xref: /openbmc/linux/drivers/base/core.c (revision 6219b20e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/swiotlb.h>
31 #include <linux/sysfs.h>
32 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
33 
34 #include "base.h"
35 #include "power/power.h"
36 
37 #ifdef CONFIG_SYSFS_DEPRECATED
38 #ifdef CONFIG_SYSFS_DEPRECATED_V2
39 long sysfs_deprecated = 1;
40 #else
41 long sysfs_deprecated = 0;
42 #endif
43 static int __init sysfs_deprecated_setup(char *arg)
44 {
45 	return kstrtol(arg, 10, &sysfs_deprecated);
46 }
47 early_param("sysfs.deprecated", sysfs_deprecated_setup);
48 #endif
49 
50 /* Device links support. */
51 static LIST_HEAD(deferred_sync);
52 static unsigned int defer_sync_state_count = 1;
53 static DEFINE_MUTEX(fwnode_link_lock);
54 static bool fw_devlink_is_permissive(void);
55 static bool fw_devlink_drv_reg_done;
56 
57 /**
58  * fwnode_link_add - Create a link between two fwnode_handles.
59  * @con: Consumer end of the link.
60  * @sup: Supplier end of the link.
61  *
62  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
63  * represents the detail that the firmware lists @sup fwnode as supplying a
64  * resource to @con.
65  *
66  * The driver core will use the fwnode link to create a device link between the
67  * two device objects corresponding to @con and @sup when they are created. The
68  * driver core will automatically delete the fwnode link between @con and @sup
69  * after doing that.
70  *
71  * Attempts to create duplicate links between the same pair of fwnode handles
72  * are ignored and there is no reference counting.
73  */
74 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
75 {
76 	struct fwnode_link *link;
77 	int ret = 0;
78 
79 	mutex_lock(&fwnode_link_lock);
80 
81 	list_for_each_entry(link, &sup->consumers, s_hook)
82 		if (link->consumer == con)
83 			goto out;
84 
85 	link = kzalloc(sizeof(*link), GFP_KERNEL);
86 	if (!link) {
87 		ret = -ENOMEM;
88 		goto out;
89 	}
90 
91 	link->supplier = sup;
92 	INIT_LIST_HEAD(&link->s_hook);
93 	link->consumer = con;
94 	INIT_LIST_HEAD(&link->c_hook);
95 
96 	list_add(&link->s_hook, &sup->consumers);
97 	list_add(&link->c_hook, &con->suppliers);
98 out:
99 	mutex_unlock(&fwnode_link_lock);
100 
101 	return ret;
102 }
103 
104 /**
105  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
106  * @fwnode: fwnode whose supplier links need to be deleted
107  *
108  * Deletes all supplier links connecting directly to @fwnode.
109  */
110 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
111 {
112 	struct fwnode_link *link, *tmp;
113 
114 	mutex_lock(&fwnode_link_lock);
115 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
116 		list_del(&link->s_hook);
117 		list_del(&link->c_hook);
118 		kfree(link);
119 	}
120 	mutex_unlock(&fwnode_link_lock);
121 }
122 
123 /**
124  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
125  * @fwnode: fwnode whose consumer links need to be deleted
126  *
127  * Deletes all consumer links connecting directly to @fwnode.
128  */
129 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
130 {
131 	struct fwnode_link *link, *tmp;
132 
133 	mutex_lock(&fwnode_link_lock);
134 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
135 		list_del(&link->s_hook);
136 		list_del(&link->c_hook);
137 		kfree(link);
138 	}
139 	mutex_unlock(&fwnode_link_lock);
140 }
141 
142 /**
143  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
144  * @fwnode: fwnode whose links needs to be deleted
145  *
146  * Deletes all links connecting directly to a fwnode.
147  */
148 void fwnode_links_purge(struct fwnode_handle *fwnode)
149 {
150 	fwnode_links_purge_suppliers(fwnode);
151 	fwnode_links_purge_consumers(fwnode);
152 }
153 
154 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
155 {
156 	struct fwnode_handle *child;
157 
158 	/* Don't purge consumer links of an added child */
159 	if (fwnode->dev)
160 		return;
161 
162 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
163 	fwnode_links_purge_consumers(fwnode);
164 
165 	fwnode_for_each_available_child_node(fwnode, child)
166 		fw_devlink_purge_absent_suppliers(child);
167 }
168 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
169 
170 #ifdef CONFIG_SRCU
171 static DEFINE_MUTEX(device_links_lock);
172 DEFINE_STATIC_SRCU(device_links_srcu);
173 
174 static inline void device_links_write_lock(void)
175 {
176 	mutex_lock(&device_links_lock);
177 }
178 
179 static inline void device_links_write_unlock(void)
180 {
181 	mutex_unlock(&device_links_lock);
182 }
183 
184 int device_links_read_lock(void) __acquires(&device_links_srcu)
185 {
186 	return srcu_read_lock(&device_links_srcu);
187 }
188 
189 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
190 {
191 	srcu_read_unlock(&device_links_srcu, idx);
192 }
193 
194 int device_links_read_lock_held(void)
195 {
196 	return srcu_read_lock_held(&device_links_srcu);
197 }
198 
199 static void device_link_synchronize_removal(void)
200 {
201 	synchronize_srcu(&device_links_srcu);
202 }
203 
204 static void device_link_remove_from_lists(struct device_link *link)
205 {
206 	list_del_rcu(&link->s_node);
207 	list_del_rcu(&link->c_node);
208 }
209 #else /* !CONFIG_SRCU */
210 static DECLARE_RWSEM(device_links_lock);
211 
212 static inline void device_links_write_lock(void)
213 {
214 	down_write(&device_links_lock);
215 }
216 
217 static inline void device_links_write_unlock(void)
218 {
219 	up_write(&device_links_lock);
220 }
221 
222 int device_links_read_lock(void)
223 {
224 	down_read(&device_links_lock);
225 	return 0;
226 }
227 
228 void device_links_read_unlock(int not_used)
229 {
230 	up_read(&device_links_lock);
231 }
232 
233 #ifdef CONFIG_DEBUG_LOCK_ALLOC
234 int device_links_read_lock_held(void)
235 {
236 	return lockdep_is_held(&device_links_lock);
237 }
238 #endif
239 
240 static inline void device_link_synchronize_removal(void)
241 {
242 }
243 
244 static void device_link_remove_from_lists(struct device_link *link)
245 {
246 	list_del(&link->s_node);
247 	list_del(&link->c_node);
248 }
249 #endif /* !CONFIG_SRCU */
250 
251 static bool device_is_ancestor(struct device *dev, struct device *target)
252 {
253 	while (target->parent) {
254 		target = target->parent;
255 		if (dev == target)
256 			return true;
257 	}
258 	return false;
259 }
260 
261 /**
262  * device_is_dependent - Check if one device depends on another one
263  * @dev: Device to check dependencies for.
264  * @target: Device to check against.
265  *
266  * Check if @target depends on @dev or any device dependent on it (its child or
267  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
268  */
269 int device_is_dependent(struct device *dev, void *target)
270 {
271 	struct device_link *link;
272 	int ret;
273 
274 	/*
275 	 * The "ancestors" check is needed to catch the case when the target
276 	 * device has not been completely initialized yet and it is still
277 	 * missing from the list of children of its parent device.
278 	 */
279 	if (dev == target || device_is_ancestor(dev, target))
280 		return 1;
281 
282 	ret = device_for_each_child(dev, target, device_is_dependent);
283 	if (ret)
284 		return ret;
285 
286 	list_for_each_entry(link, &dev->links.consumers, s_node) {
287 		if ((link->flags & ~DL_FLAG_INFERRED) ==
288 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
289 			continue;
290 
291 		if (link->consumer == target)
292 			return 1;
293 
294 		ret = device_is_dependent(link->consumer, target);
295 		if (ret)
296 			break;
297 	}
298 	return ret;
299 }
300 
301 static void device_link_init_status(struct device_link *link,
302 				    struct device *consumer,
303 				    struct device *supplier)
304 {
305 	switch (supplier->links.status) {
306 	case DL_DEV_PROBING:
307 		switch (consumer->links.status) {
308 		case DL_DEV_PROBING:
309 			/*
310 			 * A consumer driver can create a link to a supplier
311 			 * that has not completed its probing yet as long as it
312 			 * knows that the supplier is already functional (for
313 			 * example, it has just acquired some resources from the
314 			 * supplier).
315 			 */
316 			link->status = DL_STATE_CONSUMER_PROBE;
317 			break;
318 		default:
319 			link->status = DL_STATE_DORMANT;
320 			break;
321 		}
322 		break;
323 	case DL_DEV_DRIVER_BOUND:
324 		switch (consumer->links.status) {
325 		case DL_DEV_PROBING:
326 			link->status = DL_STATE_CONSUMER_PROBE;
327 			break;
328 		case DL_DEV_DRIVER_BOUND:
329 			link->status = DL_STATE_ACTIVE;
330 			break;
331 		default:
332 			link->status = DL_STATE_AVAILABLE;
333 			break;
334 		}
335 		break;
336 	case DL_DEV_UNBINDING:
337 		link->status = DL_STATE_SUPPLIER_UNBIND;
338 		break;
339 	default:
340 		link->status = DL_STATE_DORMANT;
341 		break;
342 	}
343 }
344 
345 static int device_reorder_to_tail(struct device *dev, void *not_used)
346 {
347 	struct device_link *link;
348 
349 	/*
350 	 * Devices that have not been registered yet will be put to the ends
351 	 * of the lists during the registration, so skip them here.
352 	 */
353 	if (device_is_registered(dev))
354 		devices_kset_move_last(dev);
355 
356 	if (device_pm_initialized(dev))
357 		device_pm_move_last(dev);
358 
359 	device_for_each_child(dev, NULL, device_reorder_to_tail);
360 	list_for_each_entry(link, &dev->links.consumers, s_node) {
361 		if ((link->flags & ~DL_FLAG_INFERRED) ==
362 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
363 			continue;
364 		device_reorder_to_tail(link->consumer, NULL);
365 	}
366 
367 	return 0;
368 }
369 
370 /**
371  * device_pm_move_to_tail - Move set of devices to the end of device lists
372  * @dev: Device to move
373  *
374  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
375  *
376  * It moves the @dev along with all of its children and all of its consumers
377  * to the ends of the device_kset and dpm_list, recursively.
378  */
379 void device_pm_move_to_tail(struct device *dev)
380 {
381 	int idx;
382 
383 	idx = device_links_read_lock();
384 	device_pm_lock();
385 	device_reorder_to_tail(dev, NULL);
386 	device_pm_unlock();
387 	device_links_read_unlock(idx);
388 }
389 
390 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
391 
392 static ssize_t status_show(struct device *dev,
393 			   struct device_attribute *attr, char *buf)
394 {
395 	const char *output;
396 
397 	switch (to_devlink(dev)->status) {
398 	case DL_STATE_NONE:
399 		output = "not tracked";
400 		break;
401 	case DL_STATE_DORMANT:
402 		output = "dormant";
403 		break;
404 	case DL_STATE_AVAILABLE:
405 		output = "available";
406 		break;
407 	case DL_STATE_CONSUMER_PROBE:
408 		output = "consumer probing";
409 		break;
410 	case DL_STATE_ACTIVE:
411 		output = "active";
412 		break;
413 	case DL_STATE_SUPPLIER_UNBIND:
414 		output = "supplier unbinding";
415 		break;
416 	default:
417 		output = "unknown";
418 		break;
419 	}
420 
421 	return sysfs_emit(buf, "%s\n", output);
422 }
423 static DEVICE_ATTR_RO(status);
424 
425 static ssize_t auto_remove_on_show(struct device *dev,
426 				   struct device_attribute *attr, char *buf)
427 {
428 	struct device_link *link = to_devlink(dev);
429 	const char *output;
430 
431 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
432 		output = "supplier unbind";
433 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
434 		output = "consumer unbind";
435 	else
436 		output = "never";
437 
438 	return sysfs_emit(buf, "%s\n", output);
439 }
440 static DEVICE_ATTR_RO(auto_remove_on);
441 
442 static ssize_t runtime_pm_show(struct device *dev,
443 			       struct device_attribute *attr, char *buf)
444 {
445 	struct device_link *link = to_devlink(dev);
446 
447 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
448 }
449 static DEVICE_ATTR_RO(runtime_pm);
450 
451 static ssize_t sync_state_only_show(struct device *dev,
452 				    struct device_attribute *attr, char *buf)
453 {
454 	struct device_link *link = to_devlink(dev);
455 
456 	return sysfs_emit(buf, "%d\n",
457 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
458 }
459 static DEVICE_ATTR_RO(sync_state_only);
460 
461 static struct attribute *devlink_attrs[] = {
462 	&dev_attr_status.attr,
463 	&dev_attr_auto_remove_on.attr,
464 	&dev_attr_runtime_pm.attr,
465 	&dev_attr_sync_state_only.attr,
466 	NULL,
467 };
468 ATTRIBUTE_GROUPS(devlink);
469 
470 static void device_link_release_fn(struct work_struct *work)
471 {
472 	struct device_link *link = container_of(work, struct device_link, rm_work);
473 
474 	/* Ensure that all references to the link object have been dropped. */
475 	device_link_synchronize_removal();
476 
477 	while (refcount_dec_not_one(&link->rpm_active))
478 		pm_runtime_put(link->supplier);
479 
480 	put_device(link->consumer);
481 	put_device(link->supplier);
482 	kfree(link);
483 }
484 
485 static void devlink_dev_release(struct device *dev)
486 {
487 	struct device_link *link = to_devlink(dev);
488 
489 	INIT_WORK(&link->rm_work, device_link_release_fn);
490 	/*
491 	 * It may take a while to complete this work because of the SRCU
492 	 * synchronization in device_link_release_fn() and if the consumer or
493 	 * supplier devices get deleted when it runs, so put it into the "long"
494 	 * workqueue.
495 	 */
496 	queue_work(system_long_wq, &link->rm_work);
497 }
498 
499 static struct class devlink_class = {
500 	.name = "devlink",
501 	.owner = THIS_MODULE,
502 	.dev_groups = devlink_groups,
503 	.dev_release = devlink_dev_release,
504 };
505 
506 static int devlink_add_symlinks(struct device *dev,
507 				struct class_interface *class_intf)
508 {
509 	int ret;
510 	size_t len;
511 	struct device_link *link = to_devlink(dev);
512 	struct device *sup = link->supplier;
513 	struct device *con = link->consumer;
514 	char *buf;
515 
516 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
517 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
518 	len += strlen(":");
519 	len += strlen("supplier:") + 1;
520 	buf = kzalloc(len, GFP_KERNEL);
521 	if (!buf)
522 		return -ENOMEM;
523 
524 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
525 	if (ret)
526 		goto out;
527 
528 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
529 	if (ret)
530 		goto err_con;
531 
532 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
533 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
534 	if (ret)
535 		goto err_con_dev;
536 
537 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
538 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
539 	if (ret)
540 		goto err_sup_dev;
541 
542 	goto out;
543 
544 err_sup_dev:
545 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
546 	sysfs_remove_link(&sup->kobj, buf);
547 err_con_dev:
548 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
549 err_con:
550 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
551 out:
552 	kfree(buf);
553 	return ret;
554 }
555 
556 static void devlink_remove_symlinks(struct device *dev,
557 				   struct class_interface *class_intf)
558 {
559 	struct device_link *link = to_devlink(dev);
560 	size_t len;
561 	struct device *sup = link->supplier;
562 	struct device *con = link->consumer;
563 	char *buf;
564 
565 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
566 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
567 
568 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
569 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
570 	len += strlen(":");
571 	len += strlen("supplier:") + 1;
572 	buf = kzalloc(len, GFP_KERNEL);
573 	if (!buf) {
574 		WARN(1, "Unable to properly free device link symlinks!\n");
575 		return;
576 	}
577 
578 	if (device_is_registered(con)) {
579 		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
580 		sysfs_remove_link(&con->kobj, buf);
581 	}
582 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
583 	sysfs_remove_link(&sup->kobj, buf);
584 	kfree(buf);
585 }
586 
587 static struct class_interface devlink_class_intf = {
588 	.class = &devlink_class,
589 	.add_dev = devlink_add_symlinks,
590 	.remove_dev = devlink_remove_symlinks,
591 };
592 
593 static int __init devlink_class_init(void)
594 {
595 	int ret;
596 
597 	ret = class_register(&devlink_class);
598 	if (ret)
599 		return ret;
600 
601 	ret = class_interface_register(&devlink_class_intf);
602 	if (ret)
603 		class_unregister(&devlink_class);
604 
605 	return ret;
606 }
607 postcore_initcall(devlink_class_init);
608 
609 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
610 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
611 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
612 			       DL_FLAG_SYNC_STATE_ONLY | \
613 			       DL_FLAG_INFERRED)
614 
615 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
616 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
617 
618 /**
619  * device_link_add - Create a link between two devices.
620  * @consumer: Consumer end of the link.
621  * @supplier: Supplier end of the link.
622  * @flags: Link flags.
623  *
624  * The caller is responsible for the proper synchronization of the link creation
625  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
626  * runtime PM framework to take the link into account.  Second, if the
627  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
628  * be forced into the active meta state and reference-counted upon the creation
629  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
630  * ignored.
631  *
632  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
633  * expected to release the link returned by it directly with the help of either
634  * device_link_del() or device_link_remove().
635  *
636  * If that flag is not set, however, the caller of this function is handing the
637  * management of the link over to the driver core entirely and its return value
638  * can only be used to check whether or not the link is present.  In that case,
639  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
640  * flags can be used to indicate to the driver core when the link can be safely
641  * deleted.  Namely, setting one of them in @flags indicates to the driver core
642  * that the link is not going to be used (by the given caller of this function)
643  * after unbinding the consumer or supplier driver, respectively, from its
644  * device, so the link can be deleted at that point.  If none of them is set,
645  * the link will be maintained until one of the devices pointed to by it (either
646  * the consumer or the supplier) is unregistered.
647  *
648  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
649  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
650  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
651  * be used to request the driver core to automatically probe for a consumer
652  * driver after successfully binding a driver to the supplier device.
653  *
654  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
655  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
656  * the same time is invalid and will cause NULL to be returned upfront.
657  * However, if a device link between the given @consumer and @supplier pair
658  * exists already when this function is called for them, the existing link will
659  * be returned regardless of its current type and status (the link's flags may
660  * be modified then).  The caller of this function is then expected to treat
661  * the link as though it has just been created, so (in particular) if
662  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
663  * explicitly when not needed any more (as stated above).
664  *
665  * A side effect of the link creation is re-ordering of dpm_list and the
666  * devices_kset list by moving the consumer device and all devices depending
667  * on it to the ends of these lists (that does not happen to devices that have
668  * not been registered when this function is called).
