xref: /openbmc/linux/drivers/base/core.c (revision 50dc9a85)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/swiotlb.h>
31 #include <linux/sysfs.h>
32 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
33 
34 #include "base.h"
35 #include "power/power.h"
36 
37 #ifdef CONFIG_SYSFS_DEPRECATED
38 #ifdef CONFIG_SYSFS_DEPRECATED_V2
39 long sysfs_deprecated = 1;
40 #else
41 long sysfs_deprecated = 0;
42 #endif
43 static int __init sysfs_deprecated_setup(char *arg)
44 {
45 	return kstrtol(arg, 10, &sysfs_deprecated);
46 }
47 early_param("sysfs.deprecated", sysfs_deprecated_setup);
48 #endif
49 
50 /* Device links support. */
51 static LIST_HEAD(deferred_sync);
52 static unsigned int defer_sync_state_count = 1;
53 static DEFINE_MUTEX(fwnode_link_lock);
54 static bool fw_devlink_is_permissive(void);
55 static bool fw_devlink_drv_reg_done;
56 
57 /**
58  * fwnode_link_add - Create a link between two fwnode_handles.
59  * @con: Consumer end of the link.
60  * @sup: Supplier end of the link.
61  *
62  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
63  * represents the detail that the firmware lists @sup fwnode as supplying a
64  * resource to @con.
65  *
66  * The driver core will use the fwnode link to create a device link between the
67  * two device objects corresponding to @con and @sup when they are created. The
68  * driver core will automatically delete the fwnode link between @con and @sup
69  * after doing that.
70  *
71  * Attempts to create duplicate links between the same pair of fwnode handles
72  * are ignored and there is no reference counting.
73  */
74 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
75 {
76 	struct fwnode_link *link;
77 	int ret = 0;
78 
79 	mutex_lock(&fwnode_link_lock);
80 
81 	list_for_each_entry(link, &sup->consumers, s_hook)
82 		if (link->consumer == con)
83 			goto out;
84 
85 	link = kzalloc(sizeof(*link), GFP_KERNEL);
86 	if (!link) {
87 		ret = -ENOMEM;
88 		goto out;
89 	}
90 
91 	link->supplier = sup;
92 	INIT_LIST_HEAD(&link->s_hook);
93 	link->consumer = con;
94 	INIT_LIST_HEAD(&link->c_hook);
95 
96 	list_add(&link->s_hook, &sup->consumers);
97 	list_add(&link->c_hook, &con->suppliers);
98 	pr_debug("%pfwP Linked as a fwnode consumer to %pfwP\n",
99 		 con, sup);
100 out:
101 	mutex_unlock(&fwnode_link_lock);
102 
103 	return ret;
104 }
105 
106 /**
107  * __fwnode_link_del - Delete a link between two fwnode_handles.
108  * @link: the fwnode_link to be deleted
109  *
110  * The fwnode_link_lock needs to be held when this function is called.
111  */
112 static void __fwnode_link_del(struct fwnode_link *link)
113 {
114 	pr_debug("%pfwP Dropping the fwnode link to %pfwP\n",
115 		 link->consumer, link->supplier);
116 	list_del(&link->s_hook);
117 	list_del(&link->c_hook);
118 	kfree(link);
119 }
120 
121 /**
122  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
123  * @fwnode: fwnode whose supplier links need to be deleted
124  *
125  * Deletes all supplier links connecting directly to @fwnode.
126  */
127 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
128 {
129 	struct fwnode_link *link, *tmp;
130 
131 	mutex_lock(&fwnode_link_lock);
132 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
133 		__fwnode_link_del(link);
134 	mutex_unlock(&fwnode_link_lock);
135 }
136 
137 /**
138  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
139  * @fwnode: fwnode whose consumer links need to be deleted
140  *
141  * Deletes all consumer links connecting directly to @fwnode.
142  */
143 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
144 {
145 	struct fwnode_link *link, *tmp;
146 
147 	mutex_lock(&fwnode_link_lock);
148 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
149 		__fwnode_link_del(link);
150 	mutex_unlock(&fwnode_link_lock);
151 }
152 
153 /**
154  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
155  * @fwnode: fwnode whose links needs to be deleted
156  *
157  * Deletes all links connecting directly to a fwnode.
158  */
159 void fwnode_links_purge(struct fwnode_handle *fwnode)
160 {
161 	fwnode_links_purge_suppliers(fwnode);
162 	fwnode_links_purge_consumers(fwnode);
163 }
164 
165 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
166 {
167 	struct fwnode_handle *child;
168 
169 	/* Don't purge consumer links of an added child */
170 	if (fwnode->dev)
171 		return;
172 
173 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
174 	fwnode_links_purge_consumers(fwnode);
175 
176 	fwnode_for_each_available_child_node(fwnode, child)
177 		fw_devlink_purge_absent_suppliers(child);
178 }
179 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
180 
181 #ifdef CONFIG_SRCU
182 static DEFINE_MUTEX(device_links_lock);
183 DEFINE_STATIC_SRCU(device_links_srcu);
184 
185 static inline void device_links_write_lock(void)
186 {
187 	mutex_lock(&device_links_lock);
188 }
189 
190 static inline void device_links_write_unlock(void)
191 {
192 	mutex_unlock(&device_links_lock);
193 }
194 
195 int device_links_read_lock(void) __acquires(&device_links_srcu)
196 {
197 	return srcu_read_lock(&device_links_srcu);
198 }
199 
200 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
201 {
202 	srcu_read_unlock(&device_links_srcu, idx);
203 }
204 
205 int device_links_read_lock_held(void)
206 {
207 	return srcu_read_lock_held(&device_links_srcu);
208 }
209 
210 static void device_link_synchronize_removal(void)
211 {
212 	synchronize_srcu(&device_links_srcu);
213 }
214 
215 static void device_link_remove_from_lists(struct device_link *link)
216 {
217 	list_del_rcu(&link->s_node);
218 	list_del_rcu(&link->c_node);
219 }
220 #else /* !CONFIG_SRCU */
221 static DECLARE_RWSEM(device_links_lock);
222 
223 static inline void device_links_write_lock(void)
224 {
225 	down_write(&device_links_lock);
226 }
227 
228 static inline void device_links_write_unlock(void)
229 {
230 	up_write(&device_links_lock);
231 }
232 
233 int device_links_read_lock(void)
234 {
235 	down_read(&device_links_lock);
236 	return 0;
237 }
238 
239 void device_links_read_unlock(int not_used)
240 {
241 	up_read(&device_links_lock);
242 }
243 
244 #ifdef CONFIG_DEBUG_LOCK_ALLOC
245 int device_links_read_lock_held(void)
246 {
247 	return lockdep_is_held(&device_links_lock);
248 }
249 #endif
250 
251 static inline void device_link_synchronize_removal(void)
252 {
253 }
254 
255 static void device_link_remove_from_lists(struct device_link *link)
256 {
257 	list_del(&link->s_node);
258 	list_del(&link->c_node);
259 }
260 #endif /* !CONFIG_SRCU */
261 
262 static bool device_is_ancestor(struct device *dev, struct device *target)
263 {
264 	while (target->parent) {
265 		target = target->parent;
266 		if (dev == target)
267 			return true;
268 	}
269 	return false;
270 }
271 
272 /**
273  * device_is_dependent - Check if one device depends on another one
274  * @dev: Device to check dependencies for.
275  * @target: Device to check against.
276  *
277  * Check if @target depends on @dev or any device dependent on it (its child or
278  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
279  */
280 int device_is_dependent(struct device *dev, void *target)
281 {
282 	struct device_link *link;
283 	int ret;
284 
285 	/*
286 	 * The "ancestors" check is needed to catch the case when the target
287 	 * device has not been completely initialized yet and it is still
288 	 * missing from the list of children of its parent device.
289 	 */
290 	if (dev == target || device_is_ancestor(dev, target))
291 		return 1;
292 
293 	ret = device_for_each_child(dev, target, device_is_dependent);
294 	if (ret)
295 		return ret;
296 
297 	list_for_each_entry(link, &dev->links.consumers, s_node) {
298 		if ((link->flags & ~DL_FLAG_INFERRED) ==
299 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
300 			continue;
301 
302 		if (link->consumer == target)
303 			return 1;
304 
305 		ret = device_is_dependent(link->consumer, target);
306 		if (ret)
307 			break;
308 	}
309 	return ret;
310 }
311 
312 static void device_link_init_status(struct device_link *link,
313 				    struct device *consumer,
314 				    struct device *supplier)
315 {
316 	switch (supplier->links.status) {
317 	case DL_DEV_PROBING:
318 		switch (consumer->links.status) {
319 		case DL_DEV_PROBING:
320 			/*
321 			 * A consumer driver can create a link to a supplier
322 			 * that has not completed its probing yet as long as it
323 			 * knows that the supplier is already functional (for
324 			 * example, it has just acquired some resources from the
325 			 * supplier).
326 			 */
327 			link->status = DL_STATE_CONSUMER_PROBE;
328 			break;
329 		default:
330 			link->status = DL_STATE_DORMANT;
331 			break;
332 		}
333 		break;
334 	case DL_DEV_DRIVER_BOUND:
335 		switch (consumer->links.status) {
336 		case DL_DEV_PROBING:
337 			link->status = DL_STATE_CONSUMER_PROBE;
338 			break;
339 		case DL_DEV_DRIVER_BOUND:
340 			link->status = DL_STATE_ACTIVE;
341 			break;
342 		default:
343 			link->status = DL_STATE_AVAILABLE;
344 			break;
345 		}
346 		break;
347 	case DL_DEV_UNBINDING:
348 		link->status = DL_STATE_SUPPLIER_UNBIND;
349 		break;
350 	default:
351 		link->status = DL_STATE_DORMANT;
352 		break;
353 	}
354 }
355 
356 static int device_reorder_to_tail(struct device *dev, void *not_used)
357 {
358 	struct device_link *link;
359 
360 	/*
361 	 * Devices that have not been registered yet will be put to the ends
362 	 * of the lists during the registration, so skip them here.
363 	 */
364 	if (device_is_registered(dev))
365 		devices_kset_move_last(dev);
366 
367 	if (device_pm_initialized(dev))
368 		device_pm_move_last(dev);
369 
370 	device_for_each_child(dev, NULL, device_reorder_to_tail);
371 	list_for_each_entry(link, &dev->links.consumers, s_node) {
372 		if ((link->flags & ~DL_FLAG_INFERRED) ==
373 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
374 			continue;
375 		device_reorder_to_tail(link->consumer, NULL);
376 	}
377 
378 	return 0;
379 }
380 
381 /**
382  * device_pm_move_to_tail - Move set of devices to the end of device lists
383  * @dev: Device to move
384  *
385  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
386  *
387  * It moves the @dev along with all of its children and all of its consumers
388  * to the ends of the device_kset and dpm_list, recursively.
389  */
390 void device_pm_move_to_tail(struct device *dev)
391 {
392 	int idx;
393 
394 	idx = device_links_read_lock();
395 	device_pm_lock();
396 	device_reorder_to_tail(dev, NULL);
397 	device_pm_unlock();
398 	device_links_read_unlock(idx);
399 }
400 
401 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
402 
403 static ssize_t status_show(struct device *dev,
404 			   struct device_attribute *attr, char *buf)
405 {
406 	const char *output;
407 
408 	switch (to_devlink(dev)->status) {
409 	case DL_STATE_NONE:
410 		output = "not tracked";
411 		break;
412 	case DL_STATE_DORMANT:
413 		output = "dormant";
414 		break;
415 	case DL_STATE_AVAILABLE:
416 		output = "available";
417 		break;
418 	case DL_STATE_CONSUMER_PROBE:
419 		output = "consumer probing";
420 		break;
421 	case DL_STATE_ACTIVE:
422 		output = "active";
423 		break;
424 	case DL_STATE_SUPPLIER_UNBIND:
425 		output = "supplier unbinding";
426 		break;
427 	default:
428 		output = "unknown";
429 		break;
430 	}
431 
432 	return sysfs_emit(buf, "%s\n", output);
433 }
434 static DEVICE_ATTR_RO(status);
435 
436 static ssize_t auto_remove_on_show(struct device *dev,
437 				   struct device_attribute *attr, char *buf)
438 {
439 	struct device_link *link = to_devlink(dev);
440 	const char *output;
441 
442 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
443 		output = "supplier unbind";
444 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
445 		output = "consumer unbind";
446 	else
447 		output = "never";
448 
449 	return sysfs_emit(buf, "%s\n", output);
450 }
451 static DEVICE_ATTR_RO(auto_remove_on);
452 
453 static ssize_t runtime_pm_show(struct device *dev,
454 			       struct device_attribute *attr, char *buf)
455 {
456 	struct device_link *link = to_devlink(dev);
457 
458 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
459 }
460 static DEVICE_ATTR_RO(runtime_pm);
461 
462 static ssize_t sync_state_only_show(struct device *dev,
463 				    struct device_attribute *attr, char *buf)
464 {
465 	struct device_link *link = to_devlink(dev);
466 
467 	return sysfs_emit(buf, "%d\n",
468 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
469 }
470 static DEVICE_ATTR_RO(sync_state_only);
471 
472 static struct attribute *devlink_attrs[] = {
473 	&dev_attr_status.attr,
474 	&dev_attr_auto_remove_on.attr,
475 	&dev_attr_runtime_pm.attr,
476 	&dev_attr_sync_state_only.attr,
477 	NULL,
478 };
479 ATTRIBUTE_GROUPS(devlink);
480 
481 static void device_link_release_fn(struct work_struct *work)
482 {
483 	struct device_link *link = container_of(work, struct device_link, rm_work);
484 
485 	/* Ensure that all references to the link object have been dropped. */
486 	device_link_synchronize_removal();
487 
488 	while (refcount_dec_not_one(&link->rpm_active))
489 		pm_runtime_put(link->supplier);
490 
491 	put_device(link->consumer);
492 	put_device(link->supplier);
493 	kfree(link);
494 }
495 
496 static void devlink_dev_release(struct device *dev)
497 {
498 	struct device_link *link = to_devlink(dev);
499 
500 	INIT_WORK(&link->rm_work, device_link_release_fn);
501 	/*
502 	 * It may take a while to complete this work because of the SRCU
503 	 * synchronization in device_link_release_fn() and if the consumer or
504 	 * supplier devices get deleted when it runs, so put it into the "long"
505 	 * workqueue.
506 	 */
507 	queue_work(system_long_wq, &link->rm_work);
508 }
509 
510 static struct class devlink_class = {
511 	.name = "devlink",
512 	.owner = THIS_MODULE,
513 	.dev_groups = devlink_groups,
514 	.dev_release = devlink_dev_release,
515 };
516 
517 static int devlink_add_symlinks(struct device *dev,
518 				struct class_interface *class_intf)
519 {
520 	int ret;
521 	size_t len;
522 	struct device_link *link = to_devlink(dev);
523 	struct device *sup = link->supplier;
524 	struct device *con = link->consumer;
525 	char *buf;
526 
527 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
528 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
529 	len += strlen(":");
530 	len += strlen("supplier:") + 1;
531 	buf = kzalloc(len, GFP_KERNEL);
532 	if (!buf)
533 		return -ENOMEM;
534 
535 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
536 	if (ret)
537 		goto out;
538 
539 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
540 	if (ret)
541 		goto err_con;
542 
543 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
544 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
545 	if (ret)
546 		goto err_con_dev;
547 
548 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
549 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
550 	if (ret)
551 		goto err_sup_dev;
552 
553 	goto out;
554 
555 err_sup_dev:
556 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
557 	sysfs_remove_link(&sup->kobj, buf);
558 err_con_dev:
559 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
560 err_con:
561 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
562 out:
563 	kfree(buf);
564 	return ret;
565 }
566 
567 static void devlink_remove_symlinks(struct device *dev,
568 				   struct class_interface *class_intf)
569 {
570 	struct device_link *link = to_devlink(dev);
571 	size_t len;
572 	struct device *sup = link->supplier;
573 	struct device *con = link->consumer;
574 	char *buf;
575 
576 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
577 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
578 
579 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
580 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
581 	len += strlen(":");
582 	len += strlen("supplier:") + 1;
583 	buf = kzalloc(len, GFP_KERNEL);
584 	if (!buf) {
585 		WARN(1, "Unable to properly free device link symlinks!\n");
586 		return;
587 	}
588 
589 	if (device_is_registered(con)) {
590 		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
591 		sysfs_remove_link(&con->kobj, buf);
592 	}
593 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
594 	sysfs_remove_link(&sup->kobj, buf);
595 	kfree(buf);
596 }
597 
598 static struct class_interface devlink_class_intf = {
599 	.class = &devlink_class,
600 	.add_dev = devlink_add_symlinks,
601 	.remove_dev = devlink_remove_symlinks,
602 };
603 
604 static int __init devlink_class_init(void)
605 {
606 	int ret;
607 
608 	ret = class_register(&devlink_class);
609 	if (ret)
610 		return ret;
611 
612 	ret = class_interface_register(&devlink_class_intf);
613 	if (ret)
614 		class_unregister(&devlink_class);
615 
616 	return ret;
617 }
618 postcore_initcall(devlink_class_init);
619 
620 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
621 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
622 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
623 			       DL_FLAG_SYNC_STATE_ONLY | \
624 			       DL_FLAG_INFERRED)
625 
626 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
627 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
628 
629 /**
630  * device_link_add - Create a link between two devices.
631  * @consumer: Consumer end of the link.
632  * @supplier: Supplier end of the link.
633  * @flags: Link flags.
634  *
635  * The caller is responsible for the proper synchronization of the link creation
636  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
637  * runtime PM framework to take the link into account.  Second, if the
638  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
639  * be forced into the active meta state and reference-counted upon the creation
640  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
641  * ignored.
642  *
643  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
644  * expected to release the link returned by it directly with the help of either
645  * device_link_del() or device_link_remove().
646  *
647  * If that flag is not set, however, the caller of this function is handing the
648  * management of the link over to the driver core entirely and its return value
649  * can only be used to check whether or not the link is present.  In that case,
650  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
651  * flags can be used to indicate to the driver core when the link can be safely
652  * deleted.  Namely, setting one of them in @flags indicates to the driver core
653  * that the link is not going to be used (by the given caller of this function)
654  * after unbinding the consumer or supplier driver, respectively, from its
655  * device, so the link can be deleted at that point.  If none of them is set,
656  * the link will be maintained until one of the devices pointed to by it (either
657  * the consumer or the supplier) is unregistered.
658  *
659  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
660  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
661  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
662  * be used to request the driver core to automatically probe for a consumer
663  * driver after successfully binding a driver to the supplier device.
664  *
665  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
666  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
667  * the same time is invalid and will cause NULL to be returned upfront.
668  * However, if a device link between the given @consumer and @supplier pair
669  * exists already when this function is called for them, the existing link will
670  * be returned regardless of its current type and status (the link's flags may
671  * be modified then).  The caller of this function is then expected to treat
672  * the link as though it has just been created, so (in particular) if
673  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
674  * explicitly when not needed any more (as stated above).
