xref: /openbmc/linux/drivers/base/core.c (revision 7a2eb736)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/device.h>
13 #include <linux/err.h>
14 #include <linux/fwnode.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include <linux/kdev_t.h>
20 #include <linux/notifier.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/genhd.h>
24 #include <linux/mutex.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/netdevice.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sysfs.h>
29 
30 #include "base.h"
31 #include "power/power.h"
32 
33 #ifdef CONFIG_SYSFS_DEPRECATED
34 #ifdef CONFIG_SYSFS_DEPRECATED_V2
35 long sysfs_deprecated = 1;
36 #else
37 long sysfs_deprecated = 0;
38 #endif
39 static int __init sysfs_deprecated_setup(char *arg)
40 {
41 	return kstrtol(arg, 10, &sysfs_deprecated);
42 }
43 early_param("sysfs.deprecated", sysfs_deprecated_setup);
44 #endif
45 
46 /* Device links support. */
47 
48 #ifdef CONFIG_SRCU
49 static DEFINE_MUTEX(device_links_lock);
50 DEFINE_STATIC_SRCU(device_links_srcu);
51 
52 static inline void device_links_write_lock(void)
53 {
54 	mutex_lock(&device_links_lock);
55 }
56 
57 static inline void device_links_write_unlock(void)
58 {
59 	mutex_unlock(&device_links_lock);
60 }
61 
62 int device_links_read_lock(void)
63 {
64 	return srcu_read_lock(&device_links_srcu);
65 }
66 
67 void device_links_read_unlock(int idx)
68 {
69 	srcu_read_unlock(&device_links_srcu, idx);
70 }
71 #else /* !CONFIG_SRCU */
72 static DECLARE_RWSEM(device_links_lock);
73 
74 static inline void device_links_write_lock(void)
75 {
76 	down_write(&device_links_lock);
77 }
78 
79 static inline void device_links_write_unlock(void)
80 {
81 	up_write(&device_links_lock);
82 }
83 
84 int device_links_read_lock(void)
85 {
86 	down_read(&device_links_lock);
87 	return 0;
88 }
89 
90 void device_links_read_unlock(int not_used)
91 {
92 	up_read(&device_links_lock);
93 }
94 #endif /* !CONFIG_SRCU */
95 
96 /**
97  * device_is_dependent - Check if one device depends on another one
98  * @dev: Device to check dependencies for.
99  * @target: Device to check against.
100  *
101  * Check if @target depends on @dev or any device dependent on it (its child or
102  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
103  */
104 static int device_is_dependent(struct device *dev, void *target)
105 {
106 	struct device_link *link;
107 	int ret;
108 
109 	if (dev == target)
110 		return 1;
111 
112 	ret = device_for_each_child(dev, target, device_is_dependent);
113 	if (ret)
114 		return ret;
115 
116 	list_for_each_entry(link, &dev->links.consumers, s_node) {
117 		if (link->consumer == target)
118 			return 1;
119 
120 		ret = device_is_dependent(link->consumer, target);
121 		if (ret)
122 			break;
123 	}
124 	return ret;
125 }
126 
127 static int device_reorder_to_tail(struct device *dev, void *not_used)
128 {
129 	struct device_link *link;
130 
131 	/*
132 	 * Devices that have not been registered yet will be put to the ends
133 	 * of the lists during the registration, so skip them here.
134 	 */
135 	if (device_is_registered(dev))
136 		devices_kset_move_last(dev);
137 
138 	if (device_pm_initialized(dev))
139 		device_pm_move_last(dev);
140 
141 	device_for_each_child(dev, NULL, device_reorder_to_tail);
142 	list_for_each_entry(link, &dev->links.consumers, s_node)
143 		device_reorder_to_tail(link->consumer, NULL);
144 
145 	return 0;
146 }
147 
148 /**
149  * device_pm_move_to_tail - Move set of devices to the end of device lists
150  * @dev: Device to move
151  *
152  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
153  *
154  * It moves the @dev along with all of its children and all of its consumers
155  * to the ends of the device_kset and dpm_list, recursively.
156  */
157 void device_pm_move_to_tail(struct device *dev)
158 {
159 	int idx;
160 
161 	idx = device_links_read_lock();
162 	device_pm_lock();
163 	device_reorder_to_tail(dev, NULL);
164 	device_pm_unlock();
165 	device_links_read_unlock(idx);
166 }
167 
168 /**
169  * device_link_add - Create a link between two devices.
170  * @consumer: Consumer end of the link.
171  * @supplier: Supplier end of the link.
172  * @flags: Link flags.
173  *
174  * The caller is responsible for the proper synchronization of the link creation
175  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
176  * runtime PM framework to take the link into account.  Second, if the
177  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
178  * be forced into the active metastate and reference-counted upon the creation
179  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
180  * ignored.
181  *
182  * If DL_FLAG_STATELESS is set in @flags, the link is not going to be managed by
183  * the driver core and, in particular, the caller of this function is expected
184  * to drop the reference to the link acquired by it directly.
185  *
186  * If that flag is not set, however, the caller of this function is handing the
187  * management of the link over to the driver core entirely and its return value
188  * can only be used to check whether or not the link is present.  In that case,
189  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
190  * flags can be used to indicate to the driver core when the link can be safely
191  * deleted.  Namely, setting one of them in @flags indicates to the driver core
192  * that the link is not going to be used (by the given caller of this function)
193  * after unbinding the consumer or supplier driver, respectively, from its
194  * device, so the link can be deleted at that point.  If none of them is set,
195  * the link will be maintained until one of the devices pointed to by it (either
196  * the consumer or the supplier) is unregistered.
197  *
198  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
199  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
200  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
201  * be used to request the driver core to automaticall probe for a consmer
202  * driver after successfully binding a driver to the supplier device.
203  *
204  * The combination of DL_FLAG_STATELESS and either DL_FLAG_AUTOREMOVE_CONSUMER
205  * or DL_FLAG_AUTOREMOVE_SUPPLIER set in @flags at the same time is invalid and
206  * will cause NULL to be returned upfront.
207  *
208  * A side effect of the link creation is re-ordering of dpm_list and the
209  * devices_kset list by moving the consumer device and all devices depending
210  * on it to the ends of these lists (that does not happen to devices that have
211  * not been registered when this function is called).
212  *
213  * The supplier device is required to be registered when this function is called
214  * and NULL will be returned if that is not the case.  The consumer device need
215  * not be registered, however.
216  */
217 struct device_link *device_link_add(struct device *consumer,
218 				    struct device *supplier, u32 flags)
219 {
220 	struct device_link *link;
221 
222 	if (!consumer || !supplier ||
223 	    (flags & DL_FLAG_STATELESS &&
224 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
225 		      DL_FLAG_AUTOREMOVE_SUPPLIER |
226 		      DL_FLAG_AUTOPROBE_CONSUMER)) ||
227 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
228 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
229 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
230 		return NULL;
231 
232 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
233 		if (pm_runtime_get_sync(supplier) < 0) {
234 			pm_runtime_put_noidle(supplier);
235 			return NULL;
236 		}
237 	}
238 
239 	device_links_write_lock();
240 	device_pm_lock();
241 
242 	/*
243 	 * If the supplier has not been fully registered yet or there is a
244 	 * reverse dependency between the consumer and the supplier already in
245 	 * the graph, return NULL.
246 	 */
247 	if (!device_pm_initialized(supplier)
248 	    || device_is_dependent(consumer, supplier)) {
249 		link = NULL;
250 		goto out;
251 	}
252 
253 	/*
254 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
255 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
256 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
257 	 */
258 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
259 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
260 
261 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
262 		if (link->consumer != consumer)
263 			continue;
264 
265 		/*
266 		 * Don't return a stateless link if the caller wants a stateful
267 		 * one and vice versa.
268 		 */
269 		if (WARN_ON((flags & DL_FLAG_STATELESS) != (link->flags & DL_FLAG_STATELESS))) {
270 			link = NULL;
271 			goto out;
272 		}
273 
274 		if (flags & DL_FLAG_PM_RUNTIME) {
275 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
276 				pm_runtime_new_link(consumer);
277 				link->flags |= DL_FLAG_PM_RUNTIME;
278 			}
279 			if (flags & DL_FLAG_RPM_ACTIVE)
280 				refcount_inc(&link->rpm_active);
281 		}
282 
283 		if (flags & DL_FLAG_STATELESS) {
284 			kref_get(&link->kref);
285 			goto out;
286 		}
287 
288 		/*
289 		 * If the life time of the link following from the new flags is
290 		 * longer than indicated by the flags of the existing link,
291 		 * update the existing link to stay around longer.
292 		 */
293 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
294 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
295 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
296 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
297 			}
298 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
299 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
300 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
301 		}
302 		goto out;
303 	}
304 
305 	link = kzalloc(sizeof(*link), GFP_KERNEL);
306 	if (!link)
307 		goto out;
308 
309 	refcount_set(&link->rpm_active, 1);
310 
311 	if (flags & DL_FLAG_PM_RUNTIME) {
312 		if (flags & DL_FLAG_RPM_ACTIVE)
313 			refcount_inc(&link->rpm_active);
314 
315 		pm_runtime_new_link(consumer);
316 	}
317 
318 	get_device(supplier);
319 	link->supplier = supplier;
320 	INIT_LIST_HEAD(&link->s_node);
321 	get_device(consumer);
322 	link->consumer = consumer;
323 	INIT_LIST_HEAD(&link->c_node);
324 	link->flags = flags;
325 	kref_init(&link->kref);
326 
327 	/* Determine the initial link state. */
328 	if (flags & DL_FLAG_STATELESS) {
329 		link->status = DL_STATE_NONE;
330 	} else {
331 		switch (supplier->links.status) {
332 		case DL_DEV_PROBING:
333 			switch (consumer->links.status) {
334 			case DL_DEV_PROBING:
335 				/*
336 				 * A consumer driver can create a link to a
337 				 * supplier that has not completed its probing
338 				 * yet as long as it knows that the supplier is
339 				 * already functional (for example, it has just
340 				 * acquired some resources from the supplier).
341 				 */
342 				link->status = DL_STATE_CONSUMER_PROBE;
343 				break;
344 			default:
345 				link->status = DL_STATE_DORMANT;
346 				break;
347 			}
348 			break;
349 		case DL_DEV_DRIVER_BOUND:
350 			switch (consumer->links.status) {
351 			case DL_DEV_PROBING:
352 				link->status = DL_STATE_CONSUMER_PROBE;
353 				break;
354 			case DL_DEV_DRIVER_BOUND:
355 				link->status = DL_STATE_ACTIVE;
356 				break;
357 			default:
358 				link->status = DL_STATE_AVAILABLE;
359 				break;
360 			}
361 			break;
362 		case DL_DEV_UNBINDING:
363 			link->status = DL_STATE_SUPPLIER_UNBIND;
364 			break;
365 		default:
366 			link->status = DL_STATE_DORMANT;
367 			break;
368 		}
369 	}
370 
371 	/*
372 	 * Some callers expect the link creation during consumer driver probe to
373 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
374 	 */
375 	if (link->status == DL_STATE_CONSUMER_PROBE &&
376 	    flags & DL_FLAG_PM_RUNTIME)
377 		pm_runtime_resume(supplier);
378 
379 	/*
380 	 * Move the consumer and all of the devices depending on it to the end
381 	 * of dpm_list and the devices_kset list.
382 	 *
383 	 * It is necessary to hold dpm_list locked throughout all that or else
384 	 * we may end up suspending with a wrong ordering of it.
385 	 */
386 	device_reorder_to_tail(consumer, NULL);
387 
388 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
389 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
390 
391 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
392 
393  out:
394 	device_pm_unlock();
395 	device_links_write_unlock();
396 
397 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
398 		pm_runtime_put(supplier);
399 
400 	return link;
401 }
402 EXPORT_SYMBOL_GPL(device_link_add);
403 
404 static void device_link_free(struct device_link *link)
405 {
406 	while (refcount_dec_not_one(&link->rpm_active))
407 		pm_runtime_put(link->supplier);
408 
409 	put_device(link->consumer);
410 	put_device(link->supplier);
411 	kfree(link);
412 }
413 
414 #ifdef CONFIG_SRCU
415 static void __device_link_free_srcu(struct rcu_head *rhead)
416 {
417 	device_link_free(container_of(rhead, struct device_link, rcu_head));
418 }
419 
420 static void __device_link_del(struct kref *kref)
421 {
422 	struct device_link *link = container_of(kref, struct device_link, kref);
423 
424 	dev_dbg(link->consumer, "Dropping the link to %s\n",
425 		dev_name(link->supplier));
426 
427 	if (link->flags & DL_FLAG_PM_RUNTIME)
428 		pm_runtime_drop_link(link->consumer);
429 
430 	list_del_rcu(&link->s_node);
431 	list_del_rcu(&link->c_node);
432 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
433 }
434 #else /* !CONFIG_SRCU */
435 static void __device_link_del(struct kref *kref)
436 {
437 	struct device_link *link = container_of(kref, struct device_link, kref);
438 
439 	dev_info(link->consumer, "Dropping the link to %s\n",
440 		 dev_name(link->supplier));
441 
442 	if (link->flags & DL_FLAG_PM_RUNTIME)
443 		pm_runtime_drop_link(link->consumer);
444 
445 	list_del(&link->s_node);
446 	list_del(&link->c_node);
447 	device_link_free(link);
448 }
449 #endif /* !CONFIG_SRCU */
450 
451 static void device_link_put_kref(struct device_link *link)
452 {
453 	if (link->flags & DL_FLAG_STATELESS)
454 		kref_put(&link->kref, __device_link_del);
455 	else
456 		WARN(1, "Unable to drop a managed device link reference\n");
457 }
458 
459 /**
460  * device_link_del - Delete a stateless link between two devices.
