xref: /openbmc/linux/drivers/base/core.c (revision 6396bb221514d2876fd6dc0aa2a1f240d99b37bb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/fwnode.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/kdev_t.h>
19 #include <linux/notifier.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/genhd.h>
23 #include <linux/mutex.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/netdevice.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sysfs.h>
28 
29 #include "base.h"
30 #include "power/power.h"
31 
32 #ifdef CONFIG_SYSFS_DEPRECATED
33 #ifdef CONFIG_SYSFS_DEPRECATED_V2
34 long sysfs_deprecated = 1;
35 #else
36 long sysfs_deprecated = 0;
37 #endif
38 static int __init sysfs_deprecated_setup(char *arg)
39 {
40 	return kstrtol(arg, 10, &sysfs_deprecated);
41 }
42 early_param("sysfs.deprecated", sysfs_deprecated_setup);
43 #endif
44 
45 /* Device links support. */
46 
47 #ifdef CONFIG_SRCU
48 static DEFINE_MUTEX(device_links_lock);
49 DEFINE_STATIC_SRCU(device_links_srcu);
50 
51 static inline void device_links_write_lock(void)
52 {
53 	mutex_lock(&device_links_lock);
54 }
55 
56 static inline void device_links_write_unlock(void)
57 {
58 	mutex_unlock(&device_links_lock);
59 }
60 
61 int device_links_read_lock(void)
62 {
63 	return srcu_read_lock(&device_links_srcu);
64 }
65 
66 void device_links_read_unlock(int idx)
67 {
68 	srcu_read_unlock(&device_links_srcu, idx);
69 }
70 #else /* !CONFIG_SRCU */
71 static DECLARE_RWSEM(device_links_lock);
72 
73 static inline void device_links_write_lock(void)
74 {
75 	down_write(&device_links_lock);
76 }
77 
78 static inline void device_links_write_unlock(void)
79 {
80 	up_write(&device_links_lock);
81 }
82 
83 int device_links_read_lock(void)
84 {
85 	down_read(&device_links_lock);
86 	return 0;
87 }
88 
89 void device_links_read_unlock(int not_used)
90 {
91 	up_read(&device_links_lock);
92 }
93 #endif /* !CONFIG_SRCU */
94 
95 /**
96  * device_is_dependent - Check if one device depends on another one
97  * @dev: Device to check dependencies for.
98  * @target: Device to check against.
99  *
100  * Check if @target depends on @dev or any device dependent on it (its child or
101  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
102  */
103 static int device_is_dependent(struct device *dev, void *target)
104 {
105 	struct device_link *link;
106 	int ret;
107 
108 	if (WARN_ON(dev == target))
109 		return 1;
110 
111 	ret = device_for_each_child(dev, target, device_is_dependent);
112 	if (ret)
113 		return ret;
114 
115 	list_for_each_entry(link, &dev->links.consumers, s_node) {
116 		if (WARN_ON(link->consumer == target))
117 			return 1;
118 
119 		ret = device_is_dependent(link->consumer, target);
120 		if (ret)
121 			break;
122 	}
123 	return ret;
124 }
125 
126 static int device_reorder_to_tail(struct device *dev, void *not_used)
127 {
128 	struct device_link *link;
129 
130 	/*
131 	 * Devices that have not been registered yet will be put to the ends
132 	 * of the lists during the registration, so skip them here.
133 	 */
134 	if (device_is_registered(dev))
135 		devices_kset_move_last(dev);
136 
137 	if (device_pm_initialized(dev))
138 		device_pm_move_last(dev);
139 
140 	device_for_each_child(dev, NULL, device_reorder_to_tail);
141 	list_for_each_entry(link, &dev->links.consumers, s_node)
142 		device_reorder_to_tail(link->consumer, NULL);
143 
144 	return 0;
145 }
146 
147 /**
148  * device_pm_move_to_tail - Move set of devices to the end of device lists
149  * @dev: Device to move
150  *
151  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
152  *
153  * It moves the @dev along with all of its children and all of its consumers
154  * to the ends of the device_kset and dpm_list, recursively.
155  */
156 void device_pm_move_to_tail(struct device *dev)
157 {
158 	int idx;
159 
160 	idx = device_links_read_lock();
161 	device_pm_lock();
162 	device_reorder_to_tail(dev, NULL);
163 	device_pm_unlock();
164 	device_links_read_unlock(idx);
165 }
166 
167 /**
168  * device_link_add - Create a link between two devices.
169  * @consumer: Consumer end of the link.
170  * @supplier: Supplier end of the link.
171  * @flags: Link flags.
172  *
173  * The caller is responsible for the proper synchronization of the link creation
174  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
175  * runtime PM framework to take the link into account.  Second, if the
176  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
177  * be forced into the active metastate and reference-counted upon the creation
178  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
179  * ignored.
180  *
181  * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically
182  * when the consumer device driver unbinds from it.  The combination of both
183  * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL
184  * to be returned.
185  *
186  * A side effect of the link creation is re-ordering of dpm_list and the
187  * devices_kset list by moving the consumer device and all devices depending
188  * on it to the ends of these lists (that does not happen to devices that have
189  * not been registered when this function is called).
190  *
191  * The supplier device is required to be registered when this function is called
192  * and NULL will be returned if that is not the case.  The consumer device need
193  * not be registered, however.
194  */
195 struct device_link *device_link_add(struct device *consumer,
196 				    struct device *supplier, u32 flags)
197 {
198 	struct device_link *link;
199 
200 	if (!consumer || !supplier ||
201 	    ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE)))
202 		return NULL;
203 
204 	device_links_write_lock();
205 	device_pm_lock();
206 
207 	/*
208 	 * If the supplier has not been fully registered yet or there is a
209 	 * reverse dependency between the consumer and the supplier already in
210 	 * the graph, return NULL.
211 	 */
212 	if (!device_pm_initialized(supplier)
213 	    || device_is_dependent(consumer, supplier)) {
214 		link = NULL;
215 		goto out;
216 	}
217 
218 	list_for_each_entry(link, &supplier->links.consumers, s_node)
219 		if (link->consumer == consumer) {
220 			kref_get(&link->kref);
221 			goto out;
222 		}
223 
224 	link = kzalloc(sizeof(*link), GFP_KERNEL);
225 	if (!link)
226 		goto out;
227 
228 	if (flags & DL_FLAG_PM_RUNTIME) {
229 		if (flags & DL_FLAG_RPM_ACTIVE) {
230 			if (pm_runtime_get_sync(supplier) < 0) {
231 				pm_runtime_put_noidle(supplier);
232 				kfree(link);
233 				link = NULL;
234 				goto out;
235 			}
236 			link->rpm_active = true;
237 		}
238 		pm_runtime_new_link(consumer);
239 	}
240 	get_device(supplier);
241 	link->supplier = supplier;
242 	INIT_LIST_HEAD(&link->s_node);
243 	get_device(consumer);
244 	link->consumer = consumer;
245 	INIT_LIST_HEAD(&link->c_node);
246 	link->flags = flags;
247 	kref_init(&link->kref);
248 
249 	/* Determine the initial link state. */
250 	if (flags & DL_FLAG_STATELESS) {
251 		link->status = DL_STATE_NONE;
252 	} else {
253 		switch (supplier->links.status) {
254 		case DL_DEV_DRIVER_BOUND:
255 			switch (consumer->links.status) {
256 			case DL_DEV_PROBING:
257 				/*
258 				 * Balance the decrementation of the supplier's
259 				 * runtime PM usage counter after consumer probe
260 				 * in driver_probe_device().
261 				 */
262 				if (flags & DL_FLAG_PM_RUNTIME)
263 					pm_runtime_get_sync(supplier);
264 
265 				link->status = DL_STATE_CONSUMER_PROBE;
266 				break;
267 			case DL_DEV_DRIVER_BOUND:
268 				link->status = DL_STATE_ACTIVE;
269 				break;
270 			default:
271 				link->status = DL_STATE_AVAILABLE;
272 				break;
273 			}
274 			break;
275 		case DL_DEV_UNBINDING:
276 			link->status = DL_STATE_SUPPLIER_UNBIND;
277 			break;
278 		default:
279 			link->status = DL_STATE_DORMANT;
280 			break;
281 		}
282 	}
283 
284 	/*
285 	 * Move the consumer and all of the devices depending on it to the end
286 	 * of dpm_list and the devices_kset list.
287 	 *
288 	 * It is necessary to hold dpm_list locked throughout all that or else
289 	 * we may end up suspending with a wrong ordering of it.
290 	 */
291 	device_reorder_to_tail(consumer, NULL);
292 
293 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
294 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
295 
296 	dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
297 
298  out:
299 	device_pm_unlock();
300 	device_links_write_unlock();
301 	return link;
302 }
303 EXPORT_SYMBOL_GPL(device_link_add);
304 
305 static void device_link_free(struct device_link *link)
306 {
307 	put_device(link->consumer);
308 	put_device(link->supplier);
309 	kfree(link);
310 }
311 
312 #ifdef CONFIG_SRCU
313 static void __device_link_free_srcu(struct rcu_head *rhead)
314 {
315 	device_link_free(container_of(rhead, struct device_link, rcu_head));
316 }
317 
318 static void __device_link_del(struct kref *kref)
319 {
320 	struct device_link *link = container_of(kref, struct device_link, kref);
321 
322 	dev_info(link->consumer, "Dropping the link to %s\n",
323 		 dev_name(link->supplier));
324 
325 	if (link->flags & DL_FLAG_PM_RUNTIME)
326 		pm_runtime_drop_link(link->consumer);
327 
328 	list_del_rcu(&link->s_node);
329 	list_del_rcu(&link->c_node);
330 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
331 }
332 #else /* !CONFIG_SRCU */
333 static void __device_link_del(struct kref *kref)
334 {
335 	struct device_link *link = container_of(kref, struct device_link, kref);
336 
337 	dev_info(link->consumer, "Dropping the link to %s\n",
338 		 dev_name(link->supplier));
339 
340 	if (link->flags & DL_FLAG_PM_RUNTIME)
341 		pm_runtime_drop_link(link->consumer);
342 
343 	list_del(&link->s_node);
344 	list_del(&link->c_node);
345 	device_link_free(link);
346 }
347 #endif /* !CONFIG_SRCU */
348 
349 /**
350  * device_link_del - Delete a link between two devices.
351  * @link: Device link to delete.
352  *
353  * The caller must ensure proper synchronization of this function with runtime
354  * PM.  If the link was added multiple times, it needs to be deleted as often.
355  * Care is required for hotplugged devices:  Their links are purged on removal
356  * and calling device_link_del() is then no longer allowed.
357  */
358 void device_link_del(struct device_link *link)
359 {
360 	device_links_write_lock();
361 	device_pm_lock();
362 	kref_put(&link->kref, __device_link_del);
363 	device_pm_unlock();
364 	device_links_write_unlock();
365 }
366 EXPORT_SYMBOL_GPL(device_link_del);
367 
368 static void device_links_missing_supplier(struct device *dev)
369 {
370 	struct device_link *link;
371 
372 	list_for_each_entry(link, &dev->links.suppliers, c_node)
373 		if (link->status == DL_STATE_CONSUMER_PROBE)
374 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
375 }
376 
377 /**
378  * device_links_check_suppliers - Check presence of supplier drivers.
379  * @dev: Consumer device.
380  *
381  * Check links from this device to any suppliers.  Walk the list of the device's
382  * links to suppliers and see if all of them are available.  If not, simply
383  * return -EPROBE_DEFER.
384  *
385  * We need to guarantee that the supplier will not go away after the check has
386  * been positive here.  It only can go away in __device_release_driver() and
387  * that function  checks the device's links to consumers.  This means we need to
388  * mark the link as "consumer probe in progress" to make the supplier removal
389  * wait for us to complete (or bad things may happen).
390  *
391  * Links with the DL_FLAG_STATELESS flag set are ignored.
392  */
393 int device_links_check_suppliers(struct device *dev)
394 {
395 	struct device_link *link;
396 	int ret = 0;
397 
398 	device_links_write_lock();
399 
400 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
401 		if (link->flags & DL_FLAG_STATELESS)
402 			continue;
403 
404 		if (link->status != DL_STATE_AVAILABLE) {
405 			device_links_missing_supplier(dev);
406 			ret = -EPROBE_DEFER;
407 			break;
408 		}
409 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
410 	}
411 	dev->links.status = DL_DEV_PROBING;
412 
413 	device_links_write_unlock();
414 	return ret;
415 }
416 
417 /**
418  * device_links_driver_bound - Update device links after probing its driver.
