1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/device.h> 12 #include <linux/err.h> 13 #include <linux/fwnode.h> 14 #include <linux/init.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/string.h> 18 #include <linux/kdev_t.h> 19 #include <linux/notifier.h> 20 #include <linux/of.h> 21 #include <linux/of_device.h> 22 #include <linux/genhd.h> 23 #include <linux/mutex.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/netdevice.h> 26 #include <linux/sched/signal.h> 27 #include <linux/sysfs.h> 28 29 #include "base.h" 30 #include "power/power.h" 31 32 #ifdef CONFIG_SYSFS_DEPRECATED 33 #ifdef CONFIG_SYSFS_DEPRECATED_V2 34 long sysfs_deprecated = 1; 35 #else 36 long sysfs_deprecated = 0; 37 #endif 38 static int __init sysfs_deprecated_setup(char *arg) 39 { 40 return kstrtol(arg, 10, &sysfs_deprecated); 41 } 42 early_param("sysfs.deprecated", sysfs_deprecated_setup); 43 #endif 44 45 /* Device links support. */ 46 47 #ifdef CONFIG_SRCU 48 static DEFINE_MUTEX(device_links_lock); 49 DEFINE_STATIC_SRCU(device_links_srcu); 50 51 static inline void device_links_write_lock(void) 52 { 53 mutex_lock(&device_links_lock); 54 } 55 56 static inline void device_links_write_unlock(void) 57 { 58 mutex_unlock(&device_links_lock); 59 } 60 61 int device_links_read_lock(void) 62 { 63 return srcu_read_lock(&device_links_srcu); 64 } 65 66 void device_links_read_unlock(int idx) 67 { 68 srcu_read_unlock(&device_links_srcu, idx); 69 } 70 #else /* !CONFIG_SRCU */ 71 static DECLARE_RWSEM(device_links_lock); 72 73 static inline void device_links_write_lock(void) 74 { 75 down_write(&device_links_lock); 76 } 77 78 static inline void device_links_write_unlock(void) 79 { 80 up_write(&device_links_lock); 81 } 82 83 int device_links_read_lock(void) 84 { 85 down_read(&device_links_lock); 86 return 0; 87 } 88 89 void device_links_read_unlock(int not_used) 90 { 91 up_read(&device_links_lock); 92 } 93 #endif /* !CONFIG_SRCU */ 94 95 /** 96 * device_is_dependent - Check if one device depends on another one 97 * @dev: Device to check dependencies for. 98 * @target: Device to check against. 99 * 100 * Check if @target depends on @dev or any device dependent on it (its child or 101 * its consumer etc). Return 1 if that is the case or 0 otherwise. 102 */ 103 static int device_is_dependent(struct device *dev, void *target) 104 { 105 struct device_link *link; 106 int ret; 107 108 if (WARN_ON(dev == target)) 109 return 1; 110 111 ret = device_for_each_child(dev, target, device_is_dependent); 112 if (ret) 113 return ret; 114 115 list_for_each_entry(link, &dev->links.consumers, s_node) { 116 if (WARN_ON(link->consumer == target)) 117 return 1; 118 119 ret = device_is_dependent(link->consumer, target); 120 if (ret) 121 break; 122 } 123 return ret; 124 } 125 126 static int device_reorder_to_tail(struct device *dev, void *not_used) 127 { 128 struct device_link *link; 129 130 /* 131 * Devices that have not been registered yet will be put to the ends 132 * of the lists during the registration, so skip them here. 133 */ 134 if (device_is_registered(dev)) 135 devices_kset_move_last(dev); 136 137 if (device_pm_initialized(dev)) 138 device_pm_move_last(dev); 139 140 device_for_each_child(dev, NULL, device_reorder_to_tail); 141 list_for_each_entry(link, &dev->links.consumers, s_node) 142 device_reorder_to_tail(link->consumer, NULL); 143 144 return 0; 145 } 146 147 /** 148 * device_link_add - Create a link between two devices. 149 * @consumer: Consumer end of the link. 150 * @supplier: Supplier end of the link. 151 * @flags: Link flags. 152 * 153 * The caller is responsible for the proper synchronization of the link creation 154 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 155 * runtime PM framework to take the link into account. Second, if the 156 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 157 * be forced into the active metastate and reference-counted upon the creation 158 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 159 * ignored. 160 * 161 * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically 162 * when the consumer device driver unbinds from it. The combination of both 163 * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL 164 * to be returned. 165 * 166 * A side effect of the link creation is re-ordering of dpm_list and the 167 * devices_kset list by moving the consumer device and all devices depending 168 * on it to the ends of these lists (that does not happen to devices that have 169 * not been registered when this function is called). 170 * 171 * The supplier device is required to be registered when this function is called 172 * and NULL will be returned if that is not the case. The consumer device need 173 * not be registered, however. 174 */ 175 struct device_link *device_link_add(struct device *consumer, 176 struct device *supplier, u32 flags) 177 { 178 struct device_link *link; 179 180 if (!consumer || !supplier || 181 ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE))) 182 return NULL; 183 184 device_links_write_lock(); 185 device_pm_lock(); 186 187 /* 188 * If the supplier has not been fully registered yet or there is a 189 * reverse dependency between the consumer and the supplier already in 190 * the graph, return NULL. 191 */ 192 if (!device_pm_initialized(supplier) 193 || device_is_dependent(consumer, supplier)) { 194 link = NULL; 195 goto out; 196 } 197 198 list_for_each_entry(link, &supplier->links.consumers, s_node) 199 if (link->consumer == consumer) { 200 kref_get(&link->kref); 201 goto out; 202 } 203 204 link = kzalloc(sizeof(*link), GFP_KERNEL); 205 if (!link) 206 goto out; 207 208 if (flags & DL_FLAG_PM_RUNTIME) { 209 if (flags & DL_FLAG_RPM_ACTIVE) { 210 if (pm_runtime_get_sync(supplier) < 0) { 211 pm_runtime_put_noidle(supplier); 212 kfree(link); 213 link = NULL; 214 goto out; 215 } 216 link->rpm_active = true; 217 } 218 pm_runtime_new_link(consumer); 219 } 220 get_device(supplier); 221 link->supplier = supplier; 222 INIT_LIST_HEAD(&link->s_node); 223 get_device(consumer); 224 link->consumer = consumer; 225 INIT_LIST_HEAD(&link->c_node); 226 link->flags = flags; 227 kref_init(&link->kref); 228 229 /* Determine the initial link state. */ 230 if (flags & DL_FLAG_STATELESS) { 231 link->status = DL_STATE_NONE; 232 } else { 233 switch (supplier->links.status) { 234 case DL_DEV_DRIVER_BOUND: 235 switch (consumer->links.status) { 236 case DL_DEV_PROBING: 237 /* 238 * Balance the decrementation of the supplier's 239 * runtime PM usage counter after consumer probe 240 * in driver_probe_device(). 241 */ 242 if (flags & DL_FLAG_PM_RUNTIME) 243 pm_runtime_get_sync(supplier); 244 245 link->status = DL_STATE_CONSUMER_PROBE; 246 break; 247 case DL_DEV_DRIVER_BOUND: 248 link->status = DL_STATE_ACTIVE; 249 break; 250 default: 251 link->status = DL_STATE_AVAILABLE; 252 break; 253 } 254 break; 255 case DL_DEV_UNBINDING: 256 link->status = DL_STATE_SUPPLIER_UNBIND; 257 break; 258 default: 259 link->status = DL_STATE_DORMANT; 260 break; 261 } 262 } 263 264 /* 265 * Move the consumer and all of the devices depending on it to the end 266 * of dpm_list and the devices_kset list. 267 * 268 * It is necessary to hold dpm_list locked throughout all that or else 269 * we may end up suspending with a wrong ordering of it. 270 */ 271 device_reorder_to_tail(consumer, NULL); 272 273 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 274 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 275 276 dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 277 278 out: 279 device_pm_unlock(); 280 device_links_write_unlock(); 281 return link; 282 } 283 EXPORT_SYMBOL_GPL(device_link_add); 284 285 static void device_link_free(struct device_link *link) 286 { 287 put_device(link->consumer); 288 put_device(link->supplier); 289 kfree(link); 290 } 291 292 #ifdef CONFIG_SRCU 293 static void __device_link_free_srcu(struct rcu_head *rhead) 294 { 295 device_link_free(container_of(rhead, struct device_link, rcu_head)); 296 } 297 298 static void __device_link_del(struct kref *kref) 299 { 300 struct device_link *link = container_of(kref, struct device_link, kref); 301 302 dev_info(link->consumer, "Dropping the link to %s\n", 303 dev_name(link->supplier)); 304 305 if (link->flags & DL_FLAG_PM_RUNTIME) 306 pm_runtime_drop_link(link->consumer); 307 308 list_del_rcu(&link->s_node); 309 list_del_rcu(&link->c_node); 310 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu); 311 } 312 #else /* !CONFIG_SRCU */ 313 static void __device_link_del(struct kref *kref) 314 { 315 struct device_link *link = container_of(kref, struct device_link, kref); 316 317 dev_info(link->consumer, "Dropping the link to %s\n", 318 dev_name(link->supplier)); 319 320 if (link->flags & DL_FLAG_PM_RUNTIME) 321 pm_runtime_drop_link(link->consumer); 322 323 list_del(&link->s_node); 324 list_del(&link->c_node); 325 device_link_free(link); 326 } 327 #endif /* !CONFIG_SRCU */ 328 329 /** 330 * device_link_del - Delete a link between two devices. 331 * @link: Device link to delete. 332 * 333 * The caller must ensure proper synchronization of this function with runtime 334 * PM. If the link was added multiple times, it needs to be deleted as often. 335 * Care is required for hotplugged devices: Their links are purged on removal 336 * and calling device_link_del() is then no longer allowed. 337 */ 338 void device_link_del(struct device_link *link) 339 { 340 device_links_write_lock(); 341 device_pm_lock(); 342 kref_put(&link->kref, __device_link_del); 343 device_pm_unlock(); 344 device_links_write_unlock(); 345 } 346 EXPORT_SYMBOL_GPL(device_link_del); 347 348 static void device_links_missing_supplier(struct device *dev) 349 { 350 struct device_link *link; 351 352 list_for_each_entry(link, &dev->links.suppliers, c_node) 353 if (link->status == DL_STATE_CONSUMER_PROBE) 354 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 355 } 356 357 /** 358 * device_links_check_suppliers - Check presence of supplier drivers. 359 * @dev: Consumer device. 360 * 361 * Check links from this device to any suppliers. Walk the list of the device's 362 * links to suppliers and see if all of them are available. If not, simply 363 * return -EPROBE_DEFER. 364 * 365 * We need to guarantee that the supplier will not go away after the check has 366 * been positive here. It only can go away in __device_release_driver() and 367 * that function checks the device's links to consumers. This means we need to 368 * mark the link as "consumer probe in progress" to make the supplier removal 369 * wait for us to complete (or bad things may happen). 370 * 371 * Links with the DL_FLAG_STATELESS flag set are ignored. 372 */ 373 int device_links_check_suppliers(struct device *dev) 374 { 375 struct device_link *link; 376 int ret = 0; 377 378 device_links_write_lock(); 379 380 list_for_each_entry(link, &dev->links.suppliers, c_node) { 381 if (link->flags & DL_FLAG_STATELESS) 382 continue; 383 384 if (link->status != DL_STATE_AVAILABLE) { 385 device_links_missing_supplier(dev); 386 ret = -EPROBE_DEFER; 387 break; 388 } 389 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 390 } 391 dev->links.status = DL_DEV_PROBING; 392 393 device_links_write_unlock(); 394 return ret; 395 } 396 397 /** 398 * device_links_driver_bound - Update device links after probing its driver. 