1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sched/mm.h> 30 #include <linux/swiotlb.h> 31 #include <linux/sysfs.h> 32 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 33 34 #include "base.h" 35 #include "power/power.h" 36 37 #ifdef CONFIG_SYSFS_DEPRECATED 38 #ifdef CONFIG_SYSFS_DEPRECATED_V2 39 long sysfs_deprecated = 1; 40 #else 41 long sysfs_deprecated = 0; 42 #endif 43 static int __init sysfs_deprecated_setup(char *arg) 44 { 45 return kstrtol(arg, 10, &sysfs_deprecated); 46 } 47 early_param("sysfs.deprecated", sysfs_deprecated_setup); 48 #endif 49 50 /* Device links support. */ 51 static LIST_HEAD(deferred_sync); 52 static unsigned int defer_sync_state_count = 1; 53 static DEFINE_MUTEX(fwnode_link_lock); 54 static bool fw_devlink_is_permissive(void); 55 static bool fw_devlink_drv_reg_done; 56 57 /** 58 * fwnode_link_add - Create a link between two fwnode_handles. 59 * @con: Consumer end of the link. 60 * @sup: Supplier end of the link. 61 * 62 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 63 * represents the detail that the firmware lists @sup fwnode as supplying a 64 * resource to @con. 65 * 66 * The driver core will use the fwnode link to create a device link between the 67 * two device objects corresponding to @con and @sup when they are created. The 68 * driver core will automatically delete the fwnode link between @con and @sup 69 * after doing that. 70 * 71 * Attempts to create duplicate links between the same pair of fwnode handles 72 * are ignored and there is no reference counting. 73 */ 74 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup) 75 { 76 struct fwnode_link *link; 77 int ret = 0; 78 79 mutex_lock(&fwnode_link_lock); 80 81 list_for_each_entry(link, &sup->consumers, s_hook) 82 if (link->consumer == con) 83 goto out; 84 85 link = kzalloc(sizeof(*link), GFP_KERNEL); 86 if (!link) { 87 ret = -ENOMEM; 88 goto out; 89 } 90 91 link->supplier = sup; 92 INIT_LIST_HEAD(&link->s_hook); 93 link->consumer = con; 94 INIT_LIST_HEAD(&link->c_hook); 95 96 list_add(&link->s_hook, &sup->consumers); 97 list_add(&link->c_hook, &con->suppliers); 98 pr_debug("%pfwP Linked as a fwnode consumer to %pfwP\n", 99 con, sup); 100 out: 101 mutex_unlock(&fwnode_link_lock); 102 103 return ret; 104 } 105 106 /** 107 * __fwnode_link_del - Delete a link between two fwnode_handles. 108 * @link: the fwnode_link to be deleted 109 * 110 * The fwnode_link_lock needs to be held when this function is called. 111 */ 112 static void __fwnode_link_del(struct fwnode_link *link) 113 { 114 pr_debug("%pfwP Dropping the fwnode link to %pfwP\n", 115 link->consumer, link->supplier); 116 list_del(&link->s_hook); 117 list_del(&link->c_hook); 118 kfree(link); 119 } 120 121 /** 122 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 123 * @fwnode: fwnode whose supplier links need to be deleted 124 * 125 * Deletes all supplier links connecting directly to @fwnode. 126 */ 127 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 128 { 129 struct fwnode_link *link, *tmp; 130 131 mutex_lock(&fwnode_link_lock); 132 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 133 __fwnode_link_del(link); 134 mutex_unlock(&fwnode_link_lock); 135 } 136 137 /** 138 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 139 * @fwnode: fwnode whose consumer links need to be deleted 140 * 141 * Deletes all consumer links connecting directly to @fwnode. 142 */ 143 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 144 { 145 struct fwnode_link *link, *tmp; 146 147 mutex_lock(&fwnode_link_lock); 148 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 149 __fwnode_link_del(link); 150 mutex_unlock(&fwnode_link_lock); 151 } 152 153 /** 154 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 155 * @fwnode: fwnode whose links needs to be deleted 156 * 157 * Deletes all links connecting directly to a fwnode. 158 */ 159 void fwnode_links_purge(struct fwnode_handle *fwnode) 160 { 161 fwnode_links_purge_suppliers(fwnode); 162 fwnode_links_purge_consumers(fwnode); 163 } 164 165 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 166 { 167 struct fwnode_handle *child; 168 169 /* Don't purge consumer links of an added child */ 170 if (fwnode->dev) 171 return; 172 173 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 174 fwnode_links_purge_consumers(fwnode); 175 176 fwnode_for_each_available_child_node(fwnode, child) 177 fw_devlink_purge_absent_suppliers(child); 178 } 179 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 180 181 #ifdef CONFIG_SRCU 182 static DEFINE_MUTEX(device_links_lock); 183 DEFINE_STATIC_SRCU(device_links_srcu); 184 185 static inline void