675  *
676  * A side effect of the link creation is re-ordering of dpm_list and the
677  * devices_kset list by moving the consumer device and all devices depending
678  * on it to the ends of these lists (that does not happen to devices that have
679  * not been registered when this function is called).
680  *
681  * The supplier device is required to be registered when this function is called
682  * and NULL will be returned if that is not the case.  The consumer device need
683  * not be registered, however.
684  */
685 struct device_link *device_link_add(struct device *consumer,
686 				    struct device *supplier, u32 flags)
687 {
688 	struct device_link *link;
689 
690 	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
691 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
692 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
693 	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
694 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
695 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
696 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
697 		return NULL;
698 
699 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
700 		if (pm_runtime_get_sync(supplier) < 0) {
701 			pm_runtime_put_noidle(supplier);
702 			return NULL;
703 		}
704 	}
705 
706 	if (!(flags & DL_FLAG_STATELESS))
707 		flags |= DL_FLAG_MANAGED;
708 
709 	device_links_write_lock();
710 	device_pm_lock();
711 
712 	/*
713 	 * If the supplier has not been fully registered yet or there is a
714 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
715 	 * the supplier already in the graph, return NULL. If the link is a
716 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
717 	 * because it only affects sync_state() callbacks.
718 	 */
719 	if (!device_pm_initialized(supplier)
720 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
721 		  device_is_dependent(consumer, supplier))) {
722 		link = NULL;
723 		goto out;
724 	}
725 
726 	/*
727 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
728 	 * So, only create it if the consumer hasn't probed yet.
729 	 */
730 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
731 	    consumer->links.status != DL_DEV_NO_DRIVER &&
732 	    consumer->links.status != DL_DEV_PROBING) {
733 		link = NULL;
734 		goto out;
735 	}
736 
737 	/*
738 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
739 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
740 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
741 	 */
742 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
743 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
744 
745 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
746 		if (link->consumer != consumer)
747 			continue;
748 
749 		if (link->flags & DL_FLAG_INFERRED &&
750 		    !(flags & DL_FLAG_INFERRED))
751 			link->flags &= ~DL_FLAG_INFERRED;
752 
753 		if (flags & DL_FLAG_PM_RUNTIME) {
754 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
755 				pm_runtime_new_link(consumer);
756 				link->flags |= DL_FLAG_PM_RUNTIME;
757 			}
758 			if (flags & DL_FLAG_RPM_ACTIVE)
759 				refcount_inc(&link->rpm_active);
760 		}
761 
762 		if (flags & DL_FLAG_STATELESS) {
763 			kref_get(&link->kref);
764 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
765 			    !(link->flags & DL_FLAG_STATELESS)) {
766 				link->flags |= DL_FLAG_STATELESS;
767 				goto reorder;
768 			} else {
769 				link->flags |= DL_FLAG_STATELESS;
770 				goto out;
771 			}
772 		}
773 
774 		/*
775 		 * If the life time of the link following from the new flags is
776 		 * longer than indicated by the flags of the existing link,
777 		 * update the existing link to stay around longer.
778 		 */
779 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
780 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
781 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
782 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
783 			}
784 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
785 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
786 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
787 		}
788 		if (!(link->flags & DL_FLAG_MANAGED)) {
789 			kref_get(&link->kref);
790 			link->flags |= DL_FLAG_MANAGED;
791 			device_link_init_status(link, consumer, supplier);
792 		}
793 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
794 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
795 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
796 			goto reorder;
797 		}
798 
799 		goto out;
800 	}
801 
802 	link = kzalloc(sizeof(*link), GFP_KERNEL);
803 	if (!link)
804 		goto out;
805 
806 	refcount_set(&link->rpm_active, 1);
807 
808 	get_device(supplier);
809 	link->supplier = supplier;
810 	INIT_LIST_HEAD(&link->s_node);
811 	get_device(consumer);
812 	link->consumer = consumer;
813 	INIT_LIST_HEAD(&link->c_node);
814 	link->flags = flags;
815 	kref_init(&link->kref);
816 
817 	link->link_dev.class = &devlink_class;
818 	device_set_pm_not_required(&link->link_dev);
819 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
820 		     dev_bus_name(supplier), dev_name(supplier),
821 		     dev_bus_name(consumer), dev_name(consumer));
822 	if (device_register(&link->link_dev)) {
823 		put_device(consumer);
824 		put_device(supplier);
825 		kfree(link);
826 		link = NULL;
827 		goto out;
828 	}
829 
830 	if (flags & DL_FLAG_PM_RUNTIME) {
831 		if (flags & DL_FLAG_RPM_ACTIVE)
832 			refcount_inc(&link->rpm_active);
833 
834 		pm_runtime_new_link(consumer);
835 	}
836 
837 	/* Determine the initial link state. */
838 	if (flags & DL_FLAG_STATELESS)
839 		link->status = DL_STATE_NONE;
840 	else
841 		device_link_init_status(link, consumer, supplier);
842 
843 	/*
844 	 * Some callers expect the link creation during consumer driver probe to
845 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
846 	 */
847 	if (link->status == DL_STATE_CONSUMER_PROBE &&
848 	    flags & DL_FLAG_PM_RUNTIME)
849 		pm_runtime_resume(supplier);
850 
851 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
852 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
853 
854 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
855 		dev_dbg(consumer,
856 			"Linked as a sync state only consumer to %s\n",
857 			dev_name(supplier));
858 		goto out;
859 	}
860 
861 reorder:
862 	/*
863 	 * Move the consumer and all of the devices depending on it to the end
864 	 * of dpm_list and the devices_kset list.
865 	 *
866 	 * It is necessary to hold dpm_list locked throughout all that or else
867 	 * we may end up suspending with a wrong ordering of it.
868 	 */
869 	device_reorder_to_tail(consumer, NULL);
870 
871 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
872 
873 out:
874 	device_pm_unlock();
875 	device_links_write_unlock();
876 
877 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
878 		pm_runtime_put(supplier);
879 
880 	return link;
881 }
882 EXPORT_SYMBOL_GPL(device_link_add);
883 
884 static void __device_link_del(struct kref *kref)
885 {
886 	struct device_link *link = container_of(kref, struct device_link, kref);
887 
888 	dev_dbg(link->consumer, "Dropping the link to %s\n",
889 		dev_name(link->supplier));
890 
891 	pm_runtime_drop_link(link);
892 
893 	device_link_remove_from_lists(link);
894 	device_unregister(&link->link_dev);
895 }
896 
897 static void device_link_put_kref(struct device_link *link)
898 {
899 	if (link->flags & DL_FLAG_STATELESS)
900 		kref_put(&link->kref, __device_link_del);
901 	else if (!device_is_registered(link->consumer))
902 		__device_link_del(&link->kref);
903 	else
904 		WARN(1, "Unable to drop a managed device link reference\n");
905 }
906 
907 /**
908  * device_link_del - Delete a stateless link between two devices.
909  * @link: Device link to delete.
910  *
911  * The caller must ensure proper synchronization of this function with runtime
912  * PM.  If the link was added multiple times, it needs to be deleted as often.
913  * Care is required for hotplugged devices:  Their links are purged on removal
914  * and calling device_link_del() is then no longer allowed.
915  */
916 void device_link_del(struct device_link *link)
917 {
918 	device_links_write_lock();
919 	device_link_put_kref(link);
920 	device_links_write_unlock();
921 }
922 EXPORT_SYMBOL_GPL(device_link_del);
923 
924 /**
925  * device_link_remove - Delete a stateless link between two devices.
926  * @consumer: Consumer end of the link.
927  * @supplier: Supplier end of the link.
928  *
929  * The caller must ensure proper synchronization of this function with runtime
930  * PM.
931  */
932 void device_link_remove(void *consumer, struct device *supplier)
933 {
934 	struct device_link *link;
935 
936 	if (WARN_ON(consumer == supplier))
937 		return;
938 
939 	device_links_write_lock();
940 
941 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
942 		if (link->consumer == consumer) {
943 			device_link_put_kref(link);
944 			break;
945 		}
946 	}
947 
948 	device_links_write_unlock();
949 }
950 EXPORT_SYMBOL_GPL(device_link_remove);
951 
952 static void device_links_missing_supplier(struct device *dev)
953 {
954 	struct device_link *link;
955 
956 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
957 		if (link->status != DL_STATE_CONSUMER_PROBE)
958 			continue;
959 
960 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
961 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
962 		} else {
963 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
964 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
965 		}
966 	}
967 }
968 
969 /**
970  * device_links_check_suppliers - Check presence of supplier drivers.
971  * @dev: Consumer device.
972  *
973  * Check links from this device to any suppliers.  Walk the list of the device's
974  * links to suppliers and see if all of them are available.  If not, simply
975  * return -EPROBE_DEFER.
976  *
977  * We need to guarantee that the supplier will not go away after the check has
978  * been positive here.  It only can go away in __device_release_driver() and
979  * that function  checks the device's links to consumers.  This means we need to
980  * mark the link as "consumer probe in progress" to make the supplier removal
981  * wait for us to complete (or bad things may happen).
982  *
983  * Links without the DL_FLAG_MANAGED flag set are ignored.
984  */
985 int device_links_check_suppliers(struct device *dev)
986 {
987 	struct device_link *link;
988 	int ret = 0;
989 	struct fwnode_handle *sup_fw;
990 
991 	/*
992 	 * Device waiting for supplier to become available is not allowed to
993 	 * probe.
994 	 */
995 	mutex_lock(&fwnode_link_lock);
996 	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
997 	    !fw_devlink_is_permissive()) {
998 		sup_fw = list_first_entry(&dev->fwnode->suppliers,
999 					  struct fwnode_link,
1000 					  c_hook)->supplier;
1001 		dev_err_probe(dev, -EPROBE_DEFER, "wait for supplier %pfwP\n",
1002 			      sup_fw);
1003 		mutex_unlock(&fwnode_link_lock);
1004 		return -EPROBE_DEFER;
1005 	}
1006 	mutex_unlock(&fwnode_link_lock);
1007 
1008 	device_links_write_lock();
1009 
1010 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1011 		if (!(link->flags & DL_FLAG_MANAGED))
1012 			continue;
1013 
1014 		if (link->status != DL_STATE_AVAILABLE &&
1015 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1016 			device_links_missing_supplier(dev);
1017 			dev_err_probe(dev, -EPROBE_DEFER,
1018 				      "supplier %s not ready\n",
1019 				      dev_name(link->supplier));
1020 			ret = -EPROBE_DEFER;
1021 			break;
1022 		}
1023 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1024 	}
1025 	dev->links.status = DL_DEV_PROBING;
1026 
1027 	device_links_write_unlock();
1028 	return ret;
1029 }
1030 
1031 /**
1032  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1033  * @dev: Device to call sync_state() on
1034  * @list: List head to queue the @dev on
1035  *
1036  * Queues a device for a sync_state() callback when the device links write lock
1037  * isn't held. This allows the sync_state() execution flow to use device links
1038  * APIs.  The caller must ensure this function is called with
1039  * device_links_write_lock() held.
1040  *
1041  * This function does a get_device() to make sure the device is not freed while
1042  * on this list.
1043  *
1044  * So the caller must also ensure that device_links_flush_sync_list() is called
1045  * as soon as the caller releases device_links_write_lock().  This is necessary
1046  * to make sure the sync_state() is called in a timely fashion and the
1047  * put_device() is called on this device.
1048  */
1049 static void __device_links_queue_sync_state(struct device *dev,
1050 					    struct list_head *list)
1051 {
1052 	struct device_link *link;
1053 
1054 	if (!dev_has_sync_state(dev))
1055 		return;
1056 	if (dev->state_synced)
1057 		return;
1058 
1059 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1060 		if (!(link->flags & DL_FLAG_MANAGED))
1061 			continue;
1062 		if (link->status != DL_STATE_ACTIVE)
1063 			return;
1064 	}
1065 
1066 	/*
1067 	 * Set the flag here to avoid adding the same device to a list more
1068 	 * than once. This can happen if new consumers get added to the device
1069 	 * and probed before the list is flushed.
1070 	 */
1071 	dev->state_synced = true;
1072 
1073 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1074 		return;
1075 
1076 	get_device(dev);
1077 	list_add_tail(&dev->links.defer_sync, list);
1078 }
1079 
1080 /**
1081  * device_links_flush_sync_list - Call sync_state() on a list of devices
1082  * @list: List of devices to call sync_state() on
1083  * @dont_lock_dev: Device for which lock is already held by the caller
1084  *
1085  * Calls sync_state() on all the devices that have been queued for it. This
1086  * function is used in conjunction with __device_links_queue_sync_state(). The
1087  * @dont_lock_dev parameter is useful when this function is called from a
1088  * context where a device lock is already held.
1089  */
1090 static void device_links_flush_sync_list(struct list_head *list,
1091 					 struct device *dont_lock_dev)
1092 {
1093 	struct device *dev, *tmp;
1094 
1095 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1096 		list_del_init(&dev->links.defer_sync);
1097 
1098 		if (dev != dont_lock_dev)
1099 			device_lock(dev);
1100 
1101 		if (dev->bus->sync_state)
1102 			dev->bus->sync_state(dev);
1103 		else if (dev->driver && dev->driver->sync_state)
1104 			dev->driver->sync_state(dev);
1105 
1106 		if (dev != dont_lock_dev)
1107 			device_unlock(dev);
1108 
1109 		put_device(dev);
1110 	}
1111 }
1112 
1113 void device_links_supplier_sync_state_pause(void)
1114 {
1115 	device_links_write_lock();
1116 	defer_sync_state_count++;
1117 	device_links_write_unlock();
1118 }
1119 
1120 void device_links_supplier_sync_state_resume(void)
1121 {
1122 	struct device *dev, *tmp;
1123 	LIST_HEAD(sync_list);
1124 
1125 	device_links_write_lock();
1126 	if (!defer_sync_state_count) {
1127 		WARN(true, "Unmatched sync_state pause/resume!");
1128 		goto out;
1129 	}
1130 	defer_sync_state_count--;
1131 	if (defer_sync_state_count)
1132 		goto out;
1133 
1134 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1135 		/*
1136 		 * Delete from deferred_sync list before queuing it to
1137 		 * sync_list because defer_sync is used for both lists.
1138 		 */
1139 		list_del_init(&dev->links.defer_sync);
1140 		__device_links_queue_sync_state(dev, &sync_list);
1141 	}
1142 out:
1143 	device_links_write_unlock();
1144 
1145 	device_links_flush_sync_list(&sync_list, NULL);
1146 }
1147 
1148 static int sync_state_resume_initcall(void)
1149 {
1150 	device_links_supplier_sync_state_resume();
1151 	return 0;
1152 }
1153 late_initcall(sync_state_resume_initcall);
1154 
1155 static void __device_links_supplier_defer_sync(struct device *sup)
1156 {
1157 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1158 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1159 }
1160 
1161 static void device_link_drop_managed(struct device_link *link)
1162 {
1163 	link->flags &= ~DL_FLAG_MANAGED;
1164 	WRITE_ONCE(link->status, DL_STATE_NONE);
1165 	kref_put(&link->kref, __device_link_del);
1166 }
1167 
1168 static ssize_t waiting_for_supplier_show(struct device *dev,
1169 					 struct device_attribute *attr,
1170 					 char *buf)
1171 {
1172 	bool val;
1173 
1174 	device_lock(dev);
1175 	val = !list_empty(&dev->fwnode->suppliers);
1176 	device_unlock(dev);
1177 	return sysfs_emit(buf, "%u\n", val);
1178 }
1179 static DEVICE_ATTR_RO(waiting_for_supplier);
1180 
1181 /**
1182  * device_links_force_bind - Prepares device to be force bound
1183  * @dev: Consumer device.
1184  *
1185  * device_bind_driver() force binds a device to a driver without calling any
1186  * driver probe functions. So the consumer really isn't going to wait for any
1187  * supplier before it's bound to the driver. We still want the device link
1188  * states to be sensible when this happens.
1189  *
1190  * In preparation for device_bind_driver(), this function goes through each
1191  * supplier device links and checks if the supplier is bound. If it is, then
1192  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1193  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1194  */
1195 void device_links_force_bind(struct device *dev)
1196 {
1197 	struct device_link *link, *ln;
1198 
1199 	device_links_write_lock();
1200 
1201 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1202 		if (!(link->flags & DL_FLAG_MANAGED))
1203 			continue;
1204 
1205 		if (link->status != DL_STATE_AVAILABLE) {
1206 			device_link_drop_managed(link);
1207 			continue;
1208 		}
1209 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1210 	}
1211 	dev->links.status = DL_DEV_PROBING;
1212 
1213 	device_links_write_unlock();
1214 }
1215 
1216 /**
1217  * device_links_driver_bound - Update device links after probing its driver.
1218  * @dev: Device to update the links for.
1219  *
1220  * The probe has been successful, so update links from this device to any
1221  * consumers by changing their status to "available".
1222  *
1223  * Also change the status of @dev's links to suppliers to "active".
1224  *
1225  * Links without the DL_FLAG_MANAGED flag set are ignored.
1226  */
1227 void device_links_driver_bound(struct device *dev)
1228 {
1229 	struct device_link *link, *ln;
1230 	LIST_HEAD(sync_list);
1231 
1232 	/*
1233 	 * If a device binds successfully, it's expected to have created all
1234 	 * the device links it needs to or make new device links as it needs
1235 	 * them. So, fw_devlink no longer needs to create device links to any
1236 	 * of the device's suppliers.
1237 	 *
1238 	 * Also, if a child firmware node of this bound device is not added as
1239 	 * a device by now, assume it is never going to be added and make sure
1240 	 * other devices don't defer probe indefinitely by waiting for such a
1241 	 * child device.
1242 	 */
1243 	if (dev->fwnode && dev->fwnode->dev == dev) {
1244 		struct fwnode_handle *child;
1245 		fwnode_links_purge_suppliers(dev->fwnode);
1246 		fwnode_for_each_available_child_node(dev->fwnode, child)
1247 			fw_devlink_purge_absent_suppliers(child);
1248 	}
1249 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1250 
1251 	device_links_write_lock();
1252 
1253 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1254 		if (!(link->flags & DL_FLAG_MANAGED))
1255 			continue;
1256 
1257 		/*
1258 		 * Links created during consumer probe may be in the "consumer
1259 		 * probe" state to start with if the supplier is still probing
1260 		 * when they are created and they may become "active" if the
1261 		 * consumer probe returns first.  Skip them here.
1262 		 */
1263 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1264 		    link->status == DL_STATE_ACTIVE)
1265 			continue;
1266 
1267 		WARN_ON(link->status != DL_STATE_DORMANT);
1268 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1269 
1270 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1271 			driver_deferred_probe_add(link->consumer);
1272 	}
1273 
1274 	if (defer_sync_state_count)
1275 		__device_links_supplier_defer_sync(dev);
1276 	else
1277 		__device_links_queue_sync_state(dev, &sync_list);
1278 
1279 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1280 		struct device *supplier;
1281 
1282 		if (!(link->flags & DL_FLAG_MANAGED))
1283 			continue;
1284 
1285 		supplier = link->supplier;
1286 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1287 			/*
1288 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1289 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1290 			 * save to drop the managed link completely.
