1 /* 2 * drivers/base/core.c - core driver model code (device registration, etc) 3 * 4 * Copyright (c) 2002-3 Patrick Mochel 5 * Copyright (c) 2002-3 Open Source Development Labs 6 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 7 * Copyright (c) 2006 Novell, Inc. 8 * 9 * This file is released under the GPLv2 10 * 11 */ 12 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/kallsyms.h> 26 #include <linux/mutex.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/netdevice.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sysfs.h> 31 32 #include "base.h" 33 #include "power/power.h" 34 35 #ifdef CONFIG_SYSFS_DEPRECATED 36 #ifdef CONFIG_SYSFS_DEPRECATED_V2 37 long sysfs_deprecated = 1; 38 #else 39 long sysfs_deprecated = 0; 40 #endif 41 static int __init sysfs_deprecated_setup(char *arg) 42 { 43 return kstrtol(arg, 10, &sysfs_deprecated); 44 } 45 early_param("sysfs.deprecated", sysfs_deprecated_setup); 46 #endif 47 48 /* Device links support. */ 49 50 #ifdef CONFIG_SRCU 51 static DEFINE_MUTEX(device_links_lock); 52 DEFINE_STATIC_SRCU(device_links_srcu); 53 54 static inline void device_links_write_lock(void) 55 { 56 mutex_lock(&device_links_lock); 57 } 58 59 static inline void device_links_write_unlock(void) 60 { 61 mutex_unlock(&device_links_lock); 62 } 63 64 int device_links_read_lock(void) 65 { 66 return srcu_read_lock(&device_links_srcu); 67 } 68 69 void device_links_read_unlock(int idx) 70 { 71 srcu_read_unlock(&device_links_srcu, idx); 72 } 73 #else /* !CONFIG_SRCU */ 74 static DECLARE_RWSEM(device_links_lock); 75 76 static inline void device_links_write_lock(void) 77 { 78 down_write(&device_links_lock); 79 } 80 81 static inline void device_links_write_unlock(void) 82 { 83 up_write(&device_links_lock); 84 } 85 86 int device_links_read_lock(void) 87 { 88 down_read(&device_links_lock); 89 return 0; 90 } 91 92 void device_links_read_unlock(int not_used) 93 { 94 up_read(&device_links_lock); 95 } 96 #endif /* !CONFIG_SRCU */ 97 98 /** 99 * device_is_dependent - Check if one device depends on another one 100 * @dev: Device to check dependencies for. 101 * @target: Device to check against. 102 * 103 * Check if @target depends on @dev or any device dependent on it (its child or 104 * its consumer etc). Return 1 if that is the case or 0 otherwise. 105 */ 106 static int device_is_dependent(struct device *dev, void *target) 107 { 108 struct device_link *link; 109 int ret; 110 111 if (WARN_ON(dev == target)) 112 return 1; 113 114 ret = device_for_each_child(dev, target, device_is_dependent); 115 if (ret) 116 return ret; 117 118 list_for_each_entry(link, &dev->links.consumers, s_node) { 119 if (WARN_ON(link->consumer == target)) 120 return 1; 121 122 ret = device_is_dependent(link->consumer, target); 123 if (ret) 124 break; 125 } 126 return ret; 127 } 128 129 static int device_reorder_to_tail(struct device *dev, void *not_used) 130 { 131 struct device_link *link; 132 133 /* 134 * Devices that have not been registered yet will be put to the ends 135 * of the lists during the registration, so skip them here. 136 */ 137 if (device_is_registered(dev)) 138 devices_kset_move_last(dev); 139 140 if (device_pm_initialized(dev)) 141 device_pm_move_last(dev); 142 143 device_for_each_child(dev, NULL, device_reorder_to_tail); 144 list_for_each_entry(link, &dev->links.consumers, s_node) 145 device_reorder_to_tail(link->consumer, NULL); 146 147 return 0; 148 } 149 150 /** 151 * device_link_add - Create a link between two devices. 152 * @consumer: Consumer end of the link. 153 * @supplier: Supplier end of the link. 154 * @flags: Link flags. 155 * 156 * The caller is responsible for the proper synchronization of the link creation 157 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 158 * runtime PM framework to take the link into account. Second, if the 159 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 160 * be forced into the active metastate and reference-counted upon the creation 161 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 162 * ignored. 163 * 164 * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically 165 * when the consumer device driver unbinds from it. The combination of both 166 * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL 167 * to be returned. 168 * 169 * A side effect of the link creation is re-ordering of dpm_list and the 170 * devices_kset list by moving the consumer device and all devices depending 171 * on it to the ends of these lists (that does not happen to devices that have 172 * not been registered when this function is called). 173 * 174 * The supplier device is required to be registered when this function is called 175 * and NULL will be returned if that is not the case. The consumer device need 176 * not be registered, however. 177 */ 178 struct device_link *device_link_add(struct device *consumer, 179 struct device *supplier, u32 flags) 180 { 181 struct device_link *link; 182 183 if (!consumer || !supplier || 184 ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE))) 185 return NULL; 186 187 device_links_write_lock(); 188 device_pm_lock(); 189 190 /* 191 * If the supplier has not been fully registered yet or there is a 192 * reverse dependency between the consumer and the supplier already in 193 * the graph, return NULL. 194 */ 195 if (!device_pm_initialized(supplier) 196 || device_is_dependent(consumer, supplier)) { 197 link = NULL; 198 goto out; 199 } 200 201 list_for_each_entry(link, &supplier->links.consumers, s_node) 202 if (link->consumer == consumer) 203 goto out; 204 205 link = kzalloc(sizeof(*link), GFP_KERNEL); 206 if (!link) 207 goto out; 208 209 if (flags & DL_FLAG_PM_RUNTIME) { 210 if (flags & DL_FLAG_RPM_ACTIVE) { 211 if (pm_runtime_get_sync(supplier) < 0) { 212 pm_runtime_put_noidle(supplier); 213 kfree(link); 214 link = NULL; 215 goto out; 216 } 217 link->rpm_active = true; 218 } 219 pm_runtime_new_link(consumer); 220 } 221 get_device(supplier); 222 link->supplier = supplier; 223 INIT_LIST_HEAD(&link->s_node); 224 get_device(consumer); 225 link->consumer = consumer; 226 INIT_LIST_HEAD(&link->c_node); 227 link->flags = flags; 228 229 /* Determine the initial link state. */ 230 if (flags & DL_FLAG_STATELESS) { 231 link->status = DL_STATE_NONE; 232 } else { 233 switch (supplier->links.status) { 234 case DL_DEV_DRIVER_BOUND: 235 switch (consumer->links.status) { 236 case DL_DEV_PROBING: 237 /* 238 * Balance the decrementation of the supplier's 239 * runtime PM usage counter after consumer probe 240 * in driver_probe_device(). 241 */ 242 if (flags & DL_FLAG_PM_RUNTIME) 243 pm_runtime_get_sync(supplier); 244 245 link->status = DL_STATE_CONSUMER_PROBE; 246 break; 247 case DL_DEV_DRIVER_BOUND: 248 link->status = DL_STATE_ACTIVE; 249 break; 250 default: 251 link->status = DL_STATE_AVAILABLE; 252 break; 253 } 254 break; 255 case DL_DEV_UNBINDING: 256 link->status = DL_STATE_SUPPLIER_UNBIND; 257 break; 258 default: 259 link->status = DL_STATE_DORMANT; 260 break; 261 } 262 } 263 264 /* 265 * Move the consumer and all of the devices depending on it to the end 266 * of dpm_list and the devices_kset list. 267 * 268 * It is necessary to hold dpm_list locked throughout all that or else 269 * we may end up suspending with a wrong ordering of it. 270 */ 271 device_reorder_to_tail(consumer, NULL); 272 273 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 274 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 275 276 dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 277 278 out: 279 device_pm_unlock(); 280 device_links_write_unlock(); 281 return link; 282 } 283 EXPORT_SYMBOL_GPL(device_link_add); 284 285 static void device_link_free(struct device_link *link) 286 { 287 put_device(link->consumer); 288 put_device(link->supplier); 289 kfree(link); 290 } 291 292 #ifdef CONFIG_SRCU 293 static void __device_link_free_srcu(struct rcu_head *rhead) 294 { 295 device_link_free(container_of(rhead, struct device_link, rcu_head)); 296 } 297 298 static void __device_link_del(struct device_link *link) 299 { 300 dev_info(link->consumer, "Dropping the link to %s\n", 301 dev_name(link->supplier)); 302 303 if (link->flags & DL_FLAG_PM_RUNTIME) 304 pm_runtime_drop_link(link->consumer); 305 306 list_del_rcu(&link->s_node); 307 list_del_rcu(&link->c_node); 308 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu); 309 } 310 #else /* !CONFIG_SRCU */ 311 static void __device_link_del(struct device_link *link) 312 { 313 dev_info(link->consumer, "Dropping the link to %s\n", 314 dev_name(link->supplier)); 315 316 list_del(&link->s_node); 317 list_del(&link->c_node); 318 device_link_free(link); 319 } 320 #endif /* !CONFIG_SRCU */ 321 322 /** 323 * device_link_del - Delete a link between two devices. 324 * @link: Device link to delete. 325 * 326 * The caller must ensure proper synchronization of this function with runtime 327 * PM. 328 */ 329 void device_link_del(struct device_link *link) 330 { 331 device_links_write_lock(); 332 device_pm_lock(); 333 __device_link_del(link); 334 device_pm_unlock(); 335 device_links_write_unlock(); 336 } 337 EXPORT_SYMBOL_GPL(device_link_del); 338 339 static void device_links_missing_supplier(struct device *dev) 340 { 341 struct device_link *link; 342 343 list_for_each_entry(link, &dev->links.suppliers, c_node) 344 if (link->status == DL_STATE_CONSUMER_PROBE) 345 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 346 } 347 348 /** 349 * device_links_check_suppliers - Check presence of supplier drivers. 350 * @dev: Consumer device. 351 * 352 * Check links from this device to any suppliers. Walk the list of the device's 353 * links to suppliers and see if all of them are available. If not, simply 354 * return -EPROBE_DEFER. 355 * 356 * We need to guarantee that the supplier will not go away after the check has 357 * been positive here. It only can go away in __device_release_driver() and 358 * that function checks the device's links to consumers. This means we need to 359 * mark the link as "consumer probe in progress" to make the supplier removal 360 * wait for us to complete (or bad things may happen). 361 * 362 * Links with the DL_FLAG_STATELESS flag set are ignored. 363 */ 364 int device_links_check_suppliers(struct device *dev) 365 { 366 struct device_link *link; 367 int ret = 0; 368 369 device_links_write_lock(); 370 371 list_for_each_entry(link, &dev->links.suppliers, c_node) { 372 if (link->flags & DL_FLAG_STATELESS) 373 continue; 374 375 if (link->status != DL_STATE_AVAILABLE) { 376 device_links_missing_supplier(dev); 377 ret = -EPROBE_DEFER; 378 break; 379 } 380 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 381 } 382 dev->links.status = DL_DEV_PROBING; 383 384 device_links_write_unlock(); 385 return ret; 386 } 387 388 /** 389 * device_links_driver_bound - Update device links after probing its driver. 