669  *
670  * The supplier device is required to be registered when this function is called
671  * and NULL will be returned if that is not the case.  The consumer device need
672  * not be registered, however.
673  */
674 struct device_link *device_link_add(struct device *consumer,
675 				    struct device *supplier, u32 flags)
676 {
677 	struct device_link *link;
678 
679 	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
680 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
681 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
682 	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
683 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
684 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
685 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
686 		return NULL;
687 
688 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
689 		if (pm_runtime_get_sync(supplier) < 0) {
690 			pm_runtime_put_noidle(supplier);
691 			return NULL;
692 		}
693 	}
694 
695 	if (!(flags & DL_FLAG_STATELESS))
696 		flags |= DL_FLAG_MANAGED;
697 
698 	device_links_write_lock();
699 	device_pm_lock();
700 
701 	/*
702 	 * If the supplier has not been fully registered yet or there is a
703 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
704 	 * the supplier already in the graph, return NULL. If the link is a
705 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
706 	 * because it only affects sync_state() callbacks.
707 	 */
708 	if (!device_pm_initialized(supplier)
709 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
710 		  device_is_dependent(consumer, supplier))) {
711 		link = NULL;
712 		goto out;
713 	}
714 
715 	/*
716 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
717 	 * So, only create it if the consumer hasn't probed yet.
718 	 */
719 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
720 	    consumer->links.status != DL_DEV_NO_DRIVER &&
721 	    consumer->links.status != DL_DEV_PROBING) {
722 		link = NULL;
723 		goto out;
724 	}
725 
726 	/*
727 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
728 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
729 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
730 	 */
731 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
732 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
733 
734 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
735 		if (link->consumer != consumer)
736 			continue;
737 
738 		if (link->flags & DL_FLAG_INFERRED &&
739 		    !(flags & DL_FLAG_INFERRED))
740 			link->flags &= ~DL_FLAG_INFERRED;
741 
742 		if (flags & DL_FLAG_PM_RUNTIME) {
743 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
744 				pm_runtime_new_link(consumer);
745 				link->flags |= DL_FLAG_PM_RUNTIME;
746 			}
747 			if (flags & DL_FLAG_RPM_ACTIVE)
748 				refcount_inc(&link->rpm_active);
749 		}
750 
751 		if (flags & DL_FLAG_STATELESS) {
752 			kref_get(&link->kref);
753 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
754 			    !(link->flags & DL_FLAG_STATELESS)) {
755 				link->flags |= DL_FLAG_STATELESS;
756 				goto reorder;
757 			} else {
758 				link->flags |= DL_FLAG_STATELESS;
759 				goto out;
760 			}
761 		}
762 
763 		/*
764 		 * If the life time of the link following from the new flags is
765 		 * longer than indicated by the flags of the existing link,
766 		 * update the existing link to stay around longer.
767 		 */
768 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
769 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
770 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
771 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
772 			}
773 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
774 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
775 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
776 		}
777 		if (!(link->flags & DL_FLAG_MANAGED)) {
778 			kref_get(&link->kref);
779 			link->flags |= DL_FLAG_MANAGED;
780 			device_link_init_status(link, consumer, supplier);
781 		}
782 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
783 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
784 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
785 			goto reorder;
786 		}
787 
788 		goto out;
789 	}
790 
791 	link = kzalloc(sizeof(*link), GFP_KERNEL);
792 	if (!link)
793 		goto out;
794 
795 	refcount_set(&link->rpm_active, 1);
796 
797 	get_device(supplier);
798 	link->supplier = supplier;
799 	INIT_LIST_HEAD(&link->s_node);
800 	get_device(consumer);
801 	link->consumer = consumer;
802 	INIT_LIST_HEAD(&link->c_node);
803 	link->flags = flags;
804 	kref_init(&link->kref);
805 
806 	link->link_dev.class = &devlink_class;
807 	device_set_pm_not_required(&link->link_dev);
808 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
809 		     dev_bus_name(supplier), dev_name(supplier),
810 		     dev_bus_name(consumer), dev_name(consumer));
811 	if (device_register(&link->link_dev)) {
812 		put_device(consumer);
813 		put_device(supplier);
814 		kfree(link);
815 		link = NULL;
816 		goto out;
817 	}
818 
819 	if (flags & DL_FLAG_PM_RUNTIME) {
820 		if (flags & DL_FLAG_RPM_ACTIVE)
821 			refcount_inc(&link->rpm_active);
822 
823 		pm_runtime_new_link(consumer);
824 	}
825 
826 	/* Determine the initial link state. */
827 	if (flags & DL_FLAG_STATELESS)
828 		link->status = DL_STATE_NONE;
829 	else
830 		device_link_init_status(link, consumer, supplier);
831 
832 	/*
833 	 * Some callers expect the link creation during consumer driver probe to
834 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
835 	 */
836 	if (link->status == DL_STATE_CONSUMER_PROBE &&
837 	    flags & DL_FLAG_PM_RUNTIME)
838 		pm_runtime_resume(supplier);
839 
840 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
841 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
842 
843 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
844 		dev_dbg(consumer,
845 			"Linked as a sync state only consumer to %s\n",
846 			dev_name(supplier));
847 		goto out;
848 	}
849 
850 reorder:
851 	/*
852 	 * Move the consumer and all of the devices depending on it to the end
853 	 * of dpm_list and the devices_kset list.
854 	 *
855 	 * It is necessary to hold dpm_list locked throughout all that or else
856 	 * we may end up suspending with a wrong ordering of it.
857 	 */
858 	device_reorder_to_tail(consumer, NULL);
859 
860 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
861 
862 out:
863 	device_pm_unlock();
864 	device_links_write_unlock();
865 
866 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
867 		pm_runtime_put(supplier);
868 
869 	return link;
870 }
871 EXPORT_SYMBOL_GPL(device_link_add);
872 
873 static void __device_link_del(struct kref *kref)
874 {
875 	struct device_link *link = container_of(kref, struct device_link, kref);
876 
877 	dev_dbg(link->consumer, "Dropping the link to %s\n",
878 		dev_name(link->supplier));
879 
880 	pm_runtime_drop_link(link);
881 
882 	device_link_remove_from_lists(link);
883 	device_unregister(&link->link_dev);
884 }
885 
886 static void device_link_put_kref(struct device_link *link)
887 {
888 	if (link->flags & DL_FLAG_STATELESS)
889 		kref_put(&link->kref, __device_link_del);
890 	else if (!device_is_registered(link->consumer))
891 		__device_link_del(&link->kref);
892 	else
893 		WARN(1, "Unable to drop a managed device link reference\n");
894 }
895 
896 /**
897  * device_link_del - Delete a stateless link between two devices.
898  * @link: Device link to delete.
899  *
900  * The caller must ensure proper synchronization of this function with runtime
901  * PM.  If the link was added multiple times, it needs to be deleted as often.
902  * Care is required for hotplugged devices:  Their links are purged on removal
903  * and calling device_link_del() is then no longer allowed.
904  */
905 void device_link_del(struct device_link *link)
906 {
907 	device_links_write_lock();
908 	device_link_put_kref(link);
909 	device_links_write_unlock();
910 }
911 EXPORT_SYMBOL_GPL(device_link_del);
912 
913 /**
914  * device_link_remove - Delete a stateless link between two devices.
915  * @consumer: Consumer end of the link.
916  * @supplier: Supplier end of the link.
917  *
918  * The caller must ensure proper synchronization of this function with runtime
919  * PM.
920  */
921 void device_link_remove(void *consumer, struct device *supplier)
922 {
923 	struct device_link *link;
924 
925 	if (WARN_ON(consumer == supplier))
926 		return;
927 
928 	device_links_write_lock();
929 
930 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
931 		if (link->consumer == consumer) {
932 			device_link_put_kref(link);
933 			break;
934 		}
935 	}
936 
937 	device_links_write_unlock();
938 }
939 EXPORT_SYMBOL_GPL(device_link_remove);
940 
941 static void device_links_missing_supplier(struct device *dev)
942 {
943 	struct device_link *link;
944 
945 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
946 		if (link->status != DL_STATE_CONSUMER_PROBE)
947 			continue;
948 
949 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
950 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
951 		} else {
952 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
953 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
954 		}
955 	}
956 }
957 
958 /**
959  * device_links_check_suppliers - Check presence of supplier drivers.
960  * @dev: Consumer device.
961  *
962  * Check links from this device to any suppliers.  Walk the list of the device's
963  * links to suppliers and see if all of them are available.  If not, simply
964  * return -EPROBE_DEFER.
965  *
966  * We need to guarantee that the supplier will not go away after the check has
967  * been positive here.  It only can go away in __device_release_driver() and
968  * that function  checks the device's links to consumers.  This means we need to
969  * mark the link as "consumer probe in progress" to make the supplier removal
970  * wait for us to complete (or bad things may happen).
971  *
972  * Links without the DL_FLAG_MANAGED flag set are ignored.
973  */
974 int device_links_check_suppliers(struct device *dev)
975 {
976 	struct device_link *link;
977 	int ret = 0;
978 
979 	/*
980 	 * Device waiting for supplier to become available is not allowed to
981 	 * probe.
982 	 */
983 	mutex_lock(&fwnode_link_lock);
984 	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
985 	    !fw_devlink_is_permissive()) {
986 		dev_dbg(dev, "probe deferral - wait for supplier %pfwP\n",
987 			list_first_entry(&dev->fwnode->suppliers,
988 			struct fwnode_link,
989 			c_hook)->supplier);
990 		mutex_unlock(&fwnode_link_lock);
991 		return -EPROBE_DEFER;
992 	}
993 	mutex_unlock(&fwnode_link_lock);
994 
995 	device_links_write_lock();
996 
997 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
998 		if (!(link->flags & DL_FLAG_MANAGED))
999 			continue;
1000 
1001 		if (link->status != DL_STATE_AVAILABLE &&
1002 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1003 			device_links_missing_supplier(dev);
1004 			dev_dbg(dev, "probe deferral - supplier %s not ready\n",
1005 				dev_name(link->supplier));
1006 			ret = -EPROBE_DEFER;
1007 			break;
1008 		}
1009 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1010 	}
1011 	dev->links.status = DL_DEV_PROBING;
1012 
1013 	device_links_write_unlock();
1014 	return ret;
1015 }
1016 
1017 /**
1018  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1019  * @dev: Device to call sync_state() on
1020  * @list: List head to queue the @dev on
1021  *
1022  * Queues a device for a sync_state() callback when the device links write lock
1023  * isn't held. This allows the sync_state() execution flow to use device links
1024  * APIs.  The caller must ensure this function is called with
1025  * device_links_write_lock() held.
1026  *
1027  * This function does a get_device() to make sure the device is not freed while
1028  * on this list.
1029  *
1030  * So the caller must also ensure that device_links_flush_sync_list() is called
1031  * as soon as the caller releases device_links_write_lock().  This is necessary
1032  * to make sure the sync_state() is called in a timely fashion and the
1033  * put_device() is called on this device.
1034  */
1035 static void __device_links_queue_sync_state(struct device *dev,
1036 					    struct list_head *list)
1037 {
1038 	struct device_link *link;
1039 
1040 	if (!dev_has_sync_state(dev))
1041 		return;
1042 	if (dev->state_synced)
1043 		return;
1044 
1045 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1046 		if (!(link->flags & DL_FLAG_MANAGED))
1047 			continue;
1048 		if (link->status != DL_STATE_ACTIVE)
1049 			return;
1050 	}
1051 
1052 	/*
1053 	 * Set the flag here to avoid adding the same device to a list more
1054 	 * than once. This can happen if new consumers get added to the device
1055 	 * and probed before the list is flushed.
1056 	 */
1057 	dev->state_synced = true;
1058 
1059 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1060 		return;
1061 
1062 	get_device(dev);
1063 	list_add_tail(&dev->links.defer_sync, list);
1064 }
1065 
1066 /**
1067  * device_links_flush_sync_list - Call sync_state() on a list of devices
1068  * @list: List of devices to call sync_state() on
1069  * @dont_lock_dev: Device for which lock is already held by the caller
1070  *
1071  * Calls sync_state() on all the devices that have been queued for it. This
1072  * function is used in conjunction with __device_links_queue_sync_state(). The
1073  * @dont_lock_dev parameter is useful when this function is called from a
1074  * context where a device lock is already held.
1075  */
1076 static void device_links_flush_sync_list(struct list_head *list,
1077 					 struct device *dont_lock_dev)
1078 {
1079 	struct device *dev, *tmp;
1080 
1081 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1082 		list_del_init(&dev->links.defer_sync);
1083 
1084 		if (dev != dont_lock_dev)
1085 			device_lock(dev);
1086 
1087 		if (dev->bus->sync_state)
1088 			dev->bus->sync_state(dev);
1089 		else if (dev->driver && dev->driver->sync_state)
1090 			dev->driver->sync_state(dev);
1091 
1092 		if (dev != dont_lock_dev)
1093 			device_unlock(dev);
1094 
1095 		put_device(dev);
1096 	}
1097 }
1098 
1099 void device_links_supplier_sync_state_pause(void)
1100 {
1101 	device_links_write_lock();
1102 	defer_sync_state_count++;
1103 	device_links_write_unlock();
1104 }
1105 
1106 void device_links_supplier_sync_state_resume(void)
1107 {
1108 	struct device *dev, *tmp;
1109 	LIST_HEAD(sync_list);
1110 
1111 	device_links_write_lock();
1112 	if (!defer_sync_state_count) {
1113 		WARN(true, "Unmatched sync_state pause/resume!");
1114 		goto out;
1115 	}
1116 	defer_sync_state_count--;
1117 	if (defer_sync_state_count)
1118 		goto out;
1119 
1120 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1121 		/*
1122 		 * Delete from deferred_sync list before queuing it to
1123 		 * sync_list because defer_sync is used for both lists.
1124 		 */
1125 		list_del_init(&dev->links.defer_sync);
1126 		__device_links_queue_sync_state(dev, &sync_list);
1127 	}
1128 out:
1129 	device_links_write_unlock();
1130 
1131 	device_links_flush_sync_list(&sync_list, NULL);
1132 }
1133 
1134 static int sync_state_resume_initcall(void)
1135 {
1136 	device_links_supplier_sync_state_resume();
1137 	return 0;
1138 }
1139 late_initcall(sync_state_resume_initcall);
1140 
1141 static void __device_links_supplier_defer_sync(struct device *sup)
1142 {
1143 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1144 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1145 }
1146 
1147 static void device_link_drop_managed(struct device_link *link)
1148 {
1149 	link->flags &= ~DL_FLAG_MANAGED;
1150 	WRITE_ONCE(link->status, DL_STATE_NONE);
1151 	kref_put(&link->kref, __device_link_del);
1152 }
1153 
1154 static ssize_t waiting_for_supplier_show(struct device *dev,
1155 					 struct device_attribute *attr,
1156 					 char *buf)
1157 {
1158 	bool val;
1159 
1160 	device_lock(dev);
1161 	val = !list_empty(&dev->fwnode->suppliers);
1162 	device_unlock(dev);
1163 	return sysfs_emit(buf, "%u\n", val);
1164 }
1165 static DEVICE_ATTR_RO(waiting_for_supplier);
1166 
1167 /**
1168  * device_links_force_bind - Prepares device to be force bound
1169  * @dev: Consumer device.
1170  *
1171  * device_bind_driver() force binds a device to a driver without calling any
1172  * driver probe functions. So the consumer really isn't going to wait for any
1173  * supplier before it's bound to the driver. We still want the device link
1174  * states to be sensible when this happens.
1175  *
1176  * In preparation for device_bind_driver(), this function goes through each
1177  * supplier device links and checks if the supplier is bound. If it is, then
1178  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1179  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1180  */
1181 void device_links_force_bind(struct device *dev)
1182 {
1183 	struct device_link *link, *ln;
1184 
1185 	device_links_write_lock();
1186 
1187 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1188 		if (!(link->flags & DL_FLAG_MANAGED))
1189 			continue;
1190 
1191 		if (link->status != DL_STATE_AVAILABLE) {
1192 			device_link_drop_managed(link);
1193 			continue;
1194 		}
1195 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1196 	}
1197 	dev->links.status = DL_DEV_PROBING;
1198 
1199 	device_links_write_unlock();
1200 }
1201 
1202 /**
1203  * device_links_driver_bound - Update device links after probing its driver.
1204  * @dev: Device to update the links for.
1205  *
1206  * The probe has been successful, so update links from this device to any
1207  * consumers by changing their status to "available".
1208  *
1209  * Also change the status of @dev's links to suppliers to "active".
1210  *
1211  * Links without the DL_FLAG_MANAGED flag set are ignored.
1212  */
1213 void device_links_driver_bound(struct device *dev)
1214 {
1215 	struct device_link *link, *ln;
1216 	LIST_HEAD(sync_list);
1217 
1218 	/*
1219 	 * If a device binds successfully, it's expected to have created all
1220 	 * the device links it needs to or make new device links as it needs
1221 	 * them. So, fw_devlink no longer needs to create device links to any
1222 	 * of the device's suppliers.
1223 	 *
1224 	 * Also, if a child firmware node of this bound device is not added as
1225 	 * a device by now, assume it is never going to be added and make sure
1226 	 * other devices don't defer probe indefinitely by waiting for such a
1227 	 * child device.
1228 	 */
1229 	if (dev->fwnode && dev->fwnode->dev == dev) {
1230 		struct fwnode_handle *child;
1231 		fwnode_links_purge_suppliers(dev->fwnode);
1232 		fwnode_for_each_available_child_node(dev->fwnode, child)
1233 			fw_devlink_purge_absent_suppliers(child);
1234 	}
1235 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1236 
1237 	device_links_write_lock();
1238 
1239 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1240 		if (!(link->flags & DL_FLAG_MANAGED))
1241 			continue;
1242 
1243 		/*
1244 		 * Links created during consumer probe may be in the "consumer
1245 		 * probe" state to start with if the supplier is still probing
1246 		 * when they are created and they may become "active" if the
1247 		 * consumer probe returns first.  Skip them here.
1248 		 */
1249 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1250 		    link->status == DL_STATE_ACTIVE)
1251 			continue;
1252 
1253 		WARN_ON(link->status != DL_STATE_DORMANT);
1254 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1255 
1256 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1257 			driver_deferred_probe_add(link->consumer);
1258 	}
1259 
1260 	if (defer_sync_state_count)
1261 		__device_links_supplier_defer_sync(dev);
1262 	else
1263 		__device_links_queue_sync_state(dev, &sync_list);
1264 
1265 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1266 		struct device *supplier;
1267 
1268 		if (!(link->flags & DL_FLAG_MANAGED))
1269 			continue;
1270 
1271 		supplier = link->supplier;
1272 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1273 			/*
1274 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1275 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1276 			 * save to drop the managed link completely.