419  * @dev: Device to update the links for.
420  *
421  * The probe has been successful, so update links from this device to any
422  * consumers by changing their status to "available".
423  *
424  * Also change the status of @dev's links to suppliers to "active".
425  *
426  * Links with the DL_FLAG_STATELESS flag set are ignored.
427  */
428 void device_links_driver_bound(struct device *dev)
429 {
430 	struct device_link *link;
431 
432 	device_links_write_lock();
433 
434 	list_for_each_entry(link, &dev->links.consumers, s_node) {
435 		if (link->flags & DL_FLAG_STATELESS)
436 			continue;
437 
438 		WARN_ON(link->status != DL_STATE_DORMANT);
439 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
440 	}
441 
442 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
443 		if (link->flags & DL_FLAG_STATELESS)
444 			continue;
445 
446 		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
447 		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
448 	}
449 
450 	dev->links.status = DL_DEV_DRIVER_BOUND;
451 
452 	device_links_write_unlock();
453 }
454 
455 /**
456  * __device_links_no_driver - Update links of a device without a driver.
457  * @dev: Device without a drvier.
458  *
459  * Delete all non-persistent links from this device to any suppliers.
460  *
461  * Persistent links stay around, but their status is changed to "available",
462  * unless they already are in the "supplier unbind in progress" state in which
463  * case they need not be updated.
464  *
465  * Links with the DL_FLAG_STATELESS flag set are ignored.
466  */
467 static void __device_links_no_driver(struct device *dev)
468 {
469 	struct device_link *link, *ln;
470 
471 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
472 		if (link->flags & DL_FLAG_STATELESS)
473 			continue;
474 
475 		if (link->flags & DL_FLAG_AUTOREMOVE)
476 			kref_put(&link->kref, __device_link_del);
477 		else if (link->status != DL_STATE_SUPPLIER_UNBIND)
478 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
479 	}
480 
481 	dev->links.status = DL_DEV_NO_DRIVER;
482 }
483 
484 void device_links_no_driver(struct device *dev)
485 {
486 	device_links_write_lock();
487 	__device_links_no_driver(dev);
488 	device_links_write_unlock();
489 }
490 
491 /**
492  * device_links_driver_cleanup - Update links after driver removal.
493  * @dev: Device whose driver has just gone away.
494  *
495  * Update links to consumers for @dev by changing their status to "dormant" and
496  * invoke %__device_links_no_driver() to update links to suppliers for it as
497  * appropriate.
498  *
499  * Links with the DL_FLAG_STATELESS flag set are ignored.
500  */
501 void device_links_driver_cleanup(struct device *dev)
502 {
503 	struct device_link *link;
504 
505 	device_links_write_lock();
506 
507 	list_for_each_entry(link, &dev->links.consumers, s_node) {
508 		if (link->flags & DL_FLAG_STATELESS)
509 			continue;
510 
511 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE);
512 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
513 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
514 	}
515 
516 	__device_links_no_driver(dev);
517 
518 	device_links_write_unlock();
519 }
520 
521 /**
522  * device_links_busy - Check if there are any busy links to consumers.
523  * @dev: Device to check.
524  *
525  * Check each consumer of the device and return 'true' if its link's status
526  * is one of "consumer probe" or "active" (meaning that the given consumer is
527  * probing right now or its driver is present).  Otherwise, change the link
528  * state to "supplier unbind" to prevent the consumer from being probed
529  * successfully going forward.
530  *
531  * Return 'false' if there are no probing or active consumers.
532  *
533  * Links with the DL_FLAG_STATELESS flag set are ignored.
534  */
535 bool device_links_busy(struct device *dev)
536 {
537 	struct device_link *link;
538 	bool ret = false;
539 
540 	device_links_write_lock();
541 
542 	list_for_each_entry(link, &dev->links.consumers, s_node) {
543 		if (link->flags & DL_FLAG_STATELESS)
544 			continue;
545 
546 		if (link->status == DL_STATE_CONSUMER_PROBE
547 		    || link->status == DL_STATE_ACTIVE) {
548 			ret = true;
549 			break;
550 		}
551 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
552 	}
553 
554 	dev->links.status = DL_DEV_UNBINDING;
555 
556 	device_links_write_unlock();
557 	return ret;
558 }
559 
560 /**
561  * device_links_unbind_consumers - Force unbind consumers of the given device.
562  * @dev: Device to unbind the consumers of.
563  *
564  * Walk the list of links to consumers for @dev and if any of them is in the
565  * "consumer probe" state, wait for all device probes in progress to complete
566  * and start over.
567  *
568  * If that's not the case, change the status of the link to "supplier unbind"
569  * and check if the link was in the "active" state.  If so, force the consumer
570  * driver to unbind and start over (the consumer will not re-probe as we have
571  * changed the state of the link already).
572  *
573  * Links with the DL_FLAG_STATELESS flag set are ignored.
574  */
575 void device_links_unbind_consumers(struct device *dev)
576 {
577 	struct device_link *link;
578 
579  start:
580 	device_links_write_lock();
581 
582 	list_for_each_entry(link, &dev->links.consumers, s_node) {
583 		enum device_link_state status;
584 
585 		if (link->flags & DL_FLAG_STATELESS)
586 			continue;
587 
588 		status = link->status;
589 		if (status == DL_STATE_CONSUMER_PROBE) {
590 			device_links_write_unlock();
591 
592 			wait_for_device_probe();
593 			goto start;
594 		}
595 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
596 		if (status == DL_STATE_ACTIVE) {
597 			struct device *consumer = link->consumer;
598 
599 			get_device(consumer);
600 
601 			device_links_write_unlock();
602 
603 			device_release_driver_internal(consumer, NULL,
604 						       consumer->parent);
605 			put_device(consumer);
606 			goto start;
607 		}
608 	}
609 
610 	device_links_write_unlock();
611 }
612 
613 /**
614  * device_links_purge - Delete existing links to other devices.
615  * @dev: Target device.
616  */
617 static void device_links_purge(struct device *dev)
618 {
619 	struct device_link *link, *ln;
620 
621 	/*
622 	 * Delete all of the remaining links from this device to any other
623 	 * devices (either consumers or suppliers).
624 	 */
625 	device_links_write_lock();
626 
627 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
628 		WARN_ON(link->status == DL_STATE_ACTIVE);
629 		__device_link_del(&link->kref);
630 	}
631 
632 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
633 		WARN_ON(link->status != DL_STATE_DORMANT &&
634 			link->status != DL_STATE_NONE);
635 		__device_link_del(&link->kref);
636 	}
637 
638 	device_links_write_unlock();
639 }
640 
641 /* Device links support end. */
642 
643 int (*platform_notify)(struct device *dev) = NULL;
644 int (*platform_notify_remove)(struct device *dev) = NULL;
645 static struct kobject *dev_kobj;
646 struct kobject *sysfs_dev_char_kobj;
647 struct kobject *sysfs_dev_block_kobj;
648 
649 static DEFINE_MUTEX(device_hotplug_lock);
650 
651 void lock_device_hotplug(void)
652 {
653 	mutex_lock(&device_hotplug_lock);
654 }
655 
656 void unlock_device_hotplug(void)
657 {
658 	mutex_unlock(&device_hotplug_lock);
659 }
660 
661 int lock_device_hotplug_sysfs(void)
662 {
663 	if (mutex_trylock(&device_hotplug_lock))
664 		return 0;
665 
666 	/* Avoid busy looping (5 ms of sleep should do). */
667 	msleep(5);
668 	return restart_syscall();
669 }
670 
671 #ifdef CONFIG_BLOCK
672 static inline int device_is_not_partition(struct device *dev)
673 {
674 	return !(dev->type == &part_type);
675 }
676 #else
677 static inline int device_is_not_partition(struct device *dev)
678 {
679 	return 1;
680 }
681 #endif
682 
683 /**
684  * dev_driver_string - Return a device's driver name, if at all possible
685  * @dev: struct device to get the name of
686  *
687  * Will return the device's driver's name if it is bound to a device.  If
688  * the device is not bound to a driver, it will return the name of the bus
689  * it is attached to.  If it is not attached to a bus either, an empty
690  * string will be returned.
691  */
692 const char *dev_driver_string(const struct device *dev)
693 {
694 	struct device_driver *drv;
695 
696 	/* dev->driver can change to NULL underneath us because of unbinding,
697 	 * so be careful about accessing it.  dev->bus and dev->class should
698 	 * never change once they are set, so they don't need special care.
699 	 */
700 	drv = READ_ONCE(dev->driver);
701 	return drv ? drv->name :
702 			(dev->bus ? dev->bus->name :
703 			(dev->class ? dev->class->name : ""));
704 }
705 EXPORT_SYMBOL(dev_driver_string);
706 
707 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
708 
709 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
710 			     char *buf)
711 {
712 	struct device_attribute *dev_attr = to_dev_attr(attr);
713 	struct device *dev = kobj_to_dev(kobj);
714 	ssize_t ret = -EIO;
715 
716 	if (dev_attr->show)
717 		ret = dev_attr->show(dev, dev_attr, buf);
718 	if (ret >= (ssize_t)PAGE_SIZE) {
719 		printk("dev_attr_show: %pS returned bad count\n",
720 				dev_attr->show);
721 	}
722 	return ret;
723 }
724 
725 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
726 			      const char *buf, size_t count)
727 {
728 	struct device_attribute *dev_attr = to_dev_attr(attr);
729 	struct device *dev = kobj_to_dev(kobj);
730 	ssize_t ret = -EIO;
731 
732 	if (dev_attr->store)
733 		ret = dev_attr->store(dev, dev_attr, buf, count);
734 	return ret;
735 }
736 
737 static const struct sysfs_ops dev_sysfs_ops = {
738 	.show	= dev_attr_show,
739 	.store	= dev_attr_store,
740 };
741 
742 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
743 
744 ssize_t device_store_ulong(struct device *dev,
745 			   struct device_attribute *attr,
746 			   const char *buf, size_t size)
747 {
748 	struct dev_ext_attribute *ea = to_ext_attr(attr);
749 	char *end;
750 	unsigned long new = simple_strtoul(buf, &end, 0);
751 	if (end == buf)
752 		return -EINVAL;
753 	*(unsigned long *)(ea->var) = new;
754 	/* Always return full write size even if we didn't consume all */
755 	return size;
756 }
757 EXPORT_SYMBOL_GPL(device_store_ulong);
758 
759 ssize_t device_show_ulong(struct device *dev,
760 			  struct device_attribute *attr,
761 			  char *buf)
762 {
763 	struct dev_ext_attribute *ea = to_ext_attr(attr);
764 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
765 }
766 EXPORT_SYMBOL_GPL(device_show_ulong);
767 
768 ssize_t device_store_int(struct device *dev,
769 			 struct device_attribute *attr,
770 			 const char *buf, size_t size)
771 {
772 	struct dev_ext_attribute *ea = to_ext_attr(attr);
773 	char *end;
774 	long new = simple_strtol(buf, &end, 0);
775 	if (end == buf || new > INT_MAX || new < INT_MIN)
776 		return -EINVAL;
777 	*(int *)(ea->var) = new;
778 	/* Always return full write size even if we didn't consume all */
779 	return size;
780 }
781 EXPORT_SYMBOL_GPL(device_store_int);
782 
783 ssize_t device_show_int(struct device *dev,
784 			struct device_attribute *attr,
785 			char *buf)
786 {
787 	struct dev_ext_attribute *ea = to_ext_attr(attr);
788 
789 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
790 }
791 EXPORT_SYMBOL_GPL(device_show_int);
792 
793 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
794 			  const char *buf, size_t size)
795 {
796 	struct dev_ext_attribute *ea = to_ext_attr(attr);
797 
798 	if (strtobool(buf, ea->var) < 0)
799 		return -EINVAL;
800 
801 	return size;
802 }
803 EXPORT_SYMBOL_GPL(device_store_bool);
804 
805 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
806 			 char *buf)
807 {
808 	struct dev_ext_attribute *ea = to_ext_attr(attr);
809 
810 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
811 }
812 EXPORT_SYMBOL_GPL(device_show_bool);
813 
814 /**
815  * device_release - free device structure.
