xref: /openbmc/linux/drivers/base/core.c (revision 4e1a33b1)
1 /*
2  * drivers/base/core.c - core driver model code (device registration, etc)
3  *
4  * Copyright (c) 2002-3 Patrick Mochel
5  * Copyright (c) 2002-3 Open Source Development Labs
6  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
7  * Copyright (c) 2006 Novell, Inc.
8  *
9  * This file is released under the GPLv2
10  *
11  */
12 
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/kallsyms.h>
26 #include <linux/mutex.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29 #include <linux/sysfs.h>
30 
31 #include "base.h"
32 #include "power/power.h"
33 
34 #ifdef CONFIG_SYSFS_DEPRECATED
35 #ifdef CONFIG_SYSFS_DEPRECATED_V2
36 long sysfs_deprecated = 1;
37 #else
38 long sysfs_deprecated = 0;
39 #endif
40 static int __init sysfs_deprecated_setup(char *arg)
41 {
42 	return kstrtol(arg, 10, &sysfs_deprecated);
43 }
44 early_param("sysfs.deprecated", sysfs_deprecated_setup);
45 #endif
46 
47 /* Device links support. */
48 
49 #ifdef CONFIG_SRCU
50 static DEFINE_MUTEX(device_links_lock);
51 DEFINE_STATIC_SRCU(device_links_srcu);
52 
53 static inline void device_links_write_lock(void)
54 {
55 	mutex_lock(&device_links_lock);
56 }
57 
58 static inline void device_links_write_unlock(void)
59 {
60 	mutex_unlock(&device_links_lock);
61 }
62 
63 int device_links_read_lock(void)
64 {
65 	return srcu_read_lock(&device_links_srcu);
66 }
67 
68 void device_links_read_unlock(int idx)
69 {
70 	srcu_read_unlock(&device_links_srcu, idx);
71 }
72 #else /* !CONFIG_SRCU */
73 static DECLARE_RWSEM(device_links_lock);
74 
75 static inline void device_links_write_lock(void)
76 {
77 	down_write(&device_links_lock);
78 }
79 
80 static inline void device_links_write_unlock(void)
81 {
82 	up_write(&device_links_lock);
83 }
84 
85 int device_links_read_lock(void)
86 {
87 	down_read(&device_links_lock);
88 	return 0;
89 }
90 
91 void device_links_read_unlock(int not_used)
92 {
93 	up_read(&device_links_lock);
94 }
95 #endif /* !CONFIG_SRCU */
96 
97 /**
98  * device_is_dependent - Check if one device depends on another one
99  * @dev: Device to check dependencies for.
100  * @target: Device to check against.
101  *
102  * Check if @target depends on @dev or any device dependent on it (its child or
103  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
104  */
105 static int device_is_dependent(struct device *dev, void *target)
106 {
107 	struct device_link *link;
108 	int ret;
109 
110 	if (WARN_ON(dev == target))
111 		return 1;
112 
113 	ret = device_for_each_child(dev, target, device_is_dependent);
114 	if (ret)
115 		return ret;
116 
117 	list_for_each_entry(link, &dev->links.consumers, s_node) {
118 		if (WARN_ON(link->consumer == target))
119 			return 1;
120 
121 		ret = device_is_dependent(link->consumer, target);
122 		if (ret)
123 			break;
124 	}
125 	return ret;
126 }
127 
128 static int device_reorder_to_tail(struct device *dev, void *not_used)
129 {
130 	struct device_link *link;
131 
132 	/*
133 	 * Devices that have not been registered yet will be put to the ends
134 	 * of the lists during the registration, so skip them here.
135 	 */
136 	if (device_is_registered(dev))
137 		devices_kset_move_last(dev);
138 
139 	if (device_pm_initialized(dev))
140 		device_pm_move_last(dev);
141 
142 	device_for_each_child(dev, NULL, device_reorder_to_tail);
143 	list_for_each_entry(link, &dev->links.consumers, s_node)
144 		device_reorder_to_tail(link->consumer, NULL);
145 
146 	return 0;
147 }
148 
149 /**
150  * device_link_add - Create a link between two devices.
151  * @consumer: Consumer end of the link.
152  * @supplier: Supplier end of the link.
153  * @flags: Link flags.
154  *
155  * The caller is responsible for the proper synchronization of the link creation
156  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
157  * runtime PM framework to take the link into account.  Second, if the
158  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
159  * be forced into the active metastate and reference-counted upon the creation
160  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
161  * ignored.
162  *
163  * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically
164  * when the consumer device driver unbinds from it.  The combination of both
165  * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL
166  * to be returned.
167  *
168  * A side effect of the link creation is re-ordering of dpm_list and the
169  * devices_kset list by moving the consumer device and all devices depending
170  * on it to the ends of these lists (that does not happen to devices that have
171  * not been registered when this function is called).
172  *
173  * The supplier device is required to be registered when this function is called
174  * and NULL will be returned if that is not the case.  The consumer device need
175  * not be registered, however.
176  */
177 struct device_link *device_link_add(struct device *consumer,
178 				    struct device *supplier, u32 flags)
179 {
180 	struct device_link *link;
181 
182 	if (!consumer || !supplier ||
183 	    ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE)))
184 		return NULL;
185 
186 	device_links_write_lock();
187 	device_pm_lock();
188 
189 	/*
190 	 * If the supplier has not been fully registered yet or there is a
191 	 * reverse dependency between the consumer and the supplier already in
192 	 * the graph, return NULL.
193 	 */
194 	if (!device_pm_initialized(supplier)
195 	    || device_is_dependent(consumer, supplier)) {
196 		link = NULL;
197 		goto out;
198 	}
199 
200 	list_for_each_entry(link, &supplier->links.consumers, s_node)
201 		if (link->consumer == consumer)
202 			goto out;
203 
204 	link = kzalloc(sizeof(*link), GFP_KERNEL);
205 	if (!link)
206 		goto out;
207 
208 	if (flags & DL_FLAG_PM_RUNTIME) {
209 		if (flags & DL_FLAG_RPM_ACTIVE) {
210 			if (pm_runtime_get_sync(supplier) < 0) {
211 				pm_runtime_put_noidle(supplier);
212 				kfree(link);
213 				link = NULL;
214 				goto out;
215 			}
216 			link->rpm_active = true;
217 		}
218 		pm_runtime_new_link(consumer);
219 	}
220 	get_device(supplier);
221 	link->supplier = supplier;
222 	INIT_LIST_HEAD(&link->s_node);
223 	get_device(consumer);
224 	link->consumer = consumer;
225 	INIT_LIST_HEAD(&link->c_node);
226 	link->flags = flags;
227 
228 	/* Determine the initial link state. */
229 	if (flags & DL_FLAG_STATELESS) {
230 		link->status = DL_STATE_NONE;
231 	} else {
232 		switch (supplier->links.status) {
233 		case DL_DEV_DRIVER_BOUND:
234 			switch (consumer->links.status) {
235 			case DL_DEV_PROBING:
236 				/*
237 				 * Balance the decrementation of the supplier's
238 				 * runtime PM usage counter after consumer probe
239 				 * in driver_probe_device().
240 				 */
241 				if (flags & DL_FLAG_PM_RUNTIME)
242 					pm_runtime_get_sync(supplier);
243 
244 				link->status = DL_STATE_CONSUMER_PROBE;
245 				break;
246 			case DL_DEV_DRIVER_BOUND:
247 				link->status = DL_STATE_ACTIVE;
248 				break;
249 			default:
250 				link->status = DL_STATE_AVAILABLE;
251 				break;
252 			}
253 			break;
254 		case DL_DEV_UNBINDING:
255 			link->status = DL_STATE_SUPPLIER_UNBIND;
256 			break;
257 		default:
258 			link->status = DL_STATE_DORMANT;
259 			break;
260 		}
261 	}
262 
263 	/*
264 	 * Move the consumer and all of the devices depending on it to the end
265 	 * of dpm_list and the devices_kset list.
266 	 *
267 	 * It is necessary to hold dpm_list locked throughout all that or else
268 	 * we may end up suspending with a wrong ordering of it.
269 	 */
270 	device_reorder_to_tail(consumer, NULL);
271 
272 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
273 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
274 
275 	dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
276 
277  out:
278 	device_pm_unlock();
279 	device_links_write_unlock();
280 	return link;
281 }
282 EXPORT_SYMBOL_GPL(device_link_add);
283 
284 static void device_link_free(struct device_link *link)
285 {
286 	put_device(link->consumer);
287 	put_device(link->supplier);
288 	kfree(link);
289 }
290 
291 #ifdef CONFIG_SRCU
292 static void __device_link_free_srcu(struct rcu_head *rhead)
293 {
294 	device_link_free(container_of(rhead, struct device_link, rcu_head));
295 }
296 
297 static void __device_link_del(struct device_link *link)
298 {
299 	dev_info(link->consumer, "Dropping the link to %s\n",
300 		 dev_name(link->supplier));
301 
302 	if (link->flags & DL_FLAG_PM_RUNTIME)
303 		pm_runtime_drop_link(link->consumer);
304 
305 	list_del_rcu(&link->s_node);
306 	list_del_rcu(&link->c_node);
307 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
308 }
309 #else /* !CONFIG_SRCU */
310 static void __device_link_del(struct device_link *link)
311 {
312 	dev_info(link->consumer, "Dropping the link to %s\n",
313 		 dev_name(link->supplier));
314 
315 	list_del(&link->s_node);
316 	list_del(&link->c_node);
317 	device_link_free(link);
318 }
319 #endif /* !CONFIG_SRCU */
320 
321 /**
322  * device_link_del - Delete a link between two devices.
323  * @link: Device link to delete.
324  *
325  * The caller must ensure proper synchronization of this function with runtime
326  * PM.
327  */
328 void device_link_del(struct device_link *link)
329 {
330 	device_links_write_lock();
331 	device_pm_lock();
332 	__device_link_del(link);
333 	device_pm_unlock();
334 	device_links_write_unlock();
335 }
336 EXPORT_SYMBOL_GPL(device_link_del);
337 
338 static void device_links_missing_supplier(struct device *dev)
339 {
340 	struct device_link *link;
341 
342 	list_for_each_entry(link, &dev->links.suppliers, c_node)
343 		if (link->status == DL_STATE_CONSUMER_PROBE)
344 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
345 }
346 
347 /**
348  * device_links_check_suppliers - Check presence of supplier drivers.
349  * @dev: Consumer device.
350  *
351  * Check links from this device to any suppliers.  Walk the list of the device's
352  * links to suppliers and see if all of them are available.  If not, simply
353  * return -EPROBE_DEFER.
354  *
355  * We need to guarantee that the supplier will not go away after the check has
356  * been positive here.  It only can go away in __device_release_driver() and
357  * that function  checks the device's links to consumers.  This means we need to
358  * mark the link as "consumer probe in progress" to make the supplier removal
359  * wait for us to complete (or bad things may happen).
360  *
361  * Links with the DL_FLAG_STATELESS flag set are ignored.
362  */
363 int device_links_check_suppliers(struct device *dev)
364 {
365 	struct device_link *link;
366 	int ret = 0;
367 
368 	device_links_write_lock();
369 
370 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
371 		if (link->flags & DL_FLAG_STATELESS)
372 			continue;
373 
374 		if (link->status != DL_STATE_AVAILABLE) {
375 			device_links_missing_supplier(dev);
376 			ret = -EPROBE_DEFER;
377 			break;
378 		}
379 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
380 	}
381 	dev->links.status = DL_DEV_PROBING;
382 
383 	device_links_write_unlock();
384 	return ret;
385 }
386 
387 /**
388  * device_links_driver_bound - Update device links after probing its driver.
