kobj = virtual_device_parent(dev);
2938 		else if (parent->class && !dev->class->ns_type)
2939 			return &parent->kobj;
2940 		else
2941 			parent_kobj = &parent->kobj;
2942 
2943 		mutex_lock(&gdp_mutex);
2944 
2945 		/* find our class-directory at the parent and reference it */
2946 		spin_lock(&dev->class->p->glue_dirs.list_lock);
2947 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2948 			if (k->parent == parent_kobj) {
2949 				kobj = kobject_get(k);
2950 				break;
2951 			}
2952 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2953 		if (kobj) {
2954 			mutex_unlock(&gdp_mutex);
2955 			return kobj;
2956 		}
2957 
2958 		/* or create a new class-directory at the parent device */
2959 		k = class_dir_create_and_add(dev->class, parent_kobj);
2960 		/* do not emit an uevent for this simple "glue" directory */
2961 		mutex_unlock(&gdp_mutex);
2962 		return k;
2963 	}
2964 
2965 	/* subsystems can specify a default root directory for their devices */
2966 	if (!parent && dev->bus && dev->bus->dev_root)
2967 		return &dev->bus->dev_root->kobj;
2968 
2969 	if (parent)
2970 		return &parent->kobj;
2971 	return NULL;
2972 }
2973 
2974 static inline bool live_in_glue_dir(struct kobject *kobj,
2975 				    struct device *dev)
2976 {
2977 	if (!kobj || !dev->class ||
2978 	    kobj->kset != &dev->class->p->glue_dirs)
2979 		return false;
2980 	return true;
2981 }
2982 
2983 static inline struct kobject *get_glue_dir(struct device *dev)
2984 {
2985 	return dev->kobj.parent;
2986 }
2987 
2988 /*
2989  * make sure cleaning up dir as the last step, we need to make
2990  * sure .release handler of kobject is run with holding the
2991  * global lock
2992  */
2993 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2994 {
2995 	unsigned int ref;
2996 
2997 	/* see if we live in a "glue" directory */
2998 	if (!live_in_glue_dir(glue_dir, dev))
2999 		return;
3000 
3001 	mutex_lock(&gdp_mutex);
3002 	/**
3003 	 * There is a race condition between removing glue directory
3004 	 * and adding a new device under the glue directory.
3005 	 *
3006 	 * CPU1:                                         CPU2:
3007 	 *
3008 	 * device_add()
3009 	 *   get_device_parent()
3010 	 *     class_dir_create_and_add()
3011 	 *       kobject_add_internal()
3012 	 *         create_dir()    // create glue_dir
3013 	 *
3014 	 *                                               device_add()
3015 	 *                                                 get_device_parent()
3016 	 *                                                   kobject_get() // get glue_dir
3017 	 *
3018 	 * device_del()
3019 	 *   cleanup_glue_dir()
3020 	 *     kobject_del(glue_dir)
3021 	 *
3022 	 *                                               kobject_add()
3023 	 *                                                 kobject_add_internal()
3024 	 *                                                   create_dir() // in glue_dir
3025 	 *                                                     sysfs_create_dir_ns()
3026 	 *                                                       kernfs_create_dir_ns(sd)
3027 	 *
3028 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3029 	 *       sysfs_put()        // free glue_dir->sd
3030 	 *
3031 	 *                                                         // sd is freed
3032 	 *                                                         kernfs_new_node(sd)
3033 	 *                                                           kernfs_get(glue_dir)
3034 	 *                                                           kernfs_add_one()
3035 	 *                                                           kernfs_put()
3036 	 *
3037 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3038 	 * a new device under glue dir, the glue_dir kobject reference count
3039 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3040 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3041 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3042 	 *
3043 	 * Then the CPU2 will see a stale "empty" but still potentially used
3044 	 * glue dir around in kernfs_new_node().
3045 	 *
3046 	 * In order to avoid this happening, we also should make sure that
3047 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3048 	 * for glue_dir kobj is 1.
3049 	 */
3050 	ref = kref_read(&glue_dir->kref);
3051 	if (!kobject_has_children(glue_dir) && !--ref)
3052 		kobject_del(glue_dir);
3053 	kobject_put(glue_dir);
3054 	mutex_unlock(&gdp_mutex);
3055 }
3056 
3057 static int device_add_class_symlinks(struct device *dev)
3058 {
3059 	struct device_node *of_node = dev_of_node(dev);
3060 	int error;
3061 
3062 	if (of_node) {
3063 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3064 		if (error)
3065 			dev_warn(dev, "Error %d creating of_node link\n",error);
3066 		/* An error here doesn't warrant bringing down the device */
3067 	}
3068 
3069 	if (!dev->class)
3070 		return 0;
3071 
3072 	error = sysfs_create_link(&dev->kobj,
3073 				  &dev->class->p->subsys.kobj,
3074 				  "subsystem");
3075 	if (error)
3076 		goto out_devnode;
3077 
3078 	if (dev->parent && device_is_not_partition(dev)) {
3079 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3080 					  "device");
3081 		if (error)
3082 			goto out_subsys;
3083 	}
3084 
3085 #ifdef CONFIG_BLOCK
3086 	/* /sys/block has directories and does not need symlinks */
3087 	if (sysfs_deprecated && dev->class == &block_class)
3088 		return 0;
3089 #endif
3090 
3091 	/* link in the class directory pointing to the device */
3092 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3093 				  &dev->kobj, dev_name(dev));
3094 	if (error)
3095 		goto out_device;
3096 
3097 	return 0;
3098 
3099 out_device:
3100 	sysfs_remove_link(&dev->kobj, "device");
3101 
3102 out_subsys:
3103 	sysfs_remove_link(&dev->kobj, "subsystem");
3104 out_devnode:
3105 	sysfs_remove_link(&dev->kobj, "of_node");
3106 	return error;
3107 }
3108 
3109 static void device_remove_class_symlinks(struct device *dev)
3110 {
3111 	if (dev_of_node(dev))
3112 		sysfs_remove_link(&dev->kobj, "of_node");
3113 
3114 	if (!dev->class)
3115 		return;
3116 
3117 	if (dev->parent && device_is_not_partition(dev))
3118 		sysfs_remove_link(&dev->kobj, "device");
3119 	sysfs_remove_link(&dev->kobj, "subsystem");
3120 #ifdef CONFIG_BLOCK
3121 	if (sysfs_deprecated && dev->class == &block_class)
3122 		return;
3123 #endif
3124 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3125 }
3126 
3127 /**
3128  * dev_set_name - set a device name
3129  * @dev: device
3130  * @fmt: format string for the device's name
3131  */
3132 int dev_set_name(struct device *dev, const char *fmt, ...)
3133 {
3134 	va_list vargs;
3135 	int err;
3136 
3137 	va_start(vargs, fmt);
3138 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3139 	va_end(vargs);
3140 	return err;
3141 }
3142 EXPORT_SYMBOL_GPL(dev_set_name);
3143 
3144 /**
3145  * device_to_dev_kobj - select a /sys/dev/ directory for the device
3146  * @dev: device
3147  *
3148  * By default we select char/ for new entries.  Setting class->dev_obj
3149  * to NULL prevents an entry from being created.  class->dev_kobj must
3150  * be set (or cleared) before any devices are registered to the class
3151  * otherwise device_create_sys_dev_entry() and
3152  * device_remove_sys_dev_entry() will disagree about the presence of
3153  * the link.
