1 /* 2 * drivers/base/core.c - core driver model code (device registration, etc) 3 * 4 * Copyright (c) 2002-3 Patrick Mochel 5 * Copyright (c) 2002-3 Open Source Development Labs 6 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 7 * Copyright (c) 2006 Novell, Inc. 8 * 9 * This file is released under the GPLv2 10 * 11 */ 12 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/kallsyms.h> 26 #include <linux/mutex.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/netdevice.h> 29 #include <linux/sysfs.h> 30 31 #include "base.h" 32 #include "power/power.h" 33 34 #ifdef CONFIG_SYSFS_DEPRECATED 35 #ifdef CONFIG_SYSFS_DEPRECATED_V2 36 long sysfs_deprecated = 1; 37 #else 38 long sysfs_deprecated = 0; 39 #endif 40 static int __init sysfs_deprecated_setup(char *arg) 41 { 42 return kstrtol(arg, 10, &sysfs_deprecated); 43 } 44 early_param("sysfs.deprecated", sysfs_deprecated_setup); 45 #endif 46 47 int (*platform_notify)(struct device *dev) = NULL; 48 int (*platform_notify_remove)(struct device *dev) = NULL; 49 static struct kobject *dev_kobj; 50 struct kobject *sysfs_dev_char_kobj; 51 struct kobject *sysfs_dev_block_kobj; 52 53 static DEFINE_MUTEX(device_hotplug_lock); 54 55 void lock_device_hotplug(void) 56 { 57 mutex_lock(&device_hotplug_lock); 58 } 59 60 void unlock_device_hotplug(void) 61 { 62 mutex_unlock(&device_hotplug_lock); 63 } 64 65 int lock_device_hotplug_sysfs(void) 66 { 67 if (mutex_trylock(&device_hotplug_lock)) 68 return 0; 69 70 /* Avoid busy looping (5 ms of sleep should do). */ 71 msleep(5); 72 return restart_syscall(); 73 } 74 75 #ifdef CONFIG_BLOCK 76 static inline int device_is_not_partition(struct device *dev) 77 { 78 return !(dev->type == &part_type); 79 } 80 #else 81 static inline int device_is_not_partition(struct device *dev) 82 { 83 return 1; 84 } 85 #endif 86 87 /** 88 * dev_driver_string - Return a device's driver name, if at all possible 89 * @dev: struct device to get the name of 90 * 91 * Will return the device's driver's name if it is bound to a device. If 92 * the device is not bound to a driver, it will return the name of the bus 93 * it is attached to. If it is not attached to a bus either, an empty 94 * string will be returned. 95 */ 96 const char *dev_driver_string(const struct device *dev) 97 { 98 struct device_driver *drv; 99 100 /* dev->driver can change to NULL underneath us because of unbinding, 101 * so be careful about accessing it. dev->bus and dev->class should 102 * never change once they are set, so they don't need special care. 103 */ 104 drv = ACCESS_ONCE(dev->driver); 105 return drv ? drv->name : 106 (dev->bus ? dev->bus->name : 107 (dev->class ? dev->class->name : "")); 108 } 109 EXPORT_SYMBOL(dev_driver_string); 110 111 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 112 113 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 114 char *buf) 115 { 116 struct device_attribute *dev_attr = to_dev_attr(attr); 117 struct device *dev = kobj_to_dev(kobj); 118 ssize_t ret = -EIO; 119 120 if (dev_attr->show) 121 ret = dev_attr->show(dev, dev_attr, buf); 122 if (ret >= (ssize_t)PAGE_SIZE) { 123 print_symbol("dev_attr_show: %s returned bad count\n", 124 (unsigned long)dev_attr->show); 125 } 126 return ret; 127 } 128 129 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 130 const char *buf, size_t count) 131 { 132 struct device_attribute *dev_attr = to_dev_attr(attr); 133 struct device *dev = kobj_to_dev(kobj); 134 ssize_t ret = -EIO; 135 136 if (dev_attr->store) 137 ret = dev_attr->store(dev, dev_attr, buf, count); 138 return ret; 139 } 140 141 static const struct sysfs_ops dev_sysfs_ops = { 142 .show = dev_attr_show, 143 .store = dev_attr_store, 144 }; 145 146 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 147 148 ssize_t device_store_ulong(struct device *dev, 149 struct device_attribute *attr, 150 const char *buf, size_t size) 151 { 152 struct dev_ext_attribute *ea = to_ext_attr(attr); 153 char *end; 154 unsigned long new = simple_strtoul(buf, &end, 0); 155 if (end == buf) 156 return -EINVAL; 157 *(unsigned long *)(ea->var) = new; 158 /* Always return full write size even if we didn't consume all */ 159 return size; 160 } 161 EXPORT_SYMBOL_GPL(device_store_ulong); 162 163 ssize_t device_show_ulong(struct device *dev, 164 struct device_attribute *attr, 165 char *buf) 166 { 167 struct dev_ext_attribute *ea = to_ext_attr(attr); 168 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var)); 169 } 170 EXPORT_SYMBOL_GPL(device_show_ulong); 171 172 ssize_t device_store_int(struct device *dev, 173 struct device_attribute *attr, 174 const char *buf, size_t size) 175 { 176 struct dev_ext_attribute *ea = to_ext_attr(attr); 177 char *end; 178 long new = simple_strtol(buf, &end, 0); 179 if (end == buf || new > INT_MAX || new < INT_MIN) 180 return -EINVAL; 181 *(int *)(ea->var) = new; 182 /* Always return full write size even if we didn't consume all */ 183 return size; 184 } 185 EXPORT_SYMBOL_GPL(device_store_int); 186 187 ssize_t device_show_int(struct device *dev, 188 struct device_attribute *attr, 189 char *buf) 190 { 191 struct dev_ext_attribute *ea = to_ext_attr(attr); 192 193 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var)); 194 } 195 EXPORT_SYMBOL_GPL(device_show_int); 196 197 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 198 const char *buf, size_t size) 199 { 200 struct dev_ext_attribute *ea = to_ext_attr(attr); 201 202 if (strtobool(buf, ea->var) < 0) 203 return -EINVAL; 204 205 return size; 206 } 207 EXPORT_SYMBOL_GPL(device_store_bool); 208 209 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 210 char *buf) 211 { 212 struct dev_ext_attribute *ea = to_ext_attr(attr); 213 214 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var)); 215 } 216 EXPORT_SYMBOL_GPL(device_show_bool); 217 218 /** 219 * device_release - free device structure. 220 * @kobj: device's kobject. 221 * 222 * This is called once the reference count for the object 223 * reaches 0. We forward the call to the device's release 224 * method, which should handle actually freeing the structure. 225 */ 226 static void device_release(struct kobject *kobj) 227 { 228 struct device *dev = kobj_to_dev(kobj); 229 struct device_private *p = dev->p; 230 231 /* 232 * Some platform devices are driven without driver attached 233 * and managed resources may have been acquired. Make sure 234 * all resources are released. 235 * 236 * Drivers still can add resources into device after device 237 * is deleted but alive, so release devres here to avoid 238 * possible memory leak. 239 */ 240 devres_release_all(dev); 241 242 if (dev->release) 243 dev->release(dev); 244 else if (dev->type && dev->type->release) 245 dev->type->release(dev); 246 else if (dev->class && dev->class->dev_release) 247 dev->class->dev_release(dev); 248 else 249 WARN(1, KERN_ERR "Device '%s' does not have a release() " 250 "function, it is broken and must be fixed.\n", 251 dev_name(dev)); 252 kfree(p); 253 } 254 255 static const void *device_namespace(struct kobject *kobj) 256 { 257 struct device *dev = kobj_to_dev(kobj); 258 const void *ns = NULL; 259 260 if (dev->class && dev->class->ns_type) 261 ns = dev->class->namespace(dev); 262 263 return ns; 264 } 265 266 static struct kobj_type device_ktype = { 267 .release = device_release, 268 .sysfs_ops = &dev_sysfs_ops, 269 .namespace = device_namespace, 270 }; 271 272 273 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 274 { 275 struct kobj_type *ktype = get_ktype(kobj); 276 277 if (ktype == &device_ktype) { 278 struct device *dev = kobj_to_dev(kobj); 279 if (dev->bus) 280 return 1; 281 if (dev->class) 282 return 1; 283 } 284 return 0; 285 } 286 287 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 288 { 289 struct device *dev = kobj_to_dev(kobj); 290 291 if (dev->bus) 292 return dev->bus->name; 293 if (dev->class) 294 return dev->class->name; 295 return NULL; 296 } 297 298 static int dev_uevent(struct kset *kset, struct kobject *kobj, 299 struct kobj_uevent_env *env) 300 { 301 struct device *dev = kobj_to_dev(kobj); 302 int retval = 0; 303 304 /* add device node properties if present */ 305 if (MAJOR(dev->devt)) { 306 const char *tmp; 307 const char *name; 308 umode_t mode = 0; 309 kuid_t uid = GLOBAL_ROOT_UID; 310 kgid_t gid = GLOBAL_ROOT_GID; 311 312 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 313 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 