389  * @dev: Device to update the links for.
390  *
391  * The probe has been successful, so update links from this device to any
392  * consumers by changing their status to "available".
393  *
394  * Also change the status of @dev's links to suppliers to "active".
395  *
396  * Links with the DL_FLAG_STATELESS flag set are ignored.
397  */
398 void device_links_driver_bound(struct device *dev)
399 {
400 	struct device_link *link;
401 
402 	device_links_write_lock();
403 
404 	list_for_each_entry(link, &dev->links.consumers, s_node) {
405 		if (link->flags & DL_FLAG_STATELESS)
406 			continue;
407 
408 		WARN_ON(link->status != DL_STATE_DORMANT);
409 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
410 	}
411 
412 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
413 		if (link->flags & DL_FLAG_STATELESS)
414 			continue;
415 
416 		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
417 		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
418 	}
419 
420 	dev->links.status = DL_DEV_DRIVER_BOUND;
421 
422 	device_links_write_unlock();
423 }
424 
425 /**
426  * __device_links_no_driver - Update links of a device without a driver.
427  * @dev: Device without a drvier.
428  *
429  * Delete all non-persistent links from this device to any suppliers.
430  *
431  * Persistent links stay around, but their status is changed to "available",
432  * unless they already are in the "supplier unbind in progress" state in which
433  * case they need not be updated.
434  *
435  * Links with the DL_FLAG_STATELESS flag set are ignored.
436  */
437 static void __device_links_no_driver(struct device *dev)
438 {
439 	struct device_link *link, *ln;
440 
441 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
442 		if (link->flags & DL_FLAG_STATELESS)
443 			continue;
444 
445 		if (link->flags & DL_FLAG_AUTOREMOVE)
446 			__device_link_del(link);
447 		else if (link->status != DL_STATE_SUPPLIER_UNBIND)
448 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
449 	}
450 
451 	dev->links.status = DL_DEV_NO_DRIVER;
452 }
453 
454 void device_links_no_driver(struct device *dev)
455 {
456 	device_links_write_lock();
457 	__device_links_no_driver(dev);
458 	device_links_write_unlock();
459 }
460 
461 /**
462  * device_links_driver_cleanup - Update links after driver removal.
463  * @dev: Device whose driver has just gone away.
464  *
465  * Update links to consumers for @dev by changing their status to "dormant" and
466  * invoke %__device_links_no_driver() to update links to suppliers for it as
467  * appropriate.
468  *
469  * Links with the DL_FLAG_STATELESS flag set are ignored.
470  */
471 void device_links_driver_cleanup(struct device *dev)
472 {
473 	struct device_link *link;
474 
475 	device_links_write_lock();
476 
477 	list_for_each_entry(link, &dev->links.consumers, s_node) {
478 		if (link->flags & DL_FLAG_STATELESS)
479 			continue;
480 
481 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE);
482 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
483 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
484 	}
485 
486 	__device_links_no_driver(dev);
487 
488 	device_links_write_unlock();
489 }
490 
491 /**
492  * device_links_busy - Check if there are any busy links to consumers.
493  * @dev: Device to check.
494  *
495  * Check each consumer of the device and return 'true' if its link's status
496  * is one of "consumer probe" or "active" (meaning that the given consumer is
497  * probing right now or its driver is present).  Otherwise, change the link
498  * state to "supplier unbind" to prevent the consumer from being probed
499  * successfully going forward.
500  *
501  * Return 'false' if there are no probing or active consumers.
502  *
503  * Links with the DL_FLAG_STATELESS flag set are ignored.
504  */
505 bool device_links_busy(struct device *dev)
506 {
507 	struct device_link *link;
508 	bool ret = false;
509 
510 	device_links_write_lock();
511 
512 	list_for_each_entry(link, &dev->links.consumers, s_node) {
513 		if (link->flags & DL_FLAG_STATELESS)
514 			continue;
515 
516 		if (link->status == DL_STATE_CONSUMER_PROBE
517 		    || link->status == DL_STATE_ACTIVE) {
518 			ret = true;
519 			break;
520 		}
521 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
522 	}
523 
524 	dev->links.status = DL_DEV_UNBINDING;
525 
526 	device_links_write_unlock();
527 	return ret;
528 }
529 
530 /**
531  * device_links_unbind_consumers - Force unbind consumers of the given device.
532  * @dev: Device to unbind the consumers of.
533  *
534  * Walk the list of links to consumers for @dev and if any of them is in the
535  * "consumer probe" state, wait for all device probes in progress to complete
536  * and start over.
537  *
538  * If that's not the case, change the status of the link to "supplier unbind"
539  * and check if the link was in the "active" state.  If so, force the consumer
540  * driver to unbind and start over (the consumer will not re-probe as we have
541  * changed the state of the link already).
542  *
543  * Links with the DL_FLAG_STATELESS flag set are ignored.
544  */
545 void device_links_unbind_consumers(struct device *dev)
546 {
547 	struct device_link *link;
548 
549  start:
550 	device_links_write_lock();
551 
552 	list_for_each_entry(link, &dev->links.consumers, s_node) {
553 		enum device_link_state status;
554 
555 		if (link->flags & DL_FLAG_STATELESS)
556 			continue;
557 
558 		status = link->status;
559 		if (status == DL_STATE_CONSUMER_PROBE) {
560 			device_links_write_unlock();
561 
562 			wait_for_device_probe();
563 			goto start;
564 		}
565 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
566 		if (status == DL_STATE_ACTIVE) {
567 			struct device *consumer = link->consumer;
568 
569 			get_device(consumer);
570 
571 			device_links_write_unlock();
572 
573 			device_release_driver_internal(consumer, NULL,
574 						       consumer->parent);
575 			put_device(consumer);
576 			goto start;
577 		}
578 	}
579 
580 	device_links_write_unlock();
581 }
582 
583 /**
584  * device_links_purge - Delete existing links to other devices.
585  * @dev: Target device.
586  */
587 static void device_links_purge(struct device *dev)
588 {
589 	struct device_link *link, *ln;
590 
591 	/*
592 	 * Delete all of the remaining links from this device to any other
593 	 * devices (either consumers or suppliers).
594 	 */
595 	device_links_write_lock();
596 
597 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
598 		WARN_ON(link->status == DL_STATE_ACTIVE);
599 		__device_link_del(link);
600 	}
601 
602 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
603 		WARN_ON(link->status != DL_STATE_DORMANT &&
604 			link->status != DL_STATE_NONE);
605 		__device_link_del(link);
606 	}
607 
608 	device_links_write_unlock();
609 }
610 
611 /* Device links support end. */
612 
613 int (*platform_notify)(struct device *dev) = NULL;
614 int (*platform_notify_remove)(struct device *dev) = NULL;
615 static struct kobject *dev_kobj;
616 struct kobject *sysfs_dev_char_kobj;
617 struct kobject *sysfs_dev_block_kobj;
618 
619 static DEFINE_MUTEX(device_hotplug_lock);
620 
621 void lock_device_hotplug(void)
622 {
623 	mutex_lock(&device_hotplug_lock);
624 }
625 
626 void unlock_device_hotplug(void)
627 {
628 	mutex_unlock(&device_hotplug_lock);
629 }
630 
631 int lock_device_hotplug_sysfs(void)
632 {
633 	if (mutex_trylock(&device_hotplug_lock))
634 		return 0;
635 
636 	/* Avoid busy looping (5 ms of sleep should do). */
637 	msleep(5);
638 	return restart_syscall();
639 }
640 
641 void assert_held_device_hotplug(void)
642 {
643 	lockdep_assert_held(&device_hotplug_lock);
644 }
645 
646 #ifdef CONFIG_BLOCK
647 static inline int device_is_not_partition(struct device *dev)
648 {
649 	return !(dev->type == &part_type);
650 }
651 #else
652 static inline int device_is_not_partition(struct device *dev)
653 {
654 	return 1;
655 }
656 #endif
657 
658 /**
659  * dev_driver_string - Return a device's driver name, if at all possible
660  * @dev: struct device to get the name of
661  *
662  * Will return the device's driver's name if it is bound to a device.  If
663  * the device is not bound to a driver, it will return the name of the bus
664  * it is attached to.  If it is not attached to a bus either, an empty
665  * string will be returned.
666  */
667 const char *dev_driver_string(const struct device *dev)
668 {
669 	struct device_driver *drv;
670 
671 	/* dev->driver can change to NULL underneath us because of unbinding,
672 	 * so be careful about accessing it.  dev->bus and dev->class should
673 	 * never change once they are set, so they don't need special care.
674 	 */
675 	drv = ACCESS_ONCE(dev->driver);
676 	return drv ? drv->name :
677 			(dev->bus ? dev->bus->name :
678 			(dev->class ? dev->class->name : ""));
679 }
680 EXPORT_SYMBOL(dev_driver_string);
681 
682 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
683 
684 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
685 			     char *buf)
686 {
687 	struct device_attribute *dev_attr = to_dev_attr(attr);
688 	struct device *dev = kobj_to_dev(kobj);
689 	ssize_t ret = -EIO;
690 
691 	if (dev_attr->show)
692 		ret = dev_attr->show(dev, dev_attr, buf);
693 	if (ret >= (ssize_t)PAGE_SIZE) {
694 		print_symbol("dev_attr_show: %s returned bad count\n",
695 				(unsigned long)dev_attr->show);
696 	}
697 	return ret;
698 }
699 
700 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
701 			      const char *buf, size_t count)
702 {
703 	struct device_attribute *dev_attr = to_dev_attr(attr);
704 	struct device *dev = kobj_to_dev(kobj);
705 	ssize_t ret = -EIO;
706 
707 	if (dev_attr->store)
708 		ret = dev_attr->store(dev, dev_attr, buf, count);
709 	return ret;
710 }
711 
712 static const struct sysfs_ops dev_sysfs_ops = {
713 	.show	= dev_attr_show,
714 	.store	= dev_attr_store,
715 };
716 
717 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
718 
719 ssize_t device_store_ulong(struct device *dev,
720 			   struct device_attribute *attr,
721 			   const char *buf, size_t size)
722 {
723 	struct dev_ext_attribute *ea = to_ext_attr(attr);
724 	char *end;
725 	unsigned long new = simple_strtoul(buf, &end, 0);
726 	if (end == buf)
727 		return -EINVAL;
728 	*(unsigned long *)(ea->var) = new;
729 	/* Always return full write size even if we didn't consume all */
730 	return size;
731 }
732 EXPORT_SYMBOL_GPL(device_store_ulong);
733 
734 ssize_t device_show_ulong(struct device *dev,
735 			  struct device_attribute *attr,
736 			  char *buf)
737 {
738 	struct dev_ext_attribute *ea = to_ext_attr(attr);
739 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
740 }
741 EXPORT_SYMBOL_GPL(device_show_ulong);
742 
743 ssize_t device_store_int(struct device *dev,
744 			 struct device_attribute *attr,
745 			 const char *buf, size_t size)
746 {
747 	struct dev_ext_attribute *ea = to_ext_attr(attr);
748 	char *end;
749 	long new = simple_strtol(buf, &end, 0);
750 	if (end == buf || new > INT_MAX || new < INT_MIN)
751 		return -EINVAL;
752 	*(int *)(ea->var) = new;
753 	/* Always return full write size even if we didn't consume all */
754 	return size;
755 }
756 EXPORT_SYMBOL_GPL(device_store_int);
757 
758 ssize_t device_show_int(struct device *dev,
759 			struct device_attribute *attr,
760 			char *buf)
761 {
762 	struct dev_ext_attribute *ea = to_ext_attr(attr);
763 
764 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
765 }
766 EXPORT_SYMBOL_GPL(device_show_int);
767 
768 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
769 			  const char *buf, size_t size)
770 {
771 	struct dev_ext_attribute *ea = to_ext_attr(attr);
772 
773 	if (strtobool(buf, ea->var) < 0)
774 		return -EINVAL;
775 
776 	return size;
777 }
778 EXPORT_SYMBOL_GPL(device_store_bool);
779 
780 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
781 			 char *buf)
782 {
783 	struct dev_ext_attribute *ea = to_ext_attr(attr);
784 
785 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
786 }
787 EXPORT_SYMBOL_GPL(device_show_bool);
788 
789 /**
790  * device_release - free device structure.