3154  */
3155 static struct kobject *device_to_dev_kobj(struct device *dev)
3156 {
3157 	struct kobject *kobj;
3158 
3159 	if (dev->class)
3160 		kobj = dev->class->dev_kobj;
3161 	else
3162 		kobj = sysfs_dev_char_kobj;
3163 
3164 	return kobj;
3165 }
3166 
3167 static int device_create_sys_dev_entry(struct device *dev)
3168 {
3169 	struct kobject *kobj = device_to_dev_kobj(dev);
3170 	int error = 0;
3171 	char devt_str[15];
3172 
3173 	if (kobj) {
3174 		format_dev_t(devt_str, dev->devt);
3175 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3176 	}
3177 
3178 	return error;
3179 }
3180 
3181 static void device_remove_sys_dev_entry(struct device *dev)
3182 {
3183 	struct kobject *kobj = device_to_dev_kobj(dev);
3184 	char devt_str[15];
3185 
3186 	if (kobj) {
3187 		format_dev_t(devt_str, dev->devt);
3188 		sysfs_remove_link(kobj, devt_str);
3189 	}
3190 }
3191 
3192 static int device_private_init(struct device *dev)
3193 {
3194 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3195 	if (!dev->p)
3196 		return -ENOMEM;
3197 	dev->p->device = dev;
3198 	klist_init(&dev->p->klist_children, klist_children_get,
3199 		   klist_children_put);
3200 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3201 	return 0;
3202 }
3203 
3204 /**
3205  * device_add - add device to device hierarchy.
3206  * @dev: device.
3207  *
3208  * This is part 2 of device_register(), though may be called
3209  * separately _iff_ device_initialize() has been called separately.
3210  *
3211  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3212  * to the global and sibling lists for the device, then
3213  * adds it to the other relevant subsystems of the driver model.
3214  *
3215  * Do not call this routine or device_register() more than once for
3216  * any device structure.  The driver model core is not designed to work
3217  * with devices that get unregistered and then spring back to life.
3218  * (Among other things, it's very hard to guarantee that all references
3219  * to the previous incarnation of @dev have been dropped.)  Allocate
3220  * and register a fresh new struct device instead.
3221  *
3222  * NOTE: _Never_ directly free @dev after calling this function, even
3223  * if it returned an error! Always use put_device() to give up your
3224  * reference instead.
3225  *
3226  * Rule of thumb is: if device_add() succeeds, you should call
3227  * device_del() when you want to get rid of it. If device_add() has
3228  * *not* succeeded, use *only* put_device() to drop the reference
3229  * count.
3230  */
3231 int device_add(struct device *dev)
3232 {
3233 	struct device *parent;
3234 	struct kobject *kobj;
3235 	struct class_interface *class_intf;
3236 	int error = -EINVAL;
3237 	struct kobject *glue_dir = NULL;
3238 
3239 	dev = get_device(dev);
3240 	if (!dev)
3241 		goto done;
3242 
3243 	if (!dev->p) {
3244 		error = device_private_init(dev);
3245 		if (error)
3246 			goto done;
3247 	}
3248 
3249 	/*
3250 	 * for statically allocated devices, which should all be converted
3251 	 * some day, we need to initialize the name. We prevent reading back
3252 	 * the name, and force the use of dev_name()
3253 	 */
3254 	if (dev->init_name) {
3255 		dev_set_name(dev, "%s", dev->init_name);
3256 		dev->init_name = NULL;
3257 	}
3258 
3259 	/* subsystems can specify simple device enumeration */
3260 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3261 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3262 
3263 	if (!dev_name(dev)) {
3264 		error = -EINVAL;
3265 		goto name_error;
3266 	}
3267 
3268 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3269 
3270 	parent = get_device(dev->parent);
3271 	kobj = get_device_parent(dev, parent);
3272 	if (IS_ERR(kobj)) {
3273 		error = PTR_ERR(kobj);
3274 		goto parent_error;
3275 	}
3276 	if (kobj)
3277 		dev->kobj.parent = kobj;
3278 
3279 	/* use parent numa_node */
3280 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3281 		set_dev_node(dev, dev_to_node(parent));
3282 
3283 	/* first, register with generic layer. */
3284 	/* we require the name to be set before, and pass NULL */
3285 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3286 	if (error) {
3287 		glue_dir = get_glue_dir(dev);
3288 		goto Error;
3289 	}
3290 
3291 	/* notify platform of device entry */
3292 	error = device_platform_notify(dev, KOBJ_ADD);
3293 	if (error)
3294 		goto platform_error;
3295 
3296 	error = device_create_file(dev, &dev_attr_uevent);
3297 	if (error)
3298 		goto attrError;
3299 
3300 	error = device_add_class_symlinks(dev);
3301 	if (error)
3302 		goto SymlinkError;
3303 	error = device_add_attrs(dev);
3304 	if (error)
3305 		goto AttrsError;
3306 	error = bus_add_device(dev);
3307 	if (error)
3308 		goto BusError;
3309 	error = dpm_sysfs_add(dev);
3310 	if (error)
3311 		goto DPMError;
3312 	device_pm_add(dev);
3313 
3314 	if (MAJOR(dev->devt)) {
3315 		error = device_create_file(dev, &dev_attr_dev);
3316 		if (error)
3317 			goto DevAttrError;
3318 
3319 		error = device_create_sys_dev_entry(dev);
3320 		if (error)
3321 			goto SysEntryError;
3322 
3323 		devtmpfs_create_node(dev);
3324 	}
3325 
3326 	/* Notify clients of device addition.  This call must come
3327 	 * after dpm_sysfs_add() and before kobject_uevent().
3328 	 */
3329 	if (dev->bus)
3330 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3331 					     BUS_NOTIFY_ADD_DEVICE, dev);
3332 
3333 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3334 
3335 	/*
3336 	 * Check if any of the other devices (consumers) have been waiting for
3337 	 * this device (supplier) to be added so that they can create a device
3338 	 * link to it.
3339 	 *
3340 	 * This needs to happen after device_pm_add() because device_link_add()
3341 	 * requires the supplier be registered before it's called.
3342 	 *
3343 	 * But this also needs to happen before bus_probe_device() to make sure
3344 	 * waiting consumers can link to it before the driver is bound to the
3345 	 * device and the driver sync_state callback is called for this device.
3346 	 */
3347 	if (dev->fwnode && !dev->fwnode->dev) {
3348 		dev->fwnode->dev = dev;
3349 		fw_devlink_link_device(dev);
3350 	}
3351 
3352 	bus_probe_device(dev);
3353 
3354 	/*
3355 	 * If all driver registration is done and a newly added device doesn't
3356 	 * match with any driver, don't block its consumers from probing in
3357 	 * case the consumer device is able to operate without this supplier.
3358 	 */
3359 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3360 		fw_devlink_unblock_consumers(dev);
3361 
3362 	if (parent)
3363 		klist_add_tail(&dev->p->knode_parent,
3364 			       &parent->p->klist_children);
3365 
3366 	if (dev->class) {
3367 		mutex_lock(&dev->class->p->mutex);
3368 		/* tie the class to the device */
3369 		klist_add_tail(&dev->p->knode_class,
3370 			       &dev->class->p->klist_devices);
3371 
3372 		/* notify any interfaces that the device is here */
3373 		list_for_each_entry(class_intf,
3374 				    &dev->class->p->interfaces, node)
3375 			if (class_intf->add_dev)
3376 				class_intf->add_dev(dev, class_intf);
3377 		mutex_unlock(&dev->class->p->mutex);
3378 	}
3379 done:
3380 	put_device(dev);
3381 	return error;
3382  SysEntryError:
3383 	if (MAJOR(dev->devt))
3384 		device_remove_file(dev, &dev_attr_dev);
3385  DevAttrError:
3386 	device_pm_remove(dev);
3387 	dpm_sysfs_remove(dev);
3388  DPMError:
3389 	bus_remove_device(dev);
3390  BusError:
3391 	device_remove_attrs(dev);
3392  AttrsError:
3393 	device_remove_class_symlinks(dev);
3394  SymlinkError:
3395 	device_remove_file(dev, &dev_attr_uevent);
3396  attrError:
3397 	device_platform_notify(dev, KOBJ_REMOVE);
3398 platform_error:
3399 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3400 	glue_dir = get_glue_dir(dev);
3401 	kobject_del(&dev->kobj);
3402  Error:
3403 	cleanup_glue_dir(dev, glue_dir);
3404 parent_error:
3405 	put_device(parent);
3406 name_error:
3407 	kfree(dev->p);
3408 	dev->p = NULL;
3409 	goto done;
3410 }
3411 EXPORT_SYMBOL_GPL(device_add);
3412 
3413 /**
3414  * device_register - register a device with the system.