device_links_write_lock(void) 186 { 187 mutex_lock(&device_links_lock); 188 } 189 190 static inline void device_links_write_unlock(void) 191 { 192 mutex_unlock(&device_links_lock); 193 } 194 195 int device_links_read_lock(void) __acquires(&device_links_srcu) 196 { 197 return srcu_read_lock(&device_links_srcu); 198 } 199 200 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 201 { 202 srcu_read_unlock(&device_links_srcu, idx); 203 } 204 205 int device_links_read_lock_held(void) 206 { 207 return srcu_read_lock_held(&device_links_srcu); 208 } 209 210 static void device_link_synchronize_removal(void) 211 { 212 synchronize_srcu(&device_links_srcu); 213 } 214 215 static void device_link_remove_from_lists(struct device_link *link) 216 { 217 list_del_rcu(&link->s_node); 218 list_del_rcu(&link->c_node); 219 } 220 #else /* !CONFIG_SRCU */ 221 static DECLARE_RWSEM(device_links_lock); 222 223 static inline void device_links_write_lock(void) 224 { 225 down_write(&device_links_lock); 226 } 227 228 static inline void device_links_write_unlock(void) 229 { 230 up_write(&device_links_lock); 231 } 232 233 int device_links_read_lock(void) 234 { 235 down_read(&device_links_lock); 236 return 0; 237 } 238 239 void device_links_read_unlock(int not_used) 240 { 241 up_read(&device_links_lock); 242 } 243 244 #ifdef CONFIG_DEBUG_LOCK_ALLOC 245 int device_links_read_lock_held(void) 246 { 247 return lockdep_is_held(&device_links_lock); 248 } 249 #endif 250 251 static inline void device_link_synchronize_removal(void) 252 { 253 } 254 255 static void device_link_remove_from_lists(struct device_link *link) 256 { 257 list_del(&link->s_node); 258 list_del(&link->c_node); 259 } 260 #endif /* !CONFIG_SRCU */ 261 262 static bool device_is_ancestor(struct device *dev, struct device *target) 263 { 264 while (target->parent) { 265 target = target->parent; 266 if (dev == target) 267 return true; 268 } 269 return false; 270 } 271 272 /** 273 * device_is_dependent - Check if one device depends on another one 274 * @dev: Device to check dependencies for. 275 * @target: Device to check against. 276 * 277 * Check if @target depends on @dev or any device dependent on it (its child or 278 * its consumer etc). Return 1 if that is the case or 0 otherwise. 279 */ 280 int device_is_dependent(struct device *dev, void *target) 281 { 282 struct device_link *link; 283 int ret; 284 285 /* 286 * The "ancestors" check is needed to catch the case when the target 287 * device has not been completely initialized yet and it is still 288 * missing from the list of children of its parent device. 289 */ 290 if (dev == target || device_is_ancestor(dev, target)) 291 return 1; 292 293 ret = device_for_each_child(dev, target, device_is_dependent); 294 if (ret) 295 return ret; 296 297 list_for_each_entry(link, &dev->links.consumers, s_node) { 298 if ((link->flags & ~DL_FLAG_INFERRED) == 299 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 300 continue; 301 302 if (link->consumer == target) 303 return 1; 304 305 ret = device_is_dependent(link->consumer, target); 306 if (ret) 307 break; 308 } 309 return ret; 310 } 311 312 static void device_link_init_status(struct device_link *link, 313 struct device *consumer, 314 struct device *supplier) 315 { 316 switch (supplier->links.status) { 317 case DL_DEV_PROBING: 318 switch (consumer->links.status) { 319 case DL_DEV_PROBING: 320 /* 321 * A consumer driver can create a link to a supplier 322 * that has not completed its probing yet as long as it 323 * knows that the supplier is already functional (for 324 * example, it has just acquired some resources from the 325 * supplier). 326 */ 327 link->status = DL_STATE_CONSUMER_PROBE; 328 break; 329 default: 330 link->status = DL_STATE_DORMANT; 331 break; 332 } 333 break; 334 case DL_DEV_DRIVER_BOUND: 335 switch (consumer->links.status) { 336 case DL_DEV_PROBING: 337 link->status = DL_STATE_CONSUMER_PROBE; 338 break; 339 case DL_DEV_DRIVER_BOUND: 340 link->status = DL_STATE_ACTIVE; 341 break; 342 default: 343 link->status = DL_STATE_AVAILABLE; 344 break; 345 } 346 break; 347 case DL_DEV_UNBINDING: 348 link->status = DL_STATE_SUPPLIER_UNBIND; 349 break; 350 default: 351 link->status = DL_STATE_DORMANT; 352 break; 353 } 354 } 355 356 static int device_reorder_to_tail(struct device *dev, void *not_used) 357 { 358 struct device_link *link; 359 360 /* 361 * Devices that have not been registered yet will be put to the ends 362 * of the lists during the registration, so skip them here. 363 */ 364 if (device_is_registered(dev)) 365 devices_kset_move_last(dev); 366 367 if (device_pm_initialized(dev)) 368 device_pm_move_last(dev); 369 370 device_for_each_child(dev, NULL, device_reorder_to_tail); 371 list_for_each_entry(link, &dev->links.consumers, s_node) { 372 if ((link->flags & ~DL_FLAG_INFERRED) == 373 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 374 continue; 375 device_reorder_to_tail(link->consumer, NULL); 376 } 377 378 return 0; 379 } 380 381 /** 382 * device_pm_move_to_tail - Move set of devices to the end of device lists 383 * @dev: Device to move 384 * 385 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 386 * 387 * It moves the @dev along with all of its children and all of its consumers 388 * to the ends of the device_kset and dpm_list, recursively. 