1291 			 */
1292 			device_link_drop_managed(link);
1293 		} else {
1294 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1295 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1296 		}
1297 
1298 		/*
1299 		 * This needs to be done even for the deleted
1300 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1301 		 * device link that was preventing the supplier from getting a
1302 		 * sync_state() call.
1303 		 */
1304 		if (defer_sync_state_count)
1305 			__device_links_supplier_defer_sync(supplier);
1306 		else
1307 			__device_links_queue_sync_state(supplier, &sync_list);
1308 	}
1309 
1310 	dev->links.status = DL_DEV_DRIVER_BOUND;
1311 
1312 	device_links_write_unlock();
1313 
1314 	device_links_flush_sync_list(&sync_list, dev);
1315 }
1316 
1317 /**
1318  * __device_links_no_driver - Update links of a device without a driver.
1319  * @dev: Device without a drvier.
1320  *
1321  * Delete all non-persistent links from this device to any suppliers.
1322  *
1323  * Persistent links stay around, but their status is changed to "available",
1324  * unless they already are in the "supplier unbind in progress" state in which
1325  * case they need not be updated.
1326  *
1327  * Links without the DL_FLAG_MANAGED flag set are ignored.
1328  */
1329 static void __device_links_no_driver(struct device *dev)
1330 {
1331 	struct device_link *link, *ln;
1332 
1333 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1334 		if (!(link->flags & DL_FLAG_MANAGED))
1335 			continue;
1336 
1337 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1338 			device_link_drop_managed(link);
1339 			continue;
1340 		}
1341 
1342 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1343 		    link->status != DL_STATE_ACTIVE)
1344 			continue;
1345 
1346 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1347 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1348 		} else {
1349 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1350 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1351 		}
1352 	}
1353 
1354 	dev->links.status = DL_DEV_NO_DRIVER;
1355 }
1356 
1357 /**
1358  * device_links_no_driver - Update links after failing driver probe.
1359  * @dev: Device whose driver has just failed to probe.
1360  *
1361  * Clean up leftover links to consumers for @dev and invoke
1362  * %__device_links_no_driver() to update links to suppliers for it as
1363  * appropriate.
1364  *
1365  * Links without the DL_FLAG_MANAGED flag set are ignored.
1366  */
1367 void device_links_no_driver(struct device *dev)
1368 {
1369 	struct device_link *link;
1370 
1371 	device_links_write_lock();
1372 
1373 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1374 		if (!(link->flags & DL_FLAG_MANAGED))
1375 			continue;
1376 
1377 		/*
1378 		 * The probe has failed, so if the status of the link is
1379 		 * "consumer probe" or "active", it must have been added by
1380 		 * a probing consumer while this device was still probing.
1381 		 * Change its state to "dormant", as it represents a valid
1382 		 * relationship, but it is not functionally meaningful.
1383 		 */
1384 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1385 		    link->status == DL_STATE_ACTIVE)
1386 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1387 	}
1388 
1389 	__device_links_no_driver(dev);
1390 
1391 	device_links_write_unlock();
1392 }
1393 
1394 /**
1395  * device_links_driver_cleanup - Update links after driver removal.
1396  * @dev: Device whose driver has just gone away.
1397  *
1398  * Update links to consumers for @dev by changing their status to "dormant" and
1399  * invoke %__device_links_no_driver() to update links to suppliers for it as
1400  * appropriate.
1401  *
1402  * Links without the DL_FLAG_MANAGED flag set are ignored.
1403  */
1404 void device_links_driver_cleanup(struct device *dev)
1405 {
1406 	struct device_link *link, *ln;
1407 
1408 	device_links_write_lock();
1409 
1410 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1411 		if (!(link->flags & DL_FLAG_MANAGED))
1412 			continue;
1413 
1414 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1415 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1416 
1417 		/*
1418 		 * autoremove the links between this @dev and its consumer
1419 		 * devices that are not active, i.e. where the link state
1420 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1421 		 */
1422 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1423 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1424 			device_link_drop_managed(link);
1425 
1426 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1427 	}
1428 
1429 	list_del_init(&dev->links.defer_sync);
1430 	__device_links_no_driver(dev);
1431 
1432 	device_links_write_unlock();
1433 }
1434 
1435 /**
1436  * device_links_busy - Check if there are any busy links to consumers.
1437  * @dev: Device to check.
1438  *
1439  * Check each consumer of the device and return 'true' if its link's status
1440  * is one of "consumer probe" or "active" (meaning that the given consumer is
1441  * probing right now or its driver is present).  Otherwise, change the link
1442  * state to "supplier unbind" to prevent the consumer from being probed
1443  * successfully going forward.
1444  *
1445  * Return 'false' if there are no probing or active consumers.
1446  *
1447  * Links without the DL_FLAG_MANAGED flag set are ignored.
1448  */
1449 bool device_links_busy(struct device *dev)
1450 {
1451 	struct device_link *link;
1452 	bool ret = false;
1453 
1454 	device_links_write_lock();
1455 
1456 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1457 		if (!(link->flags & DL_FLAG_MANAGED))
1458 			continue;
1459 
1460 		if (link->status == DL_STATE_CONSUMER_PROBE
1461 		    || link->status == DL_STATE_ACTIVE) {
1462 			ret = true;
1463 			break;
1464 		}
1465 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1466 	}
1467 
1468 	dev->links.status = DL_DEV_UNBINDING;
1469 
1470 	device_links_write_unlock();
1471 	return ret;
1472 }
1473 
1474 /**
1475  * device_links_unbind_consumers - Force unbind consumers of the given device.
1476  * @dev: Device to unbind the consumers of.
1477  *
1478  * Walk the list of links to consumers for @dev and if any of them is in the
1479  * "consumer probe" state, wait for all device probes in progress to complete
1480  * and start over.
1481  *
1482  * If that's not the case, change the status of the link to "supplier unbind"
1483  * and check if the link was in the "active" state.  If so, force the consumer
1484  * driver to unbind and start over (the consumer will not re-probe as we have
1485  * changed the state of the link already).
1486  *
1487  * Links without the DL_FLAG_MANAGED flag set are ignored.
1488  */
1489 void device_links_unbind_consumers(struct device *dev)
1490 {
1491 	struct device_link *link;
1492 
1493  start:
1494 	device_links_write_lock();
1495 
1496 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1497 		enum device_link_state status;
1498 
1499 		if (!(link->flags & DL_FLAG_MANAGED) ||
1500 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1501 			continue;
1502 
1503 		status = link->status;
1504 		if (status == DL_STATE_CONSUMER_PROBE) {
1505 			device_links_write_unlock();
1506 
1507 			wait_for_device_probe();
1508 			goto start;
1509 		}
1510 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1511 		if (status == DL_STATE_ACTIVE) {
1512 			struct device *consumer = link->consumer;
1513 
1514 			get_device(consumer);
1515 
1516 			device_links_write_unlock();
1517 
1518 			device_release_driver_internal(consumer, NULL,
1519 						       consumer->parent);
1520 			put_device(consumer);
1521 			goto start;
1522 		}
1523 	}
1524 
1525 	device_links_write_unlock();
1526 }
1527 
1528 /**
1529  * device_links_purge - Delete existing links to other devices.
1530  * @dev: Target device.
1531  */
1532 static void device_links_purge(struct device *dev)
1533 {
1534 	struct device_link *link, *ln;
1535 
1536 	if (dev->class == &devlink_class)
1537 		return;
1538 
1539 	/*
1540 	 * Delete all of the remaining links from this device to any other
1541 	 * devices (either consumers or suppliers).
1542 	 */
1543 	device_links_write_lock();
1544 
1545 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1546 		WARN_ON(link->status == DL_STATE_ACTIVE);
1547 		__device_link_del(&link->kref);
1548 	}
1549 
1550 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1551 		WARN_ON(link->status != DL_STATE_DORMANT &&
1552 			link->status != DL_STATE_NONE);
1553 		__device_link_del(&link->kref);
1554 	}
1555 
1556 	device_links_write_unlock();
1557 }
1558 
1559 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1560 					 DL_FLAG_SYNC_STATE_ONLY)
1561 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1562 					 DL_FLAG_AUTOPROBE_CONSUMER)
1563 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1564 					 DL_FLAG_PM_RUNTIME)
1565 
1566 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1567 static int __init fw_devlink_setup(char *arg)
1568 {
1569 	if (!arg)
1570 		return -EINVAL;
1571 
1572 	if (strcmp(arg, "off") == 0) {
1573 		fw_devlink_flags = 0;
1574 	} else if (strcmp(arg, "permissive") == 0) {
1575 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1576 	} else if (strcmp(arg, "on") == 0) {
1577 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1578 	} else if (strcmp(arg, "rpm") == 0) {
1579 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1580 	}
1581 	return 0;
1582 }
1583 early_param("fw_devlink", fw_devlink_setup);
1584 
1585 static bool fw_devlink_strict;
1586 static int __init fw_devlink_strict_setup(char *arg)
1587 {
1588 	return strtobool(arg, &fw_devlink_strict);
1589 }
1590 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1591 
1592 u32 fw_devlink_get_flags(void)
1593 {
1594 	return fw_devlink_flags;
1595 }
1596 
1597 static bool fw_devlink_is_permissive(void)
1598 {
1599 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1600 }
1601 
1602 bool fw_devlink_is_strict(void)
1603 {
1604 	return fw_devlink_strict && !fw_devlink_is_permissive();
1605 }
1606 
1607 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1608 {
1609 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1610 		return;
1611 
1612 	fwnode_call_int_op(fwnode, add_links);
1613 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1614 }
1615 
1616 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1617 {
1618 	struct fwnode_handle *child = NULL;
1619 
1620 	fw_devlink_parse_fwnode(fwnode);
1621 
1622 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1623 		fw_devlink_parse_fwtree(child);
1624 }
1625 
1626 static void fw_devlink_relax_link(struct device_link *link)
1627 {
1628 	if (!(link->flags & DL_FLAG_INFERRED))
1629 		return;
1630 
1631 	if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1632 		return;
1633 
1634 	pm_runtime_drop_link(link);
1635 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1636 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1637 		dev_name(link->supplier));
1638 }
1639 
1640 static int fw_devlink_no_driver(struct device *dev, void *data)
1641 {
1642 	struct device_link *link = to_devlink(dev);
1643 
1644 	if (!link->supplier->can_match)
1645 		fw_devlink_relax_link(link);
1646 
1647 	return 0;
1648 }
1649 
1650 void fw_devlink_drivers_done(void)
1651 {
1652 	fw_devlink_drv_reg_done = true;
1653 	device_links_write_lock();
1654 	class_for_each_device(&devlink_class, NULL, NULL,
1655 			      fw_devlink_no_driver);
1656 	device_links_write_unlock();
1657 }
1658 
1659 static void fw_devlink_unblock_consumers(struct device *dev)
1660 {
1661 	struct device_link *link;
1662 
1663 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1664 		return;
1665 
1666 	device_links_write_lock();
1667 	list_for_each_entry(link, &dev->links.consumers, s_node)
1668 		fw_devlink_relax_link(link);
1669 	device_links_write_unlock();
1670 }
1671 
1672 /**
1673  * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1674  * @con: Device to check dependencies for.
1675  * @sup: Device to check against.
1676  *
1677  * Check if @sup depends on @con or any device dependent on it (its child or
1678  * its consumer etc).  When such a cyclic dependency is found, convert all
1679  * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1680  * This is the equivalent of doing fw_devlink=permissive just between the
1681  * devices in the cycle. We need to do this because, at this point, fw_devlink
1682  * can't tell which of these dependencies is not a real dependency.
1683  *
1684  * Return 1 if a cycle is found. Otherwise, return 0.
1685  */
1686 static int fw_devlink_relax_cycle(struct device *con, void *sup)
1687 {
1688 	struct device_link *link;
1689 	int ret;
1690 
1691 	if (con == sup)
1692 		return 1;
1693 
1694 	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1695 	if (ret)
1696 		return ret;
1697 
1698 	list_for_each_entry(link, &con->links.consumers, s_node) {
1699 		if ((link->flags & ~DL_FLAG_INFERRED) ==
1700 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1701 			continue;
1702 
1703 		if (!fw_devlink_relax_cycle(link->consumer, sup))
1704 			continue;
1705 
1706 		ret = 1;
1707 
1708 		fw_devlink_relax_link(link);
1709 	}
1710 	return ret;
1711 }
1712 
1713 /**
1714  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1715  * @con: consumer device for the device link
1716  * @sup_handle: fwnode handle of supplier
1717  * @flags: devlink flags
1718  *
1719  * This function will try to create a device link between the consumer device
1720  * @con and the supplier device represented by @sup_handle.
1721  *
1722  * The supplier has to be provided as a fwnode because incorrect cycles in
1723  * fwnode links can sometimes cause the supplier device to never be created.
1724  * This function detects such cases and returns an error if it cannot create a
1725  * device link from the consumer to a missing supplier.
1726  *
1727  * Returns,
1728  * 0 on successfully creating a device link
1729  * -EINVAL if the device link cannot be created as expected
1730  * -EAGAIN if the device link cannot be created right now, but it may be
1731  *  possible to do that in the future
1732  */
1733 static int fw_devlink_create_devlink(struct device *con,
1734 				     struct fwnode_handle *sup_handle, u32 flags)
1735 {
1736 	struct device *sup_dev;
1737 	int ret = 0;
1738 
1739 	/*
1740 	 * In some cases, a device P might also be a supplier to its child node
1741 	 * C. However, this would defer the probe of C until the probe of P
1742 	 * completes successfully. This is perfectly fine in the device driver
1743 	 * model. device_add() doesn't guarantee probe completion of the device
1744 	 * by the time it returns.
1745 	 *
1746 	 * However, there are a few drivers that assume C will finish probing
1747 	 * as soon as it's added and before P finishes probing. So, we provide
1748 	 * a flag to let fw_devlink know not to delay the probe of C until the
1749 	 * probe of P completes successfully.
1750 	 *
1751 	 * When such a flag is set, we can't create device links where P is the
1752 	 * supplier of C as that would delay the probe of C.
1753 	 */
1754 	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
1755 	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
1756 		return -EINVAL;
1757 
1758 	sup_dev = get_dev_from_fwnode(sup_handle);
1759 	if (sup_dev) {
1760 		/*
1761 		 * If it's one of those drivers that don't actually bind to
1762 		 * their device using driver core, then don't wait on this
1763 		 * supplier device indefinitely.
1764 		 */
1765 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1766 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1767 			ret = -EINVAL;
1768 			goto out;
1769 		}
1770 
1771 		/*
1772 		 * If this fails, it is due to cycles in device links.  Just
1773 		 * give up on this link and treat it as invalid.
1774 		 */
1775 		if (!device_link_add(con, sup_dev, flags) &&
1776 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1777 			dev_info(con, "Fixing up cyclic dependency with %s\n",
1778 				 dev_name(sup_dev));
1779 			device_links_write_lock();
1780 			fw_devlink_relax_cycle(con, sup_dev);
1781 			device_links_write_unlock();
1782 			device_link_add(con, sup_dev,
1783 					FW_DEVLINK_FLAGS_PERMISSIVE);
1784 			ret = -EINVAL;
1785 		}
1786 
1787 		goto out;
1788 	}
1789 
1790 	/* Supplier that's already initialized without a struct device. */
1791 	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1792 		return -EINVAL;
1793 
1794 	/*
1795 	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1796 	 * cycles. So cycle detection isn't necessary and shouldn't be
1797 	 * done.
1798 	 */
1799 	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1800 		return -EAGAIN;
1801 
1802 	/*
1803 	 * If we can't find the supplier device from its fwnode, it might be
1804 	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1805 	 * be broken by applying logic. Check for these types of cycles and
1806 	 * break them so that devices in the cycle probe properly.
1807 	 *
1808 	 * If the supplier's parent is dependent on the consumer, then the
1809 	 * consumer and supplier have a cyclic dependency. Since fw_devlink
1810 	 * can't tell which of the inferred dependencies are incorrect, don't
1811 	 * enforce probe ordering between any of the devices in this cyclic
1812 	 * dependency. Do this by relaxing all the fw_devlink device links in
1813 	 * this cycle and by treating the fwnode link between the consumer and
1814 	 * the supplier as an invalid dependency.
1815 	 */
1816 	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1817 	if (sup_dev && device_is_dependent(con, sup_dev)) {
1818 		dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n",
1819 			 sup_handle, dev_name(sup_dev));
1820 		device_links_write_lock();
1821 		fw_devlink_relax_cycle(con, sup_dev);
1822 		device_links_write_unlock();
1823 		ret = -EINVAL;
1824 	} else {
1825 		/*
1826 		 * Can't check for cycles or no cycles. So let's try
1827 		 * again later.
1828 		 */
1829 		ret = -EAGAIN;
1830 	}
1831 
1832 out:
1833 	put_device(sup_dev);
1834 	return ret;
1835 }
1836 
1837 /**
1838  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1839  * @dev: Device that needs to be linked to its consumers
1840  *
1841  * This function looks at all the consumer fwnodes of @dev and creates device
1842  * links between the consumer device and @dev (supplier).
1843  *
1844  * If the consumer device has not been added yet, then this function creates a
1845  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1846  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1847  * sync_state() callback before the real consumer device gets to be added and
1848  * then probed.
1849  *
1850  * Once device links are created from the real consumer to @dev (supplier), the
1851  * fwnode links are deleted.
1852  */
1853 static void __fw_devlink_link_to_consumers(struct device *dev)
1854 {
1855 	struct fwnode_handle *fwnode = dev->fwnode;
1856 	struct fwnode_link *link, *tmp;
1857 
1858 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1859 		u32 dl_flags = fw_devlink_get_flags();
1860 		struct device *con_dev;
1861 		bool own_link = true;
1862 		int ret;
1863 
1864 		con_dev = get_dev_from_fwnode(link->consumer);
1865 		/*
1866 		 * If consumer device is not available yet, make a "proxy"
1867 		 * SYNC_STATE_ONLY link from the consumer's parent device to
1868 		 * the supplier device. This is necessary to make sure the
1869 		 * supplier doesn't get a sync_state() callback before the real
1870 		 * consumer can create a device link to the supplier.
1871 		 *
1872 		 * This proxy link step is needed to handle the case where the
1873 		 * consumer's parent device is added before the supplier.
1874 		 */
1875 		if (!con_dev) {
1876 			con_dev = fwnode_get_next_parent_dev(link->consumer);
1877 			/*
1878 			 * However, if the consumer's parent device is also the
1879 			 * parent of the supplier, don't create a
1880 			 * consumer-supplier link from the parent to its child
1881 			 * device. Such a dependency is impossible.
