1 /* 2 * drivers/base/core.c - core driver model code (device registration, etc) 3 * 4 * Copyright (c) 2002-3 Patrick Mochel 5 * Copyright (c) 2002-3 Open Source Development Labs 6 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 7 * Copyright (c) 2006 Novell, Inc. 8 * 9 * This file is released under the GPLv2 10 * 11 */ 12 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/init.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/string.h> 19 #include <linux/kdev_t.h> 20 #include <linux/notifier.h> 21 #include <linux/of.h> 22 #include <linux/of_device.h> 23 #include <linux/genhd.h> 24 #include <linux/kallsyms.h> 25 #include <linux/mutex.h> 26 #include <linux/async.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/netdevice.h> 29 30 #include "base.h" 31 #include "power/power.h" 32 33 #ifdef CONFIG_SYSFS_DEPRECATED 34 #ifdef CONFIG_SYSFS_DEPRECATED_V2 35 long sysfs_deprecated = 1; 36 #else 37 long sysfs_deprecated = 0; 38 #endif 39 static __init int sysfs_deprecated_setup(char *arg) 40 { 41 return strict_strtol(arg, 10, &sysfs_deprecated); 42 } 43 early_param("sysfs.deprecated", sysfs_deprecated_setup); 44 #endif 45 46 int (*platform_notify)(struct device *dev) = NULL; 47 int (*platform_notify_remove)(struct device *dev) = NULL; 48 static struct kobject *dev_kobj; 49 struct kobject *sysfs_dev_char_kobj; 50 struct kobject *sysfs_dev_block_kobj; 51 52 #ifdef CONFIG_BLOCK 53 static inline int device_is_not_partition(struct device *dev) 54 { 55 return !(dev->type == &part_type); 56 } 57 #else 58 static inline int device_is_not_partition(struct device *dev) 59 { 60 return 1; 61 } 62 #endif 63 64 /** 65 * dev_driver_string - Return a device's driver name, if at all possible 66 * @dev: struct device to get the name of 67 * 68 * Will return the device's driver's name if it is bound to a device. If 69 * the device is not bound to a driver, it will return the name of the bus 70 * it is attached to. If it is not attached to a bus either, an empty 71 * string will be returned. 72 */ 73 const char *dev_driver_string(const struct device *dev) 74 { 75 struct device_driver *drv; 76 77 /* dev->driver can change to NULL underneath us because of unbinding, 78 * so be careful about accessing it. dev->bus and dev->class should 79 * never change once they are set, so they don't need special care. 80 */ 81 drv = ACCESS_ONCE(dev->driver); 82 return drv ? drv->name : 83 (dev->bus ? dev->bus->name : 84 (dev->class ? dev->class->name : "")); 85 } 86 EXPORT_SYMBOL(dev_driver_string); 87 88 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 89 90 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 91 char *buf) 92 { 93 struct device_attribute *dev_attr = to_dev_attr(attr); 94 struct device *dev = kobj_to_dev(kobj); 95 ssize_t ret = -EIO; 96 97 if (dev_attr->show) 98 ret = dev_attr->show(dev, dev_attr, buf); 99 if (ret >= (ssize_t)PAGE_SIZE) { 100 print_symbol("dev_attr_show: %s returned bad count\n", 101 (unsigned long)dev_attr->show); 102 } 103 return ret; 104 } 105 106 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 107 const char *buf, size_t count) 108 { 109 struct device_attribute *dev_attr = to_dev_attr(attr); 110 struct device *dev = kobj_to_dev(kobj); 111 ssize_t ret = -EIO; 112 113 if (dev_attr->store) 114 ret = dev_attr->store(dev, dev_attr, buf, count); 115 return ret; 116 } 117 118 static const struct sysfs_ops dev_sysfs_ops = { 119 .show = dev_attr_show, 120 .store = dev_attr_store, 121 }; 122 123 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 124 125 ssize_t device_store_ulong(struct device *dev, 126 struct device_attribute *attr, 127 const char *buf, size_t size) 128 { 129 struct dev_ext_attribute *ea = to_ext_attr(attr); 130 char *end; 131 unsigned long new = simple_strtoul(buf, &end, 0); 132 if (end == buf) 133 return -EINVAL; 134 *(unsigned long *)(ea->var) = new; 135 /* Always return full write size even if we didn't consume all */ 136 return size; 137 } 138 EXPORT_SYMBOL_GPL(device_store_ulong); 139 140 ssize_t device_show_ulong(struct device *dev, 141 struct device_attribute *attr, 142 char *buf) 143 { 144 struct dev_ext_attribute *ea = to_ext_attr(attr); 145 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var)); 146 } 147 EXPORT_SYMBOL_GPL(device_show_ulong); 148 149 ssize_t device_store_int(struct device *dev, 150 struct device_attribute *attr, 151 const char *buf, size_t size) 152 { 153 struct dev_ext_attribute *ea = to_ext_attr(attr); 154 char *end; 155 long new = simple_strtol(buf, &end, 0); 156 if (end == buf || new > INT_MAX || new < INT_MIN) 157 return -EINVAL; 158 *(int *)(ea->var) = new; 159 /* Always return full write size even if we didn't consume all */ 160 return size; 161 } 162 EXPORT_SYMBOL_GPL(device_store_int); 163 164 ssize_t device_show_int(struct device *dev, 165 struct device_attribute *attr, 166 char *buf) 167 { 168 struct dev_ext_attribute *ea = to_ext_attr(attr); 169 170 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var)); 171 } 172 EXPORT_SYMBOL_GPL(device_show_int); 173 174 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 175 const char *buf, size_t size) 176 { 177 struct dev_ext_attribute *ea = to_ext_attr(attr); 178 179 if (strtobool(buf, ea->var) < 0) 180 return -EINVAL; 181 182 return size; 183 } 184 EXPORT_SYMBOL_GPL(device_store_bool); 185 186 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 187 char *buf) 188 { 189 struct dev_ext_attribute *ea = to_ext_attr(attr); 190 191 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var)); 192 } 193 EXPORT_SYMBOL_GPL(device_show_bool); 194 195 /** 196 * device_release - free device structure. 197 * @kobj: device's kobject. 198 * 199 * This is called once the reference count for the object 200 * reaches 0. We forward the call to the device's release 201 * method, which should handle actually freeing the structure. 202 */ 203 static void device_release(struct kobject *kobj) 204 { 205 struct device *dev = kobj_to_dev(kobj); 206 struct device_private *p = dev->p; 207 208 /* 209 * Some platform devices are driven without driver attached 210 * and managed resources may have been acquired. Make sure 211 * all resources are released. 212 * 213 * Drivers still can add resources into device after device 214 * is deleted but alive, so release devres here to avoid 215 * possible memory leak. 216 */ 217 devres_release_all(dev); 218 219 if (dev->release) 220 dev->release(dev); 221 else if (dev->type && dev->type->release) 222 dev->type->release(dev); 223 else if (dev->class && dev->class->dev_release) 224 dev->class->dev_release(dev); 225 else 226 WARN(1, KERN_ERR "Device '%s' does not have a release() " 227 "function, it is broken and must be fixed.\n", 228 dev_name(dev)); 229 kfree(p); 230 } 231 232 static const void *device_namespace(struct kobject *kobj) 233 { 234 struct device *dev = kobj_to_dev(kobj); 235 const void *ns = NULL; 236 237 if (dev->class && dev->class->ns_type) 238 ns = dev->class->namespace(dev); 239 240 return ns; 241 } 242 243 static struct kobj_type device_ktype = { 244 .release = device_release, 245 .sysfs_ops = &dev_sysfs_ops, 246 .namespace = device_namespace, 247 }; 248 249 250 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 251 { 252 struct kobj_type *ktype = get_ktype(kobj); 253 254 if (ktype == &device_ktype) { 255 struct device *dev = kobj_to_dev(kobj); 256 if (dev->bus) 257 return 1; 258 if (dev->class) 259 return 1; 260 } 261 return 0; 262 } 263 264 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 265 { 266 struct device *dev = kobj_to_dev(kobj); 267 268 if (dev->bus) 269 return dev->bus->name; 270 if (dev->class) 271 return dev->class->name; 272 return NULL; 273 } 274 275 static int dev_uevent(struct kset *kset, struct kobject *kobj, 276 struct kobj_uevent_env *env) 277 { 278 struct device *dev = kobj_to_dev(kobj); 279 int retval = 0; 280 281 /* add device node properties if present */ 282 if (MAJOR(dev->devt)) { 283 const char *tmp; 284 const char *name; 285 umode_t mode = 0; 286 kuid_t uid = GLOBAL_ROOT_UID; 287 kgid_t gid = GLOBAL_ROOT_GID; 288 289 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 