3415  * @dev: pointer to the device structure
3416  *
3417  * This happens in two clean steps - initialize the device
3418  * and add it to the system. The two steps can be called
3419  * separately, but this is the easiest and most common.
3420  * I.e. you should only call the two helpers separately if
3421  * have a clearly defined need to use and refcount the device
3422  * before it is added to the hierarchy.
3423  *
3424  * For more information, see the kerneldoc for device_initialize()
3425  * and device_add().
3426  *
3427  * NOTE: _Never_ directly free @dev after calling this function, even
3428  * if it returned an error! Always use put_device() to give up the
3429  * reference initialized in this function instead.
3430  */
3431 int device_register(struct device *dev)
3432 {
3433 	device_initialize(dev);
3434 	return device_add(dev);
3435 }
3436 EXPORT_SYMBOL_GPL(device_register);
3437 
3438 /**
3439  * get_device - increment reference count for device.
3440  * @dev: device.
3441  *
3442  * This simply forwards the call to kobject_get(), though
3443  * we do take care to provide for the case that we get a NULL
3444  * pointer passed in.
3445  */
3446 struct device *get_device(struct device *dev)
3447 {
3448 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3449 }
3450 EXPORT_SYMBOL_GPL(get_device);
3451 
3452 /**
3453  * put_device - decrement reference count.
3454  * @dev: device in question.
3455  */
3456 void put_device(struct device *dev)
3457 {
3458 	/* might_sleep(); */
3459 	if (dev)
3460 		kobject_put(&dev->kobj);
3461 }
3462 EXPORT_SYMBOL_GPL(put_device);
3463 
3464 bool kill_device(struct device *dev)
3465 {
3466 	/*
3467 	 * Require the device lock and set the "dead" flag to guarantee that
3468 	 * the update behavior is consistent with the other bitfields near
3469 	 * it and that we cannot have an asynchronous probe routine trying
3470 	 * to run while we are tearing out the bus/class/sysfs from
3471 	 * underneath the device.
3472 	 */
3473 	device_lock_assert(dev);
3474 
3475 	if (dev->p->dead)
3476 		return false;
3477 	dev->p->dead = true;
3478 	return true;
3479 }
3480 EXPORT_SYMBOL_GPL(kill_device);
3481 
3482 /**
3483  * device_del - delete device from system.
3484  * @dev: device.
3485  *
3486  * This is the first part of the device unregistration
3487  * sequence. This removes the device from the lists we control
3488  * from here, has it removed from the other driver model
3489  * subsystems it was added to in device_add(), and removes it
3490  * from the kobject hierarchy.
3491  *
3492  * NOTE: this should be called manually _iff_ device_add() was
3493  * also called manually.
3494  */
3495 void device_del(struct device *dev)
3496 {
3497 	struct device *parent = dev->parent;
3498 	struct kobject *glue_dir = NULL;
3499 	struct class_interface *class_intf;
3500 	unsigned int noio_flag;
3501 
3502 	device_lock(dev);
3503 	kill_device(dev);
3504 	device_unlock(dev);
3505 
3506 	if (dev->fwnode && dev->fwnode->dev == dev)
3507 		dev->fwnode->dev = NULL;
3508 
3509 	/* Notify clients of device removal.  This call must come
3510 	 * before dpm_sysfs_remove().
3511 	 */
3512 	noio_flag = memalloc_noio_save();
3513 	if (dev->bus)
3514 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3515 					     BUS_NOTIFY_DEL_DEVICE, dev);
3516 
3517 	dpm_sysfs_remove(dev);
3518 	if (parent)
3519 		klist_del(&dev->p->knode_parent);
3520 	if (MAJOR(dev->devt)) {
3521 		devtmpfs_delete_node(dev);
3522 		device_remove_sys_dev_entry(dev);
3523 		device_remove_file(dev, &dev_attr_dev);
3524 	}
3525 	if (dev->class) {
3526 		device_remove_class_symlinks(dev);
3527 
3528 		mutex_lock(&dev->class->p->mutex);
3529 		/* notify any interfaces that the device is now gone */
3530 		list_for_each_entry(class_intf,
3531 				    &dev->class->p->interfaces, node)
3532 			if (class_intf->remove_dev)
3533 				class_intf->remove_dev(dev, class_intf);
3534 		/* remove the device from the class list */
3535 		klist_del(&dev->p->knode_class);
3536 		mutex_unlock(&dev->class->p->mutex);
3537 	}
3538 	device_remove_file(dev, &dev_attr_uevent);
3539 	device_remove_attrs(dev);
3540 	bus_remove_device(dev);
3541 	device_pm_remove(dev);
3542 	driver_deferred_probe_del(dev);
3543 	device_platform_notify(dev, KOBJ_REMOVE);
3544 	device_remove_properties(dev);
3545 	device_links_purge(dev);
3546 
3547 	if (dev->bus)
3548 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3549 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3550 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3551 	glue_dir = get_glue_dir(dev);
3552 	kobject_del(&dev->kobj);
3553 	cleanup_glue_dir(dev, glue_dir);
3554 	memalloc_noio_restore(noio_flag);
3555 	put_device(parent);
3556 }
3557 EXPORT_SYMBOL_GPL(device_del);
3558 
3559 /**
3560  * device_unregister - unregister device from system.
3561  * @dev: device going away.
3562  *
3563  * We do this in two parts, like we do device_register(). First,
3564  * we remove it from all the subsystems with device_del(), then
3565  * we decrement the reference count via put_device(). If that
3566  * is the final reference count, the device will be cleaned up
3567  * via device_release() above. Otherwise, the structure will
3568  * stick around until the final reference to the device is dropped.
3569  */
3570 void device_unregister(struct device *dev)
3571 {
3572 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3573 	device_del(dev);
3574 	put_device(dev);
3575 }
3576 EXPORT_SYMBOL_GPL(device_unregister);
3577 
3578 static struct device *prev_device(struct klist_iter *i)
3579 {
3580 	struct klist_node *n = klist_prev(i);
3581 	struct device *dev = NULL;
3582 	struct device_private *p;
3583 
3584 	if (n) {
3585 		p = to_device_private_parent(n);
3586 		dev = p->device;
3587 	}
3588 	return dev;
3589 }
3590 
3591 static struct device *next_device(struct klist_iter *i)
3592 {
3593 	struct klist_node *n = klist_next(i);
3594 	struct device *dev = NULL;
3595 	struct device_private *p;
3596 
3597 	if (n) {
3598 		p = to_device_private_parent(n);
3599 		dev = p->device;
3600 	}
3601 	return dev;
3602 }
3603 
3604 /**
3605  * device_get_devnode - path of device node file
3606  * @dev: device
3607  * @mode: returned file access mode
3608  * @uid: returned file owner
3609  * @gid: returned file group
3610  * @tmp: possibly allocated string
3611  *
3612  * Return the relative path of a possible device node.