399 * @dev: Device to update the links for. 400 * 401 * The probe has been successful, so update links from this device to any 402 * consumers by changing their status to "available". 403 * 404 * Also change the status of @dev's links to suppliers to "active". 405 * 406 * Links with the DL_FLAG_STATELESS flag set are ignored. 407 */ 408 void device_links_driver_bound(struct device *dev) 409 { 410 struct device_link *link; 411 412 device_links_write_lock(); 413 414 list_for_each_entry(link, &dev->links.consumers, s_node) { 415 if (link->flags & DL_FLAG_STATELESS) 416 continue; 417 418 WARN_ON(link->status != DL_STATE_DORMANT); 419 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 420 } 421 422 list_for_each_entry(link, &dev->links.suppliers, c_node) { 423 if (link->flags & DL_FLAG_STATELESS) 424 continue; 425 426 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 427 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 428 } 429 430 dev->links.status = DL_DEV_DRIVER_BOUND; 431 432 device_links_write_unlock(); 433 } 434 435 /** 436 * __device_links_no_driver - Update links of a device without a driver. 437 * @dev: Device without a drvier. 438 * 439 * Delete all non-persistent links from this device to any suppliers. 440 * 441 * Persistent links stay around, but their status is changed to "available", 442 * unless they already are in the "supplier unbind in progress" state in which 443 * case they need not be updated. 444 * 445 * Links with the DL_FLAG_STATELESS flag set are ignored. 446 */ 447 static void __device_links_no_driver(struct device *dev) 448 { 449 struct device_link *link, *ln; 450 451 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 452 if (link->flags & DL_FLAG_STATELESS) 453 continue; 454 455 if (link->flags & DL_FLAG_AUTOREMOVE) 456 kref_put(&link->kref, __device_link_del); 457 else if (link->status != DL_STATE_SUPPLIER_UNBIND) 458 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 459 } 460 461 dev->links.status = DL_DEV_NO_DRIVER; 462 } 463 464 void device_links_no_driver(struct device *dev) 465 { 466 device_links_write_lock(); 467 __device_links_no_driver(dev); 468 device_links_write_unlock(); 469 } 470 471 /** 472 * device_links_driver_cleanup - Update links after driver removal. 473 * @dev: Device whose driver has just gone away. 474 * 475 * Update links to consumers for @dev by changing their status to "dormant" and 476 * invoke %__device_links_no_driver() to update links to suppliers for it as 477 * appropriate. 478 * 479 * Links with the DL_FLAG_STATELESS flag set are ignored. 480 */ 481 void device_links_driver_cleanup(struct device *dev) 482 { 483 struct device_link *link; 484 485 device_links_write_lock(); 486 487 list_for_each_entry(link, &dev->links.consumers, s_node) { 488 if (link->flags & DL_FLAG_STATELESS) 489 continue; 490 491 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE); 492 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 493 WRITE_ONCE(link->status, DL_STATE_DORMANT); 494 } 495 496 __device_links_no_driver(dev); 497 498 device_links_write_unlock(); 499 } 500 501 /** 502 * device_links_busy - Check if there are any busy links to consumers. 503 * @dev: Device to check. 504 * 505 * Check each consumer of the device and return 'true' if its link's status 506 * is one of "consumer probe" or "active" (meaning that the given consumer is 507 * probing right now or its driver is present). Otherwise, change the link 508 * state to "supplier unbind" to prevent the consumer from being probed 509 * successfully going forward. 510 * 511 * Return 'false' if there are no probing or active consumers. 512 * 513 * Links with the DL_FLAG_STATELESS flag set are ignored. 514 */ 515 bool device_links_busy(struct device *dev) 516 { 517 struct device_link *link; 518 bool ret = false; 519 520 device_links_write_lock(); 521 522 list_for_each_entry(link, &dev->links.consumers, s_node) { 523 if (link->flags & DL_FLAG_STATELESS) 524 continue; 525 526 if (link->status == DL_STATE_CONSUMER_PROBE 527 || link->status == DL_STATE_ACTIVE) { 528 ret = true; 529 break; 530 } 531 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 532 } 533 534 dev->links.status = DL_DEV_UNBINDING; 535 536 device_links_write_unlock(); 537 return ret; 538 } 539 540 /** 541 * device_links_unbind_consumers - Force unbind consumers of the given device. 542 * @dev: Device to unbind the consumers of. 543 * 544 * Walk the list of links to consumers for @dev and if any of them is in the 545 * "consumer probe" state, wait for all device probes in progress to complete 546 * and start over. 547 * 548 * If that's not the case, change the status of the link to "supplier unbind" 549 * and check if the link was in the "active" state. If so, force the consumer 550 * driver to unbind and start over (the consumer will not re-probe as we have 551 * changed the state of the link already). 552 * 553 * Links with the DL_FLAG_STATELESS flag set are ignored. 554 */ 555 void device_links_unbind_consumers(struct device *dev) 556 { 557 struct device_link *link; 558 559 start: 560 device_links_write_lock(); 561 562 list_for_each_entry(link, &dev->links.consumers, s_node) { 563 enum device_link_state status; 564 565 if (link->flags & DL_FLAG_STATELESS) 566 continue; 567 568 status = link->status; 569 if (status == DL_STATE_CONSUMER_PROBE) { 570 device_links_write_unlock(); 571 572 wait_for_device_probe(); 573 goto start; 574 } 575 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 576 if (status == DL_STATE_ACTIVE) { 577 struct device *consumer = link->consumer; 578 579 get_device(consumer); 580 581 device_links_write_unlock(); 582 583 device_release_driver_internal(consumer, NULL, 584 consumer->parent); 585 put_device(consumer); 586 goto start; 587 } 588 } 589 590 device_links_write_unlock(); 591 } 592 593 /** 594 * device_links_purge - Delete existing links to other devices. 595 * @dev: Target device. 596 */ 597 static void device_links_purge(struct device *dev) 598 { 599 struct device_link *link, *ln; 600 601 /* 602 * Delete all of the remaining links from this device to any other 603 * devices (either consumers or suppliers). 604 */ 605 device_links_write_lock(); 606 607 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 608 WARN_ON(link->status == DL_STATE_ACTIVE); 609 __device_link_del(&link->kref); 610 } 611 612 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 613 WARN_ON(link->status != DL_STATE_DORMANT && 614 link->status != DL_STATE_NONE); 615 __device_link_del(&link->kref); 616 } 617 618 device_links_write_unlock(); 619 } 620 621 /* Device links support end. */ 622 623 int (*platform_notify)(struct device *dev) = NULL; 624 int (*platform_notify_remove)(struct device *dev) = NULL; 625 static struct kobject *dev_kobj; 626 struct kobject *sysfs_dev_char_kobj; 627 struct kobject *sysfs_dev_block_kobj; 628 629 static DEFINE_MUTEX(device_hotplug_lock); 630 631 void lock_device_hotplug(void) 632 { 633 mutex_lock(&device_hotplug_lock); 634 } 635 636 void unlock_device_hotplug(void) 637 { 638 mutex_unlock(&device_hotplug_lock); 639 } 640 641 int lock_device_hotplug_sysfs(void) 642 { 643 if (mutex_trylock(&device_hotplug_lock)) 644 return 0; 645 646 /* Avoid busy looping (5 ms of sleep should do). */ 647 msleep(5); 648 return restart_syscall(); 649 } 650 651 #ifdef CONFIG_BLOCK 652 static inline int device_is_not_partition(struct device *dev) 653 { 654 return !(dev->type == &part_type); 655 } 656 #else 657 static inline int device_is_not_partition(struct device *dev) 658 { 659 return 1; 660 } 661 #endif 662 663 /** 664 * dev_driver_string - Return a device's driver name, if at all possible 665 * @dev: struct device to get the name of 666 * 667 * Will return the device's driver's name if it is bound to a device. If 668 * the device is not bound to a driver, it will return the name of the bus 669 * it is attached to. If it is not attached to a bus either, an empty 670 * string will be returned. 671 */ 672 const char *dev_driver_string(const struct device *dev) 673 { 674 struct device_driver *drv; 675 676 /* dev->driver can change to NULL underneath us because of unbinding, 677 * so be careful about accessing it. dev->bus and dev->class should 678 * never change once they are set, so they don't need special care. 679 */ 680 drv = READ_ONCE(dev->driver); 681 return drv ? drv->name : 682 (dev->bus ? dev->bus->name : 683 (dev->class ? dev->class->name : "")); 684 } 685 EXPORT_SYMBOL(dev_driver_string); 686 687 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 688 689 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 690 char *buf) 691 { 692 struct device_attribute *dev_attr = to_dev_attr(attr); 693 struct device *dev = kobj_to_dev(kobj); 694 ssize_t ret = -EIO; 695 696 if (dev_attr->show) 697 ret = dev_attr->show(dev, dev_attr, buf); 698 if (ret >= (ssize_t)PAGE_SIZE) { 699 printk("dev_attr_show: %pS returned bad count\n", 700 dev_attr->show); 701 } 702 return ret; 703 } 704 705 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 706 const char *buf, size_t count) 707 { 708 struct device_attribute *dev_attr = to_dev_attr(attr); 709 struct device *dev = kobj_to_dev(kobj); 710 ssize_t ret = -EIO; 711 712 if (dev_attr->store) 713 ret = dev_attr->store(dev, dev_attr, buf, count); 714 return ret; 715 } 716 717 static const struct sysfs_ops dev_sysfs_ops = { 718 .show = dev_attr_show, 719 .store = dev_attr_store, 720 }; 721 722 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 723 724 ssize_t device_store_ulong(struct device *dev, 725 struct device_attribute *attr, 726 const char *buf, size_t size) 727 { 728 struct dev_ext_attribute *ea = to_ext_attr(attr); 729 char *end; 730 unsigned long new = simple_strtoul(buf, &end, 0); 731 if (end == buf) 732 return -EINVAL; 733 *(unsigned long *)(ea->var) = new; 734 /* Always return full write size even if we didn't consume all */ 735 return size; 736 } 737 EXPORT_SYMBOL_GPL(device_store_ulong); 738 739 ssize_t device_show_ulong(struct device *dev, 740 struct device_attribute *attr, 741 char *buf) 742 { 743 struct dev_ext_attribute *ea = to_ext_attr(attr); 744 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var)); 745 } 746 EXPORT_SYMBOL_GPL(device_show_ulong); 747 748 ssize_t device_store_int(struct device *dev, 749 struct device_attribute *attr, 750 const char *buf, size_t size) 751 { 752 struct dev_ext_attribute *ea = to_ext_attr(attr); 753 char *end; 754 long new = simple_strtol(buf, &end, 0); 755 if (end == buf || new > INT_MAX || new < INT_MIN) 756 return -EINVAL; 757 *(int *)(ea->var) = new; 758 /* Always return full write size even if we didn't consume all */ 759 return size; 760 } 761 EXPORT_SYMBOL_GPL(device_store_int); 762 763 ssize_t device_show_int(struct device *dev, 764 struct device_attribute *attr, 765 char *buf) 766 { 767 struct dev_ext_attribute *ea = to_ext_attr(attr); 768 769 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var)); 770 } 771 EXPORT_SYMBOL_GPL(device_show_int); 772 773 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 774 const char *buf, size_t size) 775 { 776 struct dev_ext_attribute *ea = to_ext_attr(attr); 777 778 if (strtobool(buf, ea->var) < 0) 779 return -EINVAL; 780 781 return size; 782 } 783 EXPORT_SYMBOL_GPL(device_store_bool); 784 785 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 786 char *buf) 787 { 788 struct dev_ext_attribute *ea = to_ext_attr(attr); 789 790 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var)); 791 } 792 EXPORT_SYMBOL_GPL(device_show_bool); 793 794 /** 795 * device_release - free device structure. 