390 * @dev: Device to update the links for. 391 * 392 * The probe has been successful, so update links from this device to any 393 * consumers by changing their status to "available". 394 * 395 * Also change the status of @dev's links to suppliers to "active". 396 * 397 * Links with the DL_FLAG_STATELESS flag set are ignored. 398 */ 399 void device_links_driver_bound(struct device *dev) 400 { 401 struct device_link *link; 402 403 device_links_write_lock(); 404 405 list_for_each_entry(link, &dev->links.consumers, s_node) { 406 if (link->flags & DL_FLAG_STATELESS) 407 continue; 408 409 WARN_ON(link->status != DL_STATE_DORMANT); 410 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 411 } 412 413 list_for_each_entry(link, &dev->links.suppliers, c_node) { 414 if (link->flags & DL_FLAG_STATELESS) 415 continue; 416 417 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 418 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 419 } 420 421 dev->links.status = DL_DEV_DRIVER_BOUND; 422 423 device_links_write_unlock(); 424 } 425 426 /** 427 * __device_links_no_driver - Update links of a device without a driver. 428 * @dev: Device without a drvier. 429 * 430 * Delete all non-persistent links from this device to any suppliers. 431 * 432 * Persistent links stay around, but their status is changed to "available", 433 * unless they already are in the "supplier unbind in progress" state in which 434 * case they need not be updated. 435 * 436 * Links with the DL_FLAG_STATELESS flag set are ignored. 437 */ 438 static void __device_links_no_driver(struct device *dev) 439 { 440 struct device_link *link, *ln; 441 442 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 443 if (link->flags & DL_FLAG_STATELESS) 444 continue; 445 446 if (link->flags & DL_FLAG_AUTOREMOVE) 447 __device_link_del(link); 448 else if (link->status != DL_STATE_SUPPLIER_UNBIND) 449 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 450 } 451 452 dev->links.status = DL_DEV_NO_DRIVER; 453 } 454 455 void device_links_no_driver(struct device *dev) 456 { 457 device_links_write_lock(); 458 __device_links_no_driver(dev); 459 device_links_write_unlock(); 460 } 461 462 /** 463 * device_links_driver_cleanup - Update links after driver removal. 464 * @dev: Device whose driver has just gone away. 465 * 466 * Update links to consumers for @dev by changing their status to "dormant" and 467 * invoke %__device_links_no_driver() to update links to suppliers for it as 468 * appropriate. 469 * 470 * Links with the DL_FLAG_STATELESS flag set are ignored. 471 */ 472 void device_links_driver_cleanup(struct device *dev) 473 { 474 struct device_link *link; 475 476 device_links_write_lock(); 477 478 list_for_each_entry(link, &dev->links.consumers, s_node) { 479 if (link->flags & DL_FLAG_STATELESS) 480 continue; 481 482 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE); 483 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 484 WRITE_ONCE(link->status, DL_STATE_DORMANT); 485 } 486 487 __device_links_no_driver(dev); 488 489 device_links_write_unlock(); 490 } 491 492 /** 493 * device_links_busy - Check if there are any busy links to consumers. 494 * @dev: Device to check. 495 * 496 * Check each consumer of the device and return 'true' if its link's status 497 * is one of "consumer probe" or "active" (meaning that the given consumer is 498 * probing right now or its driver is present). Otherwise, change the link 499 * state to "supplier unbind" to prevent the consumer from being probed 500 * successfully going forward. 501 * 502 * Return 'false' if there are no probing or active consumers. 503 * 504 * Links with the DL_FLAG_STATELESS flag set are ignored. 505 */ 506 bool device_links_busy(struct device *dev) 507 { 508 struct device_link *link; 509 bool ret = false; 510 511 device_links_write_lock(); 512 513 list_for_each_entry(link, &dev->links.consumers, s_node) { 514 if (link->flags & DL_FLAG_STATELESS) 515 continue; 516 517 if (link->status == DL_STATE_CONSUMER_PROBE 518 || link->status == DL_STATE_ACTIVE) { 519 ret = true; 520 break; 521 } 522 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 523 } 524 525 dev->links.status = DL_DEV_UNBINDING; 526 527 device_links_write_unlock(); 528 return ret; 529 } 530 531 /** 532 * device_links_unbind_consumers - Force unbind consumers of the given device. 533 * @dev: Device to unbind the consumers of. 534 * 535 * Walk the list of links to consumers for @dev and if any of them is in the 536 * "consumer probe" state, wait for all device probes in progress to complete 537 * and start over. 538 * 539 * If that's not the case, change the status of the link to "supplier unbind" 540 * and check if the link was in the "active" state. If so, force the consumer 541 * driver to unbind and start over (the consumer will not re-probe as we have 542 * changed the state of the link already). 543 * 544 * Links with the DL_FLAG_STATELESS flag set are ignored. 545 */ 546 void device_links_unbind_consumers(struct device *dev) 547 { 548 struct device_link *link; 549 550 start: 551 device_links_write_lock(); 552 553 list_for_each_entry(link, &dev->links.consumers, s_node) { 554 enum device_link_state status; 555 556 if (link->flags & DL_FLAG_STATELESS) 557 continue; 558 559 status = link->status; 560 if (status == DL_STATE_CONSUMER_PROBE) { 561 device_links_write_unlock(); 562 563 wait_for_device_probe(); 564 goto start; 565 } 566 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 567 if (status == DL_STATE_ACTIVE) { 568 struct device *consumer = link->consumer; 569 570 get_device(consumer); 571 572 device_links_write_unlock(); 573 574 device_release_driver_internal(consumer, NULL, 575 consumer->parent); 576 put_device(consumer); 577 goto start; 578 } 579 } 580 581 device_links_write_unlock(); 582 } 583 584 /** 585 * device_links_purge - Delete existing links to other devices. 586 * @dev: Target device. 587 */ 588 static void device_links_purge(struct device *dev) 589 { 590 struct device_link *link, *ln; 591 592 /* 593 * Delete all of the remaining links from this device to any other 594 * devices (either consumers or suppliers). 595 */ 596 device_links_write_lock(); 597 598 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 599 WARN_ON(link->status == DL_STATE_ACTIVE); 600 __device_link_del(link); 601 } 602 603 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 604 WARN_ON(link->status != DL_STATE_DORMANT && 605 link->status != DL_STATE_NONE); 606 __device_link_del(link); 607 } 608 609 device_links_write_unlock(); 610 } 611 612 /* Device links support end. */ 613 614 int (*platform_notify)(struct device *dev) = NULL; 615 int (*platform_notify_remove)(struct device *dev) = NULL; 616 static struct kobject *dev_kobj; 617 struct kobject *sysfs_dev_char_kobj; 618 struct kobject *sysfs_dev_block_kobj; 619 620 static DEFINE_MUTEX(device_hotplug_lock); 621 622 void lock_device_hotplug(void) 623 { 624 mutex_lock(&device_hotplug_lock); 625 } 626 627 void unlock_device_hotplug(void) 628 { 629 mutex_unlock(&device_hotplug_lock); 630 } 631 632 int lock_device_hotplug_sysfs(void) 633 { 634 if (mutex_trylock(&device_hotplug_lock)) 635 return 0; 636 637 /* Avoid busy looping (5 ms of sleep should do). */ 638 msleep(5); 639 return restart_syscall(); 640 } 641 642 #ifdef CONFIG_BLOCK 643 static inline int device_is_not_partition(struct device *dev) 644 { 645 return !(dev->type == &part_type); 646 } 647 #else 648 static inline int device_is_not_partition(struct device *dev) 649 { 650 return 1; 651 } 652 #endif 653 654 /** 655 * dev_driver_string - Return a device's driver name, if at all possible 656 * @dev: struct device to get the name of 657 * 658 * Will return the device's driver's name if it is bound to a device. If 659 * the device is not bound to a driver, it will return the name of the bus 660 * it is attached to. If it is not attached to a bus either, an empty 661 * string will be returned. 662 */ 663 const char *dev_driver_string(const struct device *dev) 664 { 665 struct device_driver *drv; 666 667 /* dev->driver can change to NULL underneath us because of unbinding, 668 * so be careful about accessing it. dev->bus and dev->class should 669 * never change once they are set, so they don't need special care. 670 */ 671 drv = ACCESS_ONCE(dev->driver); 672 return drv ? drv->name : 673 (dev->bus ? dev->bus->name : 674 (dev->class ? dev->class->name : "")); 675 } 676 EXPORT_SYMBOL(dev_driver_string); 677 678 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 679 680 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 681 char *buf) 682 { 683 struct device_attribute *dev_attr = to_dev_attr(attr); 684 struct device *dev = kobj_to_dev(kobj); 685 ssize_t ret = -EIO; 686 687 if (dev_attr->show) 688 ret = dev_attr->show(dev, dev_attr, buf); 689 if (ret >= (ssize_t)PAGE_SIZE) { 690 print_symbol("dev_attr_show: %s returned bad count\n", 691 (unsigned long)dev_attr->show); 692 } 693 return ret; 694 } 695 696 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 697 const char *buf, size_t count) 698 { 699 struct device_attribute *dev_attr = to_dev_attr(attr); 700 struct device *dev = kobj_to_dev(kobj); 701 ssize_t ret = -EIO; 702 703 if (dev_attr->store) 704 ret = dev_attr->store(dev, dev_attr, buf, count); 705 return ret; 706 } 707 708 static const struct sysfs_ops dev_sysfs_ops = { 709 .show = dev_attr_show, 710 .store = dev_attr_store, 711 }; 712 713 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 714 715 ssize_t device_store_ulong(struct device *dev, 716 struct device_attribute *attr, 717 const char *buf, size_t size) 718 { 719 struct dev_ext_attribute *ea = to_ext_attr(attr); 720 char *end; 721 unsigned long new = simple_strtoul(buf, &end, 0); 722 if (end == buf) 723 return -EINVAL; 724 *(unsigned long *)(ea->var) = new; 725 /* Always return full write size even if we didn't consume all */ 726 return size; 727 } 728 EXPORT_SYMBOL_GPL(device_store_ulong); 729 730 ssize_t device_show_ulong(struct device *dev, 731 struct device_attribute *attr, 732 char *buf) 733 { 734 struct dev_ext_attribute *ea = to_ext_attr(attr); 735 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var)); 736 } 737 EXPORT_SYMBOL_GPL(device_show_ulong); 738 739 ssize_t device_store_int(struct device *dev, 740 struct device_attribute *attr, 741 const char *buf, size_t size) 742 { 743 struct dev_ext_attribute *ea = to_ext_attr(attr); 744 char *end; 745 long new = simple_strtol(buf, &end, 0); 746 if (end == buf || new > INT_MAX || new < INT_MIN) 747 return -EINVAL; 748 *(int *)(ea->var) = new; 749 /* Always return full write size even if we didn't consume all */ 750 return size; 751 } 752 EXPORT_SYMBOL_GPL(device_store_int); 753 754 ssize_t device_show_int(struct device *dev, 755 struct device_attribute *attr, 756 char *buf) 757 { 758 struct dev_ext_attribute *ea = to_ext_attr(attr); 759 760 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var)); 761 } 762 EXPORT_SYMBOL_GPL(device_show_int); 763 764 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 765 const char *buf, size_t size) 766 { 767 struct dev_ext_attribute *ea = to_ext_attr(attr); 768 769 if (strtobool(buf, ea->var) < 0) 770 return -EINVAL; 771 772 return size; 773 } 774 EXPORT_SYMBOL_GPL(device_store_bool); 775 776 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 777 char *buf) 778 { 779 struct dev_ext_attribute *ea = to_ext_attr(attr); 780 781 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var)); 782 } 783 EXPORT_SYMBOL_GPL(device_show_bool); 784 785 /** 786 * device_release - free device structure. 