290 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 291 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 292 if (name) { 293 add_uevent_var(env, "DEVNAME=%s", name); 294 if (mode) 295 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 296 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 297 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 298 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 299 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 300 kfree(tmp); 301 } 302 } 303 304 if (dev->type && dev->type->name) 305 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 306 307 if (dev->driver) 308 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 309 310 /* Add common DT information about the device */ 311 of_device_uevent(dev, env); 312 313 /* have the bus specific function add its stuff */ 314 if (dev->bus && dev->bus->uevent) { 315 retval = dev->bus->uevent(dev, env); 316 if (retval) 317 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 318 dev_name(dev), __func__, retval); 319 } 320 321 /* have the class specific function add its stuff */ 322 if (dev->class && dev->class->dev_uevent) { 323 retval = dev->class->dev_uevent(dev, env); 324 if (retval) 325 pr_debug("device: '%s': %s: class uevent() " 326 "returned %d\n", dev_name(dev), 327 __func__, retval); 328 } 329 330 /* have the device type specific function add its stuff */ 331 if (dev->type && dev->type->uevent) { 332 retval = dev->type->uevent(dev, env); 333 if (retval) 334 pr_debug("device: '%s': %s: dev_type uevent() " 335 "returned %d\n", dev_name(dev), 336 __func__, retval); 337 } 338 339 return retval; 340 } 341 342 static const struct kset_uevent_ops device_uevent_ops = { 343 .filter = dev_uevent_filter, 344 .name = dev_uevent_name, 345 .uevent = dev_uevent, 346 }; 347 348 static ssize_t show_uevent(struct device *dev, struct device_attribute *attr, 349 char *buf) 350 { 351 struct kobject *top_kobj; 352 struct kset *kset; 353 struct kobj_uevent_env *env = NULL; 354 int i; 355 size_t count = 0; 356 int retval; 357 358 /* search the kset, the device belongs to */ 359 top_kobj = &dev->kobj; 360 while (!top_kobj->kset && top_kobj->parent) 361 top_kobj = top_kobj->parent; 362 if (!top_kobj->kset) 363 goto out; 364 365 kset = top_kobj->kset; 366 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 367 goto out; 368 369 /* respect filter */ 370 if (kset->uevent_ops && kset->uevent_ops->filter) 371 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 372 goto out; 373 374 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 375 if (!env) 376 return -ENOMEM; 377 378 /* let the kset specific function add its keys */ 379 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 380 if (retval) 381 goto out; 382 383 /* copy keys to file */ 384 for (i = 0; i < env->envp_idx; i++) 385 count += sprintf(&buf[count], "%s\n", env->envp[i]); 386 out: 387 kfree(env); 388 return count; 389 } 390 391 static ssize_t store_uevent(struct device *dev, struct device_attribute *attr, 392 const char *buf, size_t count) 393 { 394 enum kobject_action action; 395 396 if (kobject_action_type(buf, count, &action) == 0) 397 kobject_uevent(&dev->kobj, action); 398 else 399 dev_err(dev, "uevent: unknown action-string\n"); 400 return count; 401 } 402 403 static struct device_attribute uevent_attr = 404 __ATTR(uevent, S_IRUGO | S_IWUSR, show_uevent, store_uevent); 405 406 static ssize_t show_online(struct device *dev, struct device_attribute *attr, 407 char *buf) 408 { 409 bool val; 410 411 lock_device_hotplug(); 412 val = !dev->offline; 413 unlock_device_hotplug(); 414 return sprintf(buf, "%u\n", val); 415 } 416 417 static ssize_t store_online(struct device *dev, struct device_attribute *attr, 418 const char *buf, size_t count) 419 { 420 bool val; 421 int ret; 422 423 ret = strtobool(buf, &val); 424 if (ret < 0) 425 return ret; 426 427 lock_device_hotplug(); 428 ret = val ? device_online(dev) : device_offline(dev); 429 unlock_device_hotplug(); 430 return ret < 0 ? ret : count; 431 } 432 433 static struct device_attribute online_attr = 434 __ATTR(online, S_IRUGO | S_IWUSR, show_online, store_online); 435 436 static int device_add_attributes(struct device *dev, 437 struct device_attribute *attrs) 438 { 439 int error = 0; 440 int i; 441 442 if (attrs) { 443 for (i = 0; attr_name(attrs[i]); i++) { 444 error = device_create_file(dev, &attrs[i]); 445 if (error) 446 break; 447 } 448 if (error) 449 while (--i >= 0) 450 device_remove_file(dev, &attrs[i]); 451 } 452 return error; 453 } 454 455 static void device_remove_attributes(struct device *dev, 456 struct device_attribute *attrs) 457 { 458 int i; 459 460 if (attrs) 461 for (i = 0; attr_name(attrs[i]); i++) 462 device_remove_file(dev, &attrs[i]); 463 } 464 465 static int device_add_bin_attributes(struct device *dev, 466 struct bin_attribute *attrs) 467 { 468 int error = 0; 469 int i; 470 471 if (attrs) { 472 for (i = 0; attr_name(attrs[i]); i++) { 473 error = device_create_bin_file(dev, &attrs[i]); 474 if (error) 475 break; 476 } 477 if (error) 478 while (--i >= 0) 479 device_remove_bin_file(dev, &attrs[i]); 480 } 481 return error; 482 } 483 484 static void device_remove_bin_attributes(struct device *dev, 485 struct bin_attribute *attrs) 486 { 487 int i; 488 489 if (attrs) 490 for (i = 0; attr_name(attrs[i]); i++) 491 device_remove_bin_file(dev, &attrs[i]); 492 } 493 494 static int device_add_groups(struct device *dev, 495 const struct attribute_group **groups) 496 { 497 int error = 0; 498 int i; 499 500 if (groups) { 501 for (i = 0; groups[i]; i++) { 502 error = sysfs_create_group(&dev->kobj, groups[i]); 503 if (error) { 504 while (--i >= 0) 505 sysfs_remove_group(&dev->kobj, 506 groups[i]); 507 break; 508 } 509 } 510 } 511 return error; 512 } 513 514 static void device_remove_groups(struct device *dev, 515 const struct attribute_group **groups) 516 { 517 int i; 518 519 if (groups) 520 for (i = 0; groups[i]; i++) 521 sysfs_remove_group(&dev->kobj, groups[i]); 522 } 523 524 static int device_add_attrs(struct device *dev) 525 { 526 struct class *class = dev->class; 527 const struct device_type *type = dev->type; 528 int error; 529 530 if (class) { 531 error = device_add_groups(dev, class->dev_groups); 532 if (error) 533 return error; 534 error = device_add_attributes(dev, class->dev_attrs); 535 if (error) 536 goto err_remove_class_groups; 537 error = device_add_bin_attributes(dev, class->dev_bin_attrs); 538 if (error) 539 goto err_remove_class_attrs; 540 } 541 542 if (type) { 543 error = device_add_groups(dev, type->groups); 544 if (error) 545 goto err_remove_class_bin_attrs; 546 } 547 548 error = device_add_groups(dev, dev->groups); 549 if (error) 550 goto err_remove_type_groups; 551 552 if (device_supports_offline(dev) && !dev->offline_disabled) { 553 error = device_create_file(dev, &online_attr); 554 if (error) 555 goto err_remove_type_groups; 556 } 557 558 return 0; 559 560 err_remove_type_groups: 561 if (type) 562 device_remove_groups(dev, type->groups); 563 err_remove_class_bin_attrs: 564 if (class) 565 device_remove_bin_attributes(dev, class->dev_bin_attrs); 566 err_remove_class_attrs: 567 if (class) 568 device_remove_attributes(dev, class->dev_attrs); 569 err_remove_class_groups: 570 if (class) 571 device_remove_groups(dev, class->dev_groups); 572 573 return error; 574 } 575 576 static void device_remove_attrs(struct device *dev) 577 { 578 struct class *class = dev->class; 579 const struct device_type *type = dev->type; 580 581 device_remove_file(dev, &online_attr); 582 device_remove_groups(dev, dev->groups); 583 584 if (type) 585 device_remove_groups(dev, type->groups); 586 587 if (class) { 588 device_remove_attributes(dev, class->dev_attrs); 589 device_remove_bin_attributes(dev, class->dev_bin_attrs); 590 device_remove_groups(dev, class->dev_groups); 591 } 592 } 593 594 595 static ssize_t show_dev(struct device *dev, struct device_attribute *attr, 596 char *buf) 597 { 598 return print_dev_t(buf, dev->devt); 599 } 600 601 static struct device_attribute devt_attr = 602 __ATTR(dev, S_IRUGO, show_dev, NULL); 603 604 /* /sys/devices/ */ 605 struct kset *devices_kset; 606 607 /** 608 * device_create_file - create sysfs attribute file for device. 