796 * @kobj: device's kobject. 797 * 798 * This is called once the reference count for the object 799 * reaches 0. We forward the call to the device's release 800 * method, which should handle actually freeing the structure. 801 */ 802 static void device_release(struct kobject *kobj) 803 { 804 struct device *dev = kobj_to_dev(kobj); 805 struct device_private *p = dev->p; 806 807 /* 808 * Some platform devices are driven without driver attached 809 * and managed resources may have been acquired. Make sure 810 * all resources are released. 811 * 812 * Drivers still can add resources into device after device 813 * is deleted but alive, so release devres here to avoid 814 * possible memory leak. 815 */ 816 devres_release_all(dev); 817 818 if (dev->release) 819 dev->release(dev); 820 else if (dev->type && dev->type->release) 821 dev->type->release(dev); 822 else if (dev->class && dev->class->dev_release) 823 dev->class->dev_release(dev); 824 else 825 WARN(1, KERN_ERR "Device '%s' does not have a release() " 826 "function, it is broken and must be fixed.\n", 827 dev_name(dev)); 828 kfree(p); 829 } 830 831 static const void *device_namespace(struct kobject *kobj) 832 { 833 struct device *dev = kobj_to_dev(kobj); 834 const void *ns = NULL; 835 836 if (dev->class && dev->class->ns_type) 837 ns = dev->class->namespace(dev); 838 839 return ns; 840 } 841 842 static struct kobj_type device_ktype = { 843 .release = device_release, 844 .sysfs_ops = &dev_sysfs_ops, 845 .namespace = device_namespace, 846 }; 847 848 849 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 850 { 851 struct kobj_type *ktype = get_ktype(kobj); 852 853 if (ktype == &device_ktype) { 854 struct device *dev = kobj_to_dev(kobj); 855 if (dev->bus) 856 return 1; 857 if (dev->class) 858 return 1; 859 } 860 return 0; 861 } 862 863 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 864 { 865 struct device *dev = kobj_to_dev(kobj); 866 867 if (dev->bus) 868 return dev->bus->name; 869 if (dev->class) 870 return dev->class->name; 871 return NULL; 872 } 873 874 static int dev_uevent(struct kset *kset, struct kobject *kobj, 875 struct kobj_uevent_env *env) 876 { 877 struct device *dev = kobj_to_dev(kobj); 878 int retval = 0; 879 880 /* add device node properties if present */ 881 if (MAJOR(dev->devt)) { 882 const char *tmp; 883 const char *name; 884 umode_t mode = 0; 885 kuid_t uid = GLOBAL_ROOT_UID; 886 kgid_t gid = GLOBAL_ROOT_GID; 887 888 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 889 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 890 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 891 if (name) { 892 add_uevent_var(env, "DEVNAME=%s", name); 893 if (mode) 894 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 895 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 896 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 897 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 898 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 899 kfree(tmp); 900 } 901 } 902 903 if (dev->type && dev->type->name) 904 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 905 906 if (dev->driver) 907 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 908 909 /* Add common DT information about the device */ 910 of_device_uevent(dev, env); 911 912 /* have the bus specific function add its stuff */ 913 if (dev->bus && dev->bus->uevent) { 914 retval = dev->bus->uevent(dev, env); 915 if (retval) 916 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 917 dev_name(dev), __func__, retval); 918 } 919 920 /* have the class specific function add its stuff */ 921 if (dev->class && dev->class->dev_uevent) { 922 retval = dev->class->dev_uevent(dev, env); 923 if (retval) 924 pr_debug("device: '%s': %s: class uevent() " 925 "returned %d\n", dev_name(dev), 926 __func__, retval); 927 } 928 929 /* have the device type specific function add its stuff */ 930 if (dev->type && dev->type->uevent) { 931 retval = dev->type->uevent(dev, env); 932 if (retval) 933 pr_debug("device: '%s': %s: dev_type uevent() " 934 "returned %d\n", dev_name(dev), 935 __func__, retval); 936 } 937 938 return retval; 939 } 940 941 static const struct kset_uevent_ops device_uevent_ops = { 942 .filter = dev_uevent_filter, 943 .name = dev_uevent_name, 944 .uevent = dev_uevent, 945 }; 946 947 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 948 char *buf) 949 { 950 struct kobject *top_kobj; 951 struct kset *kset; 952 struct kobj_uevent_env *env = NULL; 953 int i; 954 size_t count = 0; 955 int retval; 956 957 /* search the kset, the device belongs to */ 958 top_kobj = &dev->kobj; 959 while (!top_kobj->kset && top_kobj->parent) 960 top_kobj = top_kobj->parent; 961 if (!top_kobj->kset) 962 goto out; 963 964 kset = top_kobj->kset; 965 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 966 goto out; 967 968 /* respect filter */ 969 if (kset->uevent_ops && kset->uevent_ops->filter) 970 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 971 goto out; 972 973 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 974 if (!env) 975 return -ENOMEM; 976 977 /* let the kset specific function add its keys */ 978 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 979 if (retval) 980 goto out; 981 982 /* copy keys to file */ 983 for (i = 0; i < env->envp_idx; i++) 984 count += sprintf(&buf[count], "%s\n", env->envp[i]); 985 out: 986 kfree(env); 987 return count; 988 } 989 990 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 991 const char *buf, size_t count) 992 { 993 if (kobject_synth_uevent(&dev->kobj, buf, count)) 994 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 995 996 return count; 997 } 998 static DEVICE_ATTR_RW(uevent); 999 1000 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 1001 char *buf) 1002 { 1003 bool val; 1004 1005 device_lock(dev); 1006 val = !dev->offline; 1007 device_unlock(dev); 1008 return sprintf(buf, "%u\n", val); 1009 } 1010 1011 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 1012 const char *buf, size_t count) 1013 { 1014 bool val; 1015 int ret; 1016 1017 ret = strtobool(buf, &val); 1018 if (ret < 0) 1019 return ret; 1020 1021 ret = lock_device_hotplug_sysfs(); 1022 if (ret) 1023 return ret; 1024 1025 ret = val ? device_online(dev) : device_offline(dev); 1026 unlock_device_hotplug(); 1027 return ret < 0 ? ret : count; 1028 } 1029 static DEVICE_ATTR_RW(online); 1030 1031 int device_add_groups(struct device *dev, const struct attribute_group **groups) 1032 { 1033 return sysfs_create_groups(&dev->kobj, groups); 1034 } 1035 EXPORT_SYMBOL_GPL(device_add_groups); 1036 1037 void device_remove_groups(struct device *dev, 1038 const struct attribute_group **groups) 1039 { 1040 sysfs_remove_groups(&dev->kobj, groups); 1041 } 1042 EXPORT_SYMBOL_GPL(device_remove_groups); 1043 1044 union device_attr_group_devres { 1045 const struct attribute_group *group; 1046 const struct attribute_group **groups; 1047 }; 1048 1049 static int devm_attr_group_match(struct device *dev, void *res, void *data) 1050 { 1051 return ((union device_attr_group_devres *)res)->group == data; 1052 } 1053 1054 static void devm_attr_group_remove(struct device *dev, void *res) 1055 { 1056 union device_attr_group_devres *devres = res; 1057 const struct attribute_group *group = devres->group; 1058 1059 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 1060 sysfs_remove_group(&dev->kobj, group); 1061 } 1062 1063 static void devm_attr_groups_remove(struct device *dev, void *res) 1064 { 1065 union device_attr_group_devres *devres = res; 1066 const struct attribute_group **groups = devres->groups; 1067 1068 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 1069 sysfs_remove_groups(&dev->kobj, groups); 1070 } 1071 1072 /** 1073 * devm_device_add_group - given a device, create a managed attribute group 1074 * @dev: The device to create the group for 1075 * @grp: The attribute group to create 1076 * 1077 * This function creates a group for the first time. It will explicitly 1078 * warn and error if any of the attribute files being created already exist. 1079 * 1080 * Returns 0 on success or error code on failure. 1081 */ 1082 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 1083 { 1084 union device_attr_group_devres *devres; 1085 int error; 1086 1087 devres = devres_alloc(devm_attr_group_remove, 1088 sizeof(*devres), GFP_KERNEL); 1089 if (!devres) 1090 return -ENOMEM; 1091 1092 error = sysfs_create_group(&dev->kobj, grp); 1093 if (error) { 1094 devres_free(devres); 1095 return error; 1096 } 1097 1098 devres->group = grp; 1099 devres_add(dev, devres); 1100 return 0; 1101 } 1102 EXPORT_SYMBOL_GPL(devm_device_add_group); 1103 1104 /** 1105 * devm_device_remove_group: remove a managed group from a device 1106 * @dev: device to remove the group from 1107 * @grp: group to remove 1108 * 1109 * This function removes a group of attributes from a device. The attributes 1110 * previously have to have been created for this group, otherwise it will fail. 1111 */ 1112 void devm_device_remove_group(struct device *dev, 1113 const struct attribute_group *grp) 1114 { 1115 WARN_ON(devres_release(dev, devm_attr_group_remove, 1116 devm_attr_group_match, 1117 /* cast away const */ (void *)grp)); 1118 } 1119 EXPORT_SYMBOL_GPL(devm_device_remove_group); 1120 1121 /** 1122 * devm_device_add_groups - create a bunch of managed attribute groups 1123 * @dev: The device to create the group for 1124 * @groups: The attribute groups to create, NULL terminated 1125 * 1126 * This function creates a bunch of managed attribute groups. If an error 1127 * occurs when creating a group, all previously created groups will be 1128 * removed, unwinding everything back to the original state when this 1129 * function was called. It will explicitly warn and error if any of the 1130 * attribute files being created already exist. 1131 * 1132 * Returns 0 on success or error code from sysfs_create_group on failure. 1133 */ 1134 int devm_device_add_groups(struct device *dev, 1135 const struct attribute_group **groups) 1136 { 1137 union device_attr_group_devres *devres; 1138 int error; 1139 1140 devres = devres_alloc(devm_attr_groups_remove, 1141 sizeof(*devres), GFP_KERNEL); 1142 if (!devres) 1143 return -ENOMEM; 1144 1145 error = sysfs_create_groups(&dev->kobj, groups); 1146 if (error) { 1147 devres_free(devres); 1148 return error; 1149 } 1150 1151 devres->groups = groups; 1152 devres_add(dev, devres); 1153 return 0; 1154 } 1155 EXPORT_SYMBOL_GPL(devm_device_add_groups); 1156 1157 /** 1158 * devm_device_remove_groups - remove a list of managed groups 1159 * 1160 * @dev: The device for the groups to be removed from 1161 * @groups: NULL terminated list of groups to be removed 1162 * 1163 * If groups is not NULL, remove the specified groups from the device. 