3613  * Non-default names may need to allocate a memory to compose
3614  * a name. This memory is returned in tmp and needs to be
3615  * freed by the caller.
3616  */
3617 const char *device_get_devnode(struct device *dev,
3618 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3619 			       const char **tmp)
3620 {
3621 	char *s;
3622 
3623 	*tmp = NULL;
3624 
3625 	/* the device type may provide a specific name */
3626 	if (dev->type && dev->type->devnode)
3627 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3628 	if (*tmp)
3629 		return *tmp;
3630 
3631 	/* the class may provide a specific name */
3632 	if (dev->class && dev->class->devnode)
3633 		*tmp = dev->class->devnode(dev, mode);
3634 	if (*tmp)
3635 		return *tmp;
3636 
3637 	/* return name without allocation, tmp == NULL */
3638 	if (strchr(dev_name(dev), '!') == NULL)
3639 		return dev_name(dev);
3640 
3641 	/* replace '!' in the name with '/' */
3642 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3643 	if (!s)
3644 		return NULL;
3645 	strreplace(s, '!', '/');
3646 	return *tmp = s;
3647 }
3648 
3649 /**
3650  * device_for_each_child - device child iterator.
3651  * @parent: parent struct device.
3652  * @fn: function to be called for each device.
3653  * @data: data for the callback.
3654  *
3655  * Iterate over @parent's child devices, and call @fn for each,
3656  * passing it @data.
3657  *
3658  * We check the return of @fn each time. If it returns anything
3659  * other than 0, we break out and return that value.
3660  */
3661 int device_for_each_child(struct device *parent, void *data,
3662 			  int (*fn)(struct device *dev, void *data))
3663 {
3664 	struct klist_iter i;
3665 	struct device *child;
3666 	int error = 0;
3667 
3668 	if (!parent->p)
3669 		return 0;
3670 
3671 	klist_iter_init(&parent->p->klist_children, &i);
3672 	while (!error && (child = next_device(&i)))
3673 		error = fn(child, data);
3674 	klist_iter_exit(&i);
3675 	return error;
3676 }
3677 EXPORT_SYMBOL_GPL(device_for_each_child);
3678 
3679 /**
3680  * device_for_each_child_reverse - device child iterator in reversed order.
3681  * @parent: parent struct device.
3682  * @fn: function to be called for each device.
3683  * @data: data for the callback.
3684  *
3685  * Iterate over @parent's child devices, and call @fn for each,
3686  * passing it @data.
3687  *
3688  * We check the return of @fn each time. If it returns anything
3689  * other than 0, we break out and return that value.
3690  */
3691 int device_for_each_child_reverse(struct device *parent, void *data,
3692 				  int (*fn)(struct device *dev, void *data))
3693 {
3694 	struct klist_iter i;
3695 	struct device *child;
3696 	int error = 0;
3697 
3698 	if (!parent->p)
3699 		return 0;
3700 
3701 	klist_iter_init(&parent->p->klist_children, &i);
3702 	while ((child = prev_device(&i)) && !error)
3703 		error = fn(child, data);
3704 	klist_iter_exit(&i);
3705 	return error;
3706 }
3707 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3708 
3709 /**
3710  * device_find_child - device iterator for locating a particular device.
3711  * @parent: parent struct device
3712  * @match: Callback function to check device
3713  * @data: Data to pass to match function
3714  *
3715  * This is similar to the device_for_each_child() function above, but it
3716  * returns a reference to a device that is 'found' for later use, as
3717  * determined by the @match callback.
3718  *
3719  * The callback should return 0 if the device doesn't match and non-zero
3720  * if it does.  If the callback returns non-zero and a reference to the
3721  * current device can be obtained, this function will return to the caller
3722  * and not iterate over any more devices.
3723  *
3724  * NOTE: you will need to drop the reference with put_device() after use.
3725  */
3726 struct device *device_find_child(struct device *parent, void *data,
3727 				 int (*match)(struct device *dev, void *data))
3728 {
3729 	struct klist_iter i;
3730 	struct device *child;
3731 
3732 	if (!parent)
3733 		return NULL;
3734 
3735 	klist_iter_init(&parent->p->klist_children, &i);
3736 	while ((child = next_device(&i)))
3737 		if (match(child, data) && get_device(child))
3738 			break;
3739 	klist_iter_exit(&i);
3740 	return child;
3741 }
3742 EXPORT_SYMBOL_GPL(device_find_child);
3743 
3744 /**
3745  * device_find_child_by_name - device iterator for locating a child device.
3746  * @parent: parent struct device
3747  * @name: name of the child device
3748  *
3749  * This is similar to the device_find_child() function above, but it
3750  * returns a reference to a device that has the name @name.
3751  *
3752  * NOTE: you will need to drop the reference with put_device() after use.
3753  */
3754 struct device *device_find_child_by_name(struct device *parent,
3755 					 const char *name)
3756 {
3757 	struct klist_iter i;
3758 	struct device *child;
3759 
3760 	if (!parent)
3761 		return NULL;
3762 
3763 	klist_iter_init(&parent->p->klist_children, &i);
3764 	while ((child = next_device(&i)))
3765 		if (sysfs_streq(dev_name(child), name) && get_device(child))
3766 			break;
3767 	klist_iter_exit(&i);
3768 	return child;
3769 }
3770 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3771 
3772 int __init devices_init(void)
3773 {
3774 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3775 	if (!devices_kset)
3776 		return -ENOMEM;
3777 	dev_kobj = kobject_create_and_add("dev", NULL);
3778 	if (!dev_kobj)
3779 		goto dev_kobj_err;
3780 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3781 	if (!sysfs_dev_block_kobj)
3782 		goto block_kobj_err;
3783 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3784 	if (!sysfs_dev_char_kobj)
3785 		goto char_kobj_err;
3786 
3787 	return 0;
3788 
3789  char_kobj_err:
3790 	kobject_put(sysfs_dev_block_kobj);
3791  block_kobj_err:
3792 	kobject_put(dev_kobj);
3793  dev_kobj_err:
3794 	kset_unregister(devices_kset);
3795 	return -ENOMEM;
3796 }
3797 
3798 static int device_check_offline(struct device *dev, void *not_used)
3799 {
3800 	int ret;
3801 
3802 	ret = device_for_each_child(dev, NULL, device_check_offline);
3803 	if (ret)
3804 		return ret;
3805 
3806 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3807 }
3808 
3809 /**
3810  * device_offline - Prepare the device for hot-removal.
3811  * @dev: Device to be put offline.
3812  *
3813  * Execute the device bus type's .offline() callback, if present, to prepare
3814  * the device for a subsequent hot-removal.  If that succeeds, the device must
3815  * not be used until either it is removed or its bus type's .online() callback
3816  * is executed.
3817  *
3818  * Call under device_hotplug_lock.
3819  */
3820 int device_offline(struct device *dev)
3821 {
3822 	int ret;
3823 
3824 	if (dev->offline_disabled)
3825 		return -EPERM;
3826 
3827 	ret = device_for_each_child(dev, NULL, device_check_offline);
3828 	if (ret)
3829 		return ret;
3830 
3831 	device_lock(dev);
3832 	if (device_supports_offline(dev)) {
3833 		if (dev->offline) {
3834 			ret = 1;
3835 		} else {
3836 			ret = dev->bus->offline(dev);
3837 			if (!ret) {
3838 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3839 				dev->offline = true;
3840 			}
3841 		}
3842 	}
3843 	device_unlock(dev);
3844 
3845 	return ret;
3846 }
3847 
3848 /**
3849  * device_online - Put the device back online after successful device_offline().
3850  * @dev: Device to be put back online.