791  * @kobj: device's kobject.
792  *
793  * This is called once the reference count for the object
794  * reaches 0. We forward the call to the device's release
795  * method, which should handle actually freeing the structure.
796  */
797 static void device_release(struct kobject *kobj)
798 {
799 	struct device *dev = kobj_to_dev(kobj);
800 	struct device_private *p = dev->p;
801 
802 	/*
803 	 * Some platform devices are driven without driver attached
804 	 * and managed resources may have been acquired.  Make sure
805 	 * all resources are released.
806 	 *
807 	 * Drivers still can add resources into device after device
808 	 * is deleted but alive, so release devres here to avoid
809 	 * possible memory leak.
810 	 */
811 	devres_release_all(dev);
812 
813 	if (dev->release)
814 		dev->release(dev);
815 	else if (dev->type && dev->type->release)
816 		dev->type->release(dev);
817 	else if (dev->class && dev->class->dev_release)
818 		dev->class->dev_release(dev);
819 	else
820 		WARN(1, KERN_ERR "Device '%s' does not have a release() "
821 			"function, it is broken and must be fixed.\n",
822 			dev_name(dev));
823 	kfree(p);
824 }
825 
826 static const void *device_namespace(struct kobject *kobj)
827 {
828 	struct device *dev = kobj_to_dev(kobj);
829 	const void *ns = NULL;
830 
831 	if (dev->class && dev->class->ns_type)
832 		ns = dev->class->namespace(dev);
833 
834 	return ns;
835 }
836 
837 static struct kobj_type device_ktype = {
838 	.release	= device_release,
839 	.sysfs_ops	= &dev_sysfs_ops,
840 	.namespace	= device_namespace,
841 };
842 
843 
844 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
845 {
846 	struct kobj_type *ktype = get_ktype(kobj);
847 
848 	if (ktype == &device_ktype) {
849 		struct device *dev = kobj_to_dev(kobj);
850 		if (dev->bus)
851 			return 1;
852 		if (dev->class)
853 			return 1;
854 	}
855 	return 0;
856 }
857 
858 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
859 {
860 	struct device *dev = kobj_to_dev(kobj);
861 
862 	if (dev->bus)
863 		return dev->bus->name;
864 	if (dev->class)
865 		return dev->class->name;
866 	return NULL;
867 }
868 
869 static int dev_uevent(struct kset *kset, struct kobject *kobj,
870 		      struct kobj_uevent_env *env)
871 {
872 	struct device *dev = kobj_to_dev(kobj);
873 	int retval = 0;
874 
875 	/* add device node properties if present */
876 	if (MAJOR(dev->devt)) {
877 		const char *tmp;
878 		const char *name;
879 		umode_t mode = 0;
880 		kuid_t uid = GLOBAL_ROOT_UID;
881 		kgid_t gid = GLOBAL_ROOT_GID;
882 
883 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
884 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
885 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
886 		if (name) {
887 			add_uevent_var(env, "DEVNAME=%s", name);
888 			if (mode)
889 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
890 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
891 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
892 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
893 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
894 			kfree(tmp);
895 		}
896 	}
897 
898 	if (dev->type && dev->type->name)
899 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
900 
901 	if (dev->driver)
902 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
903 
904 	/* Add common DT information about the device */
905 	of_device_uevent(dev, env);
906 
907 	/* have the bus specific function add its stuff */
908 	if (dev->bus && dev->bus->uevent) {
909 		retval = dev->bus->uevent(dev, env);
910 		if (retval)
911 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
912 				 dev_name(dev), __func__, retval);
913 	}
914 
915 	/* have the class specific function add its stuff */
916 	if (dev->class && dev->class->dev_uevent) {
917 		retval = dev->class->dev_uevent(dev, env);
918 		if (retval)
919 			pr_debug("device: '%s': %s: class uevent() "
920 				 "returned %d\n", dev_name(dev),
921 				 __func__, retval);
922 	}
923 
924 	/* have the device type specific function add its stuff */
925 	if (dev->type && dev->type->uevent) {
926 		retval = dev->type->uevent(dev, env);
927 		if (retval)
928 			pr_debug("device: '%s': %s: dev_type uevent() "
929 				 "returned %d\n", dev_name(dev),
930 				 __func__, retval);
931 	}
932 
933 	return retval;
934 }
935 
936 static const struct kset_uevent_ops device_uevent_ops = {
937 	.filter =	dev_uevent_filter,
938 	.name =		dev_uevent_name,
939 	.uevent =	dev_uevent,
940 };
941 
942 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
943 			   char *buf)
944 {
945 	struct kobject *top_kobj;
946 	struct kset *kset;
947 	struct kobj_uevent_env *env = NULL;
948 	int i;
949 	size_t count = 0;
950 	int retval;
951 
952 	/* search the kset, the device belongs to */
953 	top_kobj = &dev->kobj;
954 	while (!top_kobj->kset && top_kobj->parent)
955 		top_kobj = top_kobj->parent;
956 	if (!top_kobj->kset)
957 		goto out;
958 
959 	kset = top_kobj->kset;
960 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
961 		goto out;
962 
963 	/* respect filter */
964 	if (kset->uevent_ops && kset->uevent_ops->filter)
965 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
966 			goto out;
967 
968 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
969 	if (!env)
970 		return -ENOMEM;
971 
972 	/* let the kset specific function add its keys */
973 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
974 	if (retval)
975 		goto out;
976 
977 	/* copy keys to file */
978 	for (i = 0; i < env->envp_idx; i++)
979 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
980 out:
981 	kfree(env);
982 	return count;
983 }
984 
985 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
986 			    const char *buf, size_t count)
987 {
988 	enum kobject_action action;
989 
990 	if (kobject_action_type(buf, count, &action) == 0)
991 		kobject_uevent(&dev->kobj, action);
992 	else
993 		dev_err(dev, "uevent: unknown action-string\n");
994 	return count;
995 }
996 static DEVICE_ATTR_RW(uevent);
997 
998 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
999 			   char *buf)
1000 {
1001 	bool val;
1002 
1003 	device_lock(dev);
1004 	val = !dev->offline;
1005 	device_unlock(dev);
1006 	return sprintf(buf, "%u\n", val);
1007 }
1008 
1009 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1010 			    const char *buf, size_t count)
1011 {
1012 	bool val;
1013 	int ret;
1014 
1015 	ret = strtobool(buf, &val);
1016 	if (ret < 0)
1017 		return ret;
1018 
1019 	ret = lock_device_hotplug_sysfs();
1020 	if (ret)
1021 		return ret;
1022 
1023 	ret = val ? device_online(dev) : device_offline(dev);
1024 	unlock_device_hotplug();
1025 	return ret < 0 ? ret : count;
1026 }
1027 static DEVICE_ATTR_RW(online);
1028 
1029 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1030 {
1031 	return sysfs_create_groups(&dev->kobj, groups);
1032 }
1033 
1034 void device_remove_groups(struct device *dev,
1035 			  const struct attribute_group **groups)
1036 {
1037 	sysfs_remove_groups(&dev->kobj, groups);
1038 }
1039 
1040 static int device_add_attrs(struct device *dev)
1041 {
1042 	struct class *class = dev->class;
1043 	const struct device_type *type = dev->type;
1044 	int error;
1045 
1046 	if (class) {
1047 		error = device_add_groups(dev, class->dev_groups);
1048 		if (error)
1049 			return error;
1050 	}
1051 
1052 	if (type) {
1053 		error = device_add_groups(dev, type->groups);
1054 		if (error)
1055 			goto err_remove_class_groups;
1056 	}
1057 
1058 	error = device_add_groups(dev, dev->groups);
1059 	if (error)
1060 		goto err_remove_type_groups;
1061 
1062 	if (device_supports_offline(dev) && !dev->offline_disabled) {
1063 		error = device_create_file(dev, &dev_attr_online);
1064 		if (error)
1065 			goto err_remove_dev_groups;
1066 	}
1067 
1068 	return 0;
1069 
1070  err_remove_dev_groups:
1071 	device_remove_groups(dev, dev->groups);
1072  err_remove_type_groups:
1073 	if (type)
1074 		device_remove_groups(dev, type->groups);
1075  err_remove_class_groups:
1076 	if (class)
1077 		device_remove_groups(dev, class->dev_groups);
1078 
1079 	return error;
1080 }
1081 
1082 static void device_remove_attrs(struct device *dev)
1083 {
1084 	struct class *class = dev->class;
1085 	const struct device_type *type = dev->type;
1086 
1087 	device_remove_file(dev, &dev_attr_online);
1088 	device_remove_groups(dev, dev->groups);
1089 
1090 	if (type)
1091 		device_remove_groups(dev, type->groups);
1092 
1093 	if (class)
1094 		device_remove_groups(dev, class->dev_groups);
1095 }
1096 
1097 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1098 			char *buf)
1099 {
1100 	return print_dev_t(buf, dev->devt);
1101 }
1102 static DEVICE_ATTR_RO(dev);
1103 
1104 /* /sys/devices/ */
1105 struct kset *devices_kset;
1106 
1107 /**
1108  * devices_kset_move_before - Move device in the devices_kset's list.
1109  * @deva: Device to move.
1110  * @devb: Device @deva should come before.
1111  */
1112 static void devices_kset_move_before(struct device *deva, struct device *devb)
1113 {
1114 	if (!devices_kset)
1115 		return;
1116 	pr_debug("devices_kset: Moving %s before %s\n",
1117 		 dev_name(deva), dev_name(devb));
1118 	spin_lock(&devices_kset->list_lock);
1119 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1120 	spin_unlock(&devices_kset->list_lock);
1121 }
1122 
1123 /**
1124  * devices_kset_move_after - Move device in the devices_kset's list.
1125  * @deva: Device to move
1126  * @devb: Device @deva should come after.
1127  */
1128 static void devices_kset_move_after(struct device *deva, struct device *devb)
1129 {
1130 	if (!devices_kset)
1131 		return;
1132 	pr_debug("devices_kset: Moving %s after %s\n",
1133 		 dev_name(deva), dev_name(devb));
1134 	spin_lock(&devices_kset->list_lock);
1135 	list_move(&deva->kobj.entry, &devb->kobj.entry);
1136 	spin_unlock(&devices_kset->list_lock);
1137 }
1138 
1139 /**
1140  * devices_kset_move_last - move the device to the end of devices_kset's list.
1141  * @dev: device to move
1142  */
1143 void devices_kset_move_last(struct device *dev)
1144 {
1145 	if (!devices_kset)
1146 		return;
1147 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1148 	spin_lock(&devices_kset->list_lock);
1149 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1150 	spin_unlock(&devices_kset->list_lock);
1151 }
1152 
1153 /**
1154  * device_create_file - create sysfs attribute file for device.
