1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/device.h> 13 #include <linux/err.h> 14 #include <linux/fwnode.h> 15 #include <linux/init.h> 16 #include <linux/module.h> 17 #include <linux/slab.h> 18 #include <linux/string.h> 19 #include <linux/kdev_t.h> 20 #include <linux/notifier.h> 21 #include <linux/of.h> 22 #include <linux/of_device.h> 23 #include <linux/genhd.h> 24 #include <linux/mutex.h> 25 #include <linux/pm_runtime.h> 26 #include <linux/netdevice.h> 27 #include <linux/sched/signal.h> 28 #include <linux/sysfs.h> 29 30 #include "base.h" 31 #include "power/power.h" 32 33 #ifdef CONFIG_SYSFS_DEPRECATED 34 #ifdef CONFIG_SYSFS_DEPRECATED_V2 35 long sysfs_deprecated = 1; 36 #else 37 long sysfs_deprecated = 0; 38 #endif 39 static int __init sysfs_deprecated_setup(char *arg) 40 { 41 return kstrtol(arg, 10, &sysfs_deprecated); 42 } 43 early_param("sysfs.deprecated", sysfs_deprecated_setup); 44 #endif 45 46 /* Device links support. */ 47 48 #ifdef CONFIG_SRCU 49 static DEFINE_MUTEX(device_links_lock); 50 DEFINE_STATIC_SRCU(device_links_srcu); 51 52 static inline void device_links_write_lock(void) 53 { 54 mutex_lock(&device_links_lock); 55 } 56 57 static inline void device_links_write_unlock(void) 58 { 59 mutex_unlock(&device_links_lock); 60 } 61 62 int device_links_read_lock(void) 63 { 64 return srcu_read_lock(&device_links_srcu); 65 } 66 67 void device_links_read_unlock(int idx) 68 { 69 srcu_read_unlock(&device_links_srcu, idx); 70 } 71 #else /* !CONFIG_SRCU */ 72 static DECLARE_RWSEM(device_links_lock); 73 74 static inline void device_links_write_lock(void) 75 { 76 down_write(&device_links_lock); 77 } 78 79 static inline void device_links_write_unlock(void) 80 { 81 up_write(&device_links_lock); 82 } 83 84 int device_links_read_lock(void) 85 { 86 down_read(&device_links_lock); 87 return 0; 88 } 89 90 void device_links_read_unlock(int not_used) 91 { 92 up_read(&device_links_lock); 93 } 94 #endif /* !CONFIG_SRCU */ 95 96 /** 97 * device_is_dependent - Check if one device depends on another one 98 * @dev: Device to check dependencies for. 99 * @target: Device to check against. 100 * 101 * Check if @target depends on @dev or any device dependent on it (its child or 102 * its consumer etc). Return 1 if that is the case or 0 otherwise. 103 */ 104 static int device_is_dependent(struct device *dev, void *target) 105 { 106 struct device_link *link; 107 int ret; 108 109 if (dev == target) 110 return 1; 111 112 ret = device_for_each_child(dev, target, device_is_dependent); 113 if (ret) 114 return ret; 115 116 list_for_each_entry(link, &dev->links.consumers, s_node) { 117 if (link->consumer == target) 118 return 1; 119 120 ret = device_is_dependent(link->consumer, target); 121 if (ret) 122 break; 123 } 124 return ret; 125 } 126 127 static int device_reorder_to_tail(struct device *dev, void *not_used) 128 { 129 struct device_link *link; 130 131 /* 132 * Devices that have not been registered yet will be put to the ends 133 * of the lists during the registration, so skip them here. 134 */ 135 if (device_is_registered(dev)) 136 devices_kset_move_last(dev); 137 138 if (device_pm_initialized(dev)) 139 device_pm_move_last(dev); 140 141 device_for_each_child(dev, NULL, device_reorder_to_tail); 142 list_for_each_entry(link, &dev->links.consumers, s_node) 143 device_reorder_to_tail(link->consumer, NULL); 144 145 return 0; 146 } 147 148 /** 149 * device_pm_move_to_tail - Move set of devices to the end of device lists 150 * @dev: Device to move 151 * 152 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 153 * 154 * It moves the @dev along with all of its children and all of its consumers 155 * to the ends of the device_kset and dpm_list, recursively. 156 */ 157 void device_pm_move_to_tail(struct device *dev) 158 { 159 int idx; 160 161 idx = device_links_read_lock(); 162 device_pm_lock(); 163 device_reorder_to_tail(dev, NULL); 164 device_pm_unlock(); 165 device_links_read_unlock(idx); 166 } 167 168 /** 169 * device_link_add - Create a link between two devices. 170 * @consumer: Consumer end of the link. 171 * @supplier: Supplier end of the link. 172 * @flags: Link flags. 173 * 174 * The caller is responsible for the proper synchronization of the link creation 175 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 176 * runtime PM framework to take the link into account. Second, if the 177 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 178 * be forced into the active metastate and reference-counted upon the creation 179 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 180 * ignored. 181 * 182 * If the DL_FLAG_AUTOREMOVE_CONSUMER is set, the link will be removed 183 * automatically when the consumer device driver unbinds from it. 184 * The combination of both DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_STATELESS 185 * set is invalid and will cause NULL to be returned. 186 * 187 * A side effect of the link creation is re-ordering of dpm_list and the 188 * devices_kset list by moving the consumer device and all devices depending 189 * on it to the ends of these lists (that does not happen to devices that have 190 * not been registered when this function is called). 191 * 192 * The supplier device is required to be registered when this function is called 193 * and NULL will be returned if that is not the case. The consumer device need 194 * not be registered, however. 195 */ 196 struct device_link *device_link_add(struct device *consumer, 197 struct device *supplier, u32 flags) 198 { 199 struct device_link *link; 200 201 if (!consumer || !supplier || 202 ((flags & DL_FLAG_STATELESS) && 203 (flags & DL_FLAG_AUTOREMOVE_CONSUMER))) 204 return NULL; 205 206 device_links_write_lock(); 207 device_pm_lock(); 208 209 /* 210 * If the supplier has not been fully registered yet or there is a 211 * reverse dependency between the consumer and the supplier already in 212 * the graph, return NULL. 213 */ 214 if (!device_pm_initialized(supplier) 215 || device_is_dependent(consumer, supplier)) { 216 link = NULL; 217 goto out; 218 } 219 220 list_for_each_entry(link, &supplier->links.consumers, s_node) 221 if (link->consumer == consumer) { 222 kref_get(&link->kref); 223 goto out; 224 } 225 226 link = kzalloc(sizeof(*link), GFP_KERNEL); 227 if (!link) 228 goto out; 229 230 if (flags & DL_FLAG_PM_RUNTIME) { 231 if (flags & DL_FLAG_RPM_ACTIVE) { 232 if (pm_runtime_get_sync(supplier) < 0) { 233 pm_runtime_put_noidle(supplier); 234 kfree(link); 235 link = NULL; 236 goto out; 237 } 238 link->rpm_active = true; 239 } 240 pm_runtime_new_link(consumer); 241 /* 242 * If the link is being added by the consumer driver at probe 243 * time, balance the decrementation of the supplier's runtime PM 244 * usage counter after consumer probe in driver_probe_device(). 245 */ 246 if (consumer->links.status == DL_DEV_PROBING) 247 pm_runtime_get_noresume(supplier); 248 } 249 get_device(supplier); 250 link->supplier = supplier; 251 INIT_LIST_HEAD(&link->s_node); 252 get_device(consumer); 253 link->consumer = consumer; 254 INIT_LIST_HEAD(&link->c_node); 255 link->flags = flags; 256 kref_init(&link->kref); 257 258 /* Determine the initial link state. */ 259 if (flags & DL_FLAG_STATELESS) { 260 link->status = DL_STATE_NONE; 261 } else { 262 switch (supplier->links.status) { 263 case DL_DEV_DRIVER_BOUND: 264 switch (consumer->links.status) { 265 case DL_DEV_PROBING: 266 /* 267 * Some callers expect the link creation during 268 * consumer driver probe to resume the supplier 269 * even without DL_FLAG_RPM_ACTIVE. 270 */ 271 if (flags & DL_FLAG_PM_RUNTIME) 272 pm_runtime_resume(supplier); 273 274 link->status = DL_STATE_CONSUMER_PROBE; 275 break; 276 case DL_DEV_DRIVER_BOUND: 277 link->status = DL_STATE_ACTIVE; 278 break; 279 default: 280 link->status = DL_STATE_AVAILABLE; 281 break; 282 } 283 break; 284 case DL_DEV_UNBINDING: 285 link->status = DL_STATE_SUPPLIER_UNBIND; 286 break; 287 default: 288 link->status = DL_STATE_DORMANT; 289 break; 290 } 291 } 292 293 /* 294 * Move the consumer and all of the devices depending on it to the end 295 * of dpm_list and the devices_kset list. 296 * 297 * It is necessary to hold dpm_list locked throughout all that or else 298 * we may end up suspending with a wrong ordering of it. 299 */ 300 device_reorder_to_tail(consumer, NULL); 301 302 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 303 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 304 305 dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 306 307 out: 308 device_pm_unlock(); 309 device_links_write_unlock(); 310 return link; 311 } 312 EXPORT_SYMBOL_GPL(device_link_add); 313 314 static void device_link_free(struct device_link *link) 315 { 316 put_device(link->consumer); 317 put_device(link->supplier); 318 kfree(link); 319 } 320 321 #ifdef CONFIG_SRCU 322 static void __device_link_free_srcu(struct rcu_head *rhead) 323 { 324 device_link_free(container_of(rhead, struct device_link, rcu_head)); 325 } 326 327 static void __device_link_del(struct kref *kref) 328 { 329 struct device_link *link = container_of(kref, struct device_link, kref); 330 331 dev_info(link->consumer, "Dropping the link to %s\n", 332 dev_name(link->supplier)); 333 334 if (link->flags & DL_FLAG_PM_RUNTIME) 335 pm_runtime_drop_link(link->consumer); 336 337 list_del_rcu(&link->s_node); 338 list_del_rcu(&link->c_node); 339 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu); 340 } 341 #else /* !CONFIG_SRCU */ 342 static void __device_link_del(struct kref *kref) 343 { 344 struct device_link *link = container_of(kref, struct device_link, kref); 345 346 dev_info(link->consumer, "Dropping the link to %s\n", 347 dev_name(link->supplier)); 348 349 if (link->flags & DL_FLAG_PM_RUNTIME) 350 pm_runtime_drop_link(link->consumer); 351 352 list_del(&link->s_node); 353 list_del(&link->c_node); 354 device_link_free(link); 355 } 356 #endif /* !CONFIG_SRCU */ 357 358 /** 359 * device_link_del - Delete a link between two devices. 360 * @link: Device link to delete. 361 * 362 * The caller must ensure proper synchronization of this function with runtime 363 * PM. If the link was added multiple times, it needs to be deleted as often. 364 * Care is required for hotplugged devices: Their links are purged on removal 365 * and calling device_link_del() is then no longer allowed. 366 */ 367 void device_link_del(struct device_link *link) 368 { 369 device_links_write_lock(); 370 device_pm_lock(); 371 kref_put(&link->kref, __device_link_del); 372 device_pm_unlock(); 373 device_links_write_unlock(); 374 } 375 EXPORT_SYMBOL_GPL(device_link_del); 376 377 /** 378 * device_link_remove - remove a link between two devices. 379 * @consumer: Consumer end of the link. 380 * @supplier: Supplier end of the link. 381 * 382 * The caller must ensure proper synchronization of this function with runtime 383 * PM. 384 */ 385 void device_link_remove(void *consumer, struct device *supplier) 386 { 387 struct device_link *link; 388 389 if (WARN_ON(consumer == supplier)) 390 return; 391 392 device_links_write_lock(); 393 device_pm_lock(); 394 395 list_for_each_entry(link, &supplier->links.consumers, s_node) { 396 if (link->consumer == consumer) { 397 kref_put(&link->kref, __device_link_del); 398 break; 399 } 400 } 401 402 device_pm_unlock(); 403 device_links_write_unlock(); 404 } 405 EXPORT_SYMBOL_GPL(device_link_remove); 406 407 static void device_links_missing_supplier(struct device *dev) 408 { 409 struct device_link *link; 410 411 list_for_each_entry(link, &dev->links.suppliers, c_node) 412 if (link->status == DL_STATE_CONSUMER_PROBE) 413 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 414 } 415 416 /** 417 * device_links_check_suppliers - Check presence of supplier drivers. 