314 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 315 if (name) { 316 add_uevent_var(env, "DEVNAME=%s", name); 317 if (mode) 318 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 319 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 320 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 321 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 322 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 323 kfree(tmp); 324 } 325 } 326 327 if (dev->type && dev->type->name) 328 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 329 330 if (dev->driver) 331 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 332 333 /* Add common DT information about the device */ 334 of_device_uevent(dev, env); 335 336 /* have the bus specific function add its stuff */ 337 if (dev->bus && dev->bus->uevent) { 338 retval = dev->bus->uevent(dev, env); 339 if (retval) 340 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 341 dev_name(dev), __func__, retval); 342 } 343 344 /* have the class specific function add its stuff */ 345 if (dev->class && dev->class->dev_uevent) { 346 retval = dev->class->dev_uevent(dev, env); 347 if (retval) 348 pr_debug("device: '%s': %s: class uevent() " 349 "returned %d\n", dev_name(dev), 350 __func__, retval); 351 } 352 353 /* have the device type specific function add its stuff */ 354 if (dev->type && dev->type->uevent) { 355 retval = dev->type->uevent(dev, env); 356 if (retval) 357 pr_debug("device: '%s': %s: dev_type uevent() " 358 "returned %d\n", dev_name(dev), 359 __func__, retval); 360 } 361 362 return retval; 363 } 364 365 static const struct kset_uevent_ops device_uevent_ops = { 366 .filter = dev_uevent_filter, 367 .name = dev_uevent_name, 368 .uevent = dev_uevent, 369 }; 370 371 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 372 char *buf) 373 { 374 struct kobject *top_kobj; 375 struct kset *kset; 376 struct kobj_uevent_env *env = NULL; 377 int i; 378 size_t count = 0; 379 int retval; 380 381 /* search the kset, the device belongs to */ 382 top_kobj = &dev->kobj; 383 while (!top_kobj->kset && top_kobj->parent) 384 top_kobj = top_kobj->parent; 385 if (!top_kobj->kset) 386 goto out; 387 388 kset = top_kobj->kset; 389 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 390 goto out; 391 392 /* respect filter */ 393 if (kset->uevent_ops && kset->uevent_ops->filter) 394 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 395 goto out; 396 397 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 398 if (!env) 399 return -ENOMEM; 400 401 /* let the kset specific function add its keys */ 402 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 403 if (retval) 404 goto out; 405 406 /* copy keys to file */ 407 for (i = 0; i < env->envp_idx; i++) 408 count += sprintf(&buf[count], "%s\n", env->envp[i]); 409 out: 410 kfree(env); 411 return count; 412 } 413 414 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 415 const char *buf, size_t count) 416 { 417 enum kobject_action action; 418 419 if (kobject_action_type(buf, count, &action) == 0) 420 kobject_uevent(&dev->kobj, action); 421 else 422 dev_err(dev, "uevent: unknown action-string\n"); 423 return count; 424 } 425 static DEVICE_ATTR_RW(uevent); 426 427 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 428 char *buf) 429 { 430 bool val; 431 432 device_lock(dev); 433 val = !dev->offline; 434 device_unlock(dev); 435 return sprintf(buf, "%u\n", val); 436 } 437 438 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 439 const char *buf, size_t count) 440 { 441 bool val; 442 int ret; 443 444 ret = strtobool(buf, &val); 445 if (ret < 0) 446 return ret; 447 448 ret = lock_device_hotplug_sysfs(); 449 if (ret) 450 return ret; 451 452 ret = val ? device_online(dev) : device_offline(dev); 453 unlock_device_hotplug(); 454 return ret < 0 ? ret : count; 455 } 456 static DEVICE_ATTR_RW(online); 457 458 int device_add_groups(struct device *dev, const struct attribute_group **groups) 459 { 460 return sysfs_create_groups(&dev->kobj, groups); 461 } 462 463 void device_remove_groups(struct device *dev, 464 const struct attribute_group **groups) 465 { 466 sysfs_remove_groups(&dev->kobj, groups); 467 } 468 469 static int device_add_attrs(struct device *dev) 470 { 471 struct class *class = dev->class; 472 const struct device_type *type = dev->type; 473 int error; 474 475 if (class) { 476 error = device_add_groups(dev, class->dev_groups); 477 if (error) 478 return error; 479 } 480 481 if (type) { 482 error = device_add_groups(dev, type->groups); 483 if (error) 484 goto err_remove_class_groups; 485 } 486 487 error = device_add_groups(dev, dev->groups); 488 if (error) 489 goto err_remove_type_groups; 490 491 if (device_supports_offline(dev) && !dev->offline_disabled) { 492 error = device_create_file(dev, &dev_attr_online); 493 if (error) 494 goto err_remove_dev_groups; 495 } 496 497 return 0; 498 499 err_remove_dev_groups: 500 device_remove_groups(dev, dev->groups); 501 err_remove_type_groups: 502 if (type) 503 device_remove_groups(dev, type->groups); 504 err_remove_class_groups: 505 if (class) 506 device_remove_groups(dev, class->dev_groups); 507 508 return error; 509 } 510 511 static void device_remove_attrs(struct device *dev) 512 { 513 struct class *class = dev->class; 514 const struct device_type *type = dev->type; 515 516 device_remove_file(dev, &dev_attr_online); 517 device_remove_groups(dev, dev->groups); 518 519 if (type) 520 device_remove_groups(dev, type->groups); 521 522 if (class) 523 device_remove_groups(dev, class->dev_groups); 524 } 525 526 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 527 char *buf) 528 { 529 return print_dev_t(buf, dev->devt); 530 } 531 static DEVICE_ATTR_RO(dev); 532 533 /* /sys/devices/ */ 534 struct kset *devices_kset; 535 536 /** 537 * devices_kset_move_before - Move device in the devices_kset's list. 538 * @deva: Device to move. 539 * @devb: Device @deva should come before. 540 */ 541 static void devices_kset_move_before(struct device *deva, struct device *devb) 542 { 543 if (!devices_kset) 544 return; 545 pr_debug("devices_kset: Moving %s before %s\n", 546 dev_name(deva), dev_name(devb)); 547 spin_lock(&devices_kset->list_lock); 548 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 549 spin_unlock(&devices_kset->list_lock); 550 } 551 552 /** 553 * devices_kset_move_after - Move device in the devices_kset's list. 554 * @deva: Device to move 555 * @devb: Device @deva should come after. 556 */ 557 static void devices_kset_move_after(struct device *deva, struct device *devb) 558 { 559 if (!devices_kset) 560 return; 561 pr_debug("devices_kset: Moving %s after %s\n", 562 dev_name(deva), dev_name(devb)); 563 spin_lock(&devices_kset->list_lock); 564 list_move(&deva->kobj.entry, &devb->kobj.entry); 565 spin_unlock(&devices_kset->list_lock); 566 } 567 568 /** 569 * devices_kset_move_last - move the device to the end of devices_kset's list. 570 * @dev: device to move 571 */ 572 void devices_kset_move_last(struct device *dev) 573 { 574 if (!devices_kset) 575 return; 576 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 577 spin_lock(&devices_kset->list_lock); 578 list_move_tail(&dev->kobj.entry, &devices_kset->list); 579 spin_unlock(&devices_kset->list_lock); 580 } 581 582 /** 583 * device_create_file - create sysfs attribute file for device. 584 * @dev: device. 585 * @attr: device attribute descriptor. 586 */ 587 int device_create_file(struct device *dev, 588 const struct device_attribute *attr) 589 { 590 int error = 0; 591 592 if (dev) { 593 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 594 "Attribute %s: write permission without 'store'\n", 595 attr->attr.name); 596 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 597 "Attribute %s: read permission without 'show'\n", 598 attr->attr.name); 599 error = sysfs_create_file(&dev->kobj, &attr->attr); 600 } 601 602 return error; 603 } 604 EXPORT_SYMBOL_GPL(device_create_file); 605 606 /** 607 * device_remove_file - remove sysfs attribute file. 608 * @dev: device. 609 * @attr: device attribute descriptor. 610 */ 611 void device_remove_file(struct device *dev, 612 const struct device_attribute *attr) 613 { 614 if (dev) 615 sysfs_remove_file(&dev->kobj, &attr->attr); 616 } 617 EXPORT_SYMBOL_GPL(device_remove_file); 618 619 /** 620 * device_remove_file_self - remove sysfs attribute file from its own method. 621 * @dev: device. 