609 * @dev: device. 610 * @attr: device attribute descriptor. 611 */ 612 int device_create_file(struct device *dev, 613 const struct device_attribute *attr) 614 { 615 int error = 0; 616 617 if (dev) { 618 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 619 "Attribute %s: write permission without 'store'\n", 620 attr->attr.name); 621 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 622 "Attribute %s: read permission without 'show'\n", 623 attr->attr.name); 624 error = sysfs_create_file(&dev->kobj, &attr->attr); 625 } 626 627 return error; 628 } 629 630 /** 631 * device_remove_file - remove sysfs attribute file. 632 * @dev: device. 633 * @attr: device attribute descriptor. 634 */ 635 void device_remove_file(struct device *dev, 636 const struct device_attribute *attr) 637 { 638 if (dev) 639 sysfs_remove_file(&dev->kobj, &attr->attr); 640 } 641 642 /** 643 * device_create_bin_file - create sysfs binary attribute file for device. 644 * @dev: device. 645 * @attr: device binary attribute descriptor. 646 */ 647 int device_create_bin_file(struct device *dev, 648 const struct bin_attribute *attr) 649 { 650 int error = -EINVAL; 651 if (dev) 652 error = sysfs_create_bin_file(&dev->kobj, attr); 653 return error; 654 } 655 EXPORT_SYMBOL_GPL(device_create_bin_file); 656 657 /** 658 * device_remove_bin_file - remove sysfs binary attribute file 659 * @dev: device. 660 * @attr: device binary attribute descriptor. 661 */ 662 void device_remove_bin_file(struct device *dev, 663 const struct bin_attribute *attr) 664 { 665 if (dev) 666 sysfs_remove_bin_file(&dev->kobj, attr); 667 } 668 EXPORT_SYMBOL_GPL(device_remove_bin_file); 669 670 /** 671 * device_schedule_callback_owner - helper to schedule a callback for a device 672 * @dev: device. 673 * @func: callback function to invoke later. 674 * @owner: module owning the callback routine 675 * 676 * Attribute methods must not unregister themselves or their parent device 677 * (which would amount to the same thing). Attempts to do so will deadlock, 678 * since unregistration is mutually exclusive with driver callbacks. 679 * 680 * Instead methods can call this routine, which will attempt to allocate 681 * and schedule a workqueue request to call back @func with @dev as its 682 * argument in the workqueue's process context. @dev will be pinned until 683 * @func returns. 684 * 685 * This routine is usually called via the inline device_schedule_callback(), 686 * which automatically sets @owner to THIS_MODULE. 687 * 688 * Returns 0 if the request was submitted, -ENOMEM if storage could not 689 * be allocated, -ENODEV if a reference to @owner isn't available. 690 * 691 * NOTE: This routine won't work if CONFIG_SYSFS isn't set! It uses an 692 * underlying sysfs routine (since it is intended for use by attribute 693 * methods), and if sysfs isn't available you'll get nothing but -ENOSYS. 694 */ 695 int device_schedule_callback_owner(struct device *dev, 696 void (*func)(struct device *), struct module *owner) 697 { 698 return sysfs_schedule_callback(&dev->kobj, 699 (void (*)(void *)) func, dev, owner); 700 } 701 EXPORT_SYMBOL_GPL(device_schedule_callback_owner); 702 703 static void klist_children_get(struct klist_node *n) 704 { 705 struct device_private *p = to_device_private_parent(n); 706 struct device *dev = p->device; 707 708 get_device(dev); 709 } 710 711 static void klist_children_put(struct klist_node *n) 712 { 713 struct device_private *p = to_device_private_parent(n); 714 struct device *dev = p->device; 715 716 put_device(dev); 717 } 718 719 /** 720 * device_initialize - init device structure. 721 * @dev: device. 722 * 723 * This prepares the device for use by other layers by initializing 724 * its fields. 725 * It is the first half of device_register(), if called by 726 * that function, though it can also be called separately, so one 727 * may use @dev's fields. In particular, get_device()/put_device() 728 * may be used for reference counting of @dev after calling this 729 * function. 730 * 731 * All fields in @dev must be initialized by the caller to 0, except 732 * for those explicitly set to some other value. The simplest 733 * approach is to use kzalloc() to allocate the structure containing 734 * @dev. 735 * 736 * NOTE: Use put_device() to give up your reference instead of freeing 737 * @dev directly once you have called this function. 738 */ 739 void device_initialize(struct device *dev) 740 { 741 dev->kobj.kset = devices_kset; 742 kobject_init(&dev->kobj, &device_ktype); 743 INIT_LIST_HEAD(&dev->dma_pools); 744 mutex_init(&dev->mutex); 745 lockdep_set_novalidate_class(&dev->mutex); 746 spin_lock_init(&dev->devres_lock); 747 INIT_LIST_HEAD(&dev->devres_head); 748 device_pm_init(dev); 749 set_dev_node(dev, -1); 750 } 751 752 struct kobject *virtual_device_parent(struct device *dev) 753 { 754 static struct kobject *virtual_dir = NULL; 755 756 if (!virtual_dir) 757 virtual_dir = kobject_create_and_add("virtual", 758 &devices_kset->kobj); 759 760 return virtual_dir; 761 } 762 763 struct class_dir { 764 struct kobject kobj; 765 struct class *class; 766 }; 767 768 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 769 770 static void class_dir_release(struct kobject *kobj) 771 { 772 struct class_dir *dir = to_class_dir(kobj); 773 kfree(dir); 774 } 775 776 static const 777 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 778 { 779 struct class_dir *dir = to_class_dir(kobj); 780 return dir->class->ns_type; 781 } 782 783 static struct kobj_type class_dir_ktype = { 784 .release = class_dir_release, 785 .sysfs_ops = &kobj_sysfs_ops, 786 .child_ns_type = class_dir_child_ns_type 787 }; 788 789 static struct kobject * 790 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 791 { 792 struct class_dir *dir; 793 int retval; 794 795 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 796 if (!dir) 797 return NULL; 798 799 dir->class = class; 800 kobject_init(&dir->kobj, &class_dir_ktype); 801 802 dir->kobj.kset = &class->p->glue_dirs; 803 804 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 805 if (retval < 0) { 806 kobject_put(&dir->kobj); 807 return NULL; 808 } 809 return &dir->kobj; 810 } 811 812 813 static struct kobject *get_device_parent(struct device *dev, 814 struct device *parent) 815 { 816 if (dev->class) { 817 static DEFINE_MUTEX(gdp_mutex); 818 struct kobject *kobj = NULL; 819 struct kobject *parent_kobj; 820 struct kobject *k; 821 822 #ifdef CONFIG_BLOCK 823 /* block disks show up in /sys/block */ 824 if (sysfs_deprecated && dev->class == &block_class) { 825 if (parent && parent->class == &block_class) 826 return &parent->kobj; 827 return &block_class.p->subsys.kobj; 828 } 829 #endif 830 831 /* 832 * If we have no parent, we live in "virtual". 833 * Class-devices with a non class-device as parent, live 834 * in a "glue" directory to prevent namespace collisions. 