1 /* 2 * drivers/base/core.c - core driver model code (device registration, etc) 3 * 4 * Copyright (c) 2002-3 Patrick Mochel 5 * Copyright (c) 2002-3 Open Source Development Labs 6 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 7 * Copyright (c) 2006 Novell, Inc. 8 * 9 * This file is released under the GPLv2 10 * 11 */ 12 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/kallsyms.h> 26 #include <linux/mutex.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/netdevice.h> 29 #include <linux/sysfs.h> 30 31 #include "base.h" 32 #include "power/power.h" 33 34 #ifdef CONFIG_SYSFS_DEPRECATED 35 #ifdef CONFIG_SYSFS_DEPRECATED_V2 36 long sysfs_deprecated = 1; 37 #else 38 long sysfs_deprecated = 0; 39 #endif 40 static int __init sysfs_deprecated_setup(char *arg) 41 { 42 return kstrtol(arg, 10, &sysfs_deprecated); 43 } 44 early_param("sysfs.deprecated", sysfs_deprecated_setup); 45 #endif 46 47 /* Device links support. */ 48 49 #ifdef CONFIG_SRCU 50 static DEFINE_MUTEX(device_links_lock); 51 DEFINE_STATIC_SRCU(device_links_srcu); 52 53 static inline void device_links_write_lock(void) 54 { 55 mutex_lock(&device_links_lock); 56 } 57 58 static inline void device_links_write_unlock(void) 59 { 60 mutex_unlock(&device_links_lock); 61 } 62 63 int device_links_read_lock(void) 64 { 65 return srcu_read_lock(&device_links_srcu); 66 } 67 68 void device_links_read_unlock(int idx) 69 { 70 srcu_read_unlock(&device_links_srcu, idx); 71 } 72 #else /* !CONFIG_SRCU */ 73 static DECLARE_RWSEM(device_links_lock); 74 75 static inline void device_links_write_lock(void) 76 { 77 down_write(&device_links_lock); 78 } 79 80 static inline void device_links_write_unlock(void) 81 { 82 up_write(&device_links_lock); 83 } 84 85 int device_links_read_lock(void) 86 { 87 down_read(&device_links_lock); 88 return 0; 89 } 90 91 void device_links_read_unlock(int not_used) 92 { 93 up_read(&device_links_lock); 94 } 95 #endif /* !CONFIG_SRCU */ 96 97 /** 98 * device_is_dependent - Check if one device depends on another one 99 * @dev: Device to check dependencies for. 100 * @target: Device to check against. 101 * 102 * Check if @target depends on @dev or any device dependent on it (its child or 103 * its consumer etc). Return 1 if that is the case or 0 otherwise. 104 */ 105 static int device_is_dependent(struct device *dev, void *target) 106 { 107 struct device_link *link; 108 int ret; 109 110 if (WARN_ON(dev == target)) 111 return 1; 112 113 ret = device_for_each_child(dev, target, device_is_dependent); 114 if (ret) 115 return ret; 116 117 list_for_each_entry(link, &dev->links.consumers, s_node) { 118 if (WARN_ON(link->consumer == target)) 119 return 1; 120 121 ret = device_is_dependent(link->consumer, target); 122 if (ret) 123 break; 124 } 125 return ret; 126 } 127 128 static int device_reorder_to_tail(struct device *dev, void *not_used) 129 { 130 struct device_link *link; 131 132 /* 133 * Devices that have not been registered yet will be put to the ends 134 * of the lists during the registration, so skip them here. 135 */ 136 if (device_is_registered(dev)) 137 devices_kset_move_last(dev); 138 139 if (device_pm_initialized(dev)) 140 device_pm_move_last(dev); 141 142 device_for_each_child(dev, NULL, device_reorder_to_tail); 143 list_for_each_entry(link, &dev->links.consumers, s_node) 144 device_reorder_to_tail(link->consumer, NULL); 145 146 return 0; 147 } 148 149 /** 150 * device_link_add - Create a link between two devices. 151 * @consumer: Consumer end of the link. 152 * @supplier: Supplier end of the link. 153 * @flags: Link flags. 154 * 155 * The caller is responsible for the proper synchronization of the link creation 156 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 157 * runtime PM framework to take the link into account. Second, if the 158 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 159 * be forced into the active metastate and reference-counted upon the creation 160 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 161 * ignored. 162 * 163 * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically 164 * when the consumer device driver unbinds from it. The combination of both 165 * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL 166 * to be returned. 167 * 168 * A side effect of the link creation is re-ordering of dpm_list and the 169 * devices_kset list by moving the consumer device and all devices depending 170 * on it to the ends of these lists (that does not happen to devices that have 171 * not been registered when this function is called). 172 * 173 * The supplier device is required to be registered when this function is called 174 * and NULL will be returned if that is not the case. The consumer device need 175 * not be registered, however. 176 */ 177 struct device_link *device_link_add(struct device *consumer, 178 struct device *supplier, u32 flags) 179 { 180 struct device_link *link; 181 182 if (!consumer || !supplier || 183 ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE))) 184 return NULL; 185 186 device_links_write_lock(); 187 device_pm_lock(); 188 189 /* 190 * If the supplier has not been fully registered yet or there is a 191 * reverse dependency between the consumer and the supplier already in 192 * the graph, return NULL. 193 */ 194 if (!device_pm_initialized(supplier) 195 || device_is_dependent(consumer, supplier)) { 196 link = NULL; 197 goto out; 198 } 199 200 list_for_each_entry(link, &supplier->links.consumers, s_node) 201 if (link->consumer == consumer) 202 goto out; 203 204 link = kzalloc(sizeof(*link), GFP_KERNEL); 205 if (!link) 206 goto out; 207 208 if (flags & DL_FLAG_PM_RUNTIME) { 209 if (flags & DL_FLAG_RPM_ACTIVE) { 210 if (pm_runtime_get_sync(supplier) < 0) { 211 pm_runtime_put_noidle(supplier); 212 kfree(link); 213 link = NULL; 214 goto out; 215 } 216 link->rpm_active = true; 217 } 218 pm_runtime_new_link(consumer); 219 } 220 get_device(supplier); 221 link->supplier = supplier; 222 INIT_LIST_HEAD(&link->s_node); 223 get_device(consumer); 224 link->consumer = consumer; 225 INIT_LIST_HEAD(&link->c_node); 226 link->flags = flags; 227 228 /* Determine the initial link state. */ 229 if (flags & DL_FLAG_STATELESS) { 230 link->status = DL_STATE_NONE; 231 } else { 232 switch (supplier->links.status) { 233 case DL_DEV_DRIVER_BOUND: 234 switch (consumer->links.status) { 235 case DL_DEV_PROBING: 236 /* 237 * Balance the decrementation of the supplier's 238 * runtime PM usage counter after consumer probe 239 * in driver_probe_device(). 240 */ 241 if (flags & DL_FLAG_PM_RUNTIME) 242 pm_runtime_get_sync(supplier); 243 244 link->status = DL_STATE_CONSUMER_PROBE; 245 break; 246 case DL_DEV_DRIVER_BOUND: 247 link->status = DL_STATE_ACTIVE; 248 break; 249 default: 250 link->status = DL_STATE_AVAILABLE; 251 break; 252 } 253 break; 254 case DL_DEV_UNBINDING: 255 link->status = DL_STATE_SUPPLIER_UNBIND; 256 break; 257 default: 258 link->status = DL_STATE_DORMANT; 259 break; 260 } 261 } 262 263 /* 264 * Move the consumer and all of the devices depending on it to the end 265 * of dpm_list and the devices_kset list. 266 * 267 * It is necessary to hold dpm_list locked throughout all that or else 268 * we may end up suspending with a wrong ordering of it. 269 */ 270 device_reorder_to_tail(consumer, NULL); 271 272 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 273 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 274 275 dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 276 277 out: 278 device_pm_unlock(); 279 device_links_write_unlock(); 280 return link; 281 } 282 EXPORT_SYMBOL_GPL(device_link_add); 283 284 static void device_link_free(struct device_link *link) 285 { 286 put_device(link->consumer); 287 put_device(link->supplier); 288 kfree(link); 289 } 290 291 #ifdef CONFIG_SRCU 292 static void __device_link_free_srcu(struct rcu_head *rhead) 293 { 294 device_link_free(container_of(rhead, struct device_link, rcu_head)); 295 } 296 297 static void __device_link_del(struct device_link *link) 298 { 299 dev_info(link->consumer, "Dropping the link to %s\n", 300 dev_name(link->supplier)); 301 302 if (link->flags & DL_FLAG_PM_RUNTIME) 303 pm_runtime_drop_link(link->consumer); 304 305 list_del_rcu(&link->s_node); 306 list_del_rcu(&link->c_node); 307 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu); 308 } 309 #else /* !CONFIG_SRCU */ 310 static void __device_link_del(struct device_link *link) 311 { 312 dev_info(link->consumer, "Dropping the link to %s\n", 313 dev_name(link->supplier)); 314 315 list_del(&link->s_node); 316 list_del(&link->c_node); 317 device_link_free(link); 318 } 319 #endif /* !CONFIG_SRCU */ 320 321 /** 322 * device_link_del - Delete a link between two devices. 323 * @link: Device link to delete. 324 * 325 * The caller must ensure proper synchronization of this function with runtime 326 * PM. 327 */ 328 void device_link_del(struct device_link *link) 329 { 330 device_links_write_lock(); 331 device_pm_lock(); 332 __device_link_del(link); 333 device_pm_unlock(); 334 device_links_write_unlock(); 335 } 336 EXPORT_SYMBOL_GPL(device_link_del); 337 338 static void device_links_missing_supplier(struct device *dev) 339 { 340 struct device_link *link; 341 342 list_for_each_entry(link, &dev->links.suppliers, c_node) 343 if (link->status == DL_STATE_CONSUMER_PROBE) 344 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 345 } 346 347 /** 348 * device_links_check_suppliers - Check presence of supplier drivers. 349 * @dev: Consumer device. 350 * 351 * Check links from this device to any suppliers. Walk the list of the device's 352 * links to suppliers and see if all of them are available. If not, simply 353 * return -EPROBE_DEFER. 354 * 355 * We need to guarantee that the supplier will not go away after the check has 356 * been positive here. It only can go away in __device_release_driver() and 357 * that function checks the device's links to consumers. This means we need to 358 * mark the link as "consumer probe in progress" to make the supplier removal 359 * wait for us to complete (or bad things may happen). 360 * 361 * Links with the DL_FLAG_STATELESS flag set are ignored. 362 */ 363 int device_links_check_suppliers(struct device *dev) 364 { 365 struct device_link *link; 366 int ret = 0; 367 368 device_links_write_lock(); 369 370 list_for_each_entry(link, &dev->links.suppliers, c_node) { 371 if (link->flags & DL_FLAG_STATELESS) 372 continue; 373 374 if (link->status != DL_STATE_AVAILABLE) { 375 device_links_missing_supplier(dev); 376 ret = -EPROBE_DEFER; 377 break; 378 } 379 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 380 } 381 dev->links.status = DL_DEV_PROBING; 382 383 device_links_write_unlock(); 384 return ret; 385 } 386 387 /** 388 * device_links_driver_bound - Update device links after probing its driver. 