622 * @attr: device attribute descriptor. 623 * 624 * See kernfs_remove_self() for details. 625 */ 626 bool device_remove_file_self(struct device *dev, 627 const struct device_attribute *attr) 628 { 629 if (dev) 630 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 631 else 632 return false; 633 } 634 EXPORT_SYMBOL_GPL(device_remove_file_self); 635 636 /** 637 * device_create_bin_file - create sysfs binary attribute file for device. 638 * @dev: device. 639 * @attr: device binary attribute descriptor. 640 */ 641 int device_create_bin_file(struct device *dev, 642 const struct bin_attribute *attr) 643 { 644 int error = -EINVAL; 645 if (dev) 646 error = sysfs_create_bin_file(&dev->kobj, attr); 647 return error; 648 } 649 EXPORT_SYMBOL_GPL(device_create_bin_file); 650 651 /** 652 * device_remove_bin_file - remove sysfs binary attribute file 653 * @dev: device. 654 * @attr: device binary attribute descriptor. 655 */ 656 void device_remove_bin_file(struct device *dev, 657 const struct bin_attribute *attr) 658 { 659 if (dev) 660 sysfs_remove_bin_file(&dev->kobj, attr); 661 } 662 EXPORT_SYMBOL_GPL(device_remove_bin_file); 663 664 static void klist_children_get(struct klist_node *n) 665 { 666 struct device_private *p = to_device_private_parent(n); 667 struct device *dev = p->device; 668 669 get_device(dev); 670 } 671 672 static void klist_children_put(struct klist_node *n) 673 { 674 struct device_private *p = to_device_private_parent(n); 675 struct device *dev = p->device; 676 677 put_device(dev); 678 } 679 680 /** 681 * device_initialize - init device structure. 682 * @dev: device. 683 * 684 * This prepares the device for use by other layers by initializing 685 * its fields. 686 * It is the first half of device_register(), if called by 687 * that function, though it can also be called separately, so one 688 * may use @dev's fields. In particular, get_device()/put_device() 689 * may be used for reference counting of @dev after calling this 690 * function. 691 * 692 * All fields in @dev must be initialized by the caller to 0, except 693 * for those explicitly set to some other value. The simplest 694 * approach is to use kzalloc() to allocate the structure containing 695 * @dev. 696 * 697 * NOTE: Use put_device() to give up your reference instead of freeing 698 * @dev directly once you have called this function. 699 */ 700 void device_initialize(struct device *dev) 701 { 702 dev->kobj.kset = devices_kset; 703 kobject_init(&dev->kobj, &device_ktype); 704 INIT_LIST_HEAD(&dev->dma_pools); 705 mutex_init(&dev->mutex); 706 lockdep_set_novalidate_class(&dev->mutex); 707 spin_lock_init(&dev->devres_lock); 708 INIT_LIST_HEAD(&dev->devres_head); 709 device_pm_init(dev); 710 set_dev_node(dev, -1); 711 #ifdef CONFIG_GENERIC_MSI_IRQ 712 INIT_LIST_HEAD(&dev->msi_list); 713 #endif 714 } 715 EXPORT_SYMBOL_GPL(device_initialize); 716 717 struct kobject *virtual_device_parent(struct device *dev) 718 { 719 static struct kobject *virtual_dir = NULL; 720 721 if (!virtual_dir) 722 virtual_dir = kobject_create_and_add("virtual", 723 &devices_kset->kobj); 724 725 return virtual_dir; 726 } 727 728 struct class_dir { 729 struct kobject kobj; 730 struct class *class; 731 }; 732 733 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 734 735 static void class_dir_release(struct kobject *kobj) 736 { 737 struct class_dir *dir = to_class_dir(kobj); 738 kfree(dir); 739 } 740 741 static const 742 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 743 { 744 struct class_dir *dir = to_class_dir(kobj); 745 return dir->class->ns_type; 746 } 747 748 static struct kobj_type class_dir_ktype = { 749 .release = class_dir_release, 750 .sysfs_ops = &kobj_sysfs_ops, 751 .child_ns_type = class_dir_child_ns_type 752 }; 753 754 static struct kobject * 755 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 756 { 757 struct class_dir *dir; 758 int retval; 759 760 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 761 if (!dir) 762 return NULL; 763 764 dir->class = class; 765 kobject_init(&dir->kobj, &class_dir_ktype); 766 767 dir->kobj.kset = &class->p->glue_dirs; 768 769 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 770 if (retval < 0) { 771 kobject_put(&dir->kobj); 772 return NULL; 773 } 774 return &dir->kobj; 775 } 776 777 static DEFINE_MUTEX(gdp_mutex); 778 779 static struct kobject *get_device_parent(struct device *dev, 780 struct device *parent) 781 { 782 if (dev->class) { 783 struct kobject *kobj = NULL; 784 struct kobject *parent_kobj; 785 struct kobject *k; 786 787 #ifdef CONFIG_BLOCK 788 /* block disks show up in /sys/block */ 789 if (sysfs_deprecated && dev->class == &block_class) { 790 if (parent && parent->class == &block_class) 791 return &parent->kobj; 792 return &block_class.p->subsys.kobj; 793 } 794 #endif 795 796 /* 797 * If we have no parent, we live in "virtual". 798 * Class-devices with a non class-device as parent, live 799 * in a "glue" directory to prevent namespace collisions. 800 */ 801 if (parent == NULL) 802 parent_kobj = virtual_device_parent(dev); 803 else if (parent->class && !dev->class->ns_type) 804 return &parent->kobj; 805 else 806 parent_kobj = &parent->kobj; 807 808 mutex_lock(&gdp_mutex); 809 810 /* find our class-directory at the parent and reference it */ 811 spin_lock(&dev->class->p->glue_dirs.list_lock); 812 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 813 if (k->parent == parent_kobj) { 814 kobj = kobject_get(k); 815 break; 816 } 817 spin_unlock(&dev->class->p->glue_dirs.list_lock); 818 if (kobj) { 819 mutex_unlock(&gdp_mutex); 820 return kobj; 821 } 822 823 /* or create a new class-directory at the parent device */ 824 k = class_dir_create_and_add(dev->class, parent_kobj); 825 /* do not emit an uevent for this simple "glue" directory */ 826 mutex_unlock(&gdp_mutex); 827 return k; 828 } 829 830 /* subsystems can specify a default root directory for their devices */ 831 if (!parent && dev->bus && dev->bus->dev_root) 832 return &dev->bus->dev_root->kobj; 833 834 if (parent) 835 return &parent->kobj; 836 return NULL; 837 } 838 839 static inline bool live_in_glue_dir(struct kobject *kobj, 840 struct device *dev) 841 { 842 if (!kobj || !dev->class || 843 kobj->kset != &dev->class->p->glue_dirs) 844 return false; 845 return true; 846 } 847 848 static inline struct kobject *get_glue_dir(struct device *dev) 849 { 850 return dev->kobj.parent; 851 } 852 853 /* 854 * make sure cleaning up dir as the last step, we need to make 855 * sure .release handler of kobject is run with holding the 856 * global lock 857 */ 858 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 859 { 860 /* see if we live in a "glue" directory */ 861 if (!live_in_glue_dir(glue_dir, dev)) 862 return; 863 864 mutex_lock(&gdp_mutex); 865 kobject_put(glue_dir); 866 mutex_unlock(&gdp_mutex); 867 } 868 869 static int device_add_class_symlinks(struct device *dev) 870 { 871 struct device_node *of_node = dev_of_node(dev); 872 int error; 873 874 if (of_node) { 875 error = sysfs_create_link(&dev->kobj, &of_node->kobj,"of_node"); 876 if (error) 877 dev_warn(dev, "Error %d creating of_node link\n",error); 878 /* An error here doesn't warrant bringing down the device */ 879 } 880 881 if (!dev->class) 882 return 0; 883 884 error = sysfs_create_link(&dev->kobj, 885 &dev->class->p->subsys.kobj, 886 "subsystem"); 887 if (error) 888 goto out_devnode; 889 890 if (dev->parent && device_is_not_partition(dev)) { 891 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 892 "device"); 893 if (error) 894 goto out_subsys; 895 } 896 897 #ifdef CONFIG_BLOCK 898 /* /sys/block has directories and does not need symlinks */ 899 if (sysfs_deprecated && dev->class == &block_class) 900 return 0; 901 #endif 902 903 /* link in the class directory pointing to the device */ 904 error = sysfs_create_link(&dev->class->p->subsys.kobj, 905 &dev->kobj, dev_name(dev)); 906 if (error) 907 goto out_device; 908 909 return 0; 910 911 out_device: 912 sysfs_remove_link(&dev->kobj, "device"); 913 914 out_subsys: 915 sysfs_remove_link(&dev->kobj, "subsystem"); 916 out_devnode: 917 sysfs_remove_link(&dev->kobj, "of_node"); 918 return error; 919 } 920 921 static void device_remove_class_symlinks(struct device *dev) 922 { 923 if (dev_of_node(dev)) 924 sysfs_remove_link(&dev->kobj, "of_node"); 925 926 if (!dev->class) 927 return; 928 929 if (dev->parent && device_is_not_partition(dev)) 930 sysfs_remove_link(&dev->kobj, "device"); 931 sysfs_remove_link(&dev->kobj, "subsystem"); 932 #ifdef CONFIG_BLOCK 933 if (sysfs_deprecated && dev->class == &block_class) 934 return; 935 #endif 936 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 937 } 938 939 /** 940 * dev_set_name - set a device name 941 * @dev: device 942 * @fmt: format string for the device's name 943 */ 944 int dev_set_name(struct device *dev, const char *fmt, ...) 