1277 			 */
1278 			device_link_drop_managed(link);
1279 		} else {
1280 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1281 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1282 		}
1283 
1284 		/*
1285 		 * This needs to be done even for the deleted
1286 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1287 		 * device link that was preventing the supplier from getting a
1288 		 * sync_state() call.
1289 		 */
1290 		if (defer_sync_state_count)
1291 			__device_links_supplier_defer_sync(supplier);
1292 		else
1293 			__device_links_queue_sync_state(supplier, &sync_list);
1294 	}
1295 
1296 	dev->links.status = DL_DEV_DRIVER_BOUND;
1297 
1298 	device_links_write_unlock();
1299 
1300 	device_links_flush_sync_list(&sync_list, dev);
1301 }
1302 
1303 /**
1304  * __device_links_no_driver - Update links of a device without a driver.
1305  * @dev: Device without a drvier.
1306  *
1307  * Delete all non-persistent links from this device to any suppliers.
1308  *
1309  * Persistent links stay around, but their status is changed to "available",
1310  * unless they already are in the "supplier unbind in progress" state in which
1311  * case they need not be updated.
1312  *
1313  * Links without the DL_FLAG_MANAGED flag set are ignored.
1314  */
1315 static void __device_links_no_driver(struct device *dev)
1316 {
1317 	struct device_link *link, *ln;
1318 
1319 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1320 		if (!(link->flags & DL_FLAG_MANAGED))
1321 			continue;
1322 
1323 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1324 			device_link_drop_managed(link);
1325 			continue;
1326 		}
1327 
1328 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1329 		    link->status != DL_STATE_ACTIVE)
1330 			continue;
1331 
1332 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1333 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1334 		} else {
1335 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1336 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1337 		}
1338 	}
1339 
1340 	dev->links.status = DL_DEV_NO_DRIVER;
1341 }
1342 
1343 /**
1344  * device_links_no_driver - Update links after failing driver probe.
1345  * @dev: Device whose driver has just failed to probe.
1346  *
1347  * Clean up leftover links to consumers for @dev and invoke
1348  * %__device_links_no_driver() to update links to suppliers for it as
1349  * appropriate.
1350  *
1351  * Links without the DL_FLAG_MANAGED flag set are ignored.
1352  */
1353 void device_links_no_driver(struct device *dev)
1354 {
1355 	struct device_link *link;
1356 
1357 	device_links_write_lock();
1358 
1359 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1360 		if (!(link->flags & DL_FLAG_MANAGED))
1361 			continue;
1362 
1363 		/*
1364 		 * The probe has failed, so if the status of the link is
1365 		 * "consumer probe" or "active", it must have been added by
1366 		 * a probing consumer while this device was still probing.
1367 		 * Change its state to "dormant", as it represents a valid
1368 		 * relationship, but it is not functionally meaningful.
1369 		 */
1370 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1371 		    link->status == DL_STATE_ACTIVE)
1372 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1373 	}
1374 
1375 	__device_links_no_driver(dev);
1376 
1377 	device_links_write_unlock();
1378 }
1379 
1380 /**
1381  * device_links_driver_cleanup - Update links after driver removal.
1382  * @dev: Device whose driver has just gone away.
1383  *
1384  * Update links to consumers for @dev by changing their status to "dormant" and
1385  * invoke %__device_links_no_driver() to update links to suppliers for it as
1386  * appropriate.
1387  *
1388  * Links without the DL_FLAG_MANAGED flag set are ignored.
1389  */
1390 void device_links_driver_cleanup(struct device *dev)
1391 {
1392 	struct device_link *link, *ln;
1393 
1394 	device_links_write_lock();
1395 
1396 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1397 		if (!(link->flags & DL_FLAG_MANAGED))
1398 			continue;
1399 
1400 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1401 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1402 
1403 		/*
1404 		 * autoremove the links between this @dev and its consumer
1405 		 * devices that are not active, i.e. where the link state
1406 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1407 		 */
1408 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1409 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1410 			device_link_drop_managed(link);
1411 
1412 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1413 	}
1414 
1415 	list_del_init(&dev->links.defer_sync);
1416 	__device_links_no_driver(dev);
1417 
1418 	device_links_write_unlock();
1419 }
1420 
1421 /**
1422  * device_links_busy - Check if there are any busy links to consumers.
1423  * @dev: Device to check.
1424  *
1425  * Check each consumer of the device and return 'true' if its link's status
1426  * is one of "consumer probe" or "active" (meaning that the given consumer is
1427  * probing right now or its driver is present).  Otherwise, change the link
1428  * state to "supplier unbind" to prevent the consumer from being probed
1429  * successfully going forward.
1430  *
1431  * Return 'false' if there are no probing or active consumers.
1432  *
1433  * Links without the DL_FLAG_MANAGED flag set are ignored.
1434  */
1435 bool device_links_busy(struct device *dev)
1436 {
1437 	struct device_link *link;
1438 	bool ret = false;
1439 
1440 	device_links_write_lock();
1441 
1442 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1443 		if (!(link->flags & DL_FLAG_MANAGED))
1444 			continue;
1445 
1446 		if (link->status == DL_STATE_CONSUMER_PROBE
1447 		    || link->status == DL_STATE_ACTIVE) {
1448 			ret = true;
1449 			break;
1450 		}
1451 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1452 	}
1453 
1454 	dev->links.status = DL_DEV_UNBINDING;
1455 
1456 	device_links_write_unlock();
1457 	return ret;
1458 }
1459 
1460 /**
1461  * device_links_unbind_consumers - Force unbind consumers of the given device.
1462  * @dev: Device to unbind the consumers of.
1463  *
1464  * Walk the list of links to consumers for @dev and if any of them is in the
1465  * "consumer probe" state, wait for all device probes in progress to complete
1466  * and start over.
1467  *
1468  * If that's not the case, change the status of the link to "supplier unbind"
1469  * and check if the link was in the "active" state.  If so, force the consumer
1470  * driver to unbind and start over (the consumer will not re-probe as we have
1471  * changed the state of the link already).
1472  *
1473  * Links without the DL_FLAG_MANAGED flag set are ignored.
1474  */
1475 void device_links_unbind_consumers(struct device *dev)
1476 {
1477 	struct device_link *link;
1478 
1479  start:
1480 	device_links_write_lock();
1481 
1482 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1483 		enum device_link_state status;
1484 
1485 		if (!(link->flags & DL_FLAG_MANAGED) ||
1486 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1487 			continue;
1488 
1489 		status = link->status;
1490 		if (status == DL_STATE_CONSUMER_PROBE) {
1491 			device_links_write_unlock();
1492 
1493 			wait_for_device_probe();
1494 			goto start;
1495 		}
1496 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1497 		if (status == DL_STATE_ACTIVE) {
1498 			struct device *consumer = link->consumer;
1499 
1500 			get_device(consumer);
1501 
1502 			device_links_write_unlock();
1503 
1504 			device_release_driver_internal(consumer, NULL,
1505 						       consumer->parent);
1506 			put_device(consumer);
1507 			goto start;
1508 		}
1509 	}
1510 
1511 	device_links_write_unlock();
1512 }
1513 
1514 /**
1515  * device_links_purge - Delete existing links to other devices.
1516  * @dev: Target device.
1517  */
1518 static void device_links_purge(struct device *dev)
1519 {
1520 	struct device_link *link, *ln;
1521 
1522 	if (dev->class == &devlink_class)
1523 		return;
1524 
1525 	/*
1526 	 * Delete all of the remaining links from this device to any other
1527 	 * devices (either consumers or suppliers).
1528 	 */
1529 	device_links_write_lock();
1530 
1531 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1532 		WARN_ON(link->status == DL_STATE_ACTIVE);
1533 		__device_link_del(&link->kref);
1534 	}
1535 
1536 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1537 		WARN_ON(link->status != DL_STATE_DORMANT &&
1538 			link->status != DL_STATE_NONE);
1539 		__device_link_del(&link->kref);
1540 	}
1541 
1542 	device_links_write_unlock();
1543 }
1544 
1545 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1546 					 DL_FLAG_SYNC_STATE_ONLY)
1547 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1548 					 DL_FLAG_AUTOPROBE_CONSUMER)
1549 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1550 					 DL_FLAG_PM_RUNTIME)
1551 
1552 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1553 static int __init fw_devlink_setup(char *arg)
1554 {
1555 	if (!arg)
1556 		return -EINVAL;
1557 
1558 	if (strcmp(arg, "off") == 0) {
1559 		fw_devlink_flags = 0;
1560 	} else if (strcmp(arg, "permissive") == 0) {
1561 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1562 	} else if (strcmp(arg, "on") == 0) {
1563 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1564 	} else if (strcmp(arg, "rpm") == 0) {
1565 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1566 	}
1567 	return 0;
1568 }
1569 early_param("fw_devlink", fw_devlink_setup);
1570 
1571 static bool fw_devlink_strict;
1572 static int __init fw_devlink_strict_setup(char *arg)
1573 {
1574 	return strtobool(arg, &fw_devlink_strict);
1575 }
1576 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1577 
1578 u32 fw_devlink_get_flags(void)
1579 {
1580 	return fw_devlink_flags;
1581 }
1582 
1583 static bool fw_devlink_is_permissive(void)
1584 {
1585 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1586 }
1587 
1588 bool fw_devlink_is_strict(void)
1589 {
1590 	return fw_devlink_strict && !fw_devlink_is_permissive();
1591 }
1592 
1593 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1594 {
1595 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1596 		return;
1597 
1598 	fwnode_call_int_op(fwnode, add_links);
1599 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1600 }
1601 
1602 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1603 {
1604 	struct fwnode_handle *child = NULL;
1605 
1606 	fw_devlink_parse_fwnode(fwnode);
1607 
1608 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1609 		fw_devlink_parse_fwtree(child);
1610 }
1611 
1612 static void fw_devlink_relax_link(struct device_link *link)
1613 {
1614 	if (!(link->flags & DL_FLAG_INFERRED))
1615 		return;
1616 
1617 	if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1618 		return;
1619 
1620 	pm_runtime_drop_link(link);
1621 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1622 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1623 		dev_name(link->supplier));
1624 }
1625 
1626 static int fw_devlink_no_driver(struct device *dev, void *data)
1627 {
1628 	struct device_link *link = to_devlink(dev);
1629 
1630 	if (!link->supplier->can_match)
1631 		fw_devlink_relax_link(link);
1632 
1633 	return 0;
1634 }
1635 
1636 void fw_devlink_drivers_done(void)
1637 {
1638 	fw_devlink_drv_reg_done = true;
1639 	device_links_write_lock();
1640 	class_for_each_device(&devlink_class, NULL, NULL,
1641 			      fw_devlink_no_driver);
1642 	device_links_write_unlock();
1643 }
1644 
1645 static void fw_devlink_unblock_consumers(struct device *dev)
1646 {
1647 	struct device_link *link;
1648 
1649 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1650 		return;
1651 
1652 	device_links_write_lock();
1653 	list_for_each_entry(link, &dev->links.consumers, s_node)
1654 		fw_devlink_relax_link(link);
1655 	device_links_write_unlock();
1656 }
1657 
1658 /**
1659  * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1660  * @con: Device to check dependencies for.
1661  * @sup: Device to check against.
1662  *
1663  * Check if @sup depends on @con or any device dependent on it (its child or
1664  * its consumer etc).  When such a cyclic dependency is found, convert all
1665  * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1666  * This is the equivalent of doing fw_devlink=permissive just between the
1667  * devices in the cycle. We need to do this because, at this point, fw_devlink
1668  * can't tell which of these dependencies is not a real dependency.
1669  *
1670  * Return 1 if a cycle is found. Otherwise, return 0.
1671  */
1672 static int fw_devlink_relax_cycle(struct device *con, void *sup)
1673 {
1674 	struct device_link *link;
1675 	int ret;
1676 
1677 	if (con == sup)
1678 		return 1;
1679 
1680 	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1681 	if (ret)
1682 		return ret;
1683 
1684 	list_for_each_entry(link, &con->links.consumers, s_node) {
1685 		if ((link->flags & ~DL_FLAG_INFERRED) ==
1686 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1687 			continue;
1688 
1689 		if (!fw_devlink_relax_cycle(link->consumer, sup))
1690 			continue;
1691 
1692 		ret = 1;
1693 
1694 		fw_devlink_relax_link(link);
1695 	}
1696 	return ret;
1697 }
1698 
1699 /**
1700  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1701  * @con: consumer device for the device link
1702  * @sup_handle: fwnode handle of supplier
1703  * @flags: devlink flags
1704  *
1705  * This function will try to create a device link between the consumer device
1706  * @con and the supplier device represented by @sup_handle.
1707  *
1708  * The supplier has to be provided as a fwnode because incorrect cycles in
1709  * fwnode links can sometimes cause the supplier device to never be created.
1710  * This function detects such cases and returns an error if it cannot create a
1711  * device link from the consumer to a missing supplier.
1712  *
1713  * Returns,
1714  * 0 on successfully creating a device link
1715  * -EINVAL if the device link cannot be created as expected
1716  * -EAGAIN if the device link cannot be created right now, but it may be
1717  *  possible to do that in the future
1718  */
1719 static int fw_devlink_create_devlink(struct device *con,
1720 				     struct fwnode_handle *sup_handle, u32 flags)
1721 {
1722 	struct device *sup_dev;
1723 	int ret = 0;
1724 
1725 	sup_dev = get_dev_from_fwnode(sup_handle);
1726 	if (sup_dev) {
1727 		/*
1728 		 * If it's one of those drivers that don't actually bind to
1729 		 * their device using driver core, then don't wait on this
1730 		 * supplier device indefinitely.
1731 		 */
1732 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1733 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1734 			ret = -EINVAL;
1735 			goto out;
1736 		}
1737 
1738 		/*
1739 		 * If this fails, it is due to cycles in device links.  Just
1740 		 * give up on this link and treat it as invalid.
1741 		 */
1742 		if (!device_link_add(con, sup_dev, flags) &&
1743 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1744 			dev_info(con, "Fixing up cyclic dependency with %s\n",
1745 				 dev_name(sup_dev));
1746 			device_links_write_lock();
1747 			fw_devlink_relax_cycle(con, sup_dev);
1748 			device_links_write_unlock();
1749 			device_link_add(con, sup_dev,
1750 					FW_DEVLINK_FLAGS_PERMISSIVE);
1751 			ret = -EINVAL;
1752 		}
1753 
1754 		goto out;
1755 	}
1756 
1757 	/* Supplier that's already initialized without a struct device. */
1758 	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1759 		return -EINVAL;
1760 
1761 	/*
1762 	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1763 	 * cycles. So cycle detection isn't necessary and shouldn't be
1764 	 * done.
1765 	 */
1766 	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1767 		return -EAGAIN;
1768 
1769 	/*
1770 	 * If we can't find the supplier device from its fwnode, it might be
1771 	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1772 	 * be broken by applying logic. Check for these types of cycles and
1773 	 * break them so that devices in the cycle probe properly.
1774 	 *
1775 	 * If the supplier's parent is dependent on the consumer, then
1776 	 * the consumer-supplier dependency is a false dependency. So,
1777 	 * treat it as an invalid link.
1778 	 */
1779 	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1780 	if (sup_dev && device_is_dependent(con, sup_dev)) {
1781 		dev_dbg(con, "Not linking to %pfwP - False link\n",
1782 			sup_handle);
1783 		ret = -EINVAL;
1784 	} else {
1785 		/*
1786 		 * Can't check for cycles or no cycles. So let's try
1787 		 * again later.
1788 		 */
1789 		ret = -EAGAIN;
1790 	}
1791 
1792 out:
1793 	put_device(sup_dev);
1794 	return ret;
1795 }
1796 
1797 /**
1798  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1799  * @dev: Device that needs to be linked to its consumers
1800  *
1801  * This function looks at all the consumer fwnodes of @dev and creates device
1802  * links between the consumer device and @dev (supplier).
1803  *
1804  * If the consumer device has not been added yet, then this function creates a
1805  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1806  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1807  * sync_state() callback before the real consumer device gets to be added and
1808  * then probed.
1809  *
1810  * Once device links are created from the real consumer to @dev (supplier), the
1811  * fwnode links are deleted.
1812  */
1813 static void __fw_devlink_link_to_consumers(struct device *dev)
1814 {
1815 	struct fwnode_handle *fwnode = dev->fwnode;
1816 	struct fwnode_link *link, *tmp;
1817 
1818 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1819 		u32 dl_flags = fw_devlink_get_flags();
1820 		struct device *con_dev;
1821 		bool own_link = true;
1822 		int ret;
1823 
1824 		con_dev = get_dev_from_fwnode(link->consumer);
1825 		/*
1826 		 * If consumer device is not available yet, make a "proxy"
1827 		 * SYNC_STATE_ONLY link from the consumer's parent device to
1828 		 * the supplier device. This is necessary to make sure the
1829 		 * supplier doesn't get a sync_state() callback before the real
1830 		 * consumer can create a device link to the supplier.
1831 		 *
1832 		 * This proxy link step is needed to handle the case where the
1833 		 * consumer's parent device is added before the supplier.
1834 		 */
1835 		if (!con_dev) {
1836 			con_dev = fwnode_get_next_parent_dev(link->consumer);
1837 			/*
1838 			 * However, if the consumer's parent device is also the
1839 			 * parent of the supplier, don't create a
1840 			 * consumer-supplier link from the parent to its child
1841 			 * device. Such a dependency is impossible.
1842 			 */
1843 			if (con_dev &&
1844 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1845 				put_device(con_dev);
1846 				con_dev = NULL;
1847 			} else {
1848 				own_link = false;
1849 				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1850 			}
1851 		}
1852 
1853 		if (!con_dev)
1854 			continue;
1855 
1856 		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1857 		put_device(con_dev);
1858 		if (!own_link || ret == -EAGAIN)
1859 			continue;
1860 
1861 		list_del(&link->s_hook);
1862 		list_del(&link->c_hook);
1863 		kfree(link);
1864 	}
1865 }
1866 
1867 /**
1868  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1869  * @dev: The consumer device that needs to be linked to its suppliers
1870  * @fwnode: Root of the fwnode tree that is used to create device links
1871  *
1872  * This function looks at all the supplier fwnodes of fwnode tree rooted at
1873  * @fwnode and creates device links between @dev (consumer) and all the
1874  * supplier devices of the entire fwnode tree at @fwnode.
1875  *
1876  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1877  * and the real suppliers of @dev. Once these device links are created, the
1878  * fwnode links are deleted. When such device links are successfully created,
1879  * this function is called recursively on those supplier devices. This is
1880  * needed to detect and break some invalid cycles in fwnode links.  See
1881  * fw_devlink_create_devlink() for more details.