816  * @kobj: device's kobject.
817  *
818  * This is called once the reference count for the object
819  * reaches 0. We forward the call to the device's release
820  * method, which should handle actually freeing the structure.
821  */
822 static void device_release(struct kobject *kobj)
823 {
824 	struct device *dev = kobj_to_dev(kobj);
825 	struct device_private *p = dev->p;
826 
827 	/*
828 	 * Some platform devices are driven without driver attached
829 	 * and managed resources may have been acquired.  Make sure
830 	 * all resources are released.
831 	 *
832 	 * Drivers still can add resources into device after device
833 	 * is deleted but alive, so release devres here to avoid
834 	 * possible memory leak.
835 	 */
836 	devres_release_all(dev);
837 
838 	if (dev->release)
839 		dev->release(dev);
840 	else if (dev->type && dev->type->release)
841 		dev->type->release(dev);
842 	else if (dev->class && dev->class->dev_release)
843 		dev->class->dev_release(dev);
844 	else
845 		WARN(1, KERN_ERR "Device '%s' does not have a release() "
846 			"function, it is broken and must be fixed.\n",
847 			dev_name(dev));
848 	kfree(p);
849 }
850 
851 static const void *device_namespace(struct kobject *kobj)
852 {
853 	struct device *dev = kobj_to_dev(kobj);
854 	const void *ns = NULL;
855 
856 	if (dev->class && dev->class->ns_type)
857 		ns = dev->class->namespace(dev);
858 
859 	return ns;
860 }
861 
862 static struct kobj_type device_ktype = {
863 	.release	= device_release,
864 	.sysfs_ops	= &dev_sysfs_ops,
865 	.namespace	= device_namespace,
866 };
867 
868 
869 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
870 {
871 	struct kobj_type *ktype = get_ktype(kobj);
872 
873 	if (ktype == &device_ktype) {
874 		struct device *dev = kobj_to_dev(kobj);
875 		if (dev->bus)
876 			return 1;
877 		if (dev->class)
878 			return 1;
879 	}
880 	return 0;
881 }
882 
883 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
884 {
885 	struct device *dev = kobj_to_dev(kobj);
886 
887 	if (dev->bus)
888 		return dev->bus->name;
889 	if (dev->class)
890 		return dev->class->name;
891 	return NULL;
892 }
893 
894 static int dev_uevent(struct kset *kset, struct kobject *kobj,
895 		      struct kobj_uevent_env *env)
896 {
897 	struct device *dev = kobj_to_dev(kobj);
898 	int retval = 0;
899 
900 	/* add device node properties if present */
901 	if (MAJOR(dev->devt)) {
902 		const char *tmp;
903 		const char *name;
904 		umode_t mode = 0;
905 		kuid_t uid = GLOBAL_ROOT_UID;
906 		kgid_t gid = GLOBAL_ROOT_GID;
907 
908 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
909 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
910 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
911 		if (name) {
912 			add_uevent_var(env, "DEVNAME=%s", name);
913 			if (mode)
914 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
915 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
916 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
917 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
918 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
919 			kfree(tmp);
920 		}
921 	}
922 
923 	if (dev->type && dev->type->name)
924 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
925 
926 	if (dev->driver)
927 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
928 
929 	/* Add common DT information about the device */
930 	of_device_uevent(dev, env);
931 
932 	/* have the bus specific function add its stuff */
933 	if (dev->bus && dev->bus->uevent) {
934 		retval = dev->bus->uevent(dev, env);
935 		if (retval)
936 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
937 				 dev_name(dev), __func__, retval);
938 	}
939 
940 	/* have the class specific function add its stuff */
941 	if (dev->class && dev->class->dev_uevent) {
942 		retval = dev->class->dev_uevent(dev, env);
943 		if (retval)
944 			pr_debug("device: '%s': %s: class uevent() "
945 				 "returned %d\n", dev_name(dev),
946 				 __func__, retval);
947 	}
948 
949 	/* have the device type specific function add its stuff */
950 	if (dev->type && dev->type->uevent) {
951 		retval = dev->type->uevent(dev, env);
952 		if (retval)
953 			pr_debug("device: '%s': %s: dev_type uevent() "
954 				 "returned %d\n", dev_name(dev),
955 				 __func__, retval);
956 	}
957 
958 	return retval;
959 }
960 
961 static const struct kset_uevent_ops device_uevent_ops = {
962 	.filter =	dev_uevent_filter,
963 	.name =		dev_uevent_name,
964 	.uevent =	dev_uevent,
965 };
966 
967 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
968 			   char *buf)
969 {
970 	struct kobject *top_kobj;
971 	struct kset *kset;
972 	struct kobj_uevent_env *env = NULL;
973 	int i;
974 	size_t count = 0;
975 	int retval;
976 
977 	/* search the kset, the device belongs to */
978 	top_kobj = &dev->kobj;
979 	while (!top_kobj->kset && top_kobj->parent)
980 		top_kobj = top_kobj->parent;
981 	if (!top_kobj->kset)
982 		goto out;
983 
984 	kset = top_kobj->kset;
985 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
986 		goto out;
987 
988 	/* respect filter */
989 	if (kset->uevent_ops && kset->uevent_ops->filter)
990 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
991 			goto out;
992 
993 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
994 	if (!env)
995 		return -ENOMEM;
996 
997 	/* let the kset specific function add its keys */
998 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
999 	if (retval)
1000 		goto out;
1001 
1002 	/* copy keys to file */
1003 	for (i = 0; i < env->envp_idx; i++)
1004 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1005 out:
1006 	kfree(env);
1007 	return count;
1008 }
1009 
1010 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1011 			    const char *buf, size_t count)
1012 {
1013 	if (kobject_synth_uevent(&dev->kobj, buf, count))
1014 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1015 
1016 	return count;
1017 }
1018 static DEVICE_ATTR_RW(uevent);
1019 
1020 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1021 			   char *buf)
1022 {
1023 	bool val;
1024 
1025 	device_lock(dev);
1026 	val = !dev->offline;
1027 	device_unlock(dev);
1028 	return sprintf(buf, "%u\n", val);
1029 }
1030 
1031 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1032 			    const char *buf, size_t count)
1033 {
1034 	bool val;
1035 	int ret;
1036 
1037 	ret = strtobool(buf, &val);
1038 	if (ret < 0)
1039 		return ret;
1040 
1041 	ret = lock_device_hotplug_sysfs();
1042 	if (ret)
1043 		return ret;
1044 
1045 	ret = val ? device_online(dev) : device_offline(dev);
1046 	unlock_device_hotplug();
1047 	return ret < 0 ? ret : count;
1048 }
1049 static DEVICE_ATTR_RW(online);
1050 
1051 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1052 {
1053 	return sysfs_create_groups(&dev->kobj, groups);
1054 }
1055 EXPORT_SYMBOL_GPL(device_add_groups);
1056 
1057 void device_remove_groups(struct device *dev,
1058 			  const struct attribute_group **groups)
1059 {
1060 	sysfs_remove_groups(&dev->kobj, groups);
1061 }
1062 EXPORT_SYMBOL_GPL(device_remove_groups);
1063 
1064 union device_attr_group_devres {
1065 	const struct attribute_group *group;
1066 	const struct attribute_group **groups;
1067 };
1068 
1069 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1070 {
1071 	return ((union device_attr_group_devres *)res)->group == data;
1072 }
1073 
1074 static void devm_attr_group_remove(struct device *dev, void *res)
1075 {
1076 	union device_attr_group_devres *devres = res;
1077 	const struct attribute_group *group = devres->group;
1078 
1079 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1080 	sysfs_remove_group(&dev->kobj, group);
1081 }
1082 
1083 static void devm_attr_groups_remove(struct device *dev, void *res)
1084 {
1085 	union device_attr_group_devres *devres = res;
1086 	const struct attribute_group **groups = devres->groups;
1087 
1088 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1089 	sysfs_remove_groups(&dev->kobj, groups);
1090 }
1091 
1092 /**
1093  * devm_device_add_group - given a device, create a managed attribute group
1094  * @dev:	The device to create the group for
1095  * @grp:	The attribute group to create
1096  *
1097  * This function creates a group for the first time.  It will explicitly
1098  * warn and error if any of the attribute files being created already exist.
1099  *
1100  * Returns 0 on success or error code on failure.
1101  */
1102 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1103 {
1104 	union device_attr_group_devres *devres;
1105 	int error;
1106 
1107 	devres = devres_alloc(devm_attr_group_remove,
1108 			      sizeof(*devres), GFP_KERNEL);
1109 	if (!devres)
1110 		return -ENOMEM;
1111 
1112 	error = sysfs_create_group(&dev->kobj, grp);
1113 	if (error) {
1114 		devres_free(devres);
1115 		return error;
1116 	}
1117 
1118 	devres->group = grp;
1119 	devres_add(dev, devres);
1120 	return 0;
1121 }
1122 EXPORT_SYMBOL_GPL(devm_device_add_group);
1123 
1124 /**
1125  * devm_device_remove_group: remove a managed group from a device
1126  * @dev:	device to remove the group from
1127  * @grp:	group to remove
1128  *
1129  * This function removes a group of attributes from a device. The attributes
1130  * previously have to have been created for this group, otherwise it will fail.
1131  */
1132 void devm_device_remove_group(struct device *dev,
1133 			      const struct attribute_group *grp)
1134 {
1135 	WARN_ON(devres_release(dev, devm_attr_group_remove,
1136 			       devm_attr_group_match,
1137 			       /* cast away const */ (void *)grp));
1138 }
1139 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1140 
1141 /**
1142  * devm_device_add_groups - create a bunch of managed attribute groups
1143  * @dev:	The device to create the group for
1144  * @groups:	The attribute groups to create, NULL terminated
1145  *
1146  * This function creates a bunch of managed attribute groups.  If an error
1147  * occurs when creating a group, all previously created groups will be
1148  * removed, unwinding everything back to the original state when this
1149  * function was called.  It will explicitly warn and error if any of the
1150  * attribute files being created already exist.
1151  *
1152  * Returns 0 on success or error code from sysfs_create_group on failure.
1153  */
1154 int devm_device_add_groups(struct device *dev,
1155 			   const struct attribute_group **groups)
1156 {
1157 	union device_attr_group_devres *devres;
1158 	int error;
1159 
1160 	devres = devres_alloc(devm_attr_groups_remove,
1161 			      sizeof(*devres), GFP_KERNEL);
1162 	if (!devres)
1163 		return -ENOMEM;
1164 
1165 	error = sysfs_create_groups(&dev->kobj, groups);
1166 	if (error) {
1167 		devres_free(devres);
1168 		return error;
1169 	}
1170 
1171 	devres->groups = groups;
1172 	devres_add(dev, devres);
1173 	return 0;
1174 }
1175 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1176 
1177 /**
1178  * devm_device_remove_groups - remove a list of managed groups
1179  *
1180  * @dev:	The device for the groups to be removed from
1181  * @groups:	NULL terminated list of groups to be removed
1182  *
1183  * If groups is not NULL, remove the specified groups from the device.
