1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/device.h> 12 #include <linux/err.h> 13 #include <linux/fwnode.h> 14 #include <linux/init.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/string.h> 18 #include <linux/kdev_t.h> 19 #include <linux/notifier.h> 20 #include <linux/of.h> 21 #include <linux/of_device.h> 22 #include <linux/genhd.h> 23 #include <linux/mutex.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/netdevice.h> 26 #include <linux/sched/signal.h> 27 #include <linux/sysfs.h> 28 29 #include "base.h" 30 #include "power/power.h" 31 32 #ifdef CONFIG_SYSFS_DEPRECATED 33 #ifdef CONFIG_SYSFS_DEPRECATED_V2 34 long sysfs_deprecated = 1; 35 #else 36 long sysfs_deprecated = 0; 37 #endif 38 static int __init sysfs_deprecated_setup(char *arg) 39 { 40 return kstrtol(arg, 10, &sysfs_deprecated); 41 } 42 early_param("sysfs.deprecated", sysfs_deprecated_setup); 43 #endif 44 45 /* Device links support. */ 46 47 #ifdef CONFIG_SRCU 48 static DEFINE_MUTEX(device_links_lock); 49 DEFINE_STATIC_SRCU(device_links_srcu); 50 51 static inline void device_links_write_lock(void) 52 { 53 mutex_lock(&device_links_lock); 54 } 55 56 static inline void device_links_write_unlock(void) 57 { 58 mutex_unlock(&device_links_lock); 59 } 60 61 int device_links_read_lock(void) 62 { 63 return srcu_read_lock(&device_links_srcu); 64 } 65 66 void device_links_read_unlock(int idx) 67 { 68 srcu_read_unlock(&device_links_srcu, idx); 69 } 70 #else /* !CONFIG_SRCU */ 71 static DECLARE_RWSEM(device_links_lock); 72 73 static inline void device_links_write_lock(void) 74 { 75 down_write(&device_links_lock); 76 } 77 78 static inline void device_links_write_unlock(void) 79 { 80 up_write(&device_links_lock); 81 } 82 83 int device_links_read_lock(void) 84 { 85 down_read(&device_links_lock); 86 return 0; 87 } 88 89 void device_links_read_unlock(int not_used) 90 { 91 up_read(&device_links_lock); 92 } 93 #endif /* !CONFIG_SRCU */ 94 95 /** 96 * device_is_dependent - Check if one device depends on another one 97 * @dev: Device to check dependencies for. 98 * @target: Device to check against. 99 * 100 * Check if @target depends on @dev or any device dependent on it (its child or 101 * its consumer etc). Return 1 if that is the case or 0 otherwise. 102 */ 103 static int device_is_dependent(struct device *dev, void *target) 104 { 105 struct device_link *link; 106 int ret; 107 108 if (WARN_ON(dev == target)) 109 return 1; 110 111 ret = device_for_each_child(dev, target, device_is_dependent); 112 if (ret) 113 return ret; 114 115 list_for_each_entry(link, &dev->links.consumers, s_node) { 116 if (WARN_ON(link->consumer == target)) 117 return 1; 118 119 ret = device_is_dependent(link->consumer, target); 120 if (ret) 121 break; 122 } 123 return ret; 124 } 125 126 static int device_reorder_to_tail(struct device *dev, void *not_used) 127 { 128 struct device_link *link; 129 130 /* 131 * Devices that have not been registered yet will be put to the ends 132 * of the lists during the registration, so skip them here. 133 */ 134 if (device_is_registered(dev)) 135 devices_kset_move_last(dev); 136 137 if (device_pm_initialized(dev)) 138 device_pm_move_last(dev); 139 140 device_for_each_child(dev, NULL, device_reorder_to_tail); 141 list_for_each_entry(link, &dev->links.consumers, s_node) 142 device_reorder_to_tail(link->consumer, NULL); 143 144 return 0; 145 } 146 147 /** 148 * device_pm_move_to_tail - Move set of devices to the end of device lists 149 * @dev: Device to move 150 * 151 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 152 * 153 * It moves the @dev along with all of its children and all of its consumers 154 * to the ends of the device_kset and dpm_list, recursively. 155 */ 156 void device_pm_move_to_tail(struct device *dev) 157 { 158 int idx; 159 160 idx = device_links_read_lock(); 161 device_pm_lock(); 162 device_reorder_to_tail(dev, NULL); 163 device_pm_unlock(); 164 device_links_read_unlock(idx); 165 } 166 167 /** 168 * device_link_add - Create a link between two devices. 169 * @consumer: Consumer end of the link. 170 * @supplier: Supplier end of the link. 171 * @flags: Link flags. 172 * 173 * The caller is responsible for the proper synchronization of the link creation 174 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 175 * runtime PM framework to take the link into account. Second, if the 176 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 177 * be forced into the active metastate and reference-counted upon the creation 178 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 179 * ignored. 180 * 181 * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically 182 * when the consumer device driver unbinds from it. The combination of both 183 * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL 184 * to be returned. 185 * 186 * A side effect of the link creation is re-ordering of dpm_list and the 187 * devices_kset list by moving the consumer device and all devices depending 188 * on it to the ends of these lists (that does not happen to devices that have 189 * not been registered when this function is called). 190 * 191 * The supplier device is required to be registered when this function is called 192 * and NULL will be returned if that is not the case. The consumer device need 193 * not be registered, however. 194 */ 195 struct device_link *device_link_add(struct device *consumer, 196 struct device *supplier, u32 flags) 197 { 198 struct device_link *link; 199 200 if (!consumer || !supplier || 201 ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE))) 202 return NULL; 203 204 device_links_write_lock(); 205 device_pm_lock(); 206 207 /* 208 * If the supplier has not been fully registered yet or there is a 209 * reverse dependency between the consumer and the supplier already in 210 * the graph, return NULL. 211 */ 212 if (!device_pm_initialized(supplier) 213 || device_is_dependent(consumer, supplier)) { 214 link = NULL; 215 goto out; 216 } 217 218 list_for_each_entry(link, &supplier->links.consumers, s_node) 219 if (link->consumer == consumer) { 220 kref_get(&link->kref); 221 goto out; 222 } 223 224 link = kzalloc(sizeof(*link), GFP_KERNEL); 225 if (!link) 226 goto out; 227 228 if (flags & DL_FLAG_PM_RUNTIME) { 229 if (flags & DL_FLAG_RPM_ACTIVE) { 230 if (pm_runtime_get_sync(supplier) < 0) { 231 pm_runtime_put_noidle(supplier); 232 kfree(link); 233 link = NULL; 234 goto out; 235 } 236 link->rpm_active = true; 237 } 238 pm_runtime_new_link(consumer); 239 } 240 get_device(supplier); 241 link->supplier = supplier; 242 INIT_LIST_HEAD(&link->s_node); 243 get_device(consumer); 244 link->consumer = consumer; 245 INIT_LIST_HEAD(&link->c_node); 246 link->flags = flags; 247 kref_init(&link->kref); 248 249 /* Determine the initial link state. */ 250 if (flags & DL_FLAG_STATELESS) { 251 link->status = DL_STATE_NONE; 252 } else { 253 switch (supplier->links.status) { 254 case DL_DEV_DRIVER_BOUND: 255 switch (consumer->links.status) { 256 case DL_DEV_PROBING: 257 /* 258 * Balance the decrementation of the supplier's 259 * runtime PM usage counter after consumer probe 260 * in driver_probe_device(). 261 */ 262 if (flags & DL_FLAG_PM_RUNTIME) 263 pm_runtime_get_sync(supplier); 264 265 link->status = DL_STATE_CONSUMER_PROBE; 266 break; 267 case DL_DEV_DRIVER_BOUND: 268 link->status = DL_STATE_ACTIVE; 269 break; 270 default: 271 link->status = DL_STATE_AVAILABLE; 272 break; 273 } 274 break; 275 case DL_DEV_UNBINDING: 276 link->status = DL_STATE_SUPPLIER_UNBIND; 277 break; 278 default: 279 link->status = DL_STATE_DORMANT; 280 break; 281 } 282 } 283 284 /* 285 * Move the consumer and all of the devices depending on it to the end 286 * of dpm_list and the devices_kset list. 287 * 288 * It is necessary to hold dpm_list locked throughout all that or else 289 * we may end up suspending with a wrong ordering of it. 290 */ 291 device_reorder_to_tail(consumer, NULL); 292 293 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 294 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 295 296 dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 297 298 out: 299 device_pm_unlock(); 300 device_links_write_unlock(); 301 return link; 302 } 303 EXPORT_SYMBOL_GPL(device_link_add); 304 305 static void device_link_free(struct device_link *link) 306 { 307 put_device(link->consumer); 308 put_device(link->supplier); 309 kfree(link); 310 } 311 312 #ifdef CONFIG_SRCU 313 static void __device_link_free_srcu(struct rcu_head *rhead) 314 { 315 device_link_free(container_of(rhead, struct device_link, rcu_head)); 316 } 317 318 static void __device_link_del(struct kref *kref) 319 { 320 struct device_link *link = container_of(kref, struct device_link, kref); 321 322 dev_info(link->consumer, "Dropping the link to %s\n", 323 dev_name(link->supplier)); 324 325 if (link->flags & DL_FLAG_PM_RUNTIME) 326 pm_runtime_drop_link(link->consumer); 327 328 list_del_rcu(&link->s_node); 329 list_del_rcu(&link->c_node); 330 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu); 331 } 332 #else /* !CONFIG_SRCU */ 333 static void __device_link_del(struct kref *kref) 334 { 335 struct device_link *link = container_of(kref, struct device_link, kref); 336 337 dev_info(link->consumer, "Dropping the link to %s\n", 338 dev_name(link->supplier)); 339 340 if (link->flags & DL_FLAG_PM_RUNTIME) 341 pm_runtime_drop_link(link->consumer); 342 343 list_del(&link->s_node); 344 list_del(&link->c_node); 345 device_link_free(link); 346 } 347 #endif /* !CONFIG_SRCU */ 348 349 /** 350 * device_link_del - Delete a link between two devices. 351 * @link: Device link to delete. 352 * 353 * The caller must ensure proper synchronization of this function with runtime 354 * PM. If the link was added multiple times, it needs to be deleted as often. 355 * Care is required for hotplugged devices: Their links are purged on removal 356 * and calling device_link_del() is then no longer allowed. 357 */ 358 void device_link_del(struct device_link *link) 359 { 360 device_links_write_lock(); 361 device_pm_lock(); 362 kref_put(&link->kref, __device_link_del); 363 device_pm_unlock(); 364 device_links_write_unlock(); 365 } 366 EXPORT_SYMBOL_GPL(device_link_del); 367 368 static void device_links_missing_supplier(struct device *dev) 369 { 370 struct device_link *link; 371 372 list_for_each_entry(link, &dev->links.suppliers, c_node) 373 if (link->status == DL_STATE_CONSUMER_PROBE) 374 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 375 } 376 377 /** 378 * device_links_check_suppliers - Check presence of supplier drivers. 379 * @dev: Consumer device. 380 * 381 * Check links from this device to any suppliers. Walk the list of the device's 382 * links to suppliers and see if all of them are available. If not, simply 383 * return -EPROBE_DEFER. 384 * 385 * We need to guarantee that the supplier will not go away after the check has 386 * been positive here. It only can go away in __device_release_driver() and 387 * that function checks the device's links to consumers. This means we need to 388 * mark the link as "consumer probe in progress" to make the supplier removal 389 * wait for us to complete (or bad things may happen). 390 * 391 * Links with the DL_FLAG_STATELESS flag set are ignored. 