461  * @link: Device link to delete.
462  *
463  * The caller must ensure proper synchronization of this function with runtime
464  * PM.  If the link was added multiple times, it needs to be deleted as often.
465  * Care is required for hotplugged devices:  Their links are purged on removal
466  * and calling device_link_del() is then no longer allowed.
467  */
468 void device_link_del(struct device_link *link)
469 {
470 	device_links_write_lock();
471 	device_pm_lock();
472 	device_link_put_kref(link);
473 	device_pm_unlock();
474 	device_links_write_unlock();
475 }
476 EXPORT_SYMBOL_GPL(device_link_del);
477 
478 /**
479  * device_link_remove - Delete a stateless link between two devices.
480  * @consumer: Consumer end of the link.
481  * @supplier: Supplier end of the link.
482  *
483  * The caller must ensure proper synchronization of this function with runtime
484  * PM.
485  */
486 void device_link_remove(void *consumer, struct device *supplier)
487 {
488 	struct device_link *link;
489 
490 	if (WARN_ON(consumer == supplier))
491 		return;
492 
493 	device_links_write_lock();
494 	device_pm_lock();
495 
496 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
497 		if (link->consumer == consumer) {
498 			device_link_put_kref(link);
499 			break;
500 		}
501 	}
502 
503 	device_pm_unlock();
504 	device_links_write_unlock();
505 }
506 EXPORT_SYMBOL_GPL(device_link_remove);
507 
508 static void device_links_missing_supplier(struct device *dev)
509 {
510 	struct device_link *link;
511 
512 	list_for_each_entry(link, &dev->links.suppliers, c_node)
513 		if (link->status == DL_STATE_CONSUMER_PROBE)
514 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
515 }
516 
517 /**
518  * device_links_check_suppliers - Check presence of supplier drivers.
519  * @dev: Consumer device.
520  *
521  * Check links from this device to any suppliers.  Walk the list of the device's
522  * links to suppliers and see if all of them are available.  If not, simply
523  * return -EPROBE_DEFER.
524  *
525  * We need to guarantee that the supplier will not go away after the check has
526  * been positive here.  It only can go away in __device_release_driver() and
527  * that function  checks the device's links to consumers.  This means we need to
528  * mark the link as "consumer probe in progress" to make the supplier removal
529  * wait for us to complete (or bad things may happen).
530  *
531  * Links with the DL_FLAG_STATELESS flag set are ignored.
532  */
533 int device_links_check_suppliers(struct device *dev)
534 {
535 	struct device_link *link;
536 	int ret = 0;
537 
538 	device_links_write_lock();
539 
540 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
541 		if (link->flags & DL_FLAG_STATELESS)
542 			continue;
543 
544 		if (link->status != DL_STATE_AVAILABLE) {
545 			device_links_missing_supplier(dev);
546 			ret = -EPROBE_DEFER;
547 			break;
548 		}
549 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
550 	}
551 	dev->links.status = DL_DEV_PROBING;
552 
553 	device_links_write_unlock();
554 	return ret;
555 }
556 
557 /**
558  * device_links_driver_bound - Update device links after probing its driver.
559  * @dev: Device to update the links for.
560  *
561  * The probe has been successful, so update links from this device to any
562  * consumers by changing their status to "available".
563  *
564  * Also change the status of @dev's links to suppliers to "active".
565  *
566  * Links with the DL_FLAG_STATELESS flag set are ignored.
567  */
568 void device_links_driver_bound(struct device *dev)
569 {
570 	struct device_link *link;
571 
572 	device_links_write_lock();
573 
574 	list_for_each_entry(link, &dev->links.consumers, s_node) {
575 		if (link->flags & DL_FLAG_STATELESS)
576 			continue;
577 
578 		/*
579 		 * Links created during consumer probe may be in the "consumer
580 		 * probe" state to start with if the supplier is still probing
581 		 * when they are created and they may become "active" if the
582 		 * consumer probe returns first.  Skip them here.
583 		 */
584 		if (link->status == DL_STATE_CONSUMER_PROBE ||
585 		    link->status == DL_STATE_ACTIVE)
586 			continue;
587 
588 		WARN_ON(link->status != DL_STATE_DORMANT);
589 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
590 
591 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
592 			driver_deferred_probe_add(link->consumer);
593 	}
594 
595 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
596 		if (link->flags & DL_FLAG_STATELESS)
597 			continue;
598 
599 		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
600 		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
601 	}
602 
603 	dev->links.status = DL_DEV_DRIVER_BOUND;
604 
605 	device_links_write_unlock();
606 }
607 
608 /**
609  * __device_links_no_driver - Update links of a device without a driver.
610  * @dev: Device without a drvier.
611  *
612  * Delete all non-persistent links from this device to any suppliers.
613  *
614  * Persistent links stay around, but their status is changed to "available",
615  * unless they already are in the "supplier unbind in progress" state in which
616  * case they need not be updated.
617  *
618  * Links with the DL_FLAG_STATELESS flag set are ignored.
619  */
620 static void __device_links_no_driver(struct device *dev)
621 {
622 	struct device_link *link, *ln;
623 
624 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
625 		if (link->flags & DL_FLAG_STATELESS)
626 			continue;
627 
628 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
629 			__device_link_del(&link->kref);
630 		else if (link->status == DL_STATE_CONSUMER_PROBE ||
631 			 link->status == DL_STATE_ACTIVE)
632 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
633 	}
634 
635 	dev->links.status = DL_DEV_NO_DRIVER;
636 }
637 
638 /**
639  * device_links_no_driver - Update links after failing driver probe.
640  * @dev: Device whose driver has just failed to probe.
641  *
642  * Clean up leftover links to consumers for @dev and invoke
643  * %__device_links_no_driver() to update links to suppliers for it as
644  * appropriate.
645  *
646  * Links with the DL_FLAG_STATELESS flag set are ignored.
647  */
648 void device_links_no_driver(struct device *dev)
649 {
650 	struct device_link *link;
651 
652 	device_links_write_lock();
653 
654 	list_for_each_entry(link, &dev->links.consumers, s_node) {
655 		if (link->flags & DL_FLAG_STATELESS)
656 			continue;
657 
658 		/*
659 		 * The probe has failed, so if the status of the link is
660 		 * "consumer probe" or "active", it must have been added by
661 		 * a probing consumer while this device was still probing.
662 		 * Change its state to "dormant", as it represents a valid
663 		 * relationship, but it is not functionally meaningful.
664 		 */
665 		if (link->status == DL_STATE_CONSUMER_PROBE ||
666 		    link->status == DL_STATE_ACTIVE)
667 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
668 	}
669 
670 	__device_links_no_driver(dev);
671 
672 	device_links_write_unlock();
673 }
674 
675 /**
676  * device_links_driver_cleanup - Update links after driver removal.
677  * @dev: Device whose driver has just gone away.
678  *
679  * Update links to consumers for @dev by changing their status to "dormant" and
680  * invoke %__device_links_no_driver() to update links to suppliers for it as
681  * appropriate.
682  *
683  * Links with the DL_FLAG_STATELESS flag set are ignored.
684  */
685 void device_links_driver_cleanup(struct device *dev)
686 {
687 	struct device_link *link, *ln;
688 
689 	device_links_write_lock();
690 
691 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
692 		if (link->flags & DL_FLAG_STATELESS)
693 			continue;
694 
695 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
696 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
697 
698 		/*
699 		 * autoremove the links between this @dev and its consumer
700 		 * devices that are not active, i.e. where the link state
701 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
702 		 */
703 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
704 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
705 			__device_link_del(&link->kref);
706 
707 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
708 	}
709 
710 	__device_links_no_driver(dev);
711 
712 	device_links_write_unlock();
713 }
714 
715 /**
716  * device_links_busy - Check if there are any busy links to consumers.
717  * @dev: Device to check.
718  *
719  * Check each consumer of the device and return 'true' if its link's status
720  * is one of "consumer probe" or "active" (meaning that the given consumer is
721  * probing right now or its driver is present).  Otherwise, change the link
722  * state to "supplier unbind" to prevent the consumer from being probed
723  * successfully going forward.
724  *
725  * Return 'false' if there are no probing or active consumers.
726  *
727  * Links with the DL_FLAG_STATELESS flag set are ignored.
728  */
729 bool device_links_busy(struct device *dev)
730 {
731 	struct device_link *link;
732 	bool ret = false;
733 
734 	device_links_write_lock();
735 
736 	list_for_each_entry(link, &dev->links.consumers, s_node) {
737 		if (link->flags & DL_FLAG_STATELESS)
738 			continue;
739 
740 		if (link->status == DL_STATE_CONSUMER_PROBE
741 		    || link->status == DL_STATE_ACTIVE) {
742 			ret = true;
743 			break;
744 		}
745 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
746 	}
747 
748 	dev->links.status = DL_DEV_UNBINDING;
749 
750 	device_links_write_unlock();
751 	return ret;
752 }
753 
754 /**
755  * device_links_unbind_consumers - Force unbind consumers of the given device.
756  * @dev: Device to unbind the consumers of.
757  *
758  * Walk the list of links to consumers for @dev and if any of them is in the
759  * "consumer probe" state, wait for all device probes in progress to complete
760  * and start over.
761  *
762  * If that's not the case, change the status of the link to "supplier unbind"
763  * and check if the link was in the "active" state.  If so, force the consumer
764  * driver to unbind and start over (the consumer will not re-probe as we have
765  * changed the state of the link already).
766  *
767  * Links with the DL_FLAG_STATELESS flag set are ignored.
768  */
769 void device_links_unbind_consumers(struct device *dev)
770 {
771 	struct device_link *link;
772 
773  start:
774 	device_links_write_lock();
775 
776 	list_for_each_entry(link, &dev->links.consumers, s_node) {
777 		enum device_link_state status;
778 
779 		if (link->flags & DL_FLAG_STATELESS)
780 			continue;
781 
782 		status = link->status;
783 		if (status == DL_STATE_CONSUMER_PROBE) {
784 			device_links_write_unlock();
785 
786 			wait_for_device_probe();
787 			goto start;
788 		}
789 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
790 		if (status == DL_STATE_ACTIVE) {
791 			struct device *consumer = link->consumer;
792 
793 			get_device(consumer);
794 
795 			device_links_write_unlock();
796 
797 			device_release_driver_internal(consumer, NULL,
798 						       consumer->parent);
799 			put_device(consumer);
800 			goto start;
801 		}
802 	}
803 
804 	device_links_write_unlock();
805 }
806 
807 /**
808  * device_links_purge - Delete existing links to other devices.
809  * @dev: Target device.
810  */
811 static void device_links_purge(struct device *dev)
812 {
813 	struct device_link *link, *ln;
814 
815 	/*
816 	 * Delete all of the remaining links from this device to any other
817 	 * devices (either consumers or suppliers).
818 	 */
819 	device_links_write_lock();
820 
821 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
822 		WARN_ON(link->status == DL_STATE_ACTIVE);
823 		__device_link_del(&link->kref);
824 	}
825 
826 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
827 		WARN_ON(link->status != DL_STATE_DORMANT &&
828 			link->status != DL_STATE_NONE);
829 		__device_link_del(&link->kref);
830 	}
831 
832 	device_links_write_unlock();
833 }
834 
835 /* Device links support end. */
836 
837 int (*platform_notify)(struct device *dev) = NULL;
838 int (*platform_notify_remove)(struct device *dev) = NULL;
839 static struct kobject *dev_kobj;
840 struct kobject *sysfs_dev_char_kobj;
841 struct kobject *sysfs_dev_block_kobj;
842 
843 static DEFINE_MUTEX(device_hotplug_lock);
844 
845 void lock_device_hotplug(void)
846 {
847 	mutex_lock(&device_hotplug_lock);
848 }
849 
850 void unlock_device_hotplug(void)
851 {
852 	mutex_unlock(&device_hotplug_lock);
853 }
854 
855 int lock_device_hotplug_sysfs(void)
856 {
857 	if (mutex_trylock(&device_hotplug_lock))
858 		return 0;
859 
860 	/* Avoid busy looping (5 ms of sleep should do). */
861 	msleep(5);
862 	return restart_syscall();
863 }
864 
865 #ifdef CONFIG_BLOCK
866 static inline int device_is_not_partition(struct device *dev)
867 {
868 	return !(dev->type == &part_type);
869 }
870 #else
871 static inline int device_is_not_partition(struct device *dev)
872 {
873 	return 1;
874 }
875 #endif
876 
877 static int
878 device_platform_notify(struct device *dev, enum kobject_action action)
879 {
880 	int ret;
881 
882 	ret = acpi_platform_notify(dev, action);
883 	if (ret)
884 		return ret;
885 
886 	ret = software_node_notify(dev, action);
887 	if (ret)
888 		return ret;
889 
890 	if (platform_notify && action == KOBJ_ADD)
891 		platform_notify(dev);
892 	else if (platform_notify_remove && action == KOBJ_REMOVE)
893 		platform_notify_remove(dev);
894 	return 0;
895 }
896 
897 /**
898  * dev_driver_string - Return a device's driver name, if at all possible
899  * @dev: struct device to get the name of
900  *
901  * Will return the device's driver's name if it is bound to a device.  If
902  * the device is not bound to a driver, it will return the name of the bus
903  * it is attached to.  If it is not attached to a bus either, an empty
904  * string will be returned.
905  */
906 const char *dev_driver_string(const struct device *dev)
907 {
908 	struct device_driver *drv;
909 
910 	/* dev->driver can change to NULL underneath us because of unbinding,
911 	 * so be careful about accessing it.  dev->bus and dev->class should
912 	 * never change once they are set, so they don't need special care.