3851  *
3852  * If device_offline() has been successfully executed for @dev, but the device
3853  * has not been removed subsequently, execute its bus type's .online() callback
3854  * to indicate that the device can be used again.
3855  *
3856  * Call under device_hotplug_lock.
3857  */
3858 int device_online(struct device *dev)
3859 {
3860 	int ret = 0;
3861 
3862 	device_lock(dev);
3863 	if (device_supports_offline(dev)) {
3864 		if (dev->offline) {
3865 			ret = dev->bus->online(dev);
3866 			if (!ret) {
3867 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3868 				dev->offline = false;
3869 			}
3870 		} else {
3871 			ret = 1;
3872 		}
3873 	}
3874 	device_unlock(dev);
3875 
3876 	return ret;
3877 }
3878 
3879 struct root_device {
3880 	struct device dev;
3881 	struct module *owner;
3882 };
3883 
3884 static inline struct root_device *to_root_device(struct device *d)
3885 {
3886 	return container_of(d, struct root_device, dev);
3887 }
3888 
3889 static void root_device_release(struct device *dev)
3890 {
3891 	kfree(to_root_device(dev));
3892 }
3893 
3894 /**
3895  * __root_device_register - allocate and register a root device
3896  * @name: root device name
3897  * @owner: owner module of the root device, usually THIS_MODULE
3898  *
3899  * This function allocates a root device and registers it
3900  * using device_register(). In order to free the returned
3901  * device, use root_device_unregister().
3902  *
3903  * Root devices are dummy devices which allow other devices
3904  * to be grouped under /sys/devices. Use this function to
3905  * allocate a root device and then use it as the parent of
3906  * any device which should appear under /sys/devices/{name}
3907  *
3908  * The /sys/devices/{name} directory will also contain a
3909  * 'module' symlink which points to the @owner directory
3910  * in sysfs.
3911  *
3912  * Returns &struct device pointer on success, or ERR_PTR() on error.
3913  *
3914  * Note: You probably want to use root_device_register().
3915  */
3916 struct device *__root_device_register(const char *name, struct module *owner)
3917 {
3918 	struct root_device *root;
3919 	int err = -ENOMEM;
3920 
3921 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3922 	if (!root)
3923 		return ERR_PTR(err);
3924 
3925 	err = dev_set_name(&root->dev, "%s", name);
3926 	if (err) {
3927 		kfree(root);
3928 		return ERR_PTR(err);
3929 	}
3930 
3931 	root->dev.release = root_device_release;
3932 
3933 	err = device_register(&root->dev);
3934 	if (err) {
3935 		put_device(&root->dev);
3936 		return ERR_PTR(err);
3937 	}
3938 
3939 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3940 	if (owner) {
3941 		struct module_kobject *mk = &owner->mkobj;
3942 
3943 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3944 		if (err) {
3945 			device_unregister(&root->dev);
3946 			return ERR_PTR(err);
3947 		}
3948 		root->owner = owner;
3949 	}
3950 #endif
3951 
3952 	return &root->dev;
3953 }
3954 EXPORT_SYMBOL_GPL(__root_device_register);
3955 
3956 /**
3957  * root_device_unregister - unregister and free a root device
3958  * @dev: device going away
3959  *
3960  * This function unregisters and cleans up a device that was created by
3961  * root_device_register().
3962  */
3963 void root_device_unregister(struct device *dev)
3964 {
3965 	struct root_device *root = to_root_device(dev);
3966 
3967 	if (root->owner)
3968 		sysfs_remove_link(&root->dev.kobj, "module");
3969 
3970 	device_unregister(dev);
3971 }
3972 EXPORT_SYMBOL_GPL(root_device_unregister);
3973 
3974 
3975 static void device_create_release(struct device *dev)
3976 {
3977 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3978 	kfree(dev);
3979 }
3980 
3981 static __printf(6, 0) struct device *
3982 device_create_groups_vargs(struct class *class, struct device *parent,
3983 			   dev_t devt, void *drvdata,
3984 			   const struct attribute_group **groups,
3985 			   const char *fmt, va_list args)
3986 {
3987 	struct device *dev = NULL;
3988 	int retval = -ENODEV;
3989 
3990 	if (class == NULL || IS_ERR(class))
3991 		goto error;
3992 
3993 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3994 	if (!dev) {
3995 		retval = -ENOMEM;
3996 		goto error;
3997 	}
3998 
3999 	device_initialize(dev);
4000 	dev->devt = devt;
4001 	dev->class = class;
4002 	dev->parent = parent;
4003 	dev->groups = groups;
4004 	dev->release = device_create_release;
4005 	dev_set_drvdata(dev, drvdata);
4006 
4007 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4008 	if (retval)
4009 		goto error;
4010 
4011 	retval = device_add(dev);
4012 	if (retval)
4013 		goto error;
4014 
4015 	return dev;
4016 
4017 error:
4018 	put_device(dev);
4019 	return ERR_PTR(retval);
4020 }
4021 
4022 /**
4023  * device_create - creates a device and registers it with sysfs
4024  * @class: pointer to the struct class that this device should be registered to
4025  * @parent: pointer to the parent struct device of this new device, if any
4026  * @devt: the dev_t for the char device to be added
4027  * @drvdata: the data to be added to the device for callbacks
4028  * @fmt: string for the device's name
4029  *
4030  * This function can be used by char device classes.  A struct device
4031  * will be created in sysfs, registered to the specified class.
4032  *
4033  * A "dev" file will be created, showing the dev_t for the device, if
4034  * the dev_t is not 0,0.
4035  * If a pointer to a parent struct device is passed in, the newly created
4036  * struct device will be a child of that device in sysfs.
4037  * The pointer to the struct device will be returned from the call.
4038  * Any further sysfs files that might be required can be created using this
4039  * pointer.
4040  *
4041  * Returns &struct device pointer on success, or ERR_PTR() on error.
4042  *
4043  * Note: the struct class passed to this function must have previously
4044  * been created with a call to class_create().
4045  */
4046 struct device *device_create(struct class *class, struct device *parent,
4047 			     dev_t devt, void *drvdata, const char *fmt, ...)
4048 {
4049 	va_list vargs;
4050 	struct device *dev;
4051 
4052 	va_start(vargs, fmt);
4053 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4054 					  fmt, vargs);
4055 	va_end(vargs);
4056 	return dev;
4057 }
4058 EXPORT_SYMBOL_GPL(device_create);
4059 
4060 /**
4061  * device_create_with_groups - creates a device and registers it with sysfs
4062  * @class: pointer to the struct class that this device should be registered to
4063  * @parent: pointer to the parent struct device of this new device, if any
4064  * @devt: the dev_t for the char device to be added
4065  * @drvdata: the data to be added to the device for callbacks
4066  * @groups: NULL-terminated list of attribute groups to be created
4067  * @fmt: string for the device's name
4068  *
4069  * This function can be used by char device classes.  A struct device
4070  * will be created in sysfs, registered to the specified class.
4071  * Additional attributes specified in the groups parameter will also
4072  * be created automatically.
4073  *
4074  * A "dev" file will be created, showing the dev_t for the device, if
4075  * the dev_t is not 0,0.
4076  * If a pointer to a parent struct device is passed in, the newly created
4077  * struct device will be a child of that device in sysfs.
4078  * The pointer to the struct device will be returned from the call.
4079  * Any further sysfs files that might be required can be created using this
4080  * pointer.
4081  *
4082  * Returns &struct device pointer on success, or ERR_PTR() on error.
4083  *
4084  * Note: the struct class passed to this function must have previously
4085  * been created with a call to class_create().
4086  */
4087 struct device *device_create_with_groups(struct class *class,
4088 					 struct device *parent, dev_t devt,
4089 					 void *drvdata,
4090 					 const struct attribute_group **groups,
4091 					 const char *fmt, ...)