392 */ 393 int device_links_check_suppliers(struct device *dev) 394 { 395 struct device_link *link; 396 int ret = 0; 397 398 device_links_write_lock(); 399 400 list_for_each_entry(link, &dev->links.suppliers, c_node) { 401 if (link->flags & DL_FLAG_STATELESS) 402 continue; 403 404 if (link->status != DL_STATE_AVAILABLE) { 405 device_links_missing_supplier(dev); 406 ret = -EPROBE_DEFER; 407 break; 408 } 409 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 410 } 411 dev->links.status = DL_DEV_PROBING; 412 413 device_links_write_unlock(); 414 return ret; 415 } 416 417 /** 418 * device_links_driver_bound - Update device links after probing its driver. 419 * @dev: Device to update the links for. 420 * 421 * The probe has been successful, so update links from this device to any 422 * consumers by changing their status to "available". 423 * 424 * Also change the status of @dev's links to suppliers to "active". 425 * 426 * Links with the DL_FLAG_STATELESS flag set are ignored. 427 */ 428 void device_links_driver_bound(struct device *dev) 429 { 430 struct device_link *link; 431 432 device_links_write_lock(); 433 434 list_for_each_entry(link, &dev->links.consumers, s_node) { 435 if (link->flags & DL_FLAG_STATELESS) 436 continue; 437 438 WARN_ON(link->status != DL_STATE_DORMANT); 439 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 440 } 441 442 list_for_each_entry(link, &dev->links.suppliers, c_node) { 443 if (link->flags & DL_FLAG_STATELESS) 444 continue; 445 446 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 447 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 448 } 449 450 dev->links.status = DL_DEV_DRIVER_BOUND; 451 452 device_links_write_unlock(); 453 } 454 455 /** 456 * __device_links_no_driver - Update links of a device without a driver. 457 * @dev: Device without a drvier. 458 * 459 * Delete all non-persistent links from this device to any suppliers. 460 * 461 * Persistent links stay around, but their status is changed to "available", 462 * unless they already are in the "supplier unbind in progress" state in which 463 * case they need not be updated. 464 * 465 * Links with the DL_FLAG_STATELESS flag set are ignored. 466 */ 467 static void __device_links_no_driver(struct device *dev) 468 { 469 struct device_link *link, *ln; 470 471 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 472 if (link->flags & DL_FLAG_STATELESS) 473 continue; 474 475 if (link->flags & DL_FLAG_AUTOREMOVE) 476 kref_put(&link->kref, __device_link_del); 477 else if (link->status != DL_STATE_SUPPLIER_UNBIND) 478 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 479 } 480 481 dev->links.status = DL_DEV_NO_DRIVER; 482 } 483 484 void device_links_no_driver(struct device *dev) 485 { 486 device_links_write_lock(); 487 __device_links_no_driver(dev); 488 device_links_write_unlock(); 489 } 490 491 /** 492 * device_links_driver_cleanup - Update links after driver removal. 493 * @dev: Device whose driver has just gone away. 494 * 495 * Update links to consumers for @dev by changing their status to "dormant" and 496 * invoke %__device_links_no_driver() to update links to suppliers for it as 497 * appropriate. 498 * 499 * Links with the DL_FLAG_STATELESS flag set are ignored. 500 */ 501 void device_links_driver_cleanup(struct device *dev) 502 { 503 struct device_link *link; 504 505 device_links_write_lock(); 506 507 list_for_each_entry(link, &dev->links.consumers, s_node) { 508 if (link->flags & DL_FLAG_STATELESS) 509 continue; 510 511 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE); 512 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 513 WRITE_ONCE(link->status, DL_STATE_DORMANT); 514 } 515 516 __device_links_no_driver(dev); 517 518 device_links_write_unlock(); 519 } 520 521 /** 522 * device_links_busy - Check if there are any busy links to consumers. 523 * @dev: Device to check. 524 * 525 * Check each consumer of the device and return 'true' if its link's status 526 * is one of "consumer probe" or "active" (meaning that the given consumer is 527 * probing right now or its driver is present). Otherwise, change the link 528 * state to "supplier unbind" to prevent the consumer from being probed 529 * successfully going forward. 530 * 531 * Return 'false' if there are no probing or active consumers. 532 * 533 * Links with the DL_FLAG_STATELESS flag set are ignored. 534 */ 535 bool device_links_busy(struct device *dev) 536 { 537 struct device_link *link; 538 bool ret = false; 539 540 device_links_write_lock(); 541 542 list_for_each_entry(link, &dev->links.consumers, s_node) { 543 if (link->flags & DL_FLAG_STATELESS) 544 continue; 545 546 if (link->status == DL_STATE_CONSUMER_PROBE 547 || link->status == DL_STATE_ACTIVE) { 548 ret = true; 549 break; 550 } 551 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 552 } 553 554 dev->links.status = DL_DEV_UNBINDING; 555 556 device_links_write_unlock(); 557 return ret; 558 } 559 560 /** 561 * device_links_unbind_consumers - Force unbind consumers of the given device. 562 * @dev: Device to unbind the consumers of. 563 * 564 * Walk the list of links to consumers for @dev and if any of them is in the 565 * "consumer probe" state, wait for all device probes in progress to complete 566 * and start over. 567 * 568 * If that's not the case, change the status of the link to "supplier unbind" 569 * and check if the link was in the "active" state. If so, force the consumer 570 * driver to unbind and start over (the consumer will not re-probe as we have 571 * changed the state of the link already). 572 * 573 * Links with the DL_FLAG_STATELESS flag set are ignored. 574 */ 575 void device_links_unbind_consumers(struct device *dev) 576 { 577 struct device_link *link; 578 579 start: 580 device_links_write_lock(); 581 582 list_for_each_entry(link, &dev->links.consumers, s_node) { 583 enum device_link_state status; 584 585 if (link->flags & DL_FLAG_STATELESS) 586 continue; 587 588 status = link->status; 589 if (status == DL_STATE_CONSUMER_PROBE) { 590 device_links_write_unlock(); 591 592 wait_for_device_probe(); 593 goto start; 594 } 595 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 596 if (status == DL_STATE_ACTIVE) { 597 struct device *consumer = link->consumer; 598 599 get_device(consumer); 600 601 device_links_write_unlock(); 602 603 device_release_driver_internal(consumer, NULL, 604 consumer->parent); 605 put_device(consumer); 606 goto start; 607 } 608 } 609 610 device_links_write_unlock(); 611 } 612 613 /** 614 * device_links_purge - Delete existing links to other devices. 615 * @dev: Target device. 616 */ 617 static void device_links_purge(struct device *dev) 618 { 619 struct device_link *link, *ln; 620 621 /* 622 * Delete all of the remaining links from this device to any other 623 * devices (either consumers or suppliers). 624 */ 625 device_links_write_lock(); 626 627 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 628 WARN_ON(link->status == DL_STATE_ACTIVE); 629 __device_link_del(&link->kref); 630 } 631 632 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 633 WARN_ON(link->status != DL_STATE_DORMANT && 634 link->status != DL_STATE_NONE); 635 __device_link_del(&link->kref); 636 } 637 638 device_links_write_unlock(); 639 } 640 641 /* Device links support end. */ 642 643 int (*platform_notify)(struct device *dev) = NULL; 644 int (*platform_notify_remove)(struct device *dev) = NULL; 645 static struct kobject *dev_kobj; 646 struct kobject *sysfs_dev_char_kobj; 647 struct kobject *sysfs_dev_block_kobj; 648 649 static DEFINE_MUTEX(device_hotplug_lock); 650 651 void lock_device_hotplug(void) 652 { 653 mutex_lock(&device_hotplug_lock); 654 } 655 656 void unlock_device_hotplug(void) 657 { 658 mutex_unlock(&device_hotplug_lock); 659 } 660 661 int lock_device_hotplug_sysfs(void) 662 { 663 if (mutex_trylock(&device_hotplug_lock)) 664 return 0; 665 666 /* Avoid busy looping (5 ms of sleep should do). */ 667 msleep(5); 668 return restart_syscall(); 669 } 670 671 #ifdef CONFIG_BLOCK 672 static inline int device_is_not_partition(struct device *dev) 673 { 674 return !(dev->type == &part_type); 675 } 676 #else 677 static inline int device_is_not_partition(struct device *dev) 678 { 679 return 1; 680 } 681 #endif 682 683 /** 684 * dev_driver_string - Return a device's driver name, if at all possible 685 * @dev: struct device to get the name of 686 * 687 * Will return the device's driver's name if it is bound to a device. If 688 * the device is not bound to a driver, it will return the name of the bus 689 * it is attached to. If it is not attached to a bus either, an empty 690 * string will be returned. 691 */ 692 const char *dev_driver_string(const struct device *dev) 693 { 694 struct device_driver *drv; 695 696 /* dev->driver can change to NULL underneath us because of unbinding, 697 * so be careful about accessing it. dev->bus and dev->class should 698 * never change once they are set, so they don't need special care. 699 */ 700 drv = READ_ONCE(dev->driver); 701 return drv ? drv->name : 702 (dev->bus ? dev->bus->name : 703 (dev->class ? dev->class->name : "")); 704 } 705 EXPORT_SYMBOL(dev_driver_string); 706 707 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 708 709 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 710 char *buf) 711 { 712 struct device_attribute *dev_attr = to_dev_attr(attr); 713 struct device *dev = kobj_to_dev(kobj); 714 ssize_t ret = -EIO; 715 716 if (dev_attr->show) 717 ret = dev_attr->show(dev, dev_attr, buf); 718 if (ret >= (ssize_t)PAGE_SIZE) { 719 printk("dev_attr_show: %pS returned bad count\n", 720 dev_attr->show); 721 } 722 return ret; 723 } 724 725 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 726 const char *buf, size_t count) 727 { 728 struct device_attribute *dev_attr = to_dev_attr(attr); 729 struct device *dev = kobj_to_dev(kobj); 730 ssize_t ret = -EIO; 731 732 if (dev_attr->store) 733 ret = dev_attr->store(dev, dev_attr, buf, count); 734 return ret; 735 } 736 737 static const struct sysfs_ops dev_sysfs_ops = { 738 .show = dev_attr_show, 739 .store = dev_attr_store, 740 }; 741 742 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 743 744 ssize_t device_store_ulong(struct device *dev, 745 struct device_attribute *attr, 746 const char *buf, size_t size) 747 { 748 struct dev_ext_attribute *ea = to_ext_attr(attr); 749 char *end; 750 unsigned long new = simple_strtoul(buf, &end, 0); 751 if (end == buf) 752 return -EINVAL; 753 *(unsigned long *)(ea->var) = new; 754 /* Always return full write size even if we didn't consume all */ 755 return size; 756 } 757 EXPORT_SYMBOL_GPL(device_store_ulong); 758 759 ssize_t device_show_ulong(struct device *dev, 760 struct device_attribute *attr, 761 char *buf) 762 { 763 struct dev_ext_attribute *ea = to_ext_attr(attr); 764 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var)); 765 } 766 EXPORT_SYMBOL_GPL(device_show_ulong); 767 768 ssize_t device_store_int(struct device *dev, 769 struct device_attribute *attr, 770 const char *buf, size_t size) 771 { 772 struct dev_ext_attribute *ea = to_ext_attr(attr); 773 char *end; 774 long new = simple_strtol(buf, &end, 0); 775 if (end == buf || new > INT_MAX || new < INT_MIN) 776 return -EINVAL; 777 *(int *)(ea->var) = new; 778 /* Always return full write size even if we didn't consume all */ 779 return size; 780 } 781 EXPORT_SYMBOL_GPL(device_store_int); 782 783 ssize_t device_show_int(struct device *dev, 784 struct device_attribute *attr, 785 char *buf) 786 { 787 struct dev_ext_attribute *ea = to_ext_attr(attr); 788 789 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var)); 790 } 791 EXPORT_SYMBOL_GPL(device_show_int); 792 793 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 794 const char *buf, size_t size) 795 { 796 struct dev_ext_attribute *ea = to_ext_attr(attr); 797 798 if (strtobool(buf, ea->var) < 0) 799 return -EINVAL; 800 801 return size; 802 } 803 EXPORT_SYMBOL_GPL(device_store_bool); 804 805 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 806 char *buf) 807 { 808 struct dev_ext_attribute *ea = to_ext_attr(attr); 809 810 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var)); 811 } 812 EXPORT_SYMBOL_GPL(device_show_bool); 813 814 /** 815 * device_release - free device structure. 