913 	 */
914 	drv = READ_ONCE(dev->driver);
915 	return drv ? drv->name :
916 			(dev->bus ? dev->bus->name :
917 			(dev->class ? dev->class->name : ""));
918 }
919 EXPORT_SYMBOL(dev_driver_string);
920 
921 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
922 
923 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
924 			     char *buf)
925 {
926 	struct device_attribute *dev_attr = to_dev_attr(attr);
927 	struct device *dev = kobj_to_dev(kobj);
928 	ssize_t ret = -EIO;
929 
930 	if (dev_attr->show)
931 		ret = dev_attr->show(dev, dev_attr, buf);
932 	if (ret >= (ssize_t)PAGE_SIZE) {
933 		printk("dev_attr_show: %pS returned bad count\n",
934 				dev_attr->show);
935 	}
936 	return ret;
937 }
938 
939 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
940 			      const char *buf, size_t count)
941 {
942 	struct device_attribute *dev_attr = to_dev_attr(attr);
943 	struct device *dev = kobj_to_dev(kobj);
944 	ssize_t ret = -EIO;
945 
946 	if (dev_attr->store)
947 		ret = dev_attr->store(dev, dev_attr, buf, count);
948 	return ret;
949 }
950 
951 static const struct sysfs_ops dev_sysfs_ops = {
952 	.show	= dev_attr_show,
953 	.store	= dev_attr_store,
954 };
955 
956 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
957 
958 ssize_t device_store_ulong(struct device *dev,
959 			   struct device_attribute *attr,
960 			   const char *buf, size_t size)
961 {
962 	struct dev_ext_attribute *ea = to_ext_attr(attr);
963 	int ret;
964 	unsigned long new;
965 
966 	ret = kstrtoul(buf, 0, &new);
967 	if (ret)
968 		return ret;
969 	*(unsigned long *)(ea->var) = new;
970 	/* Always return full write size even if we didn't consume all */
971 	return size;
972 }
973 EXPORT_SYMBOL_GPL(device_store_ulong);
974 
975 ssize_t device_show_ulong(struct device *dev,
976 			  struct device_attribute *attr,
977 			  char *buf)
978 {
979 	struct dev_ext_attribute *ea = to_ext_attr(attr);
980 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
981 }
982 EXPORT_SYMBOL_GPL(device_show_ulong);
983 
984 ssize_t device_store_int(struct device *dev,
985 			 struct device_attribute *attr,
986 			 const char *buf, size_t size)
987 {
988 	struct dev_ext_attribute *ea = to_ext_attr(attr);
989 	int ret;
990 	long new;
991 
992 	ret = kstrtol(buf, 0, &new);
993 	if (ret)
994 		return ret;
995 
996 	if (new > INT_MAX || new < INT_MIN)
997 		return -EINVAL;
998 	*(int *)(ea->var) = new;
999 	/* Always return full write size even if we didn't consume all */
1000 	return size;
1001 }
1002 EXPORT_SYMBOL_GPL(device_store_int);
1003 
1004 ssize_t device_show_int(struct device *dev,
1005 			struct device_attribute *attr,
1006 			char *buf)
1007 {
1008 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1009 
1010 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1011 }
1012 EXPORT_SYMBOL_GPL(device_show_int);
1013 
1014 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1015 			  const char *buf, size_t size)
1016 {
1017 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1018 
1019 	if (strtobool(buf, ea->var) < 0)
1020 		return -EINVAL;
1021 
1022 	return size;
1023 }
1024 EXPORT_SYMBOL_GPL(device_store_bool);
1025 
1026 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1027 			 char *buf)
1028 {
1029 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1030 
1031 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1032 }
1033 EXPORT_SYMBOL_GPL(device_show_bool);
1034 
1035 /**
1036  * device_release - free device structure.
1037  * @kobj: device's kobject.
1038  *
1039  * This is called once the reference count for the object
1040  * reaches 0. We forward the call to the device's release
1041  * method, which should handle actually freeing the structure.
1042  */
1043 static void device_release(struct kobject *kobj)
1044 {
1045 	struct device *dev = kobj_to_dev(kobj);
1046 	struct device_private *p = dev->p;
1047 
1048 	/*
1049 	 * Some platform devices are driven without driver attached
1050 	 * and managed resources may have been acquired.  Make sure
1051 	 * all resources are released.
1052 	 *
1053 	 * Drivers still can add resources into device after device
1054 	 * is deleted but alive, so release devres here to avoid
1055 	 * possible memory leak.
1056 	 */
1057 	devres_release_all(dev);
1058 
1059 	if (dev->release)
1060 		dev->release(dev);
1061 	else if (dev->type && dev->type->release)
1062 		dev->type->release(dev);
1063 	else if (dev->class && dev->class->dev_release)
1064 		dev->class->dev_release(dev);
1065 	else
1066 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt.\n",
1067 			dev_name(dev));
1068 	kfree(p);
1069 }
1070 
1071 static const void *device_namespace(struct kobject *kobj)
1072 {
1073 	struct device *dev = kobj_to_dev(kobj);
1074 	const void *ns = NULL;
1075 
1076 	if (dev->class && dev->class->ns_type)
1077 		ns = dev->class->namespace(dev);
1078 
1079 	return ns;
1080 }
1081 
1082 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1083 {
1084 	struct device *dev = kobj_to_dev(kobj);
1085 
1086 	if (dev->class && dev->class->get_ownership)
1087 		dev->class->get_ownership(dev, uid, gid);
1088 }
1089 
1090 static struct kobj_type device_ktype = {
1091 	.release	= device_release,
1092 	.sysfs_ops	= &dev_sysfs_ops,
1093 	.namespace	= device_namespace,
1094 	.get_ownership	= device_get_ownership,
1095 };
1096 
1097 
1098 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1099 {
1100 	struct kobj_type *ktype = get_ktype(kobj);
1101 
1102 	if (ktype == &device_ktype) {
1103 		struct device *dev = kobj_to_dev(kobj);
1104 		if (dev->bus)
1105 			return 1;
1106 		if (dev->class)
1107 			return 1;
1108 	}
1109 	return 0;
1110 }
1111 
1112 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1113 {
1114 	struct device *dev = kobj_to_dev(kobj);
1115 
1116 	if (dev->bus)
1117 		return dev->bus->name;
1118 	if (dev->class)
1119 		return dev->class->name;
1120 	return NULL;
1121 }
1122 
1123 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1124 		      struct kobj_uevent_env *env)
1125 {
1126 	struct device *dev = kobj_to_dev(kobj);
1127 	int retval = 0;
1128 
1129 	/* add device node properties if present */
1130 	if (MAJOR(dev->devt)) {
1131 		const char *tmp;
1132 		const char *name;
1133 		umode_t mode = 0;
1134 		kuid_t uid = GLOBAL_ROOT_UID;
1135 		kgid_t gid = GLOBAL_ROOT_GID;
1136 
1137 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1138 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1139 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1140 		if (name) {
1141 			add_uevent_var(env, "DEVNAME=%s", name);
1142 			if (mode)
1143 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1144 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1145 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1146 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1147 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1148 			kfree(tmp);
1149 		}
1150 	}
1151 
1152 	if (dev->type && dev->type->name)
1153 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1154 
1155 	if (dev->driver)
1156 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1157 
1158 	/* Add common DT information about the device */
1159 	of_device_uevent(dev, env);
1160 
1161 	/* have the bus specific function add its stuff */
1162 	if (dev->bus && dev->bus->uevent) {
1163 		retval = dev->bus->uevent(dev, env);
1164 		if (retval)
1165 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1166 				 dev_name(dev), __func__, retval);
1167 	}
1168 
1169 	/* have the class specific function add its stuff */
1170 	if (dev->class && dev->class->dev_uevent) {
1171 		retval = dev->class->dev_uevent(dev, env);
1172 		if (retval)
1173 			pr_debug("device: '%s': %s: class uevent() "
1174 				 "returned %d\n", dev_name(dev),
1175 				 __func__, retval);
1176 	}
1177 
1178 	/* have the device type specific function add its stuff */
1179 	if (dev->type && dev->type->uevent) {
1180 		retval = dev->type->uevent(dev, env);
1181 		if (retval)
1182 			pr_debug("device: '%s': %s: dev_type uevent() "
1183 				 "returned %d\n", dev_name(dev),
1184 				 __func__, retval);
1185 	}
1186 
1187 	return retval;
1188 }
1189 
1190 static const struct kset_uevent_ops device_uevent_ops = {
1191 	.filter =	dev_uevent_filter,
1192 	.name =		dev_uevent_name,
1193 	.uevent =	dev_uevent,
1194 };
1195 
1196 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1197 			   char *buf)
1198 {
1199 	struct kobject *top_kobj;
1200 	struct kset *kset;
1201 	struct kobj_uevent_env *env = NULL;
1202 	int i;
1203 	size_t count = 0;
1204 	int retval;
1205 
1206 	/* search the kset, the device belongs to */
1207 	top_kobj = &dev->kobj;
1208 	while (!top_kobj->kset && top_kobj->parent)
1209 		top_kobj = top_kobj->parent;
1210 	if (!top_kobj->kset)
1211 		goto out;
1212 
1213 	kset = top_kobj->kset;
1214 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1215 		goto out;
1216 
1217 	/* respect filter */
1218 	if (kset->uevent_ops && kset->uevent_ops->filter)
1219 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1220 			goto out;
1221 
1222 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1223 	if (!env)
1224 		return -ENOMEM;
1225 
1226 	/* let the kset specific function add its keys */
1227 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1228 	if (retval)
1229 		goto out;
1230 
1231 	/* copy keys to file */
1232 	for (i = 0; i < env->envp_idx; i++)
1233 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1234 out:
1235 	kfree(env);
1236 	return count;
1237 }
1238 
1239 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1240 			    const char *buf, size_t count)
1241 {
1242 	int rc;
1243 
1244 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
1245 
1246 	if (rc) {
1247 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1248 		return rc;
1249 	}
1250 
1251 	return count;
1252 }
1253 static DEVICE_ATTR_RW(uevent);
1254 
1255 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1256 			   char *buf)
1257 {
1258 	bool val;
1259 
1260 	device_lock(dev);
1261 	val = !dev->offline;
1262 	device_unlock(dev);
1263 	return sprintf(buf, "%u\n", val);
1264 }
1265 
1266 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1267 			    const char *buf, size_t count)
1268 {
1269 	bool val;
1270 	int ret;
1271 
1272 	ret = strtobool(buf, &val);
1273 	if (ret < 0)
1274 		return ret;
1275 
1276 	ret = lock_device_hotplug_sysfs();
1277 	if (ret)
1278 		return ret;
1279 
1280 	ret = val ? device_online(dev) : device_offline(dev);
1281 	unlock_device_hotplug();
1282 	return ret < 0 ? ret : count;
1283 }
1284 static DEVICE_ATTR_RW(online);
1285 
1286 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1287 {
1288 	return sysfs_create_groups(&dev->kobj, groups);
1289 }
1290 EXPORT_SYMBOL_GPL(device_add_groups);
1291 
1292 void device_remove_groups(struct device *dev,
1293 			  const struct attribute_group **groups)
1294 {
1295 	sysfs_remove_groups(&dev->kobj, groups);
1296 }
1297 EXPORT_SYMBOL_GPL(device_remove_groups);
1298 
1299 union device_attr_group_devres {
1300 	const struct attribute_group *group;
1301 	const struct attribute_group **groups;
1302 };
1303 
1304 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1305 {
1306 	return ((union device_attr_group_devres *)res)->group == data;
1307 }
1308 
1309 static void devm_attr_group_remove(struct device *dev, void *res)
1310 {
1311 	union device_attr_group_devres *devres = res;
1312 	const struct attribute_group *group = devres->group;
1313 
1314 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1315 	sysfs_remove_group(&dev->kobj, group);
1316 }
1317 
1318 static void devm_attr_groups_remove(struct device *dev, void *res)
1319 {
1320 	union device_attr_group_devres *devres = res;
1321 	const struct attribute_group **groups = devres->groups;
1322 
1323 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1324 	sysfs_remove_groups(&dev->kobj, groups);
1325 }
1326 
1327 /**
1328  * devm_device_add_group - given a device, create a managed attribute group
1329  * @dev:	The device to create the group for
1330  * @grp:	The attribute group to create
1331  *
1332  * This function creates a group for the first time.  It will explicitly
1333  * warn and error if any of the attribute files being created already exist.
1334  *
1335  * Returns 0 on success or error code on failure.
1336  */
1337 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1338 {
1339 	union device_attr_group_devres *devres;
1340 	int error;
1341 
1342 	devres = devres_alloc(devm_attr_group_remove,
1343 			      sizeof(*devres), GFP_KERNEL);
1344 	if (!devres)
1345 		return -ENOMEM;
1346 
1347 	error = sysfs_create_group(&dev->kobj, grp);
1348 	if (error) {
1349 		devres_free(devres);
1350 		return error;
1351 	}
1352 
1353 	devres->group = grp;
1354 	devres_add(dev, devres);
1355 	return 0;
1356 }
1357 EXPORT_SYMBOL_GPL(devm_device_add_group);
1358 
1359 /**
1360  * devm_device_remove_group: remove a managed group from a device
1361  * @dev:	device to remove the group from
1362  * @grp:	group to remove
1363  *
1364  * This function removes a group of attributes from a device. The attributes
1365  * previously have to have been created for this group, otherwise it will fail.