835 */ 836 if (parent == NULL) 837 parent_kobj = virtual_device_parent(dev); 838 else if (parent->class && !dev->class->ns_type) 839 return &parent->kobj; 840 else 841 parent_kobj = &parent->kobj; 842 843 mutex_lock(&gdp_mutex); 844 845 /* find our class-directory at the parent and reference it */ 846 spin_lock(&dev->class->p->glue_dirs.list_lock); 847 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 848 if (k->parent == parent_kobj) { 849 kobj = kobject_get(k); 850 break; 851 } 852 spin_unlock(&dev->class->p->glue_dirs.list_lock); 853 if (kobj) { 854 mutex_unlock(&gdp_mutex); 855 return kobj; 856 } 857 858 /* or create a new class-directory at the parent device */ 859 k = class_dir_create_and_add(dev->class, parent_kobj); 860 /* do not emit an uevent for this simple "glue" directory */ 861 mutex_unlock(&gdp_mutex); 862 return k; 863 } 864 865 /* subsystems can specify a default root directory for their devices */ 866 if (!parent && dev->bus && dev->bus->dev_root) 867 return &dev->bus->dev_root->kobj; 868 869 if (parent) 870 return &parent->kobj; 871 return NULL; 872 } 873 874 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 875 { 876 /* see if we live in a "glue" directory */ 877 if (!glue_dir || !dev->class || 878 glue_dir->kset != &dev->class->p->glue_dirs) 879 return; 880 881 kobject_put(glue_dir); 882 } 883 884 static void cleanup_device_parent(struct device *dev) 885 { 886 cleanup_glue_dir(dev, dev->kobj.parent); 887 } 888 889 static int device_add_class_symlinks(struct device *dev) 890 { 891 int error; 892 893 if (!dev->class) 894 return 0; 895 896 error = sysfs_create_link(&dev->kobj, 897 &dev->class->p->subsys.kobj, 898 "subsystem"); 899 if (error) 900 goto out; 901 902 if (dev->parent && device_is_not_partition(dev)) { 903 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 904 "device"); 905 if (error) 906 goto out_subsys; 907 } 908 909 #ifdef CONFIG_BLOCK 910 /* /sys/block has directories and does not need symlinks */ 911 if (sysfs_deprecated && dev->class == &block_class) 912 return 0; 913 #endif 914 915 /* link in the class directory pointing to the device */ 916 error = sysfs_create_link(&dev->class->p->subsys.kobj, 917 &dev->kobj, dev_name(dev)); 918 if (error) 919 goto out_device; 920 921 return 0; 922 923 out_device: 924 sysfs_remove_link(&dev->kobj, "device"); 925 926 out_subsys: 927 sysfs_remove_link(&dev->kobj, "subsystem"); 928 out: 929 return error; 930 } 931 932 static void device_remove_class_symlinks(struct device *dev) 933 { 934 if (!dev->class) 935 return; 936 937 if (dev->parent && device_is_not_partition(dev)) 938 sysfs_remove_link(&dev->kobj, "device"); 939 sysfs_remove_link(&dev->kobj, "subsystem"); 940 #ifdef CONFIG_BLOCK 941 if (sysfs_deprecated && dev->class == &block_class) 942 return; 943 #endif 944 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 945 } 946 947 /** 948 * dev_set_name - set a device name 949 * @dev: device 950 * @fmt: format string for the device's name 951 */ 952 int dev_set_name(struct device *dev, const char *fmt, ...) 953 { 954 va_list vargs; 955 int err; 956 957 va_start(vargs, fmt); 958 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 959 va_end(vargs); 960 return err; 961 } 962 EXPORT_SYMBOL_GPL(dev_set_name); 963 964 /** 965 * device_to_dev_kobj - select a /sys/dev/ directory for the device 966 * @dev: device 967 * 968 * By default we select char/ for new entries. Setting class->dev_obj 969 * to NULL prevents an entry from being created. class->dev_kobj must 970 * be set (or cleared) before any devices are registered to the class 971 * otherwise device_create_sys_dev_entry() and 972 * device_remove_sys_dev_entry() will disagree about the presence of 973 * the link. 974 */ 975 static struct kobject *device_to_dev_kobj(struct device *dev) 976 { 977 struct kobject *kobj; 978 979 if (dev->class) 980 kobj = dev->class->dev_kobj; 981 else 982 kobj = sysfs_dev_char_kobj; 983 984 return kobj; 985 } 986 987 static int device_create_sys_dev_entry(struct device *dev) 988 { 989 struct kobject *kobj = device_to_dev_kobj(dev); 990 int error = 0; 991 char devt_str[15]; 992 993 if (kobj) { 994 format_dev_t(devt_str, dev->devt); 995 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 996 } 997 998 return error; 999 } 1000 1001 static void device_remove_sys_dev_entry(struct device *dev) 1002 { 1003 struct kobject *kobj = device_to_dev_kobj(dev); 1004 char devt_str[15]; 1005 1006 if (kobj) { 1007 format_dev_t(devt_str, dev->devt); 1008 sysfs_remove_link(kobj, devt_str); 1009 } 1010 } 1011 1012 int device_private_init(struct device *dev) 1013 { 1014 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 1015 if (!dev->p) 1016 return -ENOMEM; 1017 dev->p->device = dev; 1018 klist_init(&dev->p->klist_children, klist_children_get, 1019 klist_children_put); 1020 INIT_LIST_HEAD(&dev->p->deferred_probe); 1021 return 0; 1022 } 1023 1024 /** 1025 * device_add - add device to device hierarchy. 1026 * @dev: device. 1027 * 1028 * This is part 2 of device_register(), though may be called 1029 * separately _iff_ device_initialize() has been called separately. 1030 * 1031 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 1032 * to the global and sibling lists for the device, then 1033 * adds it to the other relevant subsystems of the driver model. 1034 * 1035 * Do not call this routine or device_register() more than once for 1036 * any device structure. The driver model core is not designed to work 1037 * with devices that get unregistered and then spring back to life. 1038 * (Among other things, it's very hard to guarantee that all references 1039 * to the previous incarnation of @dev have been dropped.) Allocate 1040 * and register a fresh new struct device instead. 1041 * 1042 * NOTE: _Never_ directly free @dev after calling this function, even 1043 * if it returned an error! Always use put_device() to give up your 1044 * reference instead. 1045 */ 1046 int device_add(struct device *dev) 1047 { 1048 struct device *parent = NULL; 1049 struct kobject *kobj; 1050 struct class_interface *class_intf; 1051 int error = -EINVAL; 1052 1053 dev = get_device(dev); 1054 if (!dev) 1055 goto done; 1056 1057 if (!dev->p) { 1058 error = device_private_init(dev); 1059 if (error) 1060 goto done; 1061 } 1062 1063 /* 1064 * for statically allocated devices, which should all be converted 1065 * some day, we need to initialize the name. We prevent reading back 1066 * the name, and force the use of dev_name() 1067 */ 1068 if (dev->init_name) { 1069 dev_set_name(dev, "%s", dev->init_name); 1070 dev->init_name = NULL; 1071 } 1072 1073 /* subsystems can specify simple device enumeration */ 1074 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 1075 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 1076 1077 if (!dev_name(dev)) { 1078 error = -EINVAL; 1079 goto name_error; 1080 } 1081 1082 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 1083 1084 parent = get_device(dev->parent); 1085 kobj = get_device_parent(dev, parent); 1086 if (kobj) 1087 dev->kobj.parent = kobj; 1088 1089 /* use parent numa_node */ 1090 if (parent) 1091 set_dev_node(dev, dev_to_node(parent)); 1092 1093 /* first, register with generic layer. */ 1094 /* we require the name to be set before, and pass NULL */ 1095 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 1096 if (error) 1097 goto Error; 1098 1099 /* notify platform of device entry */ 1100 if (platform_notify) 1101 platform_notify(dev); 1102 1103 error = device_create_file(dev, &uevent_attr); 1104 if (error) 1105 goto attrError; 1106 1107 if (MAJOR(dev->devt)) { 1108 error = device_create_file(dev, &devt_attr); 1109 if (error) 1110 goto ueventattrError; 1111 1112 error = device_create_sys_dev_entry(dev); 1113 if (error) 1114 goto devtattrError; 1115 1116 devtmpfs_create_node(dev); 1117 } 1118 1119 error = device_add_class_symlinks(dev); 1120 if (error) 1121 goto SymlinkError; 1122 error = device_add_attrs(dev); 1123 if (error) 1124 goto AttrsError; 1125 error = bus_add_device(dev); 1126 if (error) 1127 goto BusError; 1128 error = dpm_sysfs_add(dev); 1129 if (error) 1130 goto DPMError; 1131 device_pm_add(dev); 1132 1133 /* Notify clients of device addition. This call must come 1134 * after dpm_sysfs_add() and before kobject_uevent(). 1135 */ 1136 if (dev->bus) 1137 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1138 BUS_NOTIFY_ADD_DEVICE, dev); 1139 1140 kobject_uevent(&dev->kobj, KOBJ_ADD); 1141 bus_probe_device(dev); 1142 if (parent) 1143 klist_add_tail(&dev->p->knode_parent, 1144 &parent->p->klist_children); 1145 1146 if (dev->class) { 1147 mutex_lock(&dev->class->p->mutex); 1148 /* tie the class to the device */ 1149 klist_add_tail(&dev->knode_class, 1150 &dev->class->p->klist_devices); 1151 1152 /* notify any interfaces that the device is here */ 1153 list_for_each_entry(class_intf, 1154 &dev->class->p->interfaces, node) 1155 if (class_intf->add_dev) 1156 class_intf->add_dev(dev, class_intf); 1157 mutex_unlock(&dev->class->p->mutex); 1158 } 1159 done: 1160 put_device(dev); 1161 return error; 1162 DPMError: 1163 bus_remove_device(dev); 1164 BusError: 1165 device_remove_attrs(dev); 1166 AttrsError: 1167 device_remove_class_symlinks(dev); 1168 SymlinkError: 1169 if (MAJOR(dev->devt)) 1170 devtmpfs_delete_node(dev); 1171 if (MAJOR(dev->devt)) 1172 device_remove_sys_dev_entry(dev); 1173 devtattrError: 1174 if (MAJOR(dev->devt)) 1175 device_remove_file(dev, &devt_attr); 1176 ueventattrError: 1177 device_remove_file(dev, &uevent_attr); 1178 attrError: 1179 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 1180 kobject_del(&dev->kobj); 1181 Error: 1182 cleanup_device_parent(dev); 1183 if (parent) 1184 put_device(parent); 1185 name_error: 1186 kfree(dev->p); 1187 dev->p = NULL; 1188 goto done; 1189 } 1190 1191 /** 1192 * device_register - register a device with the system. 