418 * @dev: Consumer device. 419 * 420 * Check links from this device to any suppliers. Walk the list of the device's 421 * links to suppliers and see if all of them are available. If not, simply 422 * return -EPROBE_DEFER. 423 * 424 * We need to guarantee that the supplier will not go away after the check has 425 * been positive here. It only can go away in __device_release_driver() and 426 * that function checks the device's links to consumers. This means we need to 427 * mark the link as "consumer probe in progress" to make the supplier removal 428 * wait for us to complete (or bad things may happen). 429 * 430 * Links with the DL_FLAG_STATELESS flag set are ignored. 431 */ 432 int device_links_check_suppliers(struct device *dev) 433 { 434 struct device_link *link; 435 int ret = 0; 436 437 device_links_write_lock(); 438 439 list_for_each_entry(link, &dev->links.suppliers, c_node) { 440 if (link->flags & DL_FLAG_STATELESS) 441 continue; 442 443 if (link->status != DL_STATE_AVAILABLE) { 444 device_links_missing_supplier(dev); 445 ret = -EPROBE_DEFER; 446 break; 447 } 448 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 449 } 450 dev->links.status = DL_DEV_PROBING; 451 452 device_links_write_unlock(); 453 return ret; 454 } 455 456 /** 457 * device_links_driver_bound - Update device links after probing its driver. 458 * @dev: Device to update the links for. 459 * 460 * The probe has been successful, so update links from this device to any 461 * consumers by changing their status to "available". 462 * 463 * Also change the status of @dev's links to suppliers to "active". 464 * 465 * Links with the DL_FLAG_STATELESS flag set are ignored. 466 */ 467 void device_links_driver_bound(struct device *dev) 468 { 469 struct device_link *link; 470 471 device_links_write_lock(); 472 473 list_for_each_entry(link, &dev->links.consumers, s_node) { 474 if (link->flags & DL_FLAG_STATELESS) 475 continue; 476 477 WARN_ON(link->status != DL_STATE_DORMANT); 478 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 479 } 480 481 list_for_each_entry(link, &dev->links.suppliers, c_node) { 482 if (link->flags & DL_FLAG_STATELESS) 483 continue; 484 485 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 486 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 487 } 488 489 dev->links.status = DL_DEV_DRIVER_BOUND; 490 491 device_links_write_unlock(); 492 } 493 494 /** 495 * __device_links_no_driver - Update links of a device without a driver. 496 * @dev: Device without a drvier. 497 * 498 * Delete all non-persistent links from this device to any suppliers. 499 * 500 * Persistent links stay around, but their status is changed to "available", 501 * unless they already are in the "supplier unbind in progress" state in which 502 * case they need not be updated. 503 * 504 * Links with the DL_FLAG_STATELESS flag set are ignored. 505 */ 506 static void __device_links_no_driver(struct device *dev) 507 { 508 struct device_link *link, *ln; 509 510 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 511 if (link->flags & DL_FLAG_STATELESS) 512 continue; 513 514 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 515 kref_put(&link->kref, __device_link_del); 516 else if (link->status != DL_STATE_SUPPLIER_UNBIND) 517 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 518 } 519 520 dev->links.status = DL_DEV_NO_DRIVER; 521 } 522 523 void device_links_no_driver(struct device *dev) 524 { 525 device_links_write_lock(); 526 __device_links_no_driver(dev); 527 device_links_write_unlock(); 528 } 529 530 /** 531 * device_links_driver_cleanup - Update links after driver removal. 532 * @dev: Device whose driver has just gone away. 533 * 534 * Update links to consumers for @dev by changing their status to "dormant" and 535 * invoke %__device_links_no_driver() to update links to suppliers for it as 536 * appropriate. 537 * 538 * Links with the DL_FLAG_STATELESS flag set are ignored. 539 */ 540 void device_links_driver_cleanup(struct device *dev) 541 { 542 struct device_link *link; 543 544 device_links_write_lock(); 545 546 list_for_each_entry(link, &dev->links.consumers, s_node) { 547 if (link->flags & DL_FLAG_STATELESS) 548 continue; 549 550 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 551 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 552 553 /* 554 * autoremove the links between this @dev and its consumer 555 * devices that are not active, i.e. where the link state 556 * has moved to DL_STATE_SUPPLIER_UNBIND. 557 */ 558 if (link->status == DL_STATE_SUPPLIER_UNBIND && 559 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 560 kref_put(&link->kref, __device_link_del); 561 562 WRITE_ONCE(link->status, DL_STATE_DORMANT); 563 } 564 565 __device_links_no_driver(dev); 566 567 device_links_write_unlock(); 568 } 569 570 /** 571 * device_links_busy - Check if there are any busy links to consumers. 572 * @dev: Device to check. 573 * 574 * Check each consumer of the device and return 'true' if its link's status 575 * is one of "consumer probe" or "active" (meaning that the given consumer is 576 * probing right now or its driver is present). Otherwise, change the link 577 * state to "supplier unbind" to prevent the consumer from being probed 578 * successfully going forward. 579 * 580 * Return 'false' if there are no probing or active consumers. 581 * 582 * Links with the DL_FLAG_STATELESS flag set are ignored. 583 */ 584 bool device_links_busy(struct device *dev) 585 { 586 struct device_link *link; 587 bool ret = false; 588 589 device_links_write_lock(); 590 591 list_for_each_entry(link, &dev->links.consumers, s_node) { 592 if (link->flags & DL_FLAG_STATELESS) 593 continue; 594 595 if (link->status == DL_STATE_CONSUMER_PROBE 596 || link->status == DL_STATE_ACTIVE) { 597 ret = true; 598 break; 599 } 600 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 601 } 602 603 dev->links.status = DL_DEV_UNBINDING; 604 605 device_links_write_unlock(); 606 return ret; 607 } 608 609 /** 610 * device_links_unbind_consumers - Force unbind consumers of the given device. 611 * @dev: Device to unbind the consumers of. 612 * 613 * Walk the list of links to consumers for @dev and if any of them is in the 614 * "consumer probe" state, wait for all device probes in progress to complete 615 * and start over. 616 * 617 * If that's not the case, change the status of the link to "supplier unbind" 618 * and check if the link was in the "active" state. If so, force the consumer 619 * driver to unbind and start over (the consumer will not re-probe as we have 620 * changed the state of the link already). 621 * 622 * Links with the DL_FLAG_STATELESS flag set are ignored. 623 */ 624 void device_links_unbind_consumers(struct device *dev) 625 { 626 struct device_link *link; 627 628 start: 629 device_links_write_lock(); 630 631 list_for_each_entry(link, &dev->links.consumers, s_node) { 632 enum device_link_state status; 633 634 if (link->flags & DL_FLAG_STATELESS) 635 continue; 636 637 status = link->status; 638 if (status == DL_STATE_CONSUMER_PROBE) { 639 device_links_write_unlock(); 640 641 wait_for_device_probe(); 642 goto start; 643 } 644 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 645 if (status == DL_STATE_ACTIVE) { 646 struct device *consumer = link->consumer; 647 648 get_device(consumer); 649 650 device_links_write_unlock(); 651 652 device_release_driver_internal(consumer, NULL, 653 consumer->parent); 654 put_device(consumer); 655 goto start; 656 } 657 } 658 659 device_links_write_unlock(); 660 } 661 662 /** 663 * device_links_purge - Delete existing links to other devices. 664 * @dev: Target device. 665 */ 666 static void device_links_purge(struct device *dev) 667 { 668 struct device_link *link, *ln; 669 670 /* 671 * Delete all of the remaining links from this device to any other 672 * devices (either consumers or suppliers). 673 */ 674 device_links_write_lock(); 675 676 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 677 WARN_ON(link->status == DL_STATE_ACTIVE); 678 __device_link_del(&link->kref); 679 } 680 681 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 682 WARN_ON(link->status != DL_STATE_DORMANT && 683 link->status != DL_STATE_NONE); 684 __device_link_del(&link->kref); 685 } 686 687 device_links_write_unlock(); 688 } 689 690 /* Device links support end. */ 691 692 int (*platform_notify)(struct device *dev) = NULL; 693 int (*platform_notify_remove)(struct device *dev) = NULL; 694 static struct kobject *dev_kobj; 695 struct kobject *sysfs_dev_char_kobj; 696 struct kobject *sysfs_dev_block_kobj; 697 698 static DEFINE_MUTEX(device_hotplug_lock); 699 700 void lock_device_hotplug(void) 701 { 702 mutex_lock(&device_hotplug_lock); 703 } 704 705 void unlock_device_hotplug(void) 706 { 707 mutex_unlock(&device_hotplug_lock); 708 } 709 710 int lock_device_hotplug_sysfs(void) 711 { 712 if (mutex_trylock(&device_hotplug_lock)) 713 return 0; 714 715 /* Avoid busy looping (5 ms of sleep should do). */ 716 msleep(5); 717 return restart_syscall(); 718 } 719 720 #ifdef CONFIG_BLOCK 721 static inline int device_is_not_partition(struct device *dev) 722 { 723 return !(dev->type == &part_type); 724 } 725 #else 726 static inline int device_is_not_partition(struct device *dev) 727 { 728 return 1; 729 } 730 #endif 731 732 static int 733 device_platform_notify(struct device *dev, enum kobject_action action) 734 { 735 int ret; 736 737 ret = acpi_platform_notify(dev, action); 738 if (ret) 739 return ret; 740 741 ret = software_node_notify(dev, action); 742 if (ret) 743 return ret; 744 745 if (platform_notify && action == KOBJ_ADD) 746 platform_notify(dev); 747 else if (platform_notify_remove && action == KOBJ_REMOVE) 748 platform_notify_remove(dev); 749 return 0; 750 } 751 752 /** 753 * dev_driver_string - Return a device's driver name, if at all possible 754 * @dev: struct device to get the name of 755 * 756 * Will return the device's driver's name if it is bound to a device. If 757 * the device is not bound to a driver, it will return the name of the bus 758 * it is attached to. If it is not attached to a bus either, an empty 759 * string will be returned. 