945 { 946 va_list vargs; 947 int err; 948 949 va_start(vargs, fmt); 950 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 951 va_end(vargs); 952 return err; 953 } 954 EXPORT_SYMBOL_GPL(dev_set_name); 955 956 /** 957 * device_to_dev_kobj - select a /sys/dev/ directory for the device 958 * @dev: device 959 * 960 * By default we select char/ for new entries. Setting class->dev_obj 961 * to NULL prevents an entry from being created. class->dev_kobj must 962 * be set (or cleared) before any devices are registered to the class 963 * otherwise device_create_sys_dev_entry() and 964 * device_remove_sys_dev_entry() will disagree about the presence of 965 * the link. 966 */ 967 static struct kobject *device_to_dev_kobj(struct device *dev) 968 { 969 struct kobject *kobj; 970 971 if (dev->class) 972 kobj = dev->class->dev_kobj; 973 else 974 kobj = sysfs_dev_char_kobj; 975 976 return kobj; 977 } 978 979 static int device_create_sys_dev_entry(struct device *dev) 980 { 981 struct kobject *kobj = device_to_dev_kobj(dev); 982 int error = 0; 983 char devt_str[15]; 984 985 if (kobj) { 986 format_dev_t(devt_str, dev->devt); 987 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 988 } 989 990 return error; 991 } 992 993 static void device_remove_sys_dev_entry(struct device *dev) 994 { 995 struct kobject *kobj = device_to_dev_kobj(dev); 996 char devt_str[15]; 997 998 if (kobj) { 999 format_dev_t(devt_str, dev->devt); 1000 sysfs_remove_link(kobj, devt_str); 1001 } 1002 } 1003 1004 int device_private_init(struct device *dev) 1005 { 1006 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 1007 if (!dev->p) 1008 return -ENOMEM; 1009 dev->p->device = dev; 1010 klist_init(&dev->p->klist_children, klist_children_get, 1011 klist_children_put); 1012 INIT_LIST_HEAD(&dev->p->deferred_probe); 1013 return 0; 1014 } 1015 1016 /** 1017 * device_add - add device to device hierarchy. 1018 * @dev: device. 1019 * 1020 * This is part 2 of device_register(), though may be called 1021 * separately _iff_ device_initialize() has been called separately. 1022 * 1023 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 1024 * to the global and sibling lists for the device, then 1025 * adds it to the other relevant subsystems of the driver model. 1026 * 1027 * Do not call this routine or device_register() more than once for 1028 * any device structure. The driver model core is not designed to work 1029 * with devices that get unregistered and then spring back to life. 1030 * (Among other things, it's very hard to guarantee that all references 1031 * to the previous incarnation of @dev have been dropped.) Allocate 1032 * and register a fresh new struct device instead. 1033 * 1034 * NOTE: _Never_ directly free @dev after calling this function, even 1035 * if it returned an error! Always use put_device() to give up your 1036 * reference instead. 1037 */ 1038 int device_add(struct device *dev) 1039 { 1040 struct device *parent = NULL; 1041 struct kobject *kobj; 1042 struct class_interface *class_intf; 1043 int error = -EINVAL; 1044 struct kobject *glue_dir = NULL; 1045 1046 dev = get_device(dev); 1047 if (!dev) 1048 goto done; 1049 1050 if (!dev->p) { 1051 error = device_private_init(dev); 1052 if (error) 1053 goto done; 1054 } 1055 1056 /* 1057 * for statically allocated devices, which should all be converted 1058 * some day, we need to initialize the name. We prevent reading back 1059 * the name, and force the use of dev_name() 1060 */ 1061 if (dev->init_name) { 1062 dev_set_name(dev, "%s", dev->init_name); 1063 dev->init_name = NULL; 1064 } 1065 1066 /* subsystems can specify simple device enumeration */ 1067 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 1068 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 1069 1070 if (!dev_name(dev)) { 1071 error = -EINVAL; 1072 goto name_error; 1073 } 1074 1075 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 1076 1077 parent = get_device(dev->parent); 1078 kobj = get_device_parent(dev, parent); 1079 if (kobj) 1080 dev->kobj.parent = kobj; 1081 1082 /* use parent numa_node */ 1083 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 1084 set_dev_node(dev, dev_to_node(parent)); 1085 1086 /* first, register with generic layer. */ 1087 /* we require the name to be set before, and pass NULL */ 1088 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 1089 if (error) { 1090 glue_dir = get_glue_dir(dev); 1091 goto Error; 1092 } 1093 1094 /* notify platform of device entry */ 1095 if (platform_notify) 1096 platform_notify(dev); 1097 1098 error = device_create_file(dev, &dev_attr_uevent); 1099 if (error) 1100 goto attrError; 1101 1102 error = device_add_class_symlinks(dev); 1103 if (error) 1104 goto SymlinkError; 1105 error = device_add_attrs(dev); 1106 if (error) 1107 goto AttrsError; 1108 error = bus_add_device(dev); 1109 if (error) 1110 goto BusError; 1111 error = dpm_sysfs_add(dev); 1112 if (error) 1113 goto DPMError; 1114 device_pm_add(dev); 1115 1116 if (MAJOR(dev->devt)) { 1117 error = device_create_file(dev, &dev_attr_dev); 1118 if (error) 1119 goto DevAttrError; 1120 1121 error = device_create_sys_dev_entry(dev); 1122 if (error) 1123 goto SysEntryError; 1124 1125 devtmpfs_create_node(dev); 1126 } 1127 1128 /* Notify clients of device addition. This call must come 1129 * after dpm_sysfs_add() and before kobject_uevent(). 1130 */ 1131 if (dev->bus) 1132 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1133 BUS_NOTIFY_ADD_DEVICE, dev); 1134 1135 kobject_uevent(&dev->kobj, KOBJ_ADD); 1136 bus_probe_device(dev); 1137 if (parent) 1138 klist_add_tail(&dev->p->knode_parent, 1139 &parent->p->klist_children); 1140 1141 if (dev->class) { 1142 mutex_lock(&dev->class->p->mutex); 1143 /* tie the class to the device */ 1144 klist_add_tail(&dev->knode_class, 1145 &dev->class->p->klist_devices); 1146 1147 /* notify any interfaces that the device is here */ 1148 list_for_each_entry(class_intf, 1149 &dev->class->p->interfaces, node) 1150 if (class_intf->add_dev) 1151 class_intf->add_dev(dev, class_intf); 1152 mutex_unlock(&dev->class->p->mutex); 1153 } 1154 done: 1155 put_device(dev); 1156 return error; 1157 SysEntryError: 1158 if (MAJOR(dev->devt)) 1159 device_remove_file(dev, &dev_attr_dev); 1160 DevAttrError: 1161 device_pm_remove(dev); 1162 dpm_sysfs_remove(dev); 1163 DPMError: 1164 bus_remove_device(dev); 1165 BusError: 1166 device_remove_attrs(dev); 1167 AttrsError: 1168 device_remove_class_symlinks(dev); 1169 SymlinkError: 1170 device_remove_file(dev, &dev_attr_uevent); 1171 attrError: 1172 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 1173 glue_dir = get_glue_dir(dev); 1174 kobject_del(&dev->kobj); 1175 Error: 1176 cleanup_glue_dir(dev, glue_dir); 1177 put_device(parent); 1178 name_error: 1179 kfree(dev->p); 1180 dev->p = NULL; 1181 goto done; 1182 } 1183 EXPORT_SYMBOL_GPL(device_add); 1184 1185 /** 1186 * device_register - register a device with the system. 1187 * @dev: pointer to the device structure 1188 * 1189 * This happens in two clean steps - initialize the device 1190 * and add it to the system. The two steps can be called 1191 * separately, but this is the easiest and most common. 1192 * I.e. you should only call the two helpers separately if 1193 * have a clearly defined need to use and refcount the device 1194 * before it is added to the hierarchy. 1195 * 1196 * For more information, see the kerneldoc for device_initialize() 1197 * and device_add(). 1198 * 1199 * NOTE: _Never_ directly free @dev after calling this function, even 1200 * if it returned an error! Always use put_device() to give up the 1201 * reference initialized in this function instead. 1202 */ 1203 int device_register(struct device *dev) 1204 { 1205 device_initialize(dev); 1206 return device_add(dev); 1207 } 1208 EXPORT_SYMBOL_GPL(device_register); 1209 1210 /** 1211 * get_device - increment reference count for device. 1212 * @dev: device. 