389 * @dev: Device to update the links for. 390 * 391 * The probe has been successful, so update links from this device to any 392 * consumers by changing their status to "available". 393 * 394 * Also change the status of @dev's links to suppliers to "active". 395 * 396 * Links with the DL_FLAG_STATELESS flag set are ignored. 397 */ 398 void device_links_driver_bound(struct device *dev) 399 { 400 struct device_link *link; 401 402 device_links_write_lock(); 403 404 list_for_each_entry(link, &dev->links.consumers, s_node) { 405 if (link->flags & DL_FLAG_STATELESS) 406 continue; 407 408 WARN_ON(link->status != DL_STATE_DORMANT); 409 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 410 } 411 412 list_for_each_entry(link, &dev->links.suppliers, c_node) { 413 if (link->flags & DL_FLAG_STATELESS) 414 continue; 415 416 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 417 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 418 } 419 420 dev->links.status = DL_DEV_DRIVER_BOUND; 421 422 device_links_write_unlock(); 423 } 424 425 /** 426 * __device_links_no_driver - Update links of a device without a driver. 427 * @dev: Device without a drvier. 428 * 429 * Delete all non-persistent links from this device to any suppliers. 430 * 431 * Persistent links stay around, but their status is changed to "available", 432 * unless they already are in the "supplier unbind in progress" state in which 433 * case they need not be updated. 434 * 435 * Links with the DL_FLAG_STATELESS flag set are ignored. 436 */ 437 static void __device_links_no_driver(struct device *dev) 438 { 439 struct device_link *link, *ln; 440 441 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 442 if (link->flags & DL_FLAG_STATELESS) 443 continue; 444 445 if (link->flags & DL_FLAG_AUTOREMOVE) 446 __device_link_del(link); 447 else if (link->status != DL_STATE_SUPPLIER_UNBIND) 448 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 449 } 450 451 dev->links.status = DL_DEV_NO_DRIVER; 452 } 453 454 void device_links_no_driver(struct device *dev) 455 { 456 device_links_write_lock(); 457 __device_links_no_driver(dev); 458 device_links_write_unlock(); 459 } 460 461 /** 462 * device_links_driver_cleanup - Update links after driver removal. 463 * @dev: Device whose driver has just gone away. 464 * 465 * Update links to consumers for @dev by changing their status to "dormant" and 466 * invoke %__device_links_no_driver() to update links to suppliers for it as 467 * appropriate. 468 * 469 * Links with the DL_FLAG_STATELESS flag set are ignored. 470 */ 471 void device_links_driver_cleanup(struct device *dev) 472 { 473 struct device_link *link; 474 475 device_links_write_lock(); 476 477 list_for_each_entry(link, &dev->links.consumers, s_node) { 478 if (link->flags & DL_FLAG_STATELESS) 479 continue; 480 481 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE); 482 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 483 WRITE_ONCE(link->status, DL_STATE_DORMANT); 484 } 485 486 __device_links_no_driver(dev); 487 488 device_links_write_unlock(); 489 } 490 491 /** 492 * device_links_busy - Check if there are any busy links to consumers. 493 * @dev: Device to check. 494 * 495 * Check each consumer of the device and return 'true' if its link's status 496 * is one of "consumer probe" or "active" (meaning that the given consumer is 497 * probing right now or its driver is present). Otherwise, change the link 498 * state to "supplier unbind" to prevent the consumer from being probed 499 * successfully going forward. 500 * 501 * Return 'false' if there are no probing or active consumers. 502 * 503 * Links with the DL_FLAG_STATELESS flag set are ignored. 504 */ 505 bool device_links_busy(struct device *dev) 506 { 507 struct device_link *link; 508 bool ret = false; 509 510 device_links_write_lock(); 511 512 list_for_each_entry(link, &dev->links.consumers, s_node) { 513 if (link->flags & DL_FLAG_STATELESS) 514 continue; 515 516 if (link->status == DL_STATE_CONSUMER_PROBE 517 || link->status == DL_STATE_ACTIVE) { 518 ret = true; 519 break; 520 } 521 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 522 } 523 524 dev->links.status = DL_DEV_UNBINDING; 525 526 device_links_write_unlock(); 527 return ret; 528 } 529 530 /** 531 * device_links_unbind_consumers - Force unbind consumers of the given device. 532 * @dev: Device to unbind the consumers of. 533 * 534 * Walk the list of links to consumers for @dev and if any of them is in the 535 * "consumer probe" state, wait for all device probes in progress to complete 536 * and start over. 537 * 538 * If that's not the case, change the status of the link to "supplier unbind" 539 * and check if the link was in the "active" state. If so, force the consumer 540 * driver to unbind and start over (the consumer will not re-probe as we have 541 * changed the state of the link already). 542 * 543 * Links with the DL_FLAG_STATELESS flag set are ignored. 544 */ 545 void device_links_unbind_consumers(struct device *dev) 546 { 547 struct device_link *link; 548 549 start: 550 device_links_write_lock(); 551 552 list_for_each_entry(link, &dev->links.consumers, s_node) { 553 enum device_link_state status; 554 555 if (link->flags & DL_FLAG_STATELESS) 556 continue; 557 558 status = link->status; 559 if (status == DL_STATE_CONSUMER_PROBE) { 560 device_links_write_unlock(); 561 562 wait_for_device_probe(); 563 goto start; 564 } 565 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 566 if (status == DL_STATE_ACTIVE) { 567 struct device *consumer = link->consumer; 568 569 get_device(consumer); 570 571 device_links_write_unlock(); 572 573 device_release_driver_internal(consumer, NULL, 574 consumer->parent); 575 put_device(consumer); 576 goto start; 577 } 578 } 579 580 device_links_write_unlock(); 581 } 582 583 /** 584 * device_links_purge - Delete existing links to other devices. 585 * @dev: Target device. 586 */ 587 static void device_links_purge(struct device *dev) 588 { 589 struct device_link *link, *ln; 590 591 /* 592 * Delete all of the remaining links from this device to any other 593 * devices (either consumers or suppliers). 594 */ 595 device_links_write_lock(); 596 597 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 598 WARN_ON(link->status == DL_STATE_ACTIVE); 599 __device_link_del(link); 600 } 601 602 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 603 WARN_ON(link->status != DL_STATE_DORMANT && 604 link->status != DL_STATE_NONE); 605 __device_link_del(link); 606 } 607 608 device_links_write_unlock(); 609 } 610 611 /* Device links support end. */ 612 613 int (*platform_notify)(struct device *dev) = NULL; 614 int (*platform_notify_remove)(struct device *dev) = NULL; 615 static struct kobject *dev_kobj; 616 struct kobject *sysfs_dev_char_kobj; 617 struct kobject *sysfs_dev_block_kobj; 618 619 static DEFINE_MUTEX(device_hotplug_lock); 620 621 void lock_device_hotplug(void) 622 { 623 mutex_lock(&device_hotplug_lock); 624 } 625 626 void unlock_device_hotplug(void) 627 { 628 mutex_unlock(&device_hotplug_lock); 629 } 630 631 int lock_device_hotplug_sysfs(void) 632 { 633 if (mutex_trylock(&device_hotplug_lock)) 634 return 0; 635 636 /* Avoid busy looping (5 ms of sleep should do). */ 637 msleep(5); 638 return restart_syscall(); 639 } 640 641 void assert_held_device_hotplug(void) 642 { 643 lockdep_assert_held(&device_hotplug_lock); 644 } 645 646 #ifdef CONFIG_BLOCK 647 static inline int device_is_not_partition(struct device *dev) 648 { 649 return !(dev->type == &part_type); 650 } 651 #else 652 static inline int device_is_not_partition(struct device *dev) 653 { 654 return 1; 655 } 656 #endif 657 658 /** 659 * dev_driver_string - Return a device's driver name, if at all possible 660 * @dev: struct device to get the name of 661 * 662 * Will return the device's driver's name if it is bound to a device. If 663 * the device is not bound to a driver, it will return the name of the bus 664 * it is attached to. If it is not attached to a bus either, an empty 665 * string will be returned. 666 */ 667 const char *dev_driver_string(const struct device *dev) 668 { 669 struct device_driver *drv; 670 671 /* dev->driver can change to NULL underneath us because of unbinding, 672 * so be careful about accessing it. dev->bus and dev->class should 673 * never change once they are set, so they don't need special care. 674 */ 675 drv = ACCESS_ONCE(dev->driver); 676 return drv ? drv->name : 677 (dev->bus ? dev->bus->name : 678 (dev->class ? dev->class->name : "")); 679 } 680 EXPORT_SYMBOL(dev_driver_string); 681 682 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 683 684 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 685 char *buf) 686 { 687 struct device_attribute *dev_attr = to_dev_attr(attr); 688 struct device *dev = kobj_to_dev(kobj); 689 ssize_t ret = -EIO; 690 691 if (dev_attr->show) 692 ret = dev_attr->show(dev, dev_attr, buf); 693 if (ret >= (ssize_t)PAGE_SIZE) { 694 print_symbol("dev_attr_show: %s returned bad count\n", 695 (unsigned long)dev_attr->show); 696 } 697 return ret; 698 } 699 700 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 701 const char *buf, size_t count) 702 { 703 struct device_attribute *dev_attr = to_dev_attr(attr); 704 struct device *dev = kobj_to_dev(kobj); 705 ssize_t ret = -EIO; 706 707 if (dev_attr->store) 708 ret = dev_attr->store(dev, dev_attr, buf, count); 709 return ret; 710 } 711 712 static const struct sysfs_ops dev_sysfs_ops = { 713 .show = dev_attr_show, 714 .store = dev_attr_store, 715 }; 716 717 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 718 719 ssize_t device_store_ulong(struct device *dev, 720 struct device_attribute *attr, 721 const char *buf, size_t size) 722 { 723 struct dev_ext_attribute *ea = to_ext_attr(attr); 724 char *end; 725 unsigned long new = simple_strtoul(buf, &end, 0); 726 if (end == buf) 727 return -EINVAL; 728 *(unsigned long *)(ea->var) = new; 729 /* Always return full write size even if we didn't consume all */ 730 return size; 731 } 732 EXPORT_SYMBOL_GPL(device_store_ulong); 733 734 ssize_t device_show_ulong(struct device *dev, 735 struct device_attribute *attr, 736 char *buf) 737 { 738 struct dev_ext_attribute *ea = to_ext_attr(attr); 739 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var)); 740 } 741 EXPORT_SYMBOL_GPL(device_show_ulong); 742 743 ssize_t device_store_int(struct device *dev, 744 struct device_attribute *attr, 745 const char *buf, size_t size) 746 { 747 struct dev_ext_attribute *ea = to_ext_attr(attr); 748 char *end; 749 long new = simple_strtol(buf, &end, 0); 750 if (end == buf || new > INT_MAX || new < INT_MIN) 751 return -EINVAL; 752 *(int *)(ea->var) = new; 753 /* Always return full write size even if we didn't consume all */ 754 return size; 755 } 756 EXPORT_SYMBOL_GPL(device_store_int); 757 758 ssize_t device_show_int(struct device *dev, 759 struct device_attribute *attr, 760 char *buf) 761 { 762 struct dev_ext_attribute *ea = to_ext_attr(attr); 763 764 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var)); 765 } 766 EXPORT_SYMBOL_GPL(device_show_int); 767 768 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 769 const char *buf, size_t size) 770 { 771 struct dev_ext_attribute *ea = to_ext_attr(attr); 772 773 if (strtobool(buf, ea->var) < 0) 774 return -EINVAL; 775 776 return size; 777 } 778 EXPORT_SYMBOL_GPL(device_store_bool); 779 780 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 781 char *buf) 782 { 783 struct dev_ext_attribute *ea = to_ext_attr(attr); 784 785 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var)); 786 } 787 EXPORT_SYMBOL_GPL(device_show_bool); 788 789 /** 790 * device_release - free device structure. 