4092 {
4093 	va_list vargs;
4094 	struct device *dev;
4095 
4096 	va_start(vargs, fmt);
4097 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4098 					 fmt, vargs);
4099 	va_end(vargs);
4100 	return dev;
4101 }
4102 EXPORT_SYMBOL_GPL(device_create_with_groups);
4103 
4104 /**
4105  * device_destroy - removes a device that was created with device_create()
4106  * @class: pointer to the struct class that this device was registered with
4107  * @devt: the dev_t of the device that was previously registered
4108  *
4109  * This call unregisters and cleans up a device that was created with a
4110  * call to device_create().
4111  */
4112 void device_destroy(struct class *class, dev_t devt)
4113 {
4114 	struct device *dev;
4115 
4116 	dev = class_find_device_by_devt(class, devt);
4117 	if (dev) {
4118 		put_device(dev);
4119 		device_unregister(dev);
4120 	}
4121 }
4122 EXPORT_SYMBOL_GPL(device_destroy);
4123 
4124 /**
4125  * device_rename - renames a device
4126  * @dev: the pointer to the struct device to be renamed
4127  * @new_name: the new name of the device
4128  *
4129  * It is the responsibility of the caller to provide mutual
4130  * exclusion between two different calls of device_rename
4131  * on the same device to ensure that new_name is valid and
4132  * won't conflict with other devices.
4133  *
4134  * Note: Don't call this function.  Currently, the networking layer calls this
4135  * function, but that will change.  The following text from Kay Sievers offers
4136  * some insight:
4137  *
4138  * Renaming devices is racy at many levels, symlinks and other stuff are not
4139  * replaced atomically, and you get a "move" uevent, but it's not easy to
4140  * connect the event to the old and new device. Device nodes are not renamed at
4141  * all, there isn't even support for that in the kernel now.
4142  *
4143  * In the meantime, during renaming, your target name might be taken by another
4144  * driver, creating conflicts. Or the old name is taken directly after you
4145  * renamed it -- then you get events for the same DEVPATH, before you even see
4146  * the "move" event. It's just a mess, and nothing new should ever rely on
4147  * kernel device renaming. Besides that, it's not even implemented now for
4148  * other things than (driver-core wise very simple) network devices.
4149  *
4150  * We are currently about to change network renaming in udev to completely
4151  * disallow renaming of devices in the same namespace as the kernel uses,
4152  * because we can't solve the problems properly, that arise with swapping names
4153  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4154  * be allowed to some other name than eth[0-9]*, for the aforementioned
4155  * reasons.
4156  *
4157  * Make up a "real" name in the driver before you register anything, or add
4158  * some other attributes for userspace to find the device, or use udev to add
4159  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4160  * don't even want to get into that and try to implement the missing pieces in
4161  * the core. We really have other pieces to fix in the driver core mess. :)
4162  */
4163 int device_rename(struct device *dev, const char *new_name)
4164 {
4165 	struct kobject *kobj = &dev->kobj;
4166 	char *old_device_name = NULL;
4167 	int error;
4168 
4169 	dev = get_device(dev);
4170 	if (!dev)
4171 		return -EINVAL;
4172 
4173 	dev_dbg(dev, "renaming to %s\n", new_name);
4174 
4175 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4176 	if (!old_device_name) {
4177 		error = -ENOMEM;
4178 		goto out;
4179 	}
4180 
4181 	if (dev->class) {
4182 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4183 					     kobj, old_device_name,
4184 					     new_name, kobject_namespace(kobj));
4185 		if (error)
4186 			goto out;
4187 	}
4188 
4189 	error = kobject_rename(kobj, new_name);
4190 	if (error)
4191 		goto out;
4192 
4193 out:
4194 	put_device(dev);
4195 
4196 	kfree(old_device_name);
4197 
4198 	return error;
4199 }
4200 EXPORT_SYMBOL_GPL(device_rename);
4201 
4202 static int device_move_class_links(struct device *dev,
4203 				   struct device *old_parent,
4204 				   struct device *new_parent)
4205 {
4206 	int error = 0;
4207 
4208 	if (old_parent)
4209 		sysfs_remove_link(&dev->kobj, "device");
4210 	if (new_parent)
4211 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4212 					  "device");
4213 	return error;
4214 }
4215 
4216 /**
4217  * device_move - moves a device to a new parent
4218  * @dev: the pointer to the struct device to be moved
4219  * @new_parent: the new parent of the device (can be NULL)
4220  * @dpm_order: how to reorder the dpm_list
4221  */
4222 int device_move(struct device *dev, struct device *new_parent,
4223 		enum dpm_order dpm_order)
4224 {
4225 	int error;
4226 	struct device *old_parent;
4227 	struct kobject *new_parent_kobj;
4228 
4229 	dev = get_device(dev);
4230 	if (!dev)
4231 		return -EINVAL;
4232 
4233 	device_pm_lock();
4234 	new_parent = get_device(new_parent);
4235 	new_parent_kobj = get_device_parent(dev, new_parent);
4236 	if (IS_ERR(new_parent_kobj)) {
4237 		error = PTR_ERR(new_parent_kobj);
4238 		put_device(new_parent);
4239 		goto out;
4240 	}
4241 
4242 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4243 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4244 	error = kobject_move(&dev->kobj, new_parent_kobj);
4245 	if (error) {
4246 		cleanup_glue_dir(dev, new_parent_kobj);
4247 		put_device(new_parent);
4248 		goto out;
4249 	}
4250 	old_parent = dev->parent;
4251 	dev->parent = new_parent;
4252 	if (old_parent)
4253 		klist_remove(&dev->p->knode_parent);
4254 	if (new_parent) {
4255 		klist_add_tail(&dev->p->knode_parent,
4256 			       &new_parent->p->klist_children);
4257 		set_dev_node(dev, dev_to_node(new_parent));
4258 	}
4259 
4260 	if (dev->class) {
4261 		error = device_move_class_links(dev, old_parent, new_parent);
4262 		if (error) {
4263 			/* We ignore errors on cleanup since we're hosed anyway... */
4264 			device_move_class_links(dev, new_parent, old_parent);
4265 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4266 				if (new_parent)
4267 					klist_remove(&dev->p->knode_parent);
4268 				dev->parent = old_parent;
4269 				if (old_parent) {
4270 					klist_add_tail(&dev->p->knode_parent,
4271 						       &old_parent->p->klist_children);
4272 					set_dev_node(dev, dev_to_node(old_parent));
4273 				}
4274 			}
4275 			cleanup_glue_dir(dev, new_parent_kobj);
4276 			put_device(new_parent);
4277 			goto out;
4278 		}
4279 	}
4280 	switch (dpm_order) {
4281 	case DPM_ORDER_NONE:
4282 		break;
4283 	case DPM_ORDER_DEV_AFTER_PARENT:
4284 		device_pm_move_after(dev, new_parent);
4285 		devices_kset_move_after(dev, new_parent);
4286 		break;
4287 	case DPM_ORDER_PARENT_BEFORE_DEV:
4288 		device_pm_move_before(new_parent, dev);
4289 		devices_kset_move_before(new_parent, dev);
4290 		break;
4291 	case DPM_ORDER_DEV_LAST:
4292 		device_pm_move_last(dev);
4293 		devices_kset_move_last(dev);
4294 		break;
4295 	}
4296 
4297 	put_device(old_parent);
4298 out:
4299 	device_pm_unlock();
4300 	put_device(dev);
4301 	return error;
4302 }
4303 EXPORT_SYMBOL_GPL(device_move);
4304 
4305 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4306 				     kgid_t kgid)
4307 {
4308 	struct kobject *kobj = &dev->kobj;
4309 	struct class *class = dev->class;
4310 	const struct device_type *type = dev->type;
4311 	int error;
4312 
4313 	if (class) {
4314 		/*
4315 		 * Change the device groups of the device class for @dev to
4316 		 * @kuid/@kgid.