787 * @kobj: device's kobject. 788 * 789 * This is called once the reference count for the object 790 * reaches 0. We forward the call to the device's release 791 * method, which should handle actually freeing the structure. 792 */ 793 static void device_release(struct kobject *kobj) 794 { 795 struct device *dev = kobj_to_dev(kobj); 796 struct device_private *p = dev->p; 797 798 /* 799 * Some platform devices are driven without driver attached 800 * and managed resources may have been acquired. Make sure 801 * all resources are released. 802 * 803 * Drivers still can add resources into device after device 804 * is deleted but alive, so release devres here to avoid 805 * possible memory leak. 806 */ 807 devres_release_all(dev); 808 809 if (dev->release) 810 dev->release(dev); 811 else if (dev->type && dev->type->release) 812 dev->type->release(dev); 813 else if (dev->class && dev->class->dev_release) 814 dev->class->dev_release(dev); 815 else 816 WARN(1, KERN_ERR "Device '%s' does not have a release() " 817 "function, it is broken and must be fixed.\n", 818 dev_name(dev)); 819 kfree(p); 820 } 821 822 static const void *device_namespace(struct kobject *kobj) 823 { 824 struct device *dev = kobj_to_dev(kobj); 825 const void *ns = NULL; 826 827 if (dev->class && dev->class->ns_type) 828 ns = dev->class->namespace(dev); 829 830 return ns; 831 } 832 833 static struct kobj_type device_ktype = { 834 .release = device_release, 835 .sysfs_ops = &dev_sysfs_ops, 836 .namespace = device_namespace, 837 }; 838 839 840 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 841 { 842 struct kobj_type *ktype = get_ktype(kobj); 843 844 if (ktype == &device_ktype) { 845 struct device *dev = kobj_to_dev(kobj); 846 if (dev->bus) 847 return 1; 848 if (dev->class) 849 return 1; 850 } 851 return 0; 852 } 853 854 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 855 { 856 struct device *dev = kobj_to_dev(kobj); 857 858 if (dev->bus) 859 return dev->bus->name; 860 if (dev->class) 861 return dev->class->name; 862 return NULL; 863 } 864 865 static int dev_uevent(struct kset *kset, struct kobject *kobj, 866 struct kobj_uevent_env *env) 867 { 868 struct device *dev = kobj_to_dev(kobj); 869 int retval = 0; 870 871 /* add device node properties if present */ 872 if (MAJOR(dev->devt)) { 873 const char *tmp; 874 const char *name; 875 umode_t mode = 0; 876 kuid_t uid = GLOBAL_ROOT_UID; 877 kgid_t gid = GLOBAL_ROOT_GID; 878 879 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 880 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 881 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 882 if (name) { 883 add_uevent_var(env, "DEVNAME=%s", name); 884 if (mode) 885 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 886 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 887 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 888 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 889 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 890 kfree(tmp); 891 } 892 } 893 894 if (dev->type && dev->type->name) 895 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 896 897 if (dev->driver) 898 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 899 900 /* Add common DT information about the device */ 901 of_device_uevent(dev, env); 902 903 /* have the bus specific function add its stuff */ 904 if (dev->bus && dev->bus->uevent) { 905 retval = dev->bus->uevent(dev, env); 906 if (retval) 907 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 908 dev_name(dev), __func__, retval); 909 } 910 911 /* have the class specific function add its stuff */ 912 if (dev->class && dev->class->dev_uevent) { 913 retval = dev->class->dev_uevent(dev, env); 914 if (retval) 915 pr_debug("device: '%s': %s: class uevent() " 916 "returned %d\n", dev_name(dev), 917 __func__, retval); 918 } 919 920 /* have the device type specific function add its stuff */ 921 if (dev->type && dev->type->uevent) { 922 retval = dev->type->uevent(dev, env); 923 if (retval) 924 pr_debug("device: '%s': %s: dev_type uevent() " 925 "returned %d\n", dev_name(dev), 926 __func__, retval); 927 } 928 929 return retval; 930 } 931 932 static const struct kset_uevent_ops device_uevent_ops = { 933 .filter = dev_uevent_filter, 934 .name = dev_uevent_name, 935 .uevent = dev_uevent, 936 }; 937 938 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 939 char *buf) 940 { 941 struct kobject *top_kobj; 942 struct kset *kset; 943 struct kobj_uevent_env *env = NULL; 944 int i; 945 size_t count = 0; 946 int retval; 947 948 /* search the kset, the device belongs to */ 949 top_kobj = &dev->kobj; 950 while (!top_kobj->kset && top_kobj->parent) 951 top_kobj = top_kobj->parent; 952 if (!top_kobj->kset) 953 goto out; 954 955 kset = top_kobj->kset; 956 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 957 goto out; 958 959 /* respect filter */ 960 if (kset->uevent_ops && kset->uevent_ops->filter) 961 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 962 goto out; 963 964 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 965 if (!env) 966 return -ENOMEM; 967 968 /* let the kset specific function add its keys */ 969 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 970 if (retval) 971 goto out; 972 973 /* copy keys to file */ 974 for (i = 0; i < env->envp_idx; i++) 975 count += sprintf(&buf[count], "%s\n", env->envp[i]); 976 out: 977 kfree(env); 978 return count; 979 } 980 981 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 982 const char *buf, size_t count) 983 { 984 if (kobject_synth_uevent(&dev->kobj, buf, count)) 985 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 986 987 return count; 988 } 989 static DEVICE_ATTR_RW(uevent); 990 991 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 992 char *buf) 993 { 994 bool val; 995 996 device_lock(dev); 997 val = !dev->offline; 998 device_unlock(dev); 999 return sprintf(buf, "%u\n", val); 1000 } 1001 1002 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 1003 const char *buf, size_t count) 1004 { 1005 bool val; 1006 int ret; 1007 1008 ret = strtobool(buf, &val); 1009 if (ret < 0) 1010 return ret; 1011 1012 ret = lock_device_hotplug_sysfs(); 1013 if (ret) 1014 return ret; 1015 1016 ret = val ? device_online(dev) : device_offline(dev); 1017 unlock_device_hotplug(); 1018 return ret < 0 ? ret : count; 1019 } 1020 static DEVICE_ATTR_RW(online); 1021 1022 int device_add_groups(struct device *dev, const struct attribute_group **groups) 1023 { 1024 return sysfs_create_groups(&dev->kobj, groups); 1025 } 1026 1027 void device_remove_groups(struct device *dev, 1028 const struct attribute_group **groups) 1029 { 1030 sysfs_remove_groups(&dev->kobj, groups); 1031 } 1032 1033 static int device_add_attrs(struct device *dev) 1034 { 1035 struct class *class = dev->class; 1036 const struct device_type *type = dev->type; 1037 int error; 1038 1039 if (class) { 1040 error = device_add_groups(dev, class->dev_groups); 1041 if (error) 1042 return error; 1043 } 1044 1045 if (type) { 1046 error = device_add_groups(dev, type->groups); 1047 if (error) 1048 goto err_remove_class_groups; 1049 } 1050 1051 error = device_add_groups(dev, dev->groups); 1052 if (error) 1053 goto err_remove_type_groups; 1054 1055 if (device_supports_offline(dev) && !dev->offline_disabled) { 1056 error = device_create_file(dev, &dev_attr_online); 1057 if (error) 1058 goto err_remove_dev_groups; 1059 } 1060 1061 return 0; 1062 1063 err_remove_dev_groups: 1064 device_remove_groups(dev, dev->groups); 1065 err_remove_type_groups: 1066 if (type) 1067 device_remove_groups(dev, type->groups); 1068 err_remove_class_groups: 1069 if (class) 1070 device_remove_groups(dev, class->dev_groups); 1071 1072 return error; 1073 } 1074 1075 static void device_remove_attrs(struct device *dev) 1076 { 1077 struct class *class = dev->class; 1078 const struct device_type *type = dev->type; 1079 1080 device_remove_file(dev, &dev_attr_online); 1081 device_remove_groups(dev, dev->groups); 1082 1083 if (type) 1084 device_remove_groups(dev, type->groups); 1085 1086 if (class) 1087 device_remove_groups(dev, class->dev_groups); 1088 } 1089 1090 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 1091 char *buf) 1092 { 1093 return print_dev_t(buf, dev->devt); 1094 } 1095 static DEVICE_ATTR_RO(dev); 1096 1097 /* /sys/devices/ */ 1098 struct kset *devices_kset; 1099 1100 /** 1101 * devices_kset_move_before - Move device in the devices_kset's list. 1102 * @deva: Device to move. 1103 * @devb: Device @deva should come before. 1104 */ 1105 static void devices_kset_move_before(struct device *deva, struct device *devb) 1106 { 1107 if (!devices_kset) 1108 return; 1109 pr_debug("devices_kset: Moving %s before %s\n", 1110 dev_name(deva), dev_name(devb)); 1111 spin_lock(&devices_kset->list_lock); 1112 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 1113 spin_unlock(&devices_kset->list_lock); 1114 } 1115 1116 /** 1117 * devices_kset_move_after - Move device in the devices_kset's list. 1118 * @deva: Device to move 1119 * @devb: Device @deva should come after. 1120 */ 1121 static void devices_kset_move_after(struct device *deva, struct device *devb) 1122 { 1123 if (!devices_kset) 1124 return; 1125 pr_debug("devices_kset: Moving %s after %s\n", 1126 dev_name(deva), dev_name(devb)); 1127 spin_lock(&devices_kset->list_lock); 1128 list_move(&deva->kobj.entry, &devb->kobj.entry); 1129 spin_unlock(&devices_kset->list_lock); 1130 } 1131 1132 /** 1133 * devices_kset_move_last - move the device to the end of devices_kset's list. 1134 * @dev: device to move 1135 */ 1136 void devices_kset_move_last(struct device *dev) 1137 { 1138 if (!devices_kset) 1139 return; 1140 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 1141 spin_lock(&devices_kset->list_lock); 1142 list_move_tail(&dev->kobj.entry, &devices_kset->list); 1143 spin_unlock(&devices_kset->list_lock); 1144 } 1145 1146 /** 1147 * device_create_file - create sysfs attribute file for device. 