791 * @kobj: device's kobject. 792 * 793 * This is called once the reference count for the object 794 * reaches 0. We forward the call to the device's release 795 * method, which should handle actually freeing the structure. 796 */ 797 static void device_release(struct kobject *kobj) 798 { 799 struct device *dev = kobj_to_dev(kobj); 800 struct device_private *p = dev->p; 801 802 /* 803 * Some platform devices are driven without driver attached 804 * and managed resources may have been acquired. Make sure 805 * all resources are released. 806 * 807 * Drivers still can add resources into device after device 808 * is deleted but alive, so release devres here to avoid 809 * possible memory leak. 810 */ 811 devres_release_all(dev); 812 813 if (dev->release) 814 dev->release(dev); 815 else if (dev->type && dev->type->release) 816 dev->type->release(dev); 817 else if (dev->class && dev->class->dev_release) 818 dev->class->dev_release(dev); 819 else 820 WARN(1, KERN_ERR "Device '%s' does not have a release() " 821 "function, it is broken and must be fixed.\n", 822 dev_name(dev)); 823 kfree(p); 824 } 825 826 static const void *device_namespace(struct kobject *kobj) 827 { 828 struct device *dev = kobj_to_dev(kobj); 829 const void *ns = NULL; 830 831 if (dev->class && dev->class->ns_type) 832 ns = dev->class->namespace(dev); 833 834 return ns; 835 } 836 837 static struct kobj_type device_ktype = { 838 .release = device_release, 839 .sysfs_ops = &dev_sysfs_ops, 840 .namespace = device_namespace, 841 }; 842 843 844 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 845 { 846 struct kobj_type *ktype = get_ktype(kobj); 847 848 if (ktype == &device_ktype) { 849 struct device *dev = kobj_to_dev(kobj); 850 if (dev->bus) 851 return 1; 852 if (dev->class) 853 return 1; 854 } 855 return 0; 856 } 857 858 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 859 { 860 struct device *dev = kobj_to_dev(kobj); 861 862 if (dev->bus) 863 return dev->bus->name; 864 if (dev->class) 865 return dev->class->name; 866 return NULL; 867 } 868 869 static int dev_uevent(struct kset *kset, struct kobject *kobj, 870 struct kobj_uevent_env *env) 871 { 872 struct device *dev = kobj_to_dev(kobj); 873 int retval = 0; 874 875 /* add device node properties if present */ 876 if (MAJOR(dev->devt)) { 877 const char *tmp; 878 const char *name; 879 umode_t mode = 0; 880 kuid_t uid = GLOBAL_ROOT_UID; 881 kgid_t gid = GLOBAL_ROOT_GID; 882 883 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 884 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 885 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 886 if (name) { 887 add_uevent_var(env, "DEVNAME=%s", name); 888 if (mode) 889 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 890 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 891 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 892 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 893 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 894 kfree(tmp); 895 } 896 } 897 898 if (dev->type && dev->type->name) 899 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 900 901 if (dev->driver) 902 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 903 904 /* Add common DT information about the device */ 905 of_device_uevent(dev, env); 906 907 /* have the bus specific function add its stuff */ 908 if (dev->bus && dev->bus->uevent) { 909 retval = dev->bus->uevent(dev, env); 910 if (retval) 911 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 912 dev_name(dev), __func__, retval); 913 } 914 915 /* have the class specific function add its stuff */ 916 if (dev->class && dev->class->dev_uevent) { 917 retval = dev->class->dev_uevent(dev, env); 918 if (retval) 919 pr_debug("device: '%s': %s: class uevent() " 920 "returned %d\n", dev_name(dev), 921 __func__, retval); 922 } 923 924 /* have the device type specific function add its stuff */ 925 if (dev->type && dev->type->uevent) { 926 retval = dev->type->uevent(dev, env); 927 if (retval) 928 pr_debug("device: '%s': %s: dev_type uevent() " 929 "returned %d\n", dev_name(dev), 930 __func__, retval); 931 } 932 933 return retval; 934 } 935 936 static const struct kset_uevent_ops device_uevent_ops = { 937 .filter = dev_uevent_filter, 938 .name = dev_uevent_name, 939 .uevent = dev_uevent, 940 }; 941 942 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 943 char *buf) 944 { 945 struct kobject *top_kobj; 946 struct kset *kset; 947 struct kobj_uevent_env *env = NULL; 948 int i; 949 size_t count = 0; 950 int retval; 951 952 /* search the kset, the device belongs to */ 953 top_kobj = &dev->kobj; 954 while (!top_kobj->kset && top_kobj->parent) 955 top_kobj = top_kobj->parent; 956 if (!top_kobj->kset) 957 goto out; 958 959 kset = top_kobj->kset; 960 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 961 goto out; 962 963 /* respect filter */ 964 if (kset->uevent_ops && kset->uevent_ops->filter) 965 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 966 goto out; 967 968 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 969 if (!env) 970 return -ENOMEM; 971 972 /* let the kset specific function add its keys */ 973 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 974 if (retval) 975 goto out; 976 977 /* copy keys to file */ 978 for (i = 0; i < env->envp_idx; i++) 979 count += sprintf(&buf[count], "%s\n", env->envp[i]); 980 out: 981 kfree(env); 982 return count; 983 } 984 985 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 986 const char *buf, size_t count) 987 { 988 enum kobject_action action; 989 990 if (kobject_action_type(buf, count, &action) == 0) 991 kobject_uevent(&dev->kobj, action); 992 else 993 dev_err(dev, "uevent: unknown action-string\n"); 994 return count; 995 } 996 static DEVICE_ATTR_RW(uevent); 997 998 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 999 char *buf) 1000 { 1001 bool val; 1002 1003 device_lock(dev); 1004 val = !dev->offline; 1005 device_unlock(dev); 1006 return sprintf(buf, "%u\n", val); 1007 } 1008 1009 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 1010 const char *buf, size_t count) 1011 { 1012 bool val; 1013 int ret; 1014 1015 ret = strtobool(buf, &val); 1016 if (ret < 0) 1017 return ret; 1018 1019 ret = lock_device_hotplug_sysfs(); 1020 if (ret) 1021 return ret; 1022 1023 ret = val ? device_online(dev) : device_offline(dev); 1024 unlock_device_hotplug(); 1025 return ret < 0 ? ret : count; 1026 } 1027 static DEVICE_ATTR_RW(online); 1028 1029 int device_add_groups(struct device *dev, const struct attribute_group **groups) 1030 { 1031 return sysfs_create_groups(&dev->kobj, groups); 1032 } 1033 1034 void device_remove_groups(struct device *dev, 1035 const struct attribute_group **groups) 1036 { 1037 sysfs_remove_groups(&dev->kobj, groups); 1038 } 1039 1040 static int device_add_attrs(struct device *dev) 1041 { 1042 struct class *class = dev->class; 1043 const struct device_type *type = dev->type; 1044 int error; 1045 1046 if (class) { 1047 error = device_add_groups(dev, class->dev_groups); 1048 if (error) 1049 return error; 1050 } 1051 1052 if (type) { 1053 error = device_add_groups(dev, type->groups); 1054 if (error) 1055 goto err_remove_class_groups; 1056 } 1057 1058 error = device_add_groups(dev, dev->groups); 1059 if (error) 1060 goto err_remove_type_groups; 1061 1062 if (device_supports_offline(dev) && !dev->offline_disabled) { 1063 error = device_create_file(dev, &dev_attr_online); 1064 if (error) 1065 goto err_remove_dev_groups; 1066 } 1067 1068 return 0; 1069 1070 err_remove_dev_groups: 1071 device_remove_groups(dev, dev->groups); 1072 err_remove_type_groups: 1073 if (type) 1074 device_remove_groups(dev, type->groups); 1075 err_remove_class_groups: 1076 if (class) 1077 device_remove_groups(dev, class->dev_groups); 1078 1079 return error; 1080 } 1081 1082 static void device_remove_attrs(struct device *dev) 1083 { 1084 struct class *class = dev->class; 1085 const struct device_type *type = dev->type; 1086 1087 device_remove_file(dev, &dev_attr_online); 1088 device_remove_groups(dev, dev->groups); 1089 1090 if (type) 1091 device_remove_groups(dev, type->groups); 1092 1093 if (class) 1094 device_remove_groups(dev, class->dev_groups); 1095 } 1096 1097 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 1098 char *buf) 1099 { 1100 return print_dev_t(buf, dev->devt); 1101 } 1102 static DEVICE_ATTR_RO(dev); 1103 1104 /* /sys/devices/ */ 1105 struct kset *devices_kset; 1106 1107 /** 1108 * devices_kset_move_before - Move device in the devices_kset's list. 1109 * @deva: Device to move. 1110 * @devb: Device @deva should come before. 1111 */ 1112 static void devices_kset_move_before(struct device *deva, struct device *devb) 1113 { 1114 if (!devices_kset) 1115 return; 1116 pr_debug("devices_kset: Moving %s before %s\n", 1117 dev_name(deva), dev_name(devb)); 1118 spin_lock(&devices_kset->list_lock); 1119 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 1120 spin_unlock(&devices_kset->list_lock); 1121 } 1122 1123 /** 1124 * devices_kset_move_after - Move device in the devices_kset's list. 1125 * @deva: Device to move 1126 * @devb: Device @deva should come after. 