1184  */
1185 void devm_device_remove_groups(struct device *dev,
1186 			       const struct attribute_group **groups)
1187 {
1188 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1189 			       devm_attr_group_match,
1190 			       /* cast away const */ (void *)groups));
1191 }
1192 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1193 
1194 static int device_add_attrs(struct device *dev)
1195 {
1196 	struct class *class = dev->class;
1197 	const struct device_type *type = dev->type;
1198 	int error;
1199 
1200 	if (class) {
1201 		error = device_add_groups(dev, class->dev_groups);
1202 		if (error)
1203 			return error;
1204 	}
1205 
1206 	if (type) {
1207 		error = device_add_groups(dev, type->groups);
1208 		if (error)
1209 			goto err_remove_class_groups;
1210 	}
1211 
1212 	error = device_add_groups(dev, dev->groups);
1213 	if (error)
1214 		goto err_remove_type_groups;
1215 
1216 	if (device_supports_offline(dev) && !dev->offline_disabled) {
1217 		error = device_create_file(dev, &dev_attr_online);
1218 		if (error)
1219 			goto err_remove_dev_groups;
1220 	}
1221 
1222 	return 0;
1223 
1224  err_remove_dev_groups:
1225 	device_remove_groups(dev, dev->groups);
1226  err_remove_type_groups:
1227 	if (type)
1228 		device_remove_groups(dev, type->groups);
1229  err_remove_class_groups:
1230 	if (class)
1231 		device_remove_groups(dev, class->dev_groups);
1232 
1233 	return error;
1234 }
1235 
1236 static void device_remove_attrs(struct device *dev)
1237 {
1238 	struct class *class = dev->class;
1239 	const struct device_type *type = dev->type;
1240 
1241 	device_remove_file(dev, &dev_attr_online);
1242 	device_remove_groups(dev, dev->groups);
1243 
1244 	if (type)
1245 		device_remove_groups(dev, type->groups);
1246 
1247 	if (class)
1248 		device_remove_groups(dev, class->dev_groups);
1249 }
1250 
1251 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1252 			char *buf)
1253 {
1254 	return print_dev_t(buf, dev->devt);
1255 }
1256 static DEVICE_ATTR_RO(dev);
1257 
1258 /* /sys/devices/ */
1259 struct kset *devices_kset;
1260 
1261 /**
1262  * devices_kset_move_before - Move device in the devices_kset's list.
1263  * @deva: Device to move.
1264  * @devb: Device @deva should come before.
1265  */
1266 static void devices_kset_move_before(struct device *deva, struct device *devb)
1267 {
1268 	if (!devices_kset)
1269 		return;
1270 	pr_debug("devices_kset: Moving %s before %s\n",
1271 		 dev_name(deva), dev_name(devb));
1272 	spin_lock(&devices_kset->list_lock);
1273 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1274 	spin_unlock(&devices_kset->list_lock);
1275 }
1276 
1277 /**
1278  * devices_kset_move_after - Move device in the devices_kset's list.
1279  * @deva: Device to move
1280  * @devb: Device @deva should come after.
1281  */
1282 static void devices_kset_move_after(struct device *deva, struct device *devb)
1283 {
1284 	if (!devices_kset)
1285 		return;
1286 	pr_debug("devices_kset: Moving %s after %s\n",
1287 		 dev_name(deva), dev_name(devb));
1288 	spin_lock(&devices_kset->list_lock);
1289 	list_move(&deva->kobj.entry, &devb->kobj.entry);
1290 	spin_unlock(&devices_kset->list_lock);
1291 }
1292 
1293 /**
1294  * devices_kset_move_last - move the device to the end of devices_kset's list.
1295  * @dev: device to move
1296  */
1297 void devices_kset_move_last(struct device *dev)
1298 {
1299 	if (!devices_kset)
1300 		return;
1301 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1302 	spin_lock(&devices_kset->list_lock);
1303 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1304 	spin_unlock(&devices_kset->list_lock);
1305 }
1306 
1307 /**
1308  * device_create_file - create sysfs attribute file for device.
1309  * @dev: device.
1310  * @attr: device attribute descriptor.
1311  */
1312 int device_create_file(struct device *dev,
1313 		       const struct device_attribute *attr)
1314 {
1315 	int error = 0;
1316 
1317 	if (dev) {
1318 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1319 			"Attribute %s: write permission without 'store'\n",
1320 			attr->attr.name);
1321 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1322 			"Attribute %s: read permission without 'show'\n",
1323 			attr->attr.name);
1324 		error = sysfs_create_file(&dev->kobj, &attr->attr);
1325 	}
1326 
1327 	return error;
1328 }
1329 EXPORT_SYMBOL_GPL(device_create_file);
1330 
1331 /**
1332  * device_remove_file - remove sysfs attribute file.
1333  * @dev: device.
1334  * @attr: device attribute descriptor.
1335  */
1336 void device_remove_file(struct device *dev,
1337 			const struct device_attribute *attr)
1338 {
1339 	if (dev)
1340 		sysfs_remove_file(&dev->kobj, &attr->attr);
1341 }
1342 EXPORT_SYMBOL_GPL(device_remove_file);
1343 
1344 /**
1345  * device_remove_file_self - remove sysfs attribute file from its own method.
1346  * @dev: device.
1347  * @attr: device attribute descriptor.
1348  *
1349  * See kernfs_remove_self() for details.
1350  */
1351 bool device_remove_file_self(struct device *dev,
1352 			     const struct device_attribute *attr)
1353 {
1354 	if (dev)
1355 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1356 	else
1357 		return false;
1358 }
1359 EXPORT_SYMBOL_GPL(device_remove_file_self);
1360 
1361 /**
1362  * device_create_bin_file - create sysfs binary attribute file for device.
1363  * @dev: device.
1364  * @attr: device binary attribute descriptor.
1365  */
1366 int device_create_bin_file(struct device *dev,
1367 			   const struct bin_attribute *attr)
1368 {
1369 	int error = -EINVAL;
1370 	if (dev)
1371 		error = sysfs_create_bin_file(&dev->kobj, attr);
1372 	return error;
1373 }
1374 EXPORT_SYMBOL_GPL(device_create_bin_file);
1375 
1376 /**
1377  * device_remove_bin_file - remove sysfs binary attribute file
1378  * @dev: device.
1379  * @attr: device binary attribute descriptor.
1380  */
1381 void device_remove_bin_file(struct device *dev,
1382 			    const struct bin_attribute *attr)
1383 {
1384 	if (dev)
1385 		sysfs_remove_bin_file(&dev->kobj, attr);
1386 }
1387 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1388 
1389 static void klist_children_get(struct klist_node *n)
1390 {
1391 	struct device_private *p = to_device_private_parent(n);
1392 	struct device *dev = p->device;
1393 
1394 	get_device(dev);
1395 }
1396 
1397 static void klist_children_put(struct klist_node *n)
1398 {
1399 	struct device_private *p = to_device_private_parent(n);
1400 	struct device *dev = p->device;
1401 
1402 	put_device(dev);
1403 }
1404 
1405 /**
1406  * device_initialize - init device structure.
1407  * @dev: device.
1408  *
1409  * This prepares the device for use by other layers by initializing
1410  * its fields.
1411  * It is the first half of device_register(), if called by
1412  * that function, though it can also be called separately, so one
1413  * may use @dev's fields. In particular, get_device()/put_device()
1414  * may be used for reference counting of @dev after calling this
1415  * function.
1416  *
1417  * All fields in @dev must be initialized by the caller to 0, except
1418  * for those explicitly set to some other value.  The simplest
1419  * approach is to use kzalloc() to allocate the structure containing
1420  * @dev.
1421  *
1422  * NOTE: Use put_device() to give up your reference instead of freeing
1423  * @dev directly once you have called this function.
1424  */
1425 void device_initialize(struct device *dev)
1426 {
1427 	dev->kobj.kset = devices_kset;
1428 	kobject_init(&dev->kobj, &device_ktype);
1429 	INIT_LIST_HEAD(&dev->dma_pools);
1430 	mutex_init(&dev->mutex);
1431 	lockdep_set_novalidate_class(&dev->mutex);
1432 	spin_lock_init(&dev->devres_lock);
1433 	INIT_LIST_HEAD(&dev->devres_head);
1434 	device_pm_init(dev);
1435 	set_dev_node(dev, -1);
1436 #ifdef CONFIG_GENERIC_MSI_IRQ
1437 	INIT_LIST_HEAD(&dev->msi_list);
1438 #endif
1439 	INIT_LIST_HEAD(&dev->links.consumers);
1440 	INIT_LIST_HEAD(&dev->links.suppliers);
1441 	dev->links.status = DL_DEV_NO_DRIVER;
1442 }
1443 EXPORT_SYMBOL_GPL(device_initialize);
1444 
1445 struct kobject *virtual_device_parent(struct device *dev)
1446 {
1447 	static struct kobject *virtual_dir = NULL;
1448 
1449 	if (!virtual_dir)
1450 		virtual_dir = kobject_create_and_add("virtual",
1451 						     &devices_kset->kobj);
1452 
1453 	return virtual_dir;
1454 }
1455 
1456 struct class_dir {
1457 	struct kobject kobj;
1458 	struct class *class;
1459 };
1460 
1461 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1462 
1463 static void class_dir_release(struct kobject *kobj)
1464 {
1465 	struct class_dir *dir = to_class_dir(kobj);
1466 	kfree(dir);
1467 }
1468 
1469 static const
1470 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1471 {
1472 	struct class_dir *dir = to_class_dir(kobj);
1473 	return dir->class->ns_type;
1474 }
1475 
1476 static struct kobj_type class_dir_ktype = {
1477 	.release	= class_dir_release,
1478 	.sysfs_ops	= &kobj_sysfs_ops,
1479 	.child_ns_type	= class_dir_child_ns_type
1480 };
1481 
1482 static struct kobject *
1483 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1484 {
1485 	struct class_dir *dir;
1486 	int retval;
1487 
1488 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1489 	if (!dir)
1490 		return ERR_PTR(-ENOMEM);
1491 
1492 	dir->class = class;
1493 	kobject_init(&dir->kobj, &class_dir_ktype);
1494 
1495 	dir->kobj.kset = &class->p->glue_dirs;
1496 
1497 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1498 	if (retval < 0) {
1499 		kobject_put(&dir->kobj);
1500 		return ERR_PTR(retval);
1501 	}
1502 	return &dir->kobj;
1503 }
1504 
1505 static DEFINE_MUTEX(gdp_mutex);
1506 
1507 static struct kobject *get_device_parent(struct device *dev,
1508 					 struct device *parent)
1509 {
1510 	if (dev->class) {
1511 		struct kobject *kobj = NULL;
1512 		struct kobject *parent_kobj;
1513 		struct kobject *k;
1514 
1515 #ifdef CONFIG_BLOCK
1516 		/* block disks show up in /sys/block */
1517 		if (sysfs_deprecated && dev->class == &block_class) {
1518 			if (parent && parent->class == &block_class)
1519 				return &parent->kobj;
1520 			return &block_class.p->subsys.kobj;
1521 		}
1522 #endif
1523 
1524 		/*
1525 		 * If we have no parent, we live in "virtual".
1526 		 * Class-devices with a non class-device as parent, live
1527 		 * in a "glue" directory to prevent namespace collisions.