1148 * @dev: device. 1149 * @attr: device attribute descriptor. 1150 */ 1151 int device_create_file(struct device *dev, 1152 const struct device_attribute *attr) 1153 { 1154 int error = 0; 1155 1156 if (dev) { 1157 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 1158 "Attribute %s: write permission without 'store'\n", 1159 attr->attr.name); 1160 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 1161 "Attribute %s: read permission without 'show'\n", 1162 attr->attr.name); 1163 error = sysfs_create_file(&dev->kobj, &attr->attr); 1164 } 1165 1166 return error; 1167 } 1168 EXPORT_SYMBOL_GPL(device_create_file); 1169 1170 /** 1171 * device_remove_file - remove sysfs attribute file. 1172 * @dev: device. 1173 * @attr: device attribute descriptor. 1174 */ 1175 void device_remove_file(struct device *dev, 1176 const struct device_attribute *attr) 1177 { 1178 if (dev) 1179 sysfs_remove_file(&dev->kobj, &attr->attr); 1180 } 1181 EXPORT_SYMBOL_GPL(device_remove_file); 1182 1183 /** 1184 * device_remove_file_self - remove sysfs attribute file from its own method. 1185 * @dev: device. 1186 * @attr: device attribute descriptor. 1187 * 1188 * See kernfs_remove_self() for details. 1189 */ 1190 bool device_remove_file_self(struct device *dev, 1191 const struct device_attribute *attr) 1192 { 1193 if (dev) 1194 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 1195 else 1196 return false; 1197 } 1198 EXPORT_SYMBOL_GPL(device_remove_file_self); 1199 1200 /** 1201 * device_create_bin_file - create sysfs binary attribute file for device. 1202 * @dev: device. 1203 * @attr: device binary attribute descriptor. 1204 */ 1205 int device_create_bin_file(struct device *dev, 1206 const struct bin_attribute *attr) 1207 { 1208 int error = -EINVAL; 1209 if (dev) 1210 error = sysfs_create_bin_file(&dev->kobj, attr); 1211 return error; 1212 } 1213 EXPORT_SYMBOL_GPL(device_create_bin_file); 1214 1215 /** 1216 * device_remove_bin_file - remove sysfs binary attribute file 1217 * @dev: device. 1218 * @attr: device binary attribute descriptor. 1219 */ 1220 void device_remove_bin_file(struct device *dev, 1221 const struct bin_attribute *attr) 1222 { 1223 if (dev) 1224 sysfs_remove_bin_file(&dev->kobj, attr); 1225 } 1226 EXPORT_SYMBOL_GPL(device_remove_bin_file); 1227 1228 static void klist_children_get(struct klist_node *n) 1229 { 1230 struct device_private *p = to_device_private_parent(n); 1231 struct device *dev = p->device; 1232 1233 get_device(dev); 1234 } 1235 1236 static void klist_children_put(struct klist_node *n) 1237 { 1238 struct device_private *p = to_device_private_parent(n); 1239 struct device *dev = p->device; 1240 1241 put_device(dev); 1242 } 1243 1244 /** 1245 * device_initialize - init device structure. 1246 * @dev: device. 1247 * 1248 * This prepares the device for use by other layers by initializing 1249 * its fields. 1250 * It is the first half of device_register(), if called by 1251 * that function, though it can also be called separately, so one 1252 * may use @dev's fields. In particular, get_device()/put_device() 1253 * may be used for reference counting of @dev after calling this 1254 * function. 1255 * 1256 * All fields in @dev must be initialized by the caller to 0, except 1257 * for those explicitly set to some other value. The simplest 1258 * approach is to use kzalloc() to allocate the structure containing 1259 * @dev. 1260 * 1261 * NOTE: Use put_device() to give up your reference instead of freeing 1262 * @dev directly once you have called this function. 1263 */ 1264 void device_initialize(struct device *dev) 1265 { 1266 dev->kobj.kset = devices_kset; 1267 kobject_init(&dev->kobj, &device_ktype); 1268 INIT_LIST_HEAD(&dev->dma_pools); 1269 mutex_init(&dev->mutex); 1270 lockdep_set_novalidate_class(&dev->mutex); 1271 spin_lock_init(&dev->devres_lock); 1272 INIT_LIST_HEAD(&dev->devres_head); 1273 device_pm_init(dev); 1274 set_dev_node(dev, -1); 1275 #ifdef CONFIG_GENERIC_MSI_IRQ 1276 INIT_LIST_HEAD(&dev->msi_list); 1277 #endif 1278 INIT_LIST_HEAD(&dev->links.consumers); 1279 INIT_LIST_HEAD(&dev->links.suppliers); 1280 dev->links.status = DL_DEV_NO_DRIVER; 1281 } 1282 EXPORT_SYMBOL_GPL(device_initialize); 1283 1284 struct kobject *virtual_device_parent(struct device *dev) 1285 { 1286 static struct kobject *virtual_dir = NULL; 1287 1288 if (!virtual_dir) 1289 virtual_dir = kobject_create_and_add("virtual", 1290 &devices_kset->kobj); 1291 1292 return virtual_dir; 1293 } 1294 1295 struct class_dir { 1296 struct kobject kobj; 1297 struct class *class; 1298 }; 1299 1300 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 1301 1302 static void class_dir_release(struct kobject *kobj) 1303 { 1304 struct class_dir *dir = to_class_dir(kobj); 1305 kfree(dir); 1306 } 1307 1308 static const 1309 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 1310 { 1311 struct class_dir *dir = to_class_dir(kobj); 1312 return dir->class->ns_type; 1313 } 1314 1315 static struct kobj_type class_dir_ktype = { 1316 .release = class_dir_release, 1317 .sysfs_ops = &kobj_sysfs_ops, 1318 .child_ns_type = class_dir_child_ns_type 1319 }; 1320 1321 static struct kobject * 1322 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 1323 { 1324 struct class_dir *dir; 1325 int retval; 1326 1327 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 1328 if (!dir) 1329 return NULL; 1330 1331 dir->class = class; 1332 kobject_init(&dir->kobj, &class_dir_ktype); 1333 1334 dir->kobj.kset = &class->p->glue_dirs; 1335 1336 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 1337 if (retval < 0) { 1338 kobject_put(&dir->kobj); 1339 return NULL; 1340 } 1341 return &dir->kobj; 1342 } 1343 1344 static DEFINE_MUTEX(gdp_mutex); 1345 1346 static struct kobject *get_device_parent(struct device *dev, 1347 struct device *parent) 1348 { 1349 if (dev->class) { 1350 struct kobject *kobj = NULL; 1351 struct kobject *parent_kobj; 1352 struct kobject *k; 1353 1354 #ifdef CONFIG_BLOCK 1355 /* block disks show up in /sys/block */ 1356 if (sysfs_deprecated && dev->class == &block_class) { 1357 if (parent && parent->class == &block_class) 1358 return &parent->kobj; 1359 return &block_class.p->subsys.kobj; 1360 } 1361 #endif 1362 1363 /* 1364 * If we have no parent, we live in "virtual". 1365 * Class-devices with a non class-device as parent, live 1366 * in a "glue" directory to prevent namespace collisions. 1367 */ 1368 if (parent == NULL) 1369 parent_kobj = virtual_device_parent(dev); 1370 else if (parent->class && !dev->class->ns_type) 1371 return &parent->kobj; 1372 else 1373 parent_kobj = &parent->kobj; 1374 1375 mutex_lock(&gdp_mutex); 1376 1377 /* find our class-directory at the parent and reference it */ 1378 spin_lock(&dev->class->p->glue_dirs.list_lock); 1379 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 1380 if (k->parent == parent_kobj) { 1381 kobj = kobject_get(k); 1382 break; 1383 } 1384 spin_unlock(&dev->class->p->glue_dirs.list_lock); 1385 if (kobj) { 1386 mutex_unlock(&gdp_mutex); 1387 return kobj; 1388 } 1389 1390 /* or create a new class-directory at the parent device */ 1391 k = class_dir_create_and_add(dev->class, parent_kobj); 1392 /* do not emit an uevent for this simple "glue" directory */ 1393 mutex_unlock(&gdp_mutex); 1394 return k; 1395 } 1396 1397 /* subsystems can specify a default root directory for their devices */ 1398 if (!parent && dev->bus && dev->bus->dev_root) 1399 return &dev->bus->dev_root->kobj; 1400 1401 if (parent) 1402 return &parent->kobj; 1403 return NULL; 1404 } 1405 1406 static inline bool live_in_glue_dir(struct kobject *kobj, 1407 struct device *dev) 1408 { 1409 if (!kobj || !dev->class || 1410 kobj->kset != &dev->class->p->glue_dirs) 1411 return false; 1412 return true; 1413 } 1414 1415 static inline struct kobject *get_glue_dir(struct device *dev) 1416 { 1417 return dev->kobj.parent; 1418 } 1419 1420 /* 1421 * make sure cleaning up dir as the last step, we need to make 1422 * sure .release handler of kobject is run with holding the 1423 * global lock 1424 */ 1425 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 1426 { 1427 /* see if we live in a "glue" directory */ 1428 if (!live_in_glue_dir(glue_dir, dev)) 1429 return; 1430 1431 mutex_lock(&gdp_mutex); 1432 kobject_put(glue_dir); 1433 mutex_unlock(&gdp_mutex); 1434 } 1435 1436 static int device_add_class_symlinks(struct device *dev) 1437 { 1438 struct device_node *of_node = dev_of_node(dev); 1439 int error; 1440 1441 if (of_node) { 1442 error = sysfs_create_link(&dev->kobj, &of_node->kobj,"of_node"); 1443 if (error) 1444 dev_warn(dev, "Error %d creating of_node link\n",error); 1445 /* An error here doesn't warrant bringing down the device */ 1446 } 1447 1448 if (!dev->class) 1449 return 0; 1450 1451 error = sysfs_create_link(&dev->kobj, 1452 &dev->class->p->subsys.kobj, 1453 "subsystem"); 1454 if (error) 1455 goto out_devnode; 1456 1457 if (dev->parent && device_is_not_partition(dev)) { 1458 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 1459 "device"); 1460 if (error) 1461 goto out_subsys; 1462 } 1463 1464 #ifdef CONFIG_BLOCK 1465 /* /sys/block has directories and does not need symlinks */ 1466 if (sysfs_deprecated && dev->class == &block_class) 1467 return 0; 1468 #endif 1469 1470 /* link in the class directory pointing to the device */ 1471 error = sysfs_create_link(&dev->class->p->subsys.kobj, 1472 &dev->kobj, dev_name(dev)); 1473 if (error) 1474 goto out_device; 1475 1476 return 0; 1477 1478 out_device: 1479 sysfs_remove_link(&dev->kobj, "device"); 1480 1481 out_subsys: 1482 sysfs_remove_link(&dev->kobj, "subsystem"); 1483 out_devnode: 1484 sysfs_remove_link(&dev->kobj, "of_node"); 1485 return error; 1486 } 1487 1488 static void device_remove_class_symlinks(struct device *dev) 1489 { 1490 if (dev_of_node(dev)) 1491 sysfs_remove_link(&dev->kobj, "of_node"); 1492 1493 if (!dev->class) 1494 return; 1495 1496 if (dev->parent && device_is_not_partition(dev)) 1497 sysfs_remove_link(&dev->kobj, "device"); 1498 sysfs_remove_link(&dev->kobj, "subsystem"); 1499 #ifdef CONFIG_BLOCK 1500 if (sysfs_deprecated && dev->class == &block_class) 1501 return; 1502 #endif 1503 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 1504 } 1505 1506 /** 1507 * dev_set_name - set a device name 1508 * @dev: device 1509 * @fmt: format string for the device's name 1510 */ 1511 int dev_set_name(struct device *dev, const char *fmt, ...) 