389 */ 390 void device_pm_move_to_tail(struct device *dev) 391 { 392 int idx; 393 394 idx = device_links_read_lock(); 395 device_pm_lock(); 396 device_reorder_to_tail(dev, NULL); 397 device_pm_unlock(); 398 device_links_read_unlock(idx); 399 } 400 401 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 402 403 static ssize_t status_show(struct device *dev, 404 struct device_attribute *attr, char *buf) 405 { 406 const char *output; 407 408 switch (to_devlink(dev)->status) { 409 case DL_STATE_NONE: 410 output = "not tracked"; 411 break; 412 case DL_STATE_DORMANT: 413 output = "dormant"; 414 break; 415 case DL_STATE_AVAILABLE: 416 output = "available"; 417 break; 418 case DL_STATE_CONSUMER_PROBE: 419 output = "consumer probing"; 420 break; 421 case DL_STATE_ACTIVE: 422 output = "active"; 423 break; 424 case DL_STATE_SUPPLIER_UNBIND: 425 output = "supplier unbinding"; 426 break; 427 default: 428 output = "unknown"; 429 break; 430 } 431 432 return sysfs_emit(buf, "%s\n", output); 433 } 434 static DEVICE_ATTR_RO(status); 435 436 static ssize_t auto_remove_on_show(struct device *dev, 437 struct device_attribute *attr, char *buf) 438 { 439 struct device_link *link = to_devlink(dev); 440 const char *output; 441 442 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 443 output = "supplier unbind"; 444 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 445 output = "consumer unbind"; 446 else 447 output = "never"; 448 449 return sysfs_emit(buf, "%s\n", output); 450 } 451 static DEVICE_ATTR_RO(auto_remove_on); 452 453 static ssize_t runtime_pm_show(struct device *dev, 454 struct device_attribute *attr, char *buf) 455 { 456 struct device_link *link = to_devlink(dev); 457 458 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 459 } 460 static DEVICE_ATTR_RO(runtime_pm); 461 462 static ssize_t sync_state_only_show(struct device *dev, 463 struct device_attribute *attr, char *buf) 464 { 465 struct device_link *link = to_devlink(dev); 466 467 return sysfs_emit(buf, "%d\n", 468 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 469 } 470 static DEVICE_ATTR_RO(sync_state_only); 471 472 static struct attribute *devlink_attrs[] = { 473 &dev_attr_status.attr, 474 &dev_attr_auto_remove_on.attr, 475 &dev_attr_runtime_pm.attr, 476 &dev_attr_sync_state_only.attr, 477 NULL, 478 }; 479 ATTRIBUTE_GROUPS(devlink); 480 481 static void device_link_release_fn(struct work_struct *work) 482 { 483 struct device_link *link = container_of(work, struct device_link, rm_work); 484 485 /* Ensure that all references to the link object have been dropped. */ 486 device_link_synchronize_removal(); 487 488 while (refcount_dec_not_one(&link->rpm_active)) 489 pm_runtime_put(link->supplier); 490 491 put_device(link->consumer); 492 put_device(link->supplier); 493 kfree(link); 494 } 495 496 static void devlink_dev_release(struct device *dev) 497 { 498 struct device_link *link = to_devlink(dev); 499 500 INIT_WORK(&link->rm_work, device_link_release_fn); 501 /* 502 * It may take a while to complete this work because of the SRCU 503 * synchronization in device_link_release_fn() and if the consumer or 504 * supplier devices get deleted when it runs, so put it into the "long" 505 * workqueue. 506 */ 507 queue_work(system_long_wq, &link->rm_work); 508 } 509 510 static struct class devlink_class = { 511 .name = "devlink", 512 .owner = THIS_MODULE, 513 .dev_groups = devlink_groups, 514 .dev_release = devlink_dev_release, 515 }; 516 517 static int devlink_add_symlinks(struct device *dev, 518 struct class_interface *class_intf) 519 { 520 int ret; 521 size_t len; 522 struct device_link *link = to_devlink(dev); 523 struct device *sup = link->supplier; 524 struct device *con = link->consumer; 525 char *buf; 526 527 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 528 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 529 len += strlen(":"); 530 len += strlen("supplier:") + 1; 531 buf = kzalloc(len, GFP_KERNEL); 532 if (!buf) 533 