1882 			 */
1883 			if (con_dev &&
1884 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1885 				put_device(con_dev);
1886 				con_dev = NULL;
1887 			} else {
1888 				own_link = false;
1889 				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1890 			}
1891 		}
1892 
1893 		if (!con_dev)
1894 			continue;
1895 
1896 		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1897 		put_device(con_dev);
1898 		if (!own_link || ret == -EAGAIN)
1899 			continue;
1900 
1901 		__fwnode_link_del(link);
1902 	}
1903 }
1904 
1905 /**
1906  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1907  * @dev: The consumer device that needs to be linked to its suppliers
1908  * @fwnode: Root of the fwnode tree that is used to create device links
1909  *
1910  * This function looks at all the supplier fwnodes of fwnode tree rooted at
1911  * @fwnode and creates device links between @dev (consumer) and all the
1912  * supplier devices of the entire fwnode tree at @fwnode.
1913  *
1914  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1915  * and the real suppliers of @dev. Once these device links are created, the
1916  * fwnode links are deleted. When such device links are successfully created,
1917  * this function is called recursively on those supplier devices. This is
1918  * needed to detect and break some invalid cycles in fwnode links.  See
1919  * fw_devlink_create_devlink() for more details.
1920  *
1921  * In addition, it also looks at all the suppliers of the entire fwnode tree
1922  * because some of the child devices of @dev that have not been added yet
1923  * (because @dev hasn't probed) might already have their suppliers added to
1924  * driver core. So, this function creates SYNC_STATE_ONLY device links between
1925  * @dev (consumer) and these suppliers to make sure they don't execute their
1926  * sync_state() callbacks before these child devices have a chance to create
1927  * their device links. The fwnode links that correspond to the child devices
1928  * aren't delete because they are needed later to create the device links
1929  * between the real consumer and supplier devices.
1930  */
1931 static void __fw_devlink_link_to_suppliers(struct device *dev,
1932 					   struct fwnode_handle *fwnode)
1933 {
1934 	bool own_link = (dev->fwnode == fwnode);
1935 	struct fwnode_link *link, *tmp;
1936 	struct fwnode_handle *child = NULL;
1937 	u32 dl_flags;
1938 
1939 	if (own_link)
1940 		dl_flags = fw_devlink_get_flags();
1941 	else
1942 		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1943 
1944 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1945 		int ret;
1946 		struct device *sup_dev;
1947 		struct fwnode_handle *sup = link->supplier;
1948 
1949 		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1950 		if (!own_link || ret == -EAGAIN)
1951 			continue;
1952 
1953 		__fwnode_link_del(link);
1954 
1955 		/* If no device link was created, nothing more to do. */
1956 		if (ret)
1957 			continue;
1958 
1959 		/*
1960 		 * If a device link was successfully created to a supplier, we
1961 		 * now need to try and link the supplier to all its suppliers.
1962 		 *
1963 		 * This is needed to detect and delete false dependencies in
1964 		 * fwnode links that haven't been converted to a device link
1965 		 * yet. See comments in fw_devlink_create_devlink() for more
1966 		 * details on the false dependency.
1967 		 *
1968 		 * Without deleting these false dependencies, some devices will
1969 		 * never probe because they'll keep waiting for their false
1970 		 * dependency fwnode links to be converted to device links.
1971 		 */
1972 		sup_dev = get_dev_from_fwnode(sup);
1973 		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1974 		put_device(sup_dev);
1975 	}
1976 
1977 	/*
1978 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1979 	 * all the descendants. This proxy link step is needed to handle the
1980 	 * case where the supplier is added before the consumer's parent device
1981 	 * (@dev).
1982 	 */
1983 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1984 		__fw_devlink_link_to_suppliers(dev, child);
1985 }
1986 
1987 static void fw_devlink_link_device(struct device *dev)
1988 {
1989 	struct fwnode_handle *fwnode = dev->fwnode;
1990 
1991 	if (!fw_devlink_flags)
1992 		return;
1993 
1994 	fw_devlink_parse_fwtree(fwnode);
1995 
1996 	mutex_lock(&fwnode_link_lock);
1997 	__fw_devlink_link_to_consumers(dev);
1998 	__fw_devlink_link_to_suppliers(dev, fwnode);
1999 	mutex_unlock(&fwnode_link_lock);
2000 }
2001 
2002 /* Device links support end. */
2003 
2004 int (*platform_notify)(struct device *dev) = NULL;
2005 int (*platform_notify_remove)(struct device *dev) = NULL;
2006 static struct kobject *dev_kobj;
2007 struct kobject *sysfs_dev_char_kobj;
2008 struct kobject *sysfs_dev_block_kobj;
2009 
2010 static DEFINE_MUTEX(device_hotplug_lock);
2011 
2012 void lock_device_hotplug(void)
2013 {
2014 	mutex_lock(&device_hotplug_lock);
2015 }
2016 
2017 void unlock_device_hotplug(void)
2018 {
2019 	mutex_unlock(&device_hotplug_lock);
2020 }
2021 
2022 int lock_device_hotplug_sysfs(void)
2023 {
2024 	if (mutex_trylock(&device_hotplug_lock))
2025 		return 0;
2026 
2027 	/* Avoid busy looping (5 ms of sleep should do). */
2028 	msleep(5);
2029 	return restart_syscall();
2030 }
2031 
2032 #ifdef CONFIG_BLOCK
2033 static inline int device_is_not_partition(struct device *dev)
2034 {
2035 	return !(dev->type == &part_type);
2036 }
2037 #else
2038 static inline int device_is_not_partition(struct device *dev)
2039 {
2040 	return 1;
2041 }
2042 #endif
2043 
2044 static void device_platform_notify(struct device *dev)
2045 {
2046 	acpi_device_notify(dev);
2047 
2048 	software_node_notify(dev);
2049 
2050 	if (platform_notify)
2051 		platform_notify(dev);
2052 }
2053 
2054 static void device_platform_notify_remove(struct device *dev)
2055 {
2056 	acpi_device_notify_remove(dev);
2057 
2058 	software_node_notify_remove(dev);
2059 
2060 	if (platform_notify_remove)
2061 		platform_notify_remove(dev);
2062 }
2063 
2064 /**
2065  * dev_driver_string - Return a device's driver name, if at all possible
2066  * @dev: struct device to get the name of
2067  *
2068  * Will return the device's driver's name if it is bound to a device.  If
2069  * the device is not bound to a driver, it will return the name of the bus
2070  * it is attached to.  If it is not attached to a bus either, an empty
2071  * string will be returned.
2072  */
2073 const char *dev_driver_string(const struct device *dev)
2074 {
2075 	struct device_driver *drv;
2076 
2077 	/* dev->driver can change to NULL underneath us because of unbinding,
2078 	 * so be careful about accessing it.  dev->bus and dev->class should
2079 	 * never change once they are set, so they don't need special care.
2080 	 */
2081 	drv = READ_ONCE(dev->driver);
2082 	return drv ? drv->name : dev_bus_name(dev);
2083 }
2084 EXPORT_SYMBOL(dev_driver_string);
2085 
2086 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2087 
2088 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2089 			     char *buf)
2090 {
2091 	struct device_attribute *dev_attr = to_dev_attr(attr);
2092 	struct device *dev = kobj_to_dev(kobj);
2093 	ssize_t ret = -EIO;
2094 
2095 	if (dev_attr->show)
2096 		ret = dev_attr->show(dev, dev_attr, buf);
2097 	if (ret >= (ssize_t)PAGE_SIZE) {
2098 		printk("dev_attr_show: %pS returned bad count\n",
2099 				dev_attr->show);
2100 	}
2101 	return ret;
2102 }
2103 
2104 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2105 			      const char *buf, size_t count)
2106 {
2107 	struct device_attribute *dev_attr = to_dev_attr(attr);
2108 	struct device *dev = kobj_to_dev(kobj);
2109 	ssize_t ret = -EIO;
2110 
2111 	if (dev_attr->store)
2112 		ret = dev_attr->store(dev, dev_attr, buf, count);
2113 	return ret;
2114 }
2115 
2116 static const struct sysfs_ops dev_sysfs_ops = {
2117 	.show	= dev_attr_show,
2118 	.store	= dev_attr_store,
2119 };
2120 
2121 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2122 
2123 ssize_t device_store_ulong(struct device *dev,
2124 			   struct device_attribute *attr,
2125 			   const char *buf, size_t size)
2126 {
2127 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2128 	int ret;
2129 	unsigned long new;
2130 
2131 	ret = kstrtoul(buf, 0, &new);
2132 	if (ret)
2133 		return ret;
2134 	*(unsigned long *)(ea->var) = new;
2135 	/* Always return full write size even if we didn't consume all */
2136 	return size;
2137 }
2138 EXPORT_SYMBOL_GPL(device_store_ulong);
2139 
2140 ssize_t device_show_ulong(struct device *dev,
2141 			  struct device_attribute *attr,
2142 			  char *buf)
2143 {
2144 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2145 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2146 }
2147 EXPORT_SYMBOL_GPL(device_show_ulong);
2148 
2149 ssize_t device_store_int(struct device *dev,
2150 			 struct device_attribute *attr,
2151 			 const char *buf, size_t size)
2152 {
2153 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2154 	int ret;
2155 	long new;
2156 
2157 	ret = kstrtol(buf, 0, &new);
2158 	if (ret)
2159 		return ret;
2160 
2161 	if (new > INT_MAX || new < INT_MIN)
2162 		return -EINVAL;
2163 	*(int *)(ea->var) = new;
2164 	/* Always return full write size even if we didn't consume all */
2165 	return size;
2166 }
2167 EXPORT_SYMBOL_GPL(device_store_int);
2168 
2169 ssize_t device_show_int(struct device *dev,
2170 			struct device_attribute *attr,
2171 			char *buf)
2172 {
2173 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2174 
2175 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2176 }
2177 EXPORT_SYMBOL_GPL(device_show_int);
2178 
2179 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2180 			  const char *buf, size_t size)
2181 {
2182 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2183 
2184 	if (strtobool(buf, ea->var) < 0)
2185 		return -EINVAL;
2186 
2187 	return size;
2188 }
2189 EXPORT_SYMBOL_GPL(device_store_bool);
2190 
2191 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2192 			 char *buf)
2193 {
2194 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2195 
2196 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2197 }
2198 EXPORT_SYMBOL_GPL(device_show_bool);
2199 
2200 /**
2201  * device_release - free device structure.
2202  * @kobj: device's kobject.
2203  *
2204  * This is called once the reference count for the object
2205  * reaches 0. We forward the call to the device's release
2206  * method, which should handle actually freeing the structure.
2207  */
2208 static void device_release(struct kobject *kobj)
2209 {
2210 	struct device *dev = kobj_to_dev(kobj);
2211 	struct device_private *p = dev->p;
2212 
2213 	/*
2214 	 * Some platform devices are driven without driver attached
2215 	 * and managed resources may have been acquired.  Make sure
2216 	 * all resources are released.
2217 	 *
2218 	 * Drivers still can add resources into device after device
2219 	 * is deleted but alive, so release devres here to avoid
2220 	 * possible memory leak.
2221 	 */
2222 	devres_release_all(dev);
2223 
2224 	kfree(dev->dma_range_map);
2225 
2226 	if (dev->release)
2227 		dev->release(dev);
2228 	else if (dev->type && dev->type->release)
2229 		dev->type->release(dev);
2230 	else if (dev->class && dev->class->dev_release)
2231 		dev->class->dev_release(dev);
2232 	else
2233 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2234 			dev_name(dev));
2235 	kfree(p);
2236 }
2237 
2238 static const void *device_namespace(struct kobject *kobj)
2239 {
2240 	struct device *dev = kobj_to_dev(kobj);
2241 	const void *ns = NULL;
2242 
2243 	if (dev->class && dev->class->ns_type)
2244 		ns = dev->class->namespace(dev);
2245 
2246 	return ns;
2247 }
2248 
2249 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2250 {
2251 	struct device *dev = kobj_to_dev(kobj);
2252 
2253 	if (dev->class && dev->class->get_ownership)
2254 		dev->class->get_ownership(dev, uid, gid);
2255 }
2256 
2257 static struct kobj_type device_ktype = {
2258 	.release	= device_release,
2259 	.sysfs_ops	= &dev_sysfs_ops,
2260 	.namespace	= device_namespace,
2261 	.get_ownership	= device_get_ownership,
2262 };
2263 
2264 
2265 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
2266 {
2267 	struct kobj_type *ktype = get_ktype(kobj);
2268 
2269 	if (ktype == &device_ktype) {
2270 		struct device *dev = kobj_to_dev(kobj);
2271 		if (dev->bus)
2272 			return 1;
2273 		if (dev->class)
2274 			return 1;
2275 	}
2276 	return 0;
2277 }
2278 
2279 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2280 {
2281 	struct device *dev = kobj_to_dev(kobj);
2282 
2283 	if (dev->bus)
2284 		return dev->bus->name;
2285 	if (dev->class)
2286 		return dev->class->name;
2287 	return NULL;
2288 }
2289 
2290 static int dev_uevent(struct kset *kset, struct kobject *kobj,
2291 		      struct kobj_uevent_env *env)
2292 {
2293 	struct device *dev = kobj_to_dev(kobj);
2294 	int retval = 0;
2295 
2296 	/* add device node properties if present */
2297 	if (MAJOR(dev->devt)) {
2298 		const char *tmp;
2299 		const char *name;
2300 		umode_t mode = 0;
2301 		kuid_t uid = GLOBAL_ROOT_UID;
2302 		kgid_t gid = GLOBAL_ROOT_GID;
2303 
2304 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2305 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2306 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2307 		if (name) {
2308 			add_uevent_var(env, "DEVNAME=%s", name);
2309 			if (mode)
2310 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2311 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2312 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2313 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2314 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2315 			kfree(tmp);
2316 		}
2317 	}
2318 
2319 	if (dev->type && dev->type->name)
2320 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2321 
2322 	if (dev->driver)
2323 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2324 
2325 	/* Add common DT information about the device */
2326 	of_device_uevent(dev, env);
2327 
2328 	/* have the bus specific function add its stuff */
2329 	if (dev->bus && dev->bus->uevent) {
2330 		retval = dev->bus->uevent(dev, env);
2331 		if (retval)
2332 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2333 				 dev_name(dev), __func__, retval);
2334 	}
2335 
2336 	/* have the class specific function add its stuff */
2337 	if (dev->class && dev->class->dev_uevent) {
2338 		retval = dev->class->dev_uevent(dev, env);
2339 		if (retval)
2340 			pr_debug("device: '%s': %s: class uevent() "
2341 				 "returned %d\n", dev_name(dev),
2342 				 __func__, retval);
2343 	}
2344 
2345 	/* have the device type specific function add its stuff */
2346 	if (dev->type && dev->type->uevent) {
2347 		retval = dev->type->uevent(dev, env);
2348 		if (retval)
2349 			pr_debug("device: '%s': %s: dev_type uevent() "
2350 				 "returned %d\n", dev_name(dev),
2351 				 __func__, retval);
2352 	}
2353 
2354 	return retval;
2355 }
2356 
2357 static const struct kset_uevent_ops device_uevent_ops = {
2358 	.filter =	dev_uevent_filter,
2359 	.name =		dev_uevent_name,
2360 	.uevent =	dev_uevent,
2361 };
2362 
2363 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2364 			   char *buf)
2365 {
2366 	struct kobject *top_kobj;
2367 	struct kset *kset;
2368 	struct kobj_uevent_env *env = NULL;
2369 	int i;
2370 	int len = 0;
2371 	int retval;
2372 
2373 	/* search the kset, the device belongs to */
2374 	top_kobj = &dev->kobj;
2375 	while (!top_kobj->kset && top_kobj->parent)
2376 		top_kobj = top_kobj->parent;
2377 	if (!top_kobj->kset)
2378 		goto out;
2379 
2380 	kset = top_kobj->kset;
2381 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2382 		goto out;
2383 
2384 	/* respect filter */
2385 	if (kset->uevent_ops && kset->uevent_ops->filter)
2386 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
2387 			goto out;
2388 
2389 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2390 	if (!env)
2391 		return -ENOMEM;
2392 
2393 	/* let the kset specific function add its keys */
2394 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2395 	if (retval)
2396 		goto out;
2397 
2398 	/* copy keys to file */
2399 	for (i = 0; i < env->envp_idx; i++)
2400 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2401 out:
2402 	kfree(env);
2403 	return len;
2404 }
2405 
2406 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2407 			    const char *buf, size_t count)
2408 {
2409 	int rc;
2410 
2411 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2412 
2413 	if (rc) {
2414 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
2415 		return rc;
2416 	}
2417 
2418 	return count;
2419 }
2420 static DEVICE_ATTR_RW(uevent);
2421 
2422 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2423 			   char *buf)
2424 {
2425 	bool val;
2426 
2427 	device_lock(dev);
2428 	val = !dev->offline;
2429 	device_unlock(dev);
2430 	return sysfs_emit(buf, "%u\n", val);
2431 }
2432 
2433 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2434 			    const char *buf, size_t count)
2435 {
2436 	bool val;
2437 	int ret;
2438 
2439 	ret = strtobool(buf, &val);
2440 	if (ret < 0)
2441 		return ret;
2442 
2443 	ret = lock_device_hotplug_sysfs();
2444 	if (ret)
2445 		return ret;
2446 
2447 	ret = val ? device_online(dev) : device_offline(dev);
2448 	unlock_device_hotplug();
2449 	return ret < 0 ? ret : count;
2450 }
2451 static DEVICE_ATTR_RW(online);
2452 
2453 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2454 			      char *buf)
2455 {
2456 	const char *loc;
2457 
2458 	switch (dev->removable) {
2459 	case DEVICE_REMOVABLE:
2460 		loc = "removable";
2461 		break;
2462 	case DEVICE_FIXED:
2463 		loc = "fixed";
2464 		break;
2465 	default:
2466 		loc = "unknown";
2467 	}
2468 	return sysfs_emit(buf, "%s\n", loc);
2469 }
2470 static DEVICE_ATTR_RO(removable);
2471 
2472 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2473 {
2474 	return sysfs_create_groups(&dev->kobj, groups);
2475 }
2476 EXPORT_SYMBOL_GPL(device_add_groups);
2477 
2478 void device_remove_groups(struct device *dev,
2479 			  const struct attribute_group **groups)
2480 {
2481 	sysfs_remove_groups(&dev->kobj, groups);
2482 }
2483 EXPORT_SYMBOL_GPL(device_remove_groups);
2484 
2485 union device_attr_group_devres {
2486 	const struct attribute_group *group;
2487 	const struct attribute_group **groups;
2488 };
2489 
2490 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2491 {
2492 	return ((union device_attr_group_devres *)res)->group == data;
2493 }
2494 
2495 static void devm_attr_group_remove(struct device *dev, void *res)
2496 {
2497 	union device_attr_group_devres *devres = res;
2498 	const struct attribute_group *group = devres->group;
2499 
2500 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2501 	sysfs_remove_group(&dev->kobj, group);
2502 }
2503 
2504 static void devm_attr_groups_remove(struct device *dev, void *res)
2505 {
2506 	union device_attr_group_devres *devres = res;
2507 	const struct attribute_group **groups = devres->groups;
2508 
2509 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2510 	sysfs_remove_groups(&dev->kobj, groups);
2511 }
2512 
2513 /**
2514  * devm_device_add_group - given a device, create a managed attribute group
2515  * @dev:	The device to create the group for
2516  * @grp:	The attribute group to create
2517  *
2518  * This function creates a group for the first time.  It will explicitly
2519  * warn and error if any of the attribute files being created already exist.