816 * @kobj: device's kobject. 817 * 818 * This is called once the reference count for the object 819 * reaches 0. We forward the call to the device's release 820 * method, which should handle actually freeing the structure. 821 */ 822 static void device_release(struct kobject *kobj) 823 { 824 struct device *dev = kobj_to_dev(kobj); 825 struct device_private *p = dev->p; 826 827 /* 828 * Some platform devices are driven without driver attached 829 * and managed resources may have been acquired. Make sure 830 * all resources are released. 831 * 832 * Drivers still can add resources into device after device 833 * is deleted but alive, so release devres here to avoid 834 * possible memory leak. 835 */ 836 devres_release_all(dev); 837 838 if (dev->release) 839 dev->release(dev); 840 else if (dev->type && dev->type->release) 841 dev->type->release(dev); 842 else if (dev->class && dev->class->dev_release) 843 dev->class->dev_release(dev); 844 else 845 WARN(1, KERN_ERR "Device '%s' does not have a release() " 846 "function, it is broken and must be fixed.\n", 847 dev_name(dev)); 848 kfree(p); 849 } 850 851 static const void *device_namespace(struct kobject *kobj) 852 { 853 struct device *dev = kobj_to_dev(kobj); 854 const void *ns = NULL; 855 856 if (dev->class && dev->class->ns_type) 857 ns = dev->class->namespace(dev); 858 859 return ns; 860 } 861 862 static struct kobj_type device_ktype = { 863 .release = device_release, 864 .sysfs_ops = &dev_sysfs_ops, 865 .namespace = device_namespace, 866 }; 867 868 869 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 870 { 871 struct kobj_type *ktype = get_ktype(kobj); 872 873 if (ktype == &device_ktype) { 874 struct device *dev = kobj_to_dev(kobj); 875 if (dev->bus) 876 return 1; 877 if (dev->class) 878 return 1; 879 } 880 return 0; 881 } 882 883 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 884 { 885 struct device *dev = kobj_to_dev(kobj); 886 887 if (dev->bus) 888 return dev->bus->name; 889 if (dev->class) 890 return dev->class->name; 891 return NULL; 892 } 893 894 static int dev_uevent(struct kset *kset, struct kobject *kobj, 895 struct kobj_uevent_env *env) 896 { 897 struct device *dev = kobj_to_dev(kobj); 898 int retval = 0; 899 900 /* add device node properties if present */ 901 if (MAJOR(dev->devt)) { 902 const char *tmp; 903 const char *name; 904 umode_t mode = 0; 905 kuid_t uid = GLOBAL_ROOT_UID; 906 kgid_t gid = GLOBAL_ROOT_GID; 907 908 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 909 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 910 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 911 if (name) { 912 add_uevent_var(env, "DEVNAME=%s", name); 913 if (mode) 914 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 915 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 916 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 917 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 918 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 919 kfree(tmp); 920 } 921 } 922 923 if (dev->type && dev->type->name) 924 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 925 926 if (dev->driver) 927 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 928 929 /* Add common DT information about the device */ 930 of_device_uevent(dev, env); 931 932 /* have the bus specific function add its stuff */ 933 if (dev->bus && dev->bus->uevent) { 934 retval = dev->bus->uevent(dev, env); 935 if (retval) 936 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 937 dev_name(dev), __func__, retval); 938 } 939 940 /* have the class specific function add its stuff */ 941 if (dev->class && dev->class->dev_uevent) { 942 retval = dev->class->dev_uevent(dev, env); 943 if (retval) 944 pr_debug("device: '%s': %s: class uevent() " 945 "returned %d\n", dev_name(dev), 946 __func__, retval); 947 } 948 949 /* have the device type specific function add its stuff */ 950 if (dev->type && dev->type->uevent) { 951 retval = dev->type->uevent(dev, env); 952 if (retval) 953 pr_debug("device: '%s': %s: dev_type uevent() " 954 "returned %d\n", dev_name(dev), 955 __func__, retval); 956 } 957 958 return retval; 959 } 960 961 static const struct kset_uevent_ops device_uevent_ops = { 962 .filter = dev_uevent_filter, 963 .name = dev_uevent_name, 964 .uevent = dev_uevent, 965 }; 966 967 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 968 char *buf) 969 { 970 struct kobject *top_kobj; 971 struct kset *kset; 972 struct kobj_uevent_env *env = NULL; 973 int i; 974 size_t count = 0; 975 int retval; 976 977 /* search the kset, the device belongs to */ 978 top_kobj = &dev->kobj; 979 while (!top_kobj->kset && top_kobj->parent) 980 top_kobj = top_kobj->parent; 981 if (!top_kobj->kset) 982 goto out; 983 984 kset = top_kobj->kset; 985 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 986 goto out; 987 988 /* respect filter */ 989 if (kset->uevent_ops && kset->uevent_ops->filter) 990 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 991 goto out; 992 993 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 994 if (!env) 995 return -ENOMEM; 996 997 /* let the kset specific function add its keys */ 998 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 999 if (retval) 1000 goto out; 1001 1002 /* copy keys to file */ 1003 for (i = 0; i < env->envp_idx; i++) 1004 count += sprintf(&buf[count], "%s\n", env->envp[i]); 1005 out: 1006 kfree(env); 1007 return count; 1008 } 1009 1010 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 1011 const char *buf, size_t count) 1012 { 1013 if (kobject_synth_uevent(&dev->kobj, buf, count)) 1014 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 1015 1016 return count; 1017 } 1018 static DEVICE_ATTR_RW(uevent); 1019 1020 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 1021 char *buf) 1022 { 1023 bool val; 1024 1025 device_lock(dev); 1026 val = !dev->offline; 1027 device_unlock(dev); 1028 return sprintf(buf, "%u\n", val); 1029 } 1030 1031 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 1032 const char *buf, size_t count) 1033 { 1034 bool val; 1035 int ret; 1036 1037 ret = strtobool(buf, &val); 1038 if (ret < 0) 1039 return ret; 1040 1041 ret = lock_device_hotplug_sysfs(); 1042 if (ret) 1043 return ret; 1044 1045 ret = val ? device_online(dev) : device_offline(dev); 1046 unlock_device_hotplug(); 1047 return ret < 0 ? ret : count; 1048 } 1049 static DEVICE_ATTR_RW(online); 1050 1051 int device_add_groups(struct device *dev, const struct attribute_group **groups) 1052 { 1053 return sysfs_create_groups(&dev->kobj, groups); 1054 } 1055 EXPORT_SYMBOL_GPL(device_add_groups); 1056 1057 void device_remove_groups(struct device *dev, 1058 const struct attribute_group **groups) 1059 { 1060 sysfs_remove_groups(&dev->kobj, groups); 1061 } 1062 EXPORT_SYMBOL_GPL(device_remove_groups); 1063 1064 union device_attr_group_devres { 1065 const struct attribute_group *group; 1066 const struct attribute_group **groups; 1067 }; 1068 1069 static int devm_attr_group_match(struct device *dev, void *res, void *data) 1070 { 1071 return ((union device_attr_group_devres *)res)->group == data; 1072 } 1073 1074 static void devm_attr_group_remove(struct device *dev, void *res) 1075 { 1076 union device_attr_group_devres *devres = res; 1077 const struct attribute_group *group = devres->group; 1078 1079 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 1080 sysfs_remove_group(&dev->kobj, group); 1081 } 1082 1083 static void devm_attr_groups_remove(struct device *dev, void *res) 1084 { 1085 union device_attr_group_devres *devres = res; 1086 const struct attribute_group **groups = devres->groups; 1087 1088 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 1089 sysfs_remove_groups(&dev->kobj, groups); 1090 } 1091 1092 /** 1093 * devm_device_add_group - given a device, create a managed attribute group 1094 * @dev: The device to create the group for 1095 * @grp: The attribute group to create 1096 * 1097 * This function creates a group for the first time. It will explicitly 1098 * warn and error if any of the attribute files being created already exist. 1099 * 1100 * Returns 0 on success or error code on failure. 1101 */ 1102 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 1103 { 1104 union device_attr_group_devres *devres; 1105 int error; 1106 1107 devres = devres_alloc(devm_attr_group_remove, 1108 sizeof(*devres), GFP_KERNEL); 1109 if (!devres) 1110 return -ENOMEM; 1111 1112 error = sysfs_create_group(&dev->kobj, grp); 1113 if (error) { 1114 devres_free(devres); 1115 return error; 1116 } 1117 1118 devres->group = grp; 1119 devres_add(dev, devres); 1120 return 0; 1121 } 1122 EXPORT_SYMBOL_GPL(devm_device_add_group); 1123 1124 /** 1125 * devm_device_remove_group: remove a managed group from a device 1126 * @dev: device to remove the group from 1127 * @grp: group to remove 1128 * 1129 * This function removes a group of attributes from a device. The attributes 1130 * previously have to have been created for this group, otherwise it will fail. 1131 */ 1132 void devm_device_remove_group(struct device *dev, 1133 const struct attribute_group *grp) 1134 { 1135 WARN_ON(devres_release(dev, devm_attr_group_remove, 1136 devm_attr_group_match, 1137 /* cast away const */ (void *)grp)); 1138 } 1139 EXPORT_SYMBOL_GPL(devm_device_remove_group); 1140 1141 /** 1142 * devm_device_add_groups - create a bunch of managed attribute groups 1143 * @dev: The device to create the group for 1144 * @groups: The attribute groups to create, NULL terminated 1145 * 1146 * This function creates a bunch of managed attribute groups. If an error 1147 * occurs when creating a group, all previously created groups will be 1148 * removed, unwinding everything back to the original state when this 1149 * function was called. It will explicitly warn and error if any of the 1150 * attribute files being created already exist. 1151 * 1152 * Returns 0 on success or error code from sysfs_create_group on failure. 1153 */ 1154 int devm_device_add_groups(struct device *dev, 1155 const struct attribute_group **groups) 1156 { 1157 union device_attr_group_devres *devres; 1158 int error; 1159 1160 devres = devres_alloc(devm_attr_groups_remove, 1161 sizeof(*devres), GFP_KERNEL); 1162 if (!devres) 1163 return -ENOMEM; 1164 1165 error = sysfs_create_groups(&dev->kobj, groups); 1166 if (error) { 1167 devres_free(devres); 1168 return error; 1169 } 1170 1171 devres->groups = groups; 1172 devres_add(dev, devres); 1173 return 0; 1174 } 1175 EXPORT_SYMBOL_GPL(devm_device_add_groups); 1176 1177 /** 1178 * devm_device_remove_groups - remove a list of managed groups 1179 * 1180 * @dev: The device for the groups to be removed from 1181 * @groups: NULL terminated list of groups to be removed 1182 * 1183 * If groups is not NULL, remove the specified groups from the device. 