760 */ 761 const char *dev_driver_string(const struct device *dev) 762 { 763 struct device_driver *drv; 764 765 /* dev->driver can change to NULL underneath us because of unbinding, 766 * so be careful about accessing it. dev->bus and dev->class should 767 * never change once they are set, so they don't need special care. 768 */ 769 drv = READ_ONCE(dev->driver); 770 return drv ? drv->name : 771 (dev->bus ? dev->bus->name : 772 (dev->class ? dev->class->name : "")); 773 } 774 EXPORT_SYMBOL(dev_driver_string); 775 776 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 777 778 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 779 char *buf) 780 { 781 struct device_attribute *dev_attr = to_dev_attr(attr); 782 struct device *dev = kobj_to_dev(kobj); 783 ssize_t ret = -EIO; 784 785 if (dev_attr->show) 786 ret = dev_attr->show(dev, dev_attr, buf); 787 if (ret >= (ssize_t)PAGE_SIZE) { 788 printk("dev_attr_show: %pS returned bad count\n", 789 dev_attr->show); 790 } 791 return ret; 792 } 793 794 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 795 const char *buf, size_t count) 796 { 797 struct device_attribute *dev_attr = to_dev_attr(attr); 798 struct device *dev = kobj_to_dev(kobj); 799 ssize_t ret = -EIO; 800 801 if (dev_attr->store) 802 ret = dev_attr->store(dev, dev_attr, buf, count); 803 return ret; 804 } 805 806 static const struct sysfs_ops dev_sysfs_ops = { 807 .show = dev_attr_show, 808 .store = dev_attr_store, 809 }; 810 811 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 812 813 ssize_t device_store_ulong(struct device *dev, 814 struct device_attribute *attr, 815 const char *buf, size_t size) 816 { 817 struct dev_ext_attribute *ea = to_ext_attr(attr); 818 int ret; 819 unsigned long new; 820 821 ret = kstrtoul(buf, 0, &new); 822 if (ret) 823 return ret; 824 *(unsigned long *)(ea->var) = new; 825 /* Always return full write size even if we didn't consume all */ 826 return size; 827 } 828 EXPORT_SYMBOL_GPL(device_store_ulong); 829 830 ssize_t device_show_ulong(struct device *dev, 831 struct device_attribute *attr, 832 char *buf) 833 { 834 struct dev_ext_attribute *ea = to_ext_attr(attr); 835 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var)); 836 } 837 EXPORT_SYMBOL_GPL(device_show_ulong); 838 839 ssize_t device_store_int(struct device *dev, 840 struct device_attribute *attr, 841 const char *buf, size_t size) 842 { 843 struct dev_ext_attribute *ea = to_ext_attr(attr); 844 int ret; 845 long new; 846 847 ret = kstrtol(buf, 0, &new); 848 if (ret) 849 return ret; 850 851 if (new > INT_MAX || new < INT_MIN) 852 return -EINVAL; 853 *(int *)(ea->var) = new; 854 /* Always return full write size even if we didn't consume all */ 855 return size; 856 } 857 EXPORT_SYMBOL_GPL(device_store_int); 858 859 ssize_t device_show_int(struct device *dev, 860 struct device_attribute *attr, 861 char *buf) 862 { 863 struct dev_ext_attribute *ea = to_ext_attr(attr); 864 865 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var)); 866 } 867 EXPORT_SYMBOL_GPL(device_show_int); 868 869 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 870 const char *buf, size_t size) 871 { 872 struct dev_ext_attribute *ea = to_ext_attr(attr); 873 874 if (strtobool(buf, ea->var) < 0) 875 return -EINVAL; 876 877 return size; 878 } 879 EXPORT_SYMBOL_GPL(device_store_bool); 880 881 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 882 char *buf) 883 { 884 struct dev_ext_attribute *ea = to_ext_attr(attr); 885 886 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var)); 887 } 888 EXPORT_SYMBOL_GPL(device_show_bool); 889 890 /** 891 * device_release - free device structure. 892 * @kobj: device's kobject. 893 * 894 * This is called once the reference count for the object 895 * reaches 0. We forward the call to the device's release 896 * method, which should handle actually freeing the structure. 897 */ 898 static void device_release(struct kobject *kobj) 899 { 900 struct device *dev = kobj_to_dev(kobj); 901 struct device_private *p = dev->p; 902 903 /* 904 * Some platform devices are driven without driver attached 905 * and managed resources may have been acquired. Make sure 906 * all resources are released. 907 * 908 * Drivers still can add resources into device after device 909 * is deleted but alive, so release devres here to avoid 910 * possible memory leak. 911 */ 912 devres_release_all(dev); 913 914 if (dev->release) 915 dev->release(dev); 916 else if (dev->type && dev->type->release) 917 dev->type->release(dev); 918 else if (dev->class && dev->class->dev_release) 919 dev->class->dev_release(dev); 920 else 921 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt.\n", 922 dev_name(dev)); 923 kfree(p); 924 } 925 926 static const void *device_namespace(struct kobject *kobj) 927 { 928 struct device *dev = kobj_to_dev(kobj); 929 const void *ns = NULL; 930 931 if (dev->class && dev->class->ns_type) 932 ns = dev->class->namespace(dev); 933 934 return ns; 935 } 936 937 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) 938 { 939 struct device *dev = kobj_to_dev(kobj); 940 941 if (dev->class && dev->class->get_ownership) 942 dev->class->get_ownership(dev, uid, gid); 943 } 944 945 static struct kobj_type device_ktype = { 946 .release = device_release, 947 .sysfs_ops = &dev_sysfs_ops, 948 .namespace = device_namespace, 949 .get_ownership = device_get_ownership, 950 }; 951 952 953 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 954 { 955 struct kobj_type *ktype = get_ktype(kobj); 956 957 if (ktype == &device_ktype) { 958 struct device *dev = kobj_to_dev(kobj); 959 if (dev->bus) 960 return 1; 961 if (dev->class) 962 return 1; 963 } 964 return 0; 965 } 966 967 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 968 { 969 struct device *dev = kobj_to_dev(kobj); 970 971 if (dev->bus) 972 return dev->bus->name; 973 if (dev->class) 974 return dev->class->name; 975 return NULL; 976 } 977 978 static int dev_uevent(struct kset *kset, struct kobject *kobj, 979 struct kobj_uevent_env *env) 980 { 981 struct device *dev = kobj_to_dev(kobj); 982 int retval = 0; 983 984 /* add device node properties if present */ 985 if (MAJOR(dev->devt)) { 986 const char *tmp; 987 const char *name; 988 umode_t mode = 0; 989 kuid_t uid = GLOBAL_ROOT_UID; 990 kgid_t gid = GLOBAL_ROOT_GID; 991 992 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 993 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 994 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 995 if (name) { 996 add_uevent_var(env, "DEVNAME=%s", name); 997 if (mode) 998 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 999 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 1000 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 1001 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 1002 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 1003 kfree(tmp); 1004 } 1005 } 1006 1007 if (dev->type && dev->type->name) 1008 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 1009 1010 if (dev->driver) 1011 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 1012 1013 /* Add common DT information about the device */ 1014 of_device_uevent(dev, env); 1015 1016 /* have the bus specific function add its stuff */ 1017 if (dev->bus && dev->bus->uevent) { 1018 retval = dev->bus->uevent(dev, env); 1019 if (retval) 1020 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 1021 dev_name(dev), __func__, retval); 1022 } 1023 1024 /* have the class specific function add its stuff */ 1025 if (dev->class && dev->class->dev_uevent) { 1026 retval = dev->class->dev_uevent(dev, env); 1027 if (retval) 1028 pr_debug("device: '%s': %s: class uevent() " 1029 "returned %d\n", dev_name(dev), 1030 __func__, retval); 1031 } 1032 1033 /* have the device type specific function add its stuff */ 1034 if (dev->type && dev->type->uevent) { 1035 retval = dev->type->uevent(dev, env); 1036 if (retval) 1037 pr_debug("device: '%s': %s: dev_type uevent() " 1038 "returned %d\n", dev_name(dev), 1039 __func__, retval); 1040 } 1041 1042 return retval; 1043 } 1044 1045 static const struct kset_uevent_ops device_uevent_ops = { 1046 .filter = dev_uevent_filter, 1047 .name = dev_uevent_name, 1048 .uevent = dev_uevent, 1049 }; 1050 1051 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 1052 char *buf) 1053 { 1054 struct kobject *top_kobj; 1055 struct kset *kset; 1056 struct kobj_uevent_env *env = NULL; 1057 int i; 1058 size_t count = 0; 1059 int retval; 1060 1061 /* search the kset, the device belongs to */ 1062 top_kobj = &dev->kobj; 1063 while (!top_kobj->kset && top_kobj->parent) 1064 top_kobj = top_kobj->parent; 1065 if (!top_kobj->kset) 1066 goto out; 1067 1068 kset = top_kobj->kset; 1069 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 1070 goto out; 1071 1072 /* respect filter */ 1073 if (kset->uevent_ops && kset->uevent_ops->filter) 1074 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 1075 goto out; 1076 1077 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 1078 if (!env) 1079 return -ENOMEM; 1080 1081 /* let the kset specific function add its keys */ 1082 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 1083 if (retval) 1084 goto out; 1085 1086 /* copy keys to file */ 1087 for (i = 0; i < env->envp_idx; i++) 1088 count += sprintf(&buf[count], "%s\n", env->envp[i]); 1089 out: 1090 kfree(env); 1091 return count; 1092 } 1093 1094 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 1095 const char *buf, size_t count) 1096 { 1097 int rc; 1098 1099 rc = kobject_synth_uevent(&dev->kobj, buf, count); 1100 1101 if (rc) { 1102 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 1103 return rc; 1104 } 1105 1106 return count; 1107 } 1108 static DEVICE_ATTR_RW(uevent); 1109 1110 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 1111 char *buf) 1112 { 1113 bool val; 1114 1115 device_lock(dev); 1116 val = !dev->offline; 1117 device_unlock(dev); 1118 return sprintf(buf, "%u\n", val); 1119 } 1120 1121 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 1122 const char *buf, size_t count) 1123 { 1124 bool val; 1125 int ret; 1126 1127 ret = strtobool(buf, &val); 1128 if (ret < 0) 1129 return ret; 1130 1131 ret = lock_device_hotplug_sysfs(); 1132 if (ret) 1133 return ret; 1134 1135 ret = val ? device_online(dev) : device_offline(dev); 1136 unlock_device_hotplug(); 1137 return ret < 0 ? ret : count; 1138 } 1139 static DEVICE_ATTR_RW(online); 1140 1141 int device_add_groups(struct device *dev, const struct attribute_group **groups) 1142 { 1143 return sysfs_create_groups(&dev->kobj, groups); 1144 } 1145 EXPORT_SYMBOL_GPL(device_add_groups); 1146 1147 void device_remove_groups(struct device *dev, 1148 const struct attribute_group **groups) 1149 { 1150 sysfs_remove_groups(&dev->kobj, groups); 1151 } 1152 EXPORT_SYMBOL_GPL(device_remove_groups); 1153 1154 union device_attr_group_devres { 1155 const struct attribute_group *group; 1156 const struct attribute_group **groups; 1157 }; 1158 1159 static int devm_attr_group_match(struct device *dev, void *res, void *data) 1160 { 1161 return ((union device_attr_group_devres *)res)->group == data; 1162 } 1163 1164 static void devm_attr_group_remove(struct device *dev, void *res) 1165 { 1166 union device_attr_group_devres *devres = res; 1167 const struct attribute_group *group = devres->group; 1168 1169 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 1170 sysfs_remove_group(&dev->kobj, group); 1171 } 1172 1173 static void devm_attr_groups_remove(struct device *dev, void *res) 1174 { 1175 union device_attr_group_devres *devres = res; 1176 const struct attribute_group **groups = devres->groups; 1177 1178 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 1179 sysfs_remove_groups(&dev->kobj, groups); 1180 } 1181 1182 /** 1183 * devm_device_add_group - given a device, create a managed attribute group 1184 * @dev: The device to create the group for 1185 * @grp: The attribute group to create 1186 * 1187 * This function creates a group for the first time. It will explicitly 1188 * warn and error if any of the attribute files being created already exist. 1189 * 1190 * Returns 0 on success or error code on failure. 1191 */ 1192 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 1193 { 1194 union device_attr_group_devres *devres; 1195 int error; 1196 1197 devres = devres_alloc(devm_attr_group_remove, 1198 sizeof(*devres), GFP_KERNEL); 1199 if (!devres) 1200 return -ENOMEM; 1201 1202 error = sysfs_create_group(&dev->kobj, grp); 1203 if (error) { 1204 devres_free(devres); 1205 return error; 1206 } 1207 1208 devres->group = grp; 1209 devres_add(dev, devres); 1210 return 0; 1211 } 1212 EXPORT_SYMBOL_GPL(devm_device_add_group); 1213 1214 /** 1215 * devm_device_remove_group: remove a managed group from a device 1216 * @dev: device to remove the group from 1217 * @grp: group to remove 1218 * 1219 * This function removes a group of attributes from a device. The attributes 1220 * previously have to have been created for this group, otherwise it will fail. 1221 */ 1222 void devm_device_remove_group(struct device *dev, 1223 const struct attribute_group *grp) 1224 { 1225 WARN_ON(devres_release(dev, devm_attr_group_remove, 1226 devm_attr_group_match, 1227 /* cast away const */ (void *)grp)); 1228 } 1229 EXPORT_SYMBOL_GPL(devm_device_remove_group); 1230 1231 /** 1232 * devm_device_add_groups - create a bunch of managed attribute groups 1233 * @dev: The device to create the group for 1234 * @groups: The attribute groups to create, NULL terminated 1235 * 1236 * This function creates a bunch of managed attribute groups. If an error 1237 * occurs when creating a group, all previously created groups will be 1238 * removed, unwinding everything back to the original state when this 1239 * function was called. It will explicitly warn and error if any of the 1240 * attribute files being created already exist. 