2520  *
2521  * Returns 0 on success or error code on failure.
2522  */
2523 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2524 {
2525 	union device_attr_group_devres *devres;
2526 	int error;
2527 
2528 	devres = devres_alloc(devm_attr_group_remove,
2529 			      sizeof(*devres), GFP_KERNEL);
2530 	if (!devres)
2531 		return -ENOMEM;
2532 
2533 	error = sysfs_create_group(&dev->kobj, grp);
2534 	if (error) {
2535 		devres_free(devres);
2536 		return error;
2537 	}
2538 
2539 	devres->group = grp;
2540 	devres_add(dev, devres);
2541 	return 0;
2542 }
2543 EXPORT_SYMBOL_GPL(devm_device_add_group);
2544 
2545 /**
2546  * devm_device_remove_group: remove a managed group from a device
2547  * @dev:	device to remove the group from
2548  * @grp:	group to remove
2549  *
2550  * This function removes a group of attributes from a device. The attributes
2551  * previously have to have been created for this group, otherwise it will fail.
2552  */
2553 void devm_device_remove_group(struct device *dev,
2554 			      const struct attribute_group *grp)
2555 {
2556 	WARN_ON(devres_release(dev, devm_attr_group_remove,
2557 			       devm_attr_group_match,
2558 			       /* cast away const */ (void *)grp));
2559 }
2560 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2561 
2562 /**
2563  * devm_device_add_groups - create a bunch of managed attribute groups
2564  * @dev:	The device to create the group for
2565  * @groups:	The attribute groups to create, NULL terminated
2566  *
2567  * This function creates a bunch of managed attribute groups.  If an error
2568  * occurs when creating a group, all previously created groups will be
2569  * removed, unwinding everything back to the original state when this
2570  * function was called.  It will explicitly warn and error if any of the
2571  * attribute files being created already exist.
2572  *
2573  * Returns 0 on success or error code from sysfs_create_group on failure.
2574  */
2575 int devm_device_add_groups(struct device *dev,
2576 			   const struct attribute_group **groups)
2577 {
2578 	union device_attr_group_devres *devres;
2579 	int error;
2580 
2581 	devres = devres_alloc(devm_attr_groups_remove,
2582 			      sizeof(*devres), GFP_KERNEL);
2583 	if (!devres)
2584 		return -ENOMEM;
2585 
2586 	error = sysfs_create_groups(&dev->kobj, groups);
2587 	if (error) {
2588 		devres_free(devres);
2589 		return error;
2590 	}
2591 
2592 	devres->groups = groups;
2593 	devres_add(dev, devres);
2594 	return 0;
2595 }
2596 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2597 
2598 /**
2599  * devm_device_remove_groups - remove a list of managed groups
2600  *
2601  * @dev:	The device for the groups to be removed from
2602  * @groups:	NULL terminated list of groups to be removed
2603  *
2604  * If groups is not NULL, remove the specified groups from the device.
2605  */
2606 void devm_device_remove_groups(struct device *dev,
2607 			       const struct attribute_group **groups)
2608 {
2609 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2610 			       devm_attr_group_match,
2611 			       /* cast away const */ (void *)groups));
2612 }
2613 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2614 
2615 static int device_add_attrs(struct device *dev)
2616 {
2617 	struct class *class = dev->class;
2618 	const struct device_type *type = dev->type;
2619 	int error;
2620 
2621 	if (class) {
2622 		error = device_add_groups(dev, class->dev_groups);
2623 		if (error)
2624 			return error;
2625 	}
2626 
2627 	if (type) {
2628 		error = device_add_groups(dev, type->groups);
2629 		if (error)
2630 			goto err_remove_class_groups;
2631 	}
2632 
2633 	error = device_add_groups(dev, dev->groups);
2634 	if (error)
2635 		goto err_remove_type_groups;
2636 
2637 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2638 		error = device_create_file(dev, &dev_attr_online);
2639 		if (error)
2640 			goto err_remove_dev_groups;
2641 	}
2642 
2643 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2644 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2645 		if (error)
2646 			goto err_remove_dev_online;
2647 	}
2648 
2649 	if (dev_removable_is_valid(dev)) {
2650 		error = device_create_file(dev, &dev_attr_removable);
2651 		if (error)
2652 			goto err_remove_dev_waiting_for_supplier;
2653 	}
2654 
2655 	return 0;
2656 
2657  err_remove_dev_waiting_for_supplier:
2658 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2659  err_remove_dev_online:
2660 	device_remove_file(dev, &dev_attr_online);
2661  err_remove_dev_groups:
2662 	device_remove_groups(dev, dev->groups);
2663  err_remove_type_groups:
2664 	if (type)
2665 		device_remove_groups(dev, type->groups);
2666  err_remove_class_groups:
2667 	if (class)
2668 		device_remove_groups(dev, class->dev_groups);
2669 
2670 	return error;
2671 }
2672 
2673 static void device_remove_attrs(struct device *dev)
2674 {
2675 	struct class *class = dev->class;
2676 	const struct device_type *type = dev->type;
2677 
2678 	device_remove_file(dev, &dev_attr_removable);
2679 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2680 	device_remove_file(dev, &dev_attr_online);
2681 	device_remove_groups(dev, dev->groups);
2682 
2683 	if (type)
2684 		device_remove_groups(dev, type->groups);
2685 
2686 	if (class)
2687 		device_remove_groups(dev, class->dev_groups);
2688 }
2689 
2690 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2691 			char *buf)
2692 {
2693 	return print_dev_t(buf, dev->devt);
2694 }
2695 static DEVICE_ATTR_RO(dev);
2696 
2697 /* /sys/devices/ */
2698 struct kset *devices_kset;
2699 
2700 /**
2701  * devices_kset_move_before - Move device in the devices_kset's list.
2702  * @deva: Device to move.
2703  * @devb: Device @deva should come before.
2704  */
2705 static void devices_kset_move_before(struct device *deva, struct device *devb)
2706 {
2707 	if (!devices_kset)
2708 		return;
2709 	pr_debug("devices_kset: Moving %s before %s\n",
2710 		 dev_name(deva), dev_name(devb));
2711 	spin_lock(&devices_kset->list_lock);
2712 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2713 	spin_unlock(&devices_kset->list_lock);
2714 }
2715 
2716 /**
2717  * devices_kset_move_after - Move device in the devices_kset's list.
2718  * @deva: Device to move
2719  * @devb: Device @deva should come after.
2720  */
2721 static void devices_kset_move_after(struct device *deva, struct device *devb)
2722 {
2723 	if (!devices_kset)
2724 		return;
2725 	pr_debug("devices_kset: Moving %s after %s\n",
2726 		 dev_name(deva), dev_name(devb));
2727 	spin_lock(&devices_kset->list_lock);
2728 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2729 	spin_unlock(&devices_kset->list_lock);
2730 }
2731 
2732 /**
2733  * devices_kset_move_last - move the device to the end of devices_kset's list.
2734  * @dev: device to move
2735  */
2736 void devices_kset_move_last(struct device *dev)
2737 {
2738 	if (!devices_kset)
2739 		return;
2740 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2741 	spin_lock(&devices_kset->list_lock);
2742 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2743 	spin_unlock(&devices_kset->list_lock);
2744 }
2745 
2746 /**
2747  * device_create_file - create sysfs attribute file for device.
2748  * @dev: device.
2749  * @attr: device attribute descriptor.
2750  */
2751 int device_create_file(struct device *dev,
2752 		       const struct device_attribute *attr)
2753 {
2754 	int error = 0;
2755 
2756 	if (dev) {
2757 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2758 			"Attribute %s: write permission without 'store'\n",
2759 			attr->attr.name);
2760 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2761 			"Attribute %s: read permission without 'show'\n",
2762 			attr->attr.name);
2763 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2764 	}
2765 
2766 	return error;
2767 }
2768 EXPORT_SYMBOL_GPL(device_create_file);
2769 
2770 /**
2771  * device_remove_file - remove sysfs attribute file.
2772  * @dev: device.
2773  * @attr: device attribute descriptor.
2774  */
2775 void device_remove_file(struct device *dev,
2776 			const struct device_attribute *attr)
2777 {
2778 	if (dev)
2779 		sysfs_remove_file(&dev->kobj, &attr->attr);
2780 }
2781 EXPORT_SYMBOL_GPL(device_remove_file);
2782 
2783 /**
2784  * device_remove_file_self - remove sysfs attribute file from its own method.
2785  * @dev: device.
2786  * @attr: device attribute descriptor.
2787  *
2788  * See kernfs_remove_self() for details.
2789  */
2790 bool device_remove_file_self(struct device *dev,
2791 			     const struct device_attribute *attr)
2792 {
2793 	if (dev)
2794 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2795 	else
2796 		return false;
2797 }
2798 EXPORT_SYMBOL_GPL(device_remove_file_self);
2799 
2800 /**
2801  * device_create_bin_file - create sysfs binary attribute file for device.
2802  * @dev: device.
2803  * @attr: device binary attribute descriptor.
2804  */
2805 int device_create_bin_file(struct device *dev,
2806 			   const struct bin_attribute *attr)
2807 {
2808 	int error = -EINVAL;
2809 	if (dev)
2810 		error = sysfs_create_bin_file(&dev->kobj, attr);
2811 	return error;
2812 }
2813 EXPORT_SYMBOL_GPL(device_create_bin_file);
2814 
2815 /**
2816  * device_remove_bin_file - remove sysfs binary attribute file
2817  * @dev: device.
2818  * @attr: device binary attribute descriptor.
2819  */
2820 void device_remove_bin_file(struct device *dev,
2821 			    const struct bin_attribute *attr)
2822 {
2823 	if (dev)
2824 		sysfs_remove_bin_file(&dev->kobj, attr);
2825 }
2826 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2827 
2828 static void klist_children_get(struct klist_node *n)
2829 {
2830 	struct device_private *p = to_device_private_parent(n);
2831 	struct device *dev = p->device;
2832 
2833 	get_device(dev);
2834 }
2835 
2836 static void klist_children_put(struct klist_node *n)
2837 {
2838 	struct device_private *p = to_device_private_parent(n);
2839 	struct device *dev = p->device;
2840 
2841 	put_device(dev);
2842 }
2843 
2844 /**
2845  * device_initialize - init device structure.
2846  * @dev: device.
2847  *
2848  * This prepares the device for use by other layers by initializing
2849  * its fields.
2850  * It is the first half of device_register(), if called by
2851  * that function, though it can also be called separately, so one
2852  * may use @dev's fields. In particular, get_device()/put_device()
2853  * may be used for reference counting of @dev after calling this
2854  * function.
2855  *
2856  * All fields in @dev must be initialized by the caller to 0, except
2857  * for those explicitly set to some other value.  The simplest
2858  * approach is to use kzalloc() to allocate the structure containing
2859  * @dev.
2860  *
2861  * NOTE: Use put_device() to give up your reference instead of freeing
2862  * @dev directly once you have called this function.
2863  */
2864 void device_initialize(struct device *dev)
2865 {
2866 	dev->kobj.kset = devices_kset;
2867 	kobject_init(&dev->kobj, &device_ktype);
2868 	INIT_LIST_HEAD(&dev->dma_pools);
2869 	mutex_init(&dev->mutex);
2870 #ifdef CONFIG_PROVE_LOCKING
2871 	mutex_init(&dev->lockdep_mutex);
2872 #endif
2873 	lockdep_set_novalidate_class(&dev->mutex);
2874 	spin_lock_init(&dev->devres_lock);
2875 	INIT_LIST_HEAD(&dev->devres_head);
2876 	device_pm_init(dev);
2877 	set_dev_node(dev, -1);
2878 #ifdef CONFIG_GENERIC_MSI_IRQ
2879 	raw_spin_lock_init(&dev->msi_lock);
2880 	INIT_LIST_HEAD(&dev->msi_list);
2881 #endif
2882 	INIT_LIST_HEAD(&dev->links.consumers);
2883 	INIT_LIST_HEAD(&dev->links.suppliers);
2884 	INIT_LIST_HEAD(&dev->links.defer_sync);
2885 	dev->links.status = DL_DEV_NO_DRIVER;
2886 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2887     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2888     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2889 	dev->dma_coherent = dma_default_coherent;
2890 #endif
2891 #ifdef CONFIG_SWIOTLB
2892 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
2893 #endif
2894 }
2895 EXPORT_SYMBOL_GPL(device_initialize);
2896 
2897 struct kobject *virtual_device_parent(struct device *dev)
2898 {
2899 	static struct kobject *virtual_dir = NULL;
2900 
2901 	if (!virtual_dir)
2902 		virtual_dir = kobject_create_and_add("virtual",
2903 						     &devices_kset->kobj);
2904 
2905 	return virtual_dir;
2906 }
2907 
2908 struct class_dir {
2909 	struct kobject kobj;
2910 	struct class *class;
2911 };
2912 
2913 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2914 
2915 static void class_dir_release(struct kobject *kobj)
2916 {
2917 	struct class_dir *dir = to_class_dir(kobj);
2918 	kfree(dir);
2919 }
2920 
2921 static const
2922 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2923 {
2924 	struct class_dir *dir = to_class_dir(kobj);
2925 	return dir->class->ns_type;
2926 }
2927 
2928 static struct kobj_type class_dir_ktype = {
2929 	.release	= class_dir_release,
2930 	.sysfs_ops	= &kobj_sysfs_ops,
2931 	.child_ns_type	= class_dir_child_ns_type
2932 };
2933 
2934 static struct kobject *
2935 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2936 {
2937 	struct class_dir *dir;
2938 	int retval;
2939 
2940 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2941 	if (!dir)
2942 		return ERR_PTR(-ENOMEM);
2943 
2944 	dir->class = class;
2945 	kobject_init(&dir->kobj, &class_dir_ktype);
2946 
2947 	dir->kobj.kset = &class->p->glue_dirs;
2948 
2949 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2950 	if (retval < 0) {
2951 		kobject_put(&dir->kobj);
2952 		return ERR_PTR(retval);
2953 	}
2954 	return &dir->kobj;
2955 }
2956 
2957 static DEFINE_MUTEX(gdp_mutex);
2958 
2959 static struct kobject *get_device_parent(struct device *dev,
2960 					 struct device *parent)
2961 {
2962 	if (dev->class) {
2963 		struct kobject *kobj = NULL;
2964 		struct kobject *parent_kobj;
2965 		struct kobject *k;
2966 
2967 #ifdef CONFIG_BLOCK
2968 		/* block disks show up in /sys/block */
2969 		if (sysfs_deprecated && dev->class == &block_class) {
2970 			if (parent && parent->class == &block_class)
2971 				return &parent->kobj;
2972 			return &block_class.p->subsys.kobj;
2973 		}
2974 #endif
2975 
2976 		/*
2977 		 * If we have no parent, we live in "virtual".
2978 		 * Class-devices with a non class-device as parent, live
2979 		 * in a "glue" directory to prevent namespace collisions.
2980 		 */
2981 		if (parent == NULL)
2982 			parent_kobj = virtual_device_parent(dev);
2983 		else if (parent->class && !dev->class->ns_type)
2984 			return &parent->kobj;
2985 		else
2986 			parent_kobj = &parent->kobj;
2987 
2988 		mutex_lock(&gdp_mutex);
2989 
2990 		/* find our class-directory at the parent and reference it */
2991 		spin_lock(&dev->class->p->glue_dirs.list_lock);
2992 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2993 			if (k->parent == parent_kobj) {
2994 				kobj = kobject_get(k);
2995 				break;
2996 			}
2997 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2998 		if (kobj) {
2999 			mutex_unlock(&gdp_mutex);
3000 			return kobj;
3001 		}
3002 
3003 		/* or create a new class-directory at the parent device */
3004 		k = class_dir_create_and_add(dev->class, parent_kobj);
3005 		/* do not emit an uevent for this simple "glue" directory */
3006 		mutex_unlock(&gdp_mutex);
3007 		return k;
3008 	}
3009 
3010 	/* subsystems can specify a default root directory for their devices */
3011 	if (!parent && dev->bus && dev->bus->dev_root)
3012 		return &dev->bus->dev_root->kobj;
3013 
3014 	if (parent)
3015 		return &parent->kobj;
3016 	return NULL;
3017 }
3018 
3019 static inline bool live_in_glue_dir(struct kobject *kobj,
3020 				    struct device *dev)
3021 {
3022 	if (!kobj || !dev->class ||
3023 	    kobj->kset != &dev->class->p->glue_dirs)
3024 		return false;
3025 	return true;
3026 }
3027 
3028 static inline struct kobject *get_glue_dir(struct device *dev)
3029 {
3030 	return dev->kobj.parent;
3031 }
3032 
3033 /*
3034  * make sure cleaning up dir as the last step, we need to make
3035  * sure .release handler of kobject is run with holding the
3036  * global lock
3037  */
3038 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3039 {
3040 	unsigned int ref;
3041 
3042 	/* see if we live in a "glue" directory */
3043 	if (!live_in_glue_dir(glue_dir, dev))
3044 		return;
3045 
3046 	mutex_lock(&gdp_mutex);
3047 	/**
3048 	 * There is a race condition between removing glue directory
3049 	 * and adding a new device under the glue directory.
3050 	 *
3051 	 * CPU1:                                         CPU2:
3052 	 *
3053 	 * device_add()
3054 	 *   get_device_parent()
3055 	 *     class_dir_create_and_add()
3056 	 *       kobject_add_internal()
3057 	 *         create_dir()    // create glue_dir
3058 	 *
3059 	 *                                               device_add()
3060 	 *                                                 get_device_parent()
3061 	 *                                                   kobject_get() // get glue_dir
3062 	 *
3063 	 * device_del()
3064 	 *   cleanup_glue_dir()
3065 	 *     kobject_del(glue_dir)
3066 	 *
3067 	 *                                               kobject_add()
3068 	 *                                                 kobject_add_internal()
3069 	 *                                                   create_dir() // in glue_dir
3070 	 *                                                     sysfs_create_dir_ns()
3071 	 *                                                       kernfs_create_dir_ns(sd)
3072 	 *
3073 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3074 	 *       sysfs_put()        // free glue_dir->sd
3075 	 *
3076 	 *                                                         // sd is freed
3077 	 *                                                         kernfs_new_node(sd)
3078 	 *                                                           kernfs_get(glue_dir)
3079 	 *                                                           kernfs_add_one()
3080 	 *                                                           kernfs_put()
3081 	 *
3082 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3083 	 * a new device under glue dir, the glue_dir kobject reference count
3084 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3085 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3086 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3087 	 *
3088 	 * Then the CPU2 will see a stale "empty" but still potentially used
3089 	 * glue dir around in kernfs_new_node().