1164 */ 1165 void devm_device_remove_groups(struct device *dev, 1166 const struct attribute_group **groups) 1167 { 1168 WARN_ON(devres_release(dev, devm_attr_groups_remove, 1169 devm_attr_group_match, 1170 /* cast away const */ (void *)groups)); 1171 } 1172 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 1173 1174 static int device_add_attrs(struct device *dev) 1175 { 1176 struct class *class = dev->class; 1177 const struct device_type *type = dev->type; 1178 int error; 1179 1180 if (class) { 1181 error = device_add_groups(dev, class->dev_groups); 1182 if (error) 1183 return error; 1184 } 1185 1186 if (type) { 1187 error = device_add_groups(dev, type->groups); 1188 if (error) 1189 goto err_remove_class_groups; 1190 } 1191 1192 error = device_add_groups(dev, dev->groups); 1193 if (error) 1194 goto err_remove_type_groups; 1195 1196 if (device_supports_offline(dev) && !dev->offline_disabled) { 1197 error = device_create_file(dev, &dev_attr_online); 1198 if (error) 1199 goto err_remove_dev_groups; 1200 } 1201 1202 return 0; 1203 1204 err_remove_dev_groups: 1205 device_remove_groups(dev, dev->groups); 1206 err_remove_type_groups: 1207 if (type) 1208 device_remove_groups(dev, type->groups); 1209 err_remove_class_groups: 1210 if (class) 1211 device_remove_groups(dev, class->dev_groups); 1212 1213 return error; 1214 } 1215 1216 static void device_remove_attrs(struct device *dev) 1217 { 1218 struct class *class = dev->class; 1219 const struct device_type *type = dev->type; 1220 1221 device_remove_file(dev, &dev_attr_online); 1222 device_remove_groups(dev, dev->groups); 1223 1224 if (type) 1225 device_remove_groups(dev, type->groups); 1226 1227 if (class) 1228 device_remove_groups(dev, class->dev_groups); 1229 } 1230 1231 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 1232 char *buf) 1233 { 1234 return print_dev_t(buf, dev->devt); 1235 } 1236 static DEVICE_ATTR_RO(dev); 1237 1238 /* /sys/devices/ */ 1239 struct kset *devices_kset; 1240 1241 /** 1242 * devices_kset_move_before - Move device in the devices_kset's list. 1243 * @deva: Device to move. 1244 * @devb: Device @deva should come before. 1245 */ 1246 static void devices_kset_move_before(struct device *deva, struct device *devb) 1247 { 1248 if (!devices_kset) 1249 return; 1250 pr_debug("devices_kset: Moving %s before %s\n", 1251 dev_name(deva), dev_name(devb)); 1252 spin_lock(&devices_kset->list_lock); 1253 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 1254 spin_unlock(&devices_kset->list_lock); 1255 } 1256 1257 /** 1258 * devices_kset_move_after - Move device in the devices_kset's list. 1259 * @deva: Device to move 1260 * @devb: Device @deva should come after. 1261 */ 1262 static void devices_kset_move_after(struct device *deva, struct device *devb) 1263 { 1264 if (!devices_kset) 1265 return; 1266 pr_debug("devices_kset: Moving %s after %s\n", 1267 dev_name(deva), dev_name(devb)); 1268 spin_lock(&devices_kset->list_lock); 1269 list_move(&deva->kobj.entry, &devb->kobj.entry); 1270 spin_unlock(&devices_kset->list_lock); 1271 } 1272 1273 /** 1274 * devices_kset_move_last - move the device to the end of devices_kset's list. 1275 * @dev: device to move 1276 */ 1277 void devices_kset_move_last(struct device *dev) 1278 { 1279 if (!devices_kset) 1280 return; 1281 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 1282 spin_lock(&devices_kset->list_lock); 1283 list_move_tail(&dev->kobj.entry, &devices_kset->list); 1284 spin_unlock(&devices_kset->list_lock); 1285 } 1286 1287 /** 1288 * device_create_file - create sysfs attribute file for device. 1289 * @dev: device. 1290 * @attr: device attribute descriptor. 1291 */ 1292 int device_create_file(struct device *dev, 1293 const struct device_attribute *attr) 1294 { 1295 int error = 0; 1296 1297 if (dev) { 1298 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 1299 "Attribute %s: write permission without 'store'\n", 1300 attr->attr.name); 1301 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 1302 "Attribute %s: read permission without 'show'\n", 1303 attr->attr.name); 1304 error = sysfs_create_file(&dev->kobj, &attr->attr); 1305 } 1306 1307 return error; 1308 } 1309 EXPORT_SYMBOL_GPL(device_create_file); 1310 1311 /** 1312 * device_remove_file - remove sysfs attribute file. 1313 * @dev: device. 1314 * @attr: device attribute descriptor. 1315 */ 1316 void device_remove_file(struct device *dev, 1317 const struct device_attribute *attr) 1318 { 1319 if (dev) 1320 sysfs_remove_file(&dev->kobj, &attr->attr); 1321 } 1322 EXPORT_SYMBOL_GPL(device_remove_file); 1323 1324 /** 1325 * device_remove_file_self - remove sysfs attribute file from its own method. 1326 * @dev: device. 1327 * @attr: device attribute descriptor. 1328 * 1329 * See kernfs_remove_self() for details. 1330 */ 1331 bool device_remove_file_self(struct device *dev, 1332 const struct device_attribute *attr) 1333 { 1334 if (dev) 1335 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 1336 else 1337 return false; 1338 } 1339 EXPORT_SYMBOL_GPL(device_remove_file_self); 1340 1341 /** 1342 * device_create_bin_file - create sysfs binary attribute file for device. 1343 * @dev: device. 1344 * @attr: device binary attribute descriptor. 1345 */ 1346 int device_create_bin_file(struct device *dev, 1347 const struct bin_attribute *attr) 1348 { 1349 int error = -EINVAL; 1350 if (dev) 1351 error = sysfs_create_bin_file(&dev->kobj, attr); 1352 return error; 1353 } 1354 EXPORT_SYMBOL_GPL(device_create_bin_file); 1355 1356 /** 1357 * device_remove_bin_file - remove sysfs binary attribute file 1358 * @dev: device. 1359 * @attr: device binary attribute descriptor. 1360 */ 1361 void device_remove_bin_file(struct device *dev, 1362 const struct bin_attribute *attr) 1363 { 1364 if (dev) 1365 sysfs_remove_bin_file(&dev->kobj, attr); 1366 } 1367 EXPORT_SYMBOL_GPL(device_remove_bin_file); 1368 1369 static void klist_children_get(struct klist_node *n) 1370 { 1371 struct device_private *p = to_device_private_parent(n); 1372 struct device *dev = p->device; 1373 1374 get_device(dev); 1375 } 1376 1377 static void klist_children_put(struct klist_node *n) 1378 { 1379 struct device_private *p = to_device_private_parent(n); 1380 struct device *dev = p->device; 1381 1382 put_device(dev); 1383 } 1384 1385 /** 1386 * device_initialize - init device structure. 1387 * @dev: device. 1388 * 1389 * This prepares the device for use by other layers by initializing 1390 * its fields. 1391 * It is the first half of device_register(), if called by 1392 * that function, though it can also be called separately, so one 1393 * may use @dev's fields. In particular, get_device()/put_device() 1394 * may be used for reference counting of @dev after calling this 1395 * function. 1396 * 1397 * All fields in @dev must be initialized by the caller to 0, except 1398 * for those explicitly set to some other value. The simplest 1399 * approach is to use kzalloc() to allocate the structure containing 1400 * @dev. 1401 * 1402 * NOTE: Use put_device() to give up your reference instead of freeing 1403 * @dev directly once you have called this function. 1404 */ 1405 void device_initialize(struct device *dev) 1406 { 1407 dev->kobj.kset = devices_kset; 1408 kobject_init(&dev->kobj, &device_ktype); 1409 INIT_LIST_HEAD(&dev->dma_pools); 1410 mutex_init(&dev->mutex); 1411 lockdep_set_novalidate_class(&dev->mutex); 1412 spin_lock_init(&dev->devres_lock); 1413 INIT_LIST_HEAD(&dev->devres_head); 1414 device_pm_init(dev); 1415 set_dev_node(dev, -1); 1416 #ifdef CONFIG_GENERIC_MSI_IRQ 1417 INIT_LIST_HEAD(&dev->msi_list); 1418 #endif 1419 INIT_LIST_HEAD(&dev->links.consumers); 1420 INIT_LIST_HEAD(&dev->links.suppliers); 1421 dev->links.status = DL_DEV_NO_DRIVER; 1422 } 1423 EXPORT_SYMBOL_GPL(device_initialize); 1424 1425 struct kobject *virtual_device_parent(struct device *dev) 1426 { 1427 static struct kobject *virtual_dir = NULL; 1428 1429 if (!virtual_dir) 1430 virtual_dir = kobject_create_and_add("virtual", 1431 &devices_kset->kobj); 1432 1433 return virtual_dir; 1434 } 1435 1436 struct class_dir { 1437 struct kobject kobj; 1438 struct class *class; 1439 }; 1440 1441 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 1442 1443 static void class_dir_release(struct kobject *kobj) 1444 { 1445 struct class_dir *dir = to_class_dir(kobj); 1446 kfree(dir); 1447 } 1448 1449 static const 1450 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 1451 { 1452 struct class_dir *dir = to_class_dir(kobj); 1453 return dir->class->ns_type; 1454 } 1455 1456 static struct kobj_type class_dir_ktype = { 1457 .release = class_dir_release, 1458 .sysfs_ops = &kobj_sysfs_ops, 1459 .child_ns_type = class_dir_child_ns_type 1460 }; 1461 1462 static struct kobject * 1463 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 1464 { 1465 struct class_dir *dir; 1466 int retval; 1467 1468 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 1469 if (!dir) 1470 return NULL; 1471 1472 dir->class = class; 1473 kobject_init(&dir->kobj, &class_dir_ktype); 1474 1475 dir->kobj.kset = &class->p->glue_dirs; 1476 1477 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 1478 if (retval < 0) { 1479 kobject_put(&dir->kobj); 1480 return NULL; 1481 } 1482 return &dir->kobj; 1483 } 1484 1485 static DEFINE_MUTEX(gdp_mutex); 1486 1487 static struct kobject *get_device_parent(struct device *dev, 1488 struct device *parent) 1489 { 1490 if (dev->class) { 1491 struct kobject *kobj = NULL; 1492 struct kobject *parent_kobj; 1493 struct kobject *k; 1494 1495 #ifdef CONFIG_BLOCK 1496 /* block disks show up in /sys/block */ 1497 if (sysfs_deprecated && dev->class == &block_class) { 1498 if (parent && parent->class == &block_class) 1499 return &parent->kobj; 1500 return &block_class.p->subsys.kobj; 1501 } 1502 #endif 1503 1504 /* 1505 * If we have no parent, we live in "virtual". 1506 * Class-devices with a non class-device as parent, live 1507 * in a "glue" directory to prevent namespace collisions. 