1528 		 */
1529 		if (parent == NULL)
1530 			parent_kobj = virtual_device_parent(dev);
1531 		else if (parent->class && !dev->class->ns_type)
1532 			return &parent->kobj;
1533 		else
1534 			parent_kobj = &parent->kobj;
1535 
1536 		mutex_lock(&gdp_mutex);
1537 
1538 		/* find our class-directory at the parent and reference it */
1539 		spin_lock(&dev->class->p->glue_dirs.list_lock);
1540 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1541 			if (k->parent == parent_kobj) {
1542 				kobj = kobject_get(k);
1543 				break;
1544 			}
1545 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1546 		if (kobj) {
1547 			mutex_unlock(&gdp_mutex);
1548 			return kobj;
1549 		}
1550 
1551 		/* or create a new class-directory at the parent device */
1552 		k = class_dir_create_and_add(dev->class, parent_kobj);
1553 		/* do not emit an uevent for this simple "glue" directory */
1554 		mutex_unlock(&gdp_mutex);
1555 		return k;
1556 	}
1557 
1558 	/* subsystems can specify a default root directory for their devices */
1559 	if (!parent && dev->bus && dev->bus->dev_root)
1560 		return &dev->bus->dev_root->kobj;
1561 
1562 	if (parent)
1563 		return &parent->kobj;
1564 	return NULL;
1565 }
1566 
1567 static inline bool live_in_glue_dir(struct kobject *kobj,
1568 				    struct device *dev)
1569 {
1570 	if (!kobj || !dev->class ||
1571 	    kobj->kset != &dev->class->p->glue_dirs)
1572 		return false;
1573 	return true;
1574 }
1575 
1576 static inline struct kobject *get_glue_dir(struct device *dev)
1577 {
1578 	return dev->kobj.parent;
1579 }
1580 
1581 /*
1582  * make sure cleaning up dir as the last step, we need to make
1583  * sure .release handler of kobject is run with holding the
1584  * global lock
1585  */
1586 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1587 {
1588 	/* see if we live in a "glue" directory */
1589 	if (!live_in_glue_dir(glue_dir, dev))
1590 		return;
1591 
1592 	mutex_lock(&gdp_mutex);
1593 	kobject_put(glue_dir);
1594 	mutex_unlock(&gdp_mutex);
1595 }
1596 
1597 static int device_add_class_symlinks(struct device *dev)
1598 {
1599 	struct device_node *of_node = dev_of_node(dev);
1600 	int error;
1601 
1602 	if (of_node) {
1603 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1604 		if (error)
1605 			dev_warn(dev, "Error %d creating of_node link\n",error);
1606 		/* An error here doesn't warrant bringing down the device */
1607 	}
1608 
1609 	if (!dev->class)
1610 		return 0;
1611 
1612 	error = sysfs_create_link(&dev->kobj,
1613 				  &dev->class->p->subsys.kobj,
1614 				  "subsystem");
1615 	if (error)
1616 		goto out_devnode;
1617 
1618 	if (dev->parent && device_is_not_partition(dev)) {
1619 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1620 					  "device");
1621 		if (error)
1622 			goto out_subsys;
1623 	}
1624 
1625 #ifdef CONFIG_BLOCK
1626 	/* /sys/block has directories and does not need symlinks */
1627 	if (sysfs_deprecated && dev->class == &block_class)
1628 		return 0;
1629 #endif
1630 
1631 	/* link in the class directory pointing to the device */
1632 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1633 				  &dev->kobj, dev_name(dev));
1634 	if (error)
1635 		goto out_device;
1636 
1637 	return 0;
1638 
1639 out_device:
1640 	sysfs_remove_link(&dev->kobj, "device");
1641 
1642 out_subsys:
1643 	sysfs_remove_link(&dev->kobj, "subsystem");
1644 out_devnode:
1645 	sysfs_remove_link(&dev->kobj, "of_node");
1646 	return error;
1647 }
1648 
1649 static void device_remove_class_symlinks(struct device *dev)
1650 {
1651 	if (dev_of_node(dev))
1652 		sysfs_remove_link(&dev->kobj, "of_node");
1653 
1654 	if (!dev->class)
1655 		return;
1656 
1657 	if (dev->parent && device_is_not_partition(dev))
1658 		sysfs_remove_link(&dev->kobj, "device");
1659 	sysfs_remove_link(&dev->kobj, "subsystem");
1660 #ifdef CONFIG_BLOCK
1661 	if (sysfs_deprecated && dev->class == &block_class)
1662 		return;
1663 #endif
1664 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1665 }
1666 
1667 /**
1668  * dev_set_name - set a device name
1669  * @dev: device
1670  * @fmt: format string for the device's name
1671  */
1672 int dev_set_name(struct device *dev, const char *fmt, ...)
1673 {
1674 	va_list vargs;
1675 	int err;
1676 
1677 	va_start(vargs, fmt);
1678 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1679 	va_end(vargs);
1680 	return err;
1681 }
1682 EXPORT_SYMBOL_GPL(dev_set_name);
1683 
1684 /**
1685  * device_to_dev_kobj - select a /sys/dev/ directory for the device
1686  * @dev: device
1687  *
1688  * By default we select char/ for new entries.  Setting class->dev_obj
1689  * to NULL prevents an entry from being created.  class->dev_kobj must
1690  * be set (or cleared) before any devices are registered to the class
1691  * otherwise device_create_sys_dev_entry() and
1692  * device_remove_sys_dev_entry() will disagree about the presence of
1693  * the link.
1694  */
1695 static struct kobject *device_to_dev_kobj(struct device *dev)
1696 {
1697 	struct kobject *kobj;
1698 
1699 	if (dev->class)
1700 		kobj = dev->class->dev_kobj;
1701 	else
1702 		kobj = sysfs_dev_char_kobj;
1703 
1704 	return kobj;
1705 }
1706 
1707 static int device_create_sys_dev_entry(struct device *dev)
1708 {
1709 	struct kobject *kobj = device_to_dev_kobj(dev);
1710 	int error = 0;
1711 	char devt_str[15];
1712 
1713 	if (kobj) {
1714 		format_dev_t(devt_str, dev->devt);
1715 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1716 	}
1717 
1718 	return error;
1719 }
1720 
1721 static void device_remove_sys_dev_entry(struct device *dev)
1722 {
1723 	struct kobject *kobj = device_to_dev_kobj(dev);
1724 	char devt_str[15];
1725 
1726 	if (kobj) {
1727 		format_dev_t(devt_str, dev->devt);
1728 		sysfs_remove_link(kobj, devt_str);
1729 	}
1730 }
1731 
1732 int device_private_init(struct device *dev)
1733 {
1734 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1735 	if (!dev->p)
1736 		return -ENOMEM;
1737 	dev->p->device = dev;
1738 	klist_init(&dev->p->klist_children, klist_children_get,
1739 		   klist_children_put);
1740 	INIT_LIST_HEAD(&dev->p->deferred_probe);
1741 	return 0;
1742 }
1743 
1744 /**
1745  * device_add - add device to device hierarchy.
1746  * @dev: device.
1747  *
1748  * This is part 2 of device_register(), though may be called
1749  * separately _iff_ device_initialize() has been called separately.
1750  *
1751  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1752  * to the global and sibling lists for the device, then
1753  * adds it to the other relevant subsystems of the driver model.
1754  *
1755  * Do not call this routine or device_register() more than once for
1756  * any device structure.  The driver model core is not designed to work
1757  * with devices that get unregistered and then spring back to life.
1758  * (Among other things, it's very hard to guarantee that all references
1759  * to the previous incarnation of @dev have been dropped.)  Allocate
1760  * and register a fresh new struct device instead.
1761  *
1762  * NOTE: _Never_ directly free @dev after calling this function, even
1763  * if it returned an error! Always use put_device() to give up your
1764  * reference instead.
1765  */
1766 int device_add(struct device *dev)
1767 {
1768 	struct device *parent;
1769 	struct kobject *kobj;
1770 	struct class_interface *class_intf;
1771 	int error = -EINVAL;
1772 	struct kobject *glue_dir = NULL;
1773 
1774 	dev = get_device(dev);
1775 	if (!dev)
1776 		goto done;
1777 
1778 	if (!dev->p) {
1779 		error = device_private_init(dev);
1780 		if (error)
1781 			goto done;
1782 	}
1783 
1784 	/*
1785 	 * for statically allocated devices, which should all be converted
1786 	 * some day, we need to initialize the name. We prevent reading back
1787 	 * the name, and force the use of dev_name()
1788 	 */
1789 	if (dev->init_name) {
1790 		dev_set_name(dev, "%s", dev->init_name);
1791 		dev->init_name = NULL;
1792 	}
1793 
1794 	/* subsystems can specify simple device enumeration */
1795 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1796 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1797 
1798 	if (!dev_name(dev)) {
1799 		error = -EINVAL;
1800 		goto name_error;
1801 	}
1802 
1803 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1804 
1805 	parent = get_device(dev->parent);
1806 	kobj = get_device_parent(dev, parent);
1807 	if (IS_ERR(kobj)) {
1808 		error = PTR_ERR(kobj);
1809 		goto parent_error;
1810 	}
1811 	if (kobj)
1812 		dev->kobj.parent = kobj;
1813 
1814 	/* use parent numa_node */
1815 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1816 		set_dev_node(dev, dev_to_node(parent));
1817 
1818 	/* first, register with generic layer. */
1819 	/* we require the name to be set before, and pass NULL */
1820 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1821 	if (error) {
1822 		glue_dir = get_glue_dir(dev);
1823 		goto Error;
1824 	}
1825 
1826 	/* notify platform of device entry */
1827 	if (platform_notify)
1828 		platform_notify(dev);
1829 
1830 	error = device_create_file(dev, &dev_attr_uevent);
1831 	if (error)
1832 		goto attrError;
1833 
1834 	error = device_add_class_symlinks(dev);
1835 	if (error)
1836 		goto SymlinkError;
1837 	error = device_add_attrs(dev);
1838 	if (error)
1839 		goto AttrsError;
1840 	error = bus_add_device(dev);
1841 	if (error)
1842 		goto BusError;
1843 	error = dpm_sysfs_add(dev);
1844 	if (error)
1845 		goto DPMError;
1846 	device_pm_add(dev);
1847 
1848 	if (MAJOR(dev->devt)) {
1849 		error = device_create_file(dev, &dev_attr_dev);
1850 		if (error)
1851 			goto DevAttrError;
1852 
1853 		error = device_create_sys_dev_entry(dev);
1854 		if (error)
1855 			goto SysEntryError;
1856 
1857 		devtmpfs_create_node(dev);
1858 	}
1859 
1860 	/* Notify clients of device addition.  This call must come
1861 	 * after dpm_sysfs_add() and before kobject_uevent().
1862 	 */
1863 	if (dev->bus)
1864 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1865 					     BUS_NOTIFY_ADD_DEVICE, dev);
1866 
1867 	kobject_uevent(&dev->kobj, KOBJ_ADD);
1868 	bus_probe_device(dev);
1869 	if (parent)
1870 		klist_add_tail(&dev->p->knode_parent,
1871 			       &parent->p->klist_children);
1872 
1873 	if (dev->class) {
1874 		mutex_lock(&dev->class->p->mutex);
1875 		/* tie the class to the device */
1876 		klist_add_tail(&dev->knode_class,
1877 			       &dev->class->p->klist_devices);
1878 
1879 		/* notify any interfaces that the device is here */
1880 		list_for_each_entry(class_intf,
1881 				    &dev->class->p->interfaces, node)
1882 			if (class_intf->add_dev)
1883 				class_intf->add_dev(dev, class_intf);
1884 		mutex_unlock(&dev->class->p->mutex);
1885 	}
1886 done:
1887 	put_device(dev);
1888 	return error;
1889  SysEntryError:
1890 	if (MAJOR(dev->devt))
1891 		device_remove_file(dev, &dev_attr_dev);
1892  DevAttrError:
1893 	device_pm_remove(dev);
1894 	dpm_sysfs_remove(dev);
1895  DPMError:
1896 	bus_remove_device(dev);
1897  BusError:
1898 	device_remove_attrs(dev);
1899  AttrsError:
1900 	device_remove_class_symlinks(dev);
1901  SymlinkError:
1902 	device_remove_file(dev, &dev_attr_uevent);
1903  attrError:
1904 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1905 	glue_dir = get_glue_dir(dev);
1906 	kobject_del(&dev->kobj);
1907  Error:
1908 	cleanup_glue_dir(dev, glue_dir);
1909 parent_error:
1910 	put_device(parent);
1911 name_error:
1912 	kfree(dev->p);
1913 	dev->p = NULL;
1914 	goto done;
1915 }
1916 EXPORT_SYMBOL_GPL(device_add);
1917 
1918 /**
1919  * device_register - register a device with the system.
1920  * @dev: pointer to the device structure
1921  *
1922  * This happens in two clean steps - initialize the device
1923  * and add it to the system. The two steps can be called
1924  * separately, but this is the easiest and most common.
1925  * I.e. you should only call the two helpers separately if
1926  * have a clearly defined need to use and refcount the device
1927  * before it is added to the hierarchy.
1928  *
1929  * For more information, see the kerneldoc for device_initialize()
1930  * and device_add().
1931  *
1932  * NOTE: _Never_ directly free @dev after calling this function, even
1933  * if it returned an error! Always use put_device() to give up the
1934  * reference initialized in this function instead.
1935  */
1936 int device_register(struct device *dev)
1937 {
1938 	device_initialize(dev);
1939 	return device_add(dev);
1940 }
1941 EXPORT_SYMBOL_GPL(device_register);
1942 
1943 /**
1944  * get_device - increment reference count for device.
1945  * @dev: device.
1946  *
1947  * This simply forwards the call to kobject_get(), though
1948  * we do take care to provide for the case that we get a NULL
1949  * pointer passed in.
1950  */
1951 struct device *get_device(struct device *dev)
1952 {
1953 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1954 }
1955 EXPORT_SYMBOL_GPL(get_device);
1956 
1957 /**
1958  * put_device - decrement reference count.
1959  * @dev: device in question.
1960  */
1961 void put_device(struct device *dev)
1962 {
1963 	/* might_sleep(); */
1964 	if (dev)
1965 		kobject_put(&dev->kobj);
1966 }
1967 EXPORT_SYMBOL_GPL(put_device);
1968 
1969 /**
1970  * device_del - delete device from system.
1971  * @dev: device.