1127 */ 1128 static void devices_kset_move_after(struct device *deva, struct device *devb) 1129 { 1130 if (!devices_kset) 1131 return; 1132 pr_debug("devices_kset: Moving %s after %s\n", 1133 dev_name(deva), dev_name(devb)); 1134 spin_lock(&devices_kset->list_lock); 1135 list_move(&deva->kobj.entry, &devb->kobj.entry); 1136 spin_unlock(&devices_kset->list_lock); 1137 } 1138 1139 /** 1140 * devices_kset_move_last - move the device to the end of devices_kset's list. 1141 * @dev: device to move 1142 */ 1143 void devices_kset_move_last(struct device *dev) 1144 { 1145 if (!devices_kset) 1146 return; 1147 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 1148 spin_lock(&devices_kset->list_lock); 1149 list_move_tail(&dev->kobj.entry, &devices_kset->list); 1150 spin_unlock(&devices_kset->list_lock); 1151 } 1152 1153 /** 1154 * device_create_file - create sysfs attribute file for device. 1155 * @dev: device. 1156 * @attr: device attribute descriptor. 1157 */ 1158 int device_create_file(struct device *dev, 1159 const struct device_attribute *attr) 1160 { 1161 int error = 0; 1162 1163 if (dev) { 1164 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 1165 "Attribute %s: write permission without 'store'\n", 1166 attr->attr.name); 1167 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 1168 "Attribute %s: read permission without 'show'\n", 1169 attr->attr.name); 1170 error = sysfs_create_file(&dev->kobj, &attr->attr); 1171 } 1172 1173 return error; 1174 } 1175 EXPORT_SYMBOL_GPL(device_create_file); 1176 1177 /** 1178 * device_remove_file - remove sysfs attribute file. 1179 * @dev: device. 1180 * @attr: device attribute descriptor. 1181 */ 1182 void device_remove_file(struct device *dev, 1183 const struct device_attribute *attr) 1184 { 1185 if (dev) 1186 sysfs_remove_file(&dev->kobj, &attr->attr); 1187 } 1188 EXPORT_SYMBOL_GPL(device_remove_file); 1189 1190 /** 1191 * device_remove_file_self - remove sysfs attribute file from its own method. 1192 * @dev: device. 1193 * @attr: device attribute descriptor. 1194 * 1195 * See kernfs_remove_self() for details. 1196 */ 1197 bool device_remove_file_self(struct device *dev, 1198 const struct device_attribute *attr) 1199 { 1200 if (dev) 1201 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 1202 else 1203 return false; 1204 } 1205 EXPORT_SYMBOL_GPL(device_remove_file_self); 1206 1207 /** 1208 * device_create_bin_file - create sysfs binary attribute file for device. 1209 * @dev: device. 1210 * @attr: device binary attribute descriptor. 1211 */ 1212 int device_create_bin_file(struct device *dev, 1213 const struct bin_attribute *attr) 1214 { 1215 int error = -EINVAL; 1216 if (dev) 1217 error = sysfs_create_bin_file(&dev->kobj, attr); 1218 return error; 1219 } 1220 EXPORT_SYMBOL_GPL(device_create_bin_file); 1221 1222 /** 1223 * device_remove_bin_file - remove sysfs binary attribute file 1224 * @dev: device. 1225 * @attr: device binary attribute descriptor. 1226 */ 1227 void device_remove_bin_file(struct device *dev, 1228 const struct bin_attribute *attr) 1229 { 1230 if (dev) 1231 sysfs_remove_bin_file(&dev->kobj, attr); 1232 } 1233 EXPORT_SYMBOL_GPL(device_remove_bin_file); 1234 1235 static void klist_children_get(struct klist_node *n) 1236 { 1237 struct device_private *p = to_device_private_parent(n); 1238 struct device *dev = p->device; 1239 1240 get_device(dev); 1241 } 1242 1243 static void klist_children_put(struct klist_node *n) 1244 { 1245 struct device_private *p = to_device_private_parent(n); 1246 struct device *dev = p->device; 1247 1248 put_device(dev); 1249 } 1250 1251 /** 1252 * device_initialize - init device structure. 1253 * @dev: device. 1254 * 1255 * This prepares the device for use by other layers by initializing 1256 * its fields. 1257 * It is the first half of device_register(), if called by 1258 * that function, though it can also be called separately, so one 1259 * may use @dev's fields. In particular, get_device()/put_device() 1260 * may be used for reference counting of @dev after calling this 1261 * function. 1262 * 1263 * All fields in @dev must be initialized by the caller to 0, except 1264 * for those explicitly set to some other value. The simplest 1265 * approach is to use kzalloc() to allocate the structure containing 1266 * @dev. 1267 * 1268 * NOTE: Use put_device() to give up your reference instead of freeing 1269 * @dev directly once you have called this function. 1270 */ 1271 void device_initialize(struct device *dev) 1272 { 1273 dev->kobj.kset = devices_kset; 1274 kobject_init(&dev->kobj, &device_ktype); 1275 INIT_LIST_HEAD(&dev->dma_pools); 1276 mutex_init(&dev->mutex); 1277 lockdep_set_novalidate_class(&dev->mutex); 1278 spin_lock_init(&dev->devres_lock); 1279 INIT_LIST_HEAD(&dev->devres_head); 1280 device_pm_init(dev); 1281 set_dev_node(dev, -1); 1282 #ifdef CONFIG_GENERIC_MSI_IRQ 1283 INIT_LIST_HEAD(&dev->msi_list); 1284 #endif 1285 INIT_LIST_HEAD(&dev->links.consumers); 1286 INIT_LIST_HEAD(&dev->links.suppliers); 1287 dev->links.status = DL_DEV_NO_DRIVER; 1288 } 1289 EXPORT_SYMBOL_GPL(device_initialize); 1290 1291 struct kobject *virtual_device_parent(struct device *dev) 1292 { 1293 static struct kobject *virtual_dir = NULL; 1294 1295 if (!virtual_dir) 1296 virtual_dir = kobject_create_and_add("virtual", 1297 &devices_kset->kobj); 1298 1299 return virtual_dir; 1300 } 1301 1302 struct class_dir { 1303 struct kobject kobj; 1304 struct class *class; 1305 }; 1306 1307 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 1308 1309 static void class_dir_release(struct kobject *kobj) 1310 { 1311 struct class_dir *dir = to_class_dir(kobj); 1312 kfree(dir); 1313 } 1314 1315 static const 1316 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 1317 { 1318 struct class_dir *dir = to_class_dir(kobj); 1319 return dir->class->ns_type; 1320 } 1321 1322 static struct kobj_type class_dir_ktype = { 1323 .release = class_dir_release, 1324 .sysfs_ops = &kobj_sysfs_ops, 1325 .child_ns_type = class_dir_child_ns_type 1326 }; 1327 1328 static struct kobject * 1329 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 1330 { 1331 struct class_dir *dir; 1332 int retval; 1333 1334 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 1335 if (!dir) 1336 return NULL; 1337 1338 dir->class = class; 1339 kobject_init(&dir->kobj, &class_dir_ktype); 1340 1341 dir->kobj.kset = &class->p->glue_dirs; 1342 1343 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 1344 if (retval < 0) { 1345 kobject_put(&dir->kobj); 1346 return NULL; 1347 } 1348 return &dir->kobj; 1349 } 1350 1351 static DEFINE_MUTEX(gdp_mutex); 1352 1353 static struct kobject *get_device_parent(struct device *dev, 1354 struct device *parent) 1355 { 1356 if (dev->class) { 1357 struct kobject *kobj = NULL; 1358 struct kobject *parent_kobj; 1359 struct kobject *k; 1360 1361 #ifdef CONFIG_BLOCK 1362 /* block disks show up in /sys/block */ 1363 if (sysfs_deprecated && dev->class == &block_class) { 1364 if (parent && parent->class == &block_class) 1365 return &parent->kobj; 1366 return &block_class.p->subsys.kobj; 1367 } 1368 #endif 1369 1370 /* 1371 * If we have no parent, we live in "virtual". 1372 * Class-devices with a non class-device as parent, live 1373 * in a "glue" directory to prevent namespace collisions. 1374 */ 1375 if (parent == NULL) 1376 parent_kobj = virtual_device_parent(dev); 1377 else if (parent->class && !dev->class->ns_type) 1378 return &parent->kobj; 1379 else 1380 parent_kobj = &parent->kobj; 1381 1382 mutex_lock(&gdp_mutex); 1383 1384 /* find our class-directory at the parent and reference it */ 1385 spin_lock(&dev->class->p->glue_dirs.list_lock); 1386 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 1387 if (k->parent == parent_kobj) { 1388 kobj = kobject_get(k); 1389 break; 1390 } 1391 spin_unlock(&dev->class->p->glue_dirs.list_lock); 1392 if (kobj) { 1393 mutex_unlock(&gdp_mutex); 1394 return kobj; 1395 } 1396 1397 /* or create a new class-directory at the parent device */ 1398 k = class_dir_create_and_add(dev->class, parent_kobj); 1399 /* do not emit an uevent for this simple "glue" directory */ 1400 mutex_unlock(&gdp_mutex); 1401 return k; 1402 } 1403 1404 /* subsystems can specify a default root directory for their devices */ 1405 if (!parent && dev->bus && dev->bus->dev_root) 1406 return &dev->bus->dev_root->kobj; 1407 1408 if (parent) 1409 return &parent->kobj; 1410 return NULL; 1411 } 1412 1413 static inline bool live_in_glue_dir(struct kobject *kobj, 1414 struct device *dev) 1415 { 1416 if (!kobj || !dev->class || 1417 kobj->kset != &dev->class->p->glue_dirs) 1418 return false; 1419 return true; 1420 } 1421 1422 static inline struct kobject *get_glue_dir(struct device *dev) 1423 { 1424 return dev->kobj.parent; 1425 } 1426 1427 /* 1428 * make sure cleaning up dir as the last step, we need to make 1429 * sure .release handler of kobject is run with holding the 1430 * global lock 1431 */ 1432 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 1433 { 1434 /* see if we live in a "glue" directory */ 1435 if (!live_in_glue_dir(glue_dir, dev)) 1436 return; 1437 1438 mutex_lock(&gdp_mutex); 1439 kobject_put(glue_dir); 1440 mutex_unlock(&gdp_mutex); 1441 } 1442 1443 static int device_add_class_symlinks(struct device *dev) 1444 { 1445 struct device_node *of_node = dev_of_node(dev); 1446 int error; 1447 1448 if (of_node) { 1449 error = sysfs_create_link(&dev->kobj, &of_node->kobj,"of_node"); 1450 if (error) 1451 dev_warn(dev, "Error %d creating of_node link\n",error); 1452 /* An error here doesn't warrant bringing down the device */ 1453 } 1454 1455 if (!dev->class) 1456 return 0; 1457 1458 error = sysfs_create_link(&dev->kobj, 1459 &dev->class->p->subsys.kobj, 1460 "subsystem"); 1461 if (error) 1462 goto out_devnode; 1463 1464 if (dev->parent && device_is_not_partition(dev)) { 1465 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 1466 "device"); 1467 if (error) 1468 goto out_subsys; 1469 } 1470 1471 #ifdef CONFIG_BLOCK 1472 /* /sys/block has directories and does not need symlinks */ 1473 if (sysfs_deprecated && dev->class == &block_class) 1474 return 0; 1475 #endif 1476 1477 /* link in the class directory pointing to the device */ 1478 error = sysfs_create_link(&dev->class->p->subsys.kobj, 1479 &dev->kobj, dev_name(dev)); 1480 if (error) 1481 goto out_device; 1482 1483 return 0; 1484 1485 out_device: 1486 sysfs_remove_link(&dev->kobj, "device"); 1487 1488 out_subsys: 1489 sysfs_remove_link(&dev->kobj, "subsystem"); 1490 out_devnode: 1491 sysfs_remove_link(&dev->kobj, "of_node"); 1492 return error; 1493 } 1494 1495 static void device_remove_class_symlinks(struct device *dev) 1496 { 1497 if (dev_of_node(dev)) 1498 sysfs_remove_link(&dev->kobj, "of_node"); 1499 1500 if (!dev->class) 1501 return; 1502 1503 if (dev->parent && device_is_not_partition(dev)) 1504 sysfs_remove_link(&dev->kobj, "device"); 1505 sysfs_remove_link(&dev->kobj, "subsystem"); 1506 #ifdef CONFIG_BLOCK 1507 if (sysfs_deprecated && dev->class == &block_class) 1508 return; 1509 #endif 1510 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 1511 } 1512 1513 /** 1514 * dev_set_name - set a device name 1515 * @dev: device 1516 * @fmt: format string for the device's name 1517 */ 1518 int dev_set_name(struct device *dev, const char *fmt, ...) 