4317 		 */
4318 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4319 						  kgid);
4320 		if (error)
4321 			return error;
4322 	}
4323 
4324 	if (type) {
4325 		/*
4326 		 * Change the device groups of the device type for @dev to
4327 		 * @kuid/@kgid.
4328 		 */
4329 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4330 						  kgid);
4331 		if (error)
4332 			return error;
4333 	}
4334 
4335 	/* Change the device groups of @dev to @kuid/@kgid. */
4336 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4337 	if (error)
4338 		return error;
4339 
4340 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4341 		/* Change online device attributes of @dev to @kuid/@kgid. */
4342 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4343 						kuid, kgid);
4344 		if (error)
4345 			return error;
4346 	}
4347 
4348 	return 0;
4349 }
4350 
4351 /**
4352  * device_change_owner - change the owner of an existing device.
4353  * @dev: device.
4354  * @kuid: new owner's kuid
4355  * @kgid: new owner's kgid
4356  *
4357  * This changes the owner of @dev and its corresponding sysfs entries to
4358  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4359  * core.
4360  *
4361  * Returns 0 on success or error code on failure.
4362  */
4363 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4364 {
4365 	int error;
4366 	struct kobject *kobj = &dev->kobj;
4367 
4368 	dev = get_device(dev);
4369 	if (!dev)
4370 		return -EINVAL;
4371 
4372 	/*
4373 	 * Change the kobject and the default attributes and groups of the
4374 	 * ktype associated with it to @kuid/@kgid.
4375 	 */
4376 	error = sysfs_change_owner(kobj, kuid, kgid);
4377 	if (error)
4378 		goto out;
4379 
4380 	/*
4381 	 * Change the uevent file for @dev to the new owner. The uevent file
4382 	 * was created in a separate step when @dev got added and we mirror
4383 	 * that step here.
4384 	 */
4385 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4386 					kgid);
4387 	if (error)
4388 		goto out;
4389 
4390 	/*
4391 	 * Change the device groups, the device groups associated with the
4392 	 * device class, and the groups associated with the device type of @dev
4393 	 * to @kuid/@kgid.
4394 	 */
4395 	error = device_attrs_change_owner(dev, kuid, kgid);
4396 	if (error)
4397 		goto out;
4398 
4399 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4400 	if (error)
4401 		goto out;
4402 
4403 #ifdef CONFIG_BLOCK
4404 	if (sysfs_deprecated && dev->class == &block_class)
4405 		goto out;
4406 #endif
4407 
4408 	/*
4409 	 * Change the owner of the symlink located in the class directory of
4410 	 * the device class associated with @dev which points to the actual
4411 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4412 	 * symlink shows the same permissions as its target.
4413 	 */
4414 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4415 					dev_name(dev), kuid, kgid);
4416 	if (error)
4417 		goto out;
4418 
4419 out:
4420 	put_device(dev);
4421 	return error;
4422 }
4423 EXPORT_SYMBOL_GPL(device_change_owner);
4424 
4425 /**
4426  * device_shutdown - call ->shutdown() on each device to shutdown.
4427  */
4428 void device_shutdown(void)
4429 {
4430 	struct device *dev, *parent;
4431 
4432 	wait_for_device_probe();
4433 	device_block_probing();
4434 
4435 	cpufreq_suspend();
4436 
4437 	spin_lock(&devices_kset->list_lock);
4438 	/*
4439 	 * Walk the devices list backward, shutting down each in turn.
4440 	 * Beware that device unplug events may also start pulling
4441 	 * devices offline, even as the system is shutting down.
4442 	 */
4443 	while (!list_empty(&devices_kset->list)) {
4444 		dev = list_entry(devices_kset->list.prev, struct device,
4445 				kobj.entry);
4446 
4447 		/*
4448 		 * hold reference count of device's parent to
4449 		 * prevent it from being freed because parent's
4450 		 * lock is to be held
4451 		 */
4452 		parent = get_device(dev->parent);
4453 		get_device(dev);
4454 		/*
4455 		 * Make sure the device is off the kset list, in the
4456 		 * event that dev->*->shutdown() doesn't remove it.
4457 		 */
4458 		list_del_init(&dev->kobj.entry);
4459 		spin_unlock(&devices_kset->list_lock);
4460 
4461 		/* hold lock to avoid race with probe/release */
4462 		if (parent)
4463 			device_lock(parent);
4464 		device_lock(dev);
4465 
4466 		/* Don't allow any more runtime suspends */
4467 		pm_runtime_get_noresume(dev);
4468 		pm_runtime_barrier(dev);
4469 
4470 		if (dev->class && dev->class->shutdown_pre) {
4471 			if (initcall_debug)
4472 				dev_info(dev, "shutdown_pre\n");
4473 			dev->class->shutdown_pre(dev);
4474 		}
4475 		if (dev->bus && dev->bus->shutdown) {
4476 			if (initcall_debug)
4477 				dev_info(dev, "shutdown\n");
4478 			dev->bus->shutdown(dev);
4479 		} else if (dev->driver && dev->driver->shutdown) {
4480 			if (initcall_debug)
4481 				dev_info(dev, "shutdown\n");
4482 			dev->driver->shutdown(dev);
4483 		}
4484 
4485 		device_unlock(dev);
4486 		if (parent)
4487 			device_unlock(parent);
4488 
4489 		put_device(dev);
4490 		put_device(parent);
4491 
4492 		spin_lock(&devices_kset->list_lock);
4493 	}
4494 	spin_unlock(&devices_kset->list_lock);
4495 }
4496 
4497 /*
4498  * Device logging functions
4499  */
4500 
4501 #ifdef CONFIG_PRINTK
4502 static void
4503 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4504 {
4505 	const char *subsys;
4506 
4507 	memset(dev_info, 0, sizeof(*dev_info));
4508 
4509 	if (dev->class)
4510 		subsys = dev->class->name;
4511 	else if (dev->bus)
4512 		subsys = dev->bus->name;
4513 	else
4514 		return;
4515 
4516 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4517 
4518 	/*
4519 	 * Add device identifier DEVICE=:
4520 	 *   b12:8         block dev_t
4521 	 *   c127:3        char dev_t
4522 	 *   n8            netdev ifindex
4523 	 *   +sound:card0  subsystem:devname
4524 	 */
4525 	if (MAJOR(dev->devt)) {
4526 		char c;
4527 
4528 		if (strcmp(subsys, "block") == 0)
4529 			c = 'b';
4530 		else
4531 			c = 'c';
4532 
4533 		snprintf(dev_info->device, sizeof(dev_info->device),
4534 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4535 	} else if (strcmp(subsys, "net") == 0) {
4536 		struct net_device *net = to_net_dev(dev);
4537 
4538 		snprintf(dev_info->device, sizeof(dev_info->device),
4539 			 "n%u", net->ifindex);
4540 	} else {
4541 		snprintf(dev_info->device, sizeof(dev_info->device),
4542 			 "+%s:%s", subsys, dev_name(dev));
4543 	}
4544 }
4545 
4546 int dev_vprintk_emit(int level, const struct device *dev,
4547 		     const char *fmt, va_list args)
4548 {
4549 	struct dev_printk_info dev_info;
4550 
4551 	set_dev_info(dev, &dev_info);
4552 
4553 	return vprintk_emit(0, level, &dev_info, fmt, args);
4554 }
4555 EXPORT_SYMBOL(dev_vprintk_emit);
4556 
4557 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4558 {
4559 	va_list args;
4560 	int r;
4561 
4562 	va_start(args, fmt);
4563 
4564 	r = dev_vprintk_emit(level, dev, fmt, args);
4565 
4566 	va_end(args);
4567 
4568 	return r;
4569 }
4570 EXPORT_SYMBOL(dev_printk_emit);
4571 
4572 static void __dev_printk(const char *level, const struct device *dev,
4573 			struct va_format *vaf)
4574 {
4575 	if (dev)
4576 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4577 				dev_driver_string(dev), dev_name(dev), vaf);
4578 	else
4579 		printk("%s(NULL device *): %pV", level, vaf);
4580 }
4581 
4582 void dev_printk(const char *level, const struct device *dev,
4583 		const char *fmt, ...)