3090 	 *
3091 	 * In order to avoid this happening, we also should make sure that
3092 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3093 	 * for glue_dir kobj is 1.
3094 	 */
3095 	ref = kref_read(&glue_dir->kref);
3096 	if (!kobject_has_children(glue_dir) && !--ref)
3097 		kobject_del(glue_dir);
3098 	kobject_put(glue_dir);
3099 	mutex_unlock(&gdp_mutex);
3100 }
3101 
3102 static int device_add_class_symlinks(struct device *dev)
3103 {
3104 	struct device_node *of_node = dev_of_node(dev);
3105 	int error;
3106 
3107 	if (of_node) {
3108 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3109 		if (error)
3110 			dev_warn(dev, "Error %d creating of_node link\n",error);
3111 		/* An error here doesn't warrant bringing down the device */
3112 	}
3113 
3114 	if (!dev->class)
3115 		return 0;
3116 
3117 	error = sysfs_create_link(&dev->kobj,
3118 				  &dev->class->p->subsys.kobj,
3119 				  "subsystem");
3120 	if (error)
3121 		goto out_devnode;
3122 
3123 	if (dev->parent && device_is_not_partition(dev)) {
3124 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3125 					  "device");
3126 		if (error)
3127 			goto out_subsys;
3128 	}
3129 
3130 #ifdef CONFIG_BLOCK
3131 	/* /sys/block has directories and does not need symlinks */
3132 	if (sysfs_deprecated && dev->class == &block_class)
3133 		return 0;
3134 #endif
3135 
3136 	/* link in the class directory pointing to the device */
3137 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3138 				  &dev->kobj, dev_name(dev));
3139 	if (error)
3140 		goto out_device;
3141 
3142 	return 0;
3143 
3144 out_device:
3145 	sysfs_remove_link(&dev->kobj, "device");
3146 
3147 out_subsys:
3148 	sysfs_remove_link(&dev->kobj, "subsystem");
3149 out_devnode:
3150 	sysfs_remove_link(&dev->kobj, "of_node");
3151 	return error;
3152 }
3153 
3154 static void device_remove_class_symlinks(struct device *dev)
3155 {
3156 	if (dev_of_node(dev))
3157 		sysfs_remove_link(&dev->kobj, "of_node");
3158 
3159 	if (!dev->class)
3160 		return;
3161 
3162 	if (dev->parent && device_is_not_partition(dev))
3163 		sysfs_remove_link(&dev->kobj, "device");
3164 	sysfs_remove_link(&dev->kobj, "subsystem");
3165 #ifdef CONFIG_BLOCK
3166 	if (sysfs_deprecated && dev->class == &block_class)
3167 		return;
3168 #endif
3169 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3170 }
3171 
3172 /**
3173  * dev_set_name - set a device name
3174  * @dev: device
3175  * @fmt: format string for the device's name
3176  */
3177 int dev_set_name(struct device *dev, const char *fmt, ...)
3178 {
3179 	va_list vargs;
3180 	int err;
3181 
3182 	va_start(vargs, fmt);
3183 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3184 	va_end(vargs);
3185 	return err;
3186 }
3187 EXPORT_SYMBOL_GPL(dev_set_name);
3188 
3189 /**
3190  * device_to_dev_kobj - select a /sys/dev/ directory for the device
3191  * @dev: device
3192  *
3193  * By default we select char/ for new entries.  Setting class->dev_obj
3194  * to NULL prevents an entry from being created.  class->dev_kobj must
3195  * be set (or cleared) before any devices are registered to the class
3196  * otherwise device_create_sys_dev_entry() and
3197  * device_remove_sys_dev_entry() will disagree about the presence of
3198  * the link.
3199  */
3200 static struct kobject *device_to_dev_kobj(struct device *dev)
3201 {
3202 	struct kobject *kobj;
3203 
3204 	if (dev->class)
3205 		kobj = dev->class->dev_kobj;
3206 	else
3207 		kobj = sysfs_dev_char_kobj;
3208 
3209 	return kobj;
3210 }
3211 
3212 static int device_create_sys_dev_entry(struct device *dev)
3213 {
3214 	struct kobject *kobj = device_to_dev_kobj(dev);
3215 	int error = 0;
3216 	char devt_str[15];
3217 
3218 	if (kobj) {
3219 		format_dev_t(devt_str, dev->devt);
3220 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3221 	}
3222 
3223 	return error;
3224 }
3225 
3226 static void device_remove_sys_dev_entry(struct device *dev)
3227 {
3228 	struct kobject *kobj = device_to_dev_kobj(dev);
3229 	char devt_str[15];
3230 
3231 	if (kobj) {
3232 		format_dev_t(devt_str, dev->devt);
3233 		sysfs_remove_link(kobj, devt_str);
3234 	}
3235 }
3236 
3237 static int device_private_init(struct device *dev)
3238 {
3239 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3240 	if (!dev->p)
3241 		return -ENOMEM;
3242 	dev->p->device = dev;
3243 	klist_init(&dev->p->klist_children, klist_children_get,
3244 		   klist_children_put);
3245 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3246 	return 0;
3247 }
3248 
3249 /**
3250  * device_add - add device to device hierarchy.
3251  * @dev: device.
3252  *
3253  * This is part 2 of device_register(), though may be called
3254  * separately _iff_ device_initialize() has been called separately.
3255  *
3256  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3257  * to the global and sibling lists for the device, then
3258  * adds it to the other relevant subsystems of the driver model.
3259  *
3260  * Do not call this routine or device_register() more than once for
3261  * any device structure.  The driver model core is not designed to work
3262  * with devices that get unregistered and then spring back to life.
3263  * (Among other things, it's very hard to guarantee that all references
3264  * to the previous incarnation of @dev have been dropped.)  Allocate
3265  * and register a fresh new struct device instead.
3266  *
3267  * NOTE: _Never_ directly free @dev after calling this function, even
3268  * if it returned an error! Always use put_device() to give up your
3269  * reference instead.
3270  *
3271  * Rule of thumb is: if device_add() succeeds, you should call
3272  * device_del() when you want to get rid of it. If device_add() has
3273  * *not* succeeded, use *only* put_device() to drop the reference
3274  * count.
3275  */
3276 int device_add(struct device *dev)
3277 {
3278 	struct device *parent;
3279 	struct kobject *kobj;
3280 	struct class_interface *class_intf;
3281 	int error = -EINVAL;
3282 	struct kobject *glue_dir = NULL;
3283 
3284 	dev = get_device(dev);
3285 	if (!dev)
3286 		goto done;
3287 
3288 	if (!dev->p) {
3289 		error = device_private_init(dev);
3290 		if (error)
3291 			goto done;
3292 	}
3293 
3294 	/*
3295 	 * for statically allocated devices, which should all be converted
3296 	 * some day, we need to initialize the name. We prevent reading back
3297 	 * the name, and force the use of dev_name()
3298 	 */
3299 	if (dev->init_name) {
3300 		dev_set_name(dev, "%s", dev->init_name);
3301 		dev->init_name = NULL;
3302 	}
3303 
3304 	/* subsystems can specify simple device enumeration */
3305 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3306 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3307 
3308 	if (!dev_name(dev)) {
3309 		error = -EINVAL;
3310 		goto name_error;
3311 	}
3312 
3313 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3314 
3315 	parent = get_device(dev->parent);
3316 	kobj = get_device_parent(dev, parent);
3317 	if (IS_ERR(kobj)) {
3318 		error = PTR_ERR(kobj);
3319 		goto parent_error;
3320 	}
3321 	if (kobj)
3322 		dev->kobj.parent = kobj;
3323 
3324 	/* use parent numa_node */
3325 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3326 		set_dev_node(dev, dev_to_node(parent));
3327 
3328 	/* first, register with generic layer. */
3329 	/* we require the name to be set before, and pass NULL */
3330 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3331 	if (error) {
3332 		glue_dir = get_glue_dir(dev);
3333 		goto Error;
3334 	}
3335 
3336 	/* notify platform of device entry */
3337 	device_platform_notify(dev);
3338 
3339 	error = device_create_file(dev, &dev_attr_uevent);
3340 	if (error)
3341 		goto attrError;
3342 
3343 	error = device_add_class_symlinks(dev);
3344 	if (error)
3345 		goto SymlinkError;
3346 	error = device_add_attrs(dev);
3347 	if (error)
3348 		goto AttrsError;
3349 	error = bus_add_device(dev);
3350 	if (error)
3351 		goto BusError;
3352 	error = dpm_sysfs_add(dev);
3353 	if (error)
3354 		goto DPMError;
3355 	device_pm_add(dev);
3356 
3357 	if (MAJOR(dev->devt)) {
3358 		error = device_create_file(dev, &dev_attr_dev);
3359 		if (error)
3360 			goto DevAttrError;
3361 
3362 		error = device_create_sys_dev_entry(dev);
3363 		if (error)
3364 			goto SysEntryError;
3365 
3366 		devtmpfs_create_node(dev);
3367 	}
3368 
3369 	/* Notify clients of device addition.  This call must come
3370 	 * after dpm_sysfs_add() and before kobject_uevent().
3371 	 */
3372 	if (dev->bus)
3373 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3374 					     BUS_NOTIFY_ADD_DEVICE, dev);
3375 
3376 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3377 
3378 	/*
3379 	 * Check if any of the other devices (consumers) have been waiting for
3380 	 * this device (supplier) to be added so that they can create a device
3381 	 * link to it.
3382 	 *
3383 	 * This needs to happen after device_pm_add() because device_link_add()
3384 	 * requires the supplier be registered before it's called.
3385 	 *
3386 	 * But this also needs to happen before bus_probe_device() to make sure
3387 	 * waiting consumers can link to it before the driver is bound to the
3388 	 * device and the driver sync_state callback is called for this device.
3389 	 */
3390 	if (dev->fwnode && !dev->fwnode->dev) {
3391 		dev->fwnode->dev = dev;
3392 		fw_devlink_link_device(dev);
3393 	}
3394 
3395 	bus_probe_device(dev);
3396 
3397 	/*
3398 	 * If all driver registration is done and a newly added device doesn't
3399 	 * match with any driver, don't block its consumers from probing in
3400 	 * case the consumer device is able to operate without this supplier.
3401 	 */
3402 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3403 		fw_devlink_unblock_consumers(dev);
3404 
3405 	if (parent)
3406 		klist_add_tail(&dev->p->knode_parent,
3407 			       &parent->p->klist_children);
3408 
3409 	if (dev->class) {
3410 		mutex_lock(&dev->class->p->mutex);
3411 		/* tie the class to the device */
3412 		klist_add_tail(&dev->p->knode_class,
3413 			       &dev->class->p->klist_devices);
3414 
3415 		/* notify any interfaces that the device is here */
3416 		list_for_each_entry(class_intf,
3417 				    &dev->class->p->interfaces, node)
3418 			if (class_intf->add_dev)
3419 				class_intf->add_dev(dev, class_intf);
3420 		mutex_unlock(&dev->class->p->mutex);
3421 	}
3422 done:
3423 	put_device(dev);
3424 	return error;
3425  SysEntryError:
3426 	if (MAJOR(dev->devt))
3427 		device_remove_file(dev, &dev_attr_dev);
3428  DevAttrError:
3429 	device_pm_remove(dev);
3430 	dpm_sysfs_remove(dev);
3431  DPMError:
3432 	bus_remove_device(dev);
3433  BusError:
3434 	device_remove_attrs(dev);
3435  AttrsError:
3436 	device_remove_class_symlinks(dev);
3437  SymlinkError:
3438 	device_remove_file(dev, &dev_attr_uevent);
3439  attrError:
3440 	device_platform_notify_remove(dev);
3441 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3442 	glue_dir = get_glue_dir(dev);
3443 	kobject_del(&dev->kobj);
3444  Error:
3445 	cleanup_glue_dir(dev, glue_dir);
3446 parent_error:
3447 	put_device(parent);
3448 name_error:
3449 	kfree(dev->p);
3450 	dev->p = NULL;
3451 	goto done;
3452 }
3453 EXPORT_SYMBOL_GPL(device_add);
3454 
3455 /**
3456  * device_register - register a device with the system.
3457  * @dev: pointer to the device structure
3458  *
3459  * This happens in two clean steps - initialize the device
3460  * and add it to the system. The two steps can be called
3461  * separately, but this is the easiest and most common.
3462  * I.e. you should only call the two helpers separately if
3463  * have a clearly defined need to use and refcount the device
3464  * before it is added to the hierarchy.
3465  *
3466  * For more information, see the kerneldoc for device_initialize()
3467  * and device_add().
3468  *
3469  * NOTE: _Never_ directly free @dev after calling this function, even
3470  * if it returned an error! Always use put_device() to give up the
3471  * reference initialized in this function instead.
3472  */
3473 int device_register(struct device *dev)
3474 {
3475 	device_initialize(dev);
3476 	return device_add(dev);
3477 }
3478 EXPORT_SYMBOL_GPL(device_register);
3479 
3480 /**
3481  * get_device - increment reference count for device.
3482  * @dev: device.
3483  *
3484  * This simply forwards the call to kobject_get(), though
3485  * we do take care to provide for the case that we get a NULL
3486  * pointer passed in.
3487  */
3488 struct device *get_device(struct device *dev)
3489 {
3490 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3491 }
3492 EXPORT_SYMBOL_GPL(get_device);
3493 
3494 /**
3495  * put_device - decrement reference count.
3496  * @dev: device in question.
3497  */
3498 void put_device(struct device *dev)
3499 {
3500 	/* might_sleep(); */
3501 	if (dev)
3502 		kobject_put(&dev->kobj);
3503 }
3504 EXPORT_SYMBOL_GPL(put_device);
3505 
3506 bool kill_device(struct device *dev)
3507 {
3508 	/*
3509 	 * Require the device lock and set the "dead" flag to guarantee that
3510 	 * the update behavior is consistent with the other bitfields near
3511 	 * it and that we cannot have an asynchronous probe routine trying
3512 	 * to run while we are tearing out the bus/class/sysfs from
3513 	 * underneath the device.
3514 	 */
3515 	device_lock_assert(dev);
3516 
3517 	if (dev->p->dead)
3518 		return false;
3519 	dev->p->dead = true;
3520 	return true;
3521 }
3522 EXPORT_SYMBOL_GPL(kill_device);
3523 
3524 /**
3525  * device_del - delete device from system.
3526  * @dev: device.
3527  *
3528  * This is the first part of the device unregistration
3529  * sequence. This removes the device from the lists we control
3530  * from here, has it removed from the other driver model
3531  * subsystems it was added to in device_add(), and removes it
3532  * from the kobject hierarchy.
3533  *
3534  * NOTE: this should be called manually _iff_ device_add() was
3535  * also called manually.
3536  */
3537 void device_del(struct device *dev)
3538 {
3539 	struct device *parent = dev->parent;
3540 	struct kobject *glue_dir = NULL;
3541 	struct class_interface *class_intf;
3542 	unsigned int noio_flag;
3543 
3544 	device_lock(dev);
3545 	kill_device(dev);
3546 	device_unlock(dev);
3547 
3548 	if (dev->fwnode && dev->fwnode->dev == dev)
3549 		dev->fwnode->dev = NULL;
3550 
3551 	/* Notify clients of device removal.  This call must come
3552 	 * before dpm_sysfs_remove().
3553 	 */
3554 	noio_flag = memalloc_noio_save();
3555 	if (dev->bus)
3556 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3557 					     BUS_NOTIFY_DEL_DEVICE, dev);
3558 
3559 	dpm_sysfs_remove(dev);
3560 	if (parent)
3561 		klist_del(&dev->p->knode_parent);
3562 	if (MAJOR(dev->devt)) {
3563 		devtmpfs_delete_node(dev);
3564 		device_remove_sys_dev_entry(dev);
3565 		device_remove_file(dev, &dev_attr_dev);
3566 	}
3567 	if (dev->class) {
3568 		device_remove_class_symlinks(dev);
3569 
3570 		mutex_lock(&dev->class->p->mutex);
3571 		/* notify any interfaces that the device is now gone */
3572 		list_for_each_entry(class_intf,
3573 				    &dev->class->p->interfaces, node)
3574 			if (class_intf->remove_dev)
3575 				class_intf->remove_dev(dev, class_intf);
3576 		/* remove the device from the class list */
3577 		klist_del(&dev->p->knode_class);
3578 		mutex_unlock(&dev->class->p->mutex);
3579 	}
3580 	device_remove_file(dev, &dev_attr_uevent);
3581 	device_remove_attrs(dev);
3582 	bus_remove_device(dev);
3583 	device_pm_remove(dev);
3584 	driver_deferred_probe_del(dev);
3585 	device_platform_notify_remove(dev);
3586 	device_remove_properties(dev);
3587 	device_links_purge(dev);
3588 
3589 	if (dev->bus)
3590 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3591 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3592 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3593 	glue_dir = get_glue_dir(dev);
3594 	kobject_del(&dev->kobj);
3595 	cleanup_glue_dir(dev, glue_dir);
3596 	memalloc_noio_restore(noio_flag);
3597 	put_device(parent);
3598 }
3599 EXPORT_SYMBOL_GPL(device_del);
3600 
3601 /**
3602  * device_unregister - unregister device from system.
3603  * @dev: device going away.
3604  *
3605  * We do this in two parts, like we do device_register(). First,
3606  * we remove it from all the subsystems with device_del(), then
3607  * we decrement the reference count via put_device(). If that
3608  * is the final reference count, the device will be cleaned up
3609  * via device_release() above. Otherwise, the structure will
3610  * stick around until the final reference to the device is dropped.
3611  */
3612 void device_unregister(struct device *dev)
3613 {
3614 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3615 	device_del(dev);
3616 	put_device(dev);
3617 }
3618 EXPORT_SYMBOL_GPL(device_unregister);
3619 
3620 static struct device *prev_device(struct klist_iter *i)
3621 {
3622 	struct klist_node *n = klist_prev(i);
3623 	struct device *dev = NULL;
3624 	struct device_private *p;
3625 
3626 	if (n) {
3627 		p = to_device_private_parent(n);
3628 		dev = p->device;
3629 	}
3630 	return dev;
3631 }
3632 
3633 static struct device *next_device(struct klist_iter *i)
3634 {
3635 	struct klist_node *n = klist_next(i);
3636 	struct device *dev = NULL;
3637 	struct device_private *p;
3638 
3639 	if (n) {
3640 		p = to_device_private_parent(n);
3641 		dev = p->device;
3642 	}
3643 	return dev;
3644 }
3645 
3646 /**
3647  * device_get_devnode - path of device node file
3648  * @dev: device
3649  * @mode: returned file access mode
3650  * @uid: returned file owner
3651  * @gid: returned file group
3652  * @tmp: possibly allocated string
3653  *
3654  * Return the relative path of a possible device node.