1882  *
1883  * In addition, it also looks at all the suppliers of the entire fwnode tree
1884  * because some of the child devices of @dev that have not been added yet
1885  * (because @dev hasn't probed) might already have their suppliers added to
1886  * driver core. So, this function creates SYNC_STATE_ONLY device links between
1887  * @dev (consumer) and these suppliers to make sure they don't execute their
1888  * sync_state() callbacks before these child devices have a chance to create
1889  * their device links. The fwnode links that correspond to the child devices
1890  * aren't delete because they are needed later to create the device links
1891  * between the real consumer and supplier devices.
1892  */
1893 static void __fw_devlink_link_to_suppliers(struct device *dev,
1894 					   struct fwnode_handle *fwnode)
1895 {
1896 	bool own_link = (dev->fwnode == fwnode);
1897 	struct fwnode_link *link, *tmp;
1898 	struct fwnode_handle *child = NULL;
1899 	u32 dl_flags;
1900 
1901 	if (own_link)
1902 		dl_flags = fw_devlink_get_flags();
1903 	else
1904 		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1905 
1906 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1907 		int ret;
1908 		struct device *sup_dev;
1909 		struct fwnode_handle *sup = link->supplier;
1910 
1911 		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1912 		if (!own_link || ret == -EAGAIN)
1913 			continue;
1914 
1915 		list_del(&link->s_hook);
1916 		list_del(&link->c_hook);
1917 		kfree(link);
1918 
1919 		/* If no device link was created, nothing more to do. */
1920 		if (ret)
1921 			continue;
1922 
1923 		/*
1924 		 * If a device link was successfully created to a supplier, we
1925 		 * now need to try and link the supplier to all its suppliers.
1926 		 *
1927 		 * This is needed to detect and delete false dependencies in
1928 		 * fwnode links that haven't been converted to a device link
1929 		 * yet. See comments in fw_devlink_create_devlink() for more
1930 		 * details on the false dependency.
1931 		 *
1932 		 * Without deleting these false dependencies, some devices will
1933 		 * never probe because they'll keep waiting for their false
1934 		 * dependency fwnode links to be converted to device links.
1935 		 */
1936 		sup_dev = get_dev_from_fwnode(sup);
1937 		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1938 		put_device(sup_dev);
1939 	}
1940 
1941 	/*
1942 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1943 	 * all the descendants. This proxy link step is needed to handle the
1944 	 * case where the supplier is added before the consumer's parent device
1945 	 * (@dev).
1946 	 */
1947 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1948 		__fw_devlink_link_to_suppliers(dev, child);
1949 }
1950 
1951 static void fw_devlink_link_device(struct device *dev)
1952 {
1953 	struct fwnode_handle *fwnode = dev->fwnode;
1954 
1955 	if (!fw_devlink_flags)
1956 		return;
1957 
1958 	fw_devlink_parse_fwtree(fwnode);
1959 
1960 	mutex_lock(&fwnode_link_lock);
1961 	__fw_devlink_link_to_consumers(dev);
1962 	__fw_devlink_link_to_suppliers(dev, fwnode);
1963 	mutex_unlock(&fwnode_link_lock);
1964 }
1965 
1966 /* Device links support end. */
1967 
1968 int (*platform_notify)(struct device *dev) = NULL;
1969 int (*platform_notify_remove)(struct device *dev) = NULL;
1970 static struct kobject *dev_kobj;
1971 struct kobject *sysfs_dev_char_kobj;
1972 struct kobject *sysfs_dev_block_kobj;
1973 
1974 static DEFINE_MUTEX(device_hotplug_lock);
1975 
1976 void lock_device_hotplug(void)
1977 {
1978 	mutex_lock(&device_hotplug_lock);
1979 }
1980 
1981 void unlock_device_hotplug(void)
1982 {
1983 	mutex_unlock(&device_hotplug_lock);
1984 }
1985 
1986 int lock_device_hotplug_sysfs(void)
1987 {
1988 	if (mutex_trylock(&device_hotplug_lock))
1989 		return 0;
1990 
1991 	/* Avoid busy looping (5 ms of sleep should do). */
1992 	msleep(5);
1993 	return restart_syscall();
1994 }
1995 
1996 #ifdef CONFIG_BLOCK
1997 static inline int device_is_not_partition(struct device *dev)
1998 {
1999 	return !(dev->type == &part_type);
2000 }
2001 #else
2002 static inline int device_is_not_partition(struct device *dev)
2003 {
2004 	return 1;
2005 }
2006 #endif
2007 
2008 static void device_platform_notify(struct device *dev)
2009 {
2010 	acpi_device_notify(dev);
2011 
2012 	software_node_notify(dev);
2013 
2014 	if (platform_notify)
2015 		platform_notify(dev);
2016 }
2017 
2018 static void device_platform_notify_remove(struct device *dev)
2019 {
2020 	acpi_device_notify_remove(dev);
2021 
2022 	software_node_notify_remove(dev);
2023 
2024 	if (platform_notify_remove)
2025 		platform_notify_remove(dev);
2026 }
2027 
2028 /**
2029  * dev_driver_string - Return a device's driver name, if at all possible
2030  * @dev: struct device to get the name of
2031  *
2032  * Will return the device's driver's name if it is bound to a device.  If
2033  * the device is not bound to a driver, it will return the name of the bus
2034  * it is attached to.  If it is not attached to a bus either, an empty
2035  * string will be returned.
2036  */
2037 const char *dev_driver_string(const struct device *dev)
2038 {
2039 	struct device_driver *drv;
2040 
2041 	/* dev->driver can change to NULL underneath us because of unbinding,
2042 	 * so be careful about accessing it.  dev->bus and dev->class should
2043 	 * never change once they are set, so they don't need special care.
2044 	 */
2045 	drv = READ_ONCE(dev->driver);
2046 	return drv ? drv->name : dev_bus_name(dev);
2047 }
2048 EXPORT_SYMBOL(dev_driver_string);
2049 
2050 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2051 
2052 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2053 			     char *buf)
2054 {
2055 	struct device_attribute *dev_attr = to_dev_attr(attr);
2056 	struct device *dev = kobj_to_dev(kobj);
2057 	ssize_t ret = -EIO;
2058 
2059 	if (dev_attr->show)
2060 		ret = dev_attr->show(dev, dev_attr, buf);
2061 	if (ret >= (ssize_t)PAGE_SIZE) {
2062 		printk("dev_attr_show: %pS returned bad count\n",
2063 				dev_attr->show);
2064 	}
2065 	return ret;
2066 }
2067 
2068 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2069 			      const char *buf, size_t count)
2070 {
2071 	struct device_attribute *dev_attr = to_dev_attr(attr);
2072 	struct device *dev = kobj_to_dev(kobj);
2073 	ssize_t ret = -EIO;
2074 
2075 	if (dev_attr->store)
2076 		ret = dev_attr->store(dev, dev_attr, buf, count);
2077 	return ret;
2078 }
2079 
2080 static const struct sysfs_ops dev_sysfs_ops = {
2081 	.show	= dev_attr_show,
2082 	.store	= dev_attr_store,
2083 };
2084 
2085 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2086 
2087 ssize_t device_store_ulong(struct device *dev,
2088 			   struct device_attribute *attr,
2089 			   const char *buf, size_t size)
2090 {
2091 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2092 	int ret;
2093 	unsigned long new;
2094 
2095 	ret = kstrtoul(buf, 0, &new);
2096 	if (ret)
2097 		return ret;
2098 	*(unsigned long *)(ea->var) = new;
2099 	/* Always return full write size even if we didn't consume all */
2100 	return size;
2101 }
2102 EXPORT_SYMBOL_GPL(device_store_ulong);
2103 
2104 ssize_t device_show_ulong(struct device *dev,
2105 			  struct device_attribute *attr,
2106 			  char *buf)
2107 {
2108 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2109 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2110 }
2111 EXPORT_SYMBOL_GPL(device_show_ulong);
2112 
2113 ssize_t device_store_int(struct device *dev,
2114 			 struct device_attribute *attr,
2115 			 const char *buf, size_t size)
2116 {
2117 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2118 	int ret;
2119 	long new;
2120 
2121 	ret = kstrtol(buf, 0, &new);
2122 	if (ret)
2123 		return ret;
2124 
2125 	if (new > INT_MAX || new < INT_MIN)
2126 		return -EINVAL;
2127 	*(int *)(ea->var) = new;
2128 	/* Always return full write size even if we didn't consume all */
2129 	return size;
2130 }
2131 EXPORT_SYMBOL_GPL(device_store_int);
2132 
2133 ssize_t device_show_int(struct device *dev,
2134 			struct device_attribute *attr,
2135 			char *buf)
2136 {
2137 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2138 
2139 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2140 }
2141 EXPORT_SYMBOL_GPL(device_show_int);
2142 
2143 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2144 			  const char *buf, size_t size)
2145 {
2146 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2147 
2148 	if (strtobool(buf, ea->var) < 0)
2149 		return -EINVAL;
2150 
2151 	return size;
2152 }
2153 EXPORT_SYMBOL_GPL(device_store_bool);
2154 
2155 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2156 			 char *buf)
2157 {
2158 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2159 
2160 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2161 }
2162 EXPORT_SYMBOL_GPL(device_show_bool);
2163 
2164 /**
2165  * device_release - free device structure.
2166  * @kobj: device's kobject.
2167  *
2168  * This is called once the reference count for the object
2169  * reaches 0. We forward the call to the device's release
2170  * method, which should handle actually freeing the structure.
2171  */
2172 static void device_release(struct kobject *kobj)
2173 {
2174 	struct device *dev = kobj_to_dev(kobj);
2175 	struct device_private *p = dev->p;
2176 
2177 	/*
2178 	 * Some platform devices are driven without driver attached
2179 	 * and managed resources may have been acquired.  Make sure
2180 	 * all resources are released.
2181 	 *
2182 	 * Drivers still can add resources into device after device
2183 	 * is deleted but alive, so release devres here to avoid
2184 	 * possible memory leak.
2185 	 */
2186 	devres_release_all(dev);
2187 
2188 	kfree(dev->dma_range_map);
2189 
2190 	if (dev->release)
2191 		dev->release(dev);
2192 	else if (dev->type && dev->type->release)
2193 		dev->type->release(dev);
2194 	else if (dev->class && dev->class->dev_release)
2195 		dev->class->dev_release(dev);
2196 	else
2197 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2198 			dev_name(dev));
2199 	kfree(p);
2200 }
2201 
2202 static const void *device_namespace(struct kobject *kobj)
2203 {
2204 	struct device *dev = kobj_to_dev(kobj);
2205 	const void *ns = NULL;
2206 
2207 	if (dev->class && dev->class->ns_type)
2208 		ns = dev->class->namespace(dev);
2209 
2210 	return ns;
2211 }
2212 
2213 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2214 {
2215 	struct device *dev = kobj_to_dev(kobj);
2216 
2217 	if (dev->class && dev->class->get_ownership)
2218 		dev->class->get_ownership(dev, uid, gid);
2219 }
2220 
2221 static struct kobj_type device_ktype = {
2222 	.release	= device_release,
2223 	.sysfs_ops	= &dev_sysfs_ops,
2224 	.namespace	= device_namespace,
2225 	.get_ownership	= device_get_ownership,
2226 };
2227 
2228 
2229 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
2230 {
2231 	struct kobj_type *ktype = get_ktype(kobj);
2232 
2233 	if (ktype == &device_ktype) {
2234 		struct device *dev = kobj_to_dev(kobj);
2235 		if (dev->bus)
2236 			return 1;
2237 		if (dev->class)
2238 			return 1;
2239 	}
2240 	return 0;
2241 }
2242 
2243 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2244 {
2245 	struct device *dev = kobj_to_dev(kobj);
2246 
2247 	if (dev->bus)
2248 		return dev->bus->name;
2249 	if (dev->class)
2250 		return dev->class->name;
2251 	return NULL;
2252 }
2253 
2254 static int dev_uevent(struct kset *kset, struct kobject *kobj,
2255 		      struct kobj_uevent_env *env)
2256 {
2257 	struct device *dev = kobj_to_dev(kobj);
2258 	int retval = 0;
2259 
2260 	/* add device node properties if present */
2261 	if (MAJOR(dev->devt)) {
2262 		const char *tmp;
2263 		const char *name;
2264 		umode_t mode = 0;
2265 		kuid_t uid = GLOBAL_ROOT_UID;
2266 		kgid_t gid = GLOBAL_ROOT_GID;
2267 
2268 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2269 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2270 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2271 		if (name) {
2272 			add_uevent_var(env, "DEVNAME=%s", name);
2273 			if (mode)
2274 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2275 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2276 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2277 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2278 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2279 			kfree(tmp);
2280 		}
2281 	}
2282 
2283 	if (dev->type && dev->type->name)
2284 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2285 
2286 	if (dev->driver)
2287 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2288 
2289 	/* Add common DT information about the device */
2290 	of_device_uevent(dev, env);
2291 
2292 	/* have the bus specific function add its stuff */
2293 	if (dev->bus && dev->bus->uevent) {
2294 		retval = dev->bus->uevent(dev, env);
2295 		if (retval)
2296 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2297 				 dev_name(dev), __func__, retval);
2298 	}
2299 
2300 	/* have the class specific function add its stuff */
2301 	if (dev->class && dev->class->dev_uevent) {
2302 		retval = dev->class->dev_uevent(dev, env);
2303 		if (retval)
2304 			pr_debug("device: '%s': %s: class uevent() "
2305 				 "returned %d\n", dev_name(dev),
2306 				 __func__, retval);
2307 	}
2308 
2309 	/* have the device type specific function add its stuff */
2310 	if (dev->type && dev->type->uevent) {
2311 		retval = dev->type->uevent(dev, env);
2312 		if (retval)
2313 			pr_debug("device: '%s': %s: dev_type uevent() "
2314 				 "returned %d\n", dev_name(dev),
2315 				 __func__, retval);
2316 	}
2317 
2318 	return retval;
2319 }
2320 
2321 static const struct kset_uevent_ops device_uevent_ops = {
2322 	.filter =	dev_uevent_filter,
2323 	.name =		dev_uevent_name,
2324 	.uevent =	dev_uevent,
2325 };
2326 
2327 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2328 			   char *buf)
2329 {
2330 	struct kobject *top_kobj;
2331 	struct kset *kset;
2332 	struct kobj_uevent_env *env = NULL;
2333 	int i;
2334 	int len = 0;
2335 	int retval;
2336 
2337 	/* search the kset, the device belongs to */
2338 	top_kobj = &dev->kobj;
2339 	while (!top_kobj->kset && top_kobj->parent)
2340 		top_kobj = top_kobj->parent;
2341 	if (!top_kobj->kset)
2342 		goto out;
2343 
2344 	kset = top_kobj->kset;
2345 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2346 		goto out;
2347 
2348 	/* respect filter */
2349 	if (kset->uevent_ops && kset->uevent_ops->filter)
2350 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
2351 			goto out;
2352 
2353 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2354 	if (!env)
2355 		return -ENOMEM;
2356 
2357 	/* let the kset specific function add its keys */
2358 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2359 	if (retval)
2360 		goto out;
2361 
2362 	/* copy keys to file */
2363 	for (i = 0; i < env->envp_idx; i++)
2364 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2365 out:
2366 	kfree(env);
2367 	return len;
2368 }
2369 
2370 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2371 			    const char *buf, size_t count)
2372 {
2373 	int rc;
2374 
2375 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2376 
2377 	if (rc) {
2378 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
2379 		return rc;
2380 	}
2381 
2382 	return count;
2383 }
2384 static DEVICE_ATTR_RW(uevent);
2385 
2386 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2387 			   char *buf)
2388 {
2389 	bool val;
2390 
2391 	device_lock(dev);
2392 	val = !dev->offline;
2393 	device_unlock(dev);
2394 	return sysfs_emit(buf, "%u\n", val);
2395 }
2396 
2397 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2398 			    const char *buf, size_t count)
2399 {
2400 	bool val;
2401 	int ret;
2402 
2403 	ret = strtobool(buf, &val);
2404 	if (ret < 0)
2405 		return ret;
2406 
2407 	ret = lock_device_hotplug_sysfs();
2408 	if (ret)
2409 		return ret;
2410 
2411 	ret = val ? device_online(dev) : device_offline(dev);
2412 	unlock_device_hotplug();
2413 	return ret < 0 ? ret : count;
2414 }
2415 static DEVICE_ATTR_RW(online);
2416 
2417 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2418 			      char *buf)
2419 {
2420 	const char *loc;
2421 
2422 	switch (dev->removable) {
2423 	case DEVICE_REMOVABLE:
2424 		loc = "removable";
2425 		break;
2426 	case DEVICE_FIXED:
2427 		loc = "fixed";
2428 		break;
2429 	default:
2430 		loc = "unknown";
2431 	}
2432 	return sysfs_emit(buf, "%s\n", loc);
2433 }
2434 static DEVICE_ATTR_RO(removable);
2435 
2436 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2437 {
2438 	return sysfs_create_groups(&dev->kobj, groups);
2439 }
2440 EXPORT_SYMBOL_GPL(device_add_groups);
2441 
2442 void device_remove_groups(struct device *dev,
2443 			  const struct attribute_group **groups)
2444 {
2445 	sysfs_remove_groups(&dev->kobj, groups);
2446 }
2447 EXPORT_SYMBOL_GPL(device_remove_groups);
2448 
2449 union device_attr_group_devres {
2450 	const struct attribute_group *group;
2451 	const struct attribute_group **groups;
2452 };
2453 
2454 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2455 {
2456 	return ((union device_attr_group_devres *)res)->group == data;
2457 }
2458 
2459 static void devm_attr_group_remove(struct device *dev, void *res)
2460 {
2461 	union device_attr_group_devres *devres = res;
2462 	const struct attribute_group *group = devres->group;
2463 
2464 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2465 	sysfs_remove_group(&dev->kobj, group);
2466 }
2467 
2468 static void devm_attr_groups_remove(struct device *dev, void *res)
2469 {
2470 	union device_attr_group_devres *devres = res;
2471 	const struct attribute_group **groups = devres->groups;
2472 
2473 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2474 	sysfs_remove_groups(&dev->kobj, groups);
2475 }
2476 
2477 /**
2478  * devm_device_add_group - given a device, create a managed attribute group
2479  * @dev:	The device to create the group for
2480  * @grp:	The attribute group to create
2481  *
2482  * This function creates a group for the first time.  It will explicitly
2483  * warn and error if any of the attribute files being created already exist.
2484  *
2485  * Returns 0 on success or error code on failure.