1193 * @dev: pointer to the device structure 1194 * 1195 * This happens in two clean steps - initialize the device 1196 * and add it to the system. The two steps can be called 1197 * separately, but this is the easiest and most common. 1198 * I.e. you should only call the two helpers separately if 1199 * have a clearly defined need to use and refcount the device 1200 * before it is added to the hierarchy. 1201 * 1202 * For more information, see the kerneldoc for device_initialize() 1203 * and device_add(). 1204 * 1205 * NOTE: _Never_ directly free @dev after calling this function, even 1206 * if it returned an error! Always use put_device() to give up the 1207 * reference initialized in this function instead. 1208 */ 1209 int device_register(struct device *dev) 1210 { 1211 device_initialize(dev); 1212 return device_add(dev); 1213 } 1214 1215 /** 1216 * get_device - increment reference count for device. 1217 * @dev: device. 1218 * 1219 * This simply forwards the call to kobject_get(), though 1220 * we do take care to provide for the case that we get a NULL 1221 * pointer passed in. 1222 */ 1223 struct device *get_device(struct device *dev) 1224 { 1225 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 1226 } 1227 1228 /** 1229 * put_device - decrement reference count. 1230 * @dev: device in question. 1231 */ 1232 void put_device(struct device *dev) 1233 { 1234 /* might_sleep(); */ 1235 if (dev) 1236 kobject_put(&dev->kobj); 1237 } 1238 1239 /** 1240 * device_del - delete device from system. 1241 * @dev: device. 1242 * 1243 * This is the first part of the device unregistration 1244 * sequence. This removes the device from the lists we control 1245 * from here, has it removed from the other driver model 1246 * subsystems it was added to in device_add(), and removes it 1247 * from the kobject hierarchy. 1248 * 1249 * NOTE: this should be called manually _iff_ device_add() was 1250 * also called manually. 1251 */ 1252 void device_del(struct device *dev) 1253 { 1254 struct device *parent = dev->parent; 1255 struct class_interface *class_intf; 1256 1257 /* Notify clients of device removal. This call must come 1258 * before dpm_sysfs_remove(). 1259 */ 1260 if (dev->bus) 1261 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1262 BUS_NOTIFY_DEL_DEVICE, dev); 1263 dpm_sysfs_remove(dev); 1264 if (parent) 1265 klist_del(&dev->p->knode_parent); 1266 if (MAJOR(dev->devt)) { 1267 devtmpfs_delete_node(dev); 1268 device_remove_sys_dev_entry(dev); 1269 device_remove_file(dev, &devt_attr); 1270 } 1271 if (dev->class) { 1272 device_remove_class_symlinks(dev); 1273 1274 mutex_lock(&dev->class->p->mutex); 1275 /* notify any interfaces that the device is now gone */ 1276 list_for_each_entry(class_intf, 1277 &dev->class->p->interfaces, node) 1278 if (class_intf->remove_dev) 1279 class_intf->remove_dev(dev, class_intf); 1280 /* remove the device from the class list */ 1281 klist_del(&dev->knode_class); 1282 mutex_unlock(&dev->class->p->mutex); 1283 } 1284 device_remove_file(dev, &uevent_attr); 1285 device_remove_attrs(dev); 1286 bus_remove_device(dev); 1287 device_pm_remove(dev); 1288 driver_deferred_probe_del(dev); 1289 1290 /* Notify the platform of the removal, in case they 1291 * need to do anything... 1292 */ 1293 if (platform_notify_remove) 1294 platform_notify_remove(dev); 1295 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 1296 cleanup_device_parent(dev); 1297 kobject_del(&dev->kobj); 1298 put_device(parent); 1299 } 1300 1301 /** 1302 * device_unregister - unregister device from system. 1303 * @dev: device going away. 1304 * 1305 * We do this in two parts, like we do device_register(). First, 1306 * we remove it from all the subsystems with device_del(), then 1307 * we decrement the reference count via put_device(). If that 1308 * is the final reference count, the device will be cleaned up 1309 * via device_release() above. Otherwise, the structure will 1310 * stick around until the final reference to the device is dropped. 1311 */ 1312 void device_unregister(struct device *dev) 1313 { 1314 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 1315 device_del(dev); 1316 put_device(dev); 1317 } 1318 1319 static struct device *next_device(struct klist_iter *i) 1320 { 1321 struct klist_node *n = klist_next(i); 1322 struct device *dev = NULL; 1323 struct device_private *p; 1324 1325 if (n) { 1326 p = to_device_private_parent(n); 1327 dev = p->device; 1328 } 1329 return dev; 1330 } 1331 1332 /** 1333 * device_get_devnode - path of device node file 1334 * @dev: device 1335 * @mode: returned file access mode 1336 * @uid: returned file owner 1337 * @gid: returned file group 1338 * @tmp: possibly allocated string 1339 * 1340 * Return the relative path of a possible device node. 1341 * Non-default names may need to allocate a memory to compose 1342 * a name. This memory is returned in tmp and needs to be 1343 * freed by the caller. 1344 */ 1345 const char *device_get_devnode(struct device *dev, 1346 umode_t *mode, kuid_t *uid, kgid_t *gid, 1347 const char **tmp) 1348 { 1349 char *s; 1350 1351 *tmp = NULL; 1352 1353 /* the device type may provide a specific name */ 1354 if (dev->type && dev->type->devnode) 1355 *tmp = dev->type->devnode(dev, mode, uid, gid); 1356 if (*tmp) 1357 return *tmp; 1358 1359 /* the class may provide a specific name */ 1360 if (dev->class && dev->class->devnode) 1361 *tmp = dev->class->devnode(dev, mode); 1362 if (*tmp) 1363 return *tmp; 1364 1365 /* return name without allocation, tmp == NULL */ 1366 if (strchr(dev_name(dev), '!') == NULL) 1367 return dev_name(dev); 1368 1369 /* replace '!' in the name with '/' */ 1370 *tmp = kstrdup(dev_name(dev), GFP_KERNEL); 1371 if (!*tmp) 1372 return NULL; 1373 while ((s = strchr(*tmp, '!'))) 1374 s[0] = '/'; 1375 return *tmp; 1376 } 1377 1378 /** 1379 * device_for_each_child - device child iterator. 1380 * @parent: parent struct device. 1381 * @fn: function to be called for each device. 1382 * @data: data for the callback. 1383 * 1384 * Iterate over @parent's child devices, and call @fn for each, 1385 * passing it @data. 1386 * 1387 * We check the return of @fn each time. If it returns anything 1388 * other than 0, we break out and return that value. 1389 */ 1390 int device_for_each_child(struct device *parent, void *data, 1391 int (*fn)(struct device *dev, void *data)) 1392 { 1393 struct klist_iter i; 1394 struct device *child; 1395 int error = 0; 1396 1397 if (!parent->p) 1398 return 0; 1399 1400 klist_iter_init(&parent->p->klist_children, &i); 1401 while ((child = next_device(&i)) && !error) 1402 error = fn(child, data); 1403 klist_iter_exit(&i); 1404 return error; 1405 } 1406 1407 /** 1408 * device_find_child - device iterator for locating a particular device. 1409 * @parent: parent struct device 1410 * @match: Callback function to check device 1411 * @data: Data to pass to match function 1412 * 1413 * This is similar to the device_for_each_child() function above, but it 1414 * returns a reference to a device that is 'found' for later use, as 1415 * determined by the @match callback. 1416 * 1417 * The callback should return 0 if the device doesn't match and non-zero 1418 * if it does. If the callback returns non-zero and a reference to the 1419 * current device can be obtained, this function will return to the caller 1420 * and not iterate over any more devices. 