1512 { 1513 va_list vargs; 1514 int err; 1515 1516 va_start(vargs, fmt); 1517 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 1518 va_end(vargs); 1519 return err; 1520 } 1521 EXPORT_SYMBOL_GPL(dev_set_name); 1522 1523 /** 1524 * device_to_dev_kobj - select a /sys/dev/ directory for the device 1525 * @dev: device 1526 * 1527 * By default we select char/ for new entries. Setting class->dev_obj 1528 * to NULL prevents an entry from being created. class->dev_kobj must 1529 * be set (or cleared) before any devices are registered to the class 1530 * otherwise device_create_sys_dev_entry() and 1531 * device_remove_sys_dev_entry() will disagree about the presence of 1532 * the link. 1533 */ 1534 static struct kobject *device_to_dev_kobj(struct device *dev) 1535 { 1536 struct kobject *kobj; 1537 1538 if (dev->class) 1539 kobj = dev->class->dev_kobj; 1540 else 1541 kobj = sysfs_dev_char_kobj; 1542 1543 return kobj; 1544 } 1545 1546 static int device_create_sys_dev_entry(struct device *dev) 1547 { 1548 struct kobject *kobj = device_to_dev_kobj(dev); 1549 int error = 0; 1550 char devt_str[15]; 1551 1552 if (kobj) { 1553 format_dev_t(devt_str, dev->devt); 1554 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 1555 } 1556 1557 return error; 1558 } 1559 1560 static void device_remove_sys_dev_entry(struct device *dev) 1561 { 1562 struct kobject *kobj = device_to_dev_kobj(dev); 1563 char devt_str[15]; 1564 1565 if (kobj) { 1566 format_dev_t(devt_str, dev->devt); 1567 sysfs_remove_link(kobj, devt_str); 1568 } 1569 } 1570 1571 int device_private_init(struct device *dev) 1572 { 1573 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 1574 if (!dev->p) 1575 return -ENOMEM; 1576 dev->p->device = dev; 1577 klist_init(&dev->p->klist_children, klist_children_get, 1578 klist_children_put); 1579 INIT_LIST_HEAD(&dev->p->deferred_probe); 1580 return 0; 1581 } 1582 1583 /** 1584 * device_add - add device to device hierarchy. 1585 * @dev: device. 1586 * 1587 * This is part 2 of device_register(), though may be called 1588 * separately _iff_ device_initialize() has been called separately. 1589 * 1590 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 1591 * to the global and sibling lists for the device, then 1592 * adds it to the other relevant subsystems of the driver model. 1593 * 1594 * Do not call this routine or device_register() more than once for 1595 * any device structure. The driver model core is not designed to work 1596 * with devices that get unregistered and then spring back to life. 1597 * (Among other things, it's very hard to guarantee that all references 1598 * to the previous incarnation of @dev have been dropped.) Allocate 1599 * and register a fresh new struct device instead. 1600 * 1601 * NOTE: _Never_ directly free @dev after calling this function, even 1602 * if it returned an error! Always use put_device() to give up your 1603 * reference instead. 1604 */ 1605 int device_add(struct device *dev) 1606 { 1607 struct device *parent; 1608 struct kobject *kobj; 1609 struct class_interface *class_intf; 1610 int error = -EINVAL; 1611 struct kobject *glue_dir = NULL; 1612 1613 dev = get_device(dev); 1614 if (!dev) 1615 goto done; 1616 1617 if (!dev->p) { 1618 error = device_private_init(dev); 1619 if (error) 1620 goto done; 1621 } 1622 1623 /* 1624 * for statically allocated devices, which should all be converted 1625 * some day, we need to initialize the name. We prevent reading back 1626 * the name, and force the use of dev_name() 1627 */ 1628 if (dev->init_name) { 1629 dev_set_name(dev, "%s", dev->init_name); 1630 dev->init_name = NULL; 1631 } 1632 1633 /* subsystems can specify simple device enumeration */ 1634 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 1635 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 1636 1637 if (!dev_name(dev)) { 1638 error = -EINVAL; 1639 goto name_error; 1640 } 1641 1642 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 1643 1644 parent = get_device(dev->parent); 1645 kobj = get_device_parent(dev, parent); 1646 if (kobj) 1647 dev->kobj.parent = kobj; 1648 1649 /* use parent numa_node */ 1650 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 1651 set_dev_node(dev, dev_to_node(parent)); 1652 1653 /* first, register with generic layer. */ 1654 /* we require the name to be set before, and pass NULL */ 1655 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 1656 if (error) { 1657 glue_dir = get_glue_dir(dev); 1658 goto Error; 1659 } 1660 1661 /* notify platform of device entry */ 1662 if (platform_notify) 1663 platform_notify(dev); 1664 1665 error = device_create_file(dev, &dev_attr_uevent); 1666 if (error) 1667 goto attrError; 1668 1669 error = device_add_class_symlinks(dev); 1670 if (error) 1671 goto SymlinkError; 1672 error = device_add_attrs(dev); 1673 if (error) 1674 goto AttrsError; 1675 error = bus_add_device(dev); 1676 if (error) 1677 goto BusError; 1678 error = dpm_sysfs_add(dev); 1679 if (error) 1680 goto DPMError; 1681 device_pm_add(dev); 1682 1683 if (MAJOR(dev->devt)) { 1684 error = device_create_file(dev, &dev_attr_dev); 1685 if (error) 1686 goto DevAttrError; 1687 1688 error = device_create_sys_dev_entry(dev); 1689 if (error) 1690 goto SysEntryError; 1691 1692 devtmpfs_create_node(dev); 1693 } 1694 1695 /* Notify clients of device addition. This call must come 1696 * after dpm_sysfs_add() and before kobject_uevent(). 1697 */ 1698 if (dev->bus) 1699 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1700 BUS_NOTIFY_ADD_DEVICE, dev); 1701 1702 kobject_uevent(&dev->kobj, KOBJ_ADD); 1703 bus_probe_device(dev); 1704 if (parent) 1705 klist_add_tail(&dev->p->knode_parent, 1706 &parent->p->klist_children); 1707 1708 if (dev->class) { 1709 mutex_lock(&dev->class->p->mutex); 1710 /* tie the class to the device */ 1711 klist_add_tail(&dev->knode_class, 1712 &dev->class->p->klist_devices); 1713 1714 /* notify any interfaces that the device is here */ 1715 list_for_each_entry(class_intf, 1716 &dev->class->p->interfaces, node) 1717 if (class_intf->add_dev) 1718 class_intf->add_dev(dev, class_intf); 1719 mutex_unlock(&dev->class->p->mutex); 1720 } 1721 done: 1722 put_device(dev); 1723 return error; 1724 SysEntryError: 1725 if (MAJOR(dev->devt)) 1726 device_remove_file(dev, &dev_attr_dev); 1727 DevAttrError: 1728 device_pm_remove(dev); 1729 dpm_sysfs_remove(dev); 1730 DPMError: 1731 bus_remove_device(dev); 1732 BusError: 1733 device_remove_attrs(dev); 1734 AttrsError: 1735 device_remove_class_symlinks(dev); 1736 SymlinkError: 1737 device_remove_file(dev, &dev_attr_uevent); 1738 attrError: 1739 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 1740 glue_dir = get_glue_dir(dev); 1741 kobject_del(&dev->kobj); 1742 Error: 1743 cleanup_glue_dir(dev, glue_dir); 1744 put_device(parent); 1745 name_error: 1746 kfree(dev->p); 1747 dev->p = NULL; 1748 goto done; 1749 } 1750 EXPORT_SYMBOL_GPL(device_add); 1751 1752 /** 1753 * device_register - register a device with the system. 1754 * @dev: pointer to the device structure 1755 * 1756 * This happens in two clean steps - initialize the device 1757 * and add it to the system. The two steps can be called 1758 * separately, but this is the easiest and most common. 1759 * I.e. you should only call the two helpers separately if 1760 * have a clearly defined need to use and refcount the device 1761 * before it is added to the hierarchy. 1762 * 1763 * For more information, see the kerneldoc for device_initialize() 1764 * and device_add(). 1765 * 1766 * NOTE: _Never_ directly free @dev after calling this function, even 1767 * if it returned an error! Always use put_device() to give up the 1768 * reference initialized in this function instead. 1769 */ 1770 int device_register(struct device *dev) 1771 { 1772 device_initialize(dev); 1773 return device_add(dev); 1774 } 1775 EXPORT_SYMBOL_GPL(device_register); 1776 1777 /** 1778 * get_device - increment reference count for device. 1779 * @dev: device. 1780 * 1781 * This simply forwards the call to kobject_get(), though 1782 * we do take care to provide for the case that we get a NULL 1783 * pointer passed in. 1784 */ 1785 struct device *get_device(struct device *dev) 1786 { 1787 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 1788 } 1789 EXPORT_SYMBOL_GPL(get_device); 1790 1791 /** 1792 * put_device - decrement reference count. 1793 * @dev: device in question. 1794 */ 1795 void put_device(struct device *dev) 1796 { 1797 /* might_sleep(); */ 1798 if (dev) 1799 kobject_put(&dev->kobj); 1800 } 1801 EXPORT_SYMBOL_GPL(put_device); 1802 1803 /** 1804 * device_del - delete device from system. 1805 * @dev: device. 1806 * 1807 * This is the first part of the device unregistration 1808 * sequence. This removes the device from the lists we control 1809 * from here, has it removed from the other driver model 1810 * subsystems it was added to in device_add(), and removes it 1811 * from the kobject hierarchy. 1812 * 1813 * NOTE: this should be called manually _iff_ device_add() was 1814 * also called manually. 1815 */ 1816 void device_del(struct device *dev) 1817 { 1818 struct device *parent = dev->parent; 1819 struct kobject *glue_dir = NULL; 1820 struct class_interface *class_intf; 1821 1822 /* Notify clients of device removal. This call must come 1823 * before dpm_sysfs_remove(). 1824 */ 1825 if (dev->bus) 1826 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1827 BUS_NOTIFY_DEL_DEVICE, dev); 1828 1829 device_links_purge(dev); 1830 dpm_sysfs_remove(dev); 1831 if (parent) 1832 klist_del(&dev->p->knode_parent); 1833 if (MAJOR(dev->devt)) { 1834 devtmpfs_delete_node(dev); 1835 device_remove_sys_dev_entry(dev); 1836 device_remove_file(dev, &dev_attr_dev); 1837 } 1838 if (dev->class) { 1839 device_remove_class_symlinks(dev); 1840 1841 mutex_lock(&dev->class->p->mutex); 1842 /* notify any interfaces that the device is now gone */ 1843 list_for_each_entry(class_intf, 1844 &dev->class->p->interfaces, node) 1845 if (class_intf->remove_dev) 1846 class_intf->remove_dev(dev, class_intf); 1847 /* remove the device from the class list */ 1848 klist_del(&dev->knode_class); 1849 mutex_unlock(&dev->class->p->mutex); 1850 } 1851 device_remove_file(dev, &dev_attr_uevent); 1852 device_remove_attrs(dev); 1853 bus_remove_device(dev); 1854 device_pm_remove(dev); 1855 driver_deferred_probe_del(dev); 1856 device_remove_properties(dev); 1857 1858 /* Notify the platform of the removal, in case they 1859 * need to do anything... 