2486  */
2487 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2488 {
2489 	union device_attr_group_devres *devres;
2490 	int error;
2491 
2492 	devres = devres_alloc(devm_attr_group_remove,
2493 			      sizeof(*devres), GFP_KERNEL);
2494 	if (!devres)
2495 		return -ENOMEM;
2496 
2497 	error = sysfs_create_group(&dev->kobj, grp);
2498 	if (error) {
2499 		devres_free(devres);
2500 		return error;
2501 	}
2502 
2503 	devres->group = grp;
2504 	devres_add(dev, devres);
2505 	return 0;
2506 }
2507 EXPORT_SYMBOL_GPL(devm_device_add_group);
2508 
2509 /**
2510  * devm_device_remove_group: remove a managed group from a device
2511  * @dev:	device to remove the group from
2512  * @grp:	group to remove
2513  *
2514  * This function removes a group of attributes from a device. The attributes
2515  * previously have to have been created for this group, otherwise it will fail.
2516  */
2517 void devm_device_remove_group(struct device *dev,
2518 			      const struct attribute_group *grp)
2519 {
2520 	WARN_ON(devres_release(dev, devm_attr_group_remove,
2521 			       devm_attr_group_match,
2522 			       /* cast away const */ (void *)grp));
2523 }
2524 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2525 
2526 /**
2527  * devm_device_add_groups - create a bunch of managed attribute groups
2528  * @dev:	The device to create the group for
2529  * @groups:	The attribute groups to create, NULL terminated
2530  *
2531  * This function creates a bunch of managed attribute groups.  If an error
2532  * occurs when creating a group, all previously created groups will be
2533  * removed, unwinding everything back to the original state when this
2534  * function was called.  It will explicitly warn and error if any of the
2535  * attribute files being created already exist.
2536  *
2537  * Returns 0 on success or error code from sysfs_create_group on failure.
2538  */
2539 int devm_device_add_groups(struct device *dev,
2540 			   const struct attribute_group **groups)
2541 {
2542 	union device_attr_group_devres *devres;
2543 	int error;
2544 
2545 	devres = devres_alloc(devm_attr_groups_remove,
2546 			      sizeof(*devres), GFP_KERNEL);
2547 	if (!devres)
2548 		return -ENOMEM;
2549 
2550 	error = sysfs_create_groups(&dev->kobj, groups);
2551 	if (error) {
2552 		devres_free(devres);
2553 		return error;
2554 	}
2555 
2556 	devres->groups = groups;
2557 	devres_add(dev, devres);
2558 	return 0;
2559 }
2560 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2561 
2562 /**
2563  * devm_device_remove_groups - remove a list of managed groups
2564  *
2565  * @dev:	The device for the groups to be removed from
2566  * @groups:	NULL terminated list of groups to be removed
2567  *
2568  * If groups is not NULL, remove the specified groups from the device.
2569  */
2570 void devm_device_remove_groups(struct device *dev,
2571 			       const struct attribute_group **groups)
2572 {
2573 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2574 			       devm_attr_group_match,
2575 			       /* cast away const */ (void *)groups));
2576 }
2577 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2578 
2579 static int device_add_attrs(struct device *dev)
2580 {
2581 	struct class *class = dev->class;
2582 	const struct device_type *type = dev->type;
2583 	int error;
2584 
2585 	if (class) {
2586 		error = device_add_groups(dev, class->dev_groups);
2587 		if (error)
2588 			return error;
2589 	}
2590 
2591 	if (type) {
2592 		error = device_add_groups(dev, type->groups);
2593 		if (error)
2594 			goto err_remove_class_groups;
2595 	}
2596 
2597 	error = device_add_groups(dev, dev->groups);
2598 	if (error)
2599 		goto err_remove_type_groups;
2600 
2601 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2602 		error = device_create_file(dev, &dev_attr_online);
2603 		if (error)
2604 			goto err_remove_dev_groups;
2605 	}
2606 
2607 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2608 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2609 		if (error)
2610 			goto err_remove_dev_online;
2611 	}
2612 
2613 	if (dev_removable_is_valid(dev)) {
2614 		error = device_create_file(dev, &dev_attr_removable);
2615 		if (error)
2616 			goto err_remove_dev_waiting_for_supplier;
2617 	}
2618 
2619 	return 0;
2620 
2621  err_remove_dev_waiting_for_supplier:
2622 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2623  err_remove_dev_online:
2624 	device_remove_file(dev, &dev_attr_online);
2625  err_remove_dev_groups:
2626 	device_remove_groups(dev, dev->groups);
2627  err_remove_type_groups:
2628 	if (type)
2629 		device_remove_groups(dev, type->groups);
2630  err_remove_class_groups:
2631 	if (class)
2632 		device_remove_groups(dev, class->dev_groups);
2633 
2634 	return error;
2635 }
2636 
2637 static void device_remove_attrs(struct device *dev)
2638 {
2639 	struct class *class = dev->class;
2640 	const struct device_type *type = dev->type;
2641 
2642 	device_remove_file(dev, &dev_attr_removable);
2643 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2644 	device_remove_file(dev, &dev_attr_online);
2645 	device_remove_groups(dev, dev->groups);
2646 
2647 	if (type)
2648 		device_remove_groups(dev, type->groups);
2649 
2650 	if (class)
2651 		device_remove_groups(dev, class->dev_groups);
2652 }
2653 
2654 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2655 			char *buf)
2656 {
2657 	return print_dev_t(buf, dev->devt);
2658 }
2659 static DEVICE_ATTR_RO(dev);
2660 
2661 /* /sys/devices/ */
2662 struct kset *devices_kset;
2663 
2664 /**
2665  * devices_kset_move_before - Move device in the devices_kset's list.
2666  * @deva: Device to move.
2667  * @devb: Device @deva should come before.
2668  */
2669 static void devices_kset_move_before(struct device *deva, struct device *devb)
2670 {
2671 	if (!devices_kset)
2672 		return;
2673 	pr_debug("devices_kset: Moving %s before %s\n",
2674 		 dev_name(deva), dev_name(devb));
2675 	spin_lock(&devices_kset->list_lock);
2676 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2677 	spin_unlock(&devices_kset->list_lock);
2678 }
2679 
2680 /**
2681  * devices_kset_move_after - Move device in the devices_kset's list.
2682  * @deva: Device to move
2683  * @devb: Device @deva should come after.
2684  */
2685 static void devices_kset_move_after(struct device *deva, struct device *devb)
2686 {
2687 	if (!devices_kset)
2688 		return;
2689 	pr_debug("devices_kset: Moving %s after %s\n",
2690 		 dev_name(deva), dev_name(devb));
2691 	spin_lock(&devices_kset->list_lock);
2692 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2693 	spin_unlock(&devices_kset->list_lock);
2694 }
2695 
2696 /**
2697  * devices_kset_move_last - move the device to the end of devices_kset's list.
2698  * @dev: device to move
2699  */
2700 void devices_kset_move_last(struct device *dev)
2701 {
2702 	if (!devices_kset)
2703 		return;
2704 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2705 	spin_lock(&devices_kset->list_lock);
2706 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2707 	spin_unlock(&devices_kset->list_lock);
2708 }
2709 
2710 /**
2711  * device_create_file - create sysfs attribute file for device.
2712  * @dev: device.
2713  * @attr: device attribute descriptor.
2714  */
2715 int device_create_file(struct device *dev,
2716 		       const struct device_attribute *attr)
2717 {
2718 	int error = 0;
2719 
2720 	if (dev) {
2721 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2722 			"Attribute %s: write permission without 'store'\n",
2723 			attr->attr.name);
2724 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2725 			"Attribute %s: read permission without 'show'\n",
2726 			attr->attr.name);
2727 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2728 	}
2729 
2730 	return error;
2731 }
2732 EXPORT_SYMBOL_GPL(device_create_file);
2733 
2734 /**
2735  * device_remove_file - remove sysfs attribute file.
2736  * @dev: device.
2737  * @attr: device attribute descriptor.
2738  */
2739 void device_remove_file(struct device *dev,
2740 			const struct device_attribute *attr)
2741 {
2742 	if (dev)
2743 		sysfs_remove_file(&dev->kobj, &attr->attr);
2744 }
2745 EXPORT_SYMBOL_GPL(device_remove_file);
2746 
2747 /**
2748  * device_remove_file_self - remove sysfs attribute file from its own method.
2749  * @dev: device.
2750  * @attr: device attribute descriptor.
2751  *
2752  * See kernfs_remove_self() for details.
2753  */
2754 bool device_remove_file_self(struct device *dev,
2755 			     const struct device_attribute *attr)
2756 {
2757 	if (dev)
2758 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2759 	else
2760 		return false;
2761 }
2762 EXPORT_SYMBOL_GPL(device_remove_file_self);
2763 
2764 /**
2765  * device_create_bin_file - create sysfs binary attribute file for device.
2766  * @dev: device.
2767  * @attr: device binary attribute descriptor.
2768  */
2769 int device_create_bin_file(struct device *dev,
2770 			   const struct bin_attribute *attr)
2771 {
2772 	int error = -EINVAL;
2773 	if (dev)
2774 		error = sysfs_create_bin_file(&dev->kobj, attr);
2775 	return error;
2776 }
2777 EXPORT_SYMBOL_GPL(device_create_bin_file);
2778 
2779 /**
2780  * device_remove_bin_file - remove sysfs binary attribute file
2781  * @dev: device.
2782  * @attr: device binary attribute descriptor.
2783  */
2784 void device_remove_bin_file(struct device *dev,
2785 			    const struct bin_attribute *attr)
2786 {
2787 	if (dev)
2788 		sysfs_remove_bin_file(&dev->kobj, attr);
2789 }
2790 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2791 
2792 static void klist_children_get(struct klist_node *n)
2793 {
2794 	struct device_private *p = to_device_private_parent(n);
2795 	struct device *dev = p->device;
2796 
2797 	get_device(dev);
2798 }
2799 
2800 static void klist_children_put(struct klist_node *n)
2801 {
2802 	struct device_private *p = to_device_private_parent(n);
2803 	struct device *dev = p->device;
2804 
2805 	put_device(dev);
2806 }
2807 
2808 /**
2809  * device_initialize - init device structure.
2810  * @dev: device.
2811  *
2812  * This prepares the device for use by other layers by initializing
2813  * its fields.
2814  * It is the first half of device_register(), if called by
2815  * that function, though it can also be called separately, so one
2816  * may use @dev's fields. In particular, get_device()/put_device()
2817  * may be used for reference counting of @dev after calling this
2818  * function.
2819  *
2820  * All fields in @dev must be initialized by the caller to 0, except
2821  * for those explicitly set to some other value.  The simplest
2822  * approach is to use kzalloc() to allocate the structure containing
2823  * @dev.
2824  *
2825  * NOTE: Use put_device() to give up your reference instead of freeing
2826  * @dev directly once you have called this function.
2827  */
2828 void device_initialize(struct device *dev)
2829 {
2830 	dev->kobj.kset = devices_kset;
2831 	kobject_init(&dev->kobj, &device_ktype);
2832 	INIT_LIST_HEAD(&dev->dma_pools);
2833 	mutex_init(&dev->mutex);
2834 #ifdef CONFIG_PROVE_LOCKING
2835 	mutex_init(&dev->lockdep_mutex);
2836 #endif
2837 	lockdep_set_novalidate_class(&dev->mutex);
2838 	spin_lock_init(&dev->devres_lock);
2839 	INIT_LIST_HEAD(&dev->devres_head);
2840 	device_pm_init(dev);
2841 	set_dev_node(dev, -1);
2842 #ifdef CONFIG_GENERIC_MSI_IRQ
2843 	raw_spin_lock_init(&dev->msi_lock);
2844 	INIT_LIST_HEAD(&dev->msi_list);
2845 #endif
2846 	INIT_LIST_HEAD(&dev->links.consumers);
2847 	INIT_LIST_HEAD(&dev->links.suppliers);
2848 	INIT_LIST_HEAD(&dev->links.defer_sync);
2849 	dev->links.status = DL_DEV_NO_DRIVER;
2850 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2851     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2852     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2853 	dev->dma_coherent = dma_default_coherent;
2854 #endif
2855 #ifdef CONFIG_SWIOTLB
2856 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
2857 #endif
2858 }
2859 EXPORT_SYMBOL_GPL(device_initialize);
2860 
2861 struct kobject *virtual_device_parent(struct device *dev)
2862 {
2863 	static struct kobject *virtual_dir = NULL;
2864 
2865 	if (!virtual_dir)
2866 		virtual_dir = kobject_create_and_add("virtual",
2867 						     &devices_kset->kobj);
2868 
2869 	return virtual_dir;
2870 }
2871 
2872 struct class_dir {
2873 	struct kobject kobj;
2874 	struct class *class;
2875 };
2876 
2877 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2878 
2879 static void class_dir_release(struct kobject *kobj)
2880 {
2881 	struct class_dir *dir = to_class_dir(kobj);
2882 	kfree(dir);
2883 }
2884 
2885 static const
2886 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2887 {
2888 	struct class_dir *dir = to_class_dir(kobj);
2889 	return dir->class->ns_type;
2890 }
2891 
2892 static struct kobj_type class_dir_ktype = {
2893 	.release	= class_dir_release,
2894 	.sysfs_ops	= &kobj_sysfs_ops,
2895 	.child_ns_type	= class_dir_child_ns_type
2896 };
2897 
2898 static struct kobject *
2899 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2900 {
2901 	struct class_dir *dir;
2902 	int retval;
2903 
2904 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2905 	if (!dir)
2906 		return ERR_PTR(-ENOMEM);
2907 
2908 	dir->class = class;
2909 	kobject_init(&dir->kobj, &class_dir_ktype);
2910 
2911 	dir->kobj.kset = &class->p->glue_dirs;
2912 
2913 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2914 	if (retval < 0) {
2915 		kobject_put(&dir->kobj);
2916 		return ERR_PTR(retval);
2917 	}
2918 	return &dir->kobj;
2919 }
2920 
2921 static DEFINE_MUTEX(gdp_mutex);
2922 
2923 static struct kobject *get_device_parent(struct device *dev,
2924 					 struct device *parent)
2925 {
2926 	if (dev->class) {
2927 		struct kobject *kobj = NULL;
2928 		struct kobject *parent_kobj;
2929 		struct kobject *k;
2930 
2931 #ifdef CONFIG_BLOCK
2932 		/* block disks show up in /sys/block */
2933 		if (sysfs_deprecated && dev->class == &block_class) {
2934 			if (parent && parent->class == &block_class)
2935 				return &parent->kobj;
2936 			return &block_class.p->subsys.kobj;
2937 		}
2938 #endif
2939 
2940 		/*
2941 		 * If we have no parent, we live in "virtual".
2942 		 * Class-devices with a non class-device as parent, live
2943 		 * in a "glue" directory to prevent namespace collisions.
2944 		 */
2945 		if (parent == NULL)
2946 			parent_kobj = virtual_device_parent(dev);
2947 		else if (parent->class && !dev->class->ns_type)
2948 			return &parent->kobj;
2949 		else
2950 			parent_kobj = &parent->kobj;
2951 
2952 		mutex_lock(&gdp_mutex);
2953 
2954 		/* find our class-directory at the parent and reference it */
2955 		spin_lock(&dev->class->p->glue_dirs.list_lock);
2956 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2957 			if (k->parent == parent_kobj) {
2958 				kobj = kobject_get(k);
2959 				break;
2960 			}
2961 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2962 		if (kobj) {
2963 			mutex_unlock(&gdp_mutex);
2964 			return kobj;
2965 		}
2966 
2967 		/* or create a new class-directory at the parent device */
2968 		k = class_dir_create_and_add(dev->class, parent_kobj);
2969 		/* do not emit an uevent for this simple "glue" directory */
2970 		mutex_unlock(&gdp_mutex);
2971 		return k;
2972 	}
2973 
2974 	/* subsystems can specify a default root directory for their devices */
2975 	if (!parent && dev->bus && dev->bus->dev_root)
2976 		return &dev->bus->dev_root->kobj;
2977 
2978 	if (parent)
2979 		return &parent->kobj;
2980 	return NULL;
2981 }
2982 
2983 static inline bool live_in_glue_dir(struct kobject *kobj,
2984 				    struct device *dev)
2985 {
2986 	if (!kobj || !dev->class ||
2987 	    kobj->kset != &dev->class->p->glue_dirs)
2988 		return false;
2989 	return true;
2990 }
2991 
2992 static inline struct kobject *get_glue_dir(struct device *dev)
2993 {
2994 	return dev->kobj.parent;
2995 }
2996 
2997 /*
2998  * make sure cleaning up dir as the last step, we need to make
2999  * sure .release handler of kobject is run with holding the
3000  * global lock
3001  */
3002 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3003 {
3004 	unsigned int ref;
3005 
3006 	/* see if we live in a "glue" directory */
3007 	if (!live_in_glue_dir(glue_dir, dev))
3008 		return;
3009 
3010 	mutex_lock(&gdp_mutex);
3011 	/**
3012 	 * There is a race condition between removing glue directory
3013 	 * and adding a new device under the glue directory.
3014 	 *
3015 	 * CPU1:                                         CPU2:
3016 	 *
3017 	 * device_add()
3018 	 *   get_device_parent()
3019 	 *     class_dir_create_and_add()
3020 	 *       kobject_add_internal()
3021 	 *         create_dir()    // create glue_dir
3022 	 *
3023 	 *                                               device_add()
3024 	 *                                                 get_device_parent()
3025 	 *                                                   kobject_get() // get glue_dir
3026 	 *
3027 	 * device_del()
3028 	 *   cleanup_glue_dir()
3029 	 *     kobject_del(glue_dir)
3030 	 *
3031 	 *                                               kobject_add()
3032 	 *                                                 kobject_add_internal()
3033 	 *                                                   create_dir() // in glue_dir
3034 	 *                                                     sysfs_create_dir_ns()
3035 	 *                                                       kernfs_create_dir_ns(sd)
3036 	 *
3037 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3038 	 *       sysfs_put()        // free glue_dir->sd
3039 	 *
3040 	 *                                                         // sd is freed
3041 	 *                                                         kernfs_new_node(sd)
3042 	 *                                                           kernfs_get(glue_dir)
3043 	 *                                                           kernfs_add_one()
3044 	 *                                                           kernfs_put()
3045 	 *
3046 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3047 	 * a new device under glue dir, the glue_dir kobject reference count
3048 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3049 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3050 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3051 	 *
3052 	 * Then the CPU2 will see a stale "empty" but still potentially used
3053 	 * glue dir around in kernfs_new_node().
3054 	 *
3055 	 * In order to avoid this happening, we also should make sure that
3056 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3057 	 * for glue_dir kobj is 1.