1421 * 1422 * NOTE: you will need to drop the reference with put_device() after use. 1423 */ 1424 struct device *device_find_child(struct device *parent, void *data, 1425 int (*match)(struct device *dev, void *data)) 1426 { 1427 struct klist_iter i; 1428 struct device *child; 1429 1430 if (!parent) 1431 return NULL; 1432 1433 klist_iter_init(&parent->p->klist_children, &i); 1434 while ((child = next_device(&i))) 1435 if (match(child, data) && get_device(child)) 1436 break; 1437 klist_iter_exit(&i); 1438 return child; 1439 } 1440 1441 int __init devices_init(void) 1442 { 1443 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 1444 if (!devices_kset) 1445 return -ENOMEM; 1446 dev_kobj = kobject_create_and_add("dev", NULL); 1447 if (!dev_kobj) 1448 goto dev_kobj_err; 1449 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 1450 if (!sysfs_dev_block_kobj) 1451 goto block_kobj_err; 1452 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 1453 if (!sysfs_dev_char_kobj) 1454 goto char_kobj_err; 1455 1456 return 0; 1457 1458 char_kobj_err: 1459 kobject_put(sysfs_dev_block_kobj); 1460 block_kobj_err: 1461 kobject_put(dev_kobj); 1462 dev_kobj_err: 1463 kset_unregister(devices_kset); 1464 return -ENOMEM; 1465 } 1466 1467 EXPORT_SYMBOL_GPL(device_for_each_child); 1468 EXPORT_SYMBOL_GPL(device_find_child); 1469 1470 EXPORT_SYMBOL_GPL(device_initialize); 1471 EXPORT_SYMBOL_GPL(device_add); 1472 EXPORT_SYMBOL_GPL(device_register); 1473 1474 EXPORT_SYMBOL_GPL(device_del); 1475 EXPORT_SYMBOL_GPL(device_unregister); 1476 EXPORT_SYMBOL_GPL(get_device); 1477 EXPORT_SYMBOL_GPL(put_device); 1478 1479 EXPORT_SYMBOL_GPL(device_create_file); 1480 EXPORT_SYMBOL_GPL(device_remove_file); 1481 1482 static DEFINE_MUTEX(device_hotplug_lock); 1483 1484 void lock_device_hotplug(void) 1485 { 1486 mutex_lock(&device_hotplug_lock); 1487 } 1488 1489 void unlock_device_hotplug(void) 1490 { 1491 mutex_unlock(&device_hotplug_lock); 1492 } 1493 1494 static int device_check_offline(struct device *dev, void *not_used) 1495 { 1496 int ret; 1497 1498 ret = device_for_each_child(dev, NULL, device_check_offline); 1499 if (ret) 1500 return ret; 1501 1502 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 1503 } 1504 1505 /** 1506 * device_offline - Prepare the device for hot-removal. 1507 * @dev: Device to be put offline. 1508 * 1509 * Execute the device bus type's .offline() callback, if present, to prepare 1510 * the device for a subsequent hot-removal. If that succeeds, the device must 1511 * not be used until either it is removed or its bus type's .online() callback 1512 * is executed. 1513 * 1514 * Call under device_hotplug_lock. 1515 */ 1516 int device_offline(struct device *dev) 1517 { 1518 int ret; 1519 1520 if (dev->offline_disabled) 1521 return -EPERM; 1522 1523 ret = device_for_each_child(dev, NULL, device_check_offline); 1524 if (ret) 1525 return ret; 1526 1527 device_lock(dev); 1528 if (device_supports_offline(dev)) { 1529 if (dev->offline) { 1530 ret = 1; 1531 } else { 1532 ret = dev->bus->offline(dev); 1533 if (!ret) { 1534 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 1535 dev->offline = true; 1536 } 1537 } 1538 } 1539 device_unlock(dev); 1540 1541 return ret; 1542 } 1543 1544 /** 1545 * device_online - Put the device back online after successful device_offline(). 1546 * @dev: Device to be put back online. 1547 * 1548 * If device_offline() has been successfully executed for @dev, but the device 1549 * has not been removed subsequently, execute its bus type's .online() callback 1550 * to indicate that the device can be used again. 1551 * 1552 * Call under device_hotplug_lock. 1553 */ 1554 int device_online(struct device *dev) 1555 { 1556 int ret = 0; 1557 1558 device_lock(dev); 1559 if (device_supports_offline(dev)) { 1560 if (dev->offline) { 1561 ret = dev->bus->online(dev); 1562 if (!ret) { 1563 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 1564 dev->offline = false; 1565 } 1566 } else { 1567 ret = 1; 1568 } 1569 } 1570 device_unlock(dev); 1571 1572 return ret; 1573 } 1574 1575 struct root_device { 1576 struct device dev; 1577 struct module *owner; 1578 }; 1579 1580 static inline struct root_device *to_root_device(struct device *d) 1581 { 1582 return container_of(d, struct root_device, dev); 1583 } 1584 1585 static void root_device_release(struct device *dev) 1586 { 1587 kfree(to_root_device(dev)); 1588 } 1589 1590 /** 1591 * __root_device_register - allocate and register a root device 1592 * @name: root device name 1593 * @owner: owner module of the root device, usually THIS_MODULE 1594 * 1595 * This function allocates a root device and registers it 1596 * using device_register(). In order to free the returned 1597 * device, use root_device_unregister(). 1598 * 1599 * Root devices are dummy devices which allow other devices 1600 * to be grouped under /sys/devices. Use this function to 1601 * allocate a root device and then use it as the parent of 1602 * any device which should appear under /sys/devices/{name} 1603 * 1604 * The /sys/devices/{name} directory will also contain a 1605 * 'module' symlink which points to the @owner directory 1606 * in sysfs. 1607 * 1608 * Returns &struct device pointer on success, or ERR_PTR() on error. 1609 * 1610 * Note: You probably want to use root_device_register(). 1611 */ 1612 struct device *__root_device_register(const char *name, struct module *owner) 1613 { 1614 struct root_device *root; 1615 int err = -ENOMEM; 1616 1617 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 1618 if (!root) 1619 return ERR_PTR(err); 1620 1621 err = dev_set_name(&root->dev, "%s", name); 1622 if (err) { 1623 kfree(root); 1624 return ERR_PTR(err); 1625 } 1626 1627 root->dev.release = root_device_release; 1628 1629 err = device_register(&root->dev); 1630 if (err) { 1631 put_device(&root->dev); 1632 return ERR_PTR(err); 1633 } 1634 1635 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 1636 if (owner) { 1637 struct module_kobject *mk = &owner->mkobj; 1638 1639 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 1640 if (err) { 1641 device_unregister(&root->dev); 1642 return ERR_PTR(err); 1643 } 1644 root->owner = owner; 1645 } 1646 #endif 1647 1648 return &root->dev; 1649 } 1650 EXPORT_SYMBOL_GPL(__root_device_register); 1651 1652 /** 1653 * root_device_unregister - unregister and free a root device 1654 * @dev: device going away 1655 * 1656 * This function unregisters and cleans up a device that was created by 1657 * root_device_register(). 1658 */ 1659 void root_device_unregister(struct device *dev) 1660 { 1661 struct root_device *root = to_root_device(dev); 1662 1663 if (root->owner) 1664 sysfs_remove_link(&root->dev.kobj, "module"); 1665 1666 device_unregister(dev); 1667 } 1668 EXPORT_SYMBOL_GPL(root_device_unregister); 1669 1670 1671 static void device_create_release(struct device *dev) 1672 { 1673 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 1674 kfree(dev); 1675 } 1676 1677 static struct device * 1678 device_create_groups_vargs(struct class *class, struct device *parent, 1679 dev_t devt, void *drvdata, 1680 const struct attribute_group **groups, 1681 const char *fmt, va_list args) 1682 { 1683 struct device *dev = NULL; 1684 int retval = -ENODEV; 1685 1686 if (class == NULL || IS_ERR(class)) 1687 goto error; 1688 1689 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1690 if (!dev) { 1691 retval = -ENOMEM; 1692 goto error; 1693 } 1694 1695 dev->devt = devt; 1696 dev->class = class; 1697 dev->parent = parent; 1698 dev->groups = groups; 1699 dev->release = device_create_release; 1700 dev_set_drvdata(dev, drvdata); 1701 1702 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 1703 if (retval) 1704 goto error; 1705 1706 retval = device_register(dev); 1707 if (retval) 1708 goto error; 1709 1710 return dev; 1711 1712 error: 1713 put_device(dev); 1714 return ERR_PTR(retval); 1715 } 1716 1717 /** 1718 * device_create_vargs - creates a device and registers it with sysfs 1719 * @class: pointer to the struct class that this device should be registered to 1720 * @parent: pointer to the parent struct device of this new device, if any 1721 * @devt: the dev_t for the char device to be added 1722 * @drvdata: the data to be added to the device for callbacks 1723 * @fmt: string for the device's name 1724 * @args: va_list for the device's name 1725 * 1726 * This function can be used by char device classes. A struct device 1727 * will be created in sysfs, registered to the specified class. 