1508 */ 1509 if (parent == NULL) 1510 parent_kobj = virtual_device_parent(dev); 1511 else if (parent->class && !dev->class->ns_type) 1512 return &parent->kobj; 1513 else 1514 parent_kobj = &parent->kobj; 1515 1516 mutex_lock(&gdp_mutex); 1517 1518 /* find our class-directory at the parent and reference it */ 1519 spin_lock(&dev->class->p->glue_dirs.list_lock); 1520 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 1521 if (k->parent == parent_kobj) { 1522 kobj = kobject_get(k); 1523 break; 1524 } 1525 spin_unlock(&dev->class->p->glue_dirs.list_lock); 1526 if (kobj) { 1527 mutex_unlock(&gdp_mutex); 1528 return kobj; 1529 } 1530 1531 /* or create a new class-directory at the parent device */ 1532 k = class_dir_create_and_add(dev->class, parent_kobj); 1533 /* do not emit an uevent for this simple "glue" directory */ 1534 mutex_unlock(&gdp_mutex); 1535 return k; 1536 } 1537 1538 /* subsystems can specify a default root directory for their devices */ 1539 if (!parent && dev->bus && dev->bus->dev_root) 1540 return &dev->bus->dev_root->kobj; 1541 1542 if (parent) 1543 return &parent->kobj; 1544 return NULL; 1545 } 1546 1547 static inline bool live_in_glue_dir(struct kobject *kobj, 1548 struct device *dev) 1549 { 1550 if (!kobj || !dev->class || 1551 kobj->kset != &dev->class->p->glue_dirs) 1552 return false; 1553 return true; 1554 } 1555 1556 static inline struct kobject *get_glue_dir(struct device *dev) 1557 { 1558 return dev->kobj.parent; 1559 } 1560 1561 /* 1562 * make sure cleaning up dir as the last step, we need to make 1563 * sure .release handler of kobject is run with holding the 1564 * global lock 1565 */ 1566 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 1567 { 1568 /* see if we live in a "glue" directory */ 1569 if (!live_in_glue_dir(glue_dir, dev)) 1570 return; 1571 1572 mutex_lock(&gdp_mutex); 1573 kobject_put(glue_dir); 1574 mutex_unlock(&gdp_mutex); 1575 } 1576 1577 static int device_add_class_symlinks(struct device *dev) 1578 { 1579 struct device_node *of_node = dev_of_node(dev); 1580 int error; 1581 1582 if (of_node) { 1583 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 1584 if (error) 1585 dev_warn(dev, "Error %d creating of_node link\n",error); 1586 /* An error here doesn't warrant bringing down the device */ 1587 } 1588 1589 if (!dev->class) 1590 return 0; 1591 1592 error = sysfs_create_link(&dev->kobj, 1593 &dev->class->p->subsys.kobj, 1594 "subsystem"); 1595 if (error) 1596 goto out_devnode; 1597 1598 if (dev->parent && device_is_not_partition(dev)) { 1599 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 1600 "device"); 1601 if (error) 1602 goto out_subsys; 1603 } 1604 1605 #ifdef CONFIG_BLOCK 1606 /* /sys/block has directories and does not need symlinks */ 1607 if (sysfs_deprecated && dev->class == &block_class) 1608 return 0; 1609 #endif 1610 1611 /* link in the class directory pointing to the device */ 1612 error = sysfs_create_link(&dev->class->p->subsys.kobj, 1613 &dev->kobj, dev_name(dev)); 1614 if (error) 1615 goto out_device; 1616 1617 return 0; 1618 1619 out_device: 1620 sysfs_remove_link(&dev->kobj, "device"); 1621 1622 out_subsys: 1623 sysfs_remove_link(&dev->kobj, "subsystem"); 1624 out_devnode: 1625 sysfs_remove_link(&dev->kobj, "of_node"); 1626 return error; 1627 } 1628 1629 static void device_remove_class_symlinks(struct device *dev) 1630 { 1631 if (dev_of_node(dev)) 1632 sysfs_remove_link(&dev->kobj, "of_node"); 1633 1634 if (!dev->class) 1635 return; 1636 1637 if (dev->parent && device_is_not_partition(dev)) 1638 sysfs_remove_link(&dev->kobj, "device"); 1639 sysfs_remove_link(&dev->kobj, "subsystem"); 1640 #ifdef CONFIG_BLOCK 1641 if (sysfs_deprecated && dev->class == &block_class) 1642 return; 1643 #endif 1644 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 1645 } 1646 1647 /** 1648 * dev_set_name - set a device name 1649 * @dev: device 1650 * @fmt: format string for the device's name 1651 */ 1652 int dev_set_name(struct device *dev, const char *fmt, ...) 1653 { 1654 va_list vargs; 1655 int err; 1656 1657 va_start(vargs, fmt); 1658 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 1659 va_end(vargs); 1660 return err; 1661 } 1662 EXPORT_SYMBOL_GPL(dev_set_name); 1663 1664 /** 1665 * device_to_dev_kobj - select a /sys/dev/ directory for the device 1666 * @dev: device 1667 * 1668 * By default we select char/ for new entries. Setting class->dev_obj 1669 * to NULL prevents an entry from being created. class->dev_kobj must 1670 * be set (or cleared) before any devices are registered to the class 1671 * otherwise device_create_sys_dev_entry() and 1672 * device_remove_sys_dev_entry() will disagree about the presence of 1673 * the link. 1674 */ 1675 static struct kobject *device_to_dev_kobj(struct device *dev) 1676 { 1677 struct kobject *kobj; 1678 1679 if (dev->class) 1680 kobj = dev->class->dev_kobj; 1681 else 1682 kobj = sysfs_dev_char_kobj; 1683 1684 return kobj; 1685 } 1686 1687 static int device_create_sys_dev_entry(struct device *dev) 1688 { 1689 struct kobject *kobj = device_to_dev_kobj(dev); 1690 int error = 0; 1691 char devt_str[15]; 1692 1693 if (kobj) { 1694 format_dev_t(devt_str, dev->devt); 1695 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 1696 } 1697 1698 return error; 1699 } 1700 1701 static void device_remove_sys_dev_entry(struct device *dev) 1702 { 1703 struct kobject *kobj = device_to_dev_kobj(dev); 1704 char devt_str[15]; 1705 1706 if (kobj) { 1707 format_dev_t(devt_str, dev->devt); 1708 sysfs_remove_link(kobj, devt_str); 1709 } 1710 } 1711 1712 int device_private_init(struct device *dev) 1713 { 1714 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 1715 if (!dev->p) 1716 return -ENOMEM; 1717 dev->p->device = dev; 1718 klist_init(&dev->p->klist_children, klist_children_get, 1719 klist_children_put); 1720 INIT_LIST_HEAD(&dev->p->deferred_probe); 1721 return 0; 1722 } 1723 1724 /** 1725 * device_add - add device to device hierarchy. 1726 * @dev: device. 1727 * 1728 * This is part 2 of device_register(), though may be called 1729 * separately _iff_ device_initialize() has been called separately. 1730 * 1731 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 1732 * to the global and sibling lists for the device, then 1733 * adds it to the other relevant subsystems of the driver model. 1734 * 1735 * Do not call this routine or device_register() more than once for 1736 * any device structure. The driver model core is not designed to work 1737 * with devices that get unregistered and then spring back to life. 1738 * (Among other things, it's very hard to guarantee that all references 1739 * to the previous incarnation of @dev have been dropped.) Allocate 1740 * and register a fresh new struct device instead. 1741 * 1742 * NOTE: _Never_ directly free @dev after calling this function, even 1743 * if it returned an error! Always use put_device() to give up your 1744 * reference instead. 1745 */ 1746 int device_add(struct device *dev) 1747 { 1748 struct device *parent; 1749 struct kobject *kobj; 1750 struct class_interface *class_intf; 1751 int error = -EINVAL; 1752 struct kobject *glue_dir = NULL; 1753 1754 dev = get_device(dev); 1755 if (!dev) 1756 goto done; 1757 1758 if (!dev->p) { 1759 error = device_private_init(dev); 1760 if (error) 1761 goto done; 1762 } 1763 1764 /* 1765 * for statically allocated devices, which should all be converted 1766 * some day, we need to initialize the name. We prevent reading back 1767 * the name, and force the use of dev_name() 1768 */ 1769 if (dev->init_name) { 1770 dev_set_name(dev, "%s", dev->init_name); 1771 dev->init_name = NULL; 1772 } 1773 1774 /* subsystems can specify simple device enumeration */ 1775 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 1776 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 1777 1778 if (!dev_name(dev)) { 1779 error = -EINVAL; 1780 goto name_error; 1781 } 1782 1783 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 1784 1785 parent = get_device(dev->parent); 1786 kobj = get_device_parent(dev, parent); 1787 if (kobj) 1788 dev->kobj.parent = kobj; 1789 1790 /* use parent numa_node */ 1791 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 1792 set_dev_node(dev, dev_to_node(parent)); 1793 1794 /* first, register with generic layer. */ 1795 /* we require the name to be set before, and pass NULL */ 1796 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 1797 if (error) { 1798 glue_dir = get_glue_dir(dev); 1799 goto Error; 1800 } 1801 1802 /* notify platform of device entry */ 1803 if (platform_notify) 1804 platform_notify(dev); 1805 1806 error = device_create_file(dev, &dev_attr_uevent); 1807 if (error) 1808 goto attrError; 1809 1810 error = device_add_class_symlinks(dev); 1811 if (error) 1812 goto SymlinkError; 1813 error = device_add_attrs(dev); 1814 if (error) 1815 goto AttrsError; 1816 error = bus_add_device(dev); 1817 if (error) 1818 goto BusError; 1819 error = dpm_sysfs_add(dev); 1820 if (error) 1821 goto DPMError; 1822 device_pm_add(dev); 1823 1824 if (MAJOR(dev->devt)) { 1825 error = device_create_file(dev, &dev_attr_dev); 1826 if (error) 1827 goto DevAttrError; 1828 1829 error = device_create_sys_dev_entry(dev); 1830 if (error) 1831 goto SysEntryError; 1832 1833 devtmpfs_create_node(dev); 1834 } 1835 1836 /* Notify clients of device addition. This call must come 1837 * after dpm_sysfs_add() and before kobject_uevent(). 1838 */ 1839 if (dev->bus) 1840 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1841 BUS_NOTIFY_ADD_DEVICE, dev); 1842 1843 kobject_uevent(&dev->kobj, KOBJ_ADD); 1844 bus_probe_device(dev); 1845 if (parent) 1846 klist_add_tail(&dev->p->knode_parent, 1847 &parent->p->klist_children); 1848 1849 if (dev->class) { 1850 mutex_lock(&dev->class->p->mutex); 1851 /* tie the class to the device */ 1852 klist_add_tail(&dev->knode_class, 1853 &dev->class->p->klist_devices); 1854 1855 /* notify any interfaces that the device is here */ 1856 list_for_each_entry(class_intf, 1857 &dev->class->p->interfaces, node) 1858 if (class_intf->add_dev) 1859 class_intf->add_dev(dev, class_intf); 1860 mutex_unlock(&dev->class->p->mutex); 1861 } 1862 done: 1863 put_device(dev); 1864 return error; 1865 SysEntryError: 1866 if (MAJOR(dev->devt)) 1867 device_remove_file(dev, &dev_attr_dev); 1868 DevAttrError: 1869 device_pm_remove(dev); 1870 dpm_sysfs_remove(dev); 1871 DPMError: 1872 bus_remove_device(dev); 1873 BusError: 1874 device_remove_attrs(dev); 1875 AttrsError: 1876 device_remove_class_symlinks(dev); 1877 SymlinkError: 1878 device_remove_file(dev, &dev_attr_uevent); 1879 attrError: 1880 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 1881 glue_dir = get_glue_dir(dev); 1882 kobject_del(&dev->kobj); 1883 Error: 1884 cleanup_glue_dir(dev, glue_dir); 1885 put_device(parent); 1886 name_error: 1887 kfree(dev->p); 1888 dev->p = NULL; 1889 goto done; 1890 } 1891 EXPORT_SYMBOL_GPL(device_add); 1892 1893 /** 1894 * device_register - register a device with the system. 1895 * @dev: pointer to the device structure 1896 * 1897 * This happens in two clean steps - initialize the device 1898 * and add it to the system. The two steps can be called 1899 * separately, but this is the easiest and most common. 1900 * I.e. you should only call the two helpers separately if 1901 * have a clearly defined need to use and refcount the device 1902 * before it is added to the hierarchy. 1903 * 1904 * For more information, see the kerneldoc for device_initialize() 1905 * and device_add(). 1906 * 1907 * NOTE: _Never_ directly free @dev after calling this function, even 1908 * if it returned an error! Always use put_device() to give up the 1909 * reference initialized in this function instead. 1910 */ 1911 int device_register(struct device *dev) 1912 { 1913 device_initialize(dev); 1914 return device_add(dev); 1915 } 1916 EXPORT_SYMBOL_GPL(device_register); 1917 1918 /** 1919 * get_device - increment reference count for device. 1920 * @dev: device. 1921 * 1922 * This simply forwards the call to kobject_get(), though 1923 * we do take care to provide for the case that we get a NULL 1924 * pointer passed in. 1925 */ 1926 struct device *get_device(struct device *dev) 1927 { 1928 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 1929 } 1930 EXPORT_SYMBOL_GPL(get_device); 1931 1932 /** 1933 * put_device - decrement reference count. 1934 * @dev: device in question. 1935 */ 1936 void put_device(struct device *dev) 1937 { 1938 /* might_sleep(); */ 1939 if (dev) 1940 kobject_put(&dev->kobj); 1941 } 1942 EXPORT_SYMBOL_GPL(put_device); 1943 1944 /** 1945 * device_del - delete device from system. 1946 * @dev: device. 