3058 	 */
3059 	ref = kref_read(&glue_dir->kref);
3060 	if (!kobject_has_children(glue_dir) && !--ref)
3061 		kobject_del(glue_dir);
3062 	kobject_put(glue_dir);
3063 	mutex_unlock(&gdp_mutex);
3064 }
3065 
3066 static int device_add_class_symlinks(struct device *dev)
3067 {
3068 	struct device_node *of_node = dev_of_node(dev);
3069 	int error;
3070 
3071 	if (of_node) {
3072 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3073 		if (error)
3074 			dev_warn(dev, "Error %d creating of_node link\n",error);
3075 		/* An error here doesn't warrant bringing down the device */
3076 	}
3077 
3078 	if (!dev->class)
3079 		return 0;
3080 
3081 	error = sysfs_create_link(&dev->kobj,
3082 				  &dev->class->p->subsys.kobj,
3083 				  "subsystem");
3084 	if (error)
3085 		goto out_devnode;
3086 
3087 	if (dev->parent && device_is_not_partition(dev)) {
3088 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3089 					  "device");
3090 		if (error)
3091 			goto out_subsys;
3092 	}
3093 
3094 #ifdef CONFIG_BLOCK
3095 	/* /sys/block has directories and does not need symlinks */
3096 	if (sysfs_deprecated && dev->class == &block_class)
3097 		return 0;
3098 #endif
3099 
3100 	/* link in the class directory pointing to the device */
3101 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3102 				  &dev->kobj, dev_name(dev));
3103 	if (error)
3104 		goto out_device;
3105 
3106 	return 0;
3107 
3108 out_device:
3109 	sysfs_remove_link(&dev->kobj, "device");
3110 
3111 out_subsys:
3112 	sysfs_remove_link(&dev->kobj, "subsystem");
3113 out_devnode:
3114 	sysfs_remove_link(&dev->kobj, "of_node");
3115 	return error;
3116 }
3117 
3118 static void device_remove_class_symlinks(struct device *dev)
3119 {
3120 	if (dev_of_node(dev))
3121 		sysfs_remove_link(&dev->kobj, "of_node");
3122 
3123 	if (!dev->class)
3124 		return;
3125 
3126 	if (dev->parent && device_is_not_partition(dev))
3127 		sysfs_remove_link(&dev->kobj, "device");
3128 	sysfs_remove_link(&dev->kobj, "subsystem");
3129 #ifdef CONFIG_BLOCK
3130 	if (sysfs_deprecated && dev->class == &block_class)
3131 		return;
3132 #endif
3133 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3134 }
3135 
3136 /**
3137  * dev_set_name - set a device name
3138  * @dev: device
3139  * @fmt: format string for the device's name
3140  */
3141 int dev_set_name(struct device *dev, const char *fmt, ...)
3142 {
3143 	va_list vargs;
3144 	int err;
3145 
3146 	va_start(vargs, fmt);
3147 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3148 	va_end(vargs);
3149 	return err;
3150 }
3151 EXPORT_SYMBOL_GPL(dev_set_name);
3152 
3153 /**
3154  * device_to_dev_kobj - select a /sys/dev/ directory for the device
3155  * @dev: device
3156  *
3157  * By default we select char/ for new entries.  Setting class->dev_obj
3158  * to NULL prevents an entry from being created.  class->dev_kobj must
3159  * be set (or cleared) before any devices are registered to the class
3160  * otherwise device_create_sys_dev_entry() and
3161  * device_remove_sys_dev_entry() will disagree about the presence of
3162  * the link.
3163  */
3164 static struct kobject *device_to_dev_kobj(struct device *dev)
3165 {
3166 	struct kobject *kobj;
3167 
3168 	if (dev->class)
3169 		kobj = dev->class->dev_kobj;
3170 	else
3171 		kobj = sysfs_dev_char_kobj;
3172 
3173 	return kobj;
3174 }
3175 
3176 static int device_create_sys_dev_entry(struct device *dev)
3177 {
3178 	struct kobject *kobj = device_to_dev_kobj(dev);
3179 	int error = 0;
3180 	char devt_str[15];
3181 
3182 	if (kobj) {
3183 		format_dev_t(devt_str, dev->devt);
3184 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3185 	}
3186 
3187 	return error;
3188 }
3189 
3190 static void device_remove_sys_dev_entry(struct device *dev)
3191 {
3192 	struct kobject *kobj = device_to_dev_kobj(dev);
3193 	char devt_str[15];
3194 
3195 	if (kobj) {
3196 		format_dev_t(devt_str, dev->devt);
3197 		sysfs_remove_link(kobj, devt_str);
3198 	}
3199 }
3200 
3201 static int device_private_init(struct device *dev)
3202 {
3203 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3204 	if (!dev->p)
3205 		return -ENOMEM;
3206 	dev->p->device = dev;
3207 	klist_init(&dev->p->klist_children, klist_children_get,
3208 		   klist_children_put);
3209 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3210 	return 0;
3211 }
3212 
3213 /**
3214  * device_add - add device to device hierarchy.
3215  * @dev: device.
3216  *
3217  * This is part 2 of device_register(), though may be called
3218  * separately _iff_ device_initialize() has been called separately.
3219  *
3220  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3221  * to the global and sibling lists for the device, then
3222  * adds it to the other relevant subsystems of the driver model.
3223  *
3224  * Do not call this routine or device_register() more than once for
3225  * any device structure.  The driver model core is not designed to work
3226  * with devices that get unregistered and then spring back to life.
3227  * (Among other things, it's very hard to guarantee that all references
3228  * to the previous incarnation of @dev have been dropped.)  Allocate
3229  * and register a fresh new struct device instead.
3230  *
3231  * NOTE: _Never_ directly free @dev after calling this function, even
3232  * if it returned an error! Always use put_device() to give up your
3233  * reference instead.
3234  *
3235  * Rule of thumb is: if device_add() succeeds, you should call
3236  * device_del() when you want to get rid of it. If device_add() has
3237  * *not* succeeded, use *only* put_device() to drop the reference
3238  * count.
3239  */
3240 int device_add(struct device *dev)
3241 {
3242 	struct device *parent;
3243 	struct kobject *kobj;
3244 	struct class_interface *class_intf;
3245 	int error = -EINVAL;
3246 	struct kobject *glue_dir = NULL;
3247 
3248 	dev = get_device(dev);
3249 	if (!dev)
3250 		goto done;
3251 
3252 	if (!dev->p) {
3253 		error = device_private_init(dev);
3254 		if (error)
3255 			goto done;
3256 	}
3257 
3258 	/*
3259 	 * for statically allocated devices, which should all be converted
3260 	 * some day, we need to initialize the name. We prevent reading back
3261 	 * the name, and force the use of dev_name()
3262 	 */
3263 	if (dev->init_name) {
3264 		dev_set_name(dev, "%s", dev->init_name);
3265 		dev->init_name = NULL;
3266 	}
3267 
3268 	/* subsystems can specify simple device enumeration */
3269 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3270 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3271 
3272 	if (!dev_name(dev)) {
3273 		error = -EINVAL;
3274 		goto name_error;
3275 	}
3276 
3277 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3278 
3279 	parent = get_device(dev->parent);
3280 	kobj = get_device_parent(dev, parent);
3281 	if (IS_ERR(kobj)) {
3282 		error = PTR_ERR(kobj);
3283 		goto parent_error;
3284 	}
3285 	if (kobj)
3286 		dev->kobj.parent = kobj;
3287 
3288 	/* use parent numa_node */
3289 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3290 		set_dev_node(dev, dev_to_node(parent));
3291 
3292 	/* first, register with generic layer. */
3293 	/* we require the name to be set before, and pass NULL */
3294 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3295 	if (error) {
3296 		glue_dir = get_glue_dir(dev);
3297 		goto Error;
3298 	}
3299 
3300 	/* notify platform of device entry */
3301 	device_platform_notify(dev);
3302 
3303 	error = device_create_file(dev, &dev_attr_uevent);
3304 	if (error)
3305 		goto attrError;
3306 
3307 	error = device_add_class_symlinks(dev);
3308 	if (error)
3309 		goto SymlinkError;
3310 	error = device_add_attrs(dev);
3311 	if (error)
3312 		goto AttrsError;
3313 	error = bus_add_device(dev);
3314 	if (error)
3315 		goto BusError;
3316 	error = dpm_sysfs_add(dev);
3317 	if (error)
3318 		goto DPMError;
3319 	device_pm_add(dev);
3320 
3321 	if (MAJOR(dev->devt)) {
3322 		error = device_create_file(dev, &dev_attr_dev);
3323 		if (error)
3324 			goto DevAttrError;
3325 
3326 		error = device_create_sys_dev_entry(dev);
3327 		if (error)
3328 			goto SysEntryError;
3329 
3330 		devtmpfs_create_node(dev);
3331 	}
3332 
3333 	/* Notify clients of device addition.  This call must come
3334 	 * after dpm_sysfs_add() and before kobject_uevent().
3335 	 */
3336 	if (dev->bus)
3337 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3338 					     BUS_NOTIFY_ADD_DEVICE, dev);
3339 
3340 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3341 
3342 	/*
3343 	 * Check if any of the other devices (consumers) have been waiting for
3344 	 * this device (supplier) to be added so that they can create a device
3345 	 * link to it.
3346 	 *
3347 	 * This needs to happen after device_pm_add() because device_link_add()
3348 	 * requires the supplier be registered before it's called.
3349 	 *
3350 	 * But this also needs to happen before bus_probe_device() to make sure
3351 	 * waiting consumers can link to it before the driver is bound to the
3352 	 * device and the driver sync_state callback is called for this device.
3353 	 */
3354 	if (dev->fwnode && !dev->fwnode->dev) {
3355 		dev->fwnode->dev = dev;
3356 		fw_devlink_link_device(dev);
3357 	}
3358 
3359 	bus_probe_device(dev);
3360 
3361 	/*
3362 	 * If all driver registration is done and a newly added device doesn't
3363 	 * match with any driver, don't block its consumers from probing in
3364 	 * case the consumer device is able to operate without this supplier.
3365 	 */
3366 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3367 		fw_devlink_unblock_consumers(dev);
3368 
3369 	if (parent)
3370 		klist_add_tail(&dev->p->knode_parent,
3371 			       &parent->p->klist_children);
3372 
3373 	if (dev->class) {
3374 		mutex_lock(&dev->class->p->mutex);
3375 		/* tie the class to the device */
3376 		klist_add_tail(&dev->p->knode_class,
3377 			       &dev->class->p->klist_devices);
3378 
3379 		/* notify any interfaces that the device is here */
3380 		list_for_each_entry(class_intf,
3381 				    &dev->class->p->interfaces, node)
3382 			if (class_intf->add_dev)
3383 				class_intf->add_dev(dev, class_intf);
3384 		mutex_unlock(&dev->class->p->mutex);
3385 	}
3386 done:
3387 	put_device(dev);
3388 	return error;
3389  SysEntryError:
3390 	if (MAJOR(dev->devt))
3391 		device_remove_file(dev, &dev_attr_dev);
3392  DevAttrError:
3393 	device_pm_remove(dev);
3394 	dpm_sysfs_remove(dev);
3395  DPMError:
3396 	bus_remove_device(dev);
3397  BusError:
3398 	device_remove_attrs(dev);
3399  AttrsError:
3400 	device_remove_class_symlinks(dev);
3401  SymlinkError:
3402 	device_remove_file(dev, &dev_attr_uevent);
3403  attrError:
3404 	device_platform_notify_remove(dev);
3405 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3406 	glue_dir = get_glue_dir(dev);
3407 	kobject_del(&dev->kobj);
3408  Error:
3409 	cleanup_glue_dir(dev, glue_dir);
3410 parent_error:
3411 	put_device(parent);
3412 name_error:
3413 	kfree(dev->p);
3414 	dev->p = NULL;
3415 	goto done;
3416 }
3417 EXPORT_SYMBOL_GPL(device_add);
3418 
3419 /**
3420  * device_register - register a device with the system.
3421  * @dev: pointer to the device structure
3422  *
3423  * This happens in two clean steps - initialize the device
3424  * and add it to the system. The two steps can be called
3425  * separately, but this is the easiest and most common.
3426  * I.e. you should only call the two helpers separately if
3427  * have a clearly defined need to use and refcount the device
3428  * before it is added to the hierarchy.
3429  *
3430  * For more information, see the kerneldoc for device_initialize()
3431  * and device_add().
3432  *
3433  * NOTE: _Never_ directly free @dev after calling this function, even
3434  * if it returned an error! Always use put_device() to give up the
3435  * reference initialized in this function instead.
3436  */
3437 int device_register(struct device *dev)
3438 {
3439 	device_initialize(dev);
3440 	return device_add(dev);
3441 }
3442 EXPORT_SYMBOL_GPL(device_register);
3443 
3444 /**
3445  * get_device - increment reference count for device.
3446  * @dev: device.
3447  *
3448  * This simply forwards the call to kobject_get(), though
3449  * we do take care to provide for the case that we get a NULL
3450  * pointer passed in.
3451  */
3452 struct device *get_device(struct device *dev)
3453 {
3454 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3455 }
3456 EXPORT_SYMBOL_GPL(get_device);
3457 
3458 /**
3459  * put_device - decrement reference count.
3460  * @dev: device in question.
3461  */
3462 void put_device(struct device *dev)
3463 {
3464 	/* might_sleep(); */
3465 	if (dev)
3466 		kobject_put(&dev->kobj);
3467 }
3468 EXPORT_SYMBOL_GPL(put_device);
3469 
3470 bool kill_device(struct device *dev)
3471 {
3472 	/*
3473 	 * Require the device lock and set the "dead" flag to guarantee that
3474 	 * the update behavior is consistent with the other bitfields near
3475 	 * it and that we cannot have an asynchronous probe routine trying
3476 	 * to run while we are tearing out the bus/class/sysfs from
3477 	 * underneath the device.
3478 	 */
3479 	device_lock_assert(dev);
3480 
3481 	if (dev->p->dead)
3482 		return false;
3483 	dev->p->dead = true;
3484 	return true;
3485 }
3486 EXPORT_SYMBOL_GPL(kill_device);
3487 
3488 /**
3489  * device_del - delete device from system.
3490  * @dev: device.
3491  *
3492  * This is the first part of the device unregistration
3493  * sequence. This removes the device from the lists we control
3494  * from here, has it removed from the other driver model
3495  * subsystems it was added to in device_add(), and removes it
3496  * from the kobject hierarchy.
3497  *
3498  * NOTE: this should be called manually _iff_ device_add() was
3499  * also called manually.
3500  */
3501 void device_del(struct device *dev)
3502 {
3503 	struct device *parent = dev->parent;
3504 	struct kobject *glue_dir = NULL;
3505 	struct class_interface *class_intf;
3506 	unsigned int noio_flag;
3507 
3508 	device_lock(dev);
3509 	kill_device(dev);
3510 	device_unlock(dev);
3511 
3512 	if (dev->fwnode && dev->fwnode->dev == dev)
3513 		dev->fwnode->dev = NULL;
3514 
3515 	/* Notify clients of device removal.  This call must come
3516 	 * before dpm_sysfs_remove().
3517 	 */
3518 	noio_flag = memalloc_noio_save();
3519 	if (dev->bus)
3520 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3521 					     BUS_NOTIFY_DEL_DEVICE, dev);
3522 
3523 	dpm_sysfs_remove(dev);
3524 	if (parent)
3525 		klist_del(&dev->p->knode_parent);
3526 	if (MAJOR(dev->devt)) {
3527 		devtmpfs_delete_node(dev);
3528 		device_remove_sys_dev_entry(dev);
3529 		device_remove_file(dev, &dev_attr_dev);
3530 	}
3531 	if (dev->class) {
3532 		device_remove_class_symlinks(dev);
3533 
3534 		mutex_lock(&dev->class->p->mutex);
3535 		/* notify any interfaces that the device is now gone */
3536 		list_for_each_entry(class_intf,
3537 				    &dev->class->p->interfaces, node)
3538 			if (class_intf->remove_dev)
3539 				class_intf->remove_dev(dev, class_intf);
3540 		/* remove the device from the class list */
3541 		klist_del(&dev->p->knode_class);
3542 		mutex_unlock(&dev->class->p->mutex);
3543 	}
3544 	device_remove_file(dev, &dev_attr_uevent);
3545 	device_remove_attrs(dev);
3546 	bus_remove_device(dev);
3547 	device_pm_remove(dev);
3548 	driver_deferred_probe_del(dev);
3549 	device_platform_notify_remove(dev);
3550 	device_remove_properties(dev);
3551 	device_links_purge(dev);
3552 
3553 	if (dev->bus)
3554 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3555 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3556 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3557 	glue_dir = get_glue_dir(dev);
3558 	kobject_del(&dev->kobj);
3559 	cleanup_glue_dir(dev, glue_dir);
3560 	memalloc_noio_restore(noio_flag);
3561 	put_device(parent);
3562 }
3563 EXPORT_SYMBOL_GPL(device_del);
3564 
3565 /**
3566  * device_unregister - unregister device from system.
3567  * @dev: device going away.
3568  *
3569  * We do this in two parts, like we do device_register(). First,
3570  * we remove it from all the subsystems with device_del(), then
3571  * we decrement the reference count via put_device(). If that
3572  * is the final reference count, the device will be cleaned up
3573  * via device_release() above. Otherwise, the structure will
3574  * stick around until the final reference to the device is dropped.
3575  */
3576 void device_unregister(struct device *dev)
3577 {
3578 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3579 	device_del(dev);
3580 	put_device(dev);
3581 }
3582 EXPORT_SYMBOL_GPL(device_unregister);
3583 
3584 static struct device *prev_device(struct klist_iter *i)
3585 {
3586 	struct klist_node *n = klist_prev(i);
3587 	struct device *dev = NULL;
3588 	struct device_private *p;
3589 
3590 	if (n) {
3591 		p = to_device_private_parent(n);
3592 		dev = p->device;
3593 	}
3594 	return dev;
3595 }
3596 
3597 static struct device *next_device(struct klist_iter *i)
3598 {
3599 	struct klist_node *n = klist_next(i);
3600 	struct device *dev = NULL;
3601 	struct device_private *p;
3602 
3603 	if (n) {
3604 		p = to_device_private_parent(n);
3605 		dev = p->device;
3606 	}
3607 	return dev;
3608 }
3609 
3610 /**
3611  * device_get_devnode - path of device node file
3612  * @dev: device
3613  * @mode: returned file access mode
3614  * @uid: returned file owner
3615  * @gid: returned file group
3616  * @tmp: possibly allocated string
3617  *
3618  * Return the relative path of a possible device node.
3619  * Non-default names may need to allocate a memory to compose
3620  * a name. This memory is returned in tmp and needs to be
3621  * freed by the caller.