3655  * Non-default names may need to allocate a memory to compose
3656  * a name. This memory is returned in tmp and needs to be
3657  * freed by the caller.
3658  */
3659 const char *device_get_devnode(struct device *dev,
3660 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3661 			       const char **tmp)
3662 {
3663 	char *s;
3664 
3665 	*tmp = NULL;
3666 
3667 	/* the device type may provide a specific name */
3668 	if (dev->type && dev->type->devnode)
3669 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3670 	if (*tmp)
3671 		return *tmp;
3672 
3673 	/* the class may provide a specific name */
3674 	if (dev->class && dev->class->devnode)
3675 		*tmp = dev->class->devnode(dev, mode);
3676 	if (*tmp)
3677 		return *tmp;
3678 
3679 	/* return name without allocation, tmp == NULL */
3680 	if (strchr(dev_name(dev), '!') == NULL)
3681 		return dev_name(dev);
3682 
3683 	/* replace '!' in the name with '/' */
3684 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3685 	if (!s)
3686 		return NULL;
3687 	strreplace(s, '!', '/');
3688 	return *tmp = s;
3689 }
3690 
3691 /**
3692  * device_for_each_child - device child iterator.
3693  * @parent: parent struct device.
3694  * @fn: function to be called for each device.
3695  * @data: data for the callback.
3696  *
3697  * Iterate over @parent's child devices, and call @fn for each,
3698  * passing it @data.
3699  *
3700  * We check the return of @fn each time. If it returns anything
3701  * other than 0, we break out and return that value.
3702  */
3703 int device_for_each_child(struct device *parent, void *data,
3704 			  int (*fn)(struct device *dev, void *data))
3705 {
3706 	struct klist_iter i;
3707 	struct device *child;
3708 	int error = 0;
3709 
3710 	if (!parent->p)
3711 		return 0;
3712 
3713 	klist_iter_init(&parent->p->klist_children, &i);
3714 	while (!error && (child = next_device(&i)))
3715 		error = fn(child, data);
3716 	klist_iter_exit(&i);
3717 	return error;
3718 }
3719 EXPORT_SYMBOL_GPL(device_for_each_child);
3720 
3721 /**
3722  * device_for_each_child_reverse - device child iterator in reversed order.
3723  * @parent: parent struct device.
3724  * @fn: function to be called for each device.
3725  * @data: data for the callback.
3726  *
3727  * Iterate over @parent's child devices, and call @fn for each,
3728  * passing it @data.
3729  *
3730  * We check the return of @fn each time. If it returns anything
3731  * other than 0, we break out and return that value.
3732  */
3733 int device_for_each_child_reverse(struct device *parent, void *data,
3734 				  int (*fn)(struct device *dev, void *data))
3735 {
3736 	struct klist_iter i;
3737 	struct device *child;
3738 	int error = 0;
3739 
3740 	if (!parent->p)
3741 		return 0;
3742 
3743 	klist_iter_init(&parent->p->klist_children, &i);
3744 	while ((child = prev_device(&i)) && !error)
3745 		error = fn(child, data);
3746 	klist_iter_exit(&i);
3747 	return error;
3748 }
3749 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3750 
3751 /**
3752  * device_find_child - device iterator for locating a particular device.
3753  * @parent: parent struct device
3754  * @match: Callback function to check device
3755  * @data: Data to pass to match function
3756  *
3757  * This is similar to the device_for_each_child() function above, but it
3758  * returns a reference to a device that is 'found' for later use, as
3759  * determined by the @match callback.
3760  *
3761  * The callback should return 0 if the device doesn't match and non-zero
3762  * if it does.  If the callback returns non-zero and a reference to the
3763  * current device can be obtained, this function will return to the caller
3764  * and not iterate over any more devices.
3765  *
3766  * NOTE: you will need to drop the reference with put_device() after use.
3767  */
3768 struct device *device_find_child(struct device *parent, void *data,
3769 				 int (*match)(struct device *dev, void *data))
3770 {
3771 	struct klist_iter i;
3772 	struct device *child;
3773 
3774 	if (!parent)
3775 		return NULL;
3776 
3777 	klist_iter_init(&parent->p->klist_children, &i);
3778 	while ((child = next_device(&i)))
3779 		if (match(child, data) && get_device(child))
3780 			break;
3781 	klist_iter_exit(&i);
3782 	return child;
3783 }
3784 EXPORT_SYMBOL_GPL(device_find_child);
3785 
3786 /**
3787  * device_find_child_by_name - device iterator for locating a child device.
3788  * @parent: parent struct device
3789  * @name: name of the child device
3790  *
3791  * This is similar to the device_find_child() function above, but it
3792  * returns a reference to a device that has the name @name.
3793  *
3794  * NOTE: you will need to drop the reference with put_device() after use.
3795  */
3796 struct device *device_find_child_by_name(struct device *parent,
3797 					 const char *name)
3798 {
3799 	struct klist_iter i;
3800 	struct device *child;
3801 
3802 	if (!parent)
3803 		return NULL;
3804 
3805 	klist_iter_init(&parent->p->klist_children, &i);
3806 	while ((child = next_device(&i)))
3807 		if (sysfs_streq(dev_name(child), name) && get_device(child))
3808 			break;
3809 	klist_iter_exit(&i);
3810 	return child;
3811 }
3812 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3813 
3814 int __init devices_init(void)
3815 {
3816 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3817 	if (!devices_kset)
3818 		return -ENOMEM;
3819 	dev_kobj = kobject_create_and_add("dev", NULL);
3820 	if (!dev_kobj)
3821 		goto dev_kobj_err;
3822 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3823 	if (!sysfs_dev_block_kobj)
3824 		goto block_kobj_err;
3825 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3826 	if (!sysfs_dev_char_kobj)
3827 		goto char_kobj_err;
3828 
3829 	return 0;
3830 
3831  char_kobj_err:
3832 	kobject_put(sysfs_dev_block_kobj);
3833  block_kobj_err:
3834 	kobject_put(dev_kobj);
3835  dev_kobj_err:
3836 	kset_unregister(devices_kset);
3837 	return -ENOMEM;
3838 }
3839 
3840 static int device_check_offline(struct device *dev, void *not_used)
3841 {
3842 	int ret;
3843 
3844 	ret = device_for_each_child(dev, NULL, device_check_offline);
3845 	if (ret)
3846 		return ret;
3847 
3848 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3849 }
3850 
3851 /**
3852  * device_offline - Prepare the device for hot-removal.
3853  * @dev: Device to be put offline.
3854  *
3855  * Execute the device bus type's .offline() callback, if present, to prepare
3856  * the device for a subsequent hot-removal.  If that succeeds, the device must
3857  * not be used until either it is removed or its bus type's .online() callback
3858  * is executed.
3859  *
3860  * Call under device_hotplug_lock.
3861  */
3862 int device_offline(struct device *dev)
3863 {
3864 	int ret;
3865 
3866 	if (dev->offline_disabled)
3867 		return -EPERM;
3868 
3869 	ret = device_for_each_child(dev, NULL, device_check_offline);
3870 	if (ret)
3871 		return ret;
3872 
3873 	device_lock(dev);
3874 	if (device_supports_offline(dev)) {
3875 		if (dev->offline) {
3876 			ret = 1;
3877 		} else {
3878 			ret = dev->bus->offline(dev);
3879 			if (!ret) {
3880 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3881 				dev->offline = true;
3882 			}
3883 		}
3884 	}
3885 	device_unlock(dev);
3886 
3887 	return ret;
3888 }
3889 
3890 /**
3891  * device_online - Put the device back online after successful device_offline().
3892  * @dev: Device to be put back online.
3893  *
3894  * If device_offline() has been successfully executed for @dev, but the device
3895  * has not been removed subsequently, execute its bus type's .online() callback
3896  * to indicate that the device can be used again.
3897  *
3898  * Call under device_hotplug_lock.
3899  */
3900 int device_online(struct device *dev)
3901 {
3902 	int ret = 0;
3903 
3904 	device_lock(dev);
3905 	if (device_supports_offline(dev)) {
3906 		if (dev->offline) {
3907 			ret = dev->bus->online(dev);
3908 			if (!ret) {
3909 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3910 				dev->offline = false;
3911 			}
3912 		} else {
3913 			ret = 1;
3914 		}
3915 	}
3916 	device_unlock(dev);
3917 
3918 	return ret;
3919 }
3920 
3921 struct root_device {
3922 	struct device dev;
3923 	struct module *owner;
3924 };
3925 
3926 static inline struct root_device *to_root_device(struct device *d)
3927 {
3928 	return container_of(d, struct root_device, dev);
3929 }
3930 
3931 static void root_device_release(struct device *dev)
3932 {
3933 	kfree(to_root_device(dev));
3934 }
3935 
3936 /**
3937  * __root_device_register - allocate and register a root device
3938  * @name: root device name
3939  * @owner: owner module of the root device, usually THIS_MODULE
3940  *
3941  * This function allocates a root device and registers it
3942  * using device_register(). In order to free the returned
3943  * device, use root_device_unregister().
3944  *
3945  * Root devices are dummy devices which allow other devices
3946  * to be grouped under /sys/devices. Use this function to
3947  * allocate a root device and then use it as the parent of
3948  * any device which should appear under /sys/devices/{name}
3949  *
3950  * The /sys/devices/{name} directory will also contain a
3951  * 'module' symlink which points to the @owner directory
3952  * in sysfs.
3953  *
3954  * Returns &struct device pointer on success, or ERR_PTR() on error.
3955  *
3956  * Note: You probably want to use root_device_register().
3957  */
3958 struct device *__root_device_register(const char *name, struct module *owner)
3959 {
3960 	struct root_device *root;
3961 	int err = -ENOMEM;
3962 
3963 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3964 	if (!root)
3965 		return ERR_PTR(err);
3966 
3967 	err = dev_set_name(&root->dev, "%s", name);
3968 	if (err) {
3969 		kfree(root);
3970 		return ERR_PTR(err);
3971 	}
3972 
3973 	root->dev.release = root_device_release;
3974 
3975 	err = device_register(&root->dev);
3976 	if (err) {
3977 		put_device(&root->dev);
3978 		return ERR_PTR(err);
3979 	}
3980 
3981 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3982 	if (owner) {
3983 		struct module_kobject *mk = &owner->mkobj;
3984 
3985 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3986 		if (err) {
3987 			device_unregister(&root->dev);
3988 			return ERR_PTR(err);
3989 		}
3990 		root->owner = owner;
3991 	}
3992 #endif
3993 
3994 	return &root->dev;
3995 }
3996 EXPORT_SYMBOL_GPL(__root_device_register);
3997 
3998 /**
3999  * root_device_unregister - unregister and free a root device
4000  * @dev: device going away
4001  *
4002  * This function unregisters and cleans up a device that was created by
4003  * root_device_register().
4004  */
4005 void root_device_unregister(struct device *dev)
4006 {
4007 	struct root_device *root = to_root_device(dev);
4008 
4009 	if (root->owner)
4010 		sysfs_remove_link(&root->dev.kobj, "module");
4011 
4012 	device_unregister(dev);
4013 }
4014 EXPORT_SYMBOL_GPL(root_device_unregister);
4015 
4016 
4017 static void device_create_release(struct device *dev)
4018 {
4019 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4020 	kfree(dev);
4021 }
4022 
4023 static __printf(6, 0) struct device *
4024 device_create_groups_vargs(struct class *class, struct device *parent,
4025 			   dev_t devt, void *drvdata,
4026 			   const struct attribute_group **groups,
4027 			   const char *fmt, va_list args)
4028 {
4029 	struct device *dev = NULL;
4030 	int retval = -ENODEV;
4031 
4032 	if (class == NULL || IS_ERR(class))
4033 		goto error;
4034 
4035 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4036 	if (!dev) {
4037 		retval = -ENOMEM;
4038 		goto error;
4039 	}
4040 
4041 	device_initialize(dev);
4042 	dev->devt = devt;
4043 	dev->class = class;
4044 	dev->parent = parent;
4045 	dev->groups = groups;
4046 	dev->release = device_create_release;
4047 	dev_set_drvdata(dev, drvdata);
4048 
4049 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4050 	if (retval)
4051 		goto error;
4052 
4053 	retval = device_add(dev);
4054 	if (retval)
4055 		goto error;
4056 
4057 	return dev;
4058 
4059 error:
4060 	put_device(dev);
4061 	return ERR_PTR(retval);
4062 }
4063 
4064 /**
4065  * device_create - creates a device and registers it with sysfs
4066  * @class: pointer to the struct class that this device should be registered to
4067  * @parent: pointer to the parent struct device of this new device, if any
4068  * @devt: the dev_t for the char device to be added
4069  * @drvdata: the data to be added to the device for callbacks
4070  * @fmt: string for the device's name
4071  *
4072  * This function can be used by char device classes.  A struct device
4073  * will be created in sysfs, registered to the specified class.
4074  *
4075  * A "dev" file will be created, showing the dev_t for the device, if
4076  * the dev_t is not 0,0.
4077  * If a pointer to a parent struct device is passed in, the newly created
4078  * struct device will be a child of that device in sysfs.
4079  * The pointer to the struct device will be returned from the call.
4080  * Any further sysfs files that might be required can be created using this
4081  * pointer.
4082  *
4083  * Returns &struct device pointer on success, or ERR_PTR() on error.
4084  *
4085  * Note: the struct class passed to this function must have previously
4086  * been created with a call to class_create().
4087  */
4088 struct device *device_create(struct class *class, struct device *parent,
4089 			     dev_t devt, void *drvdata, const char *fmt, ...)
4090 {
4091 	va_list vargs;
4092 	struct device *dev;
4093 
4094 	va_start(vargs, fmt);
4095 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4096 					  fmt, vargs);
4097 	va_end(vargs);
4098 	return dev;
4099 }
4100 EXPORT_SYMBOL_GPL(device_create);
4101 
4102 /**
4103  * device_create_with_groups - creates a device and registers it with sysfs
4104  * @class: pointer to the struct class that this device should be registered to
4105  * @parent: pointer to the parent struct device of this new device, if any
4106  * @devt: the dev_t for the char device to be added
4107  * @drvdata: the data to be added to the device for callbacks
4108  * @groups: NULL-terminated list of attribute groups to be created
4109  * @fmt: string for the device's name
4110  *
4111  * This function can be used by char device classes.  A struct device
4112  * will be created in sysfs, registered to the specified class.
4113  * Additional attributes specified in the groups parameter will also
4114  * be created automatically.
4115  *
4116  * A "dev" file will be created, showing the dev_t for the device, if
4117  * the dev_t is not 0,0.
4118  * If a pointer to a parent struct device is passed in, the newly created
4119  * struct device will be a child of that device in sysfs.
4120  * The pointer to the struct device will be returned from the call.
4121  * Any further sysfs files that might be required can be created using this
4122  * pointer.
4123  *
4124  * Returns &struct device pointer on success, or ERR_PTR() on error.
4125  *
4126  * Note: the struct class passed to this function must have previously
4127  * been created with a call to class_create().
4128  */
4129 struct device *device_create_with_groups(struct class *class,
4130 					 struct device *parent, dev_t devt,
4131 					 void *drvdata,
4132 					 const struct attribute_group **groups,
4133 					 const char *fmt, ...)
4134 {
4135 	va_list vargs;
4136 	struct device *dev;
4137 
4138 	va_start(vargs, fmt);
4139 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4140 					 fmt, vargs);
4141 	va_end(vargs);
4142 	return dev;
4143 }
4144 EXPORT_SYMBOL_GPL(device_create_with_groups);
4145 
4146 /**
4147  * device_destroy - removes a device that was created with device_create()
4148  * @class: pointer to the struct class that this device was registered with
4149  * @devt: the dev_t of the device that was previously registered
4150  *
4151  * This call unregisters and cleans up a device that was created with a
4152  * call to device_create().
4153  */
4154 void device_destroy(struct class *class, dev_t devt)
4155 {
4156 	struct device *dev;
4157 
4158 	dev = class_find_device_by_devt(class, devt);
4159 	if (dev) {
4160 		put_device(dev);
4161 		device_unregister(dev);
4162 	}
4163 }
4164 EXPORT_SYMBOL_GPL(device_destroy);
4165 
4166 /**
4167  * device_rename - renames a device
4168  * @dev: the pointer to the struct device to be renamed
4169  * @new_name: the new name of the device
4170  *
4171  * It is the responsibility of the caller to provide mutual
4172  * exclusion between two different calls of device_rename
4173  * on the same device to ensure that new_name is valid and
4174  * won't conflict with other devices.
4175  *
4176  * Note: Don't call this function.  Currently, the networking layer calls this
4177  * function, but that will change.  The following text from Kay Sievers offers
4178  * some insight:
4179  *
4180  * Renaming devices is racy at many levels, symlinks and other stuff are not
4181  * replaced atomically, and you get a "move" uevent, but it's not easy to
4182  * connect the event to the old and new device. Device nodes are not renamed at
4183  * all, there isn't even support for that in the kernel now.
4184  *
4185  * In the meantime, during renaming, your target name might be taken by another
4186  * driver, creating conflicts. Or the old name is taken directly after you
4187  * renamed it -- then you get events for the same DEVPATH, before you even see
4188  * the "move" event. It's just a mess, and nothing new should ever rely on
4189  * kernel device renaming. Besides that, it's not even implemented now for
4190  * other things than (driver-core wise very simple) network devices.
4191  *
4192  * We are currently about to change network renaming in udev to completely
4193  * disallow renaming of devices in the same namespace as the kernel uses,
4194  * because we can't solve the problems properly, that arise with swapping names
4195  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4196  * be allowed to some other name than eth[0-9]*, for the aforementioned
4197  * reasons.