1519 { 1520 va_list vargs; 1521 int err; 1522 1523 va_start(vargs, fmt); 1524 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 1525 va_end(vargs); 1526 return err; 1527 } 1528 EXPORT_SYMBOL_GPL(dev_set_name); 1529 1530 /** 1531 * device_to_dev_kobj - select a /sys/dev/ directory for the device 1532 * @dev: device 1533 * 1534 * By default we select char/ for new entries. Setting class->dev_obj 1535 * to NULL prevents an entry from being created. class->dev_kobj must 1536 * be set (or cleared) before any devices are registered to the class 1537 * otherwise device_create_sys_dev_entry() and 1538 * device_remove_sys_dev_entry() will disagree about the presence of 1539 * the link. 1540 */ 1541 static struct kobject *device_to_dev_kobj(struct device *dev) 1542 { 1543 struct kobject *kobj; 1544 1545 if (dev->class) 1546 kobj = dev->class->dev_kobj; 1547 else 1548 kobj = sysfs_dev_char_kobj; 1549 1550 return kobj; 1551 } 1552 1553 static int device_create_sys_dev_entry(struct device *dev) 1554 { 1555 struct kobject *kobj = device_to_dev_kobj(dev); 1556 int error = 0; 1557 char devt_str[15]; 1558 1559 if (kobj) { 1560 format_dev_t(devt_str, dev->devt); 1561 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 1562 } 1563 1564 return error; 1565 } 1566 1567 static void device_remove_sys_dev_entry(struct device *dev) 1568 { 1569 struct kobject *kobj = device_to_dev_kobj(dev); 1570 char devt_str[15]; 1571 1572 if (kobj) { 1573 format_dev_t(devt_str, dev->devt); 1574 sysfs_remove_link(kobj, devt_str); 1575 } 1576 } 1577 1578 int device_private_init(struct device *dev) 1579 { 1580 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 1581 if (!dev->p) 1582 return -ENOMEM; 1583 dev->p->device = dev; 1584 klist_init(&dev->p->klist_children, klist_children_get, 1585 klist_children_put); 1586 INIT_LIST_HEAD(&dev->p->deferred_probe); 1587 return 0; 1588 } 1589 1590 /** 1591 * device_add - add device to device hierarchy. 1592 * @dev: device. 1593 * 1594 * This is part 2 of device_register(), though may be called 1595 * separately _iff_ device_initialize() has been called separately. 1596 * 1597 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 1598 * to the global and sibling lists for the device, then 1599 * adds it to the other relevant subsystems of the driver model. 1600 * 1601 * Do not call this routine or device_register() more than once for 1602 * any device structure. The driver model core is not designed to work 1603 * with devices that get unregistered and then spring back to life. 1604 * (Among other things, it's very hard to guarantee that all references 1605 * to the previous incarnation of @dev have been dropped.) Allocate 1606 * and register a fresh new struct device instead. 1607 * 1608 * NOTE: _Never_ directly free @dev after calling this function, even 1609 * if it returned an error! Always use put_device() to give up your 1610 * reference instead. 1611 */ 1612 int device_add(struct device *dev) 1613 { 1614 struct device *parent = NULL; 1615 struct kobject *kobj; 1616 struct class_interface *class_intf; 1617 int error = -EINVAL; 1618 struct kobject *glue_dir = NULL; 1619 1620 dev = get_device(dev); 1621 if (!dev) 1622 goto done; 1623 1624 if (!dev->p) { 1625 error = device_private_init(dev); 1626 if (error) 1627 goto done; 1628 } 1629 1630 /* 1631 * for statically allocated devices, which should all be converted 1632 * some day, we need to initialize the name. We prevent reading back 1633 * the name, and force the use of dev_name() 1634 */ 1635 if (dev->init_name) { 1636 dev_set_name(dev, "%s", dev->init_name); 1637 dev->init_name = NULL; 1638 } 1639 1640 /* subsystems can specify simple device enumeration */ 1641 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 1642 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 1643 1644 if (!dev_name(dev)) { 1645 error = -EINVAL; 1646 goto name_error; 1647 } 1648 1649 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 1650 1651 parent = get_device(dev->parent); 1652 kobj = get_device_parent(dev, parent); 1653 if (kobj) 1654 dev->kobj.parent = kobj; 1655 1656 /* use parent numa_node */ 1657 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 1658 set_dev_node(dev, dev_to_node(parent)); 1659 1660 /* first, register with generic layer. */ 1661 /* we require the name to be set before, and pass NULL */ 1662 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 1663 if (error) { 1664 glue_dir = get_glue_dir(dev); 1665 goto Error; 1666 } 1667 1668 /* notify platform of device entry */ 1669 if (platform_notify) 1670 platform_notify(dev); 1671 1672 error = device_create_file(dev, &dev_attr_uevent); 1673 if (error) 1674 goto attrError; 1675 1676 error = device_add_class_symlinks(dev); 1677 if (error) 1678 goto SymlinkError; 1679 error = device_add_attrs(dev); 1680 if (error) 1681 goto AttrsError; 1682 error = bus_add_device(dev); 1683 if (error) 1684 goto BusError; 1685 error = dpm_sysfs_add(dev); 1686 if (error) 1687 goto DPMError; 1688 device_pm_add(dev); 1689 1690 if (MAJOR(dev->devt)) { 1691 error = device_create_file(dev, &dev_attr_dev); 1692 if (error) 1693 goto DevAttrError; 1694 1695 error = device_create_sys_dev_entry(dev); 1696 if (error) 1697 goto SysEntryError; 1698 1699 devtmpfs_create_node(dev); 1700 } 1701 1702 /* Notify clients of device addition. This call must come 1703 * after dpm_sysfs_add() and before kobject_uevent(). 1704 */ 1705 if (dev->bus) 1706 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1707 BUS_NOTIFY_ADD_DEVICE, dev); 1708 1709 kobject_uevent(&dev->kobj, KOBJ_ADD); 1710 bus_probe_device(dev); 1711 if (parent) 1712 klist_add_tail(&dev->p->knode_parent, 1713 &parent->p->klist_children); 1714 1715 if (dev->class) { 1716 mutex_lock(&dev->class->p->mutex); 1717 /* tie the class to the device */ 1718 klist_add_tail(&dev->knode_class, 1719 &dev->class->p->klist_devices); 1720 1721 /* notify any interfaces that the device is here */ 1722 list_for_each_entry(class_intf, 1723 &dev->class->p->interfaces, node) 1724 if (class_intf->add_dev) 1725 class_intf->add_dev(dev, class_intf); 1726 mutex_unlock(&dev->class->p->mutex); 1727 } 1728 done: 1729 put_device(dev); 1730 return error; 1731 SysEntryError: 1732 if (MAJOR(dev->devt)) 1733 device_remove_file(dev, &dev_attr_dev); 1734 DevAttrError: 1735 device_pm_remove(dev); 1736 dpm_sysfs_remove(dev); 1737 DPMError: 1738 bus_remove_device(dev); 1739 BusError: 1740 device_remove_attrs(dev); 1741 AttrsError: 1742 device_remove_class_symlinks(dev); 1743 SymlinkError: 1744 device_remove_file(dev, &dev_attr_uevent); 1745 attrError: 1746 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 1747 glue_dir = get_glue_dir(dev); 1748 kobject_del(&dev->kobj); 1749 Error: 1750 cleanup_glue_dir(dev, glue_dir); 1751 put_device(parent); 1752 name_error: 1753 kfree(dev->p); 1754 dev->p = NULL; 1755 goto done; 1756 } 1757 EXPORT_SYMBOL_GPL(device_add); 1758 1759 /** 1760 * device_register - register a device with the system. 1761 * @dev: pointer to the device structure 1762 * 1763 * This happens in two clean steps - initialize the device 1764 * and add it to the system. The two steps can be called 1765 * separately, but this is the easiest and most common. 1766 * I.e. you should only call the two helpers separately if 1767 * have a clearly defined need to use and refcount the device 1768 * before it is added to the hierarchy. 1769 * 1770 * For more information, see the kerneldoc for device_initialize() 1771 * and device_add(). 1772 * 1773 * NOTE: _Never_ directly free @dev after calling this function, even 1774 * if it returned an error! Always use put_device() to give up the 1775 * reference initialized in this function instead. 1776 */ 1777 int device_register(struct device *dev) 1778 { 1779 device_initialize(dev); 1780 return device_add(dev); 1781 } 1782 EXPORT_SYMBOL_GPL(device_register); 1783 1784 /** 1785 * get_device - increment reference count for device. 1786 * @dev: device. 1787 * 1788 * This simply forwards the call to kobject_get(), though 1789 * we do take care to provide for the case that we get a NULL 1790 * pointer passed in. 1791 */ 1792 struct device *get_device(struct device *dev) 1793 { 1794 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 1795 } 1796 EXPORT_SYMBOL_GPL(get_device); 1797 1798 /** 1799 * put_device - decrement reference count. 1800 * @dev: device in question. 1801 */ 1802 void put_device(struct device *dev) 1803 { 1804 /* might_sleep(); */ 1805 if (dev) 1806 kobject_put(&dev->kobj); 1807 } 1808 EXPORT_SYMBOL_GPL(put_device); 1809 1810 /** 1811 * device_del - delete device from system. 1812 * @dev: device. 1813 * 1814 * This is the first part of the device unregistration 1815 * sequence. This removes the device from the lists we control 1816 * from here, has it removed from the other driver model 1817 * subsystems it was added to in device_add(), and removes it 1818 * from the kobject hierarchy. 1819 * 1820 * NOTE: this should be called manually _iff_ device_add() was 1821 * also called manually. 1822 */ 1823 void device_del(struct device *dev) 1824 { 1825 struct device *parent = dev->parent; 1826 struct kobject *glue_dir = NULL; 1827 struct class_interface *class_intf; 1828 1829 /* Notify clients of device removal. This call must come 1830 * before dpm_sysfs_remove(). 1831 */ 1832 if (dev->bus) 1833 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1834 BUS_NOTIFY_DEL_DEVICE, dev); 1835 1836 device_links_purge(dev); 1837 dpm_sysfs_remove(dev); 1838 if (parent) 1839 klist_del(&dev->p->knode_parent); 1840 if (MAJOR(dev->devt)) { 1841 devtmpfs_delete_node(dev); 1842 device_remove_sys_dev_entry(dev); 1843 device_remove_file(dev, &dev_attr_dev); 1844 } 1845 if (dev->class) { 1846 device_remove_class_symlinks(dev); 1847 1848 mutex_lock(&dev->class->p->mutex); 1849 /* notify any interfaces that the device is now gone */ 1850 list_for_each_entry(class_intf, 1851 &dev->class->p->interfaces, node) 1852 if (class_intf->remove_dev) 1853 class_intf->remove_dev(dev, class_intf); 1854 /* remove the device from the class list */ 1855 klist_del(&dev->knode_class); 1856 mutex_unlock(&dev->class->p->mutex); 1857 } 1858 device_remove_file(dev, &dev_attr_uevent); 1859 device_remove_attrs(dev); 1860 bus_remove_device(dev); 1861 device_pm_remove(dev); 1862 driver_deferred_probe_del(dev); 1863 device_remove_properties(dev); 1864 1865 /* Notify the platform of the removal, in case they 1866 * need to do anything... 