1213 * 1214 * This simply forwards the call to kobject_get(), though 1215 * we do take care to provide for the case that we get a NULL 1216 * pointer passed in. 1217 */ 1218 struct device *get_device(struct device *dev) 1219 { 1220 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 1221 } 1222 EXPORT_SYMBOL_GPL(get_device); 1223 1224 /** 1225 * put_device - decrement reference count. 1226 * @dev: device in question. 1227 */ 1228 void put_device(struct device *dev) 1229 { 1230 /* might_sleep(); */ 1231 if (dev) 1232 kobject_put(&dev->kobj); 1233 } 1234 EXPORT_SYMBOL_GPL(put_device); 1235 1236 /** 1237 * device_del - delete device from system. 1238 * @dev: device. 1239 * 1240 * This is the first part of the device unregistration 1241 * sequence. This removes the device from the lists we control 1242 * from here, has it removed from the other driver model 1243 * subsystems it was added to in device_add(), and removes it 1244 * from the kobject hierarchy. 1245 * 1246 * NOTE: this should be called manually _iff_ device_add() was 1247 * also called manually. 1248 */ 1249 void device_del(struct device *dev) 1250 { 1251 struct device *parent = dev->parent; 1252 struct kobject *glue_dir = NULL; 1253 struct class_interface *class_intf; 1254 1255 /* Notify clients of device removal. This call must come 1256 * before dpm_sysfs_remove(). 1257 */ 1258 if (dev->bus) 1259 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1260 BUS_NOTIFY_DEL_DEVICE, dev); 1261 dpm_sysfs_remove(dev); 1262 if (parent) 1263 klist_del(&dev->p->knode_parent); 1264 if (MAJOR(dev->devt)) { 1265 devtmpfs_delete_node(dev); 1266 device_remove_sys_dev_entry(dev); 1267 device_remove_file(dev, &dev_attr_dev); 1268 } 1269 if (dev->class) { 1270 device_remove_class_symlinks(dev); 1271 1272 mutex_lock(&dev->class->p->mutex); 1273 /* notify any interfaces that the device is now gone */ 1274 list_for_each_entry(class_intf, 1275 &dev->class->p->interfaces, node) 1276 if (class_intf->remove_dev) 1277 class_intf->remove_dev(dev, class_intf); 1278 /* remove the device from the class list */ 1279 klist_del(&dev->knode_class); 1280 mutex_unlock(&dev->class->p->mutex); 1281 } 1282 device_remove_file(dev, &dev_attr_uevent); 1283 device_remove_attrs(dev); 1284 bus_remove_device(dev); 1285 device_pm_remove(dev); 1286 driver_deferred_probe_del(dev); 1287 device_remove_properties(dev); 1288 1289 /* Notify the platform of the removal, in case they 1290 * need to do anything... 1291 */ 1292 if (platform_notify_remove) 1293 platform_notify_remove(dev); 1294 if (dev->bus) 1295 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1296 BUS_NOTIFY_REMOVED_DEVICE, dev); 1297 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 1298 glue_dir = get_glue_dir(dev); 1299 kobject_del(&dev->kobj); 1300 cleanup_glue_dir(dev, glue_dir); 1301 put_device(parent); 1302 } 1303 EXPORT_SYMBOL_GPL(device_del); 1304 1305 /** 1306 * device_unregister - unregister device from system. 1307 * @dev: device going away. 1308 * 1309 * We do this in two parts, like we do device_register(). First, 1310 * we remove it from all the subsystems with device_del(), then 1311 * we decrement the reference count via put_device(). If that 1312 * is the final reference count, the device will be cleaned up 1313 * via device_release() above. Otherwise, the structure will 1314 * stick around until the final reference to the device is dropped. 1315 */ 1316 void device_unregister(struct device *dev) 1317 { 1318 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 1319 device_del(dev); 1320 put_device(dev); 1321 } 1322 EXPORT_SYMBOL_GPL(device_unregister); 1323 1324 static struct device *prev_device(struct klist_iter *i) 1325 { 1326 struct klist_node *n = klist_prev(i); 1327 struct device *dev = NULL; 1328 struct device_private *p; 1329 1330 if (n) { 1331 p = to_device_private_parent(n); 1332 dev = p->device; 1333 } 1334 return dev; 1335 } 1336 1337 static struct device *next_device(struct klist_iter *i) 1338 { 1339 struct klist_node *n = klist_next(i); 1340 struct device *dev = NULL; 1341 struct device_private *p; 1342 1343 if (n) { 1344 p = to_device_private_parent(n); 1345 dev = p->device; 1346 } 1347 return dev; 1348 } 1349 1350 /** 1351 * device_get_devnode - path of device node file 1352 * @dev: device 1353 * @mode: returned file access mode 1354 * @uid: returned file owner 1355 * @gid: returned file group 1356 * @tmp: possibly allocated string 1357 * 1358 * Return the relative path of a possible device node. 1359 * Non-default names may need to allocate a memory to compose 1360 * a name. This memory is returned in tmp and needs to be 1361 * freed by the caller. 1362 */ 1363 const char *device_get_devnode(struct device *dev, 1364 umode_t *mode, kuid_t *uid, kgid_t *gid, 1365 const char **tmp) 1366 { 1367 char *s; 1368 1369 *tmp = NULL; 1370 1371 /* the device type may provide a specific name */ 1372 if (dev->type && dev->type->devnode) 1373 *tmp = dev->type->devnode(dev, mode, uid, gid); 1374 if (*tmp) 1375 return *tmp; 1376 1377 /* the class may provide a specific name */ 1378 if (dev->class && dev->class->devnode) 1379 *tmp = dev->class->devnode(dev, mode); 1380 if (*tmp) 1381 return *tmp; 1382 1383 /* return name without allocation, tmp == NULL */ 1384 if (strchr(dev_name(dev), '!') == NULL) 1385 return dev_name(dev); 1386 1387 /* replace '!' in the name with '/' */ 1388 s = kstrdup(dev_name(dev), GFP_KERNEL); 1389 if (!s) 1390 return NULL; 1391 strreplace(s, '!', '/'); 1392 return *tmp = s; 1393 } 1394 1395 /** 1396 * device_for_each_child - device child iterator. 1397 * @parent: parent struct device. 1398 * @fn: function to be called for each device. 1399 * @data: data for the callback. 1400 * 1401 * Iterate over @parent's child devices, and call @fn for each, 1402 * passing it @data. 1403 * 1404 * We check the return of @fn each time. If it returns anything 1405 * other than 0, we break out and return that value. 1406 */ 1407 int device_for_each_child(struct device *parent, void *data, 1408 int (*fn)(struct device *dev, void *data)) 1409 { 1410 struct klist_iter i; 1411 struct device *child; 1412 int error = 0; 1413 1414 if (!parent->p) 1415 return 0; 1416 1417 klist_iter_init(&parent->p->klist_children, &i); 1418 while ((child = next_device(&i)) && !error) 1419 error = fn(child, data); 1420 klist_iter_exit(&i); 1421 return error; 1422 } 1423 EXPORT_SYMBOL_GPL(device_for_each_child); 1424 1425 /** 1426 * device_for_each_child_reverse - device child iterator in reversed order. 1427 * @parent: parent struct device. 1428 * @fn: function to be called for each device. 1429 * @data: data for the callback. 1430 * 1431 * Iterate over @parent's child devices, and call @fn for each, 1432 * passing it @data. 1433 * 1434 * We check the return of @fn each time. If it returns anything 1435 * other than 0, we break out and return that value. 1436 */ 1437 int device_for_each_child_reverse(struct device *parent, void *data, 1438 int (*fn)(struct device *dev, void *data)) 1439 { 1440 struct klist_iter i; 1441 struct device *child; 1442 int error = 0; 1443 1444 if (!parent->p) 1445 return 0; 1446 1447 klist_iter_init(&parent->p->klist_children, &i); 1448 while ((child = prev_device(&i)) && !error) 1449 error = fn(child, data); 1450 klist_iter_exit(&i); 1451 return error; 1452 } 1453 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 1454 1455 /** 1456 * device_find_child - device iterator for locating a particular device. 1457 * @parent: parent struct device 1458 * @match: Callback function to check device 1459 * @data: Data to pass to match function 1460 * 1461 * This is similar to the device_for_each_child() function above, but it 1462 * returns a reference to a device that is 'found' for later use, as 1463 * determined by the @match callback. 1464 * 1465 * The callback should return 0 if the device doesn't match and non-zero 1466 * if it does. If the callback returns non-zero and a reference to the 1467 * current device can be obtained, this function will return to the caller 1468 * and not iterate over any more devices. 