1184 */ 1185 void devm_device_remove_groups(struct device *dev, 1186 const struct attribute_group **groups) 1187 { 1188 WARN_ON(devres_release(dev, devm_attr_groups_remove, 1189 devm_attr_group_match, 1190 /* cast away const */ (void *)groups)); 1191 } 1192 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 1193 1194 static int device_add_attrs(struct device *dev) 1195 { 1196 struct class *class = dev->class; 1197 const struct device_type *type = dev->type; 1198 int error; 1199 1200 if (class) { 1201 error = device_add_groups(dev, class->dev_groups); 1202 if (error) 1203 return error; 1204 } 1205 1206 if (type) { 1207 error = device_add_groups(dev, type->groups); 1208 if (error) 1209 goto err_remove_class_groups; 1210 } 1211 1212 error = device_add_groups(dev, dev->groups); 1213 if (error) 1214 goto err_remove_type_groups; 1215 1216 if (device_supports_offline(dev) && !dev->offline_disabled) { 1217 error = device_create_file(dev, &dev_attr_online); 1218 if (error) 1219 goto err_remove_dev_groups; 1220 } 1221 1222 return 0; 1223 1224 err_remove_dev_groups: 1225 device_remove_groups(dev, dev->groups); 1226 err_remove_type_groups: 1227 if (type) 1228 device_remove_groups(dev, type->groups); 1229 err_remove_class_groups: 1230 if (class) 1231 device_remove_groups(dev, class->dev_groups); 1232 1233 return error; 1234 } 1235 1236 static void device_remove_attrs(struct device *dev) 1237 { 1238 struct class *class = dev->class; 1239 const struct device_type *type = dev->type; 1240 1241 device_remove_file(dev, &dev_attr_online); 1242 device_remove_groups(dev, dev->groups); 1243 1244 if (type) 1245 device_remove_groups(dev, type->groups); 1246 1247 if (class) 1248 device_remove_groups(dev, class->dev_groups); 1249 } 1250 1251 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 1252 char *buf) 1253 { 1254 return print_dev_t(buf, dev->devt); 1255 } 1256 static DEVICE_ATTR_RO(dev); 1257 1258 /* /sys/devices/ */ 1259 struct kset *devices_kset; 1260 1261 /** 1262 * devices_kset_move_before - Move device in the devices_kset's list. 1263 * @deva: Device to move. 1264 * @devb: Device @deva should come before. 1265 */ 1266 static void devices_kset_move_before(struct device *deva, struct device *devb) 1267 { 1268 if (!devices_kset) 1269 return; 1270 pr_debug("devices_kset: Moving %s before %s\n", 1271 dev_name(deva), dev_name(devb)); 1272 spin_lock(&devices_kset->list_lock); 1273 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 1274 spin_unlock(&devices_kset->list_lock); 1275 } 1276 1277 /** 1278 * devices_kset_move_after - Move device in the devices_kset's list. 1279 * @deva: Device to move 1280 * @devb: Device @deva should come after. 1281 */ 1282 static void devices_kset_move_after(struct device *deva, struct device *devb) 1283 { 1284 if (!devices_kset) 1285 return; 1286 pr_debug("devices_kset: Moving %s after %s\n", 1287 dev_name(deva), dev_name(devb)); 1288 spin_lock(&devices_kset->list_lock); 1289 list_move(&deva->kobj.entry, &devb->kobj.entry); 1290 spin_unlock(&devices_kset->list_lock); 1291 } 1292 1293 /** 1294 * devices_kset_move_last - move the device to the end of devices_kset's list. 1295 * @dev: device to move 1296 */ 1297 void devices_kset_move_last(struct device *dev) 1298 { 1299 if (!devices_kset) 1300 return; 1301 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 1302 spin_lock(&devices_kset->list_lock); 1303 list_move_tail(&dev->kobj.entry, &devices_kset->list); 1304 spin_unlock(&devices_kset->list_lock); 1305 } 1306 1307 /** 1308 * device_create_file - create sysfs attribute file for device. 1309 * @dev: device. 1310 * @attr: device attribute descriptor. 1311 */ 1312 int device_create_file(struct device *dev, 1313 const struct device_attribute *attr) 1314 { 1315 int error = 0; 1316 1317 if (dev) { 1318 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 1319 "Attribute %s: write permission without 'store'\n", 1320 attr->attr.name); 1321 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 1322 "Attribute %s: read permission without 'show'\n", 1323 attr->attr.name); 1324 error = sysfs_create_file(&dev->kobj, &attr->attr); 1325 } 1326 1327 return error; 1328 } 1329 EXPORT_SYMBOL_GPL(device_create_file); 1330 1331 /** 1332 * device_remove_file - remove sysfs attribute file. 1333 * @dev: device. 1334 * @attr: device attribute descriptor. 1335 */ 1336 void device_remove_file(struct device *dev, 1337 const struct device_attribute *attr) 1338 { 1339 if (dev) 1340 sysfs_remove_file(&dev->kobj, &attr->attr); 1341 } 1342 EXPORT_SYMBOL_GPL(device_remove_file); 1343 1344 /** 1345 * device_remove_file_self - remove sysfs attribute file from its own method. 1346 * @dev: device. 1347 * @attr: device attribute descriptor. 1348 * 1349 * See kernfs_remove_self() for details. 1350 */ 1351 bool device_remove_file_self(struct device *dev, 1352 const struct device_attribute *attr) 1353 { 1354 if (dev) 1355 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 1356 else 1357 return false; 1358 } 1359 EXPORT_SYMBOL_GPL(device_remove_file_self); 1360 1361 /** 1362 * device_create_bin_file - create sysfs binary attribute file for device. 1363 * @dev: device. 1364 * @attr: device binary attribute descriptor. 1365 */ 1366 int device_create_bin_file(struct device *dev, 1367 const struct bin_attribute *attr) 1368 { 1369 int error = -EINVAL; 1370 if (dev) 1371 error = sysfs_create_bin_file(&dev->kobj, attr); 1372 return error; 1373 } 1374 EXPORT_SYMBOL_GPL(device_create_bin_file); 1375 1376 /** 1377 * device_remove_bin_file - remove sysfs binary attribute file 1378 * @dev: device. 1379 * @attr: device binary attribute descriptor. 1380 */ 1381 void device_remove_bin_file(struct device *dev, 1382 const struct bin_attribute *attr) 1383 { 1384 if (dev) 1385 sysfs_remove_bin_file(&dev->kobj, attr); 1386 } 1387 EXPORT_SYMBOL_GPL(device_remove_bin_file); 1388 1389 static void klist_children_get(struct klist_node *n) 1390 { 1391 struct device_private *p = to_device_private_parent(n); 1392 struct device *dev = p->device; 1393 1394 get_device(dev); 1395 } 1396 1397 static void klist_children_put(struct klist_node *n) 1398 { 1399 struct device_private *p = to_device_private_parent(n); 1400 struct device *dev = p->device; 1401 1402 put_device(dev); 1403 } 1404 1405 /** 1406 * device_initialize - init device structure. 1407 * @dev: device. 1408 * 1409 * This prepares the device for use by other layers by initializing 1410 * its fields. 1411 * It is the first half of device_register(), if called by 1412 * that function, though it can also be called separately, so one 1413 * may use @dev's fields. In particular, get_device()/put_device() 1414 * may be used for reference counting of @dev after calling this 1415 * function. 1416 * 1417 * All fields in @dev must be initialized by the caller to 0, except 1418 * for those explicitly set to some other value. The simplest 1419 * approach is to use kzalloc() to allocate the structure containing 1420 * @dev. 1421 * 1422 * NOTE: Use put_device() to give up your reference instead of freeing 1423 * @dev directly once you have called this function. 1424 */ 1425 void device_initialize(struct device *dev) 1426 { 1427 dev->kobj.kset = devices_kset; 1428 kobject_init(&dev->kobj, &device_ktype); 1429 INIT_LIST_HEAD(&dev->dma_pools); 1430 mutex_init(&dev->mutex); 1431 lockdep_set_novalidate_class(&dev->mutex); 1432 spin_lock_init(&dev->devres_lock); 1433 INIT_LIST_HEAD(&dev->devres_head); 1434 device_pm_init(dev); 1435 set_dev_node(dev, -1); 1436 #ifdef CONFIG_GENERIC_MSI_IRQ 1437 INIT_LIST_HEAD(&dev->msi_list); 1438 #endif 1439 INIT_LIST_HEAD(&dev->links.consumers); 1440 INIT_LIST_HEAD(&dev->links.suppliers); 1441 dev->links.status = DL_DEV_NO_DRIVER; 1442 } 1443 EXPORT_SYMBOL_GPL(device_initialize); 1444 1445 struct kobject *virtual_device_parent(struct device *dev) 1446 { 1447 static struct kobject *virtual_dir = NULL; 1448 1449 if (!virtual_dir) 1450 virtual_dir = kobject_create_and_add("virtual", 1451 &devices_kset->kobj); 1452 1453 return virtual_dir; 1454 } 1455 1456 struct class_dir { 1457 struct kobject kobj; 1458 struct class *class; 1459 }; 1460 1461 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 1462 1463 static void class_dir_release(struct kobject *kobj) 1464 { 1465 struct class_dir *dir = to_class_dir(kobj); 1466 kfree(dir); 1467 } 1468 1469 static const 1470 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 1471 { 1472 struct class_dir *dir = to_class_dir(kobj); 1473 return dir->class->ns_type; 1474 } 1475 1476 static struct kobj_type class_dir_ktype = { 1477 .release = class_dir_release, 1478 .sysfs_ops = &kobj_sysfs_ops, 1479 .child_ns_type = class_dir_child_ns_type 1480 }; 1481 1482 static struct kobject * 1483 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 1484 { 1485 struct class_dir *dir; 1486 int retval; 1487 1488 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 1489 if (!dir) 1490 return ERR_PTR(-ENOMEM); 1491 1492 dir->class = class; 1493 kobject_init(&dir->kobj, &class_dir_ktype); 1494 1495 dir->kobj.kset = &class->p->glue_dirs; 1496 1497 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 1498 if (retval < 0) { 1499 kobject_put(&dir->kobj); 1500 return ERR_PTR(retval); 1501 } 1502 return &dir->kobj; 1503 } 1504 1505 static DEFINE_MUTEX(gdp_mutex); 1506 1507 static struct kobject *get_device_parent(struct device *dev, 1508 struct device *parent) 1509 { 1510 if (dev->class) { 1511 struct kobject *kobj = NULL; 1512 struct kobject *parent_kobj; 1513 struct kobject *k; 1514 1515 #ifdef CONFIG_BLOCK 1516 /* block disks show up in /sys/block */ 1517 if (sysfs_deprecated && dev->class == &block_class) { 1518 if (parent && parent->class == &block_class) 1519 return &parent->kobj; 1520 return &block_class.p->subsys.kobj; 1521 } 1522 #endif 1523 1524 /* 1525 * If we have no parent, we live in "virtual". 1526 * Class-devices with a non class-device as parent, live 1527 * in a "glue" directory to prevent namespace collisions. 