1366  */
1367 void devm_device_remove_group(struct device *dev,
1368 			      const struct attribute_group *grp)
1369 {
1370 	WARN_ON(devres_release(dev, devm_attr_group_remove,
1371 			       devm_attr_group_match,
1372 			       /* cast away const */ (void *)grp));
1373 }
1374 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1375 
1376 /**
1377  * devm_device_add_groups - create a bunch of managed attribute groups
1378  * @dev:	The device to create the group for
1379  * @groups:	The attribute groups to create, NULL terminated
1380  *
1381  * This function creates a bunch of managed attribute groups.  If an error
1382  * occurs when creating a group, all previously created groups will be
1383  * removed, unwinding everything back to the original state when this
1384  * function was called.  It will explicitly warn and error if any of the
1385  * attribute files being created already exist.
1386  *
1387  * Returns 0 on success or error code from sysfs_create_group on failure.
1388  */
1389 int devm_device_add_groups(struct device *dev,
1390 			   const struct attribute_group **groups)
1391 {
1392 	union device_attr_group_devres *devres;
1393 	int error;
1394 
1395 	devres = devres_alloc(devm_attr_groups_remove,
1396 			      sizeof(*devres), GFP_KERNEL);
1397 	if (!devres)
1398 		return -ENOMEM;
1399 
1400 	error = sysfs_create_groups(&dev->kobj, groups);
1401 	if (error) {
1402 		devres_free(devres);
1403 		return error;
1404 	}
1405 
1406 	devres->groups = groups;
1407 	devres_add(dev, devres);
1408 	return 0;
1409 }
1410 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1411 
1412 /**
1413  * devm_device_remove_groups - remove a list of managed groups
1414  *
1415  * @dev:	The device for the groups to be removed from
1416  * @groups:	NULL terminated list of groups to be removed
1417  *
1418  * If groups is not NULL, remove the specified groups from the device.
1419  */
1420 void devm_device_remove_groups(struct device *dev,
1421 			       const struct attribute_group **groups)
1422 {
1423 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1424 			       devm_attr_group_match,
1425 			       /* cast away const */ (void *)groups));
1426 }
1427 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1428 
1429 static int device_add_attrs(struct device *dev)
1430 {
1431 	struct class *class = dev->class;
1432 	const struct device_type *type = dev->type;
1433 	int error;
1434 
1435 	if (class) {
1436 		error = device_add_groups(dev, class->dev_groups);
1437 		if (error)
1438 			return error;
1439 	}
1440 
1441 	if (type) {
1442 		error = device_add_groups(dev, type->groups);
1443 		if (error)
1444 			goto err_remove_class_groups;
1445 	}
1446 
1447 	error = device_add_groups(dev, dev->groups);
1448 	if (error)
1449 		goto err_remove_type_groups;
1450 
1451 	if (device_supports_offline(dev) && !dev->offline_disabled) {
1452 		error = device_create_file(dev, &dev_attr_online);
1453 		if (error)
1454 			goto err_remove_dev_groups;
1455 	}
1456 
1457 	return 0;
1458 
1459  err_remove_dev_groups:
1460 	device_remove_groups(dev, dev->groups);
1461  err_remove_type_groups:
1462 	if (type)
1463 		device_remove_groups(dev, type->groups);
1464  err_remove_class_groups:
1465 	if (class)
1466 		device_remove_groups(dev, class->dev_groups);
1467 
1468 	return error;
1469 }
1470 
1471 static void device_remove_attrs(struct device *dev)
1472 {
1473 	struct class *class = dev->class;
1474 	const struct device_type *type = dev->type;
1475 
1476 	device_remove_file(dev, &dev_attr_online);
1477 	device_remove_groups(dev, dev->groups);
1478 
1479 	if (type)
1480 		device_remove_groups(dev, type->groups);
1481 
1482 	if (class)
1483 		device_remove_groups(dev, class->dev_groups);
1484 }
1485 
1486 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1487 			char *buf)
1488 {
1489 	return print_dev_t(buf, dev->devt);
1490 }
1491 static DEVICE_ATTR_RO(dev);
1492 
1493 /* /sys/devices/ */
1494 struct kset *devices_kset;
1495 
1496 /**
1497  * devices_kset_move_before - Move device in the devices_kset's list.
1498  * @deva: Device to move.
1499  * @devb: Device @deva should come before.
1500  */
1501 static void devices_kset_move_before(struct device *deva, struct device *devb)
1502 {
1503 	if (!devices_kset)
1504 		return;
1505 	pr_debug("devices_kset: Moving %s before %s\n",
1506 		 dev_name(deva), dev_name(devb));
1507 	spin_lock(&devices_kset->list_lock);
1508 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1509 	spin_unlock(&devices_kset->list_lock);
1510 }
1511 
1512 /**
1513  * devices_kset_move_after - Move device in the devices_kset's list.
1514  * @deva: Device to move
1515  * @devb: Device @deva should come after.
1516  */
1517 static void devices_kset_move_after(struct device *deva, struct device *devb)
1518 {
1519 	if (!devices_kset)
1520 		return;
1521 	pr_debug("devices_kset: Moving %s after %s\n",
1522 		 dev_name(deva), dev_name(devb));
1523 	spin_lock(&devices_kset->list_lock);
1524 	list_move(&deva->kobj.entry, &devb->kobj.entry);
1525 	spin_unlock(&devices_kset->list_lock);
1526 }
1527 
1528 /**
1529  * devices_kset_move_last - move the device to the end of devices_kset's list.
1530  * @dev: device to move
1531  */
1532 void devices_kset_move_last(struct device *dev)
1533 {
1534 	if (!devices_kset)
1535 		return;
1536 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1537 	spin_lock(&devices_kset->list_lock);
1538 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1539 	spin_unlock(&devices_kset->list_lock);
1540 }
1541 
1542 /**
1543  * device_create_file - create sysfs attribute file for device.
1544  * @dev: device.
1545  * @attr: device attribute descriptor.
1546  */
1547 int device_create_file(struct device *dev,
1548 		       const struct device_attribute *attr)
1549 {
1550 	int error = 0;
1551 
1552 	if (dev) {
1553 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1554 			"Attribute %s: write permission without 'store'\n",
1555 			attr->attr.name);
1556 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1557 			"Attribute %s: read permission without 'show'\n",
1558 			attr->attr.name);
1559 		error = sysfs_create_file(&dev->kobj, &attr->attr);
1560 	}
1561 
1562 	return error;
1563 }
1564 EXPORT_SYMBOL_GPL(device_create_file);
1565 
1566 /**
1567  * device_remove_file - remove sysfs attribute file.
1568  * @dev: device.
1569  * @attr: device attribute descriptor.
1570  */
1571 void device_remove_file(struct device *dev,
1572 			const struct device_attribute *attr)
1573 {
1574 	if (dev)
1575 		sysfs_remove_file(&dev->kobj, &attr->attr);
1576 }
1577 EXPORT_SYMBOL_GPL(device_remove_file);
1578 
1579 /**
1580  * device_remove_file_self - remove sysfs attribute file from its own method.
1581  * @dev: device.
1582  * @attr: device attribute descriptor.
1583  *
1584  * See kernfs_remove_self() for details.
1585  */
1586 bool device_remove_file_self(struct device *dev,
1587 			     const struct device_attribute *attr)
1588 {
1589 	if (dev)
1590 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1591 	else
1592 		return false;
1593 }
1594 EXPORT_SYMBOL_GPL(device_remove_file_self);
1595 
1596 /**
1597  * device_create_bin_file - create sysfs binary attribute file for device.
1598  * @dev: device.
1599  * @attr: device binary attribute descriptor.
1600  */
1601 int device_create_bin_file(struct device *dev,
1602 			   const struct bin_attribute *attr)
1603 {
1604 	int error = -EINVAL;
1605 	if (dev)
1606 		error = sysfs_create_bin_file(&dev->kobj, attr);
1607 	return error;
1608 }
1609 EXPORT_SYMBOL_GPL(device_create_bin_file);
1610 
1611 /**
1612  * device_remove_bin_file - remove sysfs binary attribute file
1613  * @dev: device.
1614  * @attr: device binary attribute descriptor.
1615  */
1616 void device_remove_bin_file(struct device *dev,
1617 			    const struct bin_attribute *attr)
1618 {
1619 	if (dev)
1620 		sysfs_remove_bin_file(&dev->kobj, attr);
1621 }
1622 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1623 
1624 static void klist_children_get(struct klist_node *n)
1625 {
1626 	struct device_private *p = to_device_private_parent(n);
1627 	struct device *dev = p->device;
1628 
1629 	get_device(dev);
1630 }
1631 
1632 static void klist_children_put(struct klist_node *n)
1633 {
1634 	struct device_private *p = to_device_private_parent(n);
1635 	struct device *dev = p->device;
1636 
1637 	put_device(dev);
1638 }
1639 
1640 /**
1641  * device_initialize - init device structure.
1642  * @dev: device.
1643  *
1644  * This prepares the device for use by other layers by initializing
1645  * its fields.
1646  * It is the first half of device_register(), if called by
1647  * that function, though it can also be called separately, so one
1648  * may use @dev's fields. In particular, get_device()/put_device()
1649  * may be used for reference counting of @dev after calling this
1650  * function.
1651  *
1652  * All fields in @dev must be initialized by the caller to 0, except
1653  * for those explicitly set to some other value.  The simplest
1654  * approach is to use kzalloc() to allocate the structure containing
1655  * @dev.
1656  *
1657  * NOTE: Use put_device() to give up your reference instead of freeing
1658  * @dev directly once you have called this function.
1659  */
1660 void device_initialize(struct device *dev)
1661 {
1662 	dev->kobj.kset = devices_kset;
1663 	kobject_init(&dev->kobj, &device_ktype);
1664 	INIT_LIST_HEAD(&dev->dma_pools);
1665 	mutex_init(&dev->mutex);
1666 #ifdef CONFIG_PROVE_LOCKING
1667 	mutex_init(&dev->lockdep_mutex);
1668 #endif
1669 	lockdep_set_novalidate_class(&dev->mutex);
1670 	spin_lock_init(&dev->devres_lock);
1671 	INIT_LIST_HEAD(&dev->devres_head);
1672 	device_pm_init(dev);
1673 	set_dev_node(dev, -1);
1674 #ifdef CONFIG_GENERIC_MSI_IRQ
1675 	INIT_LIST_HEAD(&dev->msi_list);
1676 #endif
1677 	INIT_LIST_HEAD(&dev->links.consumers);
1678 	INIT_LIST_HEAD(&dev->links.suppliers);
1679 	dev->links.status = DL_DEV_NO_DRIVER;
1680 }
1681 EXPORT_SYMBOL_GPL(device_initialize);
1682 
1683 struct kobject *virtual_device_parent(struct device *dev)
1684 {
1685 	static struct kobject *virtual_dir = NULL;
1686 
1687 	if (!virtual_dir)
1688 		virtual_dir = kobject_create_and_add("virtual",
1689 						     &devices_kset->kobj);
1690 
1691 	return virtual_dir;
1692 }
1693 
1694 struct class_dir {
1695 	struct kobject kobj;
1696 	struct class *class;
1697 };
1698 
1699 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1700 
1701 static void class_dir_release(struct kobject *kobj)
1702 {
1703 	struct class_dir *dir = to_class_dir(kobj);
1704 	kfree(dir);
1705 }
1706 
1707 static const
1708 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1709 {
1710 	struct class_dir *dir = to_class_dir(kobj);
1711 	return dir->class->ns_type;
1712 }
1713 
1714 static struct kobj_type class_dir_ktype = {
1715 	.release	= class_dir_release,
1716 	.sysfs_ops	= &kobj_sysfs_ops,
1717 	.child_ns_type	= class_dir_child_ns_type
1718 };
1719 
1720 static struct kobject *
1721 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1722 {
1723 	struct class_dir *dir;
1724 	int retval;
1725 
1726 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1727 	if (!dir)
1728 		return ERR_PTR(-ENOMEM);
1729 
1730 	dir->class = class;
1731 	kobject_init(&dir->kobj, &class_dir_ktype);
1732 
1733 	dir->kobj.kset = &class->p->glue_dirs;
1734 
1735 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1736 	if (retval < 0) {
1737 		kobject_put(&dir->kobj);
1738 		return ERR_PTR(retval);
1739 	}
1740 	return &dir->kobj;
1741 }
1742 
1743 static DEFINE_MUTEX(gdp_mutex);
1744 
1745 static struct kobject *get_device_parent(struct device *dev,
1746 					 struct device *parent)
1747 {
1748 	if (dev->class) {
1749 		struct kobject *kobj = NULL;
1750 		struct kobject *parent_kobj;
1751 		struct kobject *k;
1752 
1753 #ifdef CONFIG_BLOCK
1754 		/* block disks show up in /sys/block */
1755 		if (sysfs_deprecated && dev->class == &block_class) {
1756 			if (parent && parent->class == &block_class)
1757 				return &parent->kobj;
1758 			return &block_class.p->subsys.kobj;
1759 		}
1760 #endif
1761 
1762 		/*
1763 		 * If we have no parent, we live in "virtual".
1764 		 * Class-devices with a non class-device as parent, live
1765 		 * in a "glue" directory to prevent namespace collisions.