3622  */
3623 const char *device_get_devnode(struct device *dev,
3624 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3625 			       const char **tmp)
3626 {
3627 	char *s;
3628 
3629 	*tmp = NULL;
3630 
3631 	/* the device type may provide a specific name */
3632 	if (dev->type && dev->type->devnode)
3633 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3634 	if (*tmp)
3635 		return *tmp;
3636 
3637 	/* the class may provide a specific name */
3638 	if (dev->class && dev->class->devnode)
3639 		*tmp = dev->class->devnode(dev, mode);
3640 	if (*tmp)
3641 		return *tmp;
3642 
3643 	/* return name without allocation, tmp == NULL */
3644 	if (strchr(dev_name(dev), '!') == NULL)
3645 		return dev_name(dev);
3646 
3647 	/* replace '!' in the name with '/' */
3648 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3649 	if (!s)
3650 		return NULL;
3651 	strreplace(s, '!', '/');
3652 	return *tmp = s;
3653 }
3654 
3655 /**
3656  * device_for_each_child - device child iterator.
3657  * @parent: parent struct device.
3658  * @fn: function to be called for each device.
3659  * @data: data for the callback.
3660  *
3661  * Iterate over @parent's child devices, and call @fn for each,
3662  * passing it @data.
3663  *
3664  * We check the return of @fn each time. If it returns anything
3665  * other than 0, we break out and return that value.
3666  */
3667 int device_for_each_child(struct device *parent, void *data,
3668 			  int (*fn)(struct device *dev, void *data))
3669 {
3670 	struct klist_iter i;
3671 	struct device *child;
3672 	int error = 0;
3673 
3674 	if (!parent->p)
3675 		return 0;
3676 
3677 	klist_iter_init(&parent->p->klist_children, &i);
3678 	while (!error && (child = next_device(&i)))
3679 		error = fn(child, data);
3680 	klist_iter_exit(&i);
3681 	return error;
3682 }
3683 EXPORT_SYMBOL_GPL(device_for_each_child);
3684 
3685 /**
3686  * device_for_each_child_reverse - device child iterator in reversed order.
3687  * @parent: parent struct device.
3688  * @fn: function to be called for each device.
3689  * @data: data for the callback.
3690  *
3691  * Iterate over @parent's child devices, and call @fn for each,
3692  * passing it @data.
3693  *
3694  * We check the return of @fn each time. If it returns anything
3695  * other than 0, we break out and return that value.
3696  */
3697 int device_for_each_child_reverse(struct device *parent, void *data,
3698 				  int (*fn)(struct device *dev, void *data))
3699 {
3700 	struct klist_iter i;
3701 	struct device *child;
3702 	int error = 0;
3703 
3704 	if (!parent->p)
3705 		return 0;
3706 
3707 	klist_iter_init(&parent->p->klist_children, &i);
3708 	while ((child = prev_device(&i)) && !error)
3709 		error = fn(child, data);
3710 	klist_iter_exit(&i);
3711 	return error;
3712 }
3713 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3714 
3715 /**
3716  * device_find_child - device iterator for locating a particular device.
3717  * @parent: parent struct device
3718  * @match: Callback function to check device
3719  * @data: Data to pass to match function
3720  *
3721  * This is similar to the device_for_each_child() function above, but it
3722  * returns a reference to a device that is 'found' for later use, as
3723  * determined by the @match callback.
3724  *
3725  * The callback should return 0 if the device doesn't match and non-zero
3726  * if it does.  If the callback returns non-zero and a reference to the
3727  * current device can be obtained, this function will return to the caller
3728  * and not iterate over any more devices.
3729  *
3730  * NOTE: you will need to drop the reference with put_device() after use.
3731  */
3732 struct device *device_find_child(struct device *parent, void *data,
3733 				 int (*match)(struct device *dev, void *data))
3734 {
3735 	struct klist_iter i;
3736 	struct device *child;
3737 
3738 	if (!parent)
3739 		return NULL;
3740 
3741 	klist_iter_init(&parent->p->klist_children, &i);
3742 	while ((child = next_device(&i)))
3743 		if (match(child, data) && get_device(child))
3744 			break;
3745 	klist_iter_exit(&i);
3746 	return child;
3747 }
3748 EXPORT_SYMBOL_GPL(device_find_child);
3749 
3750 /**
3751  * device_find_child_by_name - device iterator for locating a child device.
3752  * @parent: parent struct device
3753  * @name: name of the child device
3754  *
3755  * This is similar to the device_find_child() function above, but it
3756  * returns a reference to a device that has the name @name.
3757  *
3758  * NOTE: you will need to drop the reference with put_device() after use.
3759  */
3760 struct device *device_find_child_by_name(struct device *parent,
3761 					 const char *name)
3762 {
3763 	struct klist_iter i;
3764 	struct device *child;
3765 
3766 	if (!parent)
3767 		return NULL;
3768 
3769 	klist_iter_init(&parent->p->klist_children, &i);
3770 	while ((child = next_device(&i)))
3771 		if (sysfs_streq(dev_name(child), name) && get_device(child))
3772 			break;
3773 	klist_iter_exit(&i);
3774 	return child;
3775 }
3776 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3777 
3778 int __init devices_init(void)
3779 {
3780 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3781 	if (!devices_kset)
3782 		return -ENOMEM;
3783 	dev_kobj = kobject_create_and_add("dev", NULL);
3784 	if (!dev_kobj)
3785 		goto dev_kobj_err;
3786 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3787 	if (!sysfs_dev_block_kobj)
3788 		goto block_kobj_err;
3789 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3790 	if (!sysfs_dev_char_kobj)
3791 		goto char_kobj_err;
3792 
3793 	return 0;
3794 
3795  char_kobj_err:
3796 	kobject_put(sysfs_dev_block_kobj);
3797  block_kobj_err:
3798 	kobject_put(dev_kobj);
3799  dev_kobj_err:
3800 	kset_unregister(devices_kset);
3801 	return -ENOMEM;
3802 }
3803 
3804 static int device_check_offline(struct device *dev, void *not_used)
3805 {
3806 	int ret;
3807 
3808 	ret = device_for_each_child(dev, NULL, device_check_offline);
3809 	if (ret)
3810 		return ret;
3811 
3812 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3813 }
3814 
3815 /**
3816  * device_offline - Prepare the device for hot-removal.
3817  * @dev: Device to be put offline.
3818  *
3819  * Execute the device bus type's .offline() callback, if present, to prepare
3820  * the device for a subsequent hot-removal.  If that succeeds, the device must
3821  * not be used until either it is removed or its bus type's .online() callback
3822  * is executed.
3823  *
3824  * Call under device_hotplug_lock.
3825  */
3826 int device_offline(struct device *dev)
3827 {
3828 	int ret;
3829 
3830 	if (dev->offline_disabled)
3831 		return -EPERM;
3832 
3833 	ret = device_for_each_child(dev, NULL, device_check_offline);
3834 	if (ret)
3835 		return ret;
3836 
3837 	device_lock(dev);
3838 	if (device_supports_offline(dev)) {
3839 		if (dev->offline) {
3840 			ret = 1;
3841 		} else {
3842 			ret = dev->bus->offline(dev);
3843 			if (!ret) {
3844 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3845 				dev->offline = true;
3846 			}
3847 		}
3848 	}
3849 	device_unlock(dev);
3850 
3851 	return ret;
3852 }
3853 
3854 /**
3855  * device_online - Put the device back online after successful device_offline().
3856  * @dev: Device to be put back online.
3857  *
3858  * If device_offline() has been successfully executed for @dev, but the device
3859  * has not been removed subsequently, execute its bus type's .online() callback
3860  * to indicate that the device can be used again.
3861  *
3862  * Call under device_hotplug_lock.
3863  */
3864 int device_online(struct device *dev)
3865 {
3866 	int ret = 0;
3867 
3868 	device_lock(dev);
3869 	if (device_supports_offline(dev)) {
3870 		if (dev->offline) {
3871 			ret = dev->bus->online(dev);
3872 			if (!ret) {
3873 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3874 				dev->offline = false;
3875 			}
3876 		} else {
3877 			ret = 1;
3878 		}
3879 	}
3880 	device_unlock(dev);
3881 
3882 	return ret;
3883 }
3884 
3885 struct root_device {
3886 	struct device dev;
3887 	struct module *owner;
3888 };
3889 
3890 static inline struct root_device *to_root_device(struct device *d)
3891 {
3892 	return container_of(d, struct root_device, dev);
3893 }
3894 
3895 static void root_device_release(struct device *dev)
3896 {
3897 	kfree(to_root_device(dev));
3898 }
3899 
3900 /**
3901  * __root_device_register - allocate and register a root device
3902  * @name: root device name
3903  * @owner: owner module of the root device, usually THIS_MODULE
3904  *
3905  * This function allocates a root device and registers it
3906  * using device_register(). In order to free the returned
3907  * device, use root_device_unregister().
3908  *
3909  * Root devices are dummy devices which allow other devices
3910  * to be grouped under /sys/devices. Use this function to
3911  * allocate a root device and then use it as the parent of
3912  * any device which should appear under /sys/devices/{name}
3913  *
3914  * The /sys/devices/{name} directory will also contain a
3915  * 'module' symlink which points to the @owner directory
3916  * in sysfs.
3917  *
3918  * Returns &struct device pointer on success, or ERR_PTR() on error.
3919  *
3920  * Note: You probably want to use root_device_register().
3921  */
3922 struct device *__root_device_register(const char *name, struct module *owner)
3923 {
3924 	struct root_device *root;
3925 	int err = -ENOMEM;
3926 
3927 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3928 	if (!root)
3929 		return ERR_PTR(err);
3930 
3931 	err = dev_set_name(&root->dev, "%s", name);
3932 	if (err) {
3933 		kfree(root);
3934 		return ERR_PTR(err);
3935 	}
3936 
3937 	root->dev.release = root_device_release;
3938 
3939 	err = device_register(&root->dev);
3940 	if (err) {
3941 		put_device(&root->dev);
3942 		return ERR_PTR(err);
3943 	}
3944 
3945 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3946 	if (owner) {
3947 		struct module_kobject *mk = &owner->mkobj;
3948 
3949 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3950 		if (err) {
3951 			device_unregister(&root->dev);
3952 			return ERR_PTR(err);
3953 		}
3954 		root->owner = owner;
3955 	}
3956 #endif
3957 
3958 	return &root->dev;
3959 }
3960 EXPORT_SYMBOL_GPL(__root_device_register);
3961 
3962 /**
3963  * root_device_unregister - unregister and free a root device
3964  * @dev: device going away
3965  *
3966  * This function unregisters and cleans up a device that was created by
3967  * root_device_register().
3968  */
3969 void root_device_unregister(struct device *dev)
3970 {
3971 	struct root_device *root = to_root_device(dev);
3972 
3973 	if (root->owner)
3974 		sysfs_remove_link(&root->dev.kobj, "module");
3975 
3976 	device_unregister(dev);
3977 }
3978 EXPORT_SYMBOL_GPL(root_device_unregister);
3979 
3980 
3981 static void device_create_release(struct device *dev)
3982 {
3983 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3984 	kfree(dev);
3985 }
3986 
3987 static __printf(6, 0) struct device *
3988 device_create_groups_vargs(struct class *class, struct device *parent,
3989 			   dev_t devt, void *drvdata,
3990 			   const struct attribute_group **groups,
3991 			   const char *fmt, va_list args)
3992 {
3993 	struct device *dev = NULL;
3994 	int retval = -ENODEV;
3995 
3996 	if (class == NULL || IS_ERR(class))
3997 		goto error;
3998 
3999 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4000 	if (!dev) {
4001 		retval = -ENOMEM;
4002 		goto error;
4003 	}
4004 
4005 	device_initialize(dev);
4006 	dev->devt = devt;
4007 	dev->class = class;
4008 	dev->parent = parent;
4009 	dev->groups = groups;
4010 	dev->release = device_create_release;
4011 	dev_set_drvdata(dev, drvdata);
4012 
4013 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4014 	if (retval)
4015 		goto error;
4016 
4017 	retval = device_add(dev);
4018 	if (retval)
4019 		goto error;
4020 
4021 	return dev;
4022 
4023 error:
4024 	put_device(dev);
4025 	return ERR_PTR(retval);
4026 }
4027 
4028 /**
4029  * device_create - creates a device and registers it with sysfs
4030  * @class: pointer to the struct class that this device should be registered to
4031  * @parent: pointer to the parent struct device of this new device, if any
4032  * @devt: the dev_t for the char device to be added
4033  * @drvdata: the data to be added to the device for callbacks
4034  * @fmt: string for the device's name
4035  *
4036  * This function can be used by char device classes.  A struct device
4037  * will be created in sysfs, registered to the specified class.
4038  *
4039  * A "dev" file will be created, showing the dev_t for the device, if
4040  * the dev_t is not 0,0.
4041  * If a pointer to a parent struct device is passed in, the newly created
4042  * struct device will be a child of that device in sysfs.
4043  * The pointer to the struct device will be returned from the call.
4044  * Any further sysfs files that might be required can be created using this
4045  * pointer.
4046  *
4047  * Returns &struct device pointer on success, or ERR_PTR() on error.
4048  *
4049  * Note: the struct class passed to this function must have previously
4050  * been created with a call to class_create().
4051  */
4052 struct device *device_create(struct class *class, struct device *parent,
4053 			     dev_t devt, void *drvdata, const char *fmt, ...)
4054 {
4055 	va_list vargs;
4056 	struct device *dev;
4057 
4058 	va_start(vargs, fmt);
4059 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4060 					  fmt, vargs);
4061 	va_end(vargs);
4062 	return dev;
4063 }
4064 EXPORT_SYMBOL_GPL(device_create);
4065 
4066 /**
4067  * device_create_with_groups - creates a device and registers it with sysfs
4068  * @class: pointer to the struct class that this device should be registered to
4069  * @parent: pointer to the parent struct device of this new device, if any
4070  * @devt: the dev_t for the char device to be added
4071  * @drvdata: the data to be added to the device for callbacks
4072  * @groups: NULL-terminated list of attribute groups to be created
4073  * @fmt: string for the device's name
4074  *
4075  * This function can be used by char device classes.  A struct device
4076  * will be created in sysfs, registered to the specified class.
4077  * Additional attributes specified in the groups parameter will also
4078  * be created automatically.
4079  *
4080  * A "dev" file will be created, showing the dev_t for the device, if
4081  * the dev_t is not 0,0.
4082  * If a pointer to a parent struct device is passed in, the newly created
4083  * struct device will be a child of that device in sysfs.
4084  * The pointer to the struct device will be returned from the call.
4085  * Any further sysfs files that might be required can be created using this
4086  * pointer.
4087  *
4088  * Returns &struct device pointer on success, or ERR_PTR() on error.
4089  *
4090  * Note: the struct class passed to this function must have previously
4091  * been created with a call to class_create().
4092  */
4093 struct device *device_create_with_groups(struct class *class,
4094 					 struct device *parent, dev_t devt,
4095 					 void *drvdata,
4096 					 const struct attribute_group **groups,
4097 					 const char *fmt, ...)
4098 {
4099 	va_list vargs;
4100 	struct device *dev;
4101 
4102 	va_start(vargs, fmt);
4103 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4104 					 fmt, vargs);
4105 	va_end(vargs);
4106 	return dev;
4107 }
4108 EXPORT_SYMBOL_GPL(device_create_with_groups);
4109 
4110 /**
4111  * device_destroy - removes a device that was created with device_create()
4112  * @class: pointer to the struct class that this device was registered with
4113  * @devt: the dev_t of the device that was previously registered
4114  *
4115  * This call unregisters and cleans up a device that was created with a
4116  * call to device_create().
4117  */
4118 void device_destroy(struct class *class, dev_t devt)
4119 {
4120 	struct device *dev;
4121 
4122 	dev = class_find_device_by_devt(class, devt);
4123 	if (dev) {
4124 		put_device(dev);
4125 		device_unregister(dev);
4126 	}
4127 }
4128 EXPORT_SYMBOL_GPL(device_destroy);
4129 
4130 /**
4131  * device_rename - renames a device
4132  * @dev: the pointer to the struct device to be renamed
4133  * @new_name: the new name of the device
4134  *
4135  * It is the responsibility of the caller to provide mutual
4136  * exclusion between two different calls of device_rename
4137  * on the same device to ensure that new_name is valid and
4138  * won't conflict with other devices.
4139  *
4140  * Note: Don't call this function.  Currently, the networking layer calls this
4141  * function, but that will change.  The following text from Kay Sievers offers
4142  * some insight:
4143  *
4144  * Renaming devices is racy at many levels, symlinks and other stuff are not
4145  * replaced atomically, and you get a "move" uevent, but it's not easy to
4146  * connect the event to the old and new device. Device nodes are not renamed at
4147  * all, there isn't even support for that in the kernel now.
4148  *
4149  * In the meantime, during renaming, your target name might be taken by another
4150  * driver, creating conflicts. Or the old name is taken directly after you
4151  * renamed it -- then you get events for the same DEVPATH, before you even see
4152  * the "move" event. It's just a mess, and nothing new should ever rely on
4153  * kernel device renaming. Besides that, it's not even implemented now for
4154  * other things than (driver-core wise very simple) network devices.
4155  *
4156  * We are currently about to change network renaming in udev to completely
4157  * disallow renaming of devices in the same namespace as the kernel uses,
4158  * because we can't solve the problems properly, that arise with swapping names
4159  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4160  * be allowed to some other name than eth[0-9]*, for the aforementioned
4161  * reasons.