1972  *
1973  * This is the first part of the device unregistration
1974  * sequence. This removes the device from the lists we control
1975  * from here, has it removed from the other driver model
1976  * subsystems it was added to in device_add(), and removes it
1977  * from the kobject hierarchy.
1978  *
1979  * NOTE: this should be called manually _iff_ device_add() was
1980  * also called manually.
1981  */
1982 void device_del(struct device *dev)
1983 {
1984 	struct device *parent = dev->parent;
1985 	struct kobject *glue_dir = NULL;
1986 	struct class_interface *class_intf;
1987 
1988 	/* Notify clients of device removal.  This call must come
1989 	 * before dpm_sysfs_remove().
1990 	 */
1991 	if (dev->bus)
1992 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1993 					     BUS_NOTIFY_DEL_DEVICE, dev);
1994 
1995 	dpm_sysfs_remove(dev);
1996 	if (parent)
1997 		klist_del(&dev->p->knode_parent);
1998 	if (MAJOR(dev->devt)) {
1999 		devtmpfs_delete_node(dev);
2000 		device_remove_sys_dev_entry(dev);
2001 		device_remove_file(dev, &dev_attr_dev);
2002 	}
2003 	if (dev->class) {
2004 		device_remove_class_symlinks(dev);
2005 
2006 		mutex_lock(&dev->class->p->mutex);
2007 		/* notify any interfaces that the device is now gone */
2008 		list_for_each_entry(class_intf,
2009 				    &dev->class->p->interfaces, node)
2010 			if (class_intf->remove_dev)
2011 				class_intf->remove_dev(dev, class_intf);
2012 		/* remove the device from the class list */
2013 		klist_del(&dev->knode_class);
2014 		mutex_unlock(&dev->class->p->mutex);
2015 	}
2016 	device_remove_file(dev, &dev_attr_uevent);
2017 	device_remove_attrs(dev);
2018 	bus_remove_device(dev);
2019 	device_pm_remove(dev);
2020 	driver_deferred_probe_del(dev);
2021 	device_remove_properties(dev);
2022 	device_links_purge(dev);
2023 
2024 	/* Notify the platform of the removal, in case they
2025 	 * need to do anything...
2026 	 */
2027 	if (platform_notify_remove)
2028 		platform_notify_remove(dev);
2029 	if (dev->bus)
2030 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2031 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
2032 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2033 	glue_dir = get_glue_dir(dev);
2034 	kobject_del(&dev->kobj);
2035 	cleanup_glue_dir(dev, glue_dir);
2036 	put_device(parent);
2037 }
2038 EXPORT_SYMBOL_GPL(device_del);
2039 
2040 /**
2041  * device_unregister - unregister device from system.
2042  * @dev: device going away.
2043  *
2044  * We do this in two parts, like we do device_register(). First,
2045  * we remove it from all the subsystems with device_del(), then
2046  * we decrement the reference count via put_device(). If that
2047  * is the final reference count, the device will be cleaned up
2048  * via device_release() above. Otherwise, the structure will
2049  * stick around until the final reference to the device is dropped.
2050  */
2051 void device_unregister(struct device *dev)
2052 {
2053 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2054 	device_del(dev);
2055 	put_device(dev);
2056 }
2057 EXPORT_SYMBOL_GPL(device_unregister);
2058 
2059 static struct device *prev_device(struct klist_iter *i)
2060 {
2061 	struct klist_node *n = klist_prev(i);
2062 	struct device *dev = NULL;
2063 	struct device_private *p;
2064 
2065 	if (n) {
2066 		p = to_device_private_parent(n);
2067 		dev = p->device;
2068 	}
2069 	return dev;
2070 }
2071 
2072 static struct device *next_device(struct klist_iter *i)
2073 {
2074 	struct klist_node *n = klist_next(i);
2075 	struct device *dev = NULL;
2076 	struct device_private *p;
2077 
2078 	if (n) {
2079 		p = to_device_private_parent(n);
2080 		dev = p->device;
2081 	}
2082 	return dev;
2083 }
2084 
2085 /**
2086  * device_get_devnode - path of device node file
2087  * @dev: device
2088  * @mode: returned file access mode
2089  * @uid: returned file owner
2090  * @gid: returned file group
2091  * @tmp: possibly allocated string
2092  *
2093  * Return the relative path of a possible device node.
2094  * Non-default names may need to allocate a memory to compose
2095  * a name. This memory is returned in tmp and needs to be
2096  * freed by the caller.
2097  */
2098 const char *device_get_devnode(struct device *dev,
2099 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2100 			       const char **tmp)
2101 {
2102 	char *s;
2103 
2104 	*tmp = NULL;
2105 
2106 	/* the device type may provide a specific name */
2107 	if (dev->type && dev->type->devnode)
2108 		*tmp = dev->type->devnode(dev, mode, uid, gid);
2109 	if (*tmp)
2110 		return *tmp;
2111 
2112 	/* the class may provide a specific name */
2113 	if (dev->class && dev->class->devnode)
2114 		*tmp = dev->class->devnode(dev, mode);
2115 	if (*tmp)
2116 		return *tmp;
2117 
2118 	/* return name without allocation, tmp == NULL */
2119 	if (strchr(dev_name(dev), '!') == NULL)
2120 		return dev_name(dev);
2121 
2122 	/* replace '!' in the name with '/' */
2123 	s = kstrdup(dev_name(dev), GFP_KERNEL);
2124 	if (!s)
2125 		return NULL;
2126 	strreplace(s, '!', '/');
2127 	return *tmp = s;
2128 }
2129 
2130 /**
2131  * device_for_each_child - device child iterator.
2132  * @parent: parent struct device.
2133  * @fn: function to be called for each device.
2134  * @data: data for the callback.
2135  *
2136  * Iterate over @parent's child devices, and call @fn for each,
2137  * passing it @data.
2138  *
2139  * We check the return of @fn each time. If it returns anything
2140  * other than 0, we break out and return that value.
2141  */
2142 int device_for_each_child(struct device *parent, void *data,
2143 			  int (*fn)(struct device *dev, void *data))
2144 {
2145 	struct klist_iter i;
2146 	struct device *child;
2147 	int error = 0;
2148 
2149 	if (!parent->p)
2150 		return 0;
2151 
2152 	klist_iter_init(&parent->p->klist_children, &i);
2153 	while (!error && (child = next_device(&i)))
2154 		error = fn(child, data);
2155 	klist_iter_exit(&i);
2156 	return error;
2157 }
2158 EXPORT_SYMBOL_GPL(device_for_each_child);
2159 
2160 /**
2161  * device_for_each_child_reverse - device child iterator in reversed order.
2162  * @parent: parent struct device.
2163  * @fn: function to be called for each device.
2164  * @data: data for the callback.
2165  *
2166  * Iterate over @parent's child devices, and call @fn for each,
2167  * passing it @data.
2168  *
2169  * We check the return of @fn each time. If it returns anything
2170  * other than 0, we break out and return that value.
2171  */
2172 int device_for_each_child_reverse(struct device *parent, void *data,
2173 				  int (*fn)(struct device *dev, void *data))
2174 {
2175 	struct klist_iter i;
2176 	struct device *child;
2177 	int error = 0;
2178 
2179 	if (!parent->p)
2180 		return 0;
2181 
2182 	klist_iter_init(&parent->p->klist_children, &i);
2183 	while ((child = prev_device(&i)) && !error)
2184 		error = fn(child, data);
2185 	klist_iter_exit(&i);
2186 	return error;
2187 }
2188 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2189 
2190 /**
2191  * device_find_child - device iterator for locating a particular device.
2192  * @parent: parent struct device
2193  * @match: Callback function to check device
2194  * @data: Data to pass to match function
2195  *
2196  * This is similar to the device_for_each_child() function above, but it
2197  * returns a reference to a device that is 'found' for later use, as
2198  * determined by the @match callback.
2199  *
2200  * The callback should return 0 if the device doesn't match and non-zero
2201  * if it does.  If the callback returns non-zero and a reference to the
2202  * current device can be obtained, this function will return to the caller
2203  * and not iterate over any more devices.
2204  *
2205  * NOTE: you will need to drop the reference with put_device() after use.
2206  */
2207 struct device *device_find_child(struct device *parent, void *data,
2208 				 int (*match)(struct device *dev, void *data))
2209 {
2210 	struct klist_iter i;
2211 	struct device *child;
2212 
2213 	if (!parent)
2214 		return NULL;
2215 
2216 	klist_iter_init(&parent->p->klist_children, &i);
2217 	while ((child = next_device(&i)))
2218 		if (match(child, data) && get_device(child))
2219 			break;
2220 	klist_iter_exit(&i);
2221 	return child;
2222 }
2223 EXPORT_SYMBOL_GPL(device_find_child);
2224 
2225 int __init devices_init(void)
2226 {
2227 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2228 	if (!devices_kset)
2229 		return -ENOMEM;
2230 	dev_kobj = kobject_create_and_add("dev", NULL);
2231 	if (!dev_kobj)
2232 		goto dev_kobj_err;
2233 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2234 	if (!sysfs_dev_block_kobj)
2235 		goto block_kobj_err;
2236 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2237 	if (!sysfs_dev_char_kobj)
2238 		goto char_kobj_err;
2239 
2240 	return 0;
2241 
2242  char_kobj_err:
2243 	kobject_put(sysfs_dev_block_kobj);
2244  block_kobj_err:
2245 	kobject_put(dev_kobj);
2246  dev_kobj_err:
2247 	kset_unregister(devices_kset);
2248 	return -ENOMEM;
2249 }
2250 
2251 static int device_check_offline(struct device *dev, void *not_used)
2252 {
2253 	int ret;
2254 
2255 	ret = device_for_each_child(dev, NULL, device_check_offline);
2256 	if (ret)
2257 		return ret;
2258 
2259 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2260 }
2261 
2262 /**
2263  * device_offline - Prepare the device for hot-removal.
2264  * @dev: Device to be put offline.
2265  *
2266  * Execute the device bus type's .offline() callback, if present, to prepare
2267  * the device for a subsequent hot-removal.  If that succeeds, the device must
2268  * not be used until either it is removed or its bus type's .online() callback
2269  * is executed.
2270  *
2271  * Call under device_hotplug_lock.
2272  */
2273 int device_offline(struct device *dev)
2274 {
2275 	int ret;
2276 
2277 	if (dev->offline_disabled)
2278 		return -EPERM;
2279 
2280 	ret = device_for_each_child(dev, NULL, device_check_offline);
2281 	if (ret)
2282 		return ret;
2283 
2284 	device_lock(dev);
2285 	if (device_supports_offline(dev)) {
2286 		if (dev->offline) {
2287 			ret = 1;
2288 		} else {
2289 			ret = dev->bus->offline(dev);
2290 			if (!ret) {
2291 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2292 				dev->offline = true;
2293 			}
2294 		}
2295 	}
2296 	device_unlock(dev);
2297 
2298 	return ret;
2299 }
2300 
2301 /**
2302  * device_online - Put the device back online after successful device_offline().
2303  * @dev: Device to be put back online.
2304  *
2305  * If device_offline() has been successfully executed for @dev, but the device
2306  * has not been removed subsequently, execute its bus type's .online() callback
2307  * to indicate that the device can be used again.
2308  *
2309  * Call under device_hotplug_lock.
2310  */
2311 int device_online(struct device *dev)
2312 {
2313 	int ret = 0;
2314 
2315 	device_lock(dev);
2316 	if (device_supports_offline(dev)) {
2317 		if (dev->offline) {
2318 			ret = dev->bus->online(dev);
2319 			if (!ret) {
2320 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2321 				dev->offline = false;
2322 			}
2323 		} else {
2324 			ret = 1;
2325 		}
2326 	}
2327 	device_unlock(dev);
2328 
2329 	return ret;
2330 }
2331 
2332 struct root_device {
2333 	struct device dev;
2334 	struct module *owner;
2335 };
2336 
2337 static inline struct root_device *to_root_device(struct device *d)
2338 {
2339 	return container_of(d, struct root_device, dev);
2340 }
2341 
2342 static void root_device_release(struct device *dev)
2343 {
2344 	kfree(to_root_device(dev));
2345 }
2346 
2347 /**
2348  * __root_device_register - allocate and register a root device
2349  * @name: root device name
2350  * @owner: owner module of the root device, usually THIS_MODULE
2351  *
2352  * This function allocates a root device and registers it
2353  * using device_register(). In order to free the returned
2354  * device, use root_device_unregister().