1860 */ 1861 if (platform_notify_remove) 1862 platform_notify_remove(dev); 1863 if (dev->bus) 1864 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1865 BUS_NOTIFY_REMOVED_DEVICE, dev); 1866 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 1867 glue_dir = get_glue_dir(dev); 1868 kobject_del(&dev->kobj); 1869 cleanup_glue_dir(dev, glue_dir); 1870 put_device(parent); 1871 } 1872 EXPORT_SYMBOL_GPL(device_del); 1873 1874 /** 1875 * device_unregister - unregister device from system. 1876 * @dev: device going away. 1877 * 1878 * We do this in two parts, like we do device_register(). First, 1879 * we remove it from all the subsystems with device_del(), then 1880 * we decrement the reference count via put_device(). If that 1881 * is the final reference count, the device will be cleaned up 1882 * via device_release() above. Otherwise, the structure will 1883 * stick around until the final reference to the device is dropped. 1884 */ 1885 void device_unregister(struct device *dev) 1886 { 1887 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 1888 device_del(dev); 1889 put_device(dev); 1890 } 1891 EXPORT_SYMBOL_GPL(device_unregister); 1892 1893 static struct device *prev_device(struct klist_iter *i) 1894 { 1895 struct klist_node *n = klist_prev(i); 1896 struct device *dev = NULL; 1897 struct device_private *p; 1898 1899 if (n) { 1900 p = to_device_private_parent(n); 1901 dev = p->device; 1902 } 1903 return dev; 1904 } 1905 1906 static struct device *next_device(struct klist_iter *i) 1907 { 1908 struct klist_node *n = klist_next(i); 1909 struct device *dev = NULL; 1910 struct device_private *p; 1911 1912 if (n) { 1913 p = to_device_private_parent(n); 1914 dev = p->device; 1915 } 1916 return dev; 1917 } 1918 1919 /** 1920 * device_get_devnode - path of device node file 1921 * @dev: device 1922 * @mode: returned file access mode 1923 * @uid: returned file owner 1924 * @gid: returned file group 1925 * @tmp: possibly allocated string 1926 * 1927 * Return the relative path of a possible device node. 1928 * Non-default names may need to allocate a memory to compose 1929 * a name. This memory is returned in tmp and needs to be 1930 * freed by the caller. 1931 */ 1932 const char *device_get_devnode(struct device *dev, 1933 umode_t *mode, kuid_t *uid, kgid_t *gid, 1934 const char **tmp) 1935 { 1936 char *s; 1937 1938 *tmp = NULL; 1939 1940 /* the device type may provide a specific name */ 1941 if (dev->type && dev->type->devnode) 1942 *tmp = dev->type->devnode(dev, mode, uid, gid); 1943 if (*tmp) 1944 return *tmp; 1945 1946 /* the class may provide a specific name */ 1947 if (dev->class && dev->class->devnode) 1948 *tmp = dev->class->devnode(dev, mode); 1949 if (*tmp) 1950 return *tmp; 1951 1952 /* return name without allocation, tmp == NULL */ 1953 if (strchr(dev_name(dev), '!') == NULL) 1954 return dev_name(dev); 1955 1956 /* replace '!' in the name with '/' */ 1957 s = kstrdup(dev_name(dev), GFP_KERNEL); 1958 if (!s) 1959 return NULL; 1960 strreplace(s, '!', '/'); 1961 return *tmp = s; 1962 } 1963 1964 /** 1965 * device_for_each_child - device child iterator. 1966 * @parent: parent struct device. 1967 * @fn: function to be called for each device. 1968 * @data: data for the callback. 1969 * 1970 * Iterate over @parent's child devices, and call @fn for each, 1971 * passing it @data. 1972 * 1973 * We check the return of @fn each time. If it returns anything 1974 * other than 0, we break out and return that value. 1975 */ 1976 int device_for_each_child(struct device *parent, void *data, 1977 int (*fn)(struct device *dev, void *data)) 1978 { 1979 struct klist_iter i; 1980 struct device *child; 1981 int error = 0; 1982 1983 if (!parent->p) 1984 return 0; 1985 1986 klist_iter_init(&parent->p->klist_children, &i); 1987 while ((child = next_device(&i)) && !error) 1988 error = fn(child, data); 1989 klist_iter_exit(&i); 1990 return error; 1991 } 1992 EXPORT_SYMBOL_GPL(device_for_each_child); 1993 1994 /** 1995 * device_for_each_child_reverse - device child iterator in reversed order. 1996 * @parent: parent struct device. 1997 * @fn: function to be called for each device. 1998 * @data: data for the callback. 1999 * 2000 * Iterate over @parent's child devices, and call @fn for each, 2001 * passing it @data. 2002 * 2003 * We check the return of @fn each time. If it returns anything 2004 * other than 0, we break out and return that value. 2005 */ 2006 int device_for_each_child_reverse(struct device *parent, void *data, 2007 int (*fn)(struct device *dev, void *data)) 2008 { 2009 struct klist_iter i; 2010 struct device *child; 2011 int error = 0; 2012 2013 if (!parent->p) 2014 return 0; 2015 2016 klist_iter_init(&parent->p->klist_children, &i); 2017 while ((child = prev_device(&i)) && !error) 2018 error = fn(child, data); 2019 klist_iter_exit(&i); 2020 return error; 2021 } 2022 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 2023 2024 /** 2025 * device_find_child - device iterator for locating a particular device. 2026 * @parent: parent struct device 2027 * @match: Callback function to check device 2028 * @data: Data to pass to match function 2029 * 2030 * This is similar to the device_for_each_child() function above, but it 2031 * returns a reference to a device that is 'found' for later use, as 2032 * determined by the @match callback. 2033 * 2034 * The callback should return 0 if the device doesn't match and non-zero 2035 * if it does. If the callback returns non-zero and a reference to the 2036 * current device can be obtained, this function will return to the caller 2037 * and not iterate over any more devices. 2038 * 2039 * NOTE: you will need to drop the reference with put_device() after use. 2040 */ 2041 struct device *device_find_child(struct device *parent, void *data, 2042 int (*match)(struct device *dev, void *data)) 2043 { 2044 struct klist_iter i; 2045 struct device *child; 2046 2047 if (!parent) 2048 return NULL; 2049 2050 klist_iter_init(&parent->p->klist_children, &i); 2051 while ((child = next_device(&i))) 2052 if (match(child, data) && get_device(child)) 2053 break; 2054 klist_iter_exit(&i); 2055 return child; 2056 } 2057 EXPORT_SYMBOL_GPL(device_find_child); 2058 2059 int __init devices_init(void) 2060 { 2061 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 2062 if (!devices_kset) 2063 return -ENOMEM; 2064 dev_kobj = kobject_create_and_add("dev", NULL); 2065 if (!dev_kobj) 2066 goto dev_kobj_err; 2067 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 2068 if (!sysfs_dev_block_kobj) 2069 goto block_kobj_err; 2070 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 2071 if (!sysfs_dev_char_kobj) 2072 goto char_kobj_err; 2073 2074 return 0; 2075 2076 char_kobj_err: 2077 kobject_put(sysfs_dev_block_kobj); 2078 block_kobj_err: 2079 kobject_put(dev_kobj); 2080 dev_kobj_err: 2081 kset_unregister(devices_kset); 2082 return -ENOMEM; 2083 } 2084 2085 static int device_check_offline(struct device *dev, void *not_used) 2086 { 2087 int ret; 2088 2089 ret = device_for_each_child(dev, NULL, device_check_offline); 2090 if (ret) 2091 return ret; 2092 2093 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 2094 } 2095 2096 /** 2097 * device_offline - Prepare the device for hot-removal. 2098 * @dev: Device to be put offline. 2099 * 2100 * Execute the device bus type's .offline() callback, if present, to prepare 2101 * the device for a subsequent hot-removal. If that succeeds, the device must 2102 * not be used until either it is removed or its bus type's .online() callback 2103 * is executed. 2104 * 2105 * Call under device_hotplug_lock. 2106 */ 2107 int device_offline(struct device *dev) 2108 { 2109 int ret; 2110 2111 if (dev->offline_disabled) 2112 return -EPERM; 2113 2114 ret = device_for_each_child(dev, NULL, device_check_offline); 2115 if (ret) 2116 return ret; 2117 2118 device_lock(dev); 2119 if (device_supports_offline(dev)) { 2120 if (dev->offline) { 2121 ret = 1; 2122 } else { 2123 ret = dev->bus->offline(dev); 2124 if (!ret) { 2125 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2126 dev->offline = true; 2127 } 2128 } 2129 } 2130 device_unlock(dev); 2131 2132 return ret; 2133 } 2134 2135 /** 2136 * device_online - Put the device back online after successful device_offline(). 2137 * @dev: Device to be put back online. 2138 * 2139 * If device_offline() has been successfully executed for @dev, but the device 2140 * has not been removed subsequently, execute its bus type's .online() callback 2141 * to indicate that the device can be used again. 2142 * 2143 * Call under device_hotplug_lock. 2144 */ 2145 int device_online(struct device *dev) 2146 { 2147 int ret = 0; 2148 2149 device_lock(dev); 2150 if (device_supports_offline(dev)) { 2151 if (dev->offline) { 2152 ret = dev->bus->online(dev); 2153 if (!ret) { 2154 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2155 dev->offline = false; 2156 } 2157 } else { 2158 ret = 1; 2159 } 2160 } 2161 device_unlock(dev); 2162 2163 return ret; 2164 } 2165 2166 struct root_device { 2167 struct device dev; 2168 struct module *owner; 2169 }; 2170 2171 static inline struct root_device *to_root_device(struct device *d) 2172 { 2173 return container_of(d, struct root_device, dev); 2174 } 2175 2176 static void root_device_release(struct device *dev) 2177 { 2178 kfree(to_root_device(dev)); 2179 } 2180 2181 /** 2182 * __root_device_register - allocate and register a root device 2183 * @name: root device name 2184 * @owner: owner module of the root device, usually THIS_MODULE 2185 * 2186 * This function allocates a root device and registers it 2187 * using device_register(). In order to free the returned 2188 * device, use root_device_unregister(). 2189 * 2190 * Root devices are dummy devices which allow other devices 2191 * to be grouped under /sys/devices. Use this function to 2192 * allocate a root device and then use it as the parent of 2193 * any device which should appear under /sys/devices/{name} 2194 * 2195 * The /sys/devices/{name} directory will also contain a 2196 * 'module' symlink which points to the @owner directory 2197 * in sysfs. 2198 * 2199 * Returns &struct device pointer on success, or ERR_PTR() on error. 2200 * 2201 * Note: You probably want to use root_device_register(). 