4584 {
4585 	struct va_format vaf;
4586 	va_list args;
4587 
4588 	va_start(args, fmt);
4589 
4590 	vaf.fmt = fmt;
4591 	vaf.va = &args;
4592 
4593 	__dev_printk(level, dev, &vaf);
4594 
4595 	va_end(args);
4596 }
4597 EXPORT_SYMBOL(dev_printk);
4598 
4599 #define define_dev_printk_level(func, kern_level)		\
4600 void func(const struct device *dev, const char *fmt, ...)	\
4601 {								\
4602 	struct va_format vaf;					\
4603 	va_list args;						\
4604 								\
4605 	va_start(args, fmt);					\
4606 								\
4607 	vaf.fmt = fmt;						\
4608 	vaf.va = &args;						\
4609 								\
4610 	__dev_printk(kern_level, dev, &vaf);			\
4611 								\
4612 	va_end(args);						\
4613 }								\
4614 EXPORT_SYMBOL(func);
4615 
4616 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4617 define_dev_printk_level(_dev_alert, KERN_ALERT);
4618 define_dev_printk_level(_dev_crit, KERN_CRIT);
4619 define_dev_printk_level(_dev_err, KERN_ERR);
4620 define_dev_printk_level(_dev_warn, KERN_WARNING);
4621 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4622 define_dev_printk_level(_dev_info, KERN_INFO);
4623 
4624 #endif
4625 
4626 /**
4627  * dev_err_probe - probe error check and log helper
4628  * @dev: the pointer to the struct device
4629  * @err: error value to test
4630  * @fmt: printf-style format string
4631  * @...: arguments as specified in the format string
4632  *
4633  * This helper implements common pattern present in probe functions for error
4634  * checking: print debug or error message depending if the error value is
4635  * -EPROBE_DEFER and propagate error upwards.
4636  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4637  * checked later by reading devices_deferred debugfs attribute.
4638  * It replaces code sequence::
4639  *
4640  * 	if (err != -EPROBE_DEFER)
4641  * 		dev_err(dev, ...);
4642  * 	else
4643  * 		dev_dbg(dev, ...);
4644  * 	return err;
4645  *
4646  * with::
4647  *
4648  * 	return dev_err_probe(dev, err, ...);
4649  *
4650  * Returns @err.
4651  *
4652  */
4653 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4654 {
4655 	struct va_format vaf;
4656 	va_list args;
4657 
4658 	va_start(args, fmt);
4659 	vaf.fmt = fmt;
4660 	vaf.va = &args;
4661 
4662 	if (err != -EPROBE_DEFER) {
4663 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4664 	} else {
4665 		device_set_deferred_probe_reason(dev, &vaf);
4666 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4667 	}
4668 
4669 	va_end(args);
4670 
4671 	return err;
4672 }
4673 EXPORT_SYMBOL_GPL(dev_err_probe);
4674 
4675 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4676 {
4677 	return fwnode && !IS_ERR(fwnode->secondary);
4678 }
4679 
4680 /**
4681  * set_primary_fwnode - Change the primary firmware node of a given device.
4682  * @dev: Device to handle.
4683  * @fwnode: New primary firmware node of the device.
4684  *
4685  * Set the device's firmware node pointer to @fwnode, but if a secondary
4686  * firmware node of the device is present, preserve it.
4687  *
4688  * Valid fwnode cases are:
4689  *  - primary --> secondary --> -ENODEV
4690  *  - primary --> NULL
4691  *  - secondary --> -ENODEV
4692  *  - NULL
4693  */
4694 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4695 {
4696 	struct device *parent = dev->parent;
4697 	struct fwnode_handle *fn = dev->fwnode;
4698 
4699 	if (fwnode) {
4700 		if (fwnode_is_primary(fn))
4701 			fn = fn->secondary;
4702 
4703 		if (fn) {
4704 			WARN_ON(fwnode->secondary);
4705 			fwnode->secondary = fn;
4706 		}
4707 		dev->fwnode = fwnode;
4708 	} else {
4709 		if (fwnode_is_primary(fn)) {
4710 			dev->fwnode = fn->secondary;
4711 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4712 			if (!(parent && fn == parent->fwnode))
4713 				fn->secondary = NULL;
4714 		} else {
4715 			dev->fwnode = NULL;
4716 		}
4717 	}
4718 }
4719 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4720 
4721 /**
4722  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4723  * @dev: Device to handle.
4724  * @fwnode: New secondary firmware node of the device.
4725  *
4726  * If a primary firmware node of the device is present, set its secondary
4727  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4728  * @fwnode.
4729  */
4730 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4731 {
4732 	if (fwnode)
4733 		fwnode->secondary = ERR_PTR(-ENODEV);
4734 
4735 	if (fwnode_is_primary(dev->fwnode))
4736 		dev->fwnode->secondary = fwnode;
4737 	else
4738 		dev->fwnode = fwnode;
4739 }
4740 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4741 
4742 /**
4743  * device_set_of_node_from_dev - reuse device-tree node of another device
4744  * @dev: device whose device-tree node is being set
4745  * @dev2: device whose device-tree node is being reused
4746  *
4747  * Takes another reference to the new device-tree node after first dropping
4748  * any reference held to the old node.
4749  */
4750 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4751 {
4752 	of_node_put(dev->of_node);
4753 	dev->of_node = of_node_get(dev2->of_node);
4754 	dev->of_node_reused = true;
4755 }
4756 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4757 
4758 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4759 {
4760 	dev->fwnode = fwnode;
4761 	dev->of_node = to_of_node(fwnode);
4762 }
4763 EXPORT_SYMBOL_GPL(device_set_node);
4764 
4765 int device_match_name(struct device *dev, const void *name)
4766 {
4767 	return sysfs_streq(dev_name(dev), name);
4768 }
4769 EXPORT_SYMBOL_GPL(device_match_name);
4770 
4771 int device_match_of_node(struct device *dev, const void *np)
4772 {
4773 	return dev->of_node == np;
4774 }
4775 EXPORT_SYMBOL_GPL(device_match_of_node);
4776 
4777 int device_match_fwnode(struct device *dev, const void *fwnode)
4778 {
4779 	return dev_fwnode(dev) == fwnode;
4780 }
4781 EXPORT_SYMBOL_GPL(device_match_fwnode);
4782 
4783 int device_match_devt(struct device *dev, const void *pdevt)
4784 {
4785 	return dev->devt == *(dev_t *)pdevt;
4786 }
4787 EXPORT_SYMBOL_GPL(device_match_devt);
4788 
4789 int device_match_acpi_dev(struct device *dev, const void *adev)
4790 {
4791 	return ACPI_COMPANION(dev) == adev;
4792 }
4793 EXPORT_SYMBOL(device_match_acpi_dev);
4794 
4795 int device_match_any(struct device *dev, const void *unused)
4796 {
4797 	return 1;
4798 }
4799 EXPORT_SYMBOL_GPL(device_match_any);
4800