2355  *
2356  * Root devices are dummy devices which allow other devices
2357  * to be grouped under /sys/devices. Use this function to
2358  * allocate a root device and then use it as the parent of
2359  * any device which should appear under /sys/devices/{name}
2360  *
2361  * The /sys/devices/{name} directory will also contain a
2362  * 'module' symlink which points to the @owner directory
2363  * in sysfs.
2364  *
2365  * Returns &struct device pointer on success, or ERR_PTR() on error.
2366  *
2367  * Note: You probably want to use root_device_register().
2368  */
2369 struct device *__root_device_register(const char *name, struct module *owner)
2370 {
2371 	struct root_device *root;
2372 	int err = -ENOMEM;
2373 
2374 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2375 	if (!root)
2376 		return ERR_PTR(err);
2377 
2378 	err = dev_set_name(&root->dev, "%s", name);
2379 	if (err) {
2380 		kfree(root);
2381 		return ERR_PTR(err);
2382 	}
2383 
2384 	root->dev.release = root_device_release;
2385 
2386 	err = device_register(&root->dev);
2387 	if (err) {
2388 		put_device(&root->dev);
2389 		return ERR_PTR(err);
2390 	}
2391 
2392 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2393 	if (owner) {
2394 		struct module_kobject *mk = &owner->mkobj;
2395 
2396 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2397 		if (err) {
2398 			device_unregister(&root->dev);
2399 			return ERR_PTR(err);
2400 		}
2401 		root->owner = owner;
2402 	}
2403 #endif
2404 
2405 	return &root->dev;
2406 }
2407 EXPORT_SYMBOL_GPL(__root_device_register);
2408 
2409 /**
2410  * root_device_unregister - unregister and free a root device
2411  * @dev: device going away
2412  *
2413  * This function unregisters and cleans up a device that was created by
2414  * root_device_register().
2415  */
2416 void root_device_unregister(struct device *dev)
2417 {
2418 	struct root_device *root = to_root_device(dev);
2419 
2420 	if (root->owner)
2421 		sysfs_remove_link(&root->dev.kobj, "module");
2422 
2423 	device_unregister(dev);
2424 }
2425 EXPORT_SYMBOL_GPL(root_device_unregister);
2426 
2427 
2428 static void device_create_release(struct device *dev)
2429 {
2430 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2431 	kfree(dev);
2432 }
2433 
2434 static __printf(6, 0) struct device *
2435 device_create_groups_vargs(struct class *class, struct device *parent,
2436 			   dev_t devt, void *drvdata,
2437 			   const struct attribute_group **groups,
2438 			   const char *fmt, va_list args)
2439 {
2440 	struct device *dev = NULL;
2441 	int retval = -ENODEV;
2442 
2443 	if (class == NULL || IS_ERR(class))
2444 		goto error;
2445 
2446 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2447 	if (!dev) {
2448 		retval = -ENOMEM;
2449 		goto error;
2450 	}
2451 
2452 	device_initialize(dev);
2453 	dev->devt = devt;
2454 	dev->class = class;
2455 	dev->parent = parent;
2456 	dev->groups = groups;
2457 	dev->release = device_create_release;
2458 	dev_set_drvdata(dev, drvdata);
2459 
2460 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2461 	if (retval)
2462 		goto error;
2463 
2464 	retval = device_add(dev);
2465 	if (retval)
2466 		goto error;
2467 
2468 	return dev;
2469 
2470 error:
2471 	put_device(dev);
2472 	return ERR_PTR(retval);
2473 }
2474 
2475 /**
2476  * device_create_vargs - creates a device and registers it with sysfs
2477  * @class: pointer to the struct class that this device should be registered to
2478  * @parent: pointer to the parent struct device of this new device, if any
2479  * @devt: the dev_t for the char device to be added
2480  * @drvdata: the data to be added to the device for callbacks
2481  * @fmt: string for the device's name
2482  * @args: va_list for the device's name
2483  *
2484  * This function can be used by char device classes.  A struct device
2485  * will be created in sysfs, registered to the specified class.
2486  *
2487  * A "dev" file will be created, showing the dev_t for the device, if
2488  * the dev_t is not 0,0.
2489  * If a pointer to a parent struct device is passed in, the newly created
2490  * struct device will be a child of that device in sysfs.
2491  * The pointer to the struct device will be returned from the call.
2492  * Any further sysfs files that might be required can be created using this
2493  * pointer.
2494  *
2495  * Returns &struct device pointer on success, or ERR_PTR() on error.
2496  *
2497  * Note: the struct class passed to this function must have previously
2498  * been created with a call to class_create().
2499  */
2500 struct device *device_create_vargs(struct class *class, struct device *parent,
2501 				   dev_t devt, void *drvdata, const char *fmt,
2502 				   va_list args)
2503 {
2504 	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2505 					  fmt, args);
2506 }
2507 EXPORT_SYMBOL_GPL(device_create_vargs);
2508 
2509 /**
2510  * device_create - creates a device and registers it with sysfs
2511  * @class: pointer to the struct class that this device should be registered to
2512  * @parent: pointer to the parent struct device of this new device, if any
2513  * @devt: the dev_t for the char device to be added
2514  * @drvdata: the data to be added to the device for callbacks
2515  * @fmt: string for the device's name
2516  *
2517  * This function can be used by char device classes.  A struct device
2518  * will be created in sysfs, registered to the specified class.
2519  *
2520  * A "dev" file will be created, showing the dev_t for the device, if
2521  * the dev_t is not 0,0.
2522  * If a pointer to a parent struct device is passed in, the newly created
2523  * struct device will be a child of that device in sysfs.
2524  * The pointer to the struct device will be returned from the call.
2525  * Any further sysfs files that might be required can be created using this
2526  * pointer.
2527  *
2528  * Returns &struct device pointer on success, or ERR_PTR() on error.
2529  *
2530  * Note: the struct class passed to this function must have previously
2531  * been created with a call to class_create().
2532  */
2533 struct device *device_create(struct class *class, struct device *parent,
2534 			     dev_t devt, void *drvdata, const char *fmt, ...)
2535 {
2536 	va_list vargs;
2537 	struct device *dev;
2538 
2539 	va_start(vargs, fmt);
2540 	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2541 	va_end(vargs);
2542 	return dev;
2543 }
2544 EXPORT_SYMBOL_GPL(device_create);
2545 
2546 /**
2547  * device_create_with_groups - creates a device and registers it with sysfs
2548  * @class: pointer to the struct class that this device should be registered to
2549  * @parent: pointer to the parent struct device of this new device, if any
2550  * @devt: the dev_t for the char device to be added
2551  * @drvdata: the data to be added to the device for callbacks
2552  * @groups: NULL-terminated list of attribute groups to be created
2553  * @fmt: string for the device's name
2554  *
2555  * This function can be used by char device classes.  A struct device
2556  * will be created in sysfs, registered to the specified class.
2557  * Additional attributes specified in the groups parameter will also
2558  * be created automatically.
2559  *
2560  * A "dev" file will be created, showing the dev_t for the device, if
2561  * the dev_t is not 0,0.
2562  * If a pointer to a parent struct device is passed in, the newly created
2563  * struct device will be a child of that device in sysfs.
2564  * The pointer to the struct device will be returned from the call.
2565  * Any further sysfs files that might be required can be created using this
2566  * pointer.
2567  *
2568  * Returns &struct device pointer on success, or ERR_PTR() on error.
2569  *
2570  * Note: the struct class passed to this function must have previously
2571  * been created with a call to class_create().
2572  */
2573 struct device *device_create_with_groups(struct class *class,
2574 					 struct device *parent, dev_t devt,
2575 					 void *drvdata,
2576 					 const struct attribute_group **groups,
2577 					 const char *fmt, ...)
2578 {
2579 	va_list vargs;
2580 	struct device *dev;
2581 
2582 	va_start(vargs, fmt);
2583 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2584 					 fmt, vargs);
2585 	va_end(vargs);
2586 	return dev;
2587 }
2588 EXPORT_SYMBOL_GPL(device_create_with_groups);
2589 
2590 static int __match_devt(struct device *dev, const void *data)
2591 {
2592 	const dev_t *devt = data;
2593 
2594 	return dev->devt == *devt;
2595 }
2596 
2597 /**
2598  * device_destroy - removes a device that was created with device_create()
2599  * @class: pointer to the struct class that this device was registered with
2600  * @devt: the dev_t of the device that was previously registered
2601  *
2602  * This call unregisters and cleans up a device that was created with a
2603  * call to device_create().
2604  */
2605 void device_destroy(struct class *class, dev_t devt)
2606 {
2607 	struct device *dev;
2608 
2609 	dev = class_find_device(class, NULL, &devt, __match_devt);
2610 	if (dev) {
2611 		put_device(dev);
2612 		device_unregister(dev);
2613 	}
2614 }
2615 EXPORT_SYMBOL_GPL(device_destroy);
2616 
2617 /**
2618  * device_rename - renames a device
2619  * @dev: the pointer to the struct device to be renamed
2620  * @new_name: the new name of the device
2621  *
2622  * It is the responsibility of the caller to provide mutual
2623  * exclusion between two different calls of device_rename
2624  * on the same device to ensure that new_name is valid and
2625  * won't conflict with other devices.
2626  *
2627  * Note: Don't call this function.  Currently, the networking layer calls this
2628  * function, but that will change.  The following text from Kay Sievers offers
2629  * some insight:
2630  *
2631  * Renaming devices is racy at many levels, symlinks and other stuff are not
2632  * replaced atomically, and you get a "move" uevent, but it's not easy to
2633  * connect the event to the old and new device. Device nodes are not renamed at
2634  * all, there isn't even support for that in the kernel now.
2635  *
2636  * In the meantime, during renaming, your target name might be taken by another
2637  * driver, creating conflicts. Or the old name is taken directly after you
2638  * renamed it -- then you get events for the same DEVPATH, before you even see
2639  * the "move" event. It's just a mess, and nothing new should ever rely on
2640  * kernel device renaming. Besides that, it's not even implemented now for
2641  * other things than (driver-core wise very simple) network devices.
2642  *
2643  * We are currently about to change network renaming in udev to completely
2644  * disallow renaming of devices in the same namespace as the kernel uses,
2645  * because we can't solve the problems properly, that arise with swapping names
2646  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2647  * be allowed to some other name than eth[0-9]*, for the aforementioned
2648  * reasons.