1469 * 1470 * NOTE: you will need to drop the reference with put_device() after use. 1471 */ 1472 struct device *device_find_child(struct device *parent, void *data, 1473 int (*match)(struct device *dev, void *data)) 1474 { 1475 struct klist_iter i; 1476 struct device *child; 1477 1478 if (!parent) 1479 return NULL; 1480 1481 klist_iter_init(&parent->p->klist_children, &i); 1482 while ((child = next_device(&i))) 1483 if (match(child, data) && get_device(child)) 1484 break; 1485 klist_iter_exit(&i); 1486 return child; 1487 } 1488 EXPORT_SYMBOL_GPL(device_find_child); 1489 1490 int __init devices_init(void) 1491 { 1492 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 1493 if (!devices_kset) 1494 return -ENOMEM; 1495 dev_kobj = kobject_create_and_add("dev", NULL); 1496 if (!dev_kobj) 1497 goto dev_kobj_err; 1498 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 1499 if (!sysfs_dev_block_kobj) 1500 goto block_kobj_err; 1501 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 1502 if (!sysfs_dev_char_kobj) 1503 goto char_kobj_err; 1504 1505 return 0; 1506 1507 char_kobj_err: 1508 kobject_put(sysfs_dev_block_kobj); 1509 block_kobj_err: 1510 kobject_put(dev_kobj); 1511 dev_kobj_err: 1512 kset_unregister(devices_kset); 1513 return -ENOMEM; 1514 } 1515 1516 static int device_check_offline(struct device *dev, void *not_used) 1517 { 1518 int ret; 1519 1520 ret = device_for_each_child(dev, NULL, device_check_offline); 1521 if (ret) 1522 return ret; 1523 1524 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 1525 } 1526 1527 /** 1528 * device_offline - Prepare the device for hot-removal. 1529 * @dev: Device to be put offline. 1530 * 1531 * Execute the device bus type's .offline() callback, if present, to prepare 1532 * the device for a subsequent hot-removal. If that succeeds, the device must 1533 * not be used until either it is removed or its bus type's .online() callback 1534 * is executed. 1535 * 1536 * Call under device_hotplug_lock. 1537 */ 1538 int device_offline(struct device *dev) 1539 { 1540 int ret; 1541 1542 if (dev->offline_disabled) 1543 return -EPERM; 1544 1545 ret = device_for_each_child(dev, NULL, device_check_offline); 1546 if (ret) 1547 return ret; 1548 1549 device_lock(dev); 1550 if (device_supports_offline(dev)) { 1551 if (dev->offline) { 1552 ret = 1; 1553 } else { 1554 ret = dev->bus->offline(dev); 1555 if (!ret) { 1556 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 1557 dev->offline = true; 1558 } 1559 } 1560 } 1561 device_unlock(dev); 1562 1563 return ret; 1564 } 1565 1566 /** 1567 * device_online - Put the device back online after successful device_offline(). 1568 * @dev: Device to be put back online. 1569 * 1570 * If device_offline() has been successfully executed for @dev, but the device 1571 * has not been removed subsequently, execute its bus type's .online() callback 1572 * to indicate that the device can be used again. 1573 * 1574 * Call under device_hotplug_lock. 1575 */ 1576 int device_online(struct device *dev) 1577 { 1578 int ret = 0; 1579 1580 device_lock(dev); 1581 if (device_supports_offline(dev)) { 1582 if (dev->offline) { 1583 ret = dev->bus->online(dev); 1584 if (!ret) { 1585 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 1586 dev->offline = false; 1587 } 1588 } else { 1589 ret = 1; 1590 } 1591 } 1592 device_unlock(dev); 1593 1594 return ret; 1595 } 1596 1597 struct root_device { 1598 struct device dev; 1599 struct module *owner; 1600 }; 1601 1602 static inline struct root_device *to_root_device(struct device *d) 1603 { 1604 return container_of(d, struct root_device, dev); 1605 } 1606 1607 static void root_device_release(struct device *dev) 1608 { 1609 kfree(to_root_device(dev)); 1610 } 1611 1612 /** 1613 * __root_device_register - allocate and register a root device 1614 * @name: root device name 1615 * @owner: owner module of the root device, usually THIS_MODULE 1616 * 1617 * This function allocates a root device and registers it 1618 * using device_register(). In order to free the returned 1619 * device, use root_device_unregister(). 1620 * 1621 * Root devices are dummy devices which allow other devices 1622 * to be grouped under /sys/devices. Use this function to 1623 * allocate a root device and then use it as the parent of 1624 * any device which should appear under /sys/devices/{name} 1625 * 1626 * The /sys/devices/{name} directory will also contain a 1627 * 'module' symlink which points to the @owner directory 1628 * in sysfs. 1629 * 1630 * Returns &struct device pointer on success, or ERR_PTR() on error. 1631 * 1632 * Note: You probably want to use root_device_register(). 1633 */ 1634 struct device *__root_device_register(const char *name, struct module *owner) 1635 { 1636 struct root_device *root; 1637 int err = -ENOMEM; 1638 1639 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 1640 if (!root) 1641 return ERR_PTR(err); 1642 1643 err = dev_set_name(&root->dev, "%s", name); 1644 if (err) { 1645 kfree(root); 1646 return ERR_PTR(err); 1647 } 1648 1649 root->dev.release = root_device_release; 1650 1651 err = device_register(&root->dev); 1652 if (err) { 1653 put_device(&root->dev); 1654 return ERR_PTR(err); 1655 } 1656 1657 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 1658 if (owner) { 1659 struct module_kobject *mk = &owner->mkobj; 1660 1661 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 1662 if (err) { 1663 device_unregister(&root->dev); 1664 return ERR_PTR(err); 1665 } 1666 root->owner = owner; 1667 } 1668 #endif 1669 1670 return &root->dev; 1671 } 1672 EXPORT_SYMBOL_GPL(__root_device_register); 1673 1674 /** 1675 * root_device_unregister - unregister and free a root device 1676 * @dev: device going away 1677 * 1678 * This function unregisters and cleans up a device that was created by 1679 * root_device_register(). 1680 */ 1681 void root_device_unregister(struct device *dev) 1682 { 1683 struct root_device *root = to_root_device(dev); 1684 1685 if (root->owner) 1686 sysfs_remove_link(&root->dev.kobj, "module"); 1687 1688 device_unregister(dev); 1689 } 1690 EXPORT_SYMBOL_GPL(root_device_unregister); 1691 1692 1693 static void device_create_release(struct device *dev) 1694 { 1695 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 1696 kfree(dev); 1697 } 1698 1699 static struct device * 1700 device_create_groups_vargs(struct class *class, struct device *parent, 1701 dev_t devt, void *drvdata, 1702 const struct attribute_group **groups, 1703 const char *fmt, va_list args) 1704 { 1705 struct device *dev = NULL; 1706 int retval = -ENODEV; 1707 1708 if (class == NULL || IS_ERR(class)) 1709 goto error; 1710 1711 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 1712 if (!dev) { 1713 retval = -ENOMEM; 1714 goto error; 1715 } 1716 1717 device_initialize(dev); 1718 dev->devt = devt; 1719 dev->class = class; 1720 dev->parent = parent; 1721 dev->groups = groups; 1722 dev->release = device_create_release; 1723 dev_set_drvdata(dev, drvdata); 1724 1725 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 1726 if (retval) 1727 goto error; 1728 1729 retval = device_add(dev); 1730 if (retval) 1731 goto error; 1732 1733 return dev; 1734 1735 error: 1736 put_device(dev); 1737 return ERR_PTR(retval); 1738 } 1739 1740 /** 1741 * device_create_vargs - creates a device and registers it with sysfs 1742 * @class: pointer to the struct class that this device should be registered to 1743 * @parent: pointer to the parent struct device of this new device, if any 1744 * @devt: the dev_t for the char device to be added 1745 * @drvdata: the data to be added to the device for callbacks 1746 * @fmt: string for the device's name 1747 * @args: va_list for the device's name 1748 * 1749 * This function can be used by char device classes. A struct device 1750 * will be created in sysfs, registered to the specified class. 1751 * 1752 * A "dev" file will be created, showing the dev_t for the device, if 1753 * the dev_t is not 0,0. 1754 * If a pointer to a parent struct device is passed in, the newly created 1755 * struct device will be a child of that device in sysfs. 1756 * The pointer to the struct device will be returned from the call. 1757 * Any further sysfs files that might be required can be created using this 1758 * pointer. 1759 * 1760 * Returns &struct device pointer on success, or ERR_PTR() on error. 1761 * 1762 * Note: the struct class passed to this function must have previously 1763 * been created with a call to class_create(). 