2202 */ 2203 struct device *__root_device_register(const char *name, struct module *owner) 2204 { 2205 struct root_device *root; 2206 int err = -ENOMEM; 2207 2208 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 2209 if (!root) 2210 return ERR_PTR(err); 2211 2212 err = dev_set_name(&root->dev, "%s", name); 2213 if (err) { 2214 kfree(root); 2215 return ERR_PTR(err); 2216 } 2217 2218 root->dev.release = root_device_release; 2219 2220 err = device_register(&root->dev); 2221 if (err) { 2222 put_device(&root->dev); 2223 return ERR_PTR(err); 2224 } 2225 2226 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 2227 if (owner) { 2228 struct module_kobject *mk = &owner->mkobj; 2229 2230 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 2231 if (err) { 2232 device_unregister(&root->dev); 2233 return ERR_PTR(err); 2234 } 2235 root->owner = owner; 2236 } 2237 #endif 2238 2239 return &root->dev; 2240 } 2241 EXPORT_SYMBOL_GPL(__root_device_register); 2242 2243 /** 2244 * root_device_unregister - unregister and free a root device 2245 * @dev: device going away 2246 * 2247 * This function unregisters and cleans up a device that was created by 2248 * root_device_register(). 2249 */ 2250 void root_device_unregister(struct device *dev) 2251 { 2252 struct root_device *root = to_root_device(dev); 2253 2254 if (root->owner) 2255 sysfs_remove_link(&root->dev.kobj, "module"); 2256 2257 device_unregister(dev); 2258 } 2259 EXPORT_SYMBOL_GPL(root_device_unregister); 2260 2261 2262 static void device_create_release(struct device *dev) 2263 { 2264 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2265 kfree(dev); 2266 } 2267 2268 static struct device * 2269 device_create_groups_vargs(struct class *class, struct device *parent, 2270 dev_t devt, void *drvdata, 2271 const struct attribute_group **groups, 2272 const char *fmt, va_list args) 2273 { 2274 struct device *dev = NULL; 2275 int retval = -ENODEV; 2276 2277 if (class == NULL || IS_ERR(class)) 2278 goto error; 2279 2280 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2281 if (!dev) { 2282 retval = -ENOMEM; 2283 goto error; 2284 } 2285 2286 device_initialize(dev); 2287 dev->devt = devt; 2288 dev->class = class; 2289 dev->parent = parent; 2290 dev->groups = groups; 2291 dev->release = device_create_release; 2292 dev_set_drvdata(dev, drvdata); 2293 2294 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 2295 if (retval) 2296 goto error; 2297 2298 retval = device_add(dev); 2299 if (retval) 2300 goto error; 2301 2302 return dev; 2303 2304 error: 2305 put_device(dev); 2306 return ERR_PTR(retval); 2307 } 2308 2309 /** 2310 * device_create_vargs - creates a device and registers it with sysfs 2311 * @class: pointer to the struct class that this device should be registered to 2312 * @parent: pointer to the parent struct device of this new device, if any 2313 * @devt: the dev_t for the char device to be added 2314 * @drvdata: the data to be added to the device for callbacks 2315 * @fmt: string for the device's name 2316 * @args: va_list for the device's name 2317 * 2318 * This function can be used by char device classes. A struct device 2319 * will be created in sysfs, registered to the specified class. 2320 * 2321 * A "dev" file will be created, showing the dev_t for the device, if 2322 * the dev_t is not 0,0. 2323 * If a pointer to a parent struct device is passed in, the newly created 2324 * struct device will be a child of that device in sysfs. 2325 * The pointer to the struct device will be returned from the call. 2326 * Any further sysfs files that might be required can be created using this 2327 * pointer. 2328 * 2329 * Returns &struct device pointer on success, or ERR_PTR() on error. 2330 * 2331 * Note: the struct class passed to this function must have previously 2332 * been created with a call to class_create(). 2333 */ 2334 struct device *device_create_vargs(struct class *class, struct device *parent, 2335 dev_t devt, void *drvdata, const char *fmt, 2336 va_list args) 2337 { 2338 return device_create_groups_vargs(class, parent, devt, drvdata, NULL, 2339 fmt, args); 2340 } 2341 EXPORT_SYMBOL_GPL(device_create_vargs); 2342 2343 /** 2344 * device_create - creates a device and registers it with sysfs 2345 * @class: pointer to the struct class that this device should be registered to 2346 * @parent: pointer to the parent struct device of this new device, if any 2347 * @devt: the dev_t for the char device to be added 2348 * @drvdata: the data to be added to the device for callbacks 2349 * @fmt: string for the device's name 2350 * 2351 * This function can be used by char device classes. A struct device 2352 * will be created in sysfs, registered to the specified class. 2353 * 2354 * A "dev" file will be created, showing the dev_t for the device, if 2355 * the dev_t is not 0,0. 2356 * If a pointer to a parent struct device is passed in, the newly created 2357 * struct device will be a child of that device in sysfs. 2358 * The pointer to the struct device will be returned from the call. 2359 * Any further sysfs files that might be required can be created using this 2360 * pointer. 2361 * 2362 * Returns &struct device pointer on success, or ERR_PTR() on error. 2363 * 2364 * Note: the struct class passed to this function must have previously 2365 * been created with a call to class_create(). 2366 */ 2367 struct device *device_create(struct class *class, struct device *parent, 2368 dev_t devt, void *drvdata, const char *fmt, ...) 2369 { 2370 va_list vargs; 2371 struct device *dev; 2372 2373 va_start(vargs, fmt); 2374 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs); 2375 va_end(vargs); 2376 return dev; 2377 } 2378 EXPORT_SYMBOL_GPL(device_create); 2379 2380 /** 2381 * device_create_with_groups - creates a device and registers it with sysfs 2382 * @class: pointer to the struct class that this device should be registered to 2383 * @parent: pointer to the parent struct device of this new device, if any 2384 * @devt: the dev_t for the char device to be added 2385 * @drvdata: the data to be added to the device for callbacks 2386 * @groups: NULL-terminated list of attribute groups to be created 2387 * @fmt: string for the device's name 2388 * 2389 * This function can be used by char device classes. A struct device 2390 * will be created in sysfs, registered to the specified class. 2391 * Additional attributes specified in the groups parameter will also 2392 * be created automatically. 2393 * 2394 * A "dev" file will be created, showing the dev_t for the device, if 2395 * the dev_t is not 0,0. 2396 * If a pointer to a parent struct device is passed in, the newly created 2397 * struct device will be a child of that device in sysfs. 2398 * The pointer to the struct device will be returned from the call. 2399 * Any further sysfs files that might be required can be created using this 2400 * pointer. 2401 * 2402 * Returns &struct device pointer on success, or ERR_PTR() on error. 2403 * 2404 * Note: the struct class passed to this function must have previously 2405 * been created with a call to class_create(). 2406 */ 2407 struct device *device_create_with_groups(struct class *class, 2408 struct device *parent, dev_t devt, 2409 void *drvdata, 2410 const struct attribute_group **groups, 2411 const char *fmt, ...) 2412 { 2413 va_list vargs; 2414 struct device *dev; 2415 2416 va_start(vargs, fmt); 2417 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 2418 fmt, vargs); 2419 va_end(vargs); 2420 return dev; 2421 } 2422 EXPORT_SYMBOL_GPL(device_create_with_groups); 2423 2424 static int __match_devt(struct device *dev, const void *data) 2425 { 2426 const dev_t *devt = data; 2427 2428 return dev->devt == *devt; 2429 } 2430 2431 /** 2432 * device_destroy - removes a device that was created with device_create() 2433 * @class: pointer to the struct class that this device was registered with 2434 * @devt: the dev_t of the device that was previously registered 2435 * 2436 * This call unregisters and cleans up a device that was created with a 2437 * call to device_create(). 2438 */ 2439 void device_destroy(struct class *class, dev_t devt) 2440 { 2441 struct device *dev; 2442 2443 dev = class_find_device(class, NULL, &devt, __match_devt); 2444 if (dev) { 2445 put_device(dev); 2446 device_unregister(dev); 2447 } 2448 } 2449 EXPORT_SYMBOL_GPL(device_destroy); 2450 2451 /** 2452 * device_rename - renames a device 2453 * @dev: the pointer to the struct device to be renamed 2454 * @new_name: the new name of the device 2455 * 2456 * It is the responsibility of the caller to provide mutual 2457 * exclusion between two different calls of device_rename 2458 * on the same device to ensure that new_name is valid and 2459 * won't conflict with other devices. 2460 * 2461 * Note: Don't call this function. Currently, the networking layer calls this 2462 * function, but that will change. The following text from Kay Sievers offers 2463 * some insight: 2464 * 2465 * Renaming devices is racy at many levels, symlinks and other stuff are not 2466 * replaced atomically, and you get a "move" uevent, but it's not easy to 2467 * connect the event to the old and new device. Device nodes are not renamed at 2468 * all, there isn't even support for that in the kernel now. 2469 * 2470 * In the meantime, during renaming, your target name might be taken by another 2471 * driver, creating conflicts. Or the old name is taken directly after you 2472 * renamed it -- then you get events for the same DEVPATH, before you even see 2473 * the "move" event. It's just a mess, and nothing new should ever rely on 2474 * kernel device renaming. Besides that, it's not even implemented now for 2475 * other things than (driver-core wise very simple) network devices. 2476 * 2477 * We are currently about to change network renaming in udev to completely 2478 * disallow renaming of devices in the same namespace as the kernel uses, 2479 * because we can't solve the problems properly, that arise with swapping names 2480 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 2481 * be allowed to some other name than eth[0-9]*, for the aforementioned 2482 * reasons. 