1867 */ 1868 if (platform_notify_remove) 1869 platform_notify_remove(dev); 1870 if (dev->bus) 1871 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1872 BUS_NOTIFY_REMOVED_DEVICE, dev); 1873 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 1874 glue_dir = get_glue_dir(dev); 1875 kobject_del(&dev->kobj); 1876 cleanup_glue_dir(dev, glue_dir); 1877 put_device(parent); 1878 } 1879 EXPORT_SYMBOL_GPL(device_del); 1880 1881 /** 1882 * device_unregister - unregister device from system. 1883 * @dev: device going away. 1884 * 1885 * We do this in two parts, like we do device_register(). First, 1886 * we remove it from all the subsystems with device_del(), then 1887 * we decrement the reference count via put_device(). If that 1888 * is the final reference count, the device will be cleaned up 1889 * via device_release() above. Otherwise, the structure will 1890 * stick around until the final reference to the device is dropped. 1891 */ 1892 void device_unregister(struct device *dev) 1893 { 1894 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 1895 device_del(dev); 1896 put_device(dev); 1897 } 1898 EXPORT_SYMBOL_GPL(device_unregister); 1899 1900 static struct device *prev_device(struct klist_iter *i) 1901 { 1902 struct klist_node *n = klist_prev(i); 1903 struct device *dev = NULL; 1904 struct device_private *p; 1905 1906 if (n) { 1907 p = to_device_private_parent(n); 1908 dev = p->device; 1909 } 1910 return dev; 1911 } 1912 1913 static struct device *next_device(struct klist_iter *i) 1914 { 1915 struct klist_node *n = klist_next(i); 1916 struct device *dev = NULL; 1917 struct device_private *p; 1918 1919 if (n) { 1920 p = to_device_private_parent(n); 1921 dev = p->device; 1922 } 1923 return dev; 1924 } 1925 1926 /** 1927 * device_get_devnode - path of device node file 1928 * @dev: device 1929 * @mode: returned file access mode 1930 * @uid: returned file owner 1931 * @gid: returned file group 1932 * @tmp: possibly allocated string 1933 * 1934 * Return the relative path of a possible device node. 1935 * Non-default names may need to allocate a memory to compose 1936 * a name. This memory is returned in tmp and needs to be 1937 * freed by the caller. 1938 */ 1939 const char *device_get_devnode(struct device *dev, 1940 umode_t *mode, kuid_t *uid, kgid_t *gid, 1941 const char **tmp) 1942 { 1943 char *s; 1944 1945 *tmp = NULL; 1946 1947 /* the device type may provide a specific name */ 1948 if (dev->type && dev->type->devnode) 1949 *tmp = dev->type->devnode(dev, mode, uid, gid); 1950 if (*tmp) 1951 return *tmp; 1952 1953 /* the class may provide a specific name */ 1954 if (dev->class && dev->class->devnode) 1955 *tmp = dev->class->devnode(dev, mode); 1956 if (*tmp) 1957 return *tmp; 1958 1959 /* return name without allocation, tmp == NULL */ 1960 if (strchr(dev_name(dev), '!') == NULL) 1961 return dev_name(dev); 1962 1963 /* replace '!' in the name with '/' */ 1964 s = kstrdup(dev_name(dev), GFP_KERNEL); 1965 if (!s) 1966 return NULL; 1967 strreplace(s, '!', '/'); 1968 return *tmp = s; 1969 } 1970 1971 /** 1972 * device_for_each_child - device child iterator. 1973 * @parent: parent struct device. 1974 * @fn: function to be called for each device. 1975 * @data: data for the callback. 1976 * 1977 * Iterate over @parent's child devices, and call @fn for each, 1978 * passing it @data. 1979 * 1980 * We check the return of @fn each time. If it returns anything 1981 * other than 0, we break out and return that value. 1982 */ 1983 int device_for_each_child(struct device *parent, void *data, 1984 int (*fn)(struct device *dev, void *data)) 1985 { 1986 struct klist_iter i; 1987 struct device *child; 1988 int error = 0; 1989 1990 if (!parent->p) 1991 return 0; 1992 1993 klist_iter_init(&parent->p->klist_children, &i); 1994 while ((child = next_device(&i)) && !error) 1995 error = fn(child, data); 1996 klist_iter_exit(&i); 1997 return error; 1998 } 1999 EXPORT_SYMBOL_GPL(device_for_each_child); 2000 2001 /** 2002 * device_for_each_child_reverse - device child iterator in reversed order. 2003 * @parent: parent struct device. 2004 * @fn: function to be called for each device. 2005 * @data: data for the callback. 2006 * 2007 * Iterate over @parent's child devices, and call @fn for each, 2008 * passing it @data. 2009 * 2010 * We check the return of @fn each time. If it returns anything 2011 * other than 0, we break out and return that value. 2012 */ 2013 int device_for_each_child_reverse(struct device *parent, void *data, 2014 int (*fn)(struct device *dev, void *data)) 2015 { 2016 struct klist_iter i; 2017 struct device *child; 2018 int error = 0; 2019 2020 if (!parent->p) 2021 return 0; 2022 2023 klist_iter_init(&parent->p->klist_children, &i); 2024 while ((child = prev_device(&i)) && !error) 2025 error = fn(child, data); 2026 klist_iter_exit(&i); 2027 return error; 2028 } 2029 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 2030 2031 /** 2032 * device_find_child - device iterator for locating a particular device. 2033 * @parent: parent struct device 2034 * @match: Callback function to check device 2035 * @data: Data to pass to match function 2036 * 2037 * This is similar to the device_for_each_child() function above, but it 2038 * returns a reference to a device that is 'found' for later use, as 2039 * determined by the @match callback. 2040 * 2041 * The callback should return 0 if the device doesn't match and non-zero 2042 * if it does. If the callback returns non-zero and a reference to the 2043 * current device can be obtained, this function will return to the caller 2044 * and not iterate over any more devices. 2045 * 2046 * NOTE: you will need to drop the reference with put_device() after use. 2047 */ 2048 struct device *device_find_child(struct device *parent, void *data, 2049 int (*match)(struct device *dev, void *data)) 2050 { 2051 struct klist_iter i; 2052 struct device *child; 2053 2054 if (!parent) 2055 return NULL; 2056 2057 klist_iter_init(&parent->p->klist_children, &i); 2058 while ((child = next_device(&i))) 2059 if (match(child, data) && get_device(child)) 2060 break; 2061 klist_iter_exit(&i); 2062 return child; 2063 } 2064 EXPORT_SYMBOL_GPL(device_find_child); 2065 2066 int __init devices_init(void) 2067 { 2068 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 2069 if (!devices_kset) 2070 return -ENOMEM; 2071 dev_kobj = kobject_create_and_add("dev", NULL); 2072 if (!dev_kobj) 2073 goto dev_kobj_err; 2074 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 2075 if (!sysfs_dev_block_kobj) 2076 goto block_kobj_err; 2077 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 2078 if (!sysfs_dev_char_kobj) 2079 goto char_kobj_err; 2080 2081 return 0; 2082 2083 char_kobj_err: 2084 kobject_put(sysfs_dev_block_kobj); 2085 block_kobj_err: 2086 kobject_put(dev_kobj); 2087 dev_kobj_err: 2088 kset_unregister(devices_kset); 2089 return -ENOMEM; 2090 } 2091 2092 static int device_check_offline(struct device *dev, void *not_used) 2093 { 2094 int ret; 2095 2096 ret = device_for_each_child(dev, NULL, device_check_offline); 2097 if (ret) 2098 return ret; 2099 2100 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 2101 } 2102 2103 /** 2104 * device_offline - Prepare the device for hot-removal. 2105 * @dev: Device to be put offline. 2106 * 2107 * Execute the device bus type's .offline() callback, if present, to prepare 2108 * the device for a subsequent hot-removal. If that succeeds, the device must 2109 * not be used until either it is removed or its bus type's .online() callback 2110 * is executed. 2111 * 2112 * Call under device_hotplug_lock. 2113 */ 2114 int device_offline(struct device *dev) 2115 { 2116 int ret; 2117 2118 if (dev->offline_disabled) 2119 return -EPERM; 2120 2121 ret = device_for_each_child(dev, NULL, device_check_offline); 2122 if (ret) 2123 return ret; 2124 2125 device_lock(dev); 2126 if (device_supports_offline(dev)) { 2127 if (dev->offline) { 2128 ret = 1; 2129 } else { 2130 ret = dev->bus->offline(dev); 2131 if (!ret) { 2132 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2133 dev->offline = true; 2134 } 2135 } 2136 } 2137 device_unlock(dev); 2138 2139 return ret; 2140 } 2141 2142 /** 2143 * device_online - Put the device back online after successful device_offline(). 2144 * @dev: Device to be put back online. 2145 * 2146 * If device_offline() has been successfully executed for @dev, but the device 2147 * has not been removed subsequently, execute its bus type's .online() callback 2148 * to indicate that the device can be used again. 2149 * 2150 * Call under device_hotplug_lock. 2151 */ 2152 int device_online(struct device *dev) 2153 { 2154 int ret = 0; 2155 2156 device_lock(dev); 2157 if (device_supports_offline(dev)) { 2158 if (dev->offline) { 2159 ret = dev->bus->online(dev); 2160 if (!ret) { 2161 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2162 dev->offline = false; 2163 } 2164 } else { 2165 ret = 1; 2166 } 2167 } 2168 device_unlock(dev); 2169 2170 return ret; 2171 } 2172 2173 struct root_device { 2174 struct device dev; 2175 struct module *owner; 2176 }; 2177 2178 static inline struct root_device *to_root_device(struct device *d) 2179 { 2180 return container_of(d, struct root_device, dev); 2181 } 2182 2183 static void root_device_release(struct device *dev) 2184 { 2185 kfree(to_root_device(dev)); 2186 } 2187 2188 /** 2189 * __root_device_register - allocate and register a root device 2190 * @name: root device name 2191 * @owner: owner module of the root device, usually THIS_MODULE 2192 * 2193 * This function allocates a root device and registers it 2194 * using device_register(). In order to free the returned 2195 * device, use root_device_unregister(). 2196 * 2197 * Root devices are dummy devices which allow other devices 2198 * to be grouped under /sys/devices. Use this function to 2199 * allocate a root device and then use it as the parent of 2200 * any device which should appear under /sys/devices/{name} 2201 * 2202 * The /sys/devices/{name} directory will also contain a 2203 * 'module' symlink which points to the @owner directory 2204 * in sysfs. 