1764 */ 1765 struct device *device_create_vargs(struct class *class, struct device *parent, 1766 dev_t devt, void *drvdata, const char *fmt, 1767 va_list args) 1768 { 1769 return device_create_groups_vargs(class, parent, devt, drvdata, NULL, 1770 fmt, args); 1771 } 1772 EXPORT_SYMBOL_GPL(device_create_vargs); 1773 1774 /** 1775 * device_create - creates a device and registers it with sysfs 1776 * @class: pointer to the struct class that this device should be registered to 1777 * @parent: pointer to the parent struct device of this new device, if any 1778 * @devt: the dev_t for the char device to be added 1779 * @drvdata: the data to be added to the device for callbacks 1780 * @fmt: string for the device's name 1781 * 1782 * This function can be used by char device classes. A struct device 1783 * will be created in sysfs, registered to the specified class. 1784 * 1785 * A "dev" file will be created, showing the dev_t for the device, if 1786 * the dev_t is not 0,0. 1787 * If a pointer to a parent struct device is passed in, the newly created 1788 * struct device will be a child of that device in sysfs. 1789 * The pointer to the struct device will be returned from the call. 1790 * Any further sysfs files that might be required can be created using this 1791 * pointer. 1792 * 1793 * Returns &struct device pointer on success, or ERR_PTR() on error. 1794 * 1795 * Note: the struct class passed to this function must have previously 1796 * been created with a call to class_create(). 1797 */ 1798 struct device *device_create(struct class *class, struct device *parent, 1799 dev_t devt, void *drvdata, const char *fmt, ...) 1800 { 1801 va_list vargs; 1802 struct device *dev; 1803 1804 va_start(vargs, fmt); 1805 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs); 1806 va_end(vargs); 1807 return dev; 1808 } 1809 EXPORT_SYMBOL_GPL(device_create); 1810 1811 /** 1812 * device_create_with_groups - creates a device and registers it with sysfs 1813 * @class: pointer to the struct class that this device should be registered to 1814 * @parent: pointer to the parent struct device of this new device, if any 1815 * @devt: the dev_t for the char device to be added 1816 * @drvdata: the data to be added to the device for callbacks 1817 * @groups: NULL-terminated list of attribute groups to be created 1818 * @fmt: string for the device's name 1819 * 1820 * This function can be used by char device classes. A struct device 1821 * will be created in sysfs, registered to the specified class. 1822 * Additional attributes specified in the groups parameter will also 1823 * be created automatically. 1824 * 1825 * A "dev" file will be created, showing the dev_t for the device, if 1826 * the dev_t is not 0,0. 1827 * If a pointer to a parent struct device is passed in, the newly created 1828 * struct device will be a child of that device in sysfs. 1829 * The pointer to the struct device will be returned from the call. 1830 * Any further sysfs files that might be required can be created using this 1831 * pointer. 1832 * 1833 * Returns &struct device pointer on success, or ERR_PTR() on error. 1834 * 1835 * Note: the struct class passed to this function must have previously 1836 * been created with a call to class_create(). 1837 */ 1838 struct device *device_create_with_groups(struct class *class, 1839 struct device *parent, dev_t devt, 1840 void *drvdata, 1841 const struct attribute_group **groups, 1842 const char *fmt, ...) 1843 { 1844 va_list vargs; 1845 struct device *dev; 1846 1847 va_start(vargs, fmt); 1848 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 1849 fmt, vargs); 1850 va_end(vargs); 1851 return dev; 1852 } 1853 EXPORT_SYMBOL_GPL(device_create_with_groups); 1854 1855 static int __match_devt(struct device *dev, const void *data) 1856 { 1857 const dev_t *devt = data; 1858 1859 return dev->devt == *devt; 1860 } 1861 1862 /** 1863 * device_destroy - removes a device that was created with device_create() 1864 * @class: pointer to the struct class that this device was registered with 1865 * @devt: the dev_t of the device that was previously registered 1866 * 1867 * This call unregisters and cleans up a device that was created with a 1868 * call to device_create(). 1869 */ 1870 void device_destroy(struct class *class, dev_t devt) 1871 { 1872 struct device *dev; 1873 1874 dev = class_find_device(class, NULL, &devt, __match_devt); 1875 if (dev) { 1876 put_device(dev); 1877 device_unregister(dev); 1878 } 1879 } 1880 EXPORT_SYMBOL_GPL(device_destroy); 1881 1882 /** 1883 * device_rename - renames a device 1884 * @dev: the pointer to the struct device to be renamed 1885 * @new_name: the new name of the device 1886 * 1887 * It is the responsibility of the caller to provide mutual 1888 * exclusion between two different calls of device_rename 1889 * on the same device to ensure that new_name is valid and 1890 * won't conflict with other devices. 1891 * 1892 * Note: Don't call this function. Currently, the networking layer calls this 1893 * function, but that will change. The following text from Kay Sievers offers 1894 * some insight: 1895 * 1896 * Renaming devices is racy at many levels, symlinks and other stuff are not 1897 * replaced atomically, and you get a "move" uevent, but it's not easy to 1898 * connect the event to the old and new device. Device nodes are not renamed at 1899 * all, there isn't even support for that in the kernel now. 1900 * 1901 * In the meantime, during renaming, your target name might be taken by another 1902 * driver, creating conflicts. Or the old name is taken directly after you 1903 * renamed it -- then you get events for the same DEVPATH, before you even see 1904 * the "move" event. It's just a mess, and nothing new should ever rely on 1905 * kernel device renaming. Besides that, it's not even implemented now for 1906 * other things than (driver-core wise very simple) network devices. 1907 * 1908 * We are currently about to change network renaming in udev to completely 1909 * disallow renaming of devices in the same namespace as the kernel uses, 1910 * because we can't solve the problems properly, that arise with swapping names 1911 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 1912 * be allowed to some other name than eth[0-9]*, for the aforementioned 1913 * reasons. 1914 * 1915 * Make up a "real" name in the driver before you register anything, or add 1916 * some other attributes for userspace to find the device, or use udev to add 1917 * symlinks -- but never rename kernel devices later, it's a complete mess. We 1918 * don't even want to get into that and try to implement the missing pieces in 1919 * the core. We really have other pieces to fix in the driver core mess. :) 1920 */ 1921 int device_rename(struct device *dev, const char *new_name) 1922 { 1923 struct kobject *kobj = &dev->kobj; 1924 char *old_device_name = NULL; 1925 int error; 1926 1927 dev = get_device(dev); 1928 if (!dev) 1929 return -EINVAL; 1930 1931 dev_dbg(dev, "renaming to %s\n", new_name); 1932 1933 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 1934 if (!old_device_name) { 1935 error = -ENOMEM; 1936 goto out; 1937 } 1938 1939 if (dev->class) { 1940 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 1941 kobj, old_device_name, 1942 new_name, kobject_namespace(kobj)); 1943 if (error) 1944 goto out; 1945 } 1946 1947 error = kobject_rename(kobj, new_name); 1948 if (error) 1949 goto out; 1950 1951 out: 1952 put_device(dev); 1953 1954 kfree(old_device_name); 1955 1956 return error; 1957 } 1958 EXPORT_SYMBOL_GPL(device_rename); 1959 1960 static int device_move_class_links(struct device *dev, 1961 struct device *old_parent, 1962 struct device *new_parent) 1963 { 1964 int error = 0; 1965 1966 if (old_parent) 1967 sysfs_remove_link(&dev->kobj, "device"); 1968 if (new_parent) 1969 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 1970 "device"); 1971 return error; 1972 } 1973 1974 /** 1975 * device_move - moves a device to a new parent 1976 * @dev: the pointer to the struct device to be moved 1977 * @new_parent: the new parent of the device (can by NULL) 1978 * @dpm_order: how to reorder the dpm_list 1979 */ 1980 int device_move(struct device *dev, struct device *new_parent, 1981 enum dpm_order dpm_order) 1982 { 1983 int error; 1984 struct device *old_parent; 1985 struct kobject *new_parent_kobj; 1986 1987 dev = get_device(dev); 1988 if (!dev) 1989 return -EINVAL; 1990 1991 device_pm_lock(); 1992 new_parent = get_device(new_parent); 1993 new_parent_kobj = get_device_parent(dev, new_parent); 1994 1995 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 1996 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 1997 error = kobject_move(&dev->kobj, new_parent_kobj); 1998 if (error) { 1999 cleanup_glue_dir(dev, new_parent_kobj); 2000 put_device(new_parent); 2001 goto out; 2002 } 2003 old_parent = dev->parent; 2004 dev->parent = new_parent; 2005 if (old_parent) 2006 klist_remove(&dev->p->knode_parent); 2007 if (new_parent) { 2008 klist_add_tail(&dev->p->knode_parent, 2009 &new_parent->p->klist_children); 2010 set_dev_node(dev, dev_to_node(new_parent)); 2011 } 2012 2013 if (dev->class) { 2014 error = device_move_class_links(dev, old_parent, new_parent); 2015 if (error) { 2016 /* We ignore errors on cleanup since we're hosed anyway... */ 2017 device_move_class_links(dev, new_parent, old_parent); 2018 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 2019 if (new_parent) 2020 klist_remove(&dev->p->knode_parent); 2021 dev->parent = old_parent; 2022 if (old_parent) { 2023 klist_add_tail(&dev->p->knode_parent, 2024 &old_parent->p->klist_children); 2025 set_dev_node(dev, dev_to_node(old_parent)); 2026 } 2027 } 2028 cleanup_glue_dir(dev, new_parent_kobj); 2029 put_device(new_parent); 2030 goto out; 2031 } 2032 } 2033 switch (dpm_order) { 2034 case DPM_ORDER_NONE: 2035 break; 2036 case DPM_ORDER_DEV_AFTER_PARENT: 2037 device_pm_move_after(dev, new_parent); 2038 devices_kset_move_after(dev, new_parent); 2039 break; 2040 case DPM_ORDER_PARENT_BEFORE_DEV: 2041 device_pm_move_before(new_parent, dev); 2042 devices_kset_move_before(new_parent, dev); 2043 break; 2044 case DPM_ORDER_DEV_LAST: 2045 device_pm_move_last(dev); 2046 devices_kset_move_last(dev); 2047 break; 2048 } 2049 2050 put_device(old_parent); 2051 out: 2052 device_pm_unlock(); 2053 put_device(dev); 2054 return error; 2055 } 2056 EXPORT_SYMBOL_GPL(device_move); 2057 2058 /** 2059 * device_shutdown - call ->shutdown() on each device to shutdown. 2060 */ 2061 void device_shutdown(void) 2062 { 2063 struct device *dev, *parent; 2064 2065 spin_lock(&devices_kset->list_lock); 2066 /* 2067 * Walk the devices list backward, shutting down each in turn. 2068 * Beware that device unplug events may also start pulling 2069 * devices offline, even as the system is shutting down. 2070 */ 2071 while (!list_empty(&devices_kset->list)) { 2072 dev = list_entry(devices_kset->list.prev, struct device, 2073 kobj.entry); 2074 2075 /* 2076 * hold reference count of device's parent to 2077 * prevent it from being freed because parent's 2078 * lock is to be held 2079 */ 2080 parent = get_device(dev->parent); 2081 get_device(dev); 2082 /* 2083 * Make sure the device is off the kset list, in the 2084 * event that dev->*->shutdown() doesn't remove it. 2085 */ 2086 list_del_init(&dev->kobj.entry); 2087 spin_unlock(&devices_kset->list_lock); 2088 2089 /* hold lock to avoid race with probe/release */ 2090 if (parent) 2091 device_lock(parent); 2092 device_lock(dev); 2093 2094 /* Don't allow any more runtime suspends */ 2095 pm_runtime_get_noresume(dev); 2096 pm_runtime_barrier(dev); 2097 2098 if (dev->bus && dev->bus->shutdown) { 2099 if (initcall_debug) 2100 dev_info(dev, "shutdown\n"); 2101 dev->bus->shutdown(dev); 2102 } else if (dev->driver && dev->driver->shutdown) { 2103 if (initcall_debug) 2104 dev_info(dev, "shutdown\n"); 2105 dev->driver->shutdown(dev); 2106 } 2107 2108 device_unlock(dev); 2109 if (parent) 2110 device_unlock(parent); 2111 2112 put_device(dev); 2113 put_device(parent); 2114 2115 spin_lock(&devices_kset->list_lock); 2116 } 2117 spin_unlock(&devices_kset->list_lock); 2118 } 2119 2120 /* 2121 * Device logging functions 2122 */ 2123 2124 #ifdef CONFIG_PRINTK 2125 static int 2126 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen) 2127 { 2128 const char *subsys; 2129 size_t pos = 0; 2130 2131 if (dev->class) 2132 subsys = dev->class->name; 2133 else if (dev->bus) 2134 subsys = dev->bus->name; 2135 else 2136 return 0; 2137 2138 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys); 2139 if (pos >= hdrlen) 2140 goto overflow; 2141 2142 /* 2143 * Add device identifier DEVICE=: 2144 * b12:8 block dev_t 2145 * c127:3 char dev_t 2146 * n8 netdev ifindex 2147 * +sound:card0 subsystem:devname 2148 */ 2149 if (MAJOR(dev->devt)) { 2150 char c; 2151 2152 if (strcmp(subsys, "block") == 0) 2153 c = 'b'; 2154 else 2155 c = 'c'; 2156 pos++; 2157 pos += snprintf(hdr + pos, hdrlen - pos, 2158 "DEVICE=%c%u:%u", 2159 c, MAJOR(dev->devt), MINOR(dev->devt)); 2160 } else if (strcmp(subsys, "net") == 0) { 2161 struct net_device *net = to_net_dev(dev); 2162 2163 pos++; 2164 pos += snprintf(hdr + pos, hdrlen - pos, 2165 "DEVICE=n%u", net->ifindex); 2166 } else { 2167 pos++; 2168 pos += snprintf(hdr + pos, hdrlen - pos, 2169 "DEVICE=+%s:%s", subsys, dev_name(dev)); 2170 } 2171 2172 if (pos >= hdrlen) 2173 goto overflow; 2174 2175 return pos; 2176 2177 overflow: 2178 dev_WARN(dev, "device/subsystem name too long"); 2179 return 0; 2180 } 2181 2182 int dev_vprintk_emit(int level, const struct device *dev, 2183 const char *fmt, va_list args) 2184 { 2185 char hdr[128]; 2186 size_t hdrlen; 2187 2188 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr)); 2189 2190 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args); 2191 } 2192 EXPORT_SYMBOL(dev_vprintk_emit); 2193 2194 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 2195 { 2196 va_list args; 2197 int r; 2198 2199 va_start(args, fmt); 2200 2201 r = dev_vprintk_emit(level, dev, fmt, args); 2202 2203 va_end(args); 2204 2205 return r; 2206 } 2207 EXPORT_SYMBOL(dev_printk_emit); 2208 2209 static void __dev_printk(const char *level, const struct device *dev, 2210 struct va_format *vaf) 2211 { 2212 if (dev) 2213 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 2214 dev_driver_string(dev), dev_name(dev), vaf); 2215 else 2216 printk("%s(NULL device *): %pV", level, vaf); 2217 } 2218 2219 void dev_printk(const char *level, const struct device *dev, 2220 const char *fmt, ...) 2221 { 2222 struct va_format vaf; 2223 va_list args; 2224 2225 va_start(args, fmt); 2226 2227 vaf.fmt = fmt; 2228 vaf.va = &args; 2229 2230 __dev_printk(level, dev, &vaf); 2231 2232 va_end(args); 2233 } 2234 EXPORT_SYMBOL(dev_printk); 2235 2236 #define define_dev_printk_level(func, kern_level) \ 2237 void func(const struct device *dev, const char *fmt, ...) \ 2238 { \ 2239 struct va_format vaf; \ 2240 va_list args; \ 2241 \ 2242 va_start(args, fmt); \ 2243 \ 2244 vaf.fmt = fmt; \ 2245 vaf.va = &args; \ 2246 \ 2247 __dev_printk(kern_level, dev, &vaf); \ 2248 \ 2249 va_end(args); \ 2250 } \ 2251 EXPORT_SYMBOL(func); 2252 2253 define_dev_printk_level(dev_emerg, KERN_EMERG); 2254 define_dev_printk_level(dev_alert, KERN_ALERT); 2255 define_dev_printk_level(dev_crit, KERN_CRIT); 2256 define_dev_printk_level(dev_err, KERN_ERR); 2257 define_dev_printk_level(dev_warn, KERN_WARNING); 2258 define_dev_printk_level(dev_notice, KERN_NOTICE); 2259 define_dev_printk_level(_dev_info, KERN_INFO); 2260 2261 #endif 2262 2263 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 2264 { 2265 return fwnode && !IS_ERR(fwnode->secondary); 2266 } 2267 2268 /** 2269 * set_primary_fwnode - Change the primary firmware node of a given device. 2270 * @dev: Device to handle. 2271 * @fwnode: New primary firmware node of the device. 2272 * 2273 * Set the device's firmware node pointer to @fwnode, but if a secondary 2274 * firmware node of the device is present, preserve it. 2275 */ 2276 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 2277 { 2278 if (fwnode) { 2279 struct fwnode_handle *fn = dev->fwnode; 2280 2281 if (fwnode_is_primary(fn)) 2282 fn = fn->secondary; 2283 2284 if (fn) { 2285 WARN_ON(fwnode->secondary); 2286 fwnode->secondary = fn; 2287 } 2288 dev->fwnode = fwnode; 2289 } else { 2290 dev->fwnode = fwnode_is_primary(dev->fwnode) ? 2291 dev->fwnode->secondary : NULL; 2292 } 2293 } 2294 EXPORT_SYMBOL_GPL(set_primary_fwnode); 2295 2296 /** 2297 * set_secondary_fwnode - Change the secondary firmware node of a given device. 2298 * @dev: Device to handle. 2299 * @fwnode: New secondary firmware node of the device. 2300 * 2301 * If a primary firmware node of the device is present, set its secondary 2302 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 2303 * @fwnode. 2304 */ 2305 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 2306 { 2307 if (fwnode) 2308 fwnode->secondary = ERR_PTR(-ENODEV); 2309 2310 if (fwnode_is_primary(dev->fwnode)) 2311 dev->fwnode->secondary = fwnode; 2312 else 2313 dev->fwnode = fwnode; 2314 } 2315