2649  *
2650  * Make up a "real" name in the driver before you register anything, or add
2651  * some other attributes for userspace to find the device, or use udev to add
2652  * symlinks -- but never rename kernel devices later, it's a complete mess. We
2653  * don't even want to get into that and try to implement the missing pieces in
2654  * the core. We really have other pieces to fix in the driver core mess. :)
2655  */
2656 int device_rename(struct device *dev, const char *new_name)
2657 {
2658 	struct kobject *kobj = &dev->kobj;
2659 	char *old_device_name = NULL;
2660 	int error;
2661 
2662 	dev = get_device(dev);
2663 	if (!dev)
2664 		return -EINVAL;
2665 
2666 	dev_dbg(dev, "renaming to %s\n", new_name);
2667 
2668 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2669 	if (!old_device_name) {
2670 		error = -ENOMEM;
2671 		goto out;
2672 	}
2673 
2674 	if (dev->class) {
2675 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2676 					     kobj, old_device_name,
2677 					     new_name, kobject_namespace(kobj));
2678 		if (error)
2679 			goto out;
2680 	}
2681 
2682 	error = kobject_rename(kobj, new_name);
2683 	if (error)
2684 		goto out;
2685 
2686 out:
2687 	put_device(dev);
2688 
2689 	kfree(old_device_name);
2690 
2691 	return error;
2692 }
2693 EXPORT_SYMBOL_GPL(device_rename);
2694 
2695 static int device_move_class_links(struct device *dev,
2696 				   struct device *old_parent,
2697 				   struct device *new_parent)
2698 {
2699 	int error = 0;
2700 
2701 	if (old_parent)
2702 		sysfs_remove_link(&dev->kobj, "device");
2703 	if (new_parent)
2704 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2705 					  "device");
2706 	return error;
2707 }
2708 
2709 /**
2710  * device_move - moves a device to a new parent
2711  * @dev: the pointer to the struct device to be moved
2712  * @new_parent: the new parent of the device (can be NULL)
2713  * @dpm_order: how to reorder the dpm_list
2714  */
2715 int device_move(struct device *dev, struct device *new_parent,
2716 		enum dpm_order dpm_order)
2717 {
2718 	int error;
2719 	struct device *old_parent;
2720 	struct kobject *new_parent_kobj;
2721 
2722 	dev = get_device(dev);
2723 	if (!dev)
2724 		return -EINVAL;
2725 
2726 	device_pm_lock();
2727 	new_parent = get_device(new_parent);
2728 	new_parent_kobj = get_device_parent(dev, new_parent);
2729 	if (IS_ERR(new_parent_kobj)) {
2730 		error = PTR_ERR(new_parent_kobj);
2731 		put_device(new_parent);
2732 		goto out;
2733 	}
2734 
2735 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2736 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2737 	error = kobject_move(&dev->kobj, new_parent_kobj);
2738 	if (error) {
2739 		cleanup_glue_dir(dev, new_parent_kobj);
2740 		put_device(new_parent);
2741 		goto out;
2742 	}
2743 	old_parent = dev->parent;
2744 	dev->parent = new_parent;
2745 	if (old_parent)
2746 		klist_remove(&dev->p->knode_parent);
2747 	if (new_parent) {
2748 		klist_add_tail(&dev->p->knode_parent,
2749 			       &new_parent->p->klist_children);
2750 		set_dev_node(dev, dev_to_node(new_parent));
2751 	}
2752 
2753 	if (dev->class) {
2754 		error = device_move_class_links(dev, old_parent, new_parent);
2755 		if (error) {
2756 			/* We ignore errors on cleanup since we're hosed anyway... */
2757 			device_move_class_links(dev, new_parent, old_parent);
2758 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2759 				if (new_parent)
2760 					klist_remove(&dev->p->knode_parent);
2761 				dev->parent = old_parent;
2762 				if (old_parent) {
2763 					klist_add_tail(&dev->p->knode_parent,
2764 						       &old_parent->p->klist_children);
2765 					set_dev_node(dev, dev_to_node(old_parent));
2766 				}
2767 			}
2768 			cleanup_glue_dir(dev, new_parent_kobj);
2769 			put_device(new_parent);
2770 			goto out;
2771 		}
2772 	}
2773 	switch (dpm_order) {
2774 	case DPM_ORDER_NONE:
2775 		break;
2776 	case DPM_ORDER_DEV_AFTER_PARENT:
2777 		device_pm_move_after(dev, new_parent);
2778 		devices_kset_move_after(dev, new_parent);
2779 		break;
2780 	case DPM_ORDER_PARENT_BEFORE_DEV:
2781 		device_pm_move_before(new_parent, dev);
2782 		devices_kset_move_before(new_parent, dev);
2783 		break;
2784 	case DPM_ORDER_DEV_LAST:
2785 		device_pm_move_last(dev);
2786 		devices_kset_move_last(dev);
2787 		break;
2788 	}
2789 
2790 	put_device(old_parent);
2791 out:
2792 	device_pm_unlock();
2793 	put_device(dev);
2794 	return error;
2795 }
2796 EXPORT_SYMBOL_GPL(device_move);
2797 
2798 /**
2799  * device_shutdown - call ->shutdown() on each device to shutdown.
2800  */
2801 void device_shutdown(void)
2802 {
2803 	struct device *dev, *parent;
2804 
2805 	spin_lock(&devices_kset->list_lock);
2806 	/*
2807 	 * Walk the devices list backward, shutting down each in turn.
2808 	 * Beware that device unplug events may also start pulling
2809 	 * devices offline, even as the system is shutting down.
2810 	 */
2811 	while (!list_empty(&devices_kset->list)) {
2812 		dev = list_entry(devices_kset->list.prev, struct device,
2813 				kobj.entry);
2814 
2815 		/*
2816 		 * hold reference count of device's parent to
2817 		 * prevent it from being freed because parent's
2818 		 * lock is to be held
2819 		 */
2820 		parent = get_device(dev->parent);
2821 		get_device(dev);
2822 		/*
2823 		 * Make sure the device is off the kset list, in the
2824 		 * event that dev->*->shutdown() doesn't remove it.
2825 		 */
2826 		list_del_init(&dev->kobj.entry);
2827 		spin_unlock(&devices_kset->list_lock);
2828 
2829 		/* hold lock to avoid race with probe/release */
2830 		if (parent)
2831 			device_lock(parent);
2832 		device_lock(dev);
2833 
2834 		/* Don't allow any more runtime suspends */
2835 		pm_runtime_get_noresume(dev);
2836 		pm_runtime_barrier(dev);
2837 
2838 		if (dev->class && dev->class->shutdown_pre) {
2839 			if (initcall_debug)
2840 				dev_info(dev, "shutdown_pre\n");
2841 			dev->class->shutdown_pre(dev);
2842 		}
2843 		if (dev->bus && dev->bus->shutdown) {
2844 			if (initcall_debug)
2845 				dev_info(dev, "shutdown\n");
2846 			dev->bus->shutdown(dev);
2847 		} else if (dev->driver && dev->driver->shutdown) {
2848 			if (initcall_debug)
2849 				dev_info(dev, "shutdown\n");
2850 			dev->driver->shutdown(dev);
2851 		}
2852 
2853 		device_unlock(dev);
2854 		if (parent)
2855 			device_unlock(parent);
2856 
2857 		put_device(dev);
2858 		put_device(parent);
2859 
2860 		spin_lock(&devices_kset->list_lock);
2861 	}
2862 	spin_unlock(&devices_kset->list_lock);
2863 }
2864 
2865 /*
2866  * Device logging functions
2867  */
2868 
2869 #ifdef CONFIG_PRINTK
2870 static int
2871 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2872 {
2873 	const char *subsys;
2874 	size_t pos = 0;
2875 
2876 	if (dev->class)
2877 		subsys = dev->class->name;
2878 	else if (dev->bus)
2879 		subsys = dev->bus->name;
2880 	else
2881 		return 0;
2882 
2883 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2884 	if (pos >= hdrlen)
2885 		goto overflow;
2886 
2887 	/*
2888 	 * Add device identifier DEVICE=:
2889 	 *   b12:8         block dev_t
2890 	 *   c127:3        char dev_t
2891 	 *   n8            netdev ifindex
2892 	 *   +sound:card0  subsystem:devname
2893 	 */
2894 	if (MAJOR(dev->devt)) {
2895 		char c;
2896 
2897 		if (strcmp(subsys, "block") == 0)
2898 			c = 'b';
2899 		else
2900 			c = 'c';
2901 		pos++;
2902 		pos += snprintf(hdr + pos, hdrlen - pos,
2903 				"DEVICE=%c%u:%u",
2904 				c, MAJOR(dev->devt), MINOR(dev->devt));
2905 	} else if (strcmp(subsys, "net") == 0) {
2906 		struct net_device *net = to_net_dev(dev);
2907 
2908 		pos++;
2909 		pos += snprintf(hdr + pos, hdrlen - pos,
2910 				"DEVICE=n%u", net->ifindex);
2911 	} else {
2912 		pos++;
2913 		pos += snprintf(hdr + pos, hdrlen - pos,
2914 				"DEVICE=+%s:%s", subsys, dev_name(dev));
2915 	}
2916 
2917 	if (pos >= hdrlen)
2918 		goto overflow;
2919 
2920 	return pos;
2921 
2922 overflow:
2923 	dev_WARN(dev, "device/subsystem name too long");
2924 	return 0;
2925 }
2926 
2927 int dev_vprintk_emit(int level, const struct device *dev,
2928 		     const char *fmt, va_list args)
2929 {
2930 	char hdr[128];
2931 	size_t hdrlen;
2932 
2933 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2934 
2935 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2936 }
2937 EXPORT_SYMBOL(dev_vprintk_emit);
2938 
2939 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2940 {
2941 	va_list args;
2942 	int r;
2943 
2944 	va_start(args, fmt);
2945 
2946 	r = dev_vprintk_emit(level, dev, fmt, args);
2947 
2948 	va_end(args);
2949 
2950 	return r;
2951 }
2952 EXPORT_SYMBOL(dev_printk_emit);
2953 
2954 static void __dev_printk(const char *level, const struct device *dev,
2955 			struct va_format *vaf)
2956 {
2957 	if (dev)
2958 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2959 				dev_driver_string(dev), dev_name(dev), vaf);
2960 	else
2961 		printk("%s(NULL device *): %pV", level, vaf);
2962 }
2963 
2964 void dev_printk(const char *level, const struct device *dev,
2965 		const char *fmt, ...)
2966 {
2967 	struct va_format vaf;
2968 	va_list args;
2969 
2970 	va_start(args, fmt);
2971 
2972 	vaf.fmt = fmt;
2973 	vaf.va = &args;
2974 
2975 	__dev_printk(level, dev, &vaf);
2976 
2977 	va_end(args);
2978 }
2979 EXPORT_SYMBOL(dev_printk);
2980 
2981 #define define_dev_printk_level(func, kern_level)		\
2982 void func(const struct device *dev, const char *fmt, ...)	\
2983 {								\
2984 	struct va_format vaf;					\
2985 	va_list args;						\
2986 								\
2987 	va_start(args, fmt);					\
2988 								\
2989 	vaf.fmt = fmt;						\
2990 	vaf.va = &args;						\
2991 								\
2992 	__dev_printk(kern_level, dev, &vaf);			\
2993 								\
2994 	va_end(args);						\
2995 }								\
2996 EXPORT_SYMBOL(func);
2997 
2998 define_dev_printk_level(dev_emerg, KERN_EMERG);
2999 define_dev_printk_level(dev_alert, KERN_ALERT);
3000 define_dev_printk_level(dev_crit, KERN_CRIT);
3001 define_dev_printk_level(dev_err, KERN_ERR);
3002 define_dev_printk_level(dev_warn, KERN_WARNING);
3003 define_dev_printk_level(dev_notice, KERN_NOTICE);
3004 define_dev_printk_level(_dev_info, KERN_INFO);
3005 
3006 #endif
3007 
3008 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3009 {
3010 	return fwnode && !IS_ERR(fwnode->secondary);
3011 }
3012 
3013 /**
3014  * set_primary_fwnode - Change the primary firmware node of a given device.
3015  * @dev: Device to handle.
3016  * @fwnode: New primary firmware node of the device.
3017  *
3018  * Set the device's firmware node pointer to @fwnode, but if a secondary
3019  * firmware node of the device is present, preserve it.
3020  */
3021 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3022 {
3023 	if (fwnode) {
3024 		struct fwnode_handle *fn = dev->fwnode;
3025 
3026 		if (fwnode_is_primary(fn))
3027 			fn = fn->secondary;
3028 
3029 		if (fn) {
3030 			WARN_ON(fwnode->secondary);
3031 			fwnode->secondary = fn;
3032 		}
3033 		dev->fwnode = fwnode;
3034 	} else {
3035 		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3036 			dev->fwnode->secondary : NULL;
3037 	}
3038 }
3039 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3040 
3041 /**
3042  * set_secondary_fwnode - Change the secondary firmware node of a given device.
3043  * @dev: Device to handle.
3044  * @fwnode: New secondary firmware node of the device.
3045  *
3046  * If a primary firmware node of the device is present, set its secondary
3047  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3048  * @fwnode.
3049  */
3050 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3051 {
3052 	if (fwnode)
3053 		fwnode->secondary = ERR_PTR(-ENODEV);
3054 
3055 	if (fwnode_is_primary(dev->fwnode))
3056 		dev->fwnode->secondary = fwnode;
3057 	else
3058 		dev->fwnode = fwnode;
3059 }
3060 
3061 /**
3062  * device_set_of_node_from_dev - reuse device-tree node of another device
3063  * @dev: device whose device-tree node is being set
3064  * @dev2: device whose device-tree node is being reused
3065  *
3066  * Takes another reference to the new device-tree node after first dropping
3067  * any reference held to the old node.
3068  */
3069 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3070 {
3071 	of_node_put(dev->of_node);
3072 	dev->of_node = of_node_get(dev2->of_node);
3073 	dev->of_node_reused = true;
3074 }
3075 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3076