2483 * 2484 * Make up a "real" name in the driver before you register anything, or add 2485 * some other attributes for userspace to find the device, or use udev to add 2486 * symlinks -- but never rename kernel devices later, it's a complete mess. We 2487 * don't even want to get into that and try to implement the missing pieces in 2488 * the core. We really have other pieces to fix in the driver core mess. :) 2489 */ 2490 int device_rename(struct device *dev, const char *new_name) 2491 { 2492 struct kobject *kobj = &dev->kobj; 2493 char *old_device_name = NULL; 2494 int error; 2495 2496 dev = get_device(dev); 2497 if (!dev) 2498 return -EINVAL; 2499 2500 dev_dbg(dev, "renaming to %s\n", new_name); 2501 2502 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 2503 if (!old_device_name) { 2504 error = -ENOMEM; 2505 goto out; 2506 } 2507 2508 if (dev->class) { 2509 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 2510 kobj, old_device_name, 2511 new_name, kobject_namespace(kobj)); 2512 if (error) 2513 goto out; 2514 } 2515 2516 error = kobject_rename(kobj, new_name); 2517 if (error) 2518 goto out; 2519 2520 out: 2521 put_device(dev); 2522 2523 kfree(old_device_name); 2524 2525 return error; 2526 } 2527 EXPORT_SYMBOL_GPL(device_rename); 2528 2529 static int device_move_class_links(struct device *dev, 2530 struct device *old_parent, 2531 struct device *new_parent) 2532 { 2533 int error = 0; 2534 2535 if (old_parent) 2536 sysfs_remove_link(&dev->kobj, "device"); 2537 if (new_parent) 2538 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 2539 "device"); 2540 return error; 2541 } 2542 2543 /** 2544 * device_move - moves a device to a new parent 2545 * @dev: the pointer to the struct device to be moved 2546 * @new_parent: the new parent of the device (can by NULL) 2547 * @dpm_order: how to reorder the dpm_list 2548 */ 2549 int device_move(struct device *dev, struct device *new_parent, 2550 enum dpm_order dpm_order) 2551 { 2552 int error; 2553 struct device *old_parent; 2554 struct kobject *new_parent_kobj; 2555 2556 dev = get_device(dev); 2557 if (!dev) 2558 return -EINVAL; 2559 2560 device_pm_lock(); 2561 new_parent = get_device(new_parent); 2562 new_parent_kobj = get_device_parent(dev, new_parent); 2563 2564 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 2565 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 2566 error = kobject_move(&dev->kobj, new_parent_kobj); 2567 if (error) { 2568 cleanup_glue_dir(dev, new_parent_kobj); 2569 put_device(new_parent); 2570 goto out; 2571 } 2572 old_parent = dev->parent; 2573 dev->parent = new_parent; 2574 if (old_parent) 2575 klist_remove(&dev->p->knode_parent); 2576 if (new_parent) { 2577 klist_add_tail(&dev->p->knode_parent, 2578 &new_parent->p->klist_children); 2579 set_dev_node(dev, dev_to_node(new_parent)); 2580 } 2581 2582 if (dev->class) { 2583 error = device_move_class_links(dev, old_parent, new_parent); 2584 if (error) { 2585 /* We ignore errors on cleanup since we're hosed anyway... */ 2586 device_move_class_links(dev, new_parent, old_parent); 2587 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 2588 if (new_parent) 2589 klist_remove(&dev->p->knode_parent); 2590 dev->parent = old_parent; 2591 if (old_parent) { 2592 klist_add_tail(&dev->p->knode_parent, 2593 &old_parent->p->klist_children); 2594 set_dev_node(dev, dev_to_node(old_parent)); 2595 } 2596 } 2597 cleanup_glue_dir(dev, new_parent_kobj); 2598 put_device(new_parent); 2599 goto out; 2600 } 2601 } 2602 switch (dpm_order) { 2603 case DPM_ORDER_NONE: 2604 break; 2605 case DPM_ORDER_DEV_AFTER_PARENT: 2606 device_pm_move_after(dev, new_parent); 2607 devices_kset_move_after(dev, new_parent); 2608 break; 2609 case DPM_ORDER_PARENT_BEFORE_DEV: 2610 device_pm_move_before(new_parent, dev); 2611 devices_kset_move_before(new_parent, dev); 2612 break; 2613 case DPM_ORDER_DEV_LAST: 2614 device_pm_move_last(dev); 2615 devices_kset_move_last(dev); 2616 break; 2617 } 2618 2619 put_device(old_parent); 2620 out: 2621 device_pm_unlock(); 2622 put_device(dev); 2623 return error; 2624 } 2625 EXPORT_SYMBOL_GPL(device_move); 2626 2627 /** 2628 * device_shutdown - call ->shutdown() on each device to shutdown. 2629 */ 2630 void device_shutdown(void) 2631 { 2632 struct device *dev, *parent; 2633 2634 spin_lock(&devices_kset->list_lock); 2635 /* 2636 * Walk the devices list backward, shutting down each in turn. 2637 * Beware that device unplug events may also start pulling 2638 * devices offline, even as the system is shutting down. 2639 */ 2640 while (!list_empty(&devices_kset->list)) { 2641 dev = list_entry(devices_kset->list.prev, struct device, 2642 kobj.entry); 2643 2644 /* 2645 * hold reference count of device's parent to 2646 * prevent it from being freed because parent's 2647 * lock is to be held 2648 */ 2649 parent = get_device(dev->parent); 2650 get_device(dev); 2651 /* 2652 * Make sure the device is off the kset list, in the 2653 * event that dev->*->shutdown() doesn't remove it. 2654 */ 2655 list_del_init(&dev->kobj.entry); 2656 spin_unlock(&devices_kset->list_lock); 2657 2658 /* hold lock to avoid race with probe/release */ 2659 if (parent) 2660 device_lock(parent); 2661 device_lock(dev); 2662 2663 /* Don't allow any more runtime suspends */ 2664 pm_runtime_get_noresume(dev); 2665 pm_runtime_barrier(dev); 2666 2667 if (dev->class && dev->class->shutdown) { 2668 if (initcall_debug) 2669 dev_info(dev, "shutdown\n"); 2670 dev->class->shutdown(dev); 2671 } else if (dev->bus && dev->bus->shutdown) { 2672 if (initcall_debug) 2673 dev_info(dev, "shutdown\n"); 2674 dev->bus->shutdown(dev); 2675 } else if (dev->driver && dev->driver->shutdown) { 2676 if (initcall_debug) 2677 dev_info(dev, "shutdown\n"); 2678 dev->driver->shutdown(dev); 2679 } 2680 2681 device_unlock(dev); 2682 if (parent) 2683 device_unlock(parent); 2684 2685 put_device(dev); 2686 put_device(parent); 2687 2688 spin_lock(&devices_kset->list_lock); 2689 } 2690 spin_unlock(&devices_kset->list_lock); 2691 } 2692 2693 /* 2694 * Device logging functions 2695 */ 2696 2697 #ifdef CONFIG_PRINTK 2698 static int 2699 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen) 2700 { 2701 const char *subsys; 2702 size_t pos = 0; 2703 2704 if (dev->class) 2705 subsys = dev->class->name; 2706 else if (dev->bus) 2707 subsys = dev->bus->name; 2708 else 2709 return 0; 2710 2711 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys); 2712 if (pos >= hdrlen) 2713 goto overflow; 2714 2715 /* 2716 * Add device identifier DEVICE=: 2717 * b12:8 block dev_t 2718 * c127:3 char dev_t 2719 * n8 netdev ifindex 2720 * +sound:card0 subsystem:devname 2721 */ 2722 if (MAJOR(dev->devt)) { 2723 char c; 2724 2725 if (strcmp(subsys, "block") == 0) 2726 c = 'b'; 2727 else 2728 c = 'c'; 2729 pos++; 2730 pos += snprintf(hdr + pos, hdrlen - pos, 2731 "DEVICE=%c%u:%u", 2732 c, MAJOR(dev->devt), MINOR(dev->devt)); 2733 } else if (strcmp(subsys, "net") == 0) { 2734 struct net_device *net = to_net_dev(dev); 2735 2736 pos++; 2737 pos += snprintf(hdr + pos, hdrlen - pos, 2738 "DEVICE=n%u", net->ifindex); 2739 } else { 2740 pos++; 2741 pos += snprintf(hdr + pos, hdrlen - pos, 2742 "DEVICE=+%s:%s", subsys, dev_name(dev)); 2743 } 2744 2745 if (pos >= hdrlen) 2746 goto overflow; 2747 2748 return pos; 2749 2750 overflow: 2751 dev_WARN(dev, "device/subsystem name too long"); 2752 return 0; 2753 } 2754 2755 int dev_vprintk_emit(int level, const struct device *dev, 2756 const char *fmt, va_list args) 2757 { 2758 char hdr[128]; 2759 size_t hdrlen; 2760 2761 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr)); 2762 2763 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args); 2764 } 2765 EXPORT_SYMBOL(dev_vprintk_emit); 2766 2767 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 2768 { 2769 va_list args; 2770 int r; 2771 2772 va_start(args, fmt); 2773 2774 r = dev_vprintk_emit(level, dev, fmt, args); 2775 2776 va_end(args); 2777 2778 return r; 2779 } 2780 EXPORT_SYMBOL(dev_printk_emit); 2781 2782 static void __dev_printk(const char *level, const struct device *dev, 2783 struct va_format *vaf) 2784 { 2785 if (dev) 2786 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 2787 dev_driver_string(dev), dev_name(dev), vaf); 2788 else 2789 printk("%s(NULL device *): %pV", level, vaf); 2790 } 2791 2792 void dev_printk(const char *level, const struct device *dev, 2793 const char *fmt, ...) 2794 { 2795 struct va_format vaf; 2796 va_list args; 2797 2798 va_start(args, fmt); 2799 2800 vaf.fmt = fmt; 2801 vaf.va = &args; 2802 2803 __dev_printk(level, dev, &vaf); 2804 2805 va_end(args); 2806 } 2807 EXPORT_SYMBOL(dev_printk); 2808 2809 #define define_dev_printk_level(func, kern_level) \ 2810 void func(const struct device *dev, const char *fmt, ...) \ 2811 { \ 2812 struct va_format vaf; \ 2813 va_list args; \ 2814 \ 2815 va_start(args, fmt); \ 2816 \ 2817 vaf.fmt = fmt; \ 2818 vaf.va = &args; \ 2819 \ 2820 __dev_printk(kern_level, dev, &vaf); \ 2821 \ 2822 va_end(args); \ 2823 } \ 2824 EXPORT_SYMBOL(func); 2825 2826 define_dev_printk_level(dev_emerg, KERN_EMERG); 2827 define_dev_printk_level(dev_alert, KERN_ALERT); 2828 define_dev_printk_level(dev_crit, KERN_CRIT); 2829 define_dev_printk_level(dev_err, KERN_ERR); 2830 define_dev_printk_level(dev_warn, KERN_WARNING); 2831 define_dev_printk_level(dev_notice, KERN_NOTICE); 2832 define_dev_printk_level(_dev_info, KERN_INFO); 2833 2834 #endif 2835 2836 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 2837 { 2838 return fwnode && !IS_ERR(fwnode->secondary); 2839 } 2840 2841 /** 2842 * set_primary_fwnode - Change the primary firmware node of a given device. 2843 * @dev: Device to handle. 2844 * @fwnode: New primary firmware node of the device. 2845 * 2846 * Set the device's firmware node pointer to @fwnode, but if a secondary 2847 * firmware node of the device is present, preserve it. 2848 */ 2849 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 2850 { 2851 if (fwnode) { 2852 struct fwnode_handle *fn = dev->fwnode; 2853 2854 if (fwnode_is_primary(fn)) 2855 fn = fn->secondary; 2856 2857 if (fn) { 2858 WARN_ON(fwnode->secondary); 2859 fwnode->secondary = fn; 2860 } 2861 dev->fwnode = fwnode; 2862 } else { 2863 dev->fwnode = fwnode_is_primary(dev->fwnode) ? 2864 dev->fwnode->secondary : NULL; 2865 } 2866 } 2867 EXPORT_SYMBOL_GPL(set_primary_fwnode); 2868 2869 /** 2870 * set_secondary_fwnode - Change the secondary firmware node of a given device. 2871 * @dev: Device to handle. 2872 * @fwnode: New secondary firmware node of the device. 2873 * 2874 * If a primary firmware node of the device is present, set its secondary 2875 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 2876 * @fwnode. 2877 */ 2878 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 2879 { 2880 if (fwnode) 2881 fwnode->secondary = ERR_PTR(-ENODEV); 2882 2883 if (fwnode_is_primary(dev->fwnode)) 2884 dev->fwnode->secondary = fwnode; 2885 else 2886 dev->fwnode = fwnode; 2887 } 2888 2889 /** 2890 * device_set_of_node_from_dev - reuse device-tree node of another device 2891 * @dev: device whose device-tree node is being set 2892 * @dev2: device whose device-tree node is being reused 2893 * 2894 * Takes another reference to the new device-tree node after first dropping 2895 * any reference held to the old node. 2896 */ 2897 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 2898 { 2899 of_node_put(dev->of_node); 2900 dev->of_node = of_node_get(dev2->of_node); 2901 dev->of_node_reused = true; 2902 } 2903 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 2904