1241 * 1242 * Returns 0 on success or error code from sysfs_create_group on failure. 1243 */ 1244 int devm_device_add_groups(struct device *dev, 1245 const struct attribute_group **groups) 1246 { 1247 union device_attr_group_devres *devres; 1248 int error; 1249 1250 devres = devres_alloc(devm_attr_groups_remove, 1251 sizeof(*devres), GFP_KERNEL); 1252 if (!devres) 1253 return -ENOMEM; 1254 1255 error = sysfs_create_groups(&dev->kobj, groups); 1256 if (error) { 1257 devres_free(devres); 1258 return error; 1259 } 1260 1261 devres->groups = groups; 1262 devres_add(dev, devres); 1263 return 0; 1264 } 1265 EXPORT_SYMBOL_GPL(devm_device_add_groups); 1266 1267 /** 1268 * devm_device_remove_groups - remove a list of managed groups 1269 * 1270 * @dev: The device for the groups to be removed from 1271 * @groups: NULL terminated list of groups to be removed 1272 * 1273 * If groups is not NULL, remove the specified groups from the device. 1274 */ 1275 void devm_device_remove_groups(struct device *dev, 1276 const struct attribute_group **groups) 1277 { 1278 WARN_ON(devres_release(dev, devm_attr_groups_remove, 1279 devm_attr_group_match, 1280 /* cast away const */ (void *)groups)); 1281 } 1282 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 1283 1284 static int device_add_attrs(struct device *dev) 1285 { 1286 struct class *class = dev->class; 1287 const struct device_type *type = dev->type; 1288 int error; 1289 1290 if (class) { 1291 error = device_add_groups(dev, class->dev_groups); 1292 if (error) 1293 return error; 1294 } 1295 1296 if (type) { 1297 error = device_add_groups(dev, type->groups); 1298 if (error) 1299 goto err_remove_class_groups; 1300 } 1301 1302 error = device_add_groups(dev, dev->groups); 1303 if (error) 1304 goto err_remove_type_groups; 1305 1306 if (device_supports_offline(dev) && !dev->offline_disabled) { 1307 error = device_create_file(dev, &dev_attr_online); 1308 if (error) 1309 goto err_remove_dev_groups; 1310 } 1311 1312 return 0; 1313 1314 err_remove_dev_groups: 1315 device_remove_groups(dev, dev->groups); 1316 err_remove_type_groups: 1317 if (type) 1318 device_remove_groups(dev, type->groups); 1319 err_remove_class_groups: 1320 if (class) 1321 device_remove_groups(dev, class->dev_groups); 1322 1323 return error; 1324 } 1325 1326 static void device_remove_attrs(struct device *dev) 1327 { 1328 struct class *class = dev->class; 1329 const struct device_type *type = dev->type; 1330 1331 device_remove_file(dev, &dev_attr_online); 1332 device_remove_groups(dev, dev->groups); 1333 1334 if (type) 1335 device_remove_groups(dev, type->groups); 1336 1337 if (class) 1338 device_remove_groups(dev, class->dev_groups); 1339 } 1340 1341 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 1342 char *buf) 1343 { 1344 return print_dev_t(buf, dev->devt); 1345 } 1346 static DEVICE_ATTR_RO(dev); 1347 1348 /* /sys/devices/ */ 1349 struct kset *devices_kset; 1350 1351 /** 1352 * devices_kset_move_before - Move device in the devices_kset's list. 1353 * @deva: Device to move. 1354 * @devb: Device @deva should come before. 1355 */ 1356 static void devices_kset_move_before(struct device *deva, struct device *devb) 1357 { 1358 if (!devices_kset) 1359 return; 1360 pr_debug("devices_kset: Moving %s before %s\n", 1361 dev_name(deva), dev_name(devb)); 1362 spin_lock(&devices_kset->list_lock); 1363 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 1364 spin_unlock(&devices_kset->list_lock); 1365 } 1366 1367 /** 1368 * devices_kset_move_after - Move device in the devices_kset's list. 1369 * @deva: Device to move 1370 * @devb: Device @deva should come after. 1371 */ 1372 static void devices_kset_move_after(struct device *deva, struct device *devb) 1373 { 1374 if (!devices_kset) 1375 return; 1376 pr_debug("devices_kset: Moving %s after %s\n", 1377 dev_name(deva), dev_name(devb)); 1378 spin_lock(&devices_kset->list_lock); 1379 list_move(&deva->kobj.entry, &devb->kobj.entry); 1380 spin_unlock(&devices_kset->list_lock); 1381 } 1382 1383 /** 1384 * devices_kset_move_last - move the device to the end of devices_kset's list. 1385 * @dev: device to move 1386 */ 1387 void devices_kset_move_last(struct device *dev) 1388 { 1389 if (!devices_kset) 1390 return; 1391 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 1392 spin_lock(&devices_kset->list_lock); 1393 list_move_tail(&dev->kobj.entry, &devices_kset->list); 1394 spin_unlock(&devices_kset->list_lock); 1395 } 1396 1397 /** 1398 * device_create_file - create sysfs attribute file for device. 1399 * @dev: device. 1400 * @attr: device attribute descriptor. 1401 */ 1402 int device_create_file(struct device *dev, 1403 const struct device_attribute *attr) 1404 { 1405 int error = 0; 1406 1407 if (dev) { 1408 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 1409 "Attribute %s: write permission without 'store'\n", 1410 attr->attr.name); 1411 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 1412 "Attribute %s: read permission without 'show'\n", 1413 attr->attr.name); 1414 error = sysfs_create_file(&dev->kobj, &attr->attr); 1415 } 1416 1417 return error; 1418 } 1419 EXPORT_SYMBOL_GPL(device_create_file); 1420 1421 /** 1422 * device_remove_file - remove sysfs attribute file. 1423 * @dev: device. 1424 * @attr: device attribute descriptor. 1425 */ 1426 void device_remove_file(struct device *dev, 1427 const struct device_attribute *attr) 1428 { 1429 if (dev) 1430 sysfs_remove_file(&dev->kobj, &attr->attr); 1431 } 1432 EXPORT_SYMBOL_GPL(device_remove_file); 1433 1434 /** 1435 * device_remove_file_self - remove sysfs attribute file from its own method. 1436 * @dev: device. 1437 * @attr: device attribute descriptor. 1438 * 1439 * See kernfs_remove_self() for details. 1440 */ 1441 bool device_remove_file_self(struct device *dev, 1442 const struct device_attribute *attr) 1443 { 1444 if (dev) 1445 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 1446 else 1447 return false; 1448 } 1449 EXPORT_SYMBOL_GPL(device_remove_file_self); 1450 1451 /** 1452 * device_create_bin_file - create sysfs binary attribute file for device. 1453 * @dev: device. 1454 * @attr: device binary attribute descriptor. 1455 */ 1456 int device_create_bin_file(struct device *dev, 1457 const struct bin_attribute *attr) 1458 { 1459 int error = -EINVAL; 1460 if (dev) 1461 error = sysfs_create_bin_file(&dev->kobj, attr); 1462 return error; 1463 } 1464 EXPORT_SYMBOL_GPL(device_create_bin_file); 1465 1466 /** 1467 * device_remove_bin_file - remove sysfs binary attribute file 1468 * @dev: device. 1469 * @attr: device binary attribute descriptor. 1470 */ 1471 void device_remove_bin_file(struct device *dev, 1472 const struct bin_attribute *attr) 1473 { 1474 if (dev) 1475 sysfs_remove_bin_file(&dev->kobj, attr); 1476 } 1477 EXPORT_SYMBOL_GPL(device_remove_bin_file); 1478 1479 static void klist_children_get(struct klist_node *n) 1480 { 1481 struct device_private *p = to_device_private_parent(n); 1482 struct device *dev = p->device; 1483 1484 get_device(dev); 1485 } 1486 1487 static void klist_children_put(struct klist_node *n) 1488 { 1489 struct device_private *p = to_device_private_parent(n); 1490 struct device *dev = p->device; 1491 1492 put_device(dev); 1493 } 1494 1495 /** 1496 * device_initialize - init device structure. 1497 * @dev: device. 1498 * 1499 * This prepares the device for use by other layers by initializing 1500 * its fields. 1501 * It is the first half of device_register(), if called by 1502 * that function, though it can also be called separately, so one 1503 * may use @dev's fields. In particular, get_device()/put_device() 1504 * may be used for reference counting of @dev after calling this 1505 * function. 1506 * 1507 * All fields in @dev must be initialized by the caller to 0, except 1508 * for those explicitly set to some other value. The simplest 1509 * approach is to use kzalloc() to allocate the structure containing 1510 * @dev. 1511 * 1512 * NOTE: Use put_device() to give up your reference instead of freeing 1513 * @dev directly once you have called this function. 1514 */ 1515 void device_initialize(struct device *dev) 1516 { 1517 dev->kobj.kset = devices_kset; 1518 kobject_init(&dev->kobj, &device_ktype); 1519 INIT_LIST_HEAD(&dev->dma_pools); 1520 mutex_init(&dev->mutex); 1521 lockdep_set_novalidate_class(&dev->mutex); 1522 spin_lock_init(&dev->devres_lock); 1523 INIT_LIST_HEAD(&dev->devres_head); 1524 device_pm_init(dev); 1525 set_dev_node(dev, -1); 1526 #ifdef CONFIG_GENERIC_MSI_IRQ 1527 INIT_LIST_HEAD(&dev->msi_list); 1528 #endif 1529 INIT_LIST_HEAD(&dev->links.consumers); 1530 INIT_LIST_HEAD(&dev->links.suppliers); 1531 dev->links.status = DL_DEV_NO_DRIVER; 1532 } 1533 EXPORT_SYMBOL_GPL(device_initialize); 1534 1535 struct kobject *virtual_device_parent(struct device *dev) 1536 { 1537 static struct kobject *virtual_dir = NULL; 1538 1539 if (!virtual_dir) 1540 virtual_dir = kobject_create_and_add("virtual", 1541 &devices_kset->kobj); 1542 1543 return virtual_dir; 1544 } 1545 1546 struct class_dir { 1547 struct kobject kobj; 1548 struct class *class; 1549 }; 1550 1551 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 1552 1553 static void class_dir_release(struct kobject *kobj) 1554 { 1555 struct class_dir *dir = to_class_dir(kobj); 1556 kfree(dir); 1557 } 1558 1559 static const 1560 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 1561 { 1562 struct class_dir *dir = to_class_dir(kobj); 1563 return dir->class->ns_type; 1564 } 1565 1566 static struct kobj_type class_dir_ktype = { 1567 .release = class_dir_release, 1568 .sysfs_ops = &kobj_sysfs_ops, 1569 .child_ns_type = class_dir_child_ns_type 1570 }; 1571 1572 static struct kobject * 1573 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 1574 { 1575 struct class_dir *dir; 1576 int retval; 1577 1578 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 1579 if (!dir) 1580 return ERR_PTR(-ENOMEM); 1581 1582 dir->class = class; 1583 kobject_init(&dir->kobj, &class_dir_ktype); 1584 1585 dir->kobj.kset = &class->p->glue_dirs; 1586 1587 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 1588 if (retval < 0) { 1589 kobject_put(&dir->kobj); 1590 return ERR_PTR(retval); 1591 } 1592 return &dir->kobj; 1593 } 1594 1595 static DEFINE_MUTEX(gdp_mutex); 1596 1597 static struct kobject *get_device_parent(struct device *dev, 1598 struct device *parent) 1599 { 1600 if (dev->class) { 1601 struct kobject *kobj = NULL; 1602 struct kobject *parent_kobj; 1603 struct kobject *k; 1604 1605 #ifdef CONFIG_BLOCK 1606 /* block disks show up in /sys/block */ 1607 if (sysfs_deprecated && dev->class == &block_class) { 1608 if (parent && parent->class == &block_class) 1609 return &parent->kobj; 1610 return &block_class.p->subsys.kobj; 1611 } 1612 #endif 1613 1614 /* 1615 * If we have no parent, we live in "virtual". 1616 * Class-devices with a non class-device as parent, live 1617 * in a "glue" directory to prevent namespace collisions. 