1728 * 1729 * A "dev" file will be created, showing the dev_t for the device, if 1730 * the dev_t is not 0,0. 1731 * If a pointer to a parent struct device is passed in, the newly created 1732 * struct device will be a child of that device in sysfs. 1733 * The pointer to the struct device will be returned from the call. 1734 * Any further sysfs files that might be required can be created using this 1735 * pointer. 1736 * 1737 * Returns &struct device pointer on success, or ERR_PTR() on error. 1738 * 1739 * Note: the struct class passed to this function must have previously 1740 * been created with a call to class_create(). 1741 */ 1742 struct device *device_create_vargs(struct class *class, struct device *parent, 1743 dev_t devt, void *drvdata, const char *fmt, 1744 va_list args) 1745 { 1746 return device_create_groups_vargs(class, parent, devt, drvdata, NULL, 1747 fmt, args); 1748 } 1749 EXPORT_SYMBOL_GPL(device_create_vargs); 1750 1751 /** 1752 * device_create - creates a device and registers it with sysfs 1753 * @class: pointer to the struct class that this device should be registered to 1754 * @parent: pointer to the parent struct device of this new device, if any 1755 * @devt: the dev_t for the char device to be added 1756 * @drvdata: the data to be added to the device for callbacks 1757 * @fmt: string for the device's name 1758 * 1759 * This function can be used by char device classes. A struct device 1760 * will be created in sysfs, registered to the specified class. 1761 * 1762 * A "dev" file will be created, showing the dev_t for the device, if 1763 * the dev_t is not 0,0. 1764 * If a pointer to a parent struct device is passed in, the newly created 1765 * struct device will be a child of that device in sysfs. 1766 * The pointer to the struct device will be returned from the call. 1767 * Any further sysfs files that might be required can be created using this 1768 * pointer. 1769 * 1770 * Returns &struct device pointer on success, or ERR_PTR() on error. 1771 * 1772 * Note: the struct class passed to this function must have previously 1773 * been created with a call to class_create(). 1774 */ 1775 struct device *device_create(struct class *class, struct device *parent, 1776 dev_t devt, void *drvdata, const char *fmt, ...) 1777 { 1778 va_list vargs; 1779 struct device *dev; 1780 1781 va_start(vargs, fmt); 1782 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs); 1783 va_end(vargs); 1784 return dev; 1785 } 1786 EXPORT_SYMBOL_GPL(device_create); 1787 1788 /** 1789 * device_create_with_groups - creates a device and registers it with sysfs 1790 * @class: pointer to the struct class that this device should be registered to 1791 * @parent: pointer to the parent struct device of this new device, if any 1792 * @devt: the dev_t for the char device to be added 1793 * @drvdata: the data to be added to the device for callbacks 1794 * @groups: NULL-terminated list of attribute groups to be created 1795 * @fmt: string for the device's name 1796 * 1797 * This function can be used by char device classes. A struct device 1798 * will be created in sysfs, registered to the specified class. 1799 * Additional attributes specified in the groups parameter will also 1800 * be created automatically. 1801 * 1802 * A "dev" file will be created, showing the dev_t for the device, if 1803 * the dev_t is not 0,0. 1804 * If a pointer to a parent struct device is passed in, the newly created 1805 * struct device will be a child of that device in sysfs. 1806 * The pointer to the struct device will be returned from the call. 1807 * Any further sysfs files that might be required can be created using this 1808 * pointer. 1809 * 1810 * Returns &struct device pointer on success, or ERR_PTR() on error. 1811 * 1812 * Note: the struct class passed to this function must have previously 1813 * been created with a call to class_create(). 1814 */ 1815 struct device *device_create_with_groups(struct class *class, 1816 struct device *parent, dev_t devt, 1817 void *drvdata, 1818 const struct attribute_group **groups, 1819 const char *fmt, ...) 1820 { 1821 va_list vargs; 1822 struct device *dev; 1823 1824 va_start(vargs, fmt); 1825 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 1826 fmt, vargs); 1827 va_end(vargs); 1828 return dev; 1829 } 1830 EXPORT_SYMBOL_GPL(device_create_with_groups); 1831 1832 static int __match_devt(struct device *dev, const void *data) 1833 { 1834 const dev_t *devt = data; 1835 1836 return dev->devt == *devt; 1837 } 1838 1839 /** 1840 * device_destroy - removes a device that was created with device_create() 1841 * @class: pointer to the struct class that this device was registered with 1842 * @devt: the dev_t of the device that was previously registered 1843 * 1844 * This call unregisters and cleans up a device that was created with a 1845 * call to device_create(). 1846 */ 1847 void device_destroy(struct class *class, dev_t devt) 1848 { 1849 struct device *dev; 1850 1851 dev = class_find_device(class, NULL, &devt, __match_devt); 1852 if (dev) { 1853 put_device(dev); 1854 device_unregister(dev); 1855 } 1856 } 1857 EXPORT_SYMBOL_GPL(device_destroy); 1858 1859 /** 1860 * device_rename - renames a device 1861 * @dev: the pointer to the struct device to be renamed 1862 * @new_name: the new name of the device 1863 * 1864 * It is the responsibility of the caller to provide mutual 1865 * exclusion between two different calls of device_rename 1866 * on the same device to ensure that new_name is valid and 1867 * won't conflict with other devices. 1868 * 1869 * Note: Don't call this function. Currently, the networking layer calls this 1870 * function, but that will change. The following text from Kay Sievers offers 1871 * some insight: 1872 * 1873 * Renaming devices is racy at many levels, symlinks and other stuff are not 1874 * replaced atomically, and you get a "move" uevent, but it's not easy to 1875 * connect the event to the old and new device. Device nodes are not renamed at 1876 * all, there isn't even support for that in the kernel now. 1877 * 1878 * In the meantime, during renaming, your target name might be taken by another 1879 * driver, creating conflicts. Or the old name is taken directly after you 1880 * renamed it -- then you get events for the same DEVPATH, before you even see 1881 * the "move" event. It's just a mess, and nothing new should ever rely on 1882 * kernel device renaming. Besides that, it's not even implemented now for 1883 * other things than (driver-core wise very simple) network devices. 1884 * 1885 * We are currently about to change network renaming in udev to completely 1886 * disallow renaming of devices in the same namespace as the kernel uses, 1887 * because we can't solve the problems properly, that arise with swapping names 1888 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 1889 * be allowed to some other name than eth[0-9]*, for the aforementioned 1890 * reasons. 