1528 */ 1529 if (parent == NULL) 1530 parent_kobj = virtual_device_parent(dev); 1531 else if (parent->class && !dev->class->ns_type) 1532 return &parent->kobj; 1533 else 1534 parent_kobj = &parent->kobj; 1535 1536 mutex_lock(&gdp_mutex); 1537 1538 /* find our class-directory at the parent and reference it */ 1539 spin_lock(&dev->class->p->glue_dirs.list_lock); 1540 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 1541 if (k->parent == parent_kobj) { 1542 kobj = kobject_get(k); 1543 break; 1544 } 1545 spin_unlock(&dev->class->p->glue_dirs.list_lock); 1546 if (kobj) { 1547 mutex_unlock(&gdp_mutex); 1548 return kobj; 1549 } 1550 1551 /* or create a new class-directory at the parent device */ 1552 k = class_dir_create_and_add(dev->class, parent_kobj); 1553 /* do not emit an uevent for this simple "glue" directory */ 1554 mutex_unlock(&gdp_mutex); 1555 return k; 1556 } 1557 1558 /* subsystems can specify a default root directory for their devices */ 1559 if (!parent && dev->bus && dev->bus->dev_root) 1560 return &dev->bus->dev_root->kobj; 1561 1562 if (parent) 1563 return &parent->kobj; 1564 return NULL; 1565 } 1566 1567 static inline bool live_in_glue_dir(struct kobject *kobj, 1568 struct device *dev) 1569 { 1570 if (!kobj || !dev->class || 1571 kobj->kset != &dev->class->p->glue_dirs) 1572 return false; 1573 return true; 1574 } 1575 1576 static inline struct kobject *get_glue_dir(struct device *dev) 1577 { 1578 return dev->kobj.parent; 1579 } 1580 1581 /* 1582 * make sure cleaning up dir as the last step, we need to make 1583 * sure .release handler of kobject is run with holding the 1584 * global lock 1585 */ 1586 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 1587 { 1588 /* see if we live in a "glue" directory */ 1589 if (!live_in_glue_dir(glue_dir, dev)) 1590 return; 1591 1592 mutex_lock(&gdp_mutex); 1593 kobject_put(glue_dir); 1594 mutex_unlock(&gdp_mutex); 1595 } 1596 1597 static int device_add_class_symlinks(struct device *dev) 1598 { 1599 struct device_node *of_node = dev_of_node(dev); 1600 int error; 1601 1602 if (of_node) { 1603 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 1604 if (error) 1605 dev_warn(dev, "Error %d creating of_node link\n",error); 1606 /* An error here doesn't warrant bringing down the device */ 1607 } 1608 1609 if (!dev->class) 1610 return 0; 1611 1612 error = sysfs_create_link(&dev->kobj, 1613 &dev->class->p->subsys.kobj, 1614 "subsystem"); 1615 if (error) 1616 goto out_devnode; 1617 1618 if (dev->parent && device_is_not_partition(dev)) { 1619 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 1620 "device"); 1621 if (error) 1622 goto out_subsys; 1623 } 1624 1625 #ifdef CONFIG_BLOCK 1626 /* /sys/block has directories and does not need symlinks */ 1627 if (sysfs_deprecated && dev->class == &block_class) 1628 return 0; 1629 #endif 1630 1631 /* link in the class directory pointing to the device */ 1632 error = sysfs_create_link(&dev->class->p->subsys.kobj, 1633 &dev->kobj, dev_name(dev)); 1634 if (error) 1635 goto out_device; 1636 1637 return 0; 1638 1639 out_device: 1640 sysfs_remove_link(&dev->kobj, "device"); 1641 1642 out_subsys: 1643 sysfs_remove_link(&dev->kobj, "subsystem"); 1644 out_devnode: 1645 sysfs_remove_link(&dev->kobj, "of_node"); 1646 return error; 1647 } 1648 1649 static void device_remove_class_symlinks(struct device *dev) 1650 { 1651 if (dev_of_node(dev)) 1652 sysfs_remove_link(&dev->kobj, "of_node"); 1653 1654 if (!dev->class) 1655 return; 1656 1657 if (dev->parent && device_is_not_partition(dev)) 1658 sysfs_remove_link(&dev->kobj, "device"); 1659 sysfs_remove_link(&dev->kobj, "subsystem"); 1660 #ifdef CONFIG_BLOCK 1661 if (sysfs_deprecated && dev->class == &block_class) 1662 return; 1663 #endif 1664 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 1665 } 1666 1667 /** 1668 * dev_set_name - set a device name 1669 * @dev: device 1670 * @fmt: format string for the device's name 1671 */ 1672 int dev_set_name(struct device *dev, const char *fmt, ...) 1673 { 1674 va_list vargs; 1675 int err; 1676 1677 va_start(vargs, fmt); 1678 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 1679 va_end(vargs); 1680 return err; 1681 } 1682 EXPORT_SYMBOL_GPL(dev_set_name); 1683 1684 /** 1685 * device_to_dev_kobj - select a /sys/dev/ directory for the device 1686 * @dev: device 1687 * 1688 * By default we select char/ for new entries. Setting class->dev_obj 1689 * to NULL prevents an entry from being created. class->dev_kobj must 1690 * be set (or cleared) before any devices are registered to the class 1691 * otherwise device_create_sys_dev_entry() and 1692 * device_remove_sys_dev_entry() will disagree about the presence of 1693 * the link. 1694 */ 1695 static struct kobject *device_to_dev_kobj(struct device *dev) 1696 { 1697 struct kobject *kobj; 1698 1699 if (dev->class) 1700 kobj = dev->class->dev_kobj; 1701 else 1702 kobj = sysfs_dev_char_kobj; 1703 1704 return kobj; 1705 } 1706 1707 static int device_create_sys_dev_entry(struct device *dev) 1708 { 1709 struct kobject *kobj = device_to_dev_kobj(dev); 1710 int error = 0; 1711 char devt_str[15]; 1712 1713 if (kobj) { 1714 format_dev_t(devt_str, dev->devt); 1715 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 1716 } 1717 1718 return error; 1719 } 1720 1721 static void device_remove_sys_dev_entry(struct device *dev) 1722 { 1723 struct kobject *kobj = device_to_dev_kobj(dev); 1724 char devt_str[15]; 1725 1726 if (kobj) { 1727 format_dev_t(devt_str, dev->devt); 1728 sysfs_remove_link(kobj, devt_str); 1729 } 1730 } 1731 1732 int device_private_init(struct device *dev) 1733 { 1734 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 1735 if (!dev->p) 1736 return -ENOMEM; 1737 dev->p->device = dev; 1738 klist_init(&dev->p->klist_children, klist_children_get, 1739 klist_children_put); 1740 INIT_LIST_HEAD(&dev->p->deferred_probe); 1741 return 0; 1742 } 1743 1744 /** 1745 * device_add - add device to device hierarchy. 1746 * @dev: device. 1747 * 1748 * This is part 2 of device_register(), though may be called 1749 * separately _iff_ device_initialize() has been called separately. 1750 * 1751 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 1752 * to the global and sibling lists for the device, then 1753 * adds it to the other relevant subsystems of the driver model. 1754 * 1755 * Do not call this routine or device_register() more than once for 1756 * any device structure. The driver model core is not designed to work 1757 * with devices that get unregistered and then spring back to life. 1758 * (Among other things, it's very hard to guarantee that all references 1759 * to the previous incarnation of @dev have been dropped.) Allocate 1760 * and register a fresh new struct device instead. 1761 * 1762 * NOTE: _Never_ directly free @dev after calling this function, even 1763 * if it returned an error! Always use put_device() to give up your 1764 * reference instead. 1765 */ 1766 int device_add(struct device *dev) 1767 { 1768 struct device *parent; 1769 struct kobject *kobj; 1770 struct class_interface *class_intf; 1771 int error = -EINVAL; 1772 struct kobject *glue_dir = NULL; 1773 1774 dev = get_device(dev); 1775 if (!dev) 1776 goto done; 1777 1778 if (!dev->p) { 1779 error = device_private_init(dev); 1780 if (error) 1781 goto done; 1782 } 1783 1784 /* 1785 * for statically allocated devices, which should all be converted 1786 * some day, we need to initialize the name. We prevent reading back 1787 * the name, and force the use of dev_name() 1788 */ 1789 if (dev->init_name) { 1790 dev_set_name(dev, "%s", dev->init_name); 1791 dev->init_name = NULL; 1792 } 1793 1794 /* subsystems can specify simple device enumeration */ 1795 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 1796 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 1797 1798 if (!dev_name(dev)) { 1799 error = -EINVAL; 1800 goto name_error; 1801 } 1802 1803 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 1804 1805 parent = get_device(dev->parent); 1806 kobj = get_device_parent(dev, parent); 1807 if (IS_ERR(kobj)) { 1808 error = PTR_ERR(kobj); 1809 goto parent_error; 1810 } 1811 if (kobj) 1812 dev->kobj.parent = kobj; 1813 1814 /* use parent numa_node */ 1815 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 1816 set_dev_node(dev, dev_to_node(parent)); 1817 1818 /* first, register with generic layer. */ 1819 /* we require the name to be set before, and pass NULL */ 1820 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 1821 if (error) { 1822 glue_dir = get_glue_dir(dev); 1823 goto Error; 1824 } 1825 1826 /* notify platform of device entry */ 1827 if (platform_notify) 1828 platform_notify(dev); 1829 1830 error = device_create_file(dev, &dev_attr_uevent); 1831 if (error) 1832 goto attrError; 1833 1834 error = device_add_class_symlinks(dev); 1835 if (error) 1836 goto SymlinkError; 1837 error = device_add_attrs(dev); 1838 if (error) 1839 goto AttrsError; 1840 error = bus_add_device(dev); 1841 if (error) 1842 goto BusError; 1843 error = dpm_sysfs_add(dev); 1844 if (error) 1845 goto DPMError; 1846 device_pm_add(dev); 1847 1848 if (MAJOR(dev->devt)) { 1849 error = device_create_file(dev, &dev_attr_dev); 1850 if (error) 1851 goto DevAttrError; 1852 1853 error = device_create_sys_dev_entry(dev); 1854 if (error) 1855 goto SysEntryError; 1856 1857 devtmpfs_create_node(dev); 1858 } 1859 1860 /* Notify clients of device addition. This call must come 1861 * after dpm_sysfs_add() and before kobject_uevent(). 1862 */ 1863 if (dev->bus) 1864 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1865 BUS_NOTIFY_ADD_DEVICE, dev); 1866 1867 kobject_uevent(&dev->kobj, KOBJ_ADD); 1868 bus_probe_device(dev); 1869 if (parent) 1870 klist_add_tail(&dev->p->knode_parent, 1871 &parent->p->klist_children); 1872 1873 if (dev->class) { 1874 mutex_lock(&dev->class->p->mutex); 1875 /* tie the class to the device */ 1876 klist_add_tail(&dev->knode_class, 1877 &dev->class->p->klist_devices); 1878 1879 /* notify any interfaces that the device is here */ 1880 list_for_each_entry(class_intf, 1881 &dev->class->p->interfaces, node) 1882 if (class_intf->add_dev) 1883 class_intf->add_dev(dev, class_intf); 1884 mutex_unlock(&dev->class->p->mutex); 1885 } 1886 done: 1887 put_device(dev); 1888 return error; 1889 SysEntryError: 1890 if (MAJOR(dev->devt)) 1891 device_remove_file(dev, &dev_attr_dev); 1892 DevAttrError: 1893 device_pm_remove(dev); 1894 dpm_sysfs_remove(dev); 1895 DPMError: 1896 bus_remove_device(dev); 1897 BusError: 1898 device_remove_attrs(dev); 1899 AttrsError: 1900 device_remove_class_symlinks(dev); 1901 SymlinkError: 1902 device_remove_file(dev, &dev_attr_uevent); 1903 attrError: 1904 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 1905 glue_dir = get_glue_dir(dev); 1906 kobject_del(&dev->kobj); 1907 Error: 1908 cleanup_glue_dir(dev, glue_dir); 1909 parent_error: 1910 put_device(parent); 1911 name_error: 1912 kfree(dev->p); 1913 dev->p = NULL; 1914 goto done; 1915 } 1916 EXPORT_SYMBOL_GPL(device_add); 1917 1918 /** 1919 * device_register - register a device with the system. 1920 * @dev: pointer to the device structure 1921 * 1922 * This happens in two clean steps - initialize the device 1923 * and add it to the system. The two steps can be called 1924 * separately, but this is the easiest and most common. 1925 * I.e. you should only call the two helpers separately if 1926 * have a clearly defined need to use and refcount the device 1927 * before it is added to the hierarchy. 1928 * 1929 * For more information, see the kerneldoc for device_initialize() 1930 * and device_add(). 1931 * 1932 * NOTE: _Never_ directly free @dev after calling this function, even 1933 * if it returned an error! Always use put_device() to give up the 1934 * reference initialized in this function instead. 1935 */ 1936 int device_register(struct device *dev) 1937 { 1938 device_initialize(dev); 1939 return device_add(dev); 1940 } 1941 EXPORT_SYMBOL_GPL(device_register); 1942 1943 /** 1944 * get_device - increment reference count for device. 1945 * @dev: device. 1946 * 1947 * This simply forwards the call to kobject_get(), though 1948 * we do take care to provide for the case that we get a NULL 1949 * pointer passed in. 1950 */ 1951 struct device *get_device(struct device *dev) 1952 { 1953 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 1954 } 1955 EXPORT_SYMBOL_GPL(get_device); 1956 1957 /** 1958 * put_device - decrement reference count. 1959 * @dev: device in question. 