1618 */ 1619 if (parent == NULL) 1620 parent_kobj = virtual_device_parent(dev); 1621 else if (parent->class && !dev->class->ns_type) 1622 return &parent->kobj; 1623 else 1624 parent_kobj = &parent->kobj; 1625 1626 mutex_lock(&gdp_mutex); 1627 1628 /* find our class-directory at the parent and reference it */ 1629 spin_lock(&dev->class->p->glue_dirs.list_lock); 1630 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 1631 if (k->parent == parent_kobj) { 1632 kobj = kobject_get(k); 1633 break; 1634 } 1635 spin_unlock(&dev->class->p->glue_dirs.list_lock); 1636 if (kobj) { 1637 mutex_unlock(&gdp_mutex); 1638 return kobj; 1639 } 1640 1641 /* or create a new class-directory at the parent device */ 1642 k = class_dir_create_and_add(dev->class, parent_kobj); 1643 /* do not emit an uevent for this simple "glue" directory */ 1644 mutex_unlock(&gdp_mutex); 1645 return k; 1646 } 1647 1648 /* subsystems can specify a default root directory for their devices */ 1649 if (!parent && dev->bus && dev->bus->dev_root) 1650 return &dev->bus->dev_root->kobj; 1651 1652 if (parent) 1653 return &parent->kobj; 1654 return NULL; 1655 } 1656 1657 static inline bool live_in_glue_dir(struct kobject *kobj, 1658 struct device *dev) 1659 { 1660 if (!kobj || !dev->class || 1661 kobj->kset != &dev->class->p->glue_dirs) 1662 return false; 1663 return true; 1664 } 1665 1666 static inline struct kobject *get_glue_dir(struct device *dev) 1667 { 1668 return dev->kobj.parent; 1669 } 1670 1671 /* 1672 * make sure cleaning up dir as the last step, we need to make 1673 * sure .release handler of kobject is run with holding the 1674 * global lock 1675 */ 1676 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 1677 { 1678 /* see if we live in a "glue" directory */ 1679 if (!live_in_glue_dir(glue_dir, dev)) 1680 return; 1681 1682 mutex_lock(&gdp_mutex); 1683 if (!kobject_has_children(glue_dir)) 1684 kobject_del(glue_dir); 1685 kobject_put(glue_dir); 1686 mutex_unlock(&gdp_mutex); 1687 } 1688 1689 static int device_add_class_symlinks(struct device *dev) 1690 { 1691 struct device_node *of_node = dev_of_node(dev); 1692 int error; 1693 1694 if (of_node) { 1695 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 1696 if (error) 1697 dev_warn(dev, "Error %d creating of_node link\n",error); 1698 /* An error here doesn't warrant bringing down the device */ 1699 } 1700 1701 if (!dev->class) 1702 return 0; 1703 1704 error = sysfs_create_link(&dev->kobj, 1705 &dev->class->p->subsys.kobj, 1706 "subsystem"); 1707 if (error) 1708 goto out_devnode; 1709 1710 if (dev->parent && device_is_not_partition(dev)) { 1711 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 1712 "device"); 1713 if (error) 1714 goto out_subsys; 1715 } 1716 1717 #ifdef CONFIG_BLOCK 1718 /* /sys/block has directories and does not need symlinks */ 1719 if (sysfs_deprecated && dev->class == &block_class) 1720 return 0; 1721 #endif 1722 1723 /* link in the class directory pointing to the device */ 1724 error = sysfs_create_link(&dev->class->p->subsys.kobj, 1725 &dev->kobj, dev_name(dev)); 1726 if (error) 1727 goto out_device; 1728 1729 return 0; 1730 1731 out_device: 1732 sysfs_remove_link(&dev->kobj, "device"); 1733 1734 out_subsys: 1735 sysfs_remove_link(&dev->kobj, "subsystem"); 1736 out_devnode: 1737 sysfs_remove_link(&dev->kobj, "of_node"); 1738 return error; 1739 } 1740 1741 static void device_remove_class_symlinks(struct device *dev) 1742 { 1743 if (dev_of_node(dev)) 1744 sysfs_remove_link(&dev->kobj, "of_node"); 1745 1746 if (!dev->class) 1747 return; 1748 1749 if (dev->parent && device_is_not_partition(dev)) 1750 sysfs_remove_link(&dev->kobj, "device"); 1751 sysfs_remove_link(&dev->kobj, "subsystem"); 1752 #ifdef CONFIG_BLOCK 1753 if (sysfs_deprecated && dev->class == &block_class) 1754 return; 1755 #endif 1756 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 1757 } 1758 1759 /** 1760 * dev_set_name - set a device name 1761 * @dev: device 1762 * @fmt: format string for the device's name 1763 */ 1764 int dev_set_name(struct device *dev, const char *fmt, ...) 1765 { 1766 va_list vargs; 1767 int err; 1768 1769 va_start(vargs, fmt); 1770 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 1771 va_end(vargs); 1772 return err; 1773 } 1774 EXPORT_SYMBOL_GPL(dev_set_name); 1775 1776 /** 1777 * device_to_dev_kobj - select a /sys/dev/ directory for the device 1778 * @dev: device 1779 * 1780 * By default we select char/ for new entries. Setting class->dev_obj 1781 * to NULL prevents an entry from being created. class->dev_kobj must 1782 * be set (or cleared) before any devices are registered to the class 1783 * otherwise device_create_sys_dev_entry() and 1784 * device_remove_sys_dev_entry() will disagree about the presence of 1785 * the link. 1786 */ 1787 static struct kobject *device_to_dev_kobj(struct device *dev) 1788 { 1789 struct kobject *kobj; 1790 1791 if (dev->class) 1792 kobj = dev->class->dev_kobj; 1793 else 1794 kobj = sysfs_dev_char_kobj; 1795 1796 return kobj; 1797 } 1798 1799 static int device_create_sys_dev_entry(struct device *dev) 1800 { 1801 struct kobject *kobj = device_to_dev_kobj(dev); 1802 int error = 0; 1803 char devt_str[15]; 1804 1805 if (kobj) { 1806 format_dev_t(devt_str, dev->devt); 1807 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 1808 } 1809 1810 return error; 1811 } 1812 1813 static void device_remove_sys_dev_entry(struct device *dev) 1814 { 1815 struct kobject *kobj = device_to_dev_kobj(dev); 1816 char devt_str[15]; 1817 1818 if (kobj) { 1819 format_dev_t(devt_str, dev->devt); 1820 sysfs_remove_link(kobj, devt_str); 1821 } 1822 } 1823 1824 static int device_private_init(struct device *dev) 1825 { 1826 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 1827 if (!dev->p) 1828 return -ENOMEM; 1829 dev->p->device = dev; 1830 klist_init(&dev->p->klist_children, klist_children_get, 1831 klist_children_put); 1832 INIT_LIST_HEAD(&dev->p->deferred_probe); 1833 return 0; 1834 } 1835 1836 /** 1837 * device_add - add device to device hierarchy. 1838 * @dev: device. 1839 * 1840 * This is part 2 of device_register(), though may be called 1841 * separately _iff_ device_initialize() has been called separately. 1842 * 1843 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 1844 * to the global and sibling lists for the device, then 1845 * adds it to the other relevant subsystems of the driver model. 1846 * 1847 * Do not call this routine or device_register() more than once for 1848 * any device structure. The driver model core is not designed to work 1849 * with devices that get unregistered and then spring back to life. 1850 * (Among other things, it's very hard to guarantee that all references 1851 * to the previous incarnation of @dev have been dropped.) Allocate 1852 * and register a fresh new struct device instead. 1853 * 1854 * NOTE: _Never_ directly free @dev after calling this function, even 1855 * if it returned an error! Always use put_device() to give up your 1856 * reference instead. 1857 */ 1858 int device_add(struct device *dev) 1859 { 1860 struct device *parent; 1861 struct kobject *kobj; 1862 struct class_interface *class_intf; 1863 int error = -EINVAL; 1864 struct kobject *glue_dir = NULL; 1865 1866 dev = get_device(dev); 1867 if (!dev) 1868 goto done; 1869 1870 if (!dev->p) { 1871 error = device_private_init(dev); 1872 if (error) 1873 goto done; 1874 } 1875 1876 /* 1877 * for statically allocated devices, which should all be converted 1878 * some day, we need to initialize the name. We prevent reading back 1879 * the name, and force the use of dev_name() 1880 */ 1881 if (dev->init_name) { 1882 dev_set_name(dev, "%s", dev->init_name); 1883 dev->init_name = NULL; 1884 } 1885 1886 /* subsystems can specify simple device enumeration */ 1887 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 1888 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 1889 1890 if (!dev_name(dev)) { 1891 error = -EINVAL; 1892 goto name_error; 1893 } 1894 1895 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 1896 1897 parent = get_device(dev->parent); 1898 kobj = get_device_parent(dev, parent); 1899 if (IS_ERR(kobj)) { 1900 error = PTR_ERR(kobj); 1901 goto parent_error; 1902 } 1903 if (kobj) 1904 dev->kobj.parent = kobj; 1905 1906 /* use parent numa_node */ 1907 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 1908 set_dev_node(dev, dev_to_node(parent)); 1909 1910 /* first, register with generic layer. */ 1911 /* we require the name to be set before, and pass NULL */ 1912 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 1913 if (error) { 1914 glue_dir = get_glue_dir(dev); 1915 goto Error; 1916 } 1917 1918 /* notify platform of device entry */ 1919 error = device_platform_notify(dev, KOBJ_ADD); 1920 if (error) 1921 goto platform_error; 1922 1923 error = device_create_file(dev, &dev_attr_uevent); 1924 if (error) 1925 goto attrError; 1926 1927 error = device_add_class_symlinks(dev); 1928 if (error) 1929 goto SymlinkError; 1930 error = device_add_attrs(dev); 1931 if (error) 1932 goto AttrsError; 1933 error = bus_add_device(dev); 1934 if (error) 1935 goto BusError; 1936 error = dpm_sysfs_add(dev); 1937 if (error) 1938 goto DPMError; 1939 device_pm_add(dev); 1940 1941 if (MAJOR(dev->devt)) { 1942 error = device_create_file(dev, &dev_attr_dev); 1943 if (error) 1944 goto DevAttrError; 1945 1946 error = device_create_sys_dev_entry(dev); 1947 if (error) 1948 goto SysEntryError; 1949 1950 devtmpfs_create_node(dev); 1951 } 1952 1953 /* Notify clients of device addition. This call must come 1954 * after dpm_sysfs_add() and before kobject_uevent(). 1955 */ 1956 if (dev->bus) 1957 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1958 BUS_NOTIFY_ADD_DEVICE, dev); 1959 1960 kobject_uevent(&dev->kobj, KOBJ_ADD); 1961 bus_probe_device(dev); 1962 if (parent) 1963 klist_add_tail(&dev->p->knode_parent, 1964 &parent->p->klist_children); 1965 1966 if (dev->class) { 1967 mutex_lock(&dev->class->p->mutex); 1968 /* tie the class to the device */ 1969 klist_add_tail(&dev->knode_class, 1970 &dev->class->p->klist_devices); 1971 1972 /* notify any interfaces that the device is here */ 1973 list_for_each_entry(class_intf, 1974 &dev->class->p->interfaces, node) 1975 if (class_intf->add_dev) 1976 class_intf->add_dev(dev, class_intf); 1977 mutex_unlock(&dev->class->p->mutex); 1978 } 1979 done: 1980 put_device(dev); 1981 return error; 1982 SysEntryError: 1983 if (MAJOR(dev->devt)) 1984 device_remove_file(dev, &dev_attr_dev); 1985 DevAttrError: 1986 device_pm_remove(dev); 1987 dpm_sysfs_remove(dev); 1988 DPMError: 1989 bus_remove_device(dev); 1990 BusError: 1991 device_remove_attrs(dev); 1992 AttrsError: 1993 device_remove_class_symlinks(dev); 1994 SymlinkError: 1995 device_remove_file(dev, &dev_attr_uevent); 1996 attrError: 1997 device_platform_notify(dev, KOBJ_REMOVE); 1998 platform_error: 1999 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 2000 glue_dir = get_glue_dir(dev); 2001 kobject_del(&dev->kobj); 2002 Error: 2003 cleanup_glue_dir(dev, glue_dir); 2004 parent_error: 2005 put_device(parent); 2006 name_error: 2007 kfree(dev->p); 2008 dev->p = NULL; 2009 goto done; 2010 } 2011 EXPORT_SYMBOL_GPL(device_add); 2012 2013 /** 2014 * device_register - register a device with the system. 2015 * @dev: pointer to the device structure 2016 * 2017 * This happens in two clean steps - initialize the device 2018 * and add it to the system. The two steps can be called 2019 * separately, but this is the easiest and most common. 2020 * I.e. you should only call the two helpers separately if 2021 * have a clearly defined need to use and refcount the device 2022 * before it is added to the hierarchy. 2023 * 2024 * For more information, see the kerneldoc for device_initialize() 2025 * and device_add(). 