1891 * 1892 * Make up a "real" name in the driver before you register anything, or add 1893 * some other attributes for userspace to find the device, or use udev to add 1894 * symlinks -- but never rename kernel devices later, it's a complete mess. We 1895 * don't even want to get into that and try to implement the missing pieces in 1896 * the core. We really have other pieces to fix in the driver core mess. :) 1897 */ 1898 int device_rename(struct device *dev, const char *new_name) 1899 { 1900 char *old_device_name = NULL; 1901 int error; 1902 1903 dev = get_device(dev); 1904 if (!dev) 1905 return -EINVAL; 1906 1907 pr_debug("device: '%s': %s: renaming to '%s'\n", dev_name(dev), 1908 __func__, new_name); 1909 1910 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 1911 if (!old_device_name) { 1912 error = -ENOMEM; 1913 goto out; 1914 } 1915 1916 if (dev->class) { 1917 error = sysfs_rename_link(&dev->class->p->subsys.kobj, 1918 &dev->kobj, old_device_name, new_name); 1919 if (error) 1920 goto out; 1921 } 1922 1923 error = kobject_rename(&dev->kobj, new_name); 1924 if (error) 1925 goto out; 1926 1927 out: 1928 put_device(dev); 1929 1930 kfree(old_device_name); 1931 1932 return error; 1933 } 1934 EXPORT_SYMBOL_GPL(device_rename); 1935 1936 static int device_move_class_links(struct device *dev, 1937 struct device *old_parent, 1938 struct device *new_parent) 1939 { 1940 int error = 0; 1941 1942 if (old_parent) 1943 sysfs_remove_link(&dev->kobj, "device"); 1944 if (new_parent) 1945 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 1946 "device"); 1947 return error; 1948 } 1949 1950 /** 1951 * device_move - moves a device to a new parent 1952 * @dev: the pointer to the struct device to be moved 1953 * @new_parent: the new parent of the device (can by NULL) 1954 * @dpm_order: how to reorder the dpm_list 1955 */ 1956 int device_move(struct device *dev, struct device *new_parent, 1957 enum dpm_order dpm_order) 1958 { 1959 int error; 1960 struct device *old_parent; 1961 struct kobject *new_parent_kobj; 1962 1963 dev = get_device(dev); 1964 if (!dev) 1965 return -EINVAL; 1966 1967 device_pm_lock(); 1968 new_parent = get_device(new_parent); 1969 new_parent_kobj = get_device_parent(dev, new_parent); 1970 1971 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 1972 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 1973 error = kobject_move(&dev->kobj, new_parent_kobj); 1974 if (error) { 1975 cleanup_glue_dir(dev, new_parent_kobj); 1976 put_device(new_parent); 1977 goto out; 1978 } 1979 old_parent = dev->parent; 1980 dev->parent = new_parent; 1981 if (old_parent) 1982 klist_remove(&dev->p->knode_parent); 1983 if (new_parent) { 1984 klist_add_tail(&dev->p->knode_parent, 1985 &new_parent->p->klist_children); 1986 set_dev_node(dev, dev_to_node(new_parent)); 1987 } 1988 1989 if (dev->class) { 1990 error = device_move_class_links(dev, old_parent, new_parent); 1991 if (error) { 1992 /* We ignore errors on cleanup since we're hosed anyway... */ 1993 device_move_class_links(dev, new_parent, old_parent); 1994 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 1995 if (new_parent) 1996 klist_remove(&dev->p->knode_parent); 1997 dev->parent = old_parent; 1998 if (old_parent) { 1999 klist_add_tail(&dev->p->knode_parent, 2000 &old_parent->p->klist_children); 2001 set_dev_node(dev, dev_to_node(old_parent)); 2002 } 2003 } 2004 cleanup_glue_dir(dev, new_parent_kobj); 2005 put_device(new_parent); 2006 goto out; 2007 } 2008 } 2009 switch (dpm_order) { 2010 case DPM_ORDER_NONE: 2011 break; 2012 case DPM_ORDER_DEV_AFTER_PARENT: 2013 device_pm_move_after(dev, new_parent); 2014 break; 2015 case DPM_ORDER_PARENT_BEFORE_DEV: 2016 device_pm_move_before(new_parent, dev); 2017 break; 2018 case DPM_ORDER_DEV_LAST: 2019 device_pm_move_last(dev); 2020 break; 2021 } 2022 2023 put_device(old_parent); 2024 out: 2025 device_pm_unlock(); 2026 put_device(dev); 2027 return error; 2028 } 2029 EXPORT_SYMBOL_GPL(device_move); 2030 2031 /** 2032 * device_shutdown - call ->shutdown() on each device to shutdown. 2033 */ 2034 void device_shutdown(void) 2035 { 2036 struct device *dev; 2037 2038 spin_lock(&devices_kset->list_lock); 2039 /* 2040 * Walk the devices list backward, shutting down each in turn. 2041 * Beware that device unplug events may also start pulling 2042 * devices offline, even as the system is shutting down. 2043 */ 2044 while (!list_empty(&devices_kset->list)) { 2045 dev = list_entry(devices_kset->list.prev, struct device, 2046 kobj.entry); 2047 2048 /* 2049 * hold reference count of device's parent to 2050 * prevent it from being freed because parent's 2051 * lock is to be held 2052 */ 2053 get_device(dev->parent); 2054 get_device(dev); 2055 /* 2056 * Make sure the device is off the kset list, in the 2057 * event that dev->*->shutdown() doesn't remove it. 2058 */ 2059 list_del_init(&dev->kobj.entry); 2060 spin_unlock(&devices_kset->list_lock); 2061 2062 /* hold lock to avoid race with probe/release */ 2063 if (dev->parent) 2064 device_lock(dev->parent); 2065 device_lock(dev); 2066 2067 /* Don't allow any more runtime suspends */ 2068 pm_runtime_get_noresume(dev); 2069 pm_runtime_barrier(dev); 2070 2071 if (dev->bus && dev->bus->shutdown) { 2072 if (initcall_debug) 2073 dev_info(dev, "shutdown\n"); 2074 dev->bus->shutdown(dev); 2075 } else if (dev->driver && dev->driver->shutdown) { 2076 if (initcall_debug) 2077 dev_info(dev, "shutdown\n"); 2078 dev->driver->shutdown(dev); 2079 } 2080 2081 device_unlock(dev); 2082 if (dev->parent) 2083 device_unlock(dev->parent); 2084 2085 put_device(dev); 2086 put_device(dev->parent); 2087 2088 spin_lock(&devices_kset->list_lock); 2089 } 2090 spin_unlock(&devices_kset->list_lock); 2091 async_synchronize_full(); 2092 } 2093 2094 /* 2095 * Device logging functions 2096 */ 2097 2098 #ifdef CONFIG_PRINTK 2099 static int 2100 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen) 2101 { 2102 const char *subsys; 2103 size_t pos = 0; 2104 2105 if (dev->class) 2106 subsys = dev->class->name; 2107 else if (dev->bus) 2108 subsys = dev->bus->name; 2109 else 2110 return 0; 2111 2112 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys); 2113 2114 /* 2115 * Add device identifier DEVICE=: 2116 * b12:8 block dev_t 2117 * c127:3 char dev_t 2118 * n8 netdev ifindex 2119 * +sound:card0 subsystem:devname 2120 */ 2121 if (MAJOR(dev->devt)) { 2122 char c; 2123 2124 if (strcmp(subsys, "block") == 0) 2125 c = 'b'; 2126 else 2127 c = 'c'; 2128 pos++; 2129 pos += snprintf(hdr + pos, hdrlen - pos, 2130 "DEVICE=%c%u:%u", 2131 c, MAJOR(dev->devt), MINOR(dev->devt)); 2132 } else if (strcmp(subsys, "net") == 0) { 2133 struct net_device *net = to_net_dev(dev); 2134 2135 pos++; 2136 pos += snprintf(hdr + pos, hdrlen - pos, 2137 "DEVICE=n%u", net->ifindex); 2138 } else { 2139 pos++; 2140 pos += snprintf(hdr + pos, hdrlen - pos, 2141 "DEVICE=+%s:%s", subsys, dev_name(dev)); 2142 } 2143 2144 return pos; 2145 } 2146 EXPORT_SYMBOL(create_syslog_header); 2147 2148 int dev_vprintk_emit(int level, const struct device *dev, 2149 const char *fmt, va_list args) 2150 { 2151 char hdr[128]; 2152 size_t hdrlen; 2153 2154 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr)); 2155 2156 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args); 2157 } 2158 EXPORT_SYMBOL(dev_vprintk_emit); 2159 2160 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 2161 { 2162 va_list args; 2163 int r; 2164 2165 va_start(args, fmt); 2166 2167 r = dev_vprintk_emit(level, dev, fmt, args); 2168 2169 va_end(args); 2170 2171 return r; 2172 } 2173 EXPORT_SYMBOL(dev_printk_emit); 2174 2175 static int __dev_printk(const char *level, const struct device *dev, 2176 struct va_format *vaf) 2177 { 2178 if (!dev) 2179 return printk("%s(NULL device *): %pV", level, vaf); 2180 2181 return dev_printk_emit(level[1] - '0', dev, 2182 "%s %s: %pV", 2183 dev_driver_string(dev), dev_name(dev), vaf); 2184 } 2185 2186 int dev_printk(const char *level, const struct device *dev, 2187 const char *fmt, ...) 2188 { 2189 struct va_format vaf; 2190 va_list args; 2191 int r; 2192 2193 va_start(args, fmt); 2194 2195 vaf.fmt = fmt; 2196 vaf.va = &args; 2197 2198 r = __dev_printk(level, dev, &vaf); 2199 2200 va_end(args); 2201 2202 return r; 2203 } 2204 EXPORT_SYMBOL(dev_printk); 2205 2206 #define define_dev_printk_level(func, kern_level) \ 2207 int func(const struct device *dev, const char *fmt, ...) \ 2208 { \ 2209 struct va_format vaf; \ 2210 va_list args; \ 2211 int r; \ 2212 \ 2213 va_start(args, fmt); \ 2214 \ 2215 vaf.fmt = fmt; \ 2216 vaf.va = &args; \ 2217 \ 2218 r = __dev_printk(kern_level, dev, &vaf); \ 2219 \ 2220 va_end(args); \ 2221 \ 2222 return r; \ 2223 } \ 2224 EXPORT_SYMBOL(func); 2225 2226 define_dev_printk_level(dev_emerg, KERN_EMERG); 2227 define_dev_printk_level(dev_alert, KERN_ALERT); 2228 define_dev_printk_level(dev_crit, KERN_CRIT); 2229 define_dev_printk_level(dev_err, KERN_ERR); 2230 define_dev_printk_level(dev_warn, KERN_WARNING); 2231 define_dev_printk_level(dev_notice, KERN_NOTICE); 2232 define_dev_printk_level(_dev_info, KERN_INFO); 2233 2234 #endif 2235