1947 * 1948 * This is the first part of the device unregistration 1949 * sequence. This removes the device from the lists we control 1950 * from here, has it removed from the other driver model 1951 * subsystems it was added to in device_add(), and removes it 1952 * from the kobject hierarchy. 1953 * 1954 * NOTE: this should be called manually _iff_ device_add() was 1955 * also called manually. 1956 */ 1957 void device_del(struct device *dev) 1958 { 1959 struct device *parent = dev->parent; 1960 struct kobject *glue_dir = NULL; 1961 struct class_interface *class_intf; 1962 1963 /* Notify clients of device removal. This call must come 1964 * before dpm_sysfs_remove(). 1965 */ 1966 if (dev->bus) 1967 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1968 BUS_NOTIFY_DEL_DEVICE, dev); 1969 1970 dpm_sysfs_remove(dev); 1971 if (parent) 1972 klist_del(&dev->p->knode_parent); 1973 if (MAJOR(dev->devt)) { 1974 devtmpfs_delete_node(dev); 1975 device_remove_sys_dev_entry(dev); 1976 device_remove_file(dev, &dev_attr_dev); 1977 } 1978 if (dev->class) { 1979 device_remove_class_symlinks(dev); 1980 1981 mutex_lock(&dev->class->p->mutex); 1982 /* notify any interfaces that the device is now gone */ 1983 list_for_each_entry(class_intf, 1984 &dev->class->p->interfaces, node) 1985 if (class_intf->remove_dev) 1986 class_intf->remove_dev(dev, class_intf); 1987 /* remove the device from the class list */ 1988 klist_del(&dev->knode_class); 1989 mutex_unlock(&dev->class->p->mutex); 1990 } 1991 device_remove_file(dev, &dev_attr_uevent); 1992 device_remove_attrs(dev); 1993 bus_remove_device(dev); 1994 device_pm_remove(dev); 1995 driver_deferred_probe_del(dev); 1996 device_remove_properties(dev); 1997 device_links_purge(dev); 1998 1999 /* Notify the platform of the removal, in case they 2000 * need to do anything... 2001 */ 2002 if (platform_notify_remove) 2003 platform_notify_remove(dev); 2004 if (dev->bus) 2005 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2006 BUS_NOTIFY_REMOVED_DEVICE, dev); 2007 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 2008 glue_dir = get_glue_dir(dev); 2009 kobject_del(&dev->kobj); 2010 cleanup_glue_dir(dev, glue_dir); 2011 put_device(parent); 2012 } 2013 EXPORT_SYMBOL_GPL(device_del); 2014 2015 /** 2016 * device_unregister - unregister device from system. 2017 * @dev: device going away. 2018 * 2019 * We do this in two parts, like we do device_register(). First, 2020 * we remove it from all the subsystems with device_del(), then 2021 * we decrement the reference count via put_device(). If that 2022 * is the final reference count, the device will be cleaned up 2023 * via device_release() above. Otherwise, the structure will 2024 * stick around until the final reference to the device is dropped. 2025 */ 2026 void device_unregister(struct device *dev) 2027 { 2028 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2029 device_del(dev); 2030 put_device(dev); 2031 } 2032 EXPORT_SYMBOL_GPL(device_unregister); 2033 2034 static struct device *prev_device(struct klist_iter *i) 2035 { 2036 struct klist_node *n = klist_prev(i); 2037 struct device *dev = NULL; 2038 struct device_private *p; 2039 2040 if (n) { 2041 p = to_device_private_parent(n); 2042 dev = p->device; 2043 } 2044 return dev; 2045 } 2046 2047 static struct device *next_device(struct klist_iter *i) 2048 { 2049 struct klist_node *n = klist_next(i); 2050 struct device *dev = NULL; 2051 struct device_private *p; 2052 2053 if (n) { 2054 p = to_device_private_parent(n); 2055 dev = p->device; 2056 } 2057 return dev; 2058 } 2059 2060 /** 2061 * device_get_devnode - path of device node file 2062 * @dev: device 2063 * @mode: returned file access mode 2064 * @uid: returned file owner 2065 * @gid: returned file group 2066 * @tmp: possibly allocated string 2067 * 2068 * Return the relative path of a possible device node. 2069 * Non-default names may need to allocate a memory to compose 2070 * a name. This memory is returned in tmp and needs to be 2071 * freed by the caller. 2072 */ 2073 const char *device_get_devnode(struct device *dev, 2074 umode_t *mode, kuid_t *uid, kgid_t *gid, 2075 const char **tmp) 2076 { 2077 char *s; 2078 2079 *tmp = NULL; 2080 2081 /* the device type may provide a specific name */ 2082 if (dev->type && dev->type->devnode) 2083 *tmp = dev->type->devnode(dev, mode, uid, gid); 2084 if (*tmp) 2085 return *tmp; 2086 2087 /* the class may provide a specific name */ 2088 if (dev->class && dev->class->devnode) 2089 *tmp = dev->class->devnode(dev, mode); 2090 if (*tmp) 2091 return *tmp; 2092 2093 /* return name without allocation, tmp == NULL */ 2094 if (strchr(dev_name(dev), '!') == NULL) 2095 return dev_name(dev); 2096 2097 /* replace '!' in the name with '/' */ 2098 s = kstrdup(dev_name(dev), GFP_KERNEL); 2099 if (!s) 2100 return NULL; 2101 strreplace(s, '!', '/'); 2102 return *tmp = s; 2103 } 2104 2105 /** 2106 * device_for_each_child - device child iterator. 2107 * @parent: parent struct device. 2108 * @fn: function to be called for each device. 2109 * @data: data for the callback. 2110 * 2111 * Iterate over @parent's child devices, and call @fn for each, 2112 * passing it @data. 2113 * 2114 * We check the return of @fn each time. If it returns anything 2115 * other than 0, we break out and return that value. 2116 */ 2117 int device_for_each_child(struct device *parent, void *data, 2118 int (*fn)(struct device *dev, void *data)) 2119 { 2120 struct klist_iter i; 2121 struct device *child; 2122 int error = 0; 2123 2124 if (!parent->p) 2125 return 0; 2126 2127 klist_iter_init(&parent->p->klist_children, &i); 2128 while (!error && (child = next_device(&i))) 2129 error = fn(child, data); 2130 klist_iter_exit(&i); 2131 return error; 2132 } 2133 EXPORT_SYMBOL_GPL(device_for_each_child); 2134 2135 /** 2136 * device_for_each_child_reverse - device child iterator in reversed order. 2137 * @parent: parent struct device. 2138 * @fn: function to be called for each device. 2139 * @data: data for the callback. 2140 * 2141 * Iterate over @parent's child devices, and call @fn for each, 2142 * passing it @data. 2143 * 2144 * We check the return of @fn each time. If it returns anything 2145 * other than 0, we break out and return that value. 2146 */ 2147 int device_for_each_child_reverse(struct device *parent, void *data, 2148 int (*fn)(struct device *dev, void *data)) 2149 { 2150 struct klist_iter i; 2151 struct device *child; 2152 int error = 0; 2153 2154 if (!parent->p) 2155 return 0; 2156 2157 klist_iter_init(&parent->p->klist_children, &i); 2158 while ((child = prev_device(&i)) && !error) 2159 error = fn(child, data); 2160 klist_iter_exit(&i); 2161 return error; 2162 } 2163 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 2164 2165 /** 2166 * device_find_child - device iterator for locating a particular device. 2167 * @parent: parent struct device 2168 * @match: Callback function to check device 2169 * @data: Data to pass to match function 2170 * 2171 * This is similar to the device_for_each_child() function above, but it 2172 * returns a reference to a device that is 'found' for later use, as 2173 * determined by the @match callback. 2174 * 2175 * The callback should return 0 if the device doesn't match and non-zero 2176 * if it does. If the callback returns non-zero and a reference to the 2177 * current device can be obtained, this function will return to the caller 2178 * and not iterate over any more devices. 2179 * 2180 * NOTE: you will need to drop the reference with put_device() after use. 2181 */ 2182 struct device *device_find_child(struct device *parent, void *data, 2183 int (*match)(struct device *dev, void *data)) 2184 { 2185 struct klist_iter i; 2186 struct device *child; 2187 2188 if (!parent) 2189 return NULL; 2190 2191 klist_iter_init(&parent->p->klist_children, &i); 2192 while ((child = next_device(&i))) 2193 if (match(child, data) && get_device(child)) 2194 break; 2195 klist_iter_exit(&i); 2196 return child; 2197 } 2198 EXPORT_SYMBOL_GPL(device_find_child); 2199 2200 int __init devices_init(void) 2201 { 2202 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 2203 if (!devices_kset) 2204 return -ENOMEM; 2205 dev_kobj = kobject_create_and_add("dev", NULL); 2206 if (!dev_kobj) 2207 goto dev_kobj_err; 2208 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 2209 if (!sysfs_dev_block_kobj) 2210 goto block_kobj_err; 2211 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 2212 if (!sysfs_dev_char_kobj) 2213 goto char_kobj_err; 2214 2215 return 0; 2216 2217 char_kobj_err: 2218 kobject_put(sysfs_dev_block_kobj); 2219 block_kobj_err: 2220 kobject_put(dev_kobj); 2221 dev_kobj_err: 2222 kset_unregister(devices_kset); 2223 return -ENOMEM; 2224 } 2225 2226 static int device_check_offline(struct device *dev, void *not_used) 2227 { 2228 int ret; 2229 2230 ret = device_for_each_child(dev, NULL, device_check_offline); 2231 if (ret) 2232 return ret; 2233 2234 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 2235 } 2236 2237 /** 2238 * device_offline - Prepare the device for hot-removal. 2239 * @dev: Device to be put offline. 2240 * 2241 * Execute the device bus type's .offline() callback, if present, to prepare 2242 * the device for a subsequent hot-removal. If that succeeds, the device must 2243 * not be used until either it is removed or its bus type's .online() callback 2244 * is executed. 2245 * 2246 * Call under device_hotplug_lock. 2247 */ 2248 int device_offline(struct device *dev) 2249 { 2250 int ret; 2251 2252 if (dev->offline_disabled) 2253 return -EPERM; 2254 2255 ret = device_for_each_child(dev, NULL, device_check_offline); 2256 if (ret) 2257 return ret; 2258 2259 device_lock(dev); 2260 if (device_supports_offline(dev)) { 2261 if (dev->offline) { 2262 ret = 1; 2263 } else { 2264 ret = dev->bus->offline(dev); 2265 if (!ret) { 2266 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2267 dev->offline = true; 2268 } 2269 } 2270 } 2271 device_unlock(dev); 2272 2273 return ret; 2274 } 2275 2276 /** 2277 * device_online - Put the device back online after successful device_offline(). 2278 * @dev: Device to be put back online. 2279 * 2280 * If device_offline() has been successfully executed for @dev, but the device 2281 * has not been removed subsequently, execute its bus type's .online() callback 2282 * to indicate that the device can be used again. 2283 * 2284 * Call under device_hotplug_lock. 2285 */ 2286 int device_online(struct device *dev) 2287 { 2288 int ret = 0; 2289 2290 device_lock(dev); 2291 if (device_supports_offline(dev)) { 2292 if (dev->offline) { 2293 ret = dev->bus->online(dev); 2294 if (!ret) { 2295 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2296 dev->offline = false; 2297 } 2298 } else { 2299 ret = 1; 2300 } 2301 } 2302 device_unlock(dev); 2303 2304 return ret; 2305 } 2306 2307 struct root_device { 2308 struct device dev; 2309 struct module *owner; 2310 }; 2311 2312 static inline struct root_device *to_root_device(struct device *d) 2313 { 2314 return container_of(d, struct root_device, dev); 2315 } 2316 2317 static void root_device_release(struct device *dev) 2318 { 2319 kfree(to_root_device(dev)); 2320 } 2321 2322 /** 2323 * __root_device_register - allocate and register a root device 2324 * @name: root device name 2325 * @owner: owner module of the root device, usually THIS_MODULE 2326 * 2327 * This function allocates a root device and registers it 2328 * using device_register(). In order to free the returned 2329 * device, use root_device_unregister(). 