1766 		 */
1767 		if (parent == NULL)
1768 			parent_kobj = virtual_device_parent(dev);
1769 		else if (parent->class && !dev->class->ns_type)
1770 			return &parent->kobj;
1771 		else
1772 			parent_kobj = &parent->kobj;
1773 
1774 		mutex_lock(&gdp_mutex);
1775 
1776 		/* find our class-directory at the parent and reference it */
1777 		spin_lock(&dev->class->p->glue_dirs.list_lock);
1778 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1779 			if (k->parent == parent_kobj) {
1780 				kobj = kobject_get(k);
1781 				break;
1782 			}
1783 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1784 		if (kobj) {
1785 			mutex_unlock(&gdp_mutex);
1786 			return kobj;
1787 		}
1788 
1789 		/* or create a new class-directory at the parent device */
1790 		k = class_dir_create_and_add(dev->class, parent_kobj);
1791 		/* do not emit an uevent for this simple "glue" directory */
1792 		mutex_unlock(&gdp_mutex);
1793 		return k;
1794 	}
1795 
1796 	/* subsystems can specify a default root directory for their devices */
1797 	if (!parent && dev->bus && dev->bus->dev_root)
1798 		return &dev->bus->dev_root->kobj;
1799 
1800 	if (parent)
1801 		return &parent->kobj;
1802 	return NULL;
1803 }
1804 
1805 static inline bool live_in_glue_dir(struct kobject *kobj,
1806 				    struct device *dev)
1807 {
1808 	if (!kobj || !dev->class ||
1809 	    kobj->kset != &dev->class->p->glue_dirs)
1810 		return false;
1811 	return true;
1812 }
1813 
1814 static inline struct kobject *get_glue_dir(struct device *dev)
1815 {
1816 	return dev->kobj.parent;
1817 }
1818 
1819 /*
1820  * make sure cleaning up dir as the last step, we need to make
1821  * sure .release handler of kobject is run with holding the
1822  * global lock
1823  */
1824 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1825 {
1826 	unsigned int ref;
1827 
1828 	/* see if we live in a "glue" directory */
1829 	if (!live_in_glue_dir(glue_dir, dev))
1830 		return;
1831 
1832 	mutex_lock(&gdp_mutex);
1833 	/**
1834 	 * There is a race condition between removing glue directory
1835 	 * and adding a new device under the glue directory.
1836 	 *
1837 	 * CPU1:                                         CPU2:
1838 	 *
1839 	 * device_add()
1840 	 *   get_device_parent()
1841 	 *     class_dir_create_and_add()
1842 	 *       kobject_add_internal()
1843 	 *         create_dir()    // create glue_dir
1844 	 *
1845 	 *                                               device_add()
1846 	 *                                                 get_device_parent()
1847 	 *                                                   kobject_get() // get glue_dir
1848 	 *
1849 	 * device_del()
1850 	 *   cleanup_glue_dir()
1851 	 *     kobject_del(glue_dir)
1852 	 *
1853 	 *                                               kobject_add()
1854 	 *                                                 kobject_add_internal()
1855 	 *                                                   create_dir() // in glue_dir
1856 	 *                                                     sysfs_create_dir_ns()
1857 	 *                                                       kernfs_create_dir_ns(sd)
1858 	 *
1859 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
1860 	 *       sysfs_put()        // free glue_dir->sd
1861 	 *
1862 	 *                                                         // sd is freed
1863 	 *                                                         kernfs_new_node(sd)
1864 	 *                                                           kernfs_get(glue_dir)
1865 	 *                                                           kernfs_add_one()
1866 	 *                                                           kernfs_put()
1867 	 *
1868 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
1869 	 * a new device under glue dir, the glue_dir kobject reference count
1870 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
1871 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
1872 	 * and sysfs_put(). This result in glue_dir->sd is freed.
1873 	 *
1874 	 * Then the CPU2 will see a stale "empty" but still potentially used
1875 	 * glue dir around in kernfs_new_node().
1876 	 *
1877 	 * In order to avoid this happening, we also should make sure that
1878 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
1879 	 * for glue_dir kobj is 1.
1880 	 */
1881 	ref = kref_read(&glue_dir->kref);
1882 	if (!kobject_has_children(glue_dir) && !--ref)
1883 		kobject_del(glue_dir);
1884 	kobject_put(glue_dir);
1885 	mutex_unlock(&gdp_mutex);
1886 }
1887 
1888 static int device_add_class_symlinks(struct device *dev)
1889 {
1890 	struct device_node *of_node = dev_of_node(dev);
1891 	int error;
1892 
1893 	if (of_node) {
1894 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1895 		if (error)
1896 			dev_warn(dev, "Error %d creating of_node link\n",error);
1897 		/* An error here doesn't warrant bringing down the device */
1898 	}
1899 
1900 	if (!dev->class)
1901 		return 0;
1902 
1903 	error = sysfs_create_link(&dev->kobj,
1904 				  &dev->class->p->subsys.kobj,
1905 				  "subsystem");
1906 	if (error)
1907 		goto out_devnode;
1908 
1909 	if (dev->parent && device_is_not_partition(dev)) {
1910 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1911 					  "device");
1912 		if (error)
1913 			goto out_subsys;
1914 	}
1915 
1916 #ifdef CONFIG_BLOCK
1917 	/* /sys/block has directories and does not need symlinks */
1918 	if (sysfs_deprecated && dev->class == &block_class)
1919 		return 0;
1920 #endif
1921 
1922 	/* link in the class directory pointing to the device */
1923 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1924 				  &dev->kobj, dev_name(dev));
1925 	if (error)
1926 		goto out_device;
1927 
1928 	return 0;
1929 
1930 out_device:
1931 	sysfs_remove_link(&dev->kobj, "device");
1932 
1933 out_subsys:
1934 	sysfs_remove_link(&dev->kobj, "subsystem");
1935 out_devnode:
1936 	sysfs_remove_link(&dev->kobj, "of_node");
1937 	return error;
1938 }
1939 
1940 static void device_remove_class_symlinks(struct device *dev)
1941 {
1942 	if (dev_of_node(dev))
1943 		sysfs_remove_link(&dev->kobj, "of_node");
1944 
1945 	if (!dev->class)
1946 		return;
1947 
1948 	if (dev->parent && device_is_not_partition(dev))
1949 		sysfs_remove_link(&dev->kobj, "device");
1950 	sysfs_remove_link(&dev->kobj, "subsystem");
1951 #ifdef CONFIG_BLOCK
1952 	if (sysfs_deprecated && dev->class == &block_class)
1953 		return;
1954 #endif
1955 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1956 }
1957 
1958 /**
1959  * dev_set_name - set a device name
1960  * @dev: device
1961  * @fmt: format string for the device's name
1962  */
1963 int dev_set_name(struct device *dev, const char *fmt, ...)
1964 {
1965 	va_list vargs;
1966 	int err;
1967 
1968 	va_start(vargs, fmt);
1969 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1970 	va_end(vargs);
1971 	return err;
1972 }
1973 EXPORT_SYMBOL_GPL(dev_set_name);
1974 
1975 /**
1976  * device_to_dev_kobj - select a /sys/dev/ directory for the device
1977  * @dev: device
1978  *
1979  * By default we select char/ for new entries.  Setting class->dev_obj
1980  * to NULL prevents an entry from being created.  class->dev_kobj must
1981  * be set (or cleared) before any devices are registered to the class
1982  * otherwise device_create_sys_dev_entry() and
1983  * device_remove_sys_dev_entry() will disagree about the presence of
1984  * the link.
1985  */
1986 static struct kobject *device_to_dev_kobj(struct device *dev)
1987 {
1988 	struct kobject *kobj;
1989 
1990 	if (dev->class)
1991 		kobj = dev->class->dev_kobj;
1992 	else
1993 		kobj = sysfs_dev_char_kobj;
1994 
1995 	return kobj;
1996 }
1997 
1998 static int device_create_sys_dev_entry(struct device *dev)
1999 {
2000 	struct kobject *kobj = device_to_dev_kobj(dev);
2001 	int error = 0;
2002 	char devt_str[15];
2003 
2004 	if (kobj) {
2005 		format_dev_t(devt_str, dev->devt);
2006 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2007 	}
2008 
2009 	return error;
2010 }
2011 
2012 static void device_remove_sys_dev_entry(struct device *dev)
2013 {
2014 	struct kobject *kobj = device_to_dev_kobj(dev);
2015 	char devt_str[15];
2016 
2017 	if (kobj) {
2018 		format_dev_t(devt_str, dev->devt);
2019 		sysfs_remove_link(kobj, devt_str);
2020 	}
2021 }
2022 
2023 static int device_private_init(struct device *dev)
2024 {
2025 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2026 	if (!dev->p)
2027 		return -ENOMEM;
2028 	dev->p->device = dev;
2029 	klist_init(&dev->p->klist_children, klist_children_get,
2030 		   klist_children_put);
2031 	INIT_LIST_HEAD(&dev->p->deferred_probe);
2032 	return 0;
2033 }
2034 
2035 /**
2036  * device_add - add device to device hierarchy.
2037  * @dev: device.
2038  *
2039  * This is part 2 of device_register(), though may be called
2040  * separately _iff_ device_initialize() has been called separately.
2041  *
2042  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2043  * to the global and sibling lists for the device, then
2044  * adds it to the other relevant subsystems of the driver model.
2045  *
2046  * Do not call this routine or device_register() more than once for
2047  * any device structure.  The driver model core is not designed to work
2048  * with devices that get unregistered and then spring back to life.
2049  * (Among other things, it's very hard to guarantee that all references
2050  * to the previous incarnation of @dev have been dropped.)  Allocate
2051  * and register a fresh new struct device instead.
2052  *
2053  * NOTE: _Never_ directly free @dev after calling this function, even
2054  * if it returned an error! Always use put_device() to give up your
2055  * reference instead.
2056  *
2057  * Rule of thumb is: if device_add() succeeds, you should call
2058  * device_del() when you want to get rid of it. If device_add() has
2059  * *not* succeeded, use *only* put_device() to drop the reference
2060  * count.
2061  */
2062 int device_add(struct device *dev)
2063 {
2064 	struct device *parent;
2065 	struct kobject *kobj;
2066 	struct class_interface *class_intf;
2067 	int error = -EINVAL;
2068 	struct kobject *glue_dir = NULL;
2069 
2070 	dev = get_device(dev);
2071 	if (!dev)
2072 		goto done;
2073 
2074 	if (!dev->p) {
2075 		error = device_private_init(dev);
2076 		if (error)
2077 			goto done;
2078 	}
2079 
2080 	/*
2081 	 * for statically allocated devices, which should all be converted
2082 	 * some day, we need to initialize the name. We prevent reading back
2083 	 * the name, and force the use of dev_name()
2084 	 */
2085 	if (dev->init_name) {
2086 		dev_set_name(dev, "%s", dev->init_name);
2087 		dev->init_name = NULL;
2088 	}
2089 
2090 	/* subsystems can specify simple device enumeration */
2091 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2092 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2093 
2094 	if (!dev_name(dev)) {
2095 		error = -EINVAL;
2096 		goto name_error;
2097 	}
2098 
2099 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2100 
2101 	parent = get_device(dev->parent);
2102 	kobj = get_device_parent(dev, parent);
2103 	if (IS_ERR(kobj)) {
2104 		error = PTR_ERR(kobj);
2105 		goto parent_error;
2106 	}
2107 	if (kobj)
2108 		dev->kobj.parent = kobj;
2109 
2110 	/* use parent numa_node */
2111 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2112 		set_dev_node(dev, dev_to_node(parent));
2113 
2114 	/* first, register with generic layer. */
2115 	/* we require the name to be set before, and pass NULL */
2116 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2117 	if (error) {
2118 		glue_dir = get_glue_dir(dev);
2119 		goto Error;
2120 	}
2121 
2122 	/* notify platform of device entry */
2123 	error = device_platform_notify(dev, KOBJ_ADD);
2124 	if (error)
2125 		goto platform_error;
2126 
2127 	error = device_create_file(dev, &dev_attr_uevent);
2128 	if (error)
2129 		goto attrError;
2130 
2131 	error = device_add_class_symlinks(dev);
2132 	if (error)
2133 		goto SymlinkError;
2134 	error = device_add_attrs(dev);
2135 	if (error)
2136 		goto AttrsError;
2137 	error = bus_add_device(dev);
2138 	if (error)
2139 		goto BusError;
2140 	error = dpm_sysfs_add(dev);
2141 	if (error)
2142 		goto DPMError;
2143 	device_pm_add(dev);
2144 
2145 	if (MAJOR(dev->devt)) {
2146 		error = device_create_file(dev, &dev_attr_dev);
2147 		if (error)
2148 			goto DevAttrError;
2149 
2150 		error = device_create_sys_dev_entry(dev);
2151 		if (error)
2152 			goto SysEntryError;
2153 
2154 		devtmpfs_create_node(dev);
2155 	}
2156 
2157 	/* Notify clients of device addition.  This call must come
2158 	 * after dpm_sysfs_add() and before kobject_uevent().
2159 	 */
2160 	if (dev->bus)
2161 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2162 					     BUS_NOTIFY_ADD_DEVICE, dev);
2163 
2164 	kobject_uevent(&dev->kobj, KOBJ_ADD);
2165 	bus_probe_device(dev);
2166 	if (parent)
2167 		klist_add_tail(&dev->p->knode_parent,
2168 			       &parent->p->klist_children);
2169 
2170 	if (dev->class) {
2171 		mutex_lock(&dev->class->p->mutex);
2172 		/* tie the class to the device */
2173 		klist_add_tail(&dev->p->knode_class,
2174 			       &dev->class->p->klist_devices);
2175 
2176 		/* notify any interfaces that the device is here */
2177 		list_for_each_entry(class_intf,
2178 				    &dev->class->p->interfaces, node)
2179 			if (class_intf->add_dev)
2180 				class_intf->add_dev(dev, class_intf);
2181 		mutex_unlock(&dev->class->p->mutex);
2182 	}
2183 done:
2184 	put_device(dev);
2185 	return error;
2186  SysEntryError:
2187 	if (MAJOR(dev->devt))
2188 		device_remove_file(dev, &dev_attr_dev);
2189  DevAttrError:
2190 	device_pm_remove(dev);
2191 	dpm_sysfs_remove(dev);
2192  DPMError:
2193 	bus_remove_device(dev);
2194  BusError:
2195 	device_remove_attrs(dev);
2196  AttrsError:
2197 	device_remove_class_symlinks(dev);
2198  SymlinkError:
2199 	device_remove_file(dev, &dev_attr_uevent);
2200  attrError:
2201 	device_platform_notify(dev, KOBJ_REMOVE);
2202 platform_error:
2203 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2204 	glue_dir = get_glue_dir(dev);
2205 	kobject_del(&dev->kobj);
2206  Error:
2207 	cleanup_glue_dir(dev, glue_dir);
2208 parent_error:
2209 	put_device(parent);
2210 name_error:
2211 	kfree(dev->p);
2212 	dev->p = NULL;
2213 	goto done;
2214 }
2215 EXPORT_SYMBOL_GPL(device_add);
2216 
2217 /**
2218  * device_register - register a device with the system.