2026 * 2027 * NOTE: _Never_ directly free @dev after calling this function, even 2028 * if it returned an error! Always use put_device() to give up the 2029 * reference initialized in this function instead. 2030 */ 2031 int device_register(struct device *dev) 2032 { 2033 device_initialize(dev); 2034 return device_add(dev); 2035 } 2036 EXPORT_SYMBOL_GPL(device_register); 2037 2038 /** 2039 * get_device - increment reference count for device. 2040 * @dev: device. 2041 * 2042 * This simply forwards the call to kobject_get(), though 2043 * we do take care to provide for the case that we get a NULL 2044 * pointer passed in. 2045 */ 2046 struct device *get_device(struct device *dev) 2047 { 2048 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 2049 } 2050 EXPORT_SYMBOL_GPL(get_device); 2051 2052 /** 2053 * put_device - decrement reference count. 2054 * @dev: device in question. 2055 */ 2056 void put_device(struct device *dev) 2057 { 2058 /* might_sleep(); */ 2059 if (dev) 2060 kobject_put(&dev->kobj); 2061 } 2062 EXPORT_SYMBOL_GPL(put_device); 2063 2064 /** 2065 * device_del - delete device from system. 2066 * @dev: device. 2067 * 2068 * This is the first part of the device unregistration 2069 * sequence. This removes the device from the lists we control 2070 * from here, has it removed from the other driver model 2071 * subsystems it was added to in device_add(), and removes it 2072 * from the kobject hierarchy. 2073 * 2074 * NOTE: this should be called manually _iff_ device_add() was 2075 * also called manually. 2076 */ 2077 void device_del(struct device *dev) 2078 { 2079 struct device *parent = dev->parent; 2080 struct kobject *glue_dir = NULL; 2081 struct class_interface *class_intf; 2082 2083 /* Notify clients of device removal. This call must come 2084 * before dpm_sysfs_remove(). 2085 */ 2086 if (dev->bus) 2087 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2088 BUS_NOTIFY_DEL_DEVICE, dev); 2089 2090 dpm_sysfs_remove(dev); 2091 if (parent) 2092 klist_del(&dev->p->knode_parent); 2093 if (MAJOR(dev->devt)) { 2094 devtmpfs_delete_node(dev); 2095 device_remove_sys_dev_entry(dev); 2096 device_remove_file(dev, &dev_attr_dev); 2097 } 2098 if (dev->class) { 2099 device_remove_class_symlinks(dev); 2100 2101 mutex_lock(&dev->class->p->mutex); 2102 /* notify any interfaces that the device is now gone */ 2103 list_for_each_entry(class_intf, 2104 &dev->class->p->interfaces, node) 2105 if (class_intf->remove_dev) 2106 class_intf->remove_dev(dev, class_intf); 2107 /* remove the device from the class list */ 2108 klist_del(&dev->knode_class); 2109 mutex_unlock(&dev->class->p->mutex); 2110 } 2111 device_remove_file(dev, &dev_attr_uevent); 2112 device_remove_attrs(dev); 2113 bus_remove_device(dev); 2114 device_pm_remove(dev); 2115 driver_deferred_probe_del(dev); 2116 device_platform_notify(dev, KOBJ_REMOVE); 2117 device_remove_properties(dev); 2118 device_links_purge(dev); 2119 2120 if (dev->bus) 2121 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2122 BUS_NOTIFY_REMOVED_DEVICE, dev); 2123 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 2124 glue_dir = get_glue_dir(dev); 2125 kobject_del(&dev->kobj); 2126 cleanup_glue_dir(dev, glue_dir); 2127 put_device(parent); 2128 } 2129 EXPORT_SYMBOL_GPL(device_del); 2130 2131 /** 2132 * device_unregister - unregister device from system. 2133 * @dev: device going away. 2134 * 2135 * We do this in two parts, like we do device_register(). First, 2136 * we remove it from all the subsystems with device_del(), then 2137 * we decrement the reference count via put_device(). If that 2138 * is the final reference count, the device will be cleaned up 2139 * via device_release() above. Otherwise, the structure will 2140 * stick around until the final reference to the device is dropped. 2141 */ 2142 void device_unregister(struct device *dev) 2143 { 2144 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2145 device_del(dev); 2146 put_device(dev); 2147 } 2148 EXPORT_SYMBOL_GPL(device_unregister); 2149 2150 static struct device *prev_device(struct klist_iter *i) 2151 { 2152 struct klist_node *n = klist_prev(i); 2153 struct device *dev = NULL; 2154 struct device_private *p; 2155 2156 if (n) { 2157 p = to_device_private_parent(n); 2158 dev = p->device; 2159 } 2160 return dev; 2161 } 2162 2163 static struct device *next_device(struct klist_iter *i) 2164 { 2165 struct klist_node *n = klist_next(i); 2166 struct device *dev = NULL; 2167 struct device_private *p; 2168 2169 if (n) { 2170 p = to_device_private_parent(n); 2171 dev = p->device; 2172 } 2173 return dev; 2174 } 2175 2176 /** 2177 * device_get_devnode - path of device node file 2178 * @dev: device 2179 * @mode: returned file access mode 2180 * @uid: returned file owner 2181 * @gid: returned file group 2182 * @tmp: possibly allocated string 2183 * 2184 * Return the relative path of a possible device node. 2185 * Non-default names may need to allocate a memory to compose 2186 * a name. This memory is returned in tmp and needs to be 2187 * freed by the caller. 2188 */ 2189 const char *device_get_devnode(struct device *dev, 2190 umode_t *mode, kuid_t *uid, kgid_t *gid, 2191 const char **tmp) 2192 { 2193 char *s; 2194 2195 *tmp = NULL; 2196 2197 /* the device type may provide a specific name */ 2198 if (dev->type && dev->type->devnode) 2199 *tmp = dev->type->devnode(dev, mode, uid, gid); 2200 if (*tmp) 2201 return *tmp; 2202 2203 /* the class may provide a specific name */ 2204 if (dev->class && dev->class->devnode) 2205 *tmp = dev->class->devnode(dev, mode); 2206 if (*tmp) 2207 return *tmp; 2208 2209 /* return name without allocation, tmp == NULL */ 2210 if (strchr(dev_name(dev), '!') == NULL) 2211 return dev_name(dev); 2212 2213 /* replace '!' in the name with '/' */ 2214 s = kstrdup(dev_name(dev), GFP_KERNEL); 2215 if (!s) 2216 return NULL; 2217 strreplace(s, '!', '/'); 2218 return *tmp = s; 2219 } 2220 2221 /** 2222 * device_for_each_child - device child iterator. 2223 * @parent: parent struct device. 2224 * @fn: function to be called for each device. 2225 * @data: data for the callback. 2226 * 2227 * Iterate over @parent's child devices, and call @fn for each, 2228 * passing it @data. 2229 * 2230 * We check the return of @fn each time. If it returns anything 2231 * other than 0, we break out and return that value. 2232 */ 2233 int device_for_each_child(struct device *parent, void *data, 2234 int (*fn)(struct device *dev, void *data)) 2235 { 2236 struct klist_iter i; 2237 struct device *child; 2238 int error = 0; 2239 2240 if (!parent->p) 2241 return 0; 2242 2243 klist_iter_init(&parent->p->klist_children, &i); 2244 while (!error && (child = next_device(&i))) 2245 error = fn(child, data); 2246 klist_iter_exit(&i); 2247 return error; 2248 } 2249 EXPORT_SYMBOL_GPL(device_for_each_child); 2250 2251 /** 2252 * device_for_each_child_reverse - device child iterator in reversed order. 2253 * @parent: parent struct device. 2254 * @fn: function to be called for each device. 2255 * @data: data for the callback. 2256 * 2257 * Iterate over @parent's child devices, and call @fn for each, 2258 * passing it @data. 2259 * 2260 * We check the return of @fn each time. If it returns anything 2261 * other than 0, we break out and return that value. 2262 */ 2263 int device_for_each_child_reverse(struct device *parent, void *data, 2264 int (*fn)(struct device *dev, void *data)) 2265 { 2266 struct klist_iter i; 2267 struct device *child; 2268 int error = 0; 2269 2270 if (!parent->p) 2271 return 0; 2272 2273 klist_iter_init(&parent->p->klist_children, &i); 2274 while ((child = prev_device(&i)) && !error) 2275 error = fn(child, data); 2276 klist_iter_exit(&i); 2277 return error; 2278 } 2279 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 2280 2281 /** 2282 * device_find_child - device iterator for locating a particular device. 2283 * @parent: parent struct device 2284 * @match: Callback function to check device 2285 * @data: Data to pass to match function 2286 * 2287 * This is similar to the device_for_each_child() function above, but it 2288 * returns a reference to a device that is 'found' for later use, as 2289 * determined by the @match callback. 2290 * 2291 * The callback should return 0 if the device doesn't match and non-zero 2292 * if it does. If the callback returns non-zero and a reference to the 2293 * current device can be obtained, this function will return to the caller 2294 * and not iterate over any more devices. 2295 * 2296 * NOTE: you will need to drop the reference with put_device() after use. 2297 */ 2298 struct device *device_find_child(struct device *parent, void *data, 2299 int (*match)(struct device *dev, void *data)) 2300 { 2301 struct klist_iter i; 2302 struct device *child; 2303 2304 if (!parent) 2305 return NULL; 2306 2307 klist_iter_init(&parent->p->klist_children, &i); 2308 while ((child = next_device(&i))) 2309 if (match(child, data) && get_device(child)) 2310 break; 2311 klist_iter_exit(&i); 2312 return child; 2313 } 2314 EXPORT_SYMBOL_GPL(device_find_child); 2315 2316 int __init devices_init(void) 2317 { 2318 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 2319 if (!devices_kset) 2320 return -ENOMEM; 2321 dev_kobj = kobject_create_and_add("dev", NULL); 2322 if (!dev_kobj) 2323 goto dev_kobj_err; 2324 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 2325 if (!sysfs_dev_block_kobj) 2326 goto block_kobj_err; 2327 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 2328 if (!sysfs_dev_char_kobj) 2329 goto char_kobj_err; 2330 2331 return 0; 2332 2333 char_kobj_err: 2334 kobject_put(sysfs_dev_block_kobj); 2335 block_kobj_err: 2336 kobject_put(dev_kobj); 2337 dev_kobj_err: 2338 kset_unregister(devices_kset); 2339 return -ENOMEM; 2340 } 2341 2342 static int device_check_offline(struct device *dev, void *not_used) 2343 { 2344 int ret; 2345 2346 ret = device_for_each_child(dev, NULL, device_check_offline); 2347 if (ret) 2348 return ret; 2349 2350 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 2351 } 2352 2353 /** 2354 * device_offline - Prepare the device for hot-removal. 2355 * @dev: Device to be put offline. 2356 * 2357 * Execute the device bus type's .offline() callback, if present, to prepare 2358 * the device for a subsequent hot-removal. If that succeeds, the device must 2359 * not be used until either it is removed or its bus type's .online() callback 2360 * is executed. 2361 * 2362 * Call under device_hotplug_lock. 2363 */ 2364 int device_offline(struct device *dev) 2365 { 2366 int ret; 2367 2368 if (dev->offline_disabled) 2369 return -EPERM; 2370 2371 ret = device_for_each_child(dev, NULL, device_check_offline); 2372 if (ret) 2373 return ret; 2374 2375 device_lock(dev); 2376 if (device_supports_offline(dev)) { 2377 if (dev->offline) { 2378 ret = 1; 2379 } else { 2380 ret = dev->bus->offline(dev); 2381 if (!ret) { 2382 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2383 dev->offline = true; 2384 } 2385 } 2386 } 2387 device_unlock(dev); 2388 2389 return ret; 2390 } 2391 2392 /** 2393 * device_online - Put the device back online after successful device_offline(). 2394 * @dev: Device to be put back online. 2395 * 2396 * If device_offline() has been successfully executed for @dev, but the device 2397 * has not been removed subsequently, execute its bus type's .online() callback 2398 * to indicate that the device can be used again. 