1960 */ 1961 void put_device(struct device *dev) 1962 { 1963 /* might_sleep(); */ 1964 if (dev) 1965 kobject_put(&dev->kobj); 1966 } 1967 EXPORT_SYMBOL_GPL(put_device); 1968 1969 /** 1970 * device_del - delete device from system. 1971 * @dev: device. 1972 * 1973 * This is the first part of the device unregistration 1974 * sequence. This removes the device from the lists we control 1975 * from here, has it removed from the other driver model 1976 * subsystems it was added to in device_add(), and removes it 1977 * from the kobject hierarchy. 1978 * 1979 * NOTE: this should be called manually _iff_ device_add() was 1980 * also called manually. 1981 */ 1982 void device_del(struct device *dev) 1983 { 1984 struct device *parent = dev->parent; 1985 struct kobject *glue_dir = NULL; 1986 struct class_interface *class_intf; 1987 1988 /* Notify clients of device removal. This call must come 1989 * before dpm_sysfs_remove(). 1990 */ 1991 if (dev->bus) 1992 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1993 BUS_NOTIFY_DEL_DEVICE, dev); 1994 1995 dpm_sysfs_remove(dev); 1996 if (parent) 1997 klist_del(&dev->p->knode_parent); 1998 if (MAJOR(dev->devt)) { 1999 devtmpfs_delete_node(dev); 2000 device_remove_sys_dev_entry(dev); 2001 device_remove_file(dev, &dev_attr_dev); 2002 } 2003 if (dev->class) { 2004 device_remove_class_symlinks(dev); 2005 2006 mutex_lock(&dev->class->p->mutex); 2007 /* notify any interfaces that the device is now gone */ 2008 list_for_each_entry(class_intf, 2009 &dev->class->p->interfaces, node) 2010 if (class_intf->remove_dev) 2011 class_intf->remove_dev(dev, class_intf); 2012 /* remove the device from the class list */ 2013 klist_del(&dev->knode_class); 2014 mutex_unlock(&dev->class->p->mutex); 2015 } 2016 device_remove_file(dev, &dev_attr_uevent); 2017 device_remove_attrs(dev); 2018 bus_remove_device(dev); 2019 device_pm_remove(dev); 2020 driver_deferred_probe_del(dev); 2021 device_remove_properties(dev); 2022 device_links_purge(dev); 2023 2024 /* Notify the platform of the removal, in case they 2025 * need to do anything... 2026 */ 2027 if (platform_notify_remove) 2028 platform_notify_remove(dev); 2029 if (dev->bus) 2030 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2031 BUS_NOTIFY_REMOVED_DEVICE, dev); 2032 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 2033 glue_dir = get_glue_dir(dev); 2034 kobject_del(&dev->kobj); 2035 cleanup_glue_dir(dev, glue_dir); 2036 put_device(parent); 2037 } 2038 EXPORT_SYMBOL_GPL(device_del); 2039 2040 /** 2041 * device_unregister - unregister device from system. 2042 * @dev: device going away. 2043 * 2044 * We do this in two parts, like we do device_register(). First, 2045 * we remove it from all the subsystems with device_del(), then 2046 * we decrement the reference count via put_device(). If that 2047 * is the final reference count, the device will be cleaned up 2048 * via device_release() above. Otherwise, the structure will 2049 * stick around until the final reference to the device is dropped. 2050 */ 2051 void device_unregister(struct device *dev) 2052 { 2053 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2054 device_del(dev); 2055 put_device(dev); 2056 } 2057 EXPORT_SYMBOL_GPL(device_unregister); 2058 2059 static struct device *prev_device(struct klist_iter *i) 2060 { 2061 struct klist_node *n = klist_prev(i); 2062 struct device *dev = NULL; 2063 struct device_private *p; 2064 2065 if (n) { 2066 p = to_device_private_parent(n); 2067 dev = p->device; 2068 } 2069 return dev; 2070 } 2071 2072 static struct device *next_device(struct klist_iter *i) 2073 { 2074 struct klist_node *n = klist_next(i); 2075 struct device *dev = NULL; 2076 struct device_private *p; 2077 2078 if (n) { 2079 p = to_device_private_parent(n); 2080 dev = p->device; 2081 } 2082 return dev; 2083 } 2084 2085 /** 2086 * device_get_devnode - path of device node file 2087 * @dev: device 2088 * @mode: returned file access mode 2089 * @uid: returned file owner 2090 * @gid: returned file group 2091 * @tmp: possibly allocated string 2092 * 2093 * Return the relative path of a possible device node. 2094 * Non-default names may need to allocate a memory to compose 2095 * a name. This memory is returned in tmp and needs to be 2096 * freed by the caller. 2097 */ 2098 const char *device_get_devnode(struct device *dev, 2099 umode_t *mode, kuid_t *uid, kgid_t *gid, 2100 const char **tmp) 2101 { 2102 char *s; 2103 2104 *tmp = NULL; 2105 2106 /* the device type may provide a specific name */ 2107 if (dev->type && dev->type->devnode) 2108 *tmp = dev->type->devnode(dev, mode, uid, gid); 2109 if (*tmp) 2110 return *tmp; 2111 2112 /* the class may provide a specific name */ 2113 if (dev->class && dev->class->devnode) 2114 *tmp = dev->class->devnode(dev, mode); 2115 if (*tmp) 2116 return *tmp; 2117 2118 /* return name without allocation, tmp == NULL */ 2119 if (strchr(dev_name(dev), '!') == NULL) 2120 return dev_name(dev); 2121 2122 /* replace '!' in the name with '/' */ 2123 s = kstrdup(dev_name(dev), GFP_KERNEL); 2124 if (!s) 2125 return NULL; 2126 strreplace(s, '!', '/'); 2127 return *tmp = s; 2128 } 2129 2130 /** 2131 * device_for_each_child - device child iterator. 2132 * @parent: parent struct device. 2133 * @fn: function to be called for each device. 2134 * @data: data for the callback. 2135 * 2136 * Iterate over @parent's child devices, and call @fn for each, 2137 * passing it @data. 2138 * 2139 * We check the return of @fn each time. If it returns anything 2140 * other than 0, we break out and return that value. 2141 */ 2142 int device_for_each_child(struct device *parent, void *data, 2143 int (*fn)(struct device *dev, void *data)) 2144 { 2145 struct klist_iter i; 2146 struct device *child; 2147 int error = 0; 2148 2149 if (!parent->p) 2150 return 0; 2151 2152 klist_iter_init(&parent->p->klist_children, &i); 2153 while (!error && (child = next_device(&i))) 2154 error = fn(child, data); 2155 klist_iter_exit(&i); 2156 return error; 2157 } 2158 EXPORT_SYMBOL_GPL(device_for_each_child); 2159 2160 /** 2161 * device_for_each_child_reverse - device child iterator in reversed order. 2162 * @parent: parent struct device. 2163 * @fn: function to be called for each device. 2164 * @data: data for the callback. 2165 * 2166 * Iterate over @parent's child devices, and call @fn for each, 2167 * passing it @data. 2168 * 2169 * We check the return of @fn each time. If it returns anything 2170 * other than 0, we break out and return that value. 2171 */ 2172 int device_for_each_child_reverse(struct device *parent, void *data, 2173 int (*fn)(struct device *dev, void *data)) 2174 { 2175 struct klist_iter i; 2176 struct device *child; 2177 int error = 0; 2178 2179 if (!parent->p) 2180 return 0; 2181 2182 klist_iter_init(&parent->p->klist_children, &i); 2183 while ((child = prev_device(&i)) && !error) 2184 error = fn(child, data); 2185 klist_iter_exit(&i); 2186 return error; 2187 } 2188 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 2189 2190 /** 2191 * device_find_child - device iterator for locating a particular device. 2192 * @parent: parent struct device 2193 * @match: Callback function to check device 2194 * @data: Data to pass to match function 2195 * 2196 * This is similar to the device_for_each_child() function above, but it 2197 * returns a reference to a device that is 'found' for later use, as 2198 * determined by the @match callback. 2199 * 2200 * The callback should return 0 if the device doesn't match and non-zero 2201 * if it does. If the callback returns non-zero and a reference to the 2202 * current device can be obtained, this function will return to the caller 2203 * and not iterate over any more devices. 2204 * 2205 * NOTE: you will need to drop the reference with put_device() after use. 2206 */ 2207 struct device *device_find_child(struct device *parent, void *data, 2208 int (*match)(struct device *dev, void *data)) 2209 { 2210 struct klist_iter i; 2211 struct device *child; 2212 2213 if (!parent) 2214 return NULL; 2215 2216 klist_iter_init(&parent->p->klist_children, &i); 2217 while ((child = next_device(&i))) 2218 if (match(child, data) && get_device(child)) 2219 break; 2220 klist_iter_exit(&i); 2221 return child; 2222 } 2223 EXPORT_SYMBOL_GPL(device_find_child); 2224 2225 int __init devices_init(void) 2226 { 2227 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 2228 if (!devices_kset) 2229 return -ENOMEM; 2230 dev_kobj = kobject_create_and_add("dev", NULL); 2231 if (!dev_kobj) 2232 goto dev_kobj_err; 2233 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 2234 if (!sysfs_dev_block_kobj) 2235 goto block_kobj_err; 2236 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 2237 if (!sysfs_dev_char_kobj) 2238 goto char_kobj_err; 2239 2240 return 0; 2241 2242 char_kobj_err: 2243 kobject_put(sysfs_dev_block_kobj); 2244 block_kobj_err: 2245 kobject_put(dev_kobj); 2246 dev_kobj_err: 2247 kset_unregister(devices_kset); 2248 return -ENOMEM; 2249 } 2250 2251 static int device_check_offline(struct device *dev, void *not_used) 2252 { 2253 int ret; 2254 2255 ret = device_for_each_child(dev, NULL, device_check_offline); 2256 if (ret) 2257 return ret; 2258 2259 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 2260 } 2261 2262 /** 2263 * device_offline - Prepare the device for hot-removal. 2264 * @dev: Device to be put offline. 2265 * 2266 * Execute the device bus type's .offline() callback, if present, to prepare 2267 * the device for a subsequent hot-removal. If that succeeds, the device must 2268 * not be used until either it is removed or its bus type's .online() callback 2269 * is executed. 2270 * 2271 * Call under device_hotplug_lock. 2272 */ 2273 int device_offline(struct device *dev) 2274 { 2275 int ret; 2276 2277 if (dev->offline_disabled) 2278 return -EPERM; 2279 2280 ret = device_for_each_child(dev, NULL, device_check_offline); 2281 if (ret) 2282 return ret; 2283 2284 device_lock(dev); 2285 if (device_supports_offline(dev)) { 2286 if (dev->offline) { 2287 ret = 1; 2288 } else { 2289 ret = dev->bus->offline(dev); 2290 if (!ret) { 2291 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2292 dev->offline = true; 2293 } 2294 } 2295 } 2296 device_unlock(dev); 2297 2298 return ret; 2299 } 2300 2301 /** 2302 * device_online - Put the device back online after successful device_offline(). 2303 * @dev: Device to be put back online. 2304 * 2305 * If device_offline() has been successfully executed for @dev, but the device 2306 * has not been removed subsequently, execute its bus type's .online() callback 2307 * to indicate that the device can be used again. 2308 * 2309 * Call under device_hotplug_lock. 2310 */ 2311 int device_online(struct device *dev) 2312 { 2313 int ret = 0; 2314 2315 device_lock(dev); 2316 if (device_supports_offline(dev)) { 2317 if (dev->offline) { 2318 ret = dev->bus->online(dev); 2319 if (!ret) { 2320 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2321 dev->offline = false; 2322 } 2323 } else { 2324 ret = 1; 2325 } 2326 } 2327 device_unlock(dev); 2328 2329 return ret; 2330 } 2331 2332 struct root_device { 2333 struct device dev; 2334 struct module *owner; 2335 }; 2336 2337 static inline struct root_device *to_root_device(struct device *d) 2338 { 2339 return container_of(d, struct root_device, dev); 2340 } 2341 2342 static void root_device_release(struct device *dev) 2343 { 2344 kfree(to_root_device(dev)); 2345 } 2346 2347 /** 2348 * __root_device_register - allocate and register a root device 2349 * @name: root device name 2350 * @owner: owner module of the root device, usually THIS_MODULE 2351 * 2352 * This function allocates a root device and registers it 2353 * using device_register(). In order to free the returned 2354 * device, use root_device_unregister(). 