1155  * @dev: device.
1156  * @attr: device attribute descriptor.
1157  */
1158 int device_create_file(struct device *dev,
1159 		       const struct device_attribute *attr)
1160 {
1161 	int error = 0;
1162 
1163 	if (dev) {
1164 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1165 			"Attribute %s: write permission without 'store'\n",
1166 			attr->attr.name);
1167 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1168 			"Attribute %s: read permission without 'show'\n",
1169 			attr->attr.name);
1170 		error = sysfs_create_file(&dev->kobj, &attr->attr);
1171 	}
1172 
1173 	return error;
1174 }
1175 EXPORT_SYMBOL_GPL(device_create_file);
1176 
1177 /**
1178  * device_remove_file - remove sysfs attribute file.
1179  * @dev: device.
1180  * @attr: device attribute descriptor.
1181  */
1182 void device_remove_file(struct device *dev,
1183 			const struct device_attribute *attr)
1184 {
1185 	if (dev)
1186 		sysfs_remove_file(&dev->kobj, &attr->attr);
1187 }
1188 EXPORT_SYMBOL_GPL(device_remove_file);
1189 
1190 /**
1191  * device_remove_file_self - remove sysfs attribute file from its own method.
1192  * @dev: device.
1193  * @attr: device attribute descriptor.
1194  *
1195  * See kernfs_remove_self() for details.
1196  */
1197 bool device_remove_file_self(struct device *dev,
1198 			     const struct device_attribute *attr)
1199 {
1200 	if (dev)
1201 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1202 	else
1203 		return false;
1204 }
1205 EXPORT_SYMBOL_GPL(device_remove_file_self);
1206 
1207 /**
1208  * device_create_bin_file - create sysfs binary attribute file for device.
1209  * @dev: device.
1210  * @attr: device binary attribute descriptor.
1211  */
1212 int device_create_bin_file(struct device *dev,
1213 			   const struct bin_attribute *attr)
1214 {
1215 	int error = -EINVAL;
1216 	if (dev)
1217 		error = sysfs_create_bin_file(&dev->kobj, attr);
1218 	return error;
1219 }
1220 EXPORT_SYMBOL_GPL(device_create_bin_file);
1221 
1222 /**
1223  * device_remove_bin_file - remove sysfs binary attribute file
1224  * @dev: device.
1225  * @attr: device binary attribute descriptor.
1226  */
1227 void device_remove_bin_file(struct device *dev,
1228 			    const struct bin_attribute *attr)
1229 {
1230 	if (dev)
1231 		sysfs_remove_bin_file(&dev->kobj, attr);
1232 }
1233 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1234 
1235 static void klist_children_get(struct klist_node *n)
1236 {
1237 	struct device_private *p = to_device_private_parent(n);
1238 	struct device *dev = p->device;
1239 
1240 	get_device(dev);
1241 }
1242 
1243 static void klist_children_put(struct klist_node *n)
1244 {
1245 	struct device_private *p = to_device_private_parent(n);
1246 	struct device *dev = p->device;
1247 
1248 	put_device(dev);
1249 }
1250 
1251 /**
1252  * device_initialize - init device structure.
1253  * @dev: device.
1254  *
1255  * This prepares the device for use by other layers by initializing
1256  * its fields.
1257  * It is the first half of device_register(), if called by
1258  * that function, though it can also be called separately, so one
1259  * may use @dev's fields. In particular, get_device()/put_device()
1260  * may be used for reference counting of @dev after calling this
1261  * function.
1262  *
1263  * All fields in @dev must be initialized by the caller to 0, except
1264  * for those explicitly set to some other value.  The simplest
1265  * approach is to use kzalloc() to allocate the structure containing
1266  * @dev.
1267  *
1268  * NOTE: Use put_device() to give up your reference instead of freeing
1269  * @dev directly once you have called this function.
1270  */
1271 void device_initialize(struct device *dev)
1272 {
1273 	dev->kobj.kset = devices_kset;
1274 	kobject_init(&dev->kobj, &device_ktype);
1275 	INIT_LIST_HEAD(&dev->dma_pools);
1276 	mutex_init(&dev->mutex);
1277 	lockdep_set_novalidate_class(&dev->mutex);
1278 	spin_lock_init(&dev->devres_lock);
1279 	INIT_LIST_HEAD(&dev->devres_head);
1280 	device_pm_init(dev);
1281 	set_dev_node(dev, -1);
1282 #ifdef CONFIG_GENERIC_MSI_IRQ
1283 	INIT_LIST_HEAD(&dev->msi_list);
1284 #endif
1285 	INIT_LIST_HEAD(&dev->links.consumers);
1286 	INIT_LIST_HEAD(&dev->links.suppliers);
1287 	dev->links.status = DL_DEV_NO_DRIVER;
1288 }
1289 EXPORT_SYMBOL_GPL(device_initialize);
1290 
1291 struct kobject *virtual_device_parent(struct device *dev)
1292 {
1293 	static struct kobject *virtual_dir = NULL;
1294 
1295 	if (!virtual_dir)
1296 		virtual_dir = kobject_create_and_add("virtual",
1297 						     &devices_kset->kobj);
1298 
1299 	return virtual_dir;
1300 }
1301 
1302 struct class_dir {
1303 	struct kobject kobj;
1304 	struct class *class;
1305 };
1306 
1307 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1308 
1309 static void class_dir_release(struct kobject *kobj)
1310 {
1311 	struct class_dir *dir = to_class_dir(kobj);
1312 	kfree(dir);
1313 }
1314 
1315 static const
1316 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1317 {
1318 	struct class_dir *dir = to_class_dir(kobj);
1319 	return dir->class->ns_type;
1320 }
1321 
1322 static struct kobj_type class_dir_ktype = {
1323 	.release	= class_dir_release,
1324 	.sysfs_ops	= &kobj_sysfs_ops,
1325 	.child_ns_type	= class_dir_child_ns_type
1326 };
1327 
1328 static struct kobject *
1329 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1330 {
1331 	struct class_dir *dir;
1332 	int retval;
1333 
1334 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1335 	if (!dir)
1336 		return NULL;
1337 
1338 	dir->class = class;
1339 	kobject_init(&dir->kobj, &class_dir_ktype);
1340 
1341 	dir->kobj.kset = &class->p->glue_dirs;
1342 
1343 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1344 	if (retval < 0) {
1345 		kobject_put(&dir->kobj);
1346 		return NULL;
1347 	}
1348 	return &dir->kobj;
1349 }
1350 
1351 static DEFINE_MUTEX(gdp_mutex);
1352 
1353 static struct kobject *get_device_parent(struct device *dev,
1354 					 struct device *parent)
1355 {
1356 	if (dev->class) {
1357 		struct kobject *kobj = NULL;
1358 		struct kobject *parent_kobj;
1359 		struct kobject *k;
1360 
1361 #ifdef CONFIG_BLOCK
1362 		/* block disks show up in /sys/block */
1363 		if (sysfs_deprecated && dev->class == &block_class) {
1364 			if (parent && parent->class == &block_class)
1365 				return &parent->kobj;
1366 			return &block_class.p->subsys.kobj;
1367 		}
1368 #endif
1369 
1370 		/*
1371 		 * If we have no parent, we live in "virtual".
1372 		 * Class-devices with a non class-device as parent, live
1373 		 * in a "glue" directory to prevent namespace collisions.
1374 		 */
1375 		if (parent == NULL)
1376 			parent_kobj = virtual_device_parent(dev);
1377 		else if (parent->class && !dev->class->ns_type)
1378 			return &parent->kobj;
1379 		else
1380 			parent_kobj = &parent->kobj;
1381 
1382 		mutex_lock(&gdp_mutex);
1383 
1384 		/* find our class-directory at the parent and reference it */
1385 		spin_lock(&dev->class->p->glue_dirs.list_lock);
1386 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1387 			if (k->parent == parent_kobj) {
1388 				kobj = kobject_get(k);
1389 				break;
1390 			}
1391 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1392 		if (kobj) {
1393 			mutex_unlock(&gdp_mutex);
1394 			return kobj;
1395 		}
1396 
1397 		/* or create a new class-directory at the parent device */
1398 		k = class_dir_create_and_add(dev->class, parent_kobj);
1399 		/* do not emit an uevent for this simple "glue" directory */
1400 		mutex_unlock(&gdp_mutex);
1401 		return k;
1402 	}
1403 
1404 	/* subsystems can specify a default root directory for their devices */
1405 	if (!parent && dev->bus && dev->bus->dev_root)
1406 		return &dev->bus->dev_root->kobj;
1407 
1408 	if (parent)
1409 		return &parent->kobj;
1410 	return NULL;
1411 }
1412 
1413 static inline bool live_in_glue_dir(struct kobject *kobj,
1414 				    struct device *dev)
1415 {
1416 	if (!kobj || !dev->class ||
1417 	    kobj->kset != &dev->class->p->glue_dirs)
1418 		return false;
1419 	return true;
1420 }
1421 
1422 static inline struct kobject *get_glue_dir(struct device *dev)
1423 {
1424 	return dev->kobj.parent;
1425 }
1426 
1427 /*
1428  * make sure cleaning up dir as the last step, we need to make
1429  * sure .release handler of kobject is run with holding the
1430  * global lock
1431  */
1432 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1433 {
1434 	/* see if we live in a "glue" directory */
1435 	if (!live_in_glue_dir(glue_dir, dev))
1436 		return;
1437 
1438 	mutex_lock(&gdp_mutex);
1439 	kobject_put(glue_dir);
1440 	mutex_unlock(&gdp_mutex);
1441 }
1442 
1443 static int device_add_class_symlinks(struct device *dev)
1444 {
1445 	struct device_node *of_node = dev_of_node(dev);
1446 	int error;
1447 
1448 	if (of_node) {
1449 		error = sysfs_create_link(&dev->kobj, &of_node->kobj,"of_node");
1450 		if (error)
1451 			dev_warn(dev, "Error %d creating of_node link\n",error);
1452 		/* An error here doesn't warrant bringing down the device */
1453 	}
1454 
1455 	if (!dev->class)
1456 		return 0;
1457 
1458 	error = sysfs_create_link(&dev->kobj,
1459 				  &dev->class->p->subsys.kobj,
1460 				  "subsystem");
1461 	if (error)
1462 		goto out_devnode;
1463 
1464 	if (dev->parent && device_is_not_partition(dev)) {
1465 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1466 					  "device");
1467 		if (error)
1468 			goto out_subsys;
1469 	}
1470 
1471 #ifdef CONFIG_BLOCK
1472 	/* /sys/block has directories and does not need symlinks */
1473 	if (sysfs_deprecated && dev->class == &block_class)
1474 		return 0;
1475 #endif
1476 
1477 	/* link in the class directory pointing to the device */
1478 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1479 				  &dev->kobj, dev_name(dev));
1480 	if (error)
1481 		goto out_device;
1482 
1483 	return 0;
1484 
1485 out_device:
1486 	sysfs_remove_link(&dev->kobj, "device");
1487 
1488 out_subsys:
1489 	sysfs_remove_link(&dev->kobj, "subsystem");
1490 out_devnode:
1491 	sysfs_remove_link(&dev->kobj, "of_node");
1492 	return error;
1493 }
1494 
1495 static void device_remove_class_symlinks(struct device *dev)
1496 {
1497 	if (dev_of_node(dev))
1498 		sysfs_remove_link(&dev->kobj, "of_node");
1499 
1500 	if (!dev->class)
1501 		return;
1502 
1503 	if (dev->parent && device_is_not_partition(dev))
1504 		sysfs_remove_link(&dev->kobj, "device");
1505 	sysfs_remove_link(&dev->kobj, "subsystem");
1506 #ifdef CONFIG_BLOCK
1507 	if (sysfs_deprecated && dev->class == &block_class)
1508 		return;
1509 #endif
1510 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1511 }
1512 
1513 /**
1514  * dev_set_name - set a device name
1515  * @dev: device
1516  * @fmt: format string for the device's name
1517  */
1518 int dev_set_name(struct device *dev, const char *fmt, ...)