2399 * 2400 * Call under device_hotplug_lock. 2401 */ 2402 int device_online(struct device *dev) 2403 { 2404 int ret = 0; 2405 2406 device_lock(dev); 2407 if (device_supports_offline(dev)) { 2408 if (dev->offline) { 2409 ret = dev->bus->online(dev); 2410 if (!ret) { 2411 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2412 dev->offline = false; 2413 } 2414 } else { 2415 ret = 1; 2416 } 2417 } 2418 device_unlock(dev); 2419 2420 return ret; 2421 } 2422 2423 struct root_device { 2424 struct device dev; 2425 struct module *owner; 2426 }; 2427 2428 static inline struct root_device *to_root_device(struct device *d) 2429 { 2430 return container_of(d, struct root_device, dev); 2431 } 2432 2433 static void root_device_release(struct device *dev) 2434 { 2435 kfree(to_root_device(dev)); 2436 } 2437 2438 /** 2439 * __root_device_register - allocate and register a root device 2440 * @name: root device name 2441 * @owner: owner module of the root device, usually THIS_MODULE 2442 * 2443 * This function allocates a root device and registers it 2444 * using device_register(). In order to free the returned 2445 * device, use root_device_unregister(). 2446 * 2447 * Root devices are dummy devices which allow other devices 2448 * to be grouped under /sys/devices. Use this function to 2449 * allocate a root device and then use it as the parent of 2450 * any device which should appear under /sys/devices/{name} 2451 * 2452 * The /sys/devices/{name} directory will also contain a 2453 * 'module' symlink which points to the @owner directory 2454 * in sysfs. 2455 * 2456 * Returns &struct device pointer on success, or ERR_PTR() on error. 2457 * 2458 * Note: You probably want to use root_device_register(). 2459 */ 2460 struct device *__root_device_register(const char *name, struct module *owner) 2461 { 2462 struct root_device *root; 2463 int err = -ENOMEM; 2464 2465 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 2466 if (!root) 2467 return ERR_PTR(err); 2468 2469 err = dev_set_name(&root->dev, "%s", name); 2470 if (err) { 2471 kfree(root); 2472 return ERR_PTR(err); 2473 } 2474 2475 root->dev.release = root_device_release; 2476 2477 err = device_register(&root->dev); 2478 if (err) { 2479 put_device(&root->dev); 2480 return ERR_PTR(err); 2481 } 2482 2483 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 2484 if (owner) { 2485 struct module_kobject *mk = &owner->mkobj; 2486 2487 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 2488 if (err) { 2489 device_unregister(&root->dev); 2490 return ERR_PTR(err); 2491 } 2492 root->owner = owner; 2493 } 2494 #endif 2495 2496 return &root->dev; 2497 } 2498 EXPORT_SYMBOL_GPL(__root_device_register); 2499 2500 /** 2501 * root_device_unregister - unregister and free a root device 2502 * @dev: device going away 2503 * 2504 * This function unregisters and cleans up a device that was created by 2505 * root_device_register(). 2506 */ 2507 void root_device_unregister(struct device *dev) 2508 { 2509 struct root_device *root = to_root_device(dev); 2510 2511 if (root->owner) 2512 sysfs_remove_link(&root->dev.kobj, "module"); 2513 2514 device_unregister(dev); 2515 } 2516 EXPORT_SYMBOL_GPL(root_device_unregister); 2517 2518 2519 static void device_create_release(struct device *dev) 2520 { 2521 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2522 kfree(dev); 2523 } 2524 2525 static __printf(6, 0) struct device * 2526 device_create_groups_vargs(struct class *class, struct device *parent, 2527 dev_t devt, void *drvdata, 2528 const struct attribute_group **groups, 2529 const char *fmt, va_list args) 2530 { 2531 struct device *dev = NULL; 2532 int retval = -ENODEV; 2533 2534 if (class == NULL || IS_ERR(class)) 2535 goto error; 2536 2537 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2538 if (!dev) { 2539 retval = -ENOMEM; 2540 goto error; 2541 } 2542 2543 device_initialize(dev); 2544 dev->devt = devt; 2545 dev->class = class; 2546 dev->parent = parent; 2547 dev->groups = groups; 2548 dev->release = device_create_release; 2549 dev_set_drvdata(dev, drvdata); 2550 2551 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 2552 if (retval) 2553 goto error; 2554 2555 retval = device_add(dev); 2556 if (retval) 2557 goto error; 2558 2559 return dev; 2560 2561 error: 2562 put_device(dev); 2563 return ERR_PTR(retval); 2564 } 2565 2566 /** 2567 * device_create_vargs - creates a device and registers it with sysfs 2568 * @class: pointer to the struct class that this device should be registered to 2569 * @parent: pointer to the parent struct device of this new device, if any 2570 * @devt: the dev_t for the char device to be added 2571 * @drvdata: the data to be added to the device for callbacks 2572 * @fmt: string for the device's name 2573 * @args: va_list for the device's name 2574 * 2575 * This function can be used by char device classes. A struct device 2576 * will be created in sysfs, registered to the specified class. 2577 * 2578 * A "dev" file will be created, showing the dev_t for the device, if 2579 * the dev_t is not 0,0. 2580 * If a pointer to a parent struct device is passed in, the newly created 2581 * struct device will be a child of that device in sysfs. 2582 * The pointer to the struct device will be returned from the call. 2583 * Any further sysfs files that might be required can be created using this 2584 * pointer. 2585 * 2586 * Returns &struct device pointer on success, or ERR_PTR() on error. 2587 * 2588 * Note: the struct class passed to this function must have previously 2589 * been created with a call to class_create(). 2590 */ 2591 struct device *device_create_vargs(struct class *class, struct device *parent, 2592 dev_t devt, void *drvdata, const char *fmt, 2593 va_list args) 2594 { 2595 return device_create_groups_vargs(class, parent, devt, drvdata, NULL, 2596 fmt, args); 2597 } 2598 EXPORT_SYMBOL_GPL(device_create_vargs); 2599 2600 /** 2601 * device_create - creates a device and registers it with sysfs 2602 * @class: pointer to the struct class that this device should be registered to 2603 * @parent: pointer to the parent struct device of this new device, if any 2604 * @devt: the dev_t for the char device to be added 2605 * @drvdata: the data to be added to the device for callbacks 2606 * @fmt: string for the device's name 2607 * 2608 * This function can be used by char device classes. A struct device 2609 * will be created in sysfs, registered to the specified class. 2610 * 2611 * A "dev" file will be created, showing the dev_t for the device, if 2612 * the dev_t is not 0,0. 2613 * If a pointer to a parent struct device is passed in, the newly created 2614 * struct device will be a child of that device in sysfs. 2615 * The pointer to the struct device will be returned from the call. 2616 * Any further sysfs files that might be required can be created using this 2617 * pointer. 2618 * 2619 * Returns &struct device pointer on success, or ERR_PTR() on error. 2620 * 2621 * Note: the struct class passed to this function must have previously 2622 * been created with a call to class_create(). 2623 */ 2624 struct device *device_create(struct class *class, struct device *parent, 2625 dev_t devt, void *drvdata, const char *fmt, ...) 2626 { 2627 va_list vargs; 2628 struct device *dev; 2629 2630 va_start(vargs, fmt); 2631 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs); 2632 va_end(vargs); 2633 return dev; 2634 } 2635 EXPORT_SYMBOL_GPL(device_create); 2636 2637 /** 2638 * device_create_with_groups - creates a device and registers it with sysfs 2639 * @class: pointer to the struct class that this device should be registered to 2640 * @parent: pointer to the parent struct device of this new device, if any 2641 * @devt: the dev_t for the char device to be added 2642 * @drvdata: the data to be added to the device for callbacks 2643 * @groups: NULL-terminated list of attribute groups to be created 2644 * @fmt: string for the device's name 2645 * 2646 * This function can be used by char device classes. A struct device 2647 * will be created in sysfs, registered to the specified class. 2648 * Additional attributes specified in the groups parameter will also 2649 * be created automatically. 2650 * 2651 * A "dev" file will be created, showing the dev_t for the device, if 2652 * the dev_t is not 0,0. 2653 * If a pointer to a parent struct device is passed in, the newly created 2654 * struct device will be a child of that device in sysfs. 2655 * The pointer to the struct device will be returned from the call. 2656 * Any further sysfs files that might be required can be created using this 2657 * pointer. 2658 * 2659 * Returns &struct device pointer on success, or ERR_PTR() on error. 2660 * 2661 * Note: the struct class passed to this function must have previously 2662 * been created with a call to class_create(). 2663 */ 2664 struct device *device_create_with_groups(struct class *class, 2665 struct device *parent, dev_t devt, 2666 void *drvdata, 2667 const struct attribute_group **groups, 2668 const char *fmt, ...) 2669 { 2670 va_list vargs; 2671 struct device *dev; 2672 2673 va_start(vargs, fmt); 2674 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 2675 fmt, vargs); 2676 va_end(vargs); 2677 return dev; 2678 } 2679 EXPORT_SYMBOL_GPL(device_create_with_groups); 2680 2681 static int __match_devt(struct device *dev, const void *data) 2682 { 2683 const dev_t *devt = data; 2684 2685 return dev->devt == *devt; 2686 } 2687 2688 /** 2689 * device_destroy - removes a device that was created with device_create() 2690 * @class: pointer to the struct class that this device was registered with 2691 * @devt: the dev_t of the device that was previously registered 2692 * 2693 * This call unregisters and cleans up a device that was created with a 2694 * call to device_create(). 2695 */ 2696 void device_destroy(struct class *class, dev_t devt) 2697 { 2698 struct device *dev; 2699 2700 dev = class_find_device(class, NULL, &devt, __match_devt); 2701 if (dev) { 2702 put_device(dev); 2703 device_unregister(dev); 2704 } 2705 } 2706 EXPORT_SYMBOL_GPL(device_destroy); 2707 2708 /** 2709 * device_rename - renames a device 2710 * @dev: the pointer to the struct device to be renamed 2711 * @new_name: the new name of the device 2712 * 2713 * It is the responsibility of the caller to provide mutual 2714 * exclusion between two different calls of device_rename 2715 * on the same device to ensure that new_name is valid and 2716 * won't conflict with other devices. 2717 * 2718 * Note: Don't call this function. Currently, the networking layer calls this 2719 * function, but that will change. The following text from Kay Sievers offers 2720 * some insight: 2721 * 2722 * Renaming devices is racy at many levels, symlinks and other stuff are not 2723 * replaced atomically, and you get a "move" uevent, but it's not easy to 2724 * connect the event to the old and new device. Device nodes are not renamed at 2725 * all, there isn't even support for that in the kernel now. 2726 * 2727 * In the meantime, during renaming, your target name might be taken by another 2728 * driver, creating conflicts. Or the old name is taken directly after you 2729 * renamed it -- then you get events for the same DEVPATH, before you even see 2730 * the "move" event. It's just a mess, and nothing new should ever rely on 2731 * kernel device renaming. Besides that, it's not even implemented now for 2732 * other things than (driver-core wise very simple) network devices. 2733 * 2734 * We are currently about to change network renaming in udev to completely 2735 * disallow renaming of devices in the same namespace as the kernel uses, 2736 * because we can't solve the problems properly, that arise with swapping names 2737 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 2738 * be allowed to some other name than eth[0-9]*, for the aforementioned 2739 * reasons. 