2219  * @dev: pointer to the device structure
2220  *
2221  * This happens in two clean steps - initialize the device
2222  * and add it to the system. The two steps can be called
2223  * separately, but this is the easiest and most common.
2224  * I.e. you should only call the two helpers separately if
2225  * have a clearly defined need to use and refcount the device
2226  * before it is added to the hierarchy.
2227  *
2228  * For more information, see the kerneldoc for device_initialize()
2229  * and device_add().
2230  *
2231  * NOTE: _Never_ directly free @dev after calling this function, even
2232  * if it returned an error! Always use put_device() to give up the
2233  * reference initialized in this function instead.
2234  */
2235 int device_register(struct device *dev)
2236 {
2237 	device_initialize(dev);
2238 	return device_add(dev);
2239 }
2240 EXPORT_SYMBOL_GPL(device_register);
2241 
2242 /**
2243  * get_device - increment reference count for device.
2244  * @dev: device.
2245  *
2246  * This simply forwards the call to kobject_get(), though
2247  * we do take care to provide for the case that we get a NULL
2248  * pointer passed in.
2249  */
2250 struct device *get_device(struct device *dev)
2251 {
2252 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2253 }
2254 EXPORT_SYMBOL_GPL(get_device);
2255 
2256 /**
2257  * put_device - decrement reference count.
2258  * @dev: device in question.
2259  */
2260 void put_device(struct device *dev)
2261 {
2262 	/* might_sleep(); */
2263 	if (dev)
2264 		kobject_put(&dev->kobj);
2265 }
2266 EXPORT_SYMBOL_GPL(put_device);
2267 
2268 bool kill_device(struct device *dev)
2269 {
2270 	/*
2271 	 * Require the device lock and set the "dead" flag to guarantee that
2272 	 * the update behavior is consistent with the other bitfields near
2273 	 * it and that we cannot have an asynchronous probe routine trying
2274 	 * to run while we are tearing out the bus/class/sysfs from
2275 	 * underneath the device.
2276 	 */
2277 	lockdep_assert_held(&dev->mutex);
2278 
2279 	if (dev->p->dead)
2280 		return false;
2281 	dev->p->dead = true;
2282 	return true;
2283 }
2284 EXPORT_SYMBOL_GPL(kill_device);
2285 
2286 /**
2287  * device_del - delete device from system.
2288  * @dev: device.
2289  *
2290  * This is the first part of the device unregistration
2291  * sequence. This removes the device from the lists we control
2292  * from here, has it removed from the other driver model
2293  * subsystems it was added to in device_add(), and removes it
2294  * from the kobject hierarchy.
2295  *
2296  * NOTE: this should be called manually _iff_ device_add() was
2297  * also called manually.
2298  */
2299 void device_del(struct device *dev)
2300 {
2301 	struct device *parent = dev->parent;
2302 	struct kobject *glue_dir = NULL;
2303 	struct class_interface *class_intf;
2304 
2305 	device_lock(dev);
2306 	kill_device(dev);
2307 	device_unlock(dev);
2308 
2309 	/* Notify clients of device removal.  This call must come
2310 	 * before dpm_sysfs_remove().
2311 	 */
2312 	if (dev->bus)
2313 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2314 					     BUS_NOTIFY_DEL_DEVICE, dev);
2315 
2316 	dpm_sysfs_remove(dev);
2317 	if (parent)
2318 		klist_del(&dev->p->knode_parent);
2319 	if (MAJOR(dev->devt)) {
2320 		devtmpfs_delete_node(dev);
2321 		device_remove_sys_dev_entry(dev);
2322 		device_remove_file(dev, &dev_attr_dev);
2323 	}
2324 	if (dev->class) {
2325 		device_remove_class_symlinks(dev);
2326 
2327 		mutex_lock(&dev->class->p->mutex);
2328 		/* notify any interfaces that the device is now gone */
2329 		list_for_each_entry(class_intf,
2330 				    &dev->class->p->interfaces, node)
2331 			if (class_intf->remove_dev)
2332 				class_intf->remove_dev(dev, class_intf);
2333 		/* remove the device from the class list */
2334 		klist_del(&dev->p->knode_class);
2335 		mutex_unlock(&dev->class->p->mutex);
2336 	}
2337 	device_remove_file(dev, &dev_attr_uevent);
2338 	device_remove_attrs(dev);
2339 	bus_remove_device(dev);
2340 	device_pm_remove(dev);
2341 	driver_deferred_probe_del(dev);
2342 	device_platform_notify(dev, KOBJ_REMOVE);
2343 	device_remove_properties(dev);
2344 	device_links_purge(dev);
2345 
2346 	if (dev->bus)
2347 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2348 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
2349 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2350 	glue_dir = get_glue_dir(dev);
2351 	kobject_del(&dev->kobj);
2352 	cleanup_glue_dir(dev, glue_dir);
2353 	put_device(parent);
2354 }
2355 EXPORT_SYMBOL_GPL(device_del);
2356 
2357 /**
2358  * device_unregister - unregister device from system.
2359  * @dev: device going away.
2360  *
2361  * We do this in two parts, like we do device_register(). First,
2362  * we remove it from all the subsystems with device_del(), then
2363  * we decrement the reference count via put_device(). If that
2364  * is the final reference count, the device will be cleaned up
2365  * via device_release() above. Otherwise, the structure will
2366  * stick around until the final reference to the device is dropped.
2367  */
2368 void device_unregister(struct device *dev)
2369 {
2370 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2371 	device_del(dev);
2372 	put_device(dev);
2373 }
2374 EXPORT_SYMBOL_GPL(device_unregister);
2375 
2376 static struct device *prev_device(struct klist_iter *i)
2377 {
2378 	struct klist_node *n = klist_prev(i);
2379 	struct device *dev = NULL;
2380 	struct device_private *p;
2381 
2382 	if (n) {
2383 		p = to_device_private_parent(n);
2384 		dev = p->device;
2385 	}
2386 	return dev;
2387 }
2388 
2389 static struct device *next_device(struct klist_iter *i)
2390 {
2391 	struct klist_node *n = klist_next(i);
2392 	struct device *dev = NULL;
2393 	struct device_private *p;
2394 
2395 	if (n) {
2396 		p = to_device_private_parent(n);
2397 		dev = p->device;
2398 	}
2399 	return dev;
2400 }
2401 
2402 /**
2403  * device_get_devnode - path of device node file
2404  * @dev: device
2405  * @mode: returned file access mode
2406  * @uid: returned file owner
2407  * @gid: returned file group
2408  * @tmp: possibly allocated string
2409  *
2410  * Return the relative path of a possible device node.
2411  * Non-default names may need to allocate a memory to compose
2412  * a name. This memory is returned in tmp and needs to be
2413  * freed by the caller.
2414  */
2415 const char *device_get_devnode(struct device *dev,
2416 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2417 			       const char **tmp)
2418 {
2419 	char *s;
2420 
2421 	*tmp = NULL;
2422 
2423 	/* the device type may provide a specific name */
2424 	if (dev->type && dev->type->devnode)
2425 		*tmp = dev->type->devnode(dev, mode, uid, gid);
2426 	if (*tmp)
2427 		return *tmp;
2428 
2429 	/* the class may provide a specific name */
2430 	if (dev->class && dev->class->devnode)
2431 		*tmp = dev->class->devnode(dev, mode);
2432 	if (*tmp)
2433 		return *tmp;
2434 
2435 	/* return name without allocation, tmp == NULL */
2436 	if (strchr(dev_name(dev), '!') == NULL)
2437 		return dev_name(dev);
2438 
2439 	/* replace '!' in the name with '/' */
2440 	s = kstrdup(dev_name(dev), GFP_KERNEL);
2441 	if (!s)
2442 		return NULL;
2443 	strreplace(s, '!', '/');
2444 	return *tmp = s;
2445 }
2446 
2447 /**
2448  * device_for_each_child - device child iterator.
2449  * @parent: parent struct device.
2450  * @fn: function to be called for each device.
2451  * @data: data for the callback.
2452  *
2453  * Iterate over @parent's child devices, and call @fn for each,
2454  * passing it @data.
2455  *
2456  * We check the return of @fn each time. If it returns anything
2457  * other than 0, we break out and return that value.
2458  */
2459 int device_for_each_child(struct device *parent, void *data,
2460 			  int (*fn)(struct device *dev, void *data))
2461 {
2462 	struct klist_iter i;
2463 	struct device *child;
2464 	int error = 0;
2465 
2466 	if (!parent->p)
2467 		return 0;
2468 
2469 	klist_iter_init(&parent->p->klist_children, &i);
2470 	while (!error && (child = next_device(&i)))
2471 		error = fn(child, data);
2472 	klist_iter_exit(&i);
2473 	return error;
2474 }
2475 EXPORT_SYMBOL_GPL(device_for_each_child);
2476 
2477 /**
2478  * device_for_each_child_reverse - device child iterator in reversed order.
2479  * @parent: parent struct device.
2480  * @fn: function to be called for each device.
2481  * @data: data for the callback.
2482  *
2483  * Iterate over @parent's child devices, and call @fn for each,
2484  * passing it @data.
2485  *
2486  * We check the return of @fn each time. If it returns anything
2487  * other than 0, we break out and return that value.
2488  */
2489 int device_for_each_child_reverse(struct device *parent, void *data,
2490 				  int (*fn)(struct device *dev, void *data))
2491 {
2492 	struct klist_iter i;
2493 	struct device *child;
2494 	int error = 0;
2495 
2496 	if (!parent->p)
2497 		return 0;
2498 
2499 	klist_iter_init(&parent->p->klist_children, &i);
2500 	while ((child = prev_device(&i)) && !error)
2501 		error = fn(child, data);
2502 	klist_iter_exit(&i);
2503 	return error;
2504 }
2505 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2506 
2507 /**
2508  * device_find_child - device iterator for locating a particular device.
2509  * @parent: parent struct device
2510  * @match: Callback function to check device
2511  * @data: Data to pass to match function
2512  *
2513  * This is similar to the device_for_each_child() function above, but it
2514  * returns a reference to a device that is 'found' for later use, as
2515  * determined by the @match callback.
2516  *
2517  * The callback should return 0 if the device doesn't match and non-zero
2518  * if it does.  If the callback returns non-zero and a reference to the
2519  * current device can be obtained, this function will return to the caller
2520  * and not iterate over any more devices.
2521  *
2522  * NOTE: you will need to drop the reference with put_device() after use.
2523  */
2524 struct device *device_find_child(struct device *parent, void *data,
2525 				 int (*match)(struct device *dev, void *data))
2526 {
2527 	struct klist_iter i;
2528 	struct device *child;
2529 
2530 	if (!parent)
2531 		return NULL;
2532 
2533 	klist_iter_init(&parent->p->klist_children, &i);
2534 	while ((child = next_device(&i)))
2535 		if (match(child, data) && get_device(child))
2536 			break;
2537 	klist_iter_exit(&i);
2538 	return child;
2539 }
2540 EXPORT_SYMBOL_GPL(device_find_child);
2541 
2542 /**
2543  * device_find_child_by_name - device iterator for locating a child device.
2544  * @parent: parent struct device
2545  * @name: name of the child device
2546  *
2547  * This is similar to the device_find_child() function above, but it
2548  * returns a reference to a device that has the name @name.
2549  *
2550  * NOTE: you will need to drop the reference with put_device() after use.
2551  */
2552 struct device *device_find_child_by_name(struct device *parent,
2553 					 const char *name)
2554 {
2555 	struct klist_iter i;
2556 	struct device *child;
2557 
2558 	if (!parent)
2559 		return NULL;
2560 
2561 	klist_iter_init(&parent->p->klist_children, &i);
2562 	while ((child = next_device(&i)))
2563 		if (!strcmp(dev_name(child), name) && get_device(child))
2564 			break;
2565 	klist_iter_exit(&i);
2566 	return child;
2567 }
2568 EXPORT_SYMBOL_GPL(device_find_child_by_name);
2569 
2570 int __init devices_init(void)
2571 {
2572 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2573 	if (!devices_kset)
2574 		return -ENOMEM;
2575 	dev_kobj = kobject_create_and_add("dev", NULL);
2576 	if (!dev_kobj)
2577 		goto dev_kobj_err;
2578 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2579 	if (!sysfs_dev_block_kobj)
2580 		goto block_kobj_err;
2581 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2582 	if (!sysfs_dev_char_kobj)
2583 		goto char_kobj_err;
2584 
2585 	return 0;
2586 
2587  char_kobj_err:
2588 	kobject_put(sysfs_dev_block_kobj);
2589  block_kobj_err:
2590 	kobject_put(dev_kobj);
2591  dev_kobj_err:
2592 	kset_unregister(devices_kset);
2593 	return -ENOMEM;
2594 }
2595 
2596 static int device_check_offline(struct device *dev, void *not_used)
2597 {
2598 	int ret;
2599 
2600 	ret = device_for_each_child(dev, NULL, device_check_offline);
2601 	if (ret)
2602 		return ret;
2603 
2604 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2605 }
2606 
2607 /**
2608  * device_offline - Prepare the device for hot-removal.