1519 {
1520 	va_list vargs;
1521 	int err;
1522 
1523 	va_start(vargs, fmt);
1524 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1525 	va_end(vargs);
1526 	return err;
1527 }
1528 EXPORT_SYMBOL_GPL(dev_set_name);
1529 
1530 /**
1531  * device_to_dev_kobj - select a /sys/dev/ directory for the device
1532  * @dev: device
1533  *
1534  * By default we select char/ for new entries.  Setting class->dev_obj
1535  * to NULL prevents an entry from being created.  class->dev_kobj must
1536  * be set (or cleared) before any devices are registered to the class
1537  * otherwise device_create_sys_dev_entry() and
1538  * device_remove_sys_dev_entry() will disagree about the presence of
1539  * the link.
1540  */
1541 static struct kobject *device_to_dev_kobj(struct device *dev)
1542 {
1543 	struct kobject *kobj;
1544 
1545 	if (dev->class)
1546 		kobj = dev->class->dev_kobj;
1547 	else
1548 		kobj = sysfs_dev_char_kobj;
1549 
1550 	return kobj;
1551 }
1552 
1553 static int device_create_sys_dev_entry(struct device *dev)
1554 {
1555 	struct kobject *kobj = device_to_dev_kobj(dev);
1556 	int error = 0;
1557 	char devt_str[15];
1558 
1559 	if (kobj) {
1560 		format_dev_t(devt_str, dev->devt);
1561 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1562 	}
1563 
1564 	return error;
1565 }
1566 
1567 static void device_remove_sys_dev_entry(struct device *dev)
1568 {
1569 	struct kobject *kobj = device_to_dev_kobj(dev);
1570 	char devt_str[15];
1571 
1572 	if (kobj) {
1573 		format_dev_t(devt_str, dev->devt);
1574 		sysfs_remove_link(kobj, devt_str);
1575 	}
1576 }
1577 
1578 int device_private_init(struct device *dev)
1579 {
1580 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1581 	if (!dev->p)
1582 		return -ENOMEM;
1583 	dev->p->device = dev;
1584 	klist_init(&dev->p->klist_children, klist_children_get,
1585 		   klist_children_put);
1586 	INIT_LIST_HEAD(&dev->p->deferred_probe);
1587 	return 0;
1588 }
1589 
1590 /**
1591  * device_add - add device to device hierarchy.
1592  * @dev: device.
1593  *
1594  * This is part 2 of device_register(), though may be called
1595  * separately _iff_ device_initialize() has been called separately.
1596  *
1597  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1598  * to the global and sibling lists for the device, then
1599  * adds it to the other relevant subsystems of the driver model.
1600  *
1601  * Do not call this routine or device_register() more than once for
1602  * any device structure.  The driver model core is not designed to work
1603  * with devices that get unregistered and then spring back to life.
1604  * (Among other things, it's very hard to guarantee that all references
1605  * to the previous incarnation of @dev have been dropped.)  Allocate
1606  * and register a fresh new struct device instead.
1607  *
1608  * NOTE: _Never_ directly free @dev after calling this function, even
1609  * if it returned an error! Always use put_device() to give up your
1610  * reference instead.
1611  */
1612 int device_add(struct device *dev)
1613 {
1614 	struct device *parent = NULL;
1615 	struct kobject *kobj;
1616 	struct class_interface *class_intf;
1617 	int error = -EINVAL;
1618 	struct kobject *glue_dir = NULL;
1619 
1620 	dev = get_device(dev);
1621 	if (!dev)
1622 		goto done;
1623 
1624 	if (!dev->p) {
1625 		error = device_private_init(dev);
1626 		if (error)
1627 			goto done;
1628 	}
1629 
1630 	/*
1631 	 * for statically allocated devices, which should all be converted
1632 	 * some day, we need to initialize the name. We prevent reading back
1633 	 * the name, and force the use of dev_name()
1634 	 */
1635 	if (dev->init_name) {
1636 		dev_set_name(dev, "%s", dev->init_name);
1637 		dev->init_name = NULL;
1638 	}
1639 
1640 	/* subsystems can specify simple device enumeration */
1641 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1642 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1643 
1644 	if (!dev_name(dev)) {
1645 		error = -EINVAL;
1646 		goto name_error;
1647 	}
1648 
1649 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1650 
1651 	parent = get_device(dev->parent);
1652 	kobj = get_device_parent(dev, parent);
1653 	if (kobj)
1654 		dev->kobj.parent = kobj;
1655 
1656 	/* use parent numa_node */
1657 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1658 		set_dev_node(dev, dev_to_node(parent));
1659 
1660 	/* first, register with generic layer. */
1661 	/* we require the name to be set before, and pass NULL */
1662 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1663 	if (error) {
1664 		glue_dir = get_glue_dir(dev);
1665 		goto Error;
1666 	}
1667 
1668 	/* notify platform of device entry */
1669 	if (platform_notify)
1670 		platform_notify(dev);
1671 
1672 	error = device_create_file(dev, &dev_attr_uevent);
1673 	if (error)
1674 		goto attrError;
1675 
1676 	error = device_add_class_symlinks(dev);
1677 	if (error)
1678 		goto SymlinkError;
1679 	error = device_add_attrs(dev);
1680 	if (error)
1681 		goto AttrsError;
1682 	error = bus_add_device(dev);
1683 	if (error)
1684 		goto BusError;
1685 	error = dpm_sysfs_add(dev);
1686 	if (error)
1687 		goto DPMError;
1688 	device_pm_add(dev);
1689 
1690 	if (MAJOR(dev->devt)) {
1691 		error = device_create_file(dev, &dev_attr_dev);
1692 		if (error)
1693 			goto DevAttrError;
1694 
1695 		error = device_create_sys_dev_entry(dev);
1696 		if (error)
1697 			goto SysEntryError;
1698 
1699 		devtmpfs_create_node(dev);
1700 	}
1701 
1702 	/* Notify clients of device addition.  This call must come
1703 	 * after dpm_sysfs_add() and before kobject_uevent().
1704 	 */
1705 	if (dev->bus)
1706 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1707 					     BUS_NOTIFY_ADD_DEVICE, dev);
1708 
1709 	kobject_uevent(&dev->kobj, KOBJ_ADD);
1710 	bus_probe_device(dev);
1711 	if (parent)
1712 		klist_add_tail(&dev->p->knode_parent,
1713 			       &parent->p->klist_children);
1714 
1715 	if (dev->class) {
1716 		mutex_lock(&dev->class->p->mutex);
1717 		/* tie the class to the device */
1718 		klist_add_tail(&dev->knode_class,
1719 			       &dev->class->p->klist_devices);
1720 
1721 		/* notify any interfaces that the device is here */
1722 		list_for_each_entry(class_intf,
1723 				    &dev->class->p->interfaces, node)
1724 			if (class_intf->add_dev)
1725 				class_intf->add_dev(dev, class_intf);
1726 		mutex_unlock(&dev->class->p->mutex);
1727 	}
1728 done:
1729 	put_device(dev);
1730 	return error;
1731  SysEntryError:
1732 	if (MAJOR(dev->devt))
1733 		device_remove_file(dev, &dev_attr_dev);
1734  DevAttrError:
1735 	device_pm_remove(dev);
1736 	dpm_sysfs_remove(dev);
1737  DPMError:
1738 	bus_remove_device(dev);
1739  BusError:
1740 	device_remove_attrs(dev);
1741  AttrsError:
1742 	device_remove_class_symlinks(dev);
1743  SymlinkError:
1744 	device_remove_file(dev, &dev_attr_uevent);
1745  attrError:
1746 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1747 	glue_dir = get_glue_dir(dev);
1748 	kobject_del(&dev->kobj);
1749  Error:
1750 	cleanup_glue_dir(dev, glue_dir);
1751 	put_device(parent);
1752 name_error:
1753 	kfree(dev->p);
1754 	dev->p = NULL;
1755 	goto done;
1756 }
1757 EXPORT_SYMBOL_GPL(device_add);
1758 
1759 /**
1760  * device_register - register a device with the system.
1761  * @dev: pointer to the device structure
1762  *
1763  * This happens in two clean steps - initialize the device
1764  * and add it to the system. The two steps can be called
1765  * separately, but this is the easiest and most common.
1766  * I.e. you should only call the two helpers separately if
1767  * have a clearly defined need to use and refcount the device
1768  * before it is added to the hierarchy.
1769  *
1770  * For more information, see the kerneldoc for device_initialize()
1771  * and device_add().
1772  *
1773  * NOTE: _Never_ directly free @dev after calling this function, even
1774  * if it returned an error! Always use put_device() to give up the
1775  * reference initialized in this function instead.
1776  */
1777 int device_register(struct device *dev)
1778 {
1779 	device_initialize(dev);
1780 	return device_add(dev);
1781 }
1782 EXPORT_SYMBOL_GPL(device_register);
1783 
1784 /**
1785  * get_device - increment reference count for device.
1786  * @dev: device.
1787  *
1788  * This simply forwards the call to kobject_get(), though
1789  * we do take care to provide for the case that we get a NULL
1790  * pointer passed in.
1791  */
1792 struct device *get_device(struct device *dev)
1793 {
1794 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1795 }
1796 EXPORT_SYMBOL_GPL(get_device);
1797 
1798 /**
1799  * put_device - decrement reference count.
1800  * @dev: device in question.
1801  */
1802 void put_device(struct device *dev)
1803 {
1804 	/* might_sleep(); */
1805 	if (dev)
1806 		kobject_put(&dev->kobj);
1807 }
1808 EXPORT_SYMBOL_GPL(put_device);
1809 
1810 /**
1811  * device_del - delete device from system.
1812  * @dev: device.
1813  *
1814  * This is the first part of the device unregistration
1815  * sequence. This removes the device from the lists we control
1816  * from here, has it removed from the other driver model
1817  * subsystems it was added to in device_add(), and removes it
1818  * from the kobject hierarchy.
1819  *
1820  * NOTE: this should be called manually _iff_ device_add() was
1821  * also called manually.
1822  */
1823 void device_del(struct device *dev)
1824 {
1825 	struct device *parent = dev->parent;
1826 	struct kobject *glue_dir = NULL;
1827 	struct class_interface *class_intf;
1828 
1829 	/* Notify clients of device removal.  This call must come
1830 	 * before dpm_sysfs_remove().
1831 	 */
1832 	if (dev->bus)
1833 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1834 					     BUS_NOTIFY_DEL_DEVICE, dev);
1835 
1836 	device_links_purge(dev);
1837 	dpm_sysfs_remove(dev);
1838 	if (parent)
1839 		klist_del(&dev->p->knode_parent);
1840 	if (MAJOR(dev->devt)) {
1841 		devtmpfs_delete_node(dev);
1842 		device_remove_sys_dev_entry(dev);
1843 		device_remove_file(dev, &dev_attr_dev);
1844 	}
1845 	if (dev->class) {
1846 		device_remove_class_symlinks(dev);
1847 
1848 		mutex_lock(&dev->class->p->mutex);
1849 		/* notify any interfaces that the device is now gone */
1850 		list_for_each_entry(class_intf,
1851 				    &dev->class->p->interfaces, node)
1852 			if (class_intf->remove_dev)
1853 				class_intf->remove_dev(dev, class_intf);
1854 		/* remove the device from the class list */
1855 		klist_del(&dev->knode_class);
1856 		mutex_unlock(&dev->class->p->mutex);
1857 	}
1858 	device_remove_file(dev, &dev_attr_uevent);
1859 	device_remove_attrs(dev);
1860 	bus_remove_device(dev);
1861 	device_pm_remove(dev);
1862 	driver_deferred_probe_del(dev);
1863 	device_remove_properties(dev);
1864 
1865 	/* Notify the platform of the removal, in case they
1866 	 * need to do anything...