2205 * 2206 * Returns &struct device pointer on success, or ERR_PTR() on error. 2207 * 2208 * Note: You probably want to use root_device_register(). 2209 */ 2210 struct device *__root_device_register(const char *name, struct module *owner) 2211 { 2212 struct root_device *root; 2213 int err = -ENOMEM; 2214 2215 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 2216 if (!root) 2217 return ERR_PTR(err); 2218 2219 err = dev_set_name(&root->dev, "%s", name); 2220 if (err) { 2221 kfree(root); 2222 return ERR_PTR(err); 2223 } 2224 2225 root->dev.release = root_device_release; 2226 2227 err = device_register(&root->dev); 2228 if (err) { 2229 put_device(&root->dev); 2230 return ERR_PTR(err); 2231 } 2232 2233 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 2234 if (owner) { 2235 struct module_kobject *mk = &owner->mkobj; 2236 2237 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 2238 if (err) { 2239 device_unregister(&root->dev); 2240 return ERR_PTR(err); 2241 } 2242 root->owner = owner; 2243 } 2244 #endif 2245 2246 return &root->dev; 2247 } 2248 EXPORT_SYMBOL_GPL(__root_device_register); 2249 2250 /** 2251 * root_device_unregister - unregister and free a root device 2252 * @dev: device going away 2253 * 2254 * This function unregisters and cleans up a device that was created by 2255 * root_device_register(). 2256 */ 2257 void root_device_unregister(struct device *dev) 2258 { 2259 struct root_device *root = to_root_device(dev); 2260 2261 if (root->owner) 2262 sysfs_remove_link(&root->dev.kobj, "module"); 2263 2264 device_unregister(dev); 2265 } 2266 EXPORT_SYMBOL_GPL(root_device_unregister); 2267 2268 2269 static void device_create_release(struct device *dev) 2270 { 2271 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2272 kfree(dev); 2273 } 2274 2275 static struct device * 2276 device_create_groups_vargs(struct class *class, struct device *parent, 2277 dev_t devt, void *drvdata, 2278 const struct attribute_group **groups, 2279 const char *fmt, va_list args) 2280 { 2281 struct device *dev = NULL; 2282 int retval = -ENODEV; 2283 2284 if (class == NULL || IS_ERR(class)) 2285 goto error; 2286 2287 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2288 if (!dev) { 2289 retval = -ENOMEM; 2290 goto error; 2291 } 2292 2293 device_initialize(dev); 2294 dev->devt = devt; 2295 dev->class = class; 2296 dev->parent = parent; 2297 dev->groups = groups; 2298 dev->release = device_create_release; 2299 dev_set_drvdata(dev, drvdata); 2300 2301 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 2302 if (retval) 2303 goto error; 2304 2305 retval = device_add(dev); 2306 if (retval) 2307 goto error; 2308 2309 return dev; 2310 2311 error: 2312 put_device(dev); 2313 return ERR_PTR(retval); 2314 } 2315 2316 /** 2317 * device_create_vargs - creates a device and registers it with sysfs 2318 * @class: pointer to the struct class that this device should be registered to 2319 * @parent: pointer to the parent struct device of this new device, if any 2320 * @devt: the dev_t for the char device to be added 2321 * @drvdata: the data to be added to the device for callbacks 2322 * @fmt: string for the device's name 2323 * @args: va_list for the device's name 2324 * 2325 * This function can be used by char device classes. A struct device 2326 * will be created in sysfs, registered to the specified class. 2327 * 2328 * A "dev" file will be created, showing the dev_t for the device, if 2329 * the dev_t is not 0,0. 2330 * If a pointer to a parent struct device is passed in, the newly created 2331 * struct device will be a child of that device in sysfs. 2332 * The pointer to the struct device will be returned from the call. 2333 * Any further sysfs files that might be required can be created using this 2334 * pointer. 2335 * 2336 * Returns &struct device pointer on success, or ERR_PTR() on error. 2337 * 2338 * Note: the struct class passed to this function must have previously 2339 * been created with a call to class_create(). 2340 */ 2341 struct device *device_create_vargs(struct class *class, struct device *parent, 2342 dev_t devt, void *drvdata, const char *fmt, 2343 va_list args) 2344 { 2345 return device_create_groups_vargs(class, parent, devt, drvdata, NULL, 2346 fmt, args); 2347 } 2348 EXPORT_SYMBOL_GPL(device_create_vargs); 2349 2350 /** 2351 * device_create - creates a device and registers it with sysfs 2352 * @class: pointer to the struct class that this device should be registered to 2353 * @parent: pointer to the parent struct device of this new device, if any 2354 * @devt: the dev_t for the char device to be added 2355 * @drvdata: the data to be added to the device for callbacks 2356 * @fmt: string for the device's name 2357 * 2358 * This function can be used by char device classes. A struct device 2359 * will be created in sysfs, registered to the specified class. 2360 * 2361 * A "dev" file will be created, showing the dev_t for the device, if 2362 * the dev_t is not 0,0. 2363 * If a pointer to a parent struct device is passed in, the newly created 2364 * struct device will be a child of that device in sysfs. 2365 * The pointer to the struct device will be returned from the call. 2366 * Any further sysfs files that might be required can be created using this 2367 * pointer. 2368 * 2369 * Returns &struct device pointer on success, or ERR_PTR() on error. 2370 * 2371 * Note: the struct class passed to this function must have previously 2372 * been created with a call to class_create(). 2373 */ 2374 struct device *device_create(struct class *class, struct device *parent, 2375 dev_t devt, void *drvdata, const char *fmt, ...) 2376 { 2377 va_list vargs; 2378 struct device *dev; 2379 2380 va_start(vargs, fmt); 2381 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs); 2382 va_end(vargs); 2383 return dev; 2384 } 2385 EXPORT_SYMBOL_GPL(device_create); 2386 2387 /** 2388 * device_create_with_groups - creates a device and registers it with sysfs 2389 * @class: pointer to the struct class that this device should be registered to 2390 * @parent: pointer to the parent struct device of this new device, if any 2391 * @devt: the dev_t for the char device to be added 2392 * @drvdata: the data to be added to the device for callbacks 2393 * @groups: NULL-terminated list of attribute groups to be created 2394 * @fmt: string for the device's name 2395 * 2396 * This function can be used by char device classes. A struct device 2397 * will be created in sysfs, registered to the specified class. 2398 * Additional attributes specified in the groups parameter will also 2399 * be created automatically. 2400 * 2401 * A "dev" file will be created, showing the dev_t for the device, if 2402 * the dev_t is not 0,0. 2403 * If a pointer to a parent struct device is passed in, the newly created 2404 * struct device will be a child of that device in sysfs. 2405 * The pointer to the struct device will be returned from the call. 2406 * Any further sysfs files that might be required can be created using this 2407 * pointer. 2408 * 2409 * Returns &struct device pointer on success, or ERR_PTR() on error. 2410 * 2411 * Note: the struct class passed to this function must have previously 2412 * been created with a call to class_create(). 2413 */ 2414 struct device *device_create_with_groups(struct class *class, 2415 struct device *parent, dev_t devt, 2416 void *drvdata, 2417 const struct attribute_group **groups, 2418 const char *fmt, ...) 2419 { 2420 va_list vargs; 2421 struct device *dev; 2422 2423 va_start(vargs, fmt); 2424 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 2425 fmt, vargs); 2426 va_end(vargs); 2427 return dev; 2428 } 2429 EXPORT_SYMBOL_GPL(device_create_with_groups); 2430 2431 static int __match_devt(struct device *dev, const void *data) 2432 { 2433 const dev_t *devt = data; 2434 2435 return dev->devt == *devt; 2436 } 2437 2438 /** 2439 * device_destroy - removes a device that was created with device_create() 2440 * @class: pointer to the struct class that this device was registered with 2441 * @devt: the dev_t of the device that was previously registered 2442 * 2443 * This call unregisters and cleans up a device that was created with a 2444 * call to device_create(). 2445 */ 2446 void device_destroy(struct class *class, dev_t devt) 2447 { 2448 struct device *dev; 2449 2450 dev = class_find_device(class, NULL, &devt, __match_devt); 2451 if (dev) { 2452 put_device(dev); 2453 device_unregister(dev); 2454 } 2455 } 2456 EXPORT_SYMBOL_GPL(device_destroy); 2457 2458 /** 2459 * device_rename - renames a device 2460 * @dev: the pointer to the struct device to be renamed 2461 * @new_name: the new name of the device 2462 * 2463 * It is the responsibility of the caller to provide mutual 2464 * exclusion between two different calls of device_rename 2465 * on the same device to ensure that new_name is valid and 2466 * won't conflict with other devices. 2467 * 2468 * Note: Don't call this function. Currently, the networking layer calls this 2469 * function, but that will change. The following text from Kay Sievers offers 2470 * some insight: 2471 * 2472 * Renaming devices is racy at many levels, symlinks and other stuff are not 2473 * replaced atomically, and you get a "move" uevent, but it's not easy to 2474 * connect the event to the old and new device. Device nodes are not renamed at 2475 * all, there isn't even support for that in the kernel now. 2476 * 2477 * In the meantime, during renaming, your target name might be taken by another 2478 * driver, creating conflicts. Or the old name is taken directly after you 2479 * renamed it -- then you get events for the same DEVPATH, before you even see 2480 * the "move" event. It's just a mess, and nothing new should ever rely on 2481 * kernel device renaming. Besides that, it's not even implemented now for 2482 * other things than (driver-core wise very simple) network devices. 2483 * 2484 * We are currently about to change network renaming in udev to completely 2485 * disallow renaming of devices in the same namespace as the kernel uses, 2486 * because we can't solve the problems properly, that arise with swapping names 2487 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 2488 * be allowed to some other name than eth[0-9]*, for the aforementioned 2489 * reasons. 