2740 * 2741 * Make up a "real" name in the driver before you register anything, or add 2742 * some other attributes for userspace to find the device, or use udev to add 2743 * symlinks -- but never rename kernel devices later, it's a complete mess. We 2744 * don't even want to get into that and try to implement the missing pieces in 2745 * the core. We really have other pieces to fix in the driver core mess. :) 2746 */ 2747 int device_rename(struct device *dev, const char *new_name) 2748 { 2749 struct kobject *kobj = &dev->kobj; 2750 char *old_device_name = NULL; 2751 int error; 2752 2753 dev = get_device(dev); 2754 if (!dev) 2755 return -EINVAL; 2756 2757 dev_dbg(dev, "renaming to %s\n", new_name); 2758 2759 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 2760 if (!old_device_name) { 2761 error = -ENOMEM; 2762 goto out; 2763 } 2764 2765 if (dev->class) { 2766 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 2767 kobj, old_device_name, 2768 new_name, kobject_namespace(kobj)); 2769 if (error) 2770 goto out; 2771 } 2772 2773 error = kobject_rename(kobj, new_name); 2774 if (error) 2775 goto out; 2776 2777 out: 2778 put_device(dev); 2779 2780 kfree(old_device_name); 2781 2782 return error; 2783 } 2784 EXPORT_SYMBOL_GPL(device_rename); 2785 2786 static int device_move_class_links(struct device *dev, 2787 struct device *old_parent, 2788 struct device *new_parent) 2789 { 2790 int error = 0; 2791 2792 if (old_parent) 2793 sysfs_remove_link(&dev->kobj, "device"); 2794 if (new_parent) 2795 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 2796 "device"); 2797 return error; 2798 } 2799 2800 /** 2801 * device_move - moves a device to a new parent 2802 * @dev: the pointer to the struct device to be moved 2803 * @new_parent: the new parent of the device (can be NULL) 2804 * @dpm_order: how to reorder the dpm_list 2805 */ 2806 int device_move(struct device *dev, struct device *new_parent, 2807 enum dpm_order dpm_order) 2808 { 2809 int error; 2810 struct device *old_parent; 2811 struct kobject *new_parent_kobj; 2812 2813 dev = get_device(dev); 2814 if (!dev) 2815 return -EINVAL; 2816 2817 device_pm_lock(); 2818 new_parent = get_device(new_parent); 2819 new_parent_kobj = get_device_parent(dev, new_parent); 2820 if (IS_ERR(new_parent_kobj)) { 2821 error = PTR_ERR(new_parent_kobj); 2822 put_device(new_parent); 2823 goto out; 2824 } 2825 2826 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 2827 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 2828 error = kobject_move(&dev->kobj, new_parent_kobj); 2829 if (error) { 2830 cleanup_glue_dir(dev, new_parent_kobj); 2831 put_device(new_parent); 2832 goto out; 2833 } 2834 old_parent = dev->parent; 2835 dev->parent = new_parent; 2836 if (old_parent) 2837 klist_remove(&dev->p->knode_parent); 2838 if (new_parent) { 2839 klist_add_tail(&dev->p->knode_parent, 2840 &new_parent->p->klist_children); 2841 set_dev_node(dev, dev_to_node(new_parent)); 2842 } 2843 2844 if (dev->class) { 2845 error = device_move_class_links(dev, old_parent, new_parent); 2846 if (error) { 2847 /* We ignore errors on cleanup since we're hosed anyway... */ 2848 device_move_class_links(dev, new_parent, old_parent); 2849 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 2850 if (new_parent) 2851 klist_remove(&dev->p->knode_parent); 2852 dev->parent = old_parent; 2853 if (old_parent) { 2854 klist_add_tail(&dev->p->knode_parent, 2855 &old_parent->p->klist_children); 2856 set_dev_node(dev, dev_to_node(old_parent)); 2857 } 2858 } 2859 cleanup_glue_dir(dev, new_parent_kobj); 2860 put_device(new_parent); 2861 goto out; 2862 } 2863 } 2864 switch (dpm_order) { 2865 case DPM_ORDER_NONE: 2866 break; 2867 case DPM_ORDER_DEV_AFTER_PARENT: 2868 device_pm_move_after(dev, new_parent); 2869 devices_kset_move_after(dev, new_parent); 2870 break; 2871 case DPM_ORDER_PARENT_BEFORE_DEV: 2872 device_pm_move_before(new_parent, dev); 2873 devices_kset_move_before(new_parent, dev); 2874 break; 2875 case DPM_ORDER_DEV_LAST: 2876 device_pm_move_last(dev); 2877 devices_kset_move_last(dev); 2878 break; 2879 } 2880 2881 put_device(old_parent); 2882 out: 2883 device_pm_unlock(); 2884 put_device(dev); 2885 return error; 2886 } 2887 EXPORT_SYMBOL_GPL(device_move); 2888 2889 /** 2890 * device_shutdown - call ->shutdown() on each device to shutdown. 2891 */ 2892 void device_shutdown(void) 2893 { 2894 struct device *dev, *parent; 2895 2896 wait_for_device_probe(); 2897 device_block_probing(); 2898 2899 spin_lock(&devices_kset->list_lock); 2900 /* 2901 * Walk the devices list backward, shutting down each in turn. 2902 * Beware that device unplug events may also start pulling 2903 * devices offline, even as the system is shutting down. 2904 */ 2905 while (!list_empty(&devices_kset->list)) { 2906 dev = list_entry(devices_kset->list.prev, struct device, 2907 kobj.entry); 2908 2909 /* 2910 * hold reference count of device's parent to 2911 * prevent it from being freed because parent's 2912 * lock is to be held 2913 */ 2914 parent = get_device(dev->parent); 2915 get_device(dev); 2916 /* 2917 * Make sure the device is off the kset list, in the 2918 * event that dev->*->shutdown() doesn't remove it. 2919 */ 2920 list_del_init(&dev->kobj.entry); 2921 spin_unlock(&devices_kset->list_lock); 2922 2923 /* hold lock to avoid race with probe/release */ 2924 if (parent) 2925 device_lock(parent); 2926 device_lock(dev); 2927 2928 /* Don't allow any more runtime suspends */ 2929 pm_runtime_get_noresume(dev); 2930 pm_runtime_barrier(dev); 2931 2932 if (dev->class && dev->class->shutdown_pre) { 2933 if (initcall_debug) 2934 dev_info(dev, "shutdown_pre\n"); 2935 dev->class->shutdown_pre(dev); 2936 } 2937 if (dev->bus && dev->bus->shutdown) { 2938 if (initcall_debug) 2939 dev_info(dev, "shutdown\n"); 2940 dev->bus->shutdown(dev); 2941 } else if (dev->driver && dev->driver->shutdown) { 2942 if (initcall_debug) 2943 dev_info(dev, "shutdown\n"); 2944 dev->driver->shutdown(dev); 2945 } 2946 2947 device_unlock(dev); 2948 if (parent) 2949 device_unlock(parent); 2950 2951 put_device(dev); 2952 put_device(parent); 2953 2954 spin_lock(&devices_kset->list_lock); 2955 } 2956 spin_unlock(&devices_kset->list_lock); 2957 } 2958 2959 /* 2960 * Device logging functions 2961 */ 2962 2963 #ifdef CONFIG_PRINTK 2964 static int 2965 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen) 2966 { 2967 const char *subsys; 2968 size_t pos = 0; 2969 2970 if (dev->class) 2971 subsys = dev->class->name; 2972 else if (dev->bus) 2973 subsys = dev->bus->name; 2974 else 2975 return 0; 2976 2977 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys); 2978 if (pos >= hdrlen) 2979 goto overflow; 2980 2981 /* 2982 * Add device identifier DEVICE=: 2983 * b12:8 block dev_t 2984 * c127:3 char dev_t 2985 * n8 netdev ifindex 2986 * +sound:card0 subsystem:devname 2987 */ 2988 if (MAJOR(dev->devt)) { 2989 char c; 2990 2991 if (strcmp(subsys, "block") == 0) 2992 c = 'b'; 2993 else 2994 c = 'c'; 2995 pos++; 2996 pos += snprintf(hdr + pos, hdrlen - pos, 2997 "DEVICE=%c%u:%u", 2998 c, MAJOR(dev->devt), MINOR(dev->devt)); 2999 } else if (strcmp(subsys, "net") == 0) { 3000 struct net_device *net = to_net_dev(dev); 3001 3002 pos++; 3003 pos += snprintf(hdr + pos, hdrlen - pos, 3004 "DEVICE=n%u", net->ifindex); 3005 } else { 3006 pos++; 3007 pos += snprintf(hdr + pos, hdrlen - pos, 3008 "DEVICE=+%s:%s", subsys, dev_name(dev)); 3009 } 3010 3011 if (pos >= hdrlen) 3012 goto overflow; 3013 3014 return pos; 3015 3016 overflow: 3017 dev_WARN(dev, "device/subsystem name too long"); 3018 return 0; 3019 } 3020 3021 int dev_vprintk_emit(int level, const struct device *dev, 3022 const char *fmt, va_list args) 3023 { 3024 char hdr[128]; 3025 size_t hdrlen; 3026 3027 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr)); 3028 3029 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args); 3030 } 3031 EXPORT_SYMBOL(dev_vprintk_emit); 3032 3033 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 3034 { 3035 va_list args; 3036 int r; 3037 3038 va_start(args, fmt); 3039 3040 r = dev_vprintk_emit(level, dev, fmt, args); 3041 3042 va_end(args); 3043 3044 return r; 3045 } 3046 EXPORT_SYMBOL(dev_printk_emit); 3047 3048 static void __dev_printk(const char *level, const struct device *dev, 3049 struct va_format *vaf) 3050 { 3051 if (dev) 3052 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 3053 dev_driver_string(dev), dev_name(dev), vaf); 3054 else 3055 printk("%s(NULL device *): %pV", level, vaf); 3056 } 3057 3058 void dev_printk(const char *level, const struct device *dev, 3059 const char *fmt, ...) 3060 { 3061 struct va_format vaf; 3062 va_list args; 3063 3064 va_start(args, fmt); 3065 3066 vaf.fmt = fmt; 3067 vaf.va = &args; 3068 3069 __dev_printk(level, dev, &vaf); 3070 3071 va_end(args); 3072 } 3073 EXPORT_SYMBOL(dev_printk); 3074 3075 #define define_dev_printk_level(func, kern_level) \ 3076 void func(const struct device *dev, const char *fmt, ...) \ 3077 { \ 3078 struct va_format vaf; \ 3079 va_list args; \ 3080 \ 3081 va_start(args, fmt); \ 3082 \ 3083 vaf.fmt = fmt; \ 3084 vaf.va = &args; \ 3085 \ 3086 __dev_printk(kern_level, dev, &vaf); \ 3087 \ 3088 va_end(args); \ 3089 } \ 3090 EXPORT_SYMBOL(func); 3091 3092 define_dev_printk_level(_dev_emerg, KERN_EMERG); 3093 define_dev_printk_level(_dev_alert, KERN_ALERT); 3094 define_dev_printk_level(_dev_crit, KERN_CRIT); 3095 define_dev_printk_level(_dev_err, KERN_ERR); 3096 define_dev_printk_level(_dev_warn, KERN_WARNING); 3097 define_dev_printk_level(_dev_notice, KERN_NOTICE); 3098 define_dev_printk_level(_dev_info, KERN_INFO); 3099 3100 #endif 3101 3102 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 3103 { 3104 return fwnode && !IS_ERR(fwnode->secondary); 3105 } 3106 3107 /** 3108 * set_primary_fwnode - Change the primary firmware node of a given device. 3109 * @dev: Device to handle. 3110 * @fwnode: New primary firmware node of the device. 3111 * 3112 * Set the device's firmware node pointer to @fwnode, but if a secondary 3113 * firmware node of the device is present, preserve it. 3114 */ 3115 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 3116 { 3117 if (fwnode) { 3118 struct fwnode_handle *fn = dev->fwnode; 3119 3120 if (fwnode_is_primary(fn)) 3121 fn = fn->secondary; 3122 3123 if (fn) { 3124 WARN_ON(fwnode->secondary); 3125 fwnode->secondary = fn; 3126 } 3127 dev->fwnode = fwnode; 3128 } else { 3129 dev->fwnode = fwnode_is_primary(dev->fwnode) ? 3130 dev->fwnode->secondary : NULL; 3131 } 3132 } 3133 EXPORT_SYMBOL_GPL(set_primary_fwnode); 3134 3135 /** 3136 * set_secondary_fwnode - Change the secondary firmware node of a given device. 3137 * @dev: Device to handle. 3138 * @fwnode: New secondary firmware node of the device. 3139 * 3140 * If a primary firmware node of the device is present, set its secondary 3141 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 3142 * @fwnode. 3143 */ 3144 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 3145 { 3146 if (fwnode) 3147 fwnode->secondary = ERR_PTR(-ENODEV); 3148 3149 if (fwnode_is_primary(dev->fwnode)) 3150 dev->fwnode->secondary = fwnode; 3151 else 3152 dev->fwnode = fwnode; 3153 } 3154 3155 /** 3156 * device_set_of_node_from_dev - reuse device-tree node of another device 3157 * @dev: device whose device-tree node is being set 3158 * @dev2: device whose device-tree node is being reused 3159 * 3160 * Takes another reference to the new device-tree node after first dropping 3161 * any reference held to the old node. 3162 */ 3163 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 3164 { 3165 of_node_put(dev->of_node); 3166 dev->of_node = of_node_get(dev2->of_node); 3167 dev->of_node_reused = true; 3168 } 3169 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 3170