1867 	 */
1868 	if (platform_notify_remove)
1869 		platform_notify_remove(dev);
1870 	if (dev->bus)
1871 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1872 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
1873 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1874 	glue_dir = get_glue_dir(dev);
1875 	kobject_del(&dev->kobj);
1876 	cleanup_glue_dir(dev, glue_dir);
1877 	put_device(parent);
1878 }
1879 EXPORT_SYMBOL_GPL(device_del);
1880 
1881 /**
1882  * device_unregister - unregister device from system.
1883  * @dev: device going away.
1884  *
1885  * We do this in two parts, like we do device_register(). First,
1886  * we remove it from all the subsystems with device_del(), then
1887  * we decrement the reference count via put_device(). If that
1888  * is the final reference count, the device will be cleaned up
1889  * via device_release() above. Otherwise, the structure will
1890  * stick around until the final reference to the device is dropped.
1891  */
1892 void device_unregister(struct device *dev)
1893 {
1894 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1895 	device_del(dev);
1896 	put_device(dev);
1897 }
1898 EXPORT_SYMBOL_GPL(device_unregister);
1899 
1900 static struct device *prev_device(struct klist_iter *i)
1901 {
1902 	struct klist_node *n = klist_prev(i);
1903 	struct device *dev = NULL;
1904 	struct device_private *p;
1905 
1906 	if (n) {
1907 		p = to_device_private_parent(n);
1908 		dev = p->device;
1909 	}
1910 	return dev;
1911 }
1912 
1913 static struct device *next_device(struct klist_iter *i)
1914 {
1915 	struct klist_node *n = klist_next(i);
1916 	struct device *dev = NULL;
1917 	struct device_private *p;
1918 
1919 	if (n) {
1920 		p = to_device_private_parent(n);
1921 		dev = p->device;
1922 	}
1923 	return dev;
1924 }
1925 
1926 /**
1927  * device_get_devnode - path of device node file
1928  * @dev: device
1929  * @mode: returned file access mode
1930  * @uid: returned file owner
1931  * @gid: returned file group
1932  * @tmp: possibly allocated string
1933  *
1934  * Return the relative path of a possible device node.
1935  * Non-default names may need to allocate a memory to compose
1936  * a name. This memory is returned in tmp and needs to be
1937  * freed by the caller.
1938  */
1939 const char *device_get_devnode(struct device *dev,
1940 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
1941 			       const char **tmp)
1942 {
1943 	char *s;
1944 
1945 	*tmp = NULL;
1946 
1947 	/* the device type may provide a specific name */
1948 	if (dev->type && dev->type->devnode)
1949 		*tmp = dev->type->devnode(dev, mode, uid, gid);
1950 	if (*tmp)
1951 		return *tmp;
1952 
1953 	/* the class may provide a specific name */
1954 	if (dev->class && dev->class->devnode)
1955 		*tmp = dev->class->devnode(dev, mode);
1956 	if (*tmp)
1957 		return *tmp;
1958 
1959 	/* return name without allocation, tmp == NULL */
1960 	if (strchr(dev_name(dev), '!') == NULL)
1961 		return dev_name(dev);
1962 
1963 	/* replace '!' in the name with '/' */
1964 	s = kstrdup(dev_name(dev), GFP_KERNEL);
1965 	if (!s)
1966 		return NULL;
1967 	strreplace(s, '!', '/');
1968 	return *tmp = s;
1969 }
1970 
1971 /**
1972  * device_for_each_child - device child iterator.
1973  * @parent: parent struct device.
1974  * @fn: function to be called for each device.
1975  * @data: data for the callback.
1976  *
1977  * Iterate over @parent's child devices, and call @fn for each,
1978  * passing it @data.
1979  *
1980  * We check the return of @fn each time. If it returns anything
1981  * other than 0, we break out and return that value.
1982  */
1983 int device_for_each_child(struct device *parent, void *data,
1984 			  int (*fn)(struct device *dev, void *data))
1985 {
1986 	struct klist_iter i;
1987 	struct device *child;
1988 	int error = 0;
1989 
1990 	if (!parent->p)
1991 		return 0;
1992 
1993 	klist_iter_init(&parent->p->klist_children, &i);
1994 	while ((child = next_device(&i)) && !error)
1995 		error = fn(child, data);
1996 	klist_iter_exit(&i);
1997 	return error;
1998 }
1999 EXPORT_SYMBOL_GPL(device_for_each_child);
2000 
2001 /**
2002  * device_for_each_child_reverse - device child iterator in reversed order.
2003  * @parent: parent struct device.
2004  * @fn: function to be called for each device.
2005  * @data: data for the callback.
2006  *
2007  * Iterate over @parent's child devices, and call @fn for each,
2008  * passing it @data.
2009  *
2010  * We check the return of @fn each time. If it returns anything
2011  * other than 0, we break out and return that value.
2012  */
2013 int device_for_each_child_reverse(struct device *parent, void *data,
2014 				  int (*fn)(struct device *dev, void *data))
2015 {
2016 	struct klist_iter i;
2017 	struct device *child;
2018 	int error = 0;
2019 
2020 	if (!parent->p)
2021 		return 0;
2022 
2023 	klist_iter_init(&parent->p->klist_children, &i);
2024 	while ((child = prev_device(&i)) && !error)
2025 		error = fn(child, data);
2026 	klist_iter_exit(&i);
2027 	return error;
2028 }
2029 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2030 
2031 /**
2032  * device_find_child - device iterator for locating a particular device.
2033  * @parent: parent struct device
2034  * @match: Callback function to check device
2035  * @data: Data to pass to match function
2036  *
2037  * This is similar to the device_for_each_child() function above, but it
2038  * returns a reference to a device that is 'found' for later use, as
2039  * determined by the @match callback.
2040  *
2041  * The callback should return 0 if the device doesn't match and non-zero
2042  * if it does.  If the callback returns non-zero and a reference to the
2043  * current device can be obtained, this function will return to the caller
2044  * and not iterate over any more devices.
2045  *
2046  * NOTE: you will need to drop the reference with put_device() after use.
2047  */
2048 struct device *device_find_child(struct device *parent, void *data,
2049 				 int (*match)(struct device *dev, void *data))
2050 {
2051 	struct klist_iter i;
2052 	struct device *child;
2053 
2054 	if (!parent)
2055 		return NULL;
2056 
2057 	klist_iter_init(&parent->p->klist_children, &i);
2058 	while ((child = next_device(&i)))
2059 		if (match(child, data) && get_device(child))
2060 			break;
2061 	klist_iter_exit(&i);
2062 	return child;
2063 }
2064 EXPORT_SYMBOL_GPL(device_find_child);
2065 
2066 int __init devices_init(void)
2067 {
2068 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2069 	if (!devices_kset)
2070 		return -ENOMEM;
2071 	dev_kobj = kobject_create_and_add("dev", NULL);
2072 	if (!dev_kobj)
2073 		goto dev_kobj_err;
2074 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2075 	if (!sysfs_dev_block_kobj)
2076 		goto block_kobj_err;
2077 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2078 	if (!sysfs_dev_char_kobj)
2079 		goto char_kobj_err;
2080 
2081 	return 0;
2082 
2083  char_kobj_err:
2084 	kobject_put(sysfs_dev_block_kobj);
2085  block_kobj_err:
2086 	kobject_put(dev_kobj);
2087  dev_kobj_err:
2088 	kset_unregister(devices_kset);
2089 	return -ENOMEM;
2090 }
2091 
2092 static int device_check_offline(struct device *dev, void *not_used)
2093 {
2094 	int ret;
2095 
2096 	ret = device_for_each_child(dev, NULL, device_check_offline);
2097 	if (ret)
2098 		return ret;
2099 
2100 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2101 }
2102 
2103 /**
2104  * device_offline - Prepare the device for hot-removal.
2105  * @dev: Device to be put offline.
2106  *
2107  * Execute the device bus type's .offline() callback, if present, to prepare
2108  * the device for a subsequent hot-removal.  If that succeeds, the device must
2109  * not be used until either it is removed or its bus type's .online() callback
2110  * is executed.
2111  *
2112  * Call under device_hotplug_lock.
2113  */
2114 int device_offline(struct device *dev)
2115 {
2116 	int ret;
2117 
2118 	if (dev->offline_disabled)
2119 		return -EPERM;
2120 
2121 	ret = device_for_each_child(dev, NULL, device_check_offline);
2122 	if (ret)
2123 		return ret;
2124 
2125 	device_lock(dev);
2126 	if (device_supports_offline(dev)) {
2127 		if (dev->offline) {
2128 			ret = 1;
2129 		} else {
2130 			ret = dev->bus->offline(dev);
2131 			if (!ret) {
2132 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2133 				dev->offline = true;
2134 			}
2135 		}
2136 	}
2137 	device_unlock(dev);
2138 
2139 	return ret;
2140 }
2141 
2142 /**
2143  * device_online - Put the device back online after successful device_offline().
2144  * @dev: Device to be put back online.
2145  *
2146  * If device_offline() has been successfully executed for @dev, but the device
2147  * has not been removed subsequently, execute its bus type's .online() callback
2148  * to indicate that the device can be used again.
2149  *
2150  * Call under device_hotplug_lock.
2151  */
2152 int device_online(struct device *dev)
2153 {
2154 	int ret = 0;
2155 
2156 	device_lock(dev);
2157 	if (device_supports_offline(dev)) {
2158 		if (dev->offline) {
2159 			ret = dev->bus->online(dev);
2160 			if (!ret) {
2161 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2162 				dev->offline = false;
2163 			}
2164 		} else {
2165 			ret = 1;
2166 		}
2167 	}
2168 	device_unlock(dev);
2169 
2170 	return ret;
2171 }
2172 
2173 struct root_device {
2174 	struct device dev;
2175 	struct module *owner;
2176 };
2177 
2178 static inline struct root_device *to_root_device(struct device *d)
2179 {
2180 	return container_of(d, struct root_device, dev);
2181 }
2182 
2183 static void root_device_release(struct device *dev)
2184 {
2185 	kfree(to_root_device(dev));
2186 }
2187 
2188 /**
2189  * __root_device_register - allocate and register a root device
2190  * @name: root device name
2191  * @owner: owner module of the root device, usually THIS_MODULE
2192  *
2193  * This function allocates a root device and registers it
2194  * using device_register(). In order to free the returned
2195  * device, use root_device_unregister().
2196  *
2197  * Root devices are dummy devices which allow other devices
2198  * to be grouped under /sys/devices. Use this function to
2199  * allocate a root device and then use it as the parent of
2200  * any device which should appear under /sys/devices/{name}
2201  *
2202  * The /sys/devices/{name} directory will also contain a
2203  * 'module' symlink which points to the @owner directory
2204  * in sysfs.
2205  *
2206  * Returns &struct device pointer on success, or ERR_PTR() on error.