2355 * 2356 * Root devices are dummy devices which allow other devices 2357 * to be grouped under /sys/devices. Use this function to 2358 * allocate a root device and then use it as the parent of 2359 * any device which should appear under /sys/devices/{name} 2360 * 2361 * The /sys/devices/{name} directory will also contain a 2362 * 'module' symlink which points to the @owner directory 2363 * in sysfs. 2364 * 2365 * Returns &struct device pointer on success, or ERR_PTR() on error. 2366 * 2367 * Note: You probably want to use root_device_register(). 2368 */ 2369 struct device *__root_device_register(const char *name, struct module *owner) 2370 { 2371 struct root_device *root; 2372 int err = -ENOMEM; 2373 2374 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 2375 if (!root) 2376 return ERR_PTR(err); 2377 2378 err = dev_set_name(&root->dev, "%s", name); 2379 if (err) { 2380 kfree(root); 2381 return ERR_PTR(err); 2382 } 2383 2384 root->dev.release = root_device_release; 2385 2386 err = device_register(&root->dev); 2387 if (err) { 2388 put_device(&root->dev); 2389 return ERR_PTR(err); 2390 } 2391 2392 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 2393 if (owner) { 2394 struct module_kobject *mk = &owner->mkobj; 2395 2396 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 2397 if (err) { 2398 device_unregister(&root->dev); 2399 return ERR_PTR(err); 2400 } 2401 root->owner = owner; 2402 } 2403 #endif 2404 2405 return &root->dev; 2406 } 2407 EXPORT_SYMBOL_GPL(__root_device_register); 2408 2409 /** 2410 * root_device_unregister - unregister and free a root device 2411 * @dev: device going away 2412 * 2413 * This function unregisters and cleans up a device that was created by 2414 * root_device_register(). 2415 */ 2416 void root_device_unregister(struct device *dev) 2417 { 2418 struct root_device *root = to_root_device(dev); 2419 2420 if (root->owner) 2421 sysfs_remove_link(&root->dev.kobj, "module"); 2422 2423 device_unregister(dev); 2424 } 2425 EXPORT_SYMBOL_GPL(root_device_unregister); 2426 2427 2428 static void device_create_release(struct device *dev) 2429 { 2430 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2431 kfree(dev); 2432 } 2433 2434 static __printf(6, 0) struct device * 2435 device_create_groups_vargs(struct class *class, struct device *parent, 2436 dev_t devt, void *drvdata, 2437 const struct attribute_group **groups, 2438 const char *fmt, va_list args) 2439 { 2440 struct device *dev = NULL; 2441 int retval = -ENODEV; 2442 2443 if (class == NULL || IS_ERR(class)) 2444 goto error; 2445 2446 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2447 if (!dev) { 2448 retval = -ENOMEM; 2449 goto error; 2450 } 2451 2452 device_initialize(dev); 2453 dev->devt = devt; 2454 dev->class = class; 2455 dev->parent = parent; 2456 dev->groups = groups; 2457 dev->release = device_create_release; 2458 dev_set_drvdata(dev, drvdata); 2459 2460 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 2461 if (retval) 2462 goto error; 2463 2464 retval = device_add(dev); 2465 if (retval) 2466 goto error; 2467 2468 return dev; 2469 2470 error: 2471 put_device(dev); 2472 return ERR_PTR(retval); 2473 } 2474 2475 /** 2476 * device_create_vargs - creates a device and registers it with sysfs 2477 * @class: pointer to the struct class that this device should be registered to 2478 * @parent: pointer to the parent struct device of this new device, if any 2479 * @devt: the dev_t for the char device to be added 2480 * @drvdata: the data to be added to the device for callbacks 2481 * @fmt: string for the device's name 2482 * @args: va_list for the device's name 2483 * 2484 * This function can be used by char device classes. A struct device 2485 * will be created in sysfs, registered to the specified class. 2486 * 2487 * A "dev" file will be created, showing the dev_t for the device, if 2488 * the dev_t is not 0,0. 2489 * If a pointer to a parent struct device is passed in, the newly created 2490 * struct device will be a child of that device in sysfs. 2491 * The pointer to the struct device will be returned from the call. 2492 * Any further sysfs files that might be required can be created using this 2493 * pointer. 2494 * 2495 * Returns &struct device pointer on success, or ERR_PTR() on error. 2496 * 2497 * Note: the struct class passed to this function must have previously 2498 * been created with a call to class_create(). 2499 */ 2500 struct device *device_create_vargs(struct class *class, struct device *parent, 2501 dev_t devt, void *drvdata, const char *fmt, 2502 va_list args) 2503 { 2504 return device_create_groups_vargs(class, parent, devt, drvdata, NULL, 2505 fmt, args); 2506 } 2507 EXPORT_SYMBOL_GPL(device_create_vargs); 2508 2509 /** 2510 * device_create - creates a device and registers it with sysfs 2511 * @class: pointer to the struct class that this device should be registered to 2512 * @parent: pointer to the parent struct device of this new device, if any 2513 * @devt: the dev_t for the char device to be added 2514 * @drvdata: the data to be added to the device for callbacks 2515 * @fmt: string for the device's name 2516 * 2517 * This function can be used by char device classes. A struct device 2518 * will be created in sysfs, registered to the specified class. 2519 * 2520 * A "dev" file will be created, showing the dev_t for the device, if 2521 * the dev_t is not 0,0. 2522 * If a pointer to a parent struct device is passed in, the newly created 2523 * struct device will be a child of that device in sysfs. 2524 * The pointer to the struct device will be returned from the call. 2525 * Any further sysfs files that might be required can be created using this 2526 * pointer. 2527 * 2528 * Returns &struct device pointer on success, or ERR_PTR() on error. 2529 * 2530 * Note: the struct class passed to this function must have previously 2531 * been created with a call to class_create(). 2532 */ 2533 struct device *device_create(struct class *class, struct device *parent, 2534 dev_t devt, void *drvdata, const char *fmt, ...) 2535 { 2536 va_list vargs; 2537 struct device *dev; 2538 2539 va_start(vargs, fmt); 2540 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs); 2541 va_end(vargs); 2542 return dev; 2543 } 2544 EXPORT_SYMBOL_GPL(device_create); 2545 2546 /** 2547 * device_create_with_groups - creates a device and registers it with sysfs 2548 * @class: pointer to the struct class that this device should be registered to 2549 * @parent: pointer to the parent struct device of this new device, if any 2550 * @devt: the dev_t for the char device to be added 2551 * @drvdata: the data to be added to the device for callbacks 2552 * @groups: NULL-terminated list of attribute groups to be created 2553 * @fmt: string for the device's name 2554 * 2555 * This function can be used by char device classes. A struct device 2556 * will be created in sysfs, registered to the specified class. 2557 * Additional attributes specified in the groups parameter will also 2558 * be created automatically. 2559 * 2560 * A "dev" file will be created, showing the dev_t for the device, if 2561 * the dev_t is not 0,0. 2562 * If a pointer to a parent struct device is passed in, the newly created 2563 * struct device will be a child of that device in sysfs. 2564 * The pointer to the struct device will be returned from the call. 2565 * Any further sysfs files that might be required can be created using this 2566 * pointer. 2567 * 2568 * Returns &struct device pointer on success, or ERR_PTR() on error. 2569 * 2570 * Note: the struct class passed to this function must have previously 2571 * been created with a call to class_create(). 2572 */ 2573 struct device *device_create_with_groups(struct class *class, 2574 struct device *parent, dev_t devt, 2575 void *drvdata, 2576 const struct attribute_group **groups, 2577 const char *fmt, ...) 2578 { 2579 va_list vargs; 2580 struct device *dev; 2581 2582 va_start(vargs, fmt); 2583 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 2584 fmt, vargs); 2585 va_end(vargs); 2586 return dev; 2587 } 2588 EXPORT_SYMBOL_GPL(device_create_with_groups); 2589 2590 static int __match_devt(struct device *dev, const void *data) 2591 { 2592 const dev_t *devt = data; 2593 2594 return dev->devt == *devt; 2595 } 2596 2597 /** 2598 * device_destroy - removes a device that was created with device_create() 2599 * @class: pointer to the struct class that this device was registered with 2600 * @devt: the dev_t of the device that was previously registered 2601 * 2602 * This call unregisters and cleans up a device that was created with a 2603 * call to device_create(). 2604 */ 2605 void device_destroy(struct class *class, dev_t devt) 2606 { 2607 struct device *dev; 2608 2609 dev = class_find_device(class, NULL, &devt, __match_devt); 2610 if (dev) { 2611 put_device(dev); 2612 device_unregister(dev); 2613 } 2614 } 2615 EXPORT_SYMBOL_GPL(device_destroy); 2616 2617 /** 2618 * device_rename - renames a device 2619 * @dev: the pointer to the struct device to be renamed 2620 * @new_name: the new name of the device 2621 * 2622 * It is the responsibility of the caller to provide mutual 2623 * exclusion between two different calls of device_rename 2624 * on the same device to ensure that new_name is valid and 2625 * won't conflict with other devices. 2626 * 2627 * Note: Don't call this function. Currently, the networking layer calls this 2628 * function, but that will change. The following text from Kay Sievers offers 2629 * some insight: 2630 * 2631 * Renaming devices is racy at many levels, symlinks and other stuff are not 2632 * replaced atomically, and you get a "move" uevent, but it's not easy to 2633 * connect the event to the old and new device. Device nodes are not renamed at 2634 * all, there isn't even support for that in the kernel now. 2635 * 2636 * In the meantime, during renaming, your target name might be taken by another 2637 * driver, creating conflicts. Or the old name is taken directly after you 2638 * renamed it -- then you get events for the same DEVPATH, before you even see 2639 * the "move" event. It's just a mess, and nothing new should ever rely on 2640 * kernel device renaming. Besides that, it's not even implemented now for 2641 * other things than (driver-core wise very simple) network devices. 2642 * 2643 * We are currently about to change network renaming in udev to completely 2644 * disallow renaming of devices in the same namespace as the kernel uses, 2645 * because we can't solve the problems properly, that arise with swapping names 2646 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 2647 * be allowed to some other name than eth[0-9]*, for the aforementioned 2648 * reasons. 