2609  * @dev: Device to be put offline.
2610  *
2611  * Execute the device bus type's .offline() callback, if present, to prepare
2612  * the device for a subsequent hot-removal.  If that succeeds, the device must
2613  * not be used until either it is removed or its bus type's .online() callback
2614  * is executed.
2615  *
2616  * Call under device_hotplug_lock.
2617  */
2618 int device_offline(struct device *dev)
2619 {
2620 	int ret;
2621 
2622 	if (dev->offline_disabled)
2623 		return -EPERM;
2624 
2625 	ret = device_for_each_child(dev, NULL, device_check_offline);
2626 	if (ret)
2627 		return ret;
2628 
2629 	device_lock(dev);
2630 	if (device_supports_offline(dev)) {
2631 		if (dev->offline) {
2632 			ret = 1;
2633 		} else {
2634 			ret = dev->bus->offline(dev);
2635 			if (!ret) {
2636 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2637 				dev->offline = true;
2638 			}
2639 		}
2640 	}
2641 	device_unlock(dev);
2642 
2643 	return ret;
2644 }
2645 
2646 /**
2647  * device_online - Put the device back online after successful device_offline().
2648  * @dev: Device to be put back online.
2649  *
2650  * If device_offline() has been successfully executed for @dev, but the device
2651  * has not been removed subsequently, execute its bus type's .online() callback
2652  * to indicate that the device can be used again.
2653  *
2654  * Call under device_hotplug_lock.
2655  */
2656 int device_online(struct device *dev)
2657 {
2658 	int ret = 0;
2659 
2660 	device_lock(dev);
2661 	if (device_supports_offline(dev)) {
2662 		if (dev->offline) {
2663 			ret = dev->bus->online(dev);
2664 			if (!ret) {
2665 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2666 				dev->offline = false;
2667 			}
2668 		} else {
2669 			ret = 1;
2670 		}
2671 	}
2672 	device_unlock(dev);
2673 
2674 	return ret;
2675 }
2676 
2677 struct root_device {
2678 	struct device dev;
2679 	struct module *owner;
2680 };
2681 
2682 static inline struct root_device *to_root_device(struct device *d)
2683 {
2684 	return container_of(d, struct root_device, dev);
2685 }
2686 
2687 static void root_device_release(struct device *dev)
2688 {
2689 	kfree(to_root_device(dev));
2690 }
2691 
2692 /**
2693  * __root_device_register - allocate and register a root device
2694  * @name: root device name
2695  * @owner: owner module of the root device, usually THIS_MODULE
2696  *
2697  * This function allocates a root device and registers it
2698  * using device_register(). In order to free the returned
2699  * device, use root_device_unregister().
2700  *
2701  * Root devices are dummy devices which allow other devices
2702  * to be grouped under /sys/devices. Use this function to
2703  * allocate a root device and then use it as the parent of
2704  * any device which should appear under /sys/devices/{name}
2705  *
2706  * The /sys/devices/{name} directory will also contain a
2707  * 'module' symlink which points to the @owner directory
2708  * in sysfs.
2709  *
2710  * Returns &struct device pointer on success, or ERR_PTR() on error.
2711  *
2712  * Note: You probably want to use root_device_register().
2713  */
2714 struct device *__root_device_register(const char *name, struct module *owner)
2715 {
2716 	struct root_device *root;
2717 	int err = -ENOMEM;
2718 
2719 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2720 	if (!root)
2721 		return ERR_PTR(err);
2722 
2723 	err = dev_set_name(&root->dev, "%s", name);
2724 	if (err) {
2725 		kfree(root);
2726 		return ERR_PTR(err);
2727 	}
2728 
2729 	root->dev.release = root_device_release;
2730 
2731 	err = device_register(&root->dev);
2732 	if (err) {
2733 		put_device(&root->dev);
2734 		return ERR_PTR(err);
2735 	}
2736 
2737 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2738 	if (owner) {
2739 		struct module_kobject *mk = &owner->mkobj;
2740 
2741 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2742 		if (err) {
2743 			device_unregister(&root->dev);
2744 			return ERR_PTR(err);
2745 		}
2746 		root->owner = owner;
2747 	}
2748 #endif
2749 
2750 	return &root->dev;
2751 }
2752 EXPORT_SYMBOL_GPL(__root_device_register);
2753 
2754 /**
2755  * root_device_unregister - unregister and free a root device
2756  * @dev: device going away
2757  *
2758  * This function unregisters and cleans up a device that was created by
2759  * root_device_register().
2760  */
2761 void root_device_unregister(struct device *dev)
2762 {
2763 	struct root_device *root = to_root_device(dev);
2764 
2765 	if (root->owner)
2766 		sysfs_remove_link(&root->dev.kobj, "module");
2767 
2768 	device_unregister(dev);
2769 }
2770 EXPORT_SYMBOL_GPL(root_device_unregister);
2771 
2772 
2773 static void device_create_release(struct device *dev)
2774 {
2775 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2776 	kfree(dev);
2777 }
2778 
2779 static __printf(6, 0) struct device *
2780 device_create_groups_vargs(struct class *class, struct device *parent,
2781 			   dev_t devt, void *drvdata,
2782 			   const struct attribute_group **groups,
2783 			   const char *fmt, va_list args)
2784 {
2785 	struct device *dev = NULL;
2786 	int retval = -ENODEV;
2787 
2788 	if (class == NULL || IS_ERR(class))
2789 		goto error;
2790 
2791 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2792 	if (!dev) {
2793 		retval = -ENOMEM;
2794 		goto error;
2795 	}
2796 
2797 	device_initialize(dev);
2798 	dev->devt = devt;
2799 	dev->class = class;
2800 	dev->parent = parent;
2801 	dev->groups = groups;
2802 	dev->release = device_create_release;
2803 	dev_set_drvdata(dev, drvdata);
2804 
2805 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2806 	if (retval)
2807 		goto error;
2808 
2809 	retval = device_add(dev);
2810 	if (retval)
2811 		goto error;
2812 
2813 	return dev;
2814 
2815 error:
2816 	put_device(dev);
2817 	return ERR_PTR(retval);
2818 }
2819 
2820 /**
2821  * device_create_vargs - creates a device and registers it with sysfs
2822  * @class: pointer to the struct class that this device should be registered to
2823  * @parent: pointer to the parent struct device of this new device, if any
2824  * @devt: the dev_t for the char device to be added
2825  * @drvdata: the data to be added to the device for callbacks
2826  * @fmt: string for the device's name
2827  * @args: va_list for the device's name
2828  *
2829  * This function can be used by char device classes.  A struct device
2830  * will be created in sysfs, registered to the specified class.
2831  *
2832  * A "dev" file will be created, showing the dev_t for the device, if
2833  * the dev_t is not 0,0.
2834  * If a pointer to a parent struct device is passed in, the newly created
2835  * struct device will be a child of that device in sysfs.
2836  * The pointer to the struct device will be returned from the call.
2837  * Any further sysfs files that might be required can be created using this
2838  * pointer.
2839  *
2840  * Returns &struct device pointer on success, or ERR_PTR() on error.
2841  *
2842  * Note: the struct class passed to this function must have previously
2843  * been created with a call to class_create().
2844  */
2845 struct device *device_create_vargs(struct class *class, struct device *parent,
2846 				   dev_t devt, void *drvdata, const char *fmt,
2847 				   va_list args)
2848 {
2849 	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2850 					  fmt, args);
2851 }
2852 EXPORT_SYMBOL_GPL(device_create_vargs);
2853 
2854 /**
2855  * device_create - creates a device and registers it with sysfs
2856  * @class: pointer to the struct class that this device should be registered to
2857  * @parent: pointer to the parent struct device of this new device, if any
2858  * @devt: the dev_t for the char device to be added
2859  * @drvdata: the data to be added to the device for callbacks
2860  * @fmt: string for the device's name
2861  *
2862  * This function can be used by char device classes.  A struct device
2863  * will be created in sysfs, registered to the specified class.
2864  *
2865  * A "dev" file will be created, showing the dev_t for the device, if
2866  * the dev_t is not 0,0.
2867  * If a pointer to a parent struct device is passed in, the newly created
2868  * struct device will be a child of that device in sysfs.
2869  * The pointer to the struct device will be returned from the call.
2870  * Any further sysfs files that might be required can be created using this
2871  * pointer.
2872  *
2873  * Returns &struct device pointer on success, or ERR_PTR() on error.
2874  *
2875  * Note: the struct class passed to this function must have previously
2876  * been created with a call to class_create().
2877  */
2878 struct device *device_create(struct class *class, struct device *parent,
2879 			     dev_t devt, void *drvdata, const char *fmt, ...)
2880 {
2881 	va_list vargs;
2882 	struct device *dev;
2883 
2884 	va_start(vargs, fmt);
2885 	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2886 	va_end(vargs);
2887 	return dev;
2888 }
2889 EXPORT_SYMBOL_GPL(device_create);
2890 
2891 /**
2892  * device_create_with_groups - creates a device and registers it with sysfs
2893  * @class: pointer to the struct class that this device should be registered to
2894  * @parent: pointer to the parent struct device of this new device, if any
2895  * @devt: the dev_t for the char device to be added
2896  * @drvdata: the data to be added to the device for callbacks
2897  * @groups: NULL-terminated list of attribute groups to be created
2898  * @fmt: string for the device's name
2899  *
2900  * This function can be used by char device classes.  A struct device
2901  * will be created in sysfs, registered to the specified class.
2902  * Additional attributes specified in the groups parameter will also
2903  * be created automatically.
2904  *
2905  * A "dev" file will be created, showing the dev_t for the device, if
2906  * the dev_t is not 0,0.
2907  * If a pointer to a parent struct device is passed in, the newly created
2908  * struct device will be a child of that device in sysfs.
2909  * The pointer to the struct device will be returned from the call.
2910  * Any further sysfs files that might be required can be created using this
2911  * pointer.
2912  *
2913  * Returns &struct device pointer on success, or ERR_PTR() on error.
2914  *
2915  * Note: the struct class passed to this function must have previously
2916  * been created with a call to class_create().
2917  */
2918 struct device *device_create_with_groups(struct class *class,
2919 					 struct device *parent, dev_t devt,
2920 					 void *drvdata,
2921 					 const struct attribute_group **groups,
2922 					 const char *fmt, ...)
2923 {
2924 	va_list vargs;
2925 	struct device *dev;
2926 
2927 	va_start(vargs, fmt);
2928 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2929 					 fmt, vargs);
2930 	va_end(vargs);
2931 	return dev;
2932 }
2933 EXPORT_SYMBOL_GPL(device_create_with_groups);
2934 
2935 static int __match_devt(struct device *dev, const void *data)
2936 {
2937 	const dev_t *devt = data;
2938 
2939 	return dev->devt == *devt;
2940 }
2941 
2942 /**
2943  * device_destroy - removes a device that was created with device_create()
2944  * @class: pointer to the struct class that this device was registered with
2945  * @devt: the dev_t of the device that was previously registered
2946  *
2947  * This call unregisters and cleans up a device that was created with a
2948  * call to device_create().
2949  */
2950 void device_destroy(struct class *class, dev_t devt)
2951 {
2952 	struct device *dev;
2953 
2954 	dev = class_find_device(class, NULL, &devt, __match_devt);
2955 	if (dev) {
2956 		put_device(dev);
2957 		device_unregister(dev);
2958 	}
2959 }
2960 EXPORT_SYMBOL_GPL(device_destroy);
2961 
2962 /**
2963  * device_rename - renames a device
2964  * @dev: the pointer to the struct device to be renamed
2965  * @new_name: the new name of the device
2966  *
2967  * It is the responsibility of the caller to provide mutual
2968  * exclusion between two different calls of device_rename
2969  * on the same device to ensure that new_name is valid and
2970  * won't conflict with other devices.
2971  *
2972  * Note: Don't call this function.  Currently, the networking layer calls this
2973  * function, but that will change.  The following text from Kay Sievers offers
2974  * some insight:
2975  *
2976  * Renaming devices is racy at many levels, symlinks and other stuff are not
2977  * replaced atomically, and you get a "move" uevent, but it's not easy to
2978  * connect the event to the old and new device. Device nodes are not renamed at
2979  * all, there isn't even support for that in the kernel now.
2980  *
2981  * In the meantime, during renaming, your target name might be taken by another
2982  * driver, creating conflicts. Or the old name is taken directly after you
2983  * renamed it -- then you get events for the same DEVPATH, before you even see
2984  * the "move" event. It's just a mess, and nothing new should ever rely on
2985  * kernel device renaming. Besides that, it's not even implemented now for
2986  * other things than (driver-core wise very simple) network devices.
2987  *
2988  * We are currently about to change network renaming in udev to completely
2989  * disallow renaming of devices in the same namespace as the kernel uses,
2990  * because we can't solve the problems properly, that arise with swapping names
2991  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2992  * be allowed to some other name than eth[0-9]*, for the aforementioned
2993  * reasons.