2490 * 2491 * Make up a "real" name in the driver before you register anything, or add 2492 * some other attributes for userspace to find the device, or use udev to add 2493 * symlinks -- but never rename kernel devices later, it's a complete mess. We 2494 * don't even want to get into that and try to implement the missing pieces in 2495 * the core. We really have other pieces to fix in the driver core mess. :) 2496 */ 2497 int device_rename(struct device *dev, const char *new_name) 2498 { 2499 struct kobject *kobj = &dev->kobj; 2500 char *old_device_name = NULL; 2501 int error; 2502 2503 dev = get_device(dev); 2504 if (!dev) 2505 return -EINVAL; 2506 2507 dev_dbg(dev, "renaming to %s\n", new_name); 2508 2509 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 2510 if (!old_device_name) { 2511 error = -ENOMEM; 2512 goto out; 2513 } 2514 2515 if (dev->class) { 2516 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 2517 kobj, old_device_name, 2518 new_name, kobject_namespace(kobj)); 2519 if (error) 2520 goto out; 2521 } 2522 2523 error = kobject_rename(kobj, new_name); 2524 if (error) 2525 goto out; 2526 2527 out: 2528 put_device(dev); 2529 2530 kfree(old_device_name); 2531 2532 return error; 2533 } 2534 EXPORT_SYMBOL_GPL(device_rename); 2535 2536 static int device_move_class_links(struct device *dev, 2537 struct device *old_parent, 2538 struct device *new_parent) 2539 { 2540 int error = 0; 2541 2542 if (old_parent) 2543 sysfs_remove_link(&dev->kobj, "device"); 2544 if (new_parent) 2545 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 2546 "device"); 2547 return error; 2548 } 2549 2550 /** 2551 * device_move - moves a device to a new parent 2552 * @dev: the pointer to the struct device to be moved 2553 * @new_parent: the new parent of the device (can by NULL) 2554 * @dpm_order: how to reorder the dpm_list 2555 */ 2556 int device_move(struct device *dev, struct device *new_parent, 2557 enum dpm_order dpm_order) 2558 { 2559 int error; 2560 struct device *old_parent; 2561 struct kobject *new_parent_kobj; 2562 2563 dev = get_device(dev); 2564 if (!dev) 2565 return -EINVAL; 2566 2567 device_pm_lock(); 2568 new_parent = get_device(new_parent); 2569 new_parent_kobj = get_device_parent(dev, new_parent); 2570 2571 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 2572 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 2573 error = kobject_move(&dev->kobj, new_parent_kobj); 2574 if (error) { 2575 cleanup_glue_dir(dev, new_parent_kobj); 2576 put_device(new_parent); 2577 goto out; 2578 } 2579 old_parent = dev->parent; 2580 dev->parent = new_parent; 2581 if (old_parent) 2582 klist_remove(&dev->p->knode_parent); 2583 if (new_parent) { 2584 klist_add_tail(&dev->p->knode_parent, 2585 &new_parent->p->klist_children); 2586 set_dev_node(dev, dev_to_node(new_parent)); 2587 } 2588 2589 if (dev->class) { 2590 error = device_move_class_links(dev, old_parent, new_parent); 2591 if (error) { 2592 /* We ignore errors on cleanup since we're hosed anyway... */ 2593 device_move_class_links(dev, new_parent, old_parent); 2594 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 2595 if (new_parent) 2596 klist_remove(&dev->p->knode_parent); 2597 dev->parent = old_parent; 2598 if (old_parent) { 2599 klist_add_tail(&dev->p->knode_parent, 2600 &old_parent->p->klist_children); 2601 set_dev_node(dev, dev_to_node(old_parent)); 2602 } 2603 } 2604 cleanup_glue_dir(dev, new_parent_kobj); 2605 put_device(new_parent); 2606 goto out; 2607 } 2608 } 2609 switch (dpm_order) { 2610 case DPM_ORDER_NONE: 2611 break; 2612 case DPM_ORDER_DEV_AFTER_PARENT: 2613 device_pm_move_after(dev, new_parent); 2614 devices_kset_move_after(dev, new_parent); 2615 break; 2616 case DPM_ORDER_PARENT_BEFORE_DEV: 2617 device_pm_move_before(new_parent, dev); 2618 devices_kset_move_before(new_parent, dev); 2619 break; 2620 case DPM_ORDER_DEV_LAST: 2621 device_pm_move_last(dev); 2622 devices_kset_move_last(dev); 2623 break; 2624 } 2625 2626 put_device(old_parent); 2627 out: 2628 device_pm_unlock(); 2629 put_device(dev); 2630 return error; 2631 } 2632 EXPORT_SYMBOL_GPL(device_move); 2633 2634 /** 2635 * device_shutdown - call ->shutdown() on each device to shutdown. 2636 */ 2637 void device_shutdown(void) 2638 { 2639 struct device *dev, *parent; 2640 2641 spin_lock(&devices_kset->list_lock); 2642 /* 2643 * Walk the devices list backward, shutting down each in turn. 2644 * Beware that device unplug events may also start pulling 2645 * devices offline, even as the system is shutting down. 2646 */ 2647 while (!list_empty(&devices_kset->list)) { 2648 dev = list_entry(devices_kset->list.prev, struct device, 2649 kobj.entry); 2650 2651 /* 2652 * hold reference count of device's parent to 2653 * prevent it from being freed because parent's 2654 * lock is to be held 2655 */ 2656 parent = get_device(dev->parent); 2657 get_device(dev); 2658 /* 2659 * Make sure the device is off the kset list, in the 2660 * event that dev->*->shutdown() doesn't remove it. 2661 */ 2662 list_del_init(&dev->kobj.entry); 2663 spin_unlock(&devices_kset->list_lock); 2664 2665 /* hold lock to avoid race with probe/release */ 2666 if (parent) 2667 device_lock(parent); 2668 device_lock(dev); 2669 2670 /* Don't allow any more runtime suspends */ 2671 pm_runtime_get_noresume(dev); 2672 pm_runtime_barrier(dev); 2673 2674 if (dev->bus && dev->bus->shutdown) { 2675 if (initcall_debug) 2676 dev_info(dev, "shutdown\n"); 2677 dev->bus->shutdown(dev); 2678 } else if (dev->driver && dev->driver->shutdown) { 2679 if (initcall_debug) 2680 dev_info(dev, "shutdown\n"); 2681 dev->driver->shutdown(dev); 2682 } 2683 2684 device_unlock(dev); 2685 if (parent) 2686 device_unlock(parent); 2687 2688 put_device(dev); 2689 put_device(parent); 2690 2691 spin_lock(&devices_kset->list_lock); 2692 } 2693 spin_unlock(&devices_kset->list_lock); 2694 } 2695 2696 /* 2697 * Device logging functions 2698 */ 2699 2700 #ifdef CONFIG_PRINTK 2701 static int 2702 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen) 2703 { 2704 const char *subsys; 2705 size_t pos = 0; 2706 2707 if (dev->class) 2708 subsys = dev->class->name; 2709 else if (dev->bus) 2710 subsys = dev->bus->name; 2711 else 2712 return 0; 2713 2714 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys); 2715 if (pos >= hdrlen) 2716 goto overflow; 2717 2718 /* 2719 * Add device identifier DEVICE=: 2720 * b12:8 block dev_t 2721 * c127:3 char dev_t 2722 * n8 netdev ifindex 2723 * +sound:card0 subsystem:devname 2724 */ 2725 if (MAJOR(dev->devt)) { 2726 char c; 2727 2728 if (strcmp(subsys, "block") == 0) 2729 c = 'b'; 2730 else 2731 c = 'c'; 2732 pos++; 2733 pos += snprintf(hdr + pos, hdrlen - pos, 2734 "DEVICE=%c%u:%u", 2735 c, MAJOR(dev->devt), MINOR(dev->devt)); 2736 } else if (strcmp(subsys, "net") == 0) { 2737 struct net_device *net = to_net_dev(dev); 2738 2739 pos++; 2740 pos += snprintf(hdr + pos, hdrlen - pos, 2741 "DEVICE=n%u", net->ifindex); 2742 } else { 2743 pos++; 2744 pos += snprintf(hdr + pos, hdrlen - pos, 2745 "DEVICE=+%s:%s", subsys, dev_name(dev)); 2746 } 2747 2748 if (pos >= hdrlen) 2749 goto overflow; 2750 2751 return pos; 2752 2753 overflow: 2754 dev_WARN(dev, "device/subsystem name too long"); 2755 return 0; 2756 } 2757 2758 int dev_vprintk_emit(int level, const struct device *dev, 2759 const char *fmt, va_list args) 2760 { 2761 char hdr[128]; 2762 size_t hdrlen; 2763 2764 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr)); 2765 2766 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args); 2767 } 2768 EXPORT_SYMBOL(dev_vprintk_emit); 2769 2770 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 2771 { 2772 va_list args; 2773 int r; 2774 2775 va_start(args, fmt); 2776 2777 r = dev_vprintk_emit(level, dev, fmt, args); 2778 2779 va_end(args); 2780 2781 return r; 2782 } 2783 EXPORT_SYMBOL(dev_printk_emit); 2784 2785 static void __dev_printk(const char *level, const struct device *dev, 2786 struct va_format *vaf) 2787 { 2788 if (dev) 2789 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 2790 dev_driver_string(dev), dev_name(dev), vaf); 2791 else 2792 printk("%s(NULL device *): %pV", level, vaf); 2793 } 2794 2795 void dev_printk(const char *level, const struct device *dev, 2796 const char *fmt, ...) 2797 { 2798 struct va_format vaf; 2799 va_list args; 2800 2801 va_start(args, fmt); 2802 2803 vaf.fmt = fmt; 2804 vaf.va = &args; 2805 2806 __dev_printk(level, dev, &vaf); 2807 2808 va_end(args); 2809 } 2810 EXPORT_SYMBOL(dev_printk); 2811 2812 #define define_dev_printk_level(func, kern_level) \ 2813 void func(const struct device *dev, const char *fmt, ...) \ 2814 { \ 2815 struct va_format vaf; \ 2816 va_list args; \ 2817 \ 2818 va_start(args, fmt); \ 2819 \ 2820 vaf.fmt = fmt; \ 2821 vaf.va = &args; \ 2822 \ 2823 __dev_printk(kern_level, dev, &vaf); \ 2824 \ 2825 va_end(args); \ 2826 } \ 2827 EXPORT_SYMBOL(func); 2828 2829 define_dev_printk_level(dev_emerg, KERN_EMERG); 2830 define_dev_printk_level(dev_alert, KERN_ALERT); 2831 define_dev_printk_level(dev_crit, KERN_CRIT); 2832 define_dev_printk_level(dev_err, KERN_ERR); 2833 define_dev_printk_level(dev_warn, KERN_WARNING); 2834 define_dev_printk_level(dev_notice, KERN_NOTICE); 2835 define_dev_printk_level(_dev_info, KERN_INFO); 2836 2837 #endif 2838 2839 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 2840 { 2841 return fwnode && !IS_ERR(fwnode->secondary); 2842 } 2843 2844 /** 2845 * set_primary_fwnode - Change the primary firmware node of a given device. 2846 * @dev: Device to handle. 2847 * @fwnode: New primary firmware node of the device. 2848 * 2849 * Set the device's firmware node pointer to @fwnode, but if a secondary 2850 * firmware node of the device is present, preserve it. 2851 */ 2852 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 2853 { 2854 if (fwnode) { 2855 struct fwnode_handle *fn = dev->fwnode; 2856 2857 if (fwnode_is_primary(fn)) 2858 fn = fn->secondary; 2859 2860 if (fn) { 2861 WARN_ON(fwnode->secondary); 2862 fwnode->secondary = fn; 2863 } 2864 dev->fwnode = fwnode; 2865 } else { 2866 dev->fwnode = fwnode_is_primary(dev->fwnode) ? 2867 dev->fwnode->secondary : NULL; 2868 } 2869 } 2870 EXPORT_SYMBOL_GPL(set_primary_fwnode); 2871 2872 /** 2873 * set_secondary_fwnode - Change the secondary firmware node of a given device. 2874 * @dev: Device to handle. 2875 * @fwnode: New secondary firmware node of the device. 2876 * 2877 * If a primary firmware node of the device is present, set its secondary 2878 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 2879 * @fwnode. 2880 */ 2881 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 2882 { 2883 if (fwnode) 2884 fwnode->secondary = ERR_PTR(-ENODEV); 2885 2886 if (fwnode_is_primary(dev->fwnode)) 2887 dev->fwnode->secondary = fwnode; 2888 else 2889 dev->fwnode = fwnode; 2890 } 2891