2649 * 2650 * Make up a "real" name in the driver before you register anything, or add 2651 * some other attributes for userspace to find the device, or use udev to add 2652 * symlinks -- but never rename kernel devices later, it's a complete mess. We 2653 * don't even want to get into that and try to implement the missing pieces in 2654 * the core. We really have other pieces to fix in the driver core mess. :) 2655 */ 2656 int device_rename(struct device *dev, const char *new_name) 2657 { 2658 struct kobject *kobj = &dev->kobj; 2659 char *old_device_name = NULL; 2660 int error; 2661 2662 dev = get_device(dev); 2663 if (!dev) 2664 return -EINVAL; 2665 2666 dev_dbg(dev, "renaming to %s\n", new_name); 2667 2668 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 2669 if (!old_device_name) { 2670 error = -ENOMEM; 2671 goto out; 2672 } 2673 2674 if (dev->class) { 2675 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 2676 kobj, old_device_name, 2677 new_name, kobject_namespace(kobj)); 2678 if (error) 2679 goto out; 2680 } 2681 2682 error = kobject_rename(kobj, new_name); 2683 if (error) 2684 goto out; 2685 2686 out: 2687 put_device(dev); 2688 2689 kfree(old_device_name); 2690 2691 return error; 2692 } 2693 EXPORT_SYMBOL_GPL(device_rename); 2694 2695 static int device_move_class_links(struct device *dev, 2696 struct device *old_parent, 2697 struct device *new_parent) 2698 { 2699 int error = 0; 2700 2701 if (old_parent) 2702 sysfs_remove_link(&dev->kobj, "device"); 2703 if (new_parent) 2704 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 2705 "device"); 2706 return error; 2707 } 2708 2709 /** 2710 * device_move - moves a device to a new parent 2711 * @dev: the pointer to the struct device to be moved 2712 * @new_parent: the new parent of the device (can be NULL) 2713 * @dpm_order: how to reorder the dpm_list 2714 */ 2715 int device_move(struct device *dev, struct device *new_parent, 2716 enum dpm_order dpm_order) 2717 { 2718 int error; 2719 struct device *old_parent; 2720 struct kobject *new_parent_kobj; 2721 2722 dev = get_device(dev); 2723 if (!dev) 2724 return -EINVAL; 2725 2726 device_pm_lock(); 2727 new_parent = get_device(new_parent); 2728 new_parent_kobj = get_device_parent(dev, new_parent); 2729 if (IS_ERR(new_parent_kobj)) { 2730 error = PTR_ERR(new_parent_kobj); 2731 put_device(new_parent); 2732 goto out; 2733 } 2734 2735 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 2736 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 2737 error = kobject_move(&dev->kobj, new_parent_kobj); 2738 if (error) { 2739 cleanup_glue_dir(dev, new_parent_kobj); 2740 put_device(new_parent); 2741 goto out; 2742 } 2743 old_parent = dev->parent; 2744 dev->parent = new_parent; 2745 if (old_parent) 2746 klist_remove(&dev->p->knode_parent); 2747 if (new_parent) { 2748 klist_add_tail(&dev->p->knode_parent, 2749 &new_parent->p->klist_children); 2750 set_dev_node(dev, dev_to_node(new_parent)); 2751 } 2752 2753 if (dev->class) { 2754 error = device_move_class_links(dev, old_parent, new_parent); 2755 if (error) { 2756 /* We ignore errors on cleanup since we're hosed anyway... */ 2757 device_move_class_links(dev, new_parent, old_parent); 2758 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 2759 if (new_parent) 2760 klist_remove(&dev->p->knode_parent); 2761 dev->parent = old_parent; 2762 if (old_parent) { 2763 klist_add_tail(&dev->p->knode_parent, 2764 &old_parent->p->klist_children); 2765 set_dev_node(dev, dev_to_node(old_parent)); 2766 } 2767 } 2768 cleanup_glue_dir(dev, new_parent_kobj); 2769 put_device(new_parent); 2770 goto out; 2771 } 2772 } 2773 switch (dpm_order) { 2774 case DPM_ORDER_NONE: 2775 break; 2776 case DPM_ORDER_DEV_AFTER_PARENT: 2777 device_pm_move_after(dev, new_parent); 2778 devices_kset_move_after(dev, new_parent); 2779 break; 2780 case DPM_ORDER_PARENT_BEFORE_DEV: 2781 device_pm_move_before(new_parent, dev); 2782 devices_kset_move_before(new_parent, dev); 2783 break; 2784 case DPM_ORDER_DEV_LAST: 2785 device_pm_move_last(dev); 2786 devices_kset_move_last(dev); 2787 break; 2788 } 2789 2790 put_device(old_parent); 2791 out: 2792 device_pm_unlock(); 2793 put_device(dev); 2794 return error; 2795 } 2796 EXPORT_SYMBOL_GPL(device_move); 2797 2798 /** 2799 * device_shutdown - call ->shutdown() on each device to shutdown. 2800 */ 2801 void device_shutdown(void) 2802 { 2803 struct device *dev, *parent; 2804 2805 spin_lock(&devices_kset->list_lock); 2806 /* 2807 * Walk the devices list backward, shutting down each in turn. 2808 * Beware that device unplug events may also start pulling 2809 * devices offline, even as the system is shutting down. 2810 */ 2811 while (!list_empty(&devices_kset->list)) { 2812 dev = list_entry(devices_kset->list.prev, struct device, 2813 kobj.entry); 2814 2815 /* 2816 * hold reference count of device's parent to 2817 * prevent it from being freed because parent's 2818 * lock is to be held 2819 */ 2820 parent = get_device(dev->parent); 2821 get_device(dev); 2822 /* 2823 * Make sure the device is off the kset list, in the 2824 * event that dev->*->shutdown() doesn't remove it. 2825 */ 2826 list_del_init(&dev->kobj.entry); 2827 spin_unlock(&devices_kset->list_lock); 2828 2829 /* hold lock to avoid race with probe/release */ 2830 if (parent) 2831 device_lock(parent); 2832 device_lock(dev); 2833 2834 /* Don't allow any more runtime suspends */ 2835 pm_runtime_get_noresume(dev); 2836 pm_runtime_barrier(dev); 2837 2838 if (dev->class && dev->class->shutdown_pre) { 2839 if (initcall_debug) 2840 dev_info(dev, "shutdown_pre\n"); 2841 dev->class->shutdown_pre(dev); 2842 } 2843 if (dev->bus && dev->bus->shutdown) { 2844 if (initcall_debug) 2845 dev_info(dev, "shutdown\n"); 2846 dev->bus->shutdown(dev); 2847 } else if (dev->driver && dev->driver->shutdown) { 2848 if (initcall_debug) 2849 dev_info(dev, "shutdown\n"); 2850 dev->driver->shutdown(dev); 2851 } 2852 2853 device_unlock(dev); 2854 if (parent) 2855 device_unlock(parent); 2856 2857 put_device(dev); 2858 put_device(parent); 2859 2860 spin_lock(&devices_kset->list_lock); 2861 } 2862 spin_unlock(&devices_kset->list_lock); 2863 } 2864 2865 /* 2866 * Device logging functions 2867 */ 2868 2869 #ifdef CONFIG_PRINTK 2870 static int 2871 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen) 2872 { 2873 const char *subsys; 2874 size_t pos = 0; 2875 2876 if (dev->class) 2877 subsys = dev->class->name; 2878 else if (dev->bus) 2879 subsys = dev->bus->name; 2880 else 2881 return 0; 2882 2883 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys); 2884 if (pos >= hdrlen) 2885 goto overflow; 2886 2887 /* 2888 * Add device identifier DEVICE=: 2889 * b12:8 block dev_t 2890 * c127:3 char dev_t 2891 * n8 netdev ifindex 2892 * +sound:card0 subsystem:devname 2893 */ 2894 if (MAJOR(dev->devt)) { 2895 char c; 2896 2897 if (strcmp(subsys, "block") == 0) 2898 c = 'b'; 2899 else 2900 c = 'c'; 2901 pos++; 2902 pos += snprintf(hdr + pos, hdrlen - pos, 2903 "DEVICE=%c%u:%u", 2904 c, MAJOR(dev->devt), MINOR(dev->devt)); 2905 } else if (strcmp(subsys, "net") == 0) { 2906 struct net_device *net = to_net_dev(dev); 2907 2908 pos++; 2909 pos += snprintf(hdr + pos, hdrlen - pos, 2910 "DEVICE=n%u", net->ifindex); 2911 } else { 2912 pos++; 2913 pos += snprintf(hdr + pos, hdrlen - pos, 2914 "DEVICE=+%s:%s", subsys, dev_name(dev)); 2915 } 2916 2917 if (pos >= hdrlen) 2918 goto overflow; 2919 2920 return pos; 2921 2922 overflow: 2923 dev_WARN(dev, "device/subsystem name too long"); 2924 return 0; 2925 } 2926 2927 int dev_vprintk_emit(int level, const struct device *dev, 2928 const char *fmt, va_list args) 2929 { 2930 char hdr[128]; 2931 size_t hdrlen; 2932 2933 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr)); 2934 2935 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args); 2936 } 2937 EXPORT_SYMBOL(dev_vprintk_emit); 2938 2939 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 2940 { 2941 va_list args; 2942 int r; 2943 2944 va_start(args, fmt); 2945 2946 r = dev_vprintk_emit(level, dev, fmt, args); 2947 2948 va_end(args); 2949 2950 return r; 2951 } 2952 EXPORT_SYMBOL(dev_printk_emit); 2953 2954 static void __dev_printk(const char *level, const struct device *dev, 2955 struct va_format *vaf) 2956 { 2957 if (dev) 2958 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 2959 dev_driver_string(dev), dev_name(dev), vaf); 2960 else 2961 printk("%s(NULL device *): %pV", level, vaf); 2962 } 2963 2964 void dev_printk(const char *level, const struct device *dev, 2965 const char *fmt, ...) 2966 { 2967 struct va_format vaf; 2968 va_list args; 2969 2970 va_start(args, fmt); 2971 2972 vaf.fmt = fmt; 2973 vaf.va = &args; 2974 2975 __dev_printk(level, dev, &vaf); 2976 2977 va_end(args); 2978 } 2979 EXPORT_SYMBOL(dev_printk); 2980 2981 #define define_dev_printk_level(func, kern_level) \ 2982 void func(const struct device *dev, const char *fmt, ...) \ 2983 { \ 2984 struct va_format vaf; \ 2985 va_list args; \ 2986 \ 2987 va_start(args, fmt); \ 2988 \ 2989 vaf.fmt = fmt; \ 2990 vaf.va = &args; \ 2991 \ 2992 __dev_printk(kern_level, dev, &vaf); \ 2993 \ 2994 va_end(args); \ 2995 } \ 2996 EXPORT_SYMBOL(func); 2997 2998 define_dev_printk_level(dev_emerg, KERN_EMERG); 2999 define_dev_printk_level(dev_alert, KERN_ALERT); 3000 define_dev_printk_level(dev_crit, KERN_CRIT); 3001 define_dev_printk_level(dev_err, KERN_ERR); 3002 define_dev_printk_level(dev_warn, KERN_WARNING); 3003 define_dev_printk_level(dev_notice, KERN_NOTICE); 3004 define_dev_printk_level(_dev_info, KERN_INFO); 3005 3006 #endif 3007 3008 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 3009 { 3010 return fwnode && !IS_ERR(fwnode->secondary); 3011 } 3012 3013 /** 3014 * set_primary_fwnode - Change the primary firmware node of a given device. 3015 * @dev: Device to handle. 3016 * @fwnode: New primary firmware node of the device. 3017 * 3018 * Set the device's firmware node pointer to @fwnode, but if a secondary 3019 * firmware node of the device is present, preserve it. 3020 */ 3021 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 3022 { 3023 if (fwnode) { 3024 struct fwnode_handle *fn = dev->fwnode; 3025 3026 if (fwnode_is_primary(fn)) 3027 fn = fn->secondary; 3028 3029 if (fn) { 3030 WARN_ON(fwnode->secondary); 3031 fwnode->secondary = fn; 3032 } 3033 dev->fwnode = fwnode; 3034 } else { 3035 dev->fwnode = fwnode_is_primary(dev->fwnode) ? 3036 dev->fwnode->secondary : NULL; 3037 } 3038 } 3039 EXPORT_SYMBOL_GPL(set_primary_fwnode); 3040 3041 /** 3042 * set_secondary_fwnode - Change the secondary firmware node of a given device. 3043 * @dev: Device to handle. 3044 * @fwnode: New secondary firmware node of the device. 3045 * 3046 * If a primary firmware node of the device is present, set its secondary 3047 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 3048 * @fwnode. 3049 */ 3050 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 3051 { 3052 if (fwnode) 3053 fwnode->secondary = ERR_PTR(-ENODEV); 3054 3055 if (fwnode_is_primary(dev->fwnode)) 3056 dev->fwnode->secondary = fwnode; 3057 else 3058 dev->fwnode = fwnode; 3059 } 3060 3061 /** 3062 * device_set_of_node_from_dev - reuse device-tree node of another device 3063 * @dev: device whose device-tree node is being set 3064 * @dev2: device whose device-tree node is being reused 3065 * 3066 * Takes another reference to the new device-tree node after first dropping 3067 * any reference held to the old node. 3068 */ 3069 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 3070 { 3071 of_node_put(dev->of_node); 3072 dev->of_node = of_node_get(dev2->of_node); 3073 dev->of_node_reused = true; 3074 } 3075 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 3076