2994  *
2995  * Make up a "real" name in the driver before you register anything, or add
2996  * some other attributes for userspace to find the device, or use udev to add
2997  * symlinks -- but never rename kernel devices later, it's a complete mess. We
2998  * don't even want to get into that and try to implement the missing pieces in
2999  * the core. We really have other pieces to fix in the driver core mess. :)
3000  */
3001 int device_rename(struct device *dev, const char *new_name)
3002 {
3003 	struct kobject *kobj = &dev->kobj;
3004 	char *old_device_name = NULL;
3005 	int error;
3006 
3007 	dev = get_device(dev);
3008 	if (!dev)
3009 		return -EINVAL;
3010 
3011 	dev_dbg(dev, "renaming to %s\n", new_name);
3012 
3013 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3014 	if (!old_device_name) {
3015 		error = -ENOMEM;
3016 		goto out;
3017 	}
3018 
3019 	if (dev->class) {
3020 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3021 					     kobj, old_device_name,
3022 					     new_name, kobject_namespace(kobj));
3023 		if (error)
3024 			goto out;
3025 	}
3026 
3027 	error = kobject_rename(kobj, new_name);
3028 	if (error)
3029 		goto out;
3030 
3031 out:
3032 	put_device(dev);
3033 
3034 	kfree(old_device_name);
3035 
3036 	return error;
3037 }
3038 EXPORT_SYMBOL_GPL(device_rename);
3039 
3040 static int device_move_class_links(struct device *dev,
3041 				   struct device *old_parent,
3042 				   struct device *new_parent)
3043 {
3044 	int error = 0;
3045 
3046 	if (old_parent)
3047 		sysfs_remove_link(&dev->kobj, "device");
3048 	if (new_parent)
3049 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3050 					  "device");
3051 	return error;
3052 }
3053 
3054 /**
3055  * device_move - moves a device to a new parent
3056  * @dev: the pointer to the struct device to be moved
3057  * @new_parent: the new parent of the device (can be NULL)
3058  * @dpm_order: how to reorder the dpm_list
3059  */
3060 int device_move(struct device *dev, struct device *new_parent,
3061 		enum dpm_order dpm_order)
3062 {
3063 	int error;
3064 	struct device *old_parent;
3065 	struct kobject *new_parent_kobj;
3066 
3067 	dev = get_device(dev);
3068 	if (!dev)
3069 		return -EINVAL;
3070 
3071 	device_pm_lock();
3072 	new_parent = get_device(new_parent);
3073 	new_parent_kobj = get_device_parent(dev, new_parent);
3074 	if (IS_ERR(new_parent_kobj)) {
3075 		error = PTR_ERR(new_parent_kobj);
3076 		put_device(new_parent);
3077 		goto out;
3078 	}
3079 
3080 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3081 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3082 	error = kobject_move(&dev->kobj, new_parent_kobj);
3083 	if (error) {
3084 		cleanup_glue_dir(dev, new_parent_kobj);
3085 		put_device(new_parent);
3086 		goto out;
3087 	}
3088 	old_parent = dev->parent;
3089 	dev->parent = new_parent;
3090 	if (old_parent)
3091 		klist_remove(&dev->p->knode_parent);
3092 	if (new_parent) {
3093 		klist_add_tail(&dev->p->knode_parent,
3094 			       &new_parent->p->klist_children);
3095 		set_dev_node(dev, dev_to_node(new_parent));
3096 	}
3097 
3098 	if (dev->class) {
3099 		error = device_move_class_links(dev, old_parent, new_parent);
3100 		if (error) {
3101 			/* We ignore errors on cleanup since we're hosed anyway... */
3102 			device_move_class_links(dev, new_parent, old_parent);
3103 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3104 				if (new_parent)
3105 					klist_remove(&dev->p->knode_parent);
3106 				dev->parent = old_parent;
3107 				if (old_parent) {
3108 					klist_add_tail(&dev->p->knode_parent,
3109 						       &old_parent->p->klist_children);
3110 					set_dev_node(dev, dev_to_node(old_parent));
3111 				}
3112 			}
3113 			cleanup_glue_dir(dev, new_parent_kobj);
3114 			put_device(new_parent);
3115 			goto out;
3116 		}
3117 	}
3118 	switch (dpm_order) {
3119 	case DPM_ORDER_NONE:
3120 		break;
3121 	case DPM_ORDER_DEV_AFTER_PARENT:
3122 		device_pm_move_after(dev, new_parent);
3123 		devices_kset_move_after(dev, new_parent);
3124 		break;
3125 	case DPM_ORDER_PARENT_BEFORE_DEV:
3126 		device_pm_move_before(new_parent, dev);
3127 		devices_kset_move_before(new_parent, dev);
3128 		break;
3129 	case DPM_ORDER_DEV_LAST:
3130 		device_pm_move_last(dev);
3131 		devices_kset_move_last(dev);
3132 		break;
3133 	}
3134 
3135 	put_device(old_parent);
3136 out:
3137 	device_pm_unlock();
3138 	put_device(dev);
3139 	return error;
3140 }
3141 EXPORT_SYMBOL_GPL(device_move);
3142 
3143 /**
3144  * device_shutdown - call ->shutdown() on each device to shutdown.
3145  */
3146 void device_shutdown(void)
3147 {
3148 	struct device *dev, *parent;
3149 
3150 	wait_for_device_probe();
3151 	device_block_probing();
3152 
3153 	spin_lock(&devices_kset->list_lock);
3154 	/*
3155 	 * Walk the devices list backward, shutting down each in turn.
3156 	 * Beware that device unplug events may also start pulling
3157 	 * devices offline, even as the system is shutting down.
3158 	 */
3159 	while (!list_empty(&devices_kset->list)) {
3160 		dev = list_entry(devices_kset->list.prev, struct device,
3161 				kobj.entry);
3162 
3163 		/*
3164 		 * hold reference count of device's parent to
3165 		 * prevent it from being freed because parent's
3166 		 * lock is to be held
3167 		 */
3168 		parent = get_device(dev->parent);
3169 		get_device(dev);
3170 		/*
3171 		 * Make sure the device is off the kset list, in the
3172 		 * event that dev->*->shutdown() doesn't remove it.
3173 		 */
3174 		list_del_init(&dev->kobj.entry);
3175 		spin_unlock(&devices_kset->list_lock);
3176 
3177 		/* hold lock to avoid race with probe/release */
3178 		if (parent)
3179 			device_lock(parent);
3180 		device_lock(dev);
3181 
3182 		/* Don't allow any more runtime suspends */
3183 		pm_runtime_get_noresume(dev);
3184 		pm_runtime_barrier(dev);
3185 
3186 		if (dev->class && dev->class->shutdown_pre) {
3187 			if (initcall_debug)
3188 				dev_info(dev, "shutdown_pre\n");
3189 			dev->class->shutdown_pre(dev);
3190 		}
3191 		if (dev->bus && dev->bus->shutdown) {
3192 			if (initcall_debug)
3193 				dev_info(dev, "shutdown\n");
3194 			dev->bus->shutdown(dev);
3195 		} else if (dev->driver && dev->driver->shutdown) {
3196 			if (initcall_debug)
3197 				dev_info(dev, "shutdown\n");
3198 			dev->driver->shutdown(dev);
3199 		}
3200 
3201 		device_unlock(dev);
3202 		if (parent)
3203 			device_unlock(parent);
3204 
3205 		put_device(dev);
3206 		put_device(parent);
3207 
3208 		spin_lock(&devices_kset->list_lock);
3209 	}
3210 	spin_unlock(&devices_kset->list_lock);
3211 }
3212 
3213 /*
3214  * Device logging functions
3215  */
3216 
3217 #ifdef CONFIG_PRINTK
3218 static int
3219 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
3220 {
3221 	const char *subsys;
3222 	size_t pos = 0;
3223 
3224 	if (dev->class)
3225 		subsys = dev->class->name;
3226 	else if (dev->bus)
3227 		subsys = dev->bus->name;
3228 	else
3229 		return 0;
3230 
3231 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
3232 	if (pos >= hdrlen)
3233 		goto overflow;
3234 
3235 	/*
3236 	 * Add device identifier DEVICE=:
3237 	 *   b12:8         block dev_t
3238 	 *   c127:3        char dev_t
3239 	 *   n8            netdev ifindex
3240 	 *   +sound:card0  subsystem:devname
3241 	 */
3242 	if (MAJOR(dev->devt)) {
3243 		char c;
3244 
3245 		if (strcmp(subsys, "block") == 0)
3246 			c = 'b';
3247 		else
3248 			c = 'c';
3249 		pos++;
3250 		pos += snprintf(hdr + pos, hdrlen - pos,
3251 				"DEVICE=%c%u:%u",
3252 				c, MAJOR(dev->devt), MINOR(dev->devt));
3253 	} else if (strcmp(subsys, "net") == 0) {
3254 		struct net_device *net = to_net_dev(dev);
3255 
3256 		pos++;
3257 		pos += snprintf(hdr + pos, hdrlen - pos,
3258 				"DEVICE=n%u", net->ifindex);
3259 	} else {
3260 		pos++;
3261 		pos += snprintf(hdr + pos, hdrlen - pos,
3262 				"DEVICE=+%s:%s", subsys, dev_name(dev));
3263 	}
3264 
3265 	if (pos >= hdrlen)
3266 		goto overflow;
3267 
3268 	return pos;
3269 
3270 overflow:
3271 	dev_WARN(dev, "device/subsystem name too long");
3272 	return 0;
3273 }
3274 
3275 int dev_vprintk_emit(int level, const struct device *dev,
3276 		     const char *fmt, va_list args)
3277 {
3278 	char hdr[128];
3279 	size_t hdrlen;
3280 
3281 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
3282 
3283 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
3284 }
3285 EXPORT_SYMBOL(dev_vprintk_emit);
3286 
3287 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3288 {
3289 	va_list args;
3290 	int r;
3291 
3292 	va_start(args, fmt);
3293 
3294 	r = dev_vprintk_emit(level, dev, fmt, args);
3295 
3296 	va_end(args);
3297 
3298 	return r;
3299 }
3300 EXPORT_SYMBOL(dev_printk_emit);
3301 
3302 static void __dev_printk(const char *level, const struct device *dev,
3303 			struct va_format *vaf)
3304 {
3305 	if (dev)
3306 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3307 				dev_driver_string(dev), dev_name(dev), vaf);
3308 	else
3309 		printk("%s(NULL device *): %pV", level, vaf);
3310 }
3311 
3312 void dev_printk(const char *level, const struct device *dev,
3313 		const char *fmt, ...)
3314 {
3315 	struct va_format vaf;
3316 	va_list args;
3317 
3318 	va_start(args, fmt);
3319 
3320 	vaf.fmt = fmt;
3321 	vaf.va = &args;
3322 
3323 	__dev_printk(level, dev, &vaf);
3324 
3325 	va_end(args);
3326 }
3327 EXPORT_SYMBOL(dev_printk);
3328 
3329 #define define_dev_printk_level(func, kern_level)		\
3330 void func(const struct device *dev, const char *fmt, ...)	\
3331 {								\
3332 	struct va_format vaf;					\
3333 	va_list args;						\
3334 								\
3335 	va_start(args, fmt);					\
3336 								\
3337 	vaf.fmt = fmt;						\
3338 	vaf.va = &args;						\
3339 								\
3340 	__dev_printk(kern_level, dev, &vaf);			\
3341 								\
3342 	va_end(args);						\
3343 }								\
3344 EXPORT_SYMBOL(func);
3345 
3346 define_dev_printk_level(_dev_emerg, KERN_EMERG);
3347 define_dev_printk_level(_dev_alert, KERN_ALERT);
3348 define_dev_printk_level(_dev_crit, KERN_CRIT);
3349 define_dev_printk_level(_dev_err, KERN_ERR);
3350 define_dev_printk_level(_dev_warn, KERN_WARNING);
3351 define_dev_printk_level(_dev_notice, KERN_NOTICE);
3352 define_dev_printk_level(_dev_info, KERN_INFO);
3353 
3354 #endif
3355 
3356 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3357 {
3358 	return fwnode && !IS_ERR(fwnode->secondary);
3359 }
3360 
3361 /**
3362  * set_primary_fwnode - Change the primary firmware node of a given device.
3363  * @dev: Device to handle.
3364  * @fwnode: New primary firmware node of the device.
3365  *
3366  * Set the device's firmware node pointer to @fwnode, but if a secondary
3367  * firmware node of the device is present, preserve it.
3368  */
3369 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3370 {
3371 	if (fwnode) {
3372 		struct fwnode_handle *fn = dev->fwnode;
3373 
3374 		if (fwnode_is_primary(fn))
3375 			fn = fn->secondary;
3376 
3377 		if (fn) {
3378 			WARN_ON(fwnode->secondary);
3379 			fwnode->secondary = fn;
3380 		}
3381 		dev->fwnode = fwnode;
3382 	} else {
3383 		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3384 			dev->fwnode->secondary : NULL;
3385 	}
3386 }
3387 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3388 
3389 /**
3390  * set_secondary_fwnode - Change the secondary firmware node of a given device.
3391  * @dev: Device to handle.
3392  * @fwnode: New secondary firmware node of the device.
3393  *
3394  * If a primary firmware node of the device is present, set its secondary
3395  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3396  * @fwnode.
3397  */
3398 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3399 {
3400 	if (fwnode)
3401 		fwnode->secondary = ERR_PTR(-ENODEV);
3402 
3403 	if (fwnode_is_primary(dev->fwnode))
3404 		dev->fwnode->secondary = fwnode;
3405 	else
3406 		dev->fwnode = fwnode;
3407 }
3408 
3409 /**
3410  * device_set_of_node_from_dev - reuse device-tree node of another device
3411  * @dev: device whose device-tree node is being set
3412  * @dev2: device whose device-tree node is being reused
3413  *
3414  * Takes another reference to the new device-tree node after first dropping
3415  * any reference held to the old node.
3416  */
3417 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3418 {
3419 	of_node_put(dev->of_node);
3420 	dev->of_node = of_node_get(dev2->of_node);
3421 	dev->of_node_reused = true;
3422 }
3423 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3424 
3425 int device_match_of_node(struct device *dev, const void *np)
3426 {
3427 	return dev->of_node == np;
3428 }
3429 EXPORT_SYMBOL_GPL(device_match_of_node);
3430