4198  *
4199  * Make up a "real" name in the driver before you register anything, or add
4200  * some other attributes for userspace to find the device, or use udev to add
4201  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4202  * don't even want to get into that and try to implement the missing pieces in
4203  * the core. We really have other pieces to fix in the driver core mess. :)
4204  */
4205 int device_rename(struct device *dev, const char *new_name)
4206 {
4207 	struct kobject *kobj = &dev->kobj;
4208 	char *old_device_name = NULL;
4209 	int error;
4210 
4211 	dev = get_device(dev);
4212 	if (!dev)
4213 		return -EINVAL;
4214 
4215 	dev_dbg(dev, "renaming to %s\n", new_name);
4216 
4217 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4218 	if (!old_device_name) {
4219 		error = -ENOMEM;
4220 		goto out;
4221 	}
4222 
4223 	if (dev->class) {
4224 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4225 					     kobj, old_device_name,
4226 					     new_name, kobject_namespace(kobj));
4227 		if (error)
4228 			goto out;
4229 	}
4230 
4231 	error = kobject_rename(kobj, new_name);
4232 	if (error)
4233 		goto out;
4234 
4235 out:
4236 	put_device(dev);
4237 
4238 	kfree(old_device_name);
4239 
4240 	return error;
4241 }
4242 EXPORT_SYMBOL_GPL(device_rename);
4243 
4244 static int device_move_class_links(struct device *dev,
4245 				   struct device *old_parent,
4246 				   struct device *new_parent)
4247 {
4248 	int error = 0;
4249 
4250 	if (old_parent)
4251 		sysfs_remove_link(&dev->kobj, "device");
4252 	if (new_parent)
4253 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4254 					  "device");
4255 	return error;
4256 }
4257 
4258 /**
4259  * device_move - moves a device to a new parent
4260  * @dev: the pointer to the struct device to be moved
4261  * @new_parent: the new parent of the device (can be NULL)
4262  * @dpm_order: how to reorder the dpm_list
4263  */
4264 int device_move(struct device *dev, struct device *new_parent,
4265 		enum dpm_order dpm_order)
4266 {
4267 	int error;
4268 	struct device *old_parent;
4269 	struct kobject *new_parent_kobj;
4270 
4271 	dev = get_device(dev);
4272 	if (!dev)
4273 		return -EINVAL;
4274 
4275 	device_pm_lock();
4276 	new_parent = get_device(new_parent);
4277 	new_parent_kobj = get_device_parent(dev, new_parent);
4278 	if (IS_ERR(new_parent_kobj)) {
4279 		error = PTR_ERR(new_parent_kobj);
4280 		put_device(new_parent);
4281 		goto out;
4282 	}
4283 
4284 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4285 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4286 	error = kobject_move(&dev->kobj, new_parent_kobj);
4287 	if (error) {
4288 		cleanup_glue_dir(dev, new_parent_kobj);
4289 		put_device(new_parent);
4290 		goto out;
4291 	}
4292 	old_parent = dev->parent;
4293 	dev->parent = new_parent;
4294 	if (old_parent)
4295 		klist_remove(&dev->p->knode_parent);
4296 	if (new_parent) {
4297 		klist_add_tail(&dev->p->knode_parent,
4298 			       &new_parent->p->klist_children);
4299 		set_dev_node(dev, dev_to_node(new_parent));
4300 	}
4301 
4302 	if (dev->class) {
4303 		error = device_move_class_links(dev, old_parent, new_parent);
4304 		if (error) {
4305 			/* We ignore errors on cleanup since we're hosed anyway... */
4306 			device_move_class_links(dev, new_parent, old_parent);
4307 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4308 				if (new_parent)
4309 					klist_remove(&dev->p->knode_parent);
4310 				dev->parent = old_parent;
4311 				if (old_parent) {
4312 					klist_add_tail(&dev->p->knode_parent,
4313 						       &old_parent->p->klist_children);
4314 					set_dev_node(dev, dev_to_node(old_parent));
4315 				}
4316 			}
4317 			cleanup_glue_dir(dev, new_parent_kobj);
4318 			put_device(new_parent);
4319 			goto out;
4320 		}
4321 	}
4322 	switch (dpm_order) {
4323 	case DPM_ORDER_NONE:
4324 		break;
4325 	case DPM_ORDER_DEV_AFTER_PARENT:
4326 		device_pm_move_after(dev, new_parent);
4327 		devices_kset_move_after(dev, new_parent);
4328 		break;
4329 	case DPM_ORDER_PARENT_BEFORE_DEV:
4330 		device_pm_move_before(new_parent, dev);
4331 		devices_kset_move_before(new_parent, dev);
4332 		break;
4333 	case DPM_ORDER_DEV_LAST:
4334 		device_pm_move_last(dev);
4335 		devices_kset_move_last(dev);
4336 		break;
4337 	}
4338 
4339 	put_device(old_parent);
4340 out:
4341 	device_pm_unlock();
4342 	put_device(dev);
4343 	return error;
4344 }
4345 EXPORT_SYMBOL_GPL(device_move);
4346 
4347 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4348 				     kgid_t kgid)
4349 {
4350 	struct kobject *kobj = &dev->kobj;
4351 	struct class *class = dev->class;
4352 	const struct device_type *type = dev->type;
4353 	int error;
4354 
4355 	if (class) {
4356 		/*
4357 		 * Change the device groups of the device class for @dev to
4358 		 * @kuid/@kgid.
4359 		 */
4360 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4361 						  kgid);
4362 		if (error)
4363 			return error;
4364 	}
4365 
4366 	if (type) {
4367 		/*
4368 		 * Change the device groups of the device type for @dev to
4369 		 * @kuid/@kgid.
4370 		 */
4371 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4372 						  kgid);
4373 		if (error)
4374 			return error;
4375 	}
4376 
4377 	/* Change the device groups of @dev to @kuid/@kgid. */
4378 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4379 	if (error)
4380 		return error;
4381 
4382 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4383 		/* Change online device attributes of @dev to @kuid/@kgid. */
4384 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4385 						kuid, kgid);
4386 		if (error)
4387 			return error;
4388 	}
4389 
4390 	return 0;
4391 }
4392 
4393 /**
4394  * device_change_owner - change the owner of an existing device.
4395  * @dev: device.
4396  * @kuid: new owner's kuid
4397  * @kgid: new owner's kgid
4398  *
4399  * This changes the owner of @dev and its corresponding sysfs entries to
4400  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4401  * core.
4402  *
4403  * Returns 0 on success or error code on failure.
4404  */
4405 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4406 {
4407 	int error;
4408 	struct kobject *kobj = &dev->kobj;
4409 
4410 	dev = get_device(dev);
4411 	if (!dev)
4412 		return -EINVAL;
4413 
4414 	/*
4415 	 * Change the kobject and the default attributes and groups of the
4416 	 * ktype associated with it to @kuid/@kgid.
4417 	 */
4418 	error = sysfs_change_owner(kobj, kuid, kgid);
4419 	if (error)
4420 		goto out;
4421 
4422 	/*
4423 	 * Change the uevent file for @dev to the new owner. The uevent file
4424 	 * was created in a separate step when @dev got added and we mirror
4425 	 * that step here.
4426 	 */
4427 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4428 					kgid);
4429 	if (error)
4430 		goto out;
4431 
4432 	/*
4433 	 * Change the device groups, the device groups associated with the
4434 	 * device class, and the groups associated with the device type of @dev
4435 	 * to @kuid/@kgid.
4436 	 */
4437 	error = device_attrs_change_owner(dev, kuid, kgid);
4438 	if (error)
4439 		goto out;
4440 
4441 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4442 	if (error)
4443 		goto out;
4444 
4445 #ifdef CONFIG_BLOCK
4446 	if (sysfs_deprecated && dev->class == &block_class)
4447 		goto out;
4448 #endif
4449 
4450 	/*
4451 	 * Change the owner of the symlink located in the class directory of
4452 	 * the device class associated with @dev which points to the actual
4453 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4454 	 * symlink shows the same permissions as its target.
4455 	 */
4456 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4457 					dev_name(dev), kuid, kgid);
4458 	if (error)
4459 		goto out;
4460 
4461 out:
4462 	put_device(dev);
4463 	return error;
4464 }
4465 EXPORT_SYMBOL_GPL(device_change_owner);
4466 
4467 /**
4468  * device_shutdown - call ->shutdown() on each device to shutdown.
4469  */
4470 void device_shutdown(void)
4471 {
4472 	struct device *dev, *parent;
4473 
4474 	wait_for_device_probe();
4475 	device_block_probing();
4476 
4477 	cpufreq_suspend();
4478 
4479 	spin_lock(&devices_kset->list_lock);
4480 	/*
4481 	 * Walk the devices list backward, shutting down each in turn.
4482 	 * Beware that device unplug events may also start pulling
4483 	 * devices offline, even as the system is shutting down.
4484 	 */
4485 	while (!list_empty(&devices_kset->list)) {
4486 		dev = list_entry(devices_kset->list.prev, struct device,
4487 				kobj.entry);
4488 
4489 		/*
4490 		 * hold reference count of device's parent to
4491 		 * prevent it from being freed because parent's
4492 		 * lock is to be held
4493 		 */
4494 		parent = get_device(dev->parent);
4495 		get_device(dev);
4496 		/*
4497 		 * Make sure the device is off the kset list, in the
4498 		 * event that dev->*->shutdown() doesn't remove it.
4499 		 */
4500 		list_del_init(&dev->kobj.entry);
4501 		spin_unlock(&devices_kset->list_lock);
4502 
4503 		/* hold lock to avoid race with probe/release */
4504 		if (parent)
4505 			device_lock(parent);
4506 		device_lock(dev);
4507 
4508 		/* Don't allow any more runtime suspends */
4509 		pm_runtime_get_noresume(dev);
4510 		pm_runtime_barrier(dev);
4511 
4512 		if (dev->class && dev->class->shutdown_pre) {
4513 			if (initcall_debug)
4514 				dev_info(dev, "shutdown_pre\n");
4515 			dev->class->shutdown_pre(dev);
4516 		}
4517 		if (dev->bus && dev->bus->shutdown) {
4518 			if (initcall_debug)
4519 				dev_info(dev, "shutdown\n");
4520 			dev->bus->shutdown(dev);
4521 		} else if (dev->driver && dev->driver->shutdown) {
4522 			if (initcall_debug)
4523 				dev_info(dev, "shutdown\n");
4524 			dev->driver->shutdown(dev);
4525 		}
4526 
4527 		device_unlock(dev);
4528 		if (parent)
4529 			device_unlock(parent);
4530 
4531 		put_device(dev);
4532 		put_device(parent);
4533 
4534 		spin_lock(&devices_kset->list_lock);
4535 	}
4536 	spin_unlock(&devices_kset->list_lock);
4537 }
4538 
4539 /*
4540  * Device logging functions
4541  */
4542 
4543 #ifdef CONFIG_PRINTK
4544 static void
4545 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4546 {
4547 	const char *subsys;
4548 
4549 	memset(dev_info, 0, sizeof(*dev_info));
4550 
4551 	if (dev->class)
4552 		subsys = dev->class->name;
4553 	else if (dev->bus)
4554 		subsys = dev->bus->name;
4555 	else
4556 		return;
4557 
4558 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4559 
4560 	/*
4561 	 * Add device identifier DEVICE=:
4562 	 *   b12:8         block dev_t
4563 	 *   c127:3        char dev_t
4564 	 *   n8            netdev ifindex
4565 	 *   +sound:card0  subsystem:devname
4566 	 */
4567 	if (MAJOR(dev->devt)) {
4568 		char c;
4569 
4570 		if (strcmp(subsys, "block") == 0)
4571 			c = 'b';
4572 		else
4573 			c = 'c';
4574 
4575 		snprintf(dev_info->device, sizeof(dev_info->device),
4576 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4577 	} else if (strcmp(subsys, "net") == 0) {
4578 		struct net_device *net = to_net_dev(dev);
4579 
4580 		snprintf(dev_info->device, sizeof(dev_info->device),
4581 			 "n%u", net->ifindex);
4582 	} else {
4583 		snprintf(dev_info->device, sizeof(dev_info->device),
4584 			 "+%s:%s", subsys, dev_name(dev));
4585 	}
4586 }
4587 
4588 int dev_vprintk_emit(int level, const struct device *dev,
4589 		     const char *fmt, va_list args)
4590 {
4591 	struct dev_printk_info dev_info;
4592 
4593 	set_dev_info(dev, &dev_info);
4594 
4595 	return vprintk_emit(0, level, &dev_info, fmt, args);
4596 }
4597 EXPORT_SYMBOL(dev_vprintk_emit);
4598 
4599 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4600 {
4601 	va_list args;
4602 	int r;
4603 
4604 	va_start(args, fmt);
4605 
4606 	r = dev_vprintk_emit(level, dev, fmt, args);
4607 
4608 	va_end(args);
4609 
4610 	return r;
4611 }
4612 EXPORT_SYMBOL(dev_printk_emit);
4613 
4614 static void __dev_printk(const char *level, const struct device *dev,
4615 			struct va_format *vaf)
4616 {
4617 	if (dev)
4618 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4619 				dev_driver_string(dev), dev_name(dev), vaf);
4620 	else
4621 		printk("%s(NULL device *): %pV", level, vaf);
4622 }
4623 
4624 void _dev_printk(const char *level, const struct device *dev,
4625 		 const char *fmt, ...)
4626 {
4627 	struct va_format vaf;
4628 	va_list args;
4629 
4630 	va_start(args, fmt);
4631 
4632 	vaf.fmt = fmt;
4633 	vaf.va = &args;
4634 
4635 	__dev_printk(level, dev, &vaf);
4636 
4637 	va_end(args);
4638 }
4639 EXPORT_SYMBOL(_dev_printk);
4640 
4641 #define define_dev_printk_level(func, kern_level)		\
4642 void func(const struct device *dev, const char *fmt, ...)	\
4643 {								\
4644 	struct va_format vaf;					\
4645 	va_list args;						\
4646 								\
4647 	va_start(args, fmt);					\
4648 								\
4649 	vaf.fmt = fmt;						\
4650 	vaf.va = &args;						\
4651 								\
4652 	__dev_printk(kern_level, dev, &vaf);			\
4653 								\
4654 	va_end(args);						\
4655 }								\
4656 EXPORT_SYMBOL(func);
4657 
4658 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4659 define_dev_printk_level(_dev_alert, KERN_ALERT);
4660 define_dev_printk_level(_dev_crit, KERN_CRIT);
4661 define_dev_printk_level(_dev_err, KERN_ERR);
4662 define_dev_printk_level(_dev_warn, KERN_WARNING);
4663 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4664 define_dev_printk_level(_dev_info, KERN_INFO);
4665 
4666 #endif
4667 
4668 /**
4669  * dev_err_probe - probe error check and log helper
4670  * @dev: the pointer to the struct device
4671  * @err: error value to test
4672  * @fmt: printf-style format string
4673  * @...: arguments as specified in the format string
4674  *
4675  * This helper implements common pattern present in probe functions for error
4676  * checking: print debug or error message depending if the error value is
4677  * -EPROBE_DEFER and propagate error upwards.
4678  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4679  * checked later by reading devices_deferred debugfs attribute.
4680  * It replaces code sequence::
4681  *
4682  * 	if (err != -EPROBE_DEFER)
4683  * 		dev_err(dev, ...);
4684  * 	else
4685  * 		dev_dbg(dev, ...);
4686  * 	return err;
4687  *
4688  * with::
4689  *
4690  * 	return dev_err_probe(dev, err, ...);
4691  *
4692  * Returns @err.
4693  *
4694  */
4695 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4696 {
4697 	struct va_format vaf;
4698 	va_list args;
4699 
4700 	va_start(args, fmt);
4701 	vaf.fmt = fmt;
4702 	vaf.va = &args;
4703 
4704 	if (err != -EPROBE_DEFER) {
4705 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4706 	} else {
4707 		device_set_deferred_probe_reason(dev, &vaf);
4708 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4709 	}
4710 
4711 	va_end(args);
4712 
4713 	return err;
4714 }
4715 EXPORT_SYMBOL_GPL(dev_err_probe);
4716 
4717 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4718 {
4719 	return fwnode && !IS_ERR(fwnode->secondary);
4720 }
4721 
4722 /**
4723  * set_primary_fwnode - Change the primary firmware node of a given device.
4724  * @dev: Device to handle.
4725  * @fwnode: New primary firmware node of the device.
4726  *
4727  * Set the device's firmware node pointer to @fwnode, but if a secondary
4728  * firmware node of the device is present, preserve it.
4729  *
4730  * Valid fwnode cases are:
4731  *  - primary --> secondary --> -ENODEV
4732  *  - primary --> NULL
4733  *  - secondary --> -ENODEV
4734  *  - NULL
4735  */
4736 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4737 {
4738 	struct device *parent = dev->parent;
4739 	struct fwnode_handle *fn = dev->fwnode;
4740 
4741 	if (fwnode) {
4742 		if (fwnode_is_primary(fn))
4743 			fn = fn->secondary;
4744 
4745 		if (fn) {
4746 			WARN_ON(fwnode->secondary);
4747 			fwnode->secondary = fn;
4748 		}
4749 		dev->fwnode = fwnode;
4750 	} else {
4751 		if (fwnode_is_primary(fn)) {
4752 			dev->fwnode = fn->secondary;
4753 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4754 			if (!(parent && fn == parent->fwnode))
4755 				fn->secondary = NULL;
4756 		} else {
4757 			dev->fwnode = NULL;
4758 		}
4759 	}
4760 }
4761 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4762 
4763 /**
4764  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4765  * @dev: Device to handle.
4766  * @fwnode: New secondary firmware node of the device.
4767  *
4768  * If a primary firmware node of the device is present, set its secondary
4769  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4770  * @fwnode.
4771  */
4772 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4773 {
4774 	if (fwnode)
4775 		fwnode->secondary = ERR_PTR(-ENODEV);
4776 
4777 	if (fwnode_is_primary(dev->fwnode))
4778 		dev->fwnode->secondary = fwnode;
4779 	else
4780 		dev->fwnode = fwnode;
4781 }
4782 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4783 
4784 /**
4785  * device_set_of_node_from_dev - reuse device-tree node of another device
4786  * @dev: device whose device-tree node is being set
4787  * @dev2: device whose device-tree node is being reused
4788  *
4789  * Takes another reference to the new device-tree node after first dropping
4790  * any reference held to the old node.
4791  */
4792 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4793 {
4794 	of_node_put(dev->of_node);
4795 	dev->of_node = of_node_get(dev2->of_node);
4796 	dev->of_node_reused = true;
4797 }
4798 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4799 
4800 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4801 {
4802 	dev->fwnode = fwnode;
4803 	dev->of_node = to_of_node(fwnode);
4804 }
4805 EXPORT_SYMBOL_GPL(device_set_node);
4806 
4807 int device_match_name(struct device *dev, const void *name)
4808 {
4809 	return sysfs_streq(dev_name(dev), name);
4810 }
4811 EXPORT_SYMBOL_GPL(device_match_name);
4812 
4813 int device_match_of_node(struct device *dev, const void *np)
4814 {
4815 	return dev->of_node == np;
4816 }
4817 EXPORT_SYMBOL_GPL(device_match_of_node);
4818 
4819 int device_match_fwnode(struct device *dev, const void *fwnode)
4820 {
4821 	return dev_fwnode(dev) == fwnode;
4822 }
4823 EXPORT_SYMBOL_GPL(device_match_fwnode);
4824 
4825 int device_match_devt(struct device *dev, const void *pdevt)
4826 {
4827 	return dev->devt == *(dev_t *)pdevt;
4828 }
4829 EXPORT_SYMBOL_GPL(device_match_devt);
4830 
4831 int device_match_acpi_dev(struct device *dev, const void *adev)
4832 {
4833 	return ACPI_COMPANION(dev) == adev;
4834 }
4835 EXPORT_SYMBOL(device_match_acpi_dev);
4836 
4837 int device_match_any(struct device *dev, const void *unused)
4838 {
4839 	return 1;
4840 }
4841 EXPORT_SYMBOL_GPL(device_match_any);
4842