4162  *
4163  * Make up a "real" name in the driver before you register anything, or add
4164  * some other attributes for userspace to find the device, or use udev to add
4165  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4166  * don't even want to get into that and try to implement the missing pieces in
4167  * the core. We really have other pieces to fix in the driver core mess. :)
4168  */
4169 int device_rename(struct device *dev, const char *new_name)
4170 {
4171 	struct kobject *kobj = &dev->kobj;
4172 	char *old_device_name = NULL;
4173 	int error;
4174 
4175 	dev = get_device(dev);
4176 	if (!dev)
4177 		return -EINVAL;
4178 
4179 	dev_dbg(dev, "renaming to %s\n", new_name);
4180 
4181 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4182 	if (!old_device_name) {
4183 		error = -ENOMEM;
4184 		goto out;
4185 	}
4186 
4187 	if (dev->class) {
4188 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4189 					     kobj, old_device_name,
4190 					     new_name, kobject_namespace(kobj));
4191 		if (error)
4192 			goto out;
4193 	}
4194 
4195 	error = kobject_rename(kobj, new_name);
4196 	if (error)
4197 		goto out;
4198 
4199 out:
4200 	put_device(dev);
4201 
4202 	kfree(old_device_name);
4203 
4204 	return error;
4205 }
4206 EXPORT_SYMBOL_GPL(device_rename);
4207 
4208 static int device_move_class_links(struct device *dev,
4209 				   struct device *old_parent,
4210 				   struct device *new_parent)
4211 {
4212 	int error = 0;
4213 
4214 	if (old_parent)
4215 		sysfs_remove_link(&dev->kobj, "device");
4216 	if (new_parent)
4217 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4218 					  "device");
4219 	return error;
4220 }
4221 
4222 /**
4223  * device_move - moves a device to a new parent
4224  * @dev: the pointer to the struct device to be moved
4225  * @new_parent: the new parent of the device (can be NULL)
4226  * @dpm_order: how to reorder the dpm_list
4227  */
4228 int device_move(struct device *dev, struct device *new_parent,
4229 		enum dpm_order dpm_order)
4230 {
4231 	int error;
4232 	struct device *old_parent;
4233 	struct kobject *new_parent_kobj;
4234 
4235 	dev = get_device(dev);
4236 	if (!dev)
4237 		return -EINVAL;
4238 
4239 	device_pm_lock();
4240 	new_parent = get_device(new_parent);
4241 	new_parent_kobj = get_device_parent(dev, new_parent);
4242 	if (IS_ERR(new_parent_kobj)) {
4243 		error = PTR_ERR(new_parent_kobj);
4244 		put_device(new_parent);
4245 		goto out;
4246 	}
4247 
4248 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4249 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4250 	error = kobject_move(&dev->kobj, new_parent_kobj);
4251 	if (error) {
4252 		cleanup_glue_dir(dev, new_parent_kobj);
4253 		put_device(new_parent);
4254 		goto out;
4255 	}
4256 	old_parent = dev->parent;
4257 	dev->parent = new_parent;
4258 	if (old_parent)
4259 		klist_remove(&dev->p->knode_parent);
4260 	if (new_parent) {
4261 		klist_add_tail(&dev->p->knode_parent,
4262 			       &new_parent->p->klist_children);
4263 		set_dev_node(dev, dev_to_node(new_parent));
4264 	}
4265 
4266 	if (dev->class) {
4267 		error = device_move_class_links(dev, old_parent, new_parent);
4268 		if (error) {
4269 			/* We ignore errors on cleanup since we're hosed anyway... */
4270 			device_move_class_links(dev, new_parent, old_parent);
4271 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4272 				if (new_parent)
4273 					klist_remove(&dev->p->knode_parent);
4274 				dev->parent = old_parent;
4275 				if (old_parent) {
4276 					klist_add_tail(&dev->p->knode_parent,
4277 						       &old_parent->p->klist_children);
4278 					set_dev_node(dev, dev_to_node(old_parent));
4279 				}
4280 			}
4281 			cleanup_glue_dir(dev, new_parent_kobj);
4282 			put_device(new_parent);
4283 			goto out;
4284 		}
4285 	}
4286 	switch (dpm_order) {
4287 	case DPM_ORDER_NONE:
4288 		break;
4289 	case DPM_ORDER_DEV_AFTER_PARENT:
4290 		device_pm_move_after(dev, new_parent);
4291 		devices_kset_move_after(dev, new_parent);
4292 		break;
4293 	case DPM_ORDER_PARENT_BEFORE_DEV:
4294 		device_pm_move_before(new_parent, dev);
4295 		devices_kset_move_before(new_parent, dev);
4296 		break;
4297 	case DPM_ORDER_DEV_LAST:
4298 		device_pm_move_last(dev);
4299 		devices_kset_move_last(dev);
4300 		break;
4301 	}
4302 
4303 	put_device(old_parent);
4304 out:
4305 	device_pm_unlock();
4306 	put_device(dev);
4307 	return error;
4308 }
4309 EXPORT_SYMBOL_GPL(device_move);
4310 
4311 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4312 				     kgid_t kgid)
4313 {
4314 	struct kobject *kobj = &dev->kobj;
4315 	struct class *class = dev->class;
4316 	const struct device_type *type = dev->type;
4317 	int error;
4318 
4319 	if (class) {
4320 		/*
4321 		 * Change the device groups of the device class for @dev to
4322 		 * @kuid/@kgid.
4323 		 */
4324 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4325 						  kgid);
4326 		if (error)
4327 			return error;
4328 	}
4329 
4330 	if (type) {
4331 		/*
4332 		 * Change the device groups of the device type for @dev to
4333 		 * @kuid/@kgid.
4334 		 */
4335 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4336 						  kgid);
4337 		if (error)
4338 			return error;
4339 	}
4340 
4341 	/* Change the device groups of @dev to @kuid/@kgid. */
4342 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4343 	if (error)
4344 		return error;
4345 
4346 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4347 		/* Change online device attributes of @dev to @kuid/@kgid. */
4348 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4349 						kuid, kgid);
4350 		if (error)
4351 			return error;
4352 	}
4353 
4354 	return 0;
4355 }
4356 
4357 /**
4358  * device_change_owner - change the owner of an existing device.
4359  * @dev: device.
4360  * @kuid: new owner's kuid
4361  * @kgid: new owner's kgid
4362  *
4363  * This changes the owner of @dev and its corresponding sysfs entries to
4364  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4365  * core.
4366  *
4367  * Returns 0 on success or error code on failure.
4368  */
4369 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4370 {
4371 	int error;
4372 	struct kobject *kobj = &dev->kobj;
4373 
4374 	dev = get_device(dev);
4375 	if (!dev)
4376 		return -EINVAL;
4377 
4378 	/*
4379 	 * Change the kobject and the default attributes and groups of the
4380 	 * ktype associated with it to @kuid/@kgid.
4381 	 */
4382 	error = sysfs_change_owner(kobj, kuid, kgid);
4383 	if (error)
4384 		goto out;
4385 
4386 	/*
4387 	 * Change the uevent file for @dev to the new owner. The uevent file
4388 	 * was created in a separate step when @dev got added and we mirror
4389 	 * that step here.
4390 	 */
4391 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4392 					kgid);
4393 	if (error)
4394 		goto out;
4395 
4396 	/*
4397 	 * Change the device groups, the device groups associated with the
4398 	 * device class, and the groups associated with the device type of @dev
4399 	 * to @kuid/@kgid.
4400 	 */
4401 	error = device_attrs_change_owner(dev, kuid, kgid);
4402 	if (error)
4403 		goto out;
4404 
4405 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4406 	if (error)
4407 		goto out;
4408 
4409 #ifdef CONFIG_BLOCK
4410 	if (sysfs_deprecated && dev->class == &block_class)
4411 		goto out;
4412 #endif
4413 
4414 	/*
4415 	 * Change the owner of the symlink located in the class directory of
4416 	 * the device class associated with @dev which points to the actual
4417 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4418 	 * symlink shows the same permissions as its target.
4419 	 */
4420 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4421 					dev_name(dev), kuid, kgid);
4422 	if (error)
4423 		goto out;
4424 
4425 out:
4426 	put_device(dev);
4427 	return error;
4428 }
4429 EXPORT_SYMBOL_GPL(device_change_owner);
4430 
4431 /**
4432  * device_shutdown - call ->shutdown() on each device to shutdown.
4433  */
4434 void device_shutdown(void)
4435 {
4436 	struct device *dev, *parent;
4437 
4438 	wait_for_device_probe();
4439 	device_block_probing();
4440 
4441 	cpufreq_suspend();
4442 
4443 	spin_lock(&devices_kset->list_lock);
4444 	/*
4445 	 * Walk the devices list backward, shutting down each in turn.
4446 	 * Beware that device unplug events may also start pulling
4447 	 * devices offline, even as the system is shutting down.
4448 	 */
4449 	while (!list_empty(&devices_kset->list)) {
4450 		dev = list_entry(devices_kset->list.prev, struct device,
4451 				kobj.entry);
4452 
4453 		/*
4454 		 * hold reference count of device's parent to
4455 		 * prevent it from being freed because parent's
4456 		 * lock is to be held
4457 		 */
4458 		parent = get_device(dev->parent);
4459 		get_device(dev);
4460 		/*
4461 		 * Make sure the device is off the kset list, in the
4462 		 * event that dev->*->shutdown() doesn't remove it.
4463 		 */
4464 		list_del_init(&dev->kobj.entry);
4465 		spin_unlock(&devices_kset->list_lock);
4466 
4467 		/* hold lock to avoid race with probe/release */
4468 		if (parent)
4469 			device_lock(parent);
4470 		device_lock(dev);
4471 
4472 		/* Don't allow any more runtime suspends */
4473 		pm_runtime_get_noresume(dev);
4474 		pm_runtime_barrier(dev);
4475 
4476 		if (dev->class && dev->class->shutdown_pre) {
4477 			if (initcall_debug)
4478 				dev_info(dev, "shutdown_pre\n");
4479 			dev->class->shutdown_pre(dev);
4480 		}
4481 		if (dev->bus && dev->bus->shutdown) {
4482 			if (initcall_debug)
4483 				dev_info(dev, "shutdown\n");
4484 			dev->bus->shutdown(dev);
4485 		} else if (dev->driver && dev->driver->shutdown) {
4486 			if (initcall_debug)
4487 				dev_info(dev, "shutdown\n");
4488 			dev->driver->shutdown(dev);
4489 		}
4490 
4491 		device_unlock(dev);
4492 		if (parent)
4493 			device_unlock(parent);
4494 
4495 		put_device(dev);
4496 		put_device(parent);
4497 
4498 		spin_lock(&devices_kset->list_lock);
4499 	}
4500 	spin_unlock(&devices_kset->list_lock);
4501 }
4502 
4503 /*
4504  * Device logging functions
4505  */
4506 
4507 #ifdef CONFIG_PRINTK
4508 static void
4509 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4510 {
4511 	const char *subsys;
4512 
4513 	memset(dev_info, 0, sizeof(*dev_info));
4514 
4515 	if (dev->class)
4516 		subsys = dev->class->name;
4517 	else if (dev->bus)
4518 		subsys = dev->bus->name;
4519 	else
4520 		return;
4521 
4522 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4523 
4524 	/*
4525 	 * Add device identifier DEVICE=:
4526 	 *   b12:8         block dev_t
4527 	 *   c127:3        char dev_t
4528 	 *   n8            netdev ifindex
4529 	 *   +sound:card0  subsystem:devname
4530 	 */
4531 	if (MAJOR(dev->devt)) {
4532 		char c;
4533 
4534 		if (strcmp(subsys, "block") == 0)
4535 			c = 'b';
4536 		else
4537 			c = 'c';
4538 
4539 		snprintf(dev_info->device, sizeof(dev_info->device),
4540 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4541 	} else if (strcmp(subsys, "net") == 0) {
4542 		struct net_device *net = to_net_dev(dev);
4543 
4544 		snprintf(dev_info->device, sizeof(dev_info->device),
4545 			 "n%u", net->ifindex);
4546 	} else {
4547 		snprintf(dev_info->device, sizeof(dev_info->device),
4548 			 "+%s:%s", subsys, dev_name(dev));
4549 	}
4550 }
4551 
4552 int dev_vprintk_emit(int level, const struct device *dev,
4553 		     const char *fmt, va_list args)
4554 {
4555 	struct dev_printk_info dev_info;
4556 
4557 	set_dev_info(dev, &dev_info);
4558 
4559 	return vprintk_emit(0, level, &dev_info, fmt, args);
4560 }
4561 EXPORT_SYMBOL(dev_vprintk_emit);
4562 
4563 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4564 {
4565 	va_list args;
4566 	int r;
4567 
4568 	va_start(args, fmt);
4569 
4570 	r = dev_vprintk_emit(level, dev, fmt, args);
4571 
4572 	va_end(args);
4573 
4574 	return r;
4575 }
4576 EXPORT_SYMBOL(dev_printk_emit);
4577 
4578 static void __dev_printk(const char *level, const struct device *dev,
4579 			struct va_format *vaf)
4580 {
4581 	if (dev)
4582 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4583 				dev_driver_string(dev), dev_name(dev), vaf);
4584 	else
4585 		printk("%s(NULL device *): %pV", level, vaf);
4586 }
4587 
4588 void _dev_printk(const char *level, const struct device *dev,
4589 		 const char *fmt, ...)
4590 {
4591 	struct va_format vaf;
4592 	va_list args;
4593 
4594 	va_start(args, fmt);
4595 
4596 	vaf.fmt = fmt;
4597 	vaf.va = &args;
4598 
4599 	__dev_printk(level, dev, &vaf);
4600 
4601 	va_end(args);
4602 }
4603 EXPORT_SYMBOL(_dev_printk);
4604 
4605 #define define_dev_printk_level(func, kern_level)		\
4606 void func(const struct device *dev, const char *fmt, ...)	\
4607 {								\
4608 	struct va_format vaf;					\
4609 	va_list args;						\
4610 								\
4611 	va_start(args, fmt);					\
4612 								\
4613 	vaf.fmt = fmt;						\
4614 	vaf.va = &args;						\
4615 								\
4616 	__dev_printk(kern_level, dev, &vaf);			\
4617 								\
4618 	va_end(args);						\
4619 }								\
4620 EXPORT_SYMBOL(func);
4621 
4622 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4623 define_dev_printk_level(_dev_alert, KERN_ALERT);
4624 define_dev_printk_level(_dev_crit, KERN_CRIT);
4625 define_dev_printk_level(_dev_err, KERN_ERR);
4626 define_dev_printk_level(_dev_warn, KERN_WARNING);
4627 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4628 define_dev_printk_level(_dev_info, KERN_INFO);
4629 
4630 #endif
4631 
4632 /**
4633  * dev_err_probe - probe error check and log helper
4634  * @dev: the pointer to the struct device
4635  * @err: error value to test
4636  * @fmt: printf-style format string
4637  * @...: arguments as specified in the format string
4638  *
4639  * This helper implements common pattern present in probe functions for error
4640  * checking: print debug or error message depending if the error value is
4641  * -EPROBE_DEFER and propagate error upwards.
4642  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4643  * checked later by reading devices_deferred debugfs attribute.
4644  * It replaces code sequence::
4645  *
4646  * 	if (err != -EPROBE_DEFER)
4647  * 		dev_err(dev, ...);
4648  * 	else
4649  * 		dev_dbg(dev, ...);
4650  * 	return err;
4651  *
4652  * with::
4653  *
4654  * 	return dev_err_probe(dev, err, ...);
4655  *
4656  * Returns @err.
4657  *
4658  */
4659 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4660 {
4661 	struct va_format vaf;
4662 	va_list args;
4663 
4664 	va_start(args, fmt);
4665 	vaf.fmt = fmt;
4666 	vaf.va = &args;
4667 
4668 	if (err != -EPROBE_DEFER) {
4669 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4670 	} else {
4671 		device_set_deferred_probe_reason(dev, &vaf);
4672 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4673 	}
4674 
4675 	va_end(args);
4676 
4677 	return err;
4678 }
4679 EXPORT_SYMBOL_GPL(dev_err_probe);
4680 
4681 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4682 {
4683 	return fwnode && !IS_ERR(fwnode->secondary);
4684 }
4685 
4686 /**
4687  * set_primary_fwnode - Change the primary firmware node of a given device.
4688  * @dev: Device to handle.
4689  * @fwnode: New primary firmware node of the device.
4690  *
4691  * Set the device's firmware node pointer to @fwnode, but if a secondary
4692  * firmware node of the device is present, preserve it.
4693  *
4694  * Valid fwnode cases are:
4695  *  - primary --> secondary --> -ENODEV
4696  *  - primary --> NULL
4697  *  - secondary --> -ENODEV
4698  *  - NULL
4699  */
4700 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4701 {
4702 	struct device *parent = dev->parent;
4703 	struct fwnode_handle *fn = dev->fwnode;
4704 
4705 	if (fwnode) {
4706 		if (fwnode_is_primary(fn))
4707 			fn = fn->secondary;
4708 
4709 		if (fn) {
4710 			WARN_ON(fwnode->secondary);
4711 			fwnode->secondary = fn;
4712 		}
4713 		dev->fwnode = fwnode;
4714 	} else {
4715 		if (fwnode_is_primary(fn)) {
4716 			dev->fwnode = fn->secondary;
4717 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4718 			if (!(parent && fn == parent->fwnode))
4719 				fn->secondary = NULL;
4720 		} else {
4721 			dev->fwnode = NULL;
4722 		}
4723 	}
4724 }
4725 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4726 
4727 /**
4728  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4729  * @dev: Device to handle.
4730  * @fwnode: New secondary firmware node of the device.
4731  *
4732  * If a primary firmware node of the device is present, set its secondary
4733  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4734  * @fwnode.
4735  */
4736 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4737 {
4738 	if (fwnode)
4739 		fwnode->secondary = ERR_PTR(-ENODEV);
4740 
4741 	if (fwnode_is_primary(dev->fwnode))
4742 		dev->fwnode->secondary = fwnode;
4743 	else
4744 		dev->fwnode = fwnode;
4745 }
4746 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4747 
4748 /**
4749  * device_set_of_node_from_dev - reuse device-tree node of another device
4750  * @dev: device whose device-tree node is being set
4751  * @dev2: device whose device-tree node is being reused
4752  *
4753  * Takes another reference to the new device-tree node after first dropping
4754  * any reference held to the old node.
4755  */
4756 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4757 {
4758 	of_node_put(dev->of_node);
4759 	dev->of_node = of_node_get(dev2->of_node);
4760 	dev->of_node_reused = true;
4761 }
4762 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4763 
4764 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4765 {
4766 	dev->fwnode = fwnode;
4767 	dev->of_node = to_of_node(fwnode);
4768 }
4769 EXPORT_SYMBOL_GPL(device_set_node);
4770 
4771 int device_match_name(struct device *dev, const void *name)
4772 {
4773 	return sysfs_streq(dev_name(dev), name);
4774 }
4775 EXPORT_SYMBOL_GPL(device_match_name);
4776 
4777 int device_match_of_node(struct device *dev, const void *np)
4778 {
4779 	return dev->of_node == np;
4780 }
4781 EXPORT_SYMBOL_GPL(device_match_of_node);
4782 
4783 int device_match_fwnode(struct device *dev, const void *fwnode)
4784 {
4785 	return dev_fwnode(dev) == fwnode;
4786 }
4787 EXPORT_SYMBOL_GPL(device_match_fwnode);
4788 
4789 int device_match_devt(struct device *dev, const void *pdevt)
4790 {
4791 	return dev->devt == *(dev_t *)pdevt;
4792 }
4793 EXPORT_SYMBOL_GPL(device_match_devt);
4794 
4795 int device_match_acpi_dev(struct device *dev, const void *adev)
4796 {
4797 	return ACPI_COMPANION(dev) == adev;
4798 }
4799 EXPORT_SYMBOL(device_match_acpi_dev);
4800 
4801 int device_match_any(struct device *dev, const void *unused)
4802 {
4803 	return 1;
4804 }
4805 EXPORT_SYMBOL_GPL(device_match_any);
4806