2330 * 2331 * Root devices are dummy devices which allow other devices 2332 * to be grouped under /sys/devices. Use this function to 2333 * allocate a root device and then use it as the parent of 2334 * any device which should appear under /sys/devices/{name} 2335 * 2336 * The /sys/devices/{name} directory will also contain a 2337 * 'module' symlink which points to the @owner directory 2338 * in sysfs. 2339 * 2340 * Returns &struct device pointer on success, or ERR_PTR() on error. 2341 * 2342 * Note: You probably want to use root_device_register(). 2343 */ 2344 struct device *__root_device_register(const char *name, struct module *owner) 2345 { 2346 struct root_device *root; 2347 int err = -ENOMEM; 2348 2349 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 2350 if (!root) 2351 return ERR_PTR(err); 2352 2353 err = dev_set_name(&root->dev, "%s", name); 2354 if (err) { 2355 kfree(root); 2356 return ERR_PTR(err); 2357 } 2358 2359 root->dev.release = root_device_release; 2360 2361 err = device_register(&root->dev); 2362 if (err) { 2363 put_device(&root->dev); 2364 return ERR_PTR(err); 2365 } 2366 2367 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 2368 if (owner) { 2369 struct module_kobject *mk = &owner->mkobj; 2370 2371 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 2372 if (err) { 2373 device_unregister(&root->dev); 2374 return ERR_PTR(err); 2375 } 2376 root->owner = owner; 2377 } 2378 #endif 2379 2380 return &root->dev; 2381 } 2382 EXPORT_SYMBOL_GPL(__root_device_register); 2383 2384 /** 2385 * root_device_unregister - unregister and free a root device 2386 * @dev: device going away 2387 * 2388 * This function unregisters and cleans up a device that was created by 2389 * root_device_register(). 2390 */ 2391 void root_device_unregister(struct device *dev) 2392 { 2393 struct root_device *root = to_root_device(dev); 2394 2395 if (root->owner) 2396 sysfs_remove_link(&root->dev.kobj, "module"); 2397 2398 device_unregister(dev); 2399 } 2400 EXPORT_SYMBOL_GPL(root_device_unregister); 2401 2402 2403 static void device_create_release(struct device *dev) 2404 { 2405 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2406 kfree(dev); 2407 } 2408 2409 static struct device * 2410 device_create_groups_vargs(struct class *class, struct device *parent, 2411 dev_t devt, void *drvdata, 2412 const struct attribute_group **groups, 2413 const char *fmt, va_list args) 2414 { 2415 struct device *dev = NULL; 2416 int retval = -ENODEV; 2417 2418 if (class == NULL || IS_ERR(class)) 2419 goto error; 2420 2421 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2422 if (!dev) { 2423 retval = -ENOMEM; 2424 goto error; 2425 } 2426 2427 device_initialize(dev); 2428 dev->devt = devt; 2429 dev->class = class; 2430 dev->parent = parent; 2431 dev->groups = groups; 2432 dev->release = device_create_release; 2433 dev_set_drvdata(dev, drvdata); 2434 2435 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 2436 if (retval) 2437 goto error; 2438 2439 retval = device_add(dev); 2440 if (retval) 2441 goto error; 2442 2443 return dev; 2444 2445 error: 2446 put_device(dev); 2447 return ERR_PTR(retval); 2448 } 2449 2450 /** 2451 * device_create_vargs - creates a device and registers it with sysfs 2452 * @class: pointer to the struct class that this device should be registered to 2453 * @parent: pointer to the parent struct device of this new device, if any 2454 * @devt: the dev_t for the char device to be added 2455 * @drvdata: the data to be added to the device for callbacks 2456 * @fmt: string for the device's name 2457 * @args: va_list for the device's name 2458 * 2459 * This function can be used by char device classes. A struct device 2460 * will be created in sysfs, registered to the specified class. 2461 * 2462 * A "dev" file will be created, showing the dev_t for the device, if 2463 * the dev_t is not 0,0. 2464 * If a pointer to a parent struct device is passed in, the newly created 2465 * struct device will be a child of that device in sysfs. 2466 * The pointer to the struct device will be returned from the call. 2467 * Any further sysfs files that might be required can be created using this 2468 * pointer. 2469 * 2470 * Returns &struct device pointer on success, or ERR_PTR() on error. 2471 * 2472 * Note: the struct class passed to this function must have previously 2473 * been created with a call to class_create(). 2474 */ 2475 struct device *device_create_vargs(struct class *class, struct device *parent, 2476 dev_t devt, void *drvdata, const char *fmt, 2477 va_list args) 2478 { 2479 return device_create_groups_vargs(class, parent, devt, drvdata, NULL, 2480 fmt, args); 2481 } 2482 EXPORT_SYMBOL_GPL(device_create_vargs); 2483 2484 /** 2485 * device_create - creates a device and registers it with sysfs 2486 * @class: pointer to the struct class that this device should be registered to 2487 * @parent: pointer to the parent struct device of this new device, if any 2488 * @devt: the dev_t for the char device to be added 2489 * @drvdata: the data to be added to the device for callbacks 2490 * @fmt: string for the device's name 2491 * 2492 * This function can be used by char device classes. A struct device 2493 * will be created in sysfs, registered to the specified class. 2494 * 2495 * A "dev" file will be created, showing the dev_t for the device, if 2496 * the dev_t is not 0,0. 2497 * If a pointer to a parent struct device is passed in, the newly created 2498 * struct device will be a child of that device in sysfs. 2499 * The pointer to the struct device will be returned from the call. 2500 * Any further sysfs files that might be required can be created using this 2501 * pointer. 2502 * 2503 * Returns &struct device pointer on success, or ERR_PTR() on error. 2504 * 2505 * Note: the struct class passed to this function must have previously 2506 * been created with a call to class_create(). 2507 */ 2508 struct device *device_create(struct class *class, struct device *parent, 2509 dev_t devt, void *drvdata, const char *fmt, ...) 2510 { 2511 va_list vargs; 2512 struct device *dev; 2513 2514 va_start(vargs, fmt); 2515 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs); 2516 va_end(vargs); 2517 return dev; 2518 } 2519 EXPORT_SYMBOL_GPL(device_create); 2520 2521 /** 2522 * device_create_with_groups - creates a device and registers it with sysfs 2523 * @class: pointer to the struct class that this device should be registered to 2524 * @parent: pointer to the parent struct device of this new device, if any 2525 * @devt: the dev_t for the char device to be added 2526 * @drvdata: the data to be added to the device for callbacks 2527 * @groups: NULL-terminated list of attribute groups to be created 2528 * @fmt: string for the device's name 2529 * 2530 * This function can be used by char device classes. A struct device 2531 * will be created in sysfs, registered to the specified class. 2532 * Additional attributes specified in the groups parameter will also 2533 * be created automatically. 2534 * 2535 * A "dev" file will be created, showing the dev_t for the device, if 2536 * the dev_t is not 0,0. 2537 * If a pointer to a parent struct device is passed in, the newly created 2538 * struct device will be a child of that device in sysfs. 2539 * The pointer to the struct device will be returned from the call. 2540 * Any further sysfs files that might be required can be created using this 2541 * pointer. 2542 * 2543 * Returns &struct device pointer on success, or ERR_PTR() on error. 2544 * 2545 * Note: the struct class passed to this function must have previously 2546 * been created with a call to class_create(). 2547 */ 2548 struct device *device_create_with_groups(struct class *class, 2549 struct device *parent, dev_t devt, 2550 void *drvdata, 2551 const struct attribute_group **groups, 2552 const char *fmt, ...) 2553 { 2554 va_list vargs; 2555 struct device *dev; 2556 2557 va_start(vargs, fmt); 2558 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 2559 fmt, vargs); 2560 va_end(vargs); 2561 return dev; 2562 } 2563 EXPORT_SYMBOL_GPL(device_create_with_groups); 2564 2565 static int __match_devt(struct device *dev, const void *data) 2566 { 2567 const dev_t *devt = data; 2568 2569 return dev->devt == *devt; 2570 } 2571 2572 /** 2573 * device_destroy - removes a device that was created with device_create() 2574 * @class: pointer to the struct class that this device was registered with 2575 * @devt: the dev_t of the device that was previously registered 2576 * 2577 * This call unregisters and cleans up a device that was created with a 2578 * call to device_create(). 2579 */ 2580 void device_destroy(struct class *class, dev_t devt) 2581 { 2582 struct device *dev; 2583 2584 dev = class_find_device(class, NULL, &devt, __match_devt); 2585 if (dev) { 2586 put_device(dev); 2587 device_unregister(dev); 2588 } 2589 } 2590 EXPORT_SYMBOL_GPL(device_destroy); 2591 2592 /** 2593 * device_rename - renames a device 2594 * @dev: the pointer to the struct device to be renamed 2595 * @new_name: the new name of the device 2596 * 2597 * It is the responsibility of the caller to provide mutual 2598 * exclusion between two different calls of device_rename 2599 * on the same device to ensure that new_name is valid and 2600 * won't conflict with other devices. 2601 * 2602 * Note: Don't call this function. Currently, the networking layer calls this 2603 * function, but that will change. The following text from Kay Sievers offers 2604 * some insight: 2605 * 2606 * Renaming devices is racy at many levels, symlinks and other stuff are not 2607 * replaced atomically, and you get a "move" uevent, but it's not easy to 2608 * connect the event to the old and new device. Device nodes are not renamed at 2609 * all, there isn't even support for that in the kernel now. 2610 * 2611 * In the meantime, during renaming, your target name might be taken by another 2612 * driver, creating conflicts. Or the old name is taken directly after you 2613 * renamed it -- then you get events for the same DEVPATH, before you even see 2614 * the "move" event. It's just a mess, and nothing new should ever rely on 2615 * kernel device renaming. Besides that, it's not even implemented now for 2616 * other things than (driver-core wise very simple) network devices. 2617 * 2618 * We are currently about to change network renaming in udev to completely 2619 * disallow renaming of devices in the same namespace as the kernel uses, 2620 * because we can't solve the problems properly, that arise with swapping names 2621 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 2622 * be allowed to some other name than eth[0-9]*, for the aforementioned 2623 * reasons. 