2207  *
2208  * Note: You probably want to use root_device_register().
2209  */
2210 struct device *__root_device_register(const char *name, struct module *owner)
2211 {
2212 	struct root_device *root;
2213 	int err = -ENOMEM;
2214 
2215 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2216 	if (!root)
2217 		return ERR_PTR(err);
2218 
2219 	err = dev_set_name(&root->dev, "%s", name);
2220 	if (err) {
2221 		kfree(root);
2222 		return ERR_PTR(err);
2223 	}
2224 
2225 	root->dev.release = root_device_release;
2226 
2227 	err = device_register(&root->dev);
2228 	if (err) {
2229 		put_device(&root->dev);
2230 		return ERR_PTR(err);
2231 	}
2232 
2233 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2234 	if (owner) {
2235 		struct module_kobject *mk = &owner->mkobj;
2236 
2237 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2238 		if (err) {
2239 			device_unregister(&root->dev);
2240 			return ERR_PTR(err);
2241 		}
2242 		root->owner = owner;
2243 	}
2244 #endif
2245 
2246 	return &root->dev;
2247 }
2248 EXPORT_SYMBOL_GPL(__root_device_register);
2249 
2250 /**
2251  * root_device_unregister - unregister and free a root device
2252  * @dev: device going away
2253  *
2254  * This function unregisters and cleans up a device that was created by
2255  * root_device_register().
2256  */
2257 void root_device_unregister(struct device *dev)
2258 {
2259 	struct root_device *root = to_root_device(dev);
2260 
2261 	if (root->owner)
2262 		sysfs_remove_link(&root->dev.kobj, "module");
2263 
2264 	device_unregister(dev);
2265 }
2266 EXPORT_SYMBOL_GPL(root_device_unregister);
2267 
2268 
2269 static void device_create_release(struct device *dev)
2270 {
2271 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2272 	kfree(dev);
2273 }
2274 
2275 static struct device *
2276 device_create_groups_vargs(struct class *class, struct device *parent,
2277 			   dev_t devt, void *drvdata,
2278 			   const struct attribute_group **groups,
2279 			   const char *fmt, va_list args)
2280 {
2281 	struct device *dev = NULL;
2282 	int retval = -ENODEV;
2283 
2284 	if (class == NULL || IS_ERR(class))
2285 		goto error;
2286 
2287 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2288 	if (!dev) {
2289 		retval = -ENOMEM;
2290 		goto error;
2291 	}
2292 
2293 	device_initialize(dev);
2294 	dev->devt = devt;
2295 	dev->class = class;
2296 	dev->parent = parent;
2297 	dev->groups = groups;
2298 	dev->release = device_create_release;
2299 	dev_set_drvdata(dev, drvdata);
2300 
2301 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2302 	if (retval)
2303 		goto error;
2304 
2305 	retval = device_add(dev);
2306 	if (retval)
2307 		goto error;
2308 
2309 	return dev;
2310 
2311 error:
2312 	put_device(dev);
2313 	return ERR_PTR(retval);
2314 }
2315 
2316 /**
2317  * device_create_vargs - creates a device and registers it with sysfs
2318  * @class: pointer to the struct class that this device should be registered to
2319  * @parent: pointer to the parent struct device of this new device, if any
2320  * @devt: the dev_t for the char device to be added
2321  * @drvdata: the data to be added to the device for callbacks
2322  * @fmt: string for the device's name
2323  * @args: va_list for the device's name
2324  *
2325  * This function can be used by char device classes.  A struct device
2326  * will be created in sysfs, registered to the specified class.
2327  *
2328  * A "dev" file will be created, showing the dev_t for the device, if
2329  * the dev_t is not 0,0.
2330  * If a pointer to a parent struct device is passed in, the newly created
2331  * struct device will be a child of that device in sysfs.
2332  * The pointer to the struct device will be returned from the call.
2333  * Any further sysfs files that might be required can be created using this
2334  * pointer.
2335  *
2336  * Returns &struct device pointer on success, or ERR_PTR() on error.
2337  *
2338  * Note: the struct class passed to this function must have previously
2339  * been created with a call to class_create().
2340  */
2341 struct device *device_create_vargs(struct class *class, struct device *parent,
2342 				   dev_t devt, void *drvdata, const char *fmt,
2343 				   va_list args)
2344 {
2345 	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2346 					  fmt, args);
2347 }
2348 EXPORT_SYMBOL_GPL(device_create_vargs);
2349 
2350 /**
2351  * device_create - creates a device and registers it with sysfs
2352  * @class: pointer to the struct class that this device should be registered to
2353  * @parent: pointer to the parent struct device of this new device, if any
2354  * @devt: the dev_t for the char device to be added
2355  * @drvdata: the data to be added to the device for callbacks
2356  * @fmt: string for the device's name
2357  *
2358  * This function can be used by char device classes.  A struct device
2359  * will be created in sysfs, registered to the specified class.
2360  *
2361  * A "dev" file will be created, showing the dev_t for the device, if
2362  * the dev_t is not 0,0.
2363  * If a pointer to a parent struct device is passed in, the newly created
2364  * struct device will be a child of that device in sysfs.
2365  * The pointer to the struct device will be returned from the call.
2366  * Any further sysfs files that might be required can be created using this
2367  * pointer.
2368  *
2369  * Returns &struct device pointer on success, or ERR_PTR() on error.
2370  *
2371  * Note: the struct class passed to this function must have previously
2372  * been created with a call to class_create().
2373  */
2374 struct device *device_create(struct class *class, struct device *parent,
2375 			     dev_t devt, void *drvdata, const char *fmt, ...)
2376 {
2377 	va_list vargs;
2378 	struct device *dev;
2379 
2380 	va_start(vargs, fmt);
2381 	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2382 	va_end(vargs);
2383 	return dev;
2384 }
2385 EXPORT_SYMBOL_GPL(device_create);
2386 
2387 /**
2388  * device_create_with_groups - creates a device and registers it with sysfs
2389  * @class: pointer to the struct class that this device should be registered to
2390  * @parent: pointer to the parent struct device of this new device, if any
2391  * @devt: the dev_t for the char device to be added
2392  * @drvdata: the data to be added to the device for callbacks
2393  * @groups: NULL-terminated list of attribute groups to be created
2394  * @fmt: string for the device's name
2395  *
2396  * This function can be used by char device classes.  A struct device
2397  * will be created in sysfs, registered to the specified class.
2398  * Additional attributes specified in the groups parameter will also
2399  * be created automatically.
2400  *
2401  * A "dev" file will be created, showing the dev_t for the device, if
2402  * the dev_t is not 0,0.
2403  * If a pointer to a parent struct device is passed in, the newly created
2404  * struct device will be a child of that device in sysfs.
2405  * The pointer to the struct device will be returned from the call.
2406  * Any further sysfs files that might be required can be created using this
2407  * pointer.
2408  *
2409  * Returns &struct device pointer on success, or ERR_PTR() on error.
2410  *
2411  * Note: the struct class passed to this function must have previously
2412  * been created with a call to class_create().
2413  */
2414 struct device *device_create_with_groups(struct class *class,
2415 					 struct device *parent, dev_t devt,
2416 					 void *drvdata,
2417 					 const struct attribute_group **groups,
2418 					 const char *fmt, ...)
2419 {
2420 	va_list vargs;
2421 	struct device *dev;
2422 
2423 	va_start(vargs, fmt);
2424 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2425 					 fmt, vargs);
2426 	va_end(vargs);
2427 	return dev;
2428 }
2429 EXPORT_SYMBOL_GPL(device_create_with_groups);
2430 
2431 static int __match_devt(struct device *dev, const void *data)
2432 {
2433 	const dev_t *devt = data;
2434 
2435 	return dev->devt == *devt;
2436 }
2437 
2438 /**
2439  * device_destroy - removes a device that was created with device_create()
2440  * @class: pointer to the struct class that this device was registered with
2441  * @devt: the dev_t of the device that was previously registered
2442  *
2443  * This call unregisters and cleans up a device that was created with a
2444  * call to device_create().
2445  */
2446 void device_destroy(struct class *class, dev_t devt)
2447 {
2448 	struct device *dev;
2449 
2450 	dev = class_find_device(class, NULL, &devt, __match_devt);
2451 	if (dev) {
2452 		put_device(dev);
2453 		device_unregister(dev);
2454 	}
2455 }
2456 EXPORT_SYMBOL_GPL(device_destroy);
2457 
2458 /**
2459  * device_rename - renames a device
2460  * @dev: the pointer to the struct device to be renamed
2461  * @new_name: the new name of the device
2462  *
2463  * It is the responsibility of the caller to provide mutual
2464  * exclusion between two different calls of device_rename
2465  * on the same device to ensure that new_name is valid and
2466  * won't conflict with other devices.
2467  *
2468  * Note: Don't call this function.  Currently, the networking layer calls this
2469  * function, but that will change.  The following text from Kay Sievers offers
2470  * some insight:
2471  *
2472  * Renaming devices is racy at many levels, symlinks and other stuff are not
2473  * replaced atomically, and you get a "move" uevent, but it's not easy to
2474  * connect the event to the old and new device. Device nodes are not renamed at
2475  * all, there isn't even support for that in the kernel now.
2476  *
2477  * In the meantime, during renaming, your target name might be taken by another
2478  * driver, creating conflicts. Or the old name is taken directly after you
2479  * renamed it -- then you get events for the same DEVPATH, before you even see
2480  * the "move" event. It's just a mess, and nothing new should ever rely on
2481  * kernel device renaming. Besides that, it's not even implemented now for
2482  * other things than (driver-core wise very simple) network devices.
2483  *
2484  * We are currently about to change network renaming in udev to completely
2485  * disallow renaming of devices in the same namespace as the kernel uses,
2486  * because we can't solve the problems properly, that arise with swapping names
2487  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2488  * be allowed to some other name than eth[0-9]*, for the aforementioned
2489  * reasons.
2490  *
2491  * Make up a "real" name in the driver before you register anything, or add
2492  * some other attributes for userspace to find the device, or use udev to add
2493  * symlinks -- but never rename kernel devices later, it's a complete mess. We
2494  * don't even want to get into that and try to implement the missing pieces in
2495  * the core. We really have other pieces to fix in the driver core mess. :)
2496  */
2497 int device_rename(struct device *dev, const char *new_name)
2498 {
2499 	struct kobject *kobj = &dev->kobj;
2500 	char *old_device_name = NULL;
2501 	int error;
2502 
2503 	dev = get_device(dev);
2504 	if (!dev)
2505 		return -EINVAL;
2506 
2507 	dev_dbg(dev, "renaming to %s\n", new_name);
2508 
2509 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2510 	if (!old_device_name) {
2511 		error = -ENOMEM;
2512 		goto out;
2513 	}
2514 
2515 	if (dev->class) {
2516 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2517 					     kobj, old_device_name,
2518 					     new_name, kobject_namespace(kobj));
2519 		if (error)
2520 			goto out;
2521 	}
2522 
2523 	error = kobject_rename(kobj, new_name);
2524 	if (error)
2525 		goto out;
2526 
2527 out:
2528 	put_device(dev);
2529 
2530 	kfree(old_device_name);
2531 
2532 	return error;
2533 }
2534 EXPORT_SYMBOL_GPL(device_rename);
2535 
2536 static int device_move_class_links(struct device *dev,
2537 				   struct device *old_parent,
2538 				   struct device *new_parent)
2539 {
2540 	int error = 0;
2541 
2542 	if (old_parent)
2543 		sysfs_remove_link(&dev->kobj, "device");
2544 	if (new_parent)
2545 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2546 					  "device");
2547 	return error;
2548 }
2549 
2550 /**
2551  * device_move - moves a device to a new parent
2552  * @dev: the pointer to the struct device to be moved
2553  * @new_parent: the new parent of the device (can by NULL)
2554  * @dpm_order: how to reorder the dpm_list
2555  */
2556 int device_move(struct device *dev, struct device *new_parent,
2557 		enum dpm_order dpm_order)
2558 {
2559 	int error;
2560 	struct device *old_parent;
2561 	struct kobject *new_parent_kobj;
2562 
2563 	dev = get_device(dev);
2564 	if (!dev)
2565 		return -EINVAL;
2566 
2567 	device_pm_lock();
2568 	new_parent = get_device(new_parent);
2569 	new_parent_kobj = get_device_parent(dev, new_parent);
2570 
2571 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2572 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2573 	error = kobject_move(&dev->kobj, new_parent_kobj);
2574 	if (error) {
2575 		cleanup_glue_dir(dev, new_parent_kobj);
2576 		put_device(new_parent);
2577 		goto out;
2578 	}
2579 	old_parent = dev->parent;
2580 	dev->parent = new_parent;
2581 	if (old_parent)
2582 		klist_remove(&dev->p->knode_parent);
2583 	if (new_parent) {
2584 		klist_add_tail(&dev->p->knode_parent,
2585 			       &new_parent->p->klist_children);
2586 		set_dev_node(dev, dev_to_node(new_parent));
2587 	}
2588 
2589 	if (dev->class) {
2590 		error = device_move_class_links(dev, old_parent, new_parent);
2591 		if (error) {
2592 			/* We ignore errors on cleanup since we're hosed anyway... */
2593 			device_move_class_links(dev, new_parent, old_parent);
2594 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2595 				if (new_parent)
2596 					klist_remove(&dev->p->knode_parent);
2597 				dev->parent = old_parent;
2598 				if (old_parent) {
2599 					klist_add_tail(&dev->p->knode_parent,
2600 						       &old_parent->p->klist_children);
2601 					set_dev_node(dev, dev_to_node(old_parent));
2602 				}
2603 			}
2604 			cleanup_glue_dir(dev, new_parent_kobj);
2605 			put_device(new_parent);
2606 			goto out;
2607 		}
2608 	}
2609 	switch (dpm_order) {
2610 	case DPM_ORDER_NONE:
2611 		break;
2612 	case DPM_ORDER_DEV_AFTER_PARENT:
2613 		device_pm_move_after(dev, new_parent);
2614 		devices_kset_move_after(dev, new_parent);
2615 		break;
2616 	case DPM_ORDER_PARENT_BEFORE_DEV:
2617 		device_pm_move_before(new_parent, dev);
2618 		devices_kset_move_before(new_parent, dev);
2619 		break;
2620 	case DPM_ORDER_DEV_LAST:
2621 		device_pm_move_last(dev);
2622 		devices_kset_move_last(dev);
2623 		break;
2624 	}
2625 
2626 	put_device(old_parent);
2627 out:
2628 	device_pm_unlock();
2629 	put_device(dev);
2630 	return error;
2631 }
2632 EXPORT_SYMBOL_GPL(device_move);
2633 
2634 /**
2635  * device_shutdown - call ->shutdown() on each device to shutdown.
2636  */
2637 void device_shutdown(void)
2638 {
2639 	struct device *dev, *parent;
2640 
2641 	spin_lock(&devices_kset->list_lock);
2642 	/*
2643 	 * Walk the devices list backward, shutting down each in turn.
2644 	 * Beware that device unplug events may also start pulling
2645 	 * devices offline, even as the system is shutting down.
2646 	 */
2647 	while (!list_empty(&devices_kset->list)) {
2648 		dev = list_entry(devices_kset->list.prev, struct device,
2649 				kobj.entry);
2650 
2651 		/*
2652 		 * hold reference count of device's parent to
2653 		 * prevent it from being freed because parent's
2654 		 * lock is to be held
2655 		 */
2656 		parent = get_device(dev->parent);
2657 		get_device(dev);
2658 		/*
2659 		 * Make sure the device is off the kset list, in the
2660 		 * event that dev->*->shutdown() doesn't remove it.
2661 		 */
2662 		list_del_init(&dev->kobj.entry);
2663 		spin_unlock(&devices_kset->list_lock);
2664 
2665 		/* hold lock to avoid race with probe/release */
2666 		if (parent)
2667 			device_lock(parent);
2668 		device_lock(dev);
2669 
2670 		/* Don't allow any more runtime suspends */
2671 		pm_runtime_get_noresume(dev);
2672 		pm_runtime_barrier(dev);
2673 
2674 		if (dev->bus && dev->bus->shutdown) {
2675 			if (initcall_debug)
2676 				dev_info(dev, "shutdown\n");
2677 			dev->bus->shutdown(dev);
2678 		} else if (dev->driver && dev->driver->shutdown) {
2679 			if (initcall_debug)
2680 				dev_info(dev, "shutdown\n");
2681 			dev->driver->shutdown(dev);
2682 		}
2683 
2684 		device_unlock(dev);
2685 		if (parent)
2686 			device_unlock(parent);
2687 
2688 		put_device(dev);
2689 		put_device(parent);
2690 
2691 		spin_lock(&devices_kset->list_lock);
2692 	}
2693 	spin_unlock(&devices_kset->list_lock);
2694 }
2695 
2696 /*
2697  * Device logging functions
2698  */
2699 
2700 #ifdef CONFIG_PRINTK
2701 static int
2702 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2703 {
2704 	const char *subsys;
2705 	size_t pos = 0;
2706 
2707 	if (dev->class)
2708 		subsys = dev->class->name;
2709 	else if (dev->bus)
2710 		subsys = dev->bus->name;
2711 	else
2712 		return 0;
2713 
2714 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2715 	if (pos >= hdrlen)
2716 		goto overflow;
2717 
2718 	/*
2719 	 * Add device identifier DEVICE=:
2720 	 *   b12:8         block dev_t
2721 	 *   c127:3        char dev_t
2722 	 *   n8            netdev ifindex
2723 	 *   +sound:card0  subsystem:devname
2724 	 */
2725 	if (MAJOR(dev->devt)) {
2726 		char c;
2727 
2728 		if (strcmp(subsys, "block") == 0)
2729 			c = 'b';
2730 		else
2731 			c = 'c';
2732 		pos++;
2733 		pos += snprintf(hdr + pos, hdrlen - pos,
2734 				"DEVICE=%c%u:%u",
2735 				c, MAJOR(dev->devt), MINOR(dev->devt));
2736 	} else if (strcmp(subsys, "net") == 0) {
2737 		struct net_device *net = to_net_dev(dev);
2738 
2739 		pos++;
2740 		pos += snprintf(hdr + pos, hdrlen - pos,
2741 				"DEVICE=n%u", net->ifindex);
2742 	} else {
2743 		pos++;
2744 		pos += snprintf(hdr + pos, hdrlen - pos,
2745 				"DEVICE=+%s:%s", subsys, dev_name(dev));
2746 	}
2747 
2748 	if (pos >= hdrlen)
2749 		goto overflow;
2750 
2751 	return pos;
2752 
2753 overflow:
2754 	dev_WARN(dev, "device/subsystem name too long");
2755 	return 0;
2756 }
2757 
2758 int dev_vprintk_emit(int level, const struct device *dev,
2759 		     const char *fmt, va_list args)
2760 {
2761 	char hdr[128];
2762 	size_t hdrlen;
2763 
2764 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2765 
2766 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2767 }
2768 EXPORT_SYMBOL(dev_vprintk_emit);
2769 
2770 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2771 {
2772 	va_list args;
2773 	int r;
2774 
2775 	va_start(args, fmt);
2776 
2777 	r = dev_vprintk_emit(level, dev, fmt, args);
2778 
2779 	va_end(args);
2780 
2781 	return r;
2782 }
2783 EXPORT_SYMBOL(dev_printk_emit);
2784 
2785 static void __dev_printk(const char *level, const struct device *dev,
2786 			struct va_format *vaf)
2787 {
2788 	if (dev)
2789 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2790 				dev_driver_string(dev), dev_name(dev), vaf);
2791 	else
2792 		printk("%s(NULL device *): %pV", level, vaf);
2793 }
2794 
2795 void dev_printk(const char *level, const struct device *dev,
2796 		const char *fmt, ...)
2797 {
2798 	struct va_format vaf;
2799 	va_list args;
2800 
2801 	va_start(args, fmt);
2802 
2803 	vaf.fmt = fmt;
2804 	vaf.va = &args;
2805 
2806 	__dev_printk(level, dev, &vaf);
2807 
2808 	va_end(args);
2809 }
2810 EXPORT_SYMBOL(dev_printk);
2811 
2812 #define define_dev_printk_level(func, kern_level)		\
2813 void func(const struct device *dev, const char *fmt, ...)	\
2814 {								\
2815 	struct va_format vaf;					\
2816 	va_list args;						\
2817 								\
2818 	va_start(args, fmt);					\
2819 								\
2820 	vaf.fmt = fmt;						\
2821 	vaf.va = &args;						\
2822 								\
2823 	__dev_printk(kern_level, dev, &vaf);			\
2824 								\
2825 	va_end(args);						\
2826 }								\
2827 EXPORT_SYMBOL(func);
2828 
2829 define_dev_printk_level(dev_emerg, KERN_EMERG);
2830 define_dev_printk_level(dev_alert, KERN_ALERT);
2831 define_dev_printk_level(dev_crit, KERN_CRIT);
2832 define_dev_printk_level(dev_err, KERN_ERR);
2833 define_dev_printk_level(dev_warn, KERN_WARNING);
2834 define_dev_printk_level(dev_notice, KERN_NOTICE);
2835 define_dev_printk_level(_dev_info, KERN_INFO);
2836 
2837 #endif
2838 
2839 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
2840 {
2841 	return fwnode && !IS_ERR(fwnode->secondary);
2842 }
2843 
2844 /**
2845  * set_primary_fwnode - Change the primary firmware node of a given device.
2846  * @dev: Device to handle.
2847  * @fwnode: New primary firmware node of the device.
2848  *
2849  * Set the device's firmware node pointer to @fwnode, but if a secondary
2850  * firmware node of the device is present, preserve it.
2851  */
2852 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2853 {
2854 	if (fwnode) {
2855 		struct fwnode_handle *fn = dev->fwnode;
2856 
2857 		if (fwnode_is_primary(fn))
2858 			fn = fn->secondary;
2859 
2860 		if (fn) {
2861 			WARN_ON(fwnode->secondary);
2862 			fwnode->secondary = fn;
2863 		}
2864 		dev->fwnode = fwnode;
2865 	} else {
2866 		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
2867 			dev->fwnode->secondary : NULL;
2868 	}
2869 }
2870 EXPORT_SYMBOL_GPL(set_primary_fwnode);
2871 
2872 /**
2873  * set_secondary_fwnode - Change the secondary firmware node of a given device.
2874  * @dev: Device to handle.
2875  * @fwnode: New secondary firmware node of the device.
2876  *
2877  * If a primary firmware node of the device is present, set its secondary
2878  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
2879  * @fwnode.
2880  */
2881 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2882 {
2883 	if (fwnode)
2884 		fwnode->secondary = ERR_PTR(-ENODEV);
2885 
2886 	if (fwnode_is_primary(dev->fwnode))
2887 		dev->fwnode->secondary = fwnode;
2888 	else
2889 		dev->fwnode = fwnode;
2890 }
2891