2624 * 2625 * Make up a "real" name in the driver before you register anything, or add 2626 * some other attributes for userspace to find the device, or use udev to add 2627 * symlinks -- but never rename kernel devices later, it's a complete mess. We 2628 * don't even want to get into that and try to implement the missing pieces in 2629 * the core. We really have other pieces to fix in the driver core mess. :) 2630 */ 2631 int device_rename(struct device *dev, const char *new_name) 2632 { 2633 struct kobject *kobj = &dev->kobj; 2634 char *old_device_name = NULL; 2635 int error; 2636 2637 dev = get_device(dev); 2638 if (!dev) 2639 return -EINVAL; 2640 2641 dev_dbg(dev, "renaming to %s\n", new_name); 2642 2643 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 2644 if (!old_device_name) { 2645 error = -ENOMEM; 2646 goto out; 2647 } 2648 2649 if (dev->class) { 2650 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 2651 kobj, old_device_name, 2652 new_name, kobject_namespace(kobj)); 2653 if (error) 2654 goto out; 2655 } 2656 2657 error = kobject_rename(kobj, new_name); 2658 if (error) 2659 goto out; 2660 2661 out: 2662 put_device(dev); 2663 2664 kfree(old_device_name); 2665 2666 return error; 2667 } 2668 EXPORT_SYMBOL_GPL(device_rename); 2669 2670 static int device_move_class_links(struct device *dev, 2671 struct device *old_parent, 2672 struct device *new_parent) 2673 { 2674 int error = 0; 2675 2676 if (old_parent) 2677 sysfs_remove_link(&dev->kobj, "device"); 2678 if (new_parent) 2679 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 2680 "device"); 2681 return error; 2682 } 2683 2684 /** 2685 * device_move - moves a device to a new parent 2686 * @dev: the pointer to the struct device to be moved 2687 * @new_parent: the new parent of the device (can by NULL) 2688 * @dpm_order: how to reorder the dpm_list 2689 */ 2690 int device_move(struct device *dev, struct device *new_parent, 2691 enum dpm_order dpm_order) 2692 { 2693 int error; 2694 struct device *old_parent; 2695 struct kobject *new_parent_kobj; 2696 2697 dev = get_device(dev); 2698 if (!dev) 2699 return -EINVAL; 2700 2701 device_pm_lock(); 2702 new_parent = get_device(new_parent); 2703 new_parent_kobj = get_device_parent(dev, new_parent); 2704 2705 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 2706 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 2707 error = kobject_move(&dev->kobj, new_parent_kobj); 2708 if (error) { 2709 cleanup_glue_dir(dev, new_parent_kobj); 2710 put_device(new_parent); 2711 goto out; 2712 } 2713 old_parent = dev->parent; 2714 dev->parent = new_parent; 2715 if (old_parent) 2716 klist_remove(&dev->p->knode_parent); 2717 if (new_parent) { 2718 klist_add_tail(&dev->p->knode_parent, 2719 &new_parent->p->klist_children); 2720 set_dev_node(dev, dev_to_node(new_parent)); 2721 } 2722 2723 if (dev->class) { 2724 error = device_move_class_links(dev, old_parent, new_parent); 2725 if (error) { 2726 /* We ignore errors on cleanup since we're hosed anyway... */ 2727 device_move_class_links(dev, new_parent, old_parent); 2728 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 2729 if (new_parent) 2730 klist_remove(&dev->p->knode_parent); 2731 dev->parent = old_parent; 2732 if (old_parent) { 2733 klist_add_tail(&dev->p->knode_parent, 2734 &old_parent->p->klist_children); 2735 set_dev_node(dev, dev_to_node(old_parent)); 2736 } 2737 } 2738 cleanup_glue_dir(dev, new_parent_kobj); 2739 put_device(new_parent); 2740 goto out; 2741 } 2742 } 2743 switch (dpm_order) { 2744 case DPM_ORDER_NONE: 2745 break; 2746 case DPM_ORDER_DEV_AFTER_PARENT: 2747 device_pm_move_after(dev, new_parent); 2748 devices_kset_move_after(dev, new_parent); 2749 break; 2750 case DPM_ORDER_PARENT_BEFORE_DEV: 2751 device_pm_move_before(new_parent, dev); 2752 devices_kset_move_before(new_parent, dev); 2753 break; 2754 case DPM_ORDER_DEV_LAST: 2755 device_pm_move_last(dev); 2756 devices_kset_move_last(dev); 2757 break; 2758 } 2759 2760 put_device(old_parent); 2761 out: 2762 device_pm_unlock(); 2763 put_device(dev); 2764 return error; 2765 } 2766 EXPORT_SYMBOL_GPL(device_move); 2767 2768 /** 2769 * device_shutdown - call ->shutdown() on each device to shutdown. 2770 */ 2771 void device_shutdown(void) 2772 { 2773 struct device *dev, *parent; 2774 2775 spin_lock(&devices_kset->list_lock); 2776 /* 2777 * Walk the devices list backward, shutting down each in turn. 2778 * Beware that device unplug events may also start pulling 2779 * devices offline, even as the system is shutting down. 2780 */ 2781 while (!list_empty(&devices_kset->list)) { 2782 dev = list_entry(devices_kset->list.prev, struct device, 2783 kobj.entry); 2784 2785 /* 2786 * hold reference count of device's parent to 2787 * prevent it from being freed because parent's 2788 * lock is to be held 2789 */ 2790 parent = get_device(dev->parent); 2791 get_device(dev); 2792 /* 2793 * Make sure the device is off the kset list, in the 2794 * event that dev->*->shutdown() doesn't remove it. 2795 */ 2796 list_del_init(&dev->kobj.entry); 2797 spin_unlock(&devices_kset->list_lock); 2798 2799 /* hold lock to avoid race with probe/release */ 2800 if (parent) 2801 device_lock(parent); 2802 device_lock(dev); 2803 2804 /* Don't allow any more runtime suspends */ 2805 pm_runtime_get_noresume(dev); 2806 pm_runtime_barrier(dev); 2807 2808 if (dev->class && dev->class->shutdown_pre) { 2809 if (initcall_debug) 2810 dev_info(dev, "shutdown_pre\n"); 2811 dev->class->shutdown_pre(dev); 2812 } 2813 if (dev->bus && dev->bus->shutdown) { 2814 if (initcall_debug) 2815 dev_info(dev, "shutdown\n"); 2816 dev->bus->shutdown(dev); 2817 } else if (dev->driver && dev->driver->shutdown) { 2818 if (initcall_debug) 2819 dev_info(dev, "shutdown\n"); 2820 dev->driver->shutdown(dev); 2821 } 2822 2823 device_unlock(dev); 2824 if (parent) 2825 device_unlock(parent); 2826 2827 put_device(dev); 2828 put_device(parent); 2829 2830 spin_lock(&devices_kset->list_lock); 2831 } 2832 spin_unlock(&devices_kset->list_lock); 2833 } 2834 2835 /* 2836 * Device logging functions 2837 */ 2838 2839 #ifdef CONFIG_PRINTK 2840 static int 2841 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen) 2842 { 2843 const char *subsys; 2844 size_t pos = 0; 2845 2846 if (dev->class) 2847 subsys = dev->class->name; 2848 else if (dev->bus) 2849 subsys = dev->bus->name; 2850 else 2851 return 0; 2852 2853 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys); 2854 if (pos >= hdrlen) 2855 goto overflow; 2856 2857 /* 2858 * Add device identifier DEVICE=: 2859 * b12:8 block dev_t 2860 * c127:3 char dev_t 2861 * n8 netdev ifindex 2862 * +sound:card0 subsystem:devname 2863 */ 2864 if (MAJOR(dev->devt)) { 2865 char c; 2866 2867 if (strcmp(subsys, "block") == 0) 2868 c = 'b'; 2869 else 2870 c = 'c'; 2871 pos++; 2872 pos += snprintf(hdr + pos, hdrlen - pos, 2873 "DEVICE=%c%u:%u", 2874 c, MAJOR(dev->devt), MINOR(dev->devt)); 2875 } else if (strcmp(subsys, "net") == 0) { 2876 struct net_device *net = to_net_dev(dev); 2877 2878 pos++; 2879 pos += snprintf(hdr + pos, hdrlen - pos, 2880 "DEVICE=n%u", net->ifindex); 2881 } else { 2882 pos++; 2883 pos += snprintf(hdr + pos, hdrlen - pos, 2884 "DEVICE=+%s:%s", subsys, dev_name(dev)); 2885 } 2886 2887 if (pos >= hdrlen) 2888 goto overflow; 2889 2890 return pos; 2891 2892 overflow: 2893 dev_WARN(dev, "device/subsystem name too long"); 2894 return 0; 2895 } 2896 2897 int dev_vprintk_emit(int level, const struct device *dev, 2898 const char *fmt, va_list args) 2899 { 2900 char hdr[128]; 2901 size_t hdrlen; 2902 2903 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr)); 2904 2905 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args); 2906 } 2907 EXPORT_SYMBOL(dev_vprintk_emit); 2908 2909 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 2910 { 2911 va_list args; 2912 int r; 2913 2914 va_start(args, fmt); 2915 2916 r = dev_vprintk_emit(level, dev, fmt, args); 2917 2918 va_end(args); 2919 2920 return r; 2921 } 2922 EXPORT_SYMBOL(dev_printk_emit); 2923 2924 static void __dev_printk(const char *level, const struct device *dev, 2925 struct va_format *vaf) 2926 { 2927 if (dev) 2928 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 2929 dev_driver_string(dev), dev_name(dev), vaf); 2930 else 2931 printk("%s(NULL device *): %pV", level, vaf); 2932 } 2933 2934 void dev_printk(const char *level, const struct device *dev, 2935 const char *fmt, ...) 2936 { 2937 struct va_format vaf; 2938 va_list args; 2939 2940 va_start(args, fmt); 2941 2942 vaf.fmt = fmt; 2943 vaf.va = &args; 2944 2945 __dev_printk(level, dev, &vaf); 2946 2947 va_end(args); 2948 } 2949 EXPORT_SYMBOL(dev_printk); 2950 2951 #define define_dev_printk_level(func, kern_level) \ 2952 void func(const struct device *dev, const char *fmt, ...) \ 2953 { \ 2954 struct va_format vaf; \ 2955 va_list args; \ 2956 \ 2957 va_start(args, fmt); \ 2958 \ 2959 vaf.fmt = fmt; \ 2960 vaf.va = &args; \ 2961 \ 2962 __dev_printk(kern_level, dev, &vaf); \ 2963 \ 2964 va_end(args); \ 2965 } \ 2966 EXPORT_SYMBOL(func); 2967 2968 define_dev_printk_level(dev_emerg, KERN_EMERG); 2969 define_dev_printk_level(dev_alert, KERN_ALERT); 2970 define_dev_printk_level(dev_crit, KERN_CRIT); 2971 define_dev_printk_level(dev_err, KERN_ERR); 2972 define_dev_printk_level(dev_warn, KERN_WARNING); 2973 define_dev_printk_level(dev_notice, KERN_NOTICE); 2974 define_dev_printk_level(_dev_info, KERN_INFO); 2975 2976 #endif 2977 2978 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 2979 { 2980 return fwnode && !IS_ERR(fwnode->secondary); 2981 } 2982 2983 /** 2984 * set_primary_fwnode - Change the primary firmware node of a given device. 2985 * @dev: Device to handle. 2986 * @fwnode: New primary firmware node of the device. 2987 * 2988 * Set the device's firmware node pointer to @fwnode, but if a secondary 2989 * firmware node of the device is present, preserve it. 2990 */ 2991 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 2992 { 2993 if (fwnode) { 2994 struct fwnode_handle *fn = dev->fwnode; 2995 2996 if (fwnode_is_primary(fn)) 2997 fn = fn->secondary; 2998 2999 if (fn) { 3000 WARN_ON(fwnode->secondary); 3001 fwnode->secondary = fn; 3002 } 3003 dev->fwnode = fwnode; 3004 } else { 3005 dev->fwnode = fwnode_is_primary(dev->fwnode) ? 3006 dev->fwnode->secondary : NULL; 3007 } 3008 } 3009 EXPORT_SYMBOL_GPL(set_primary_fwnode); 3010 3011 /** 3012 * set_secondary_fwnode - Change the secondary firmware node of a given device. 3013 * @dev: Device to handle. 3014 * @fwnode: New secondary firmware node of the device. 3015 * 3016 * If a primary firmware node of the device is present, set its secondary 3017 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 3018 * @fwnode. 3019 */ 3020 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 3021 { 3022 if (fwnode) 3023 fwnode->secondary = ERR_PTR(-ENODEV); 3024 3025 if (fwnode_is_primary(dev->fwnode)) 3026 dev->fwnode->secondary = fwnode; 3027 else 3028 dev->fwnode = fwnode; 3029 } 3030 3031 /** 3032 * device_set_of_node_from_dev - reuse device-tree node of another device 3033 * @dev: device whose device-tree node is being set 3034 * @dev2: device whose device-tree node is being reused 3035 * 3036 * Takes another reference to the new device-tree node after first dropping 3037 * any reference held to the old node. 3038 */ 3039 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 3040 { 3041 of_node_put(dev->of_node); 3042 dev->of_node = of_node_get(dev2->of_node); 3043 dev->of_node_reused = true; 3044 } 3045 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 3046