return -ENOMEM; 534 535 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 536 if (ret) 537 goto out; 538 539 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 540 if (ret) 541 goto err_con; 542 543 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 544 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 545 if (ret) 546 goto err_con_dev; 547 548 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 549 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 550 if (ret) 551 goto err_sup_dev; 552 553 goto out; 554 555 err_sup_dev: 556 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 557 sysfs_remove_link(&sup->kobj, buf); 558 err_con_dev: 559 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 560 err_con: 561 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 562 out: 563 kfree(buf); 564 return ret; 565 } 566 567 static void devlink_remove_symlinks(struct device *dev, 568 struct class_interface *class_intf) 569 { 570 struct device_link *link = to_devlink(dev); 571 size_t len; 572 struct device *sup = link->supplier; 573 struct device *con = link->consumer; 574 char *buf; 575 576 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 577 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 578 579 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 580 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 581 len += strlen(":"); 582 len += strlen("supplier:") + 1; 583 buf = kzalloc(len, GFP_KERNEL); 584 if (!buf) { 585 WARN(1, "Unable to properly free device link symlinks!\n"); 586 return; 587 } 588 589 if (device_is_registered(con)) { 590 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 591 sysfs_remove_link(&con->kobj, buf); 592 } 593 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 594 sysfs_remove_link(&sup->kobj, buf); 595 kfree(buf); 596 } 597 598 static struct class_interface devlink_class_intf = { 599 .class = &devlink_class, 600 .add_dev = devlink_add_symlinks, 601 .remove_dev = devlink_remove_symlinks, 602 }; 603 604 static int __init devlink_class_init(void) 605 { 606 int ret; 607 608 ret = class_register(&devlink_class); 609 if (ret) 610 return ret; 611 612 ret = class_interface_register(&devlink_class_intf); 613 if (ret) 614 class_unregister(&devlink_class); 615 616 return ret; 617 } 618 postcore_initcall(devlink_class_init); 619 620 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 621 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 622 DL_FLAG_AUTOPROBE_CONSUMER | \ 623 DL_FLAG_SYNC_STATE_ONLY | \ 624 DL_FLAG_INFERRED) 625 626 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 627 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 628 629 /** 630 * device_link_add - Create a link between two devices. 631 * @consumer: Consumer end of the link. 632 * @supplier: Supplier end of the link. 633 * @flags: Link flags. 634 * 635 * The caller is responsible for the proper synchronization of the link creation 636 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 637 * runtime PM framework to take the link into account. Second, if the 638 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 639 * be forced into the active meta state and reference-counted upon the creation 640 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 641 * ignored. 642 * 643 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 644 * expected to release the link returned by it directly with the help of either 645 * device_link_del() or device_link_remove(). 646 * 647 * If that flag is not set, however, the caller of this function is handing the 648 * management of the link over to the driver core entirely and its return value 649 * can only be used to check whether or not the link is present. In that case, 650 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 651 * flags can be used to indicate to the driver core when the link can be safely 652 * deleted. Namely, setting one of them in @flags indicates to the driver core 653 * that the link is not going to be used (by the given caller of this function) 654 * after unbinding the consumer or supplier driver, respectively, from its 655 * device, so the link can be deleted at that point. If none of them is set, 656 * the link will be maintained until one of the devices pointed to by it (either 657 * the consumer or the supplier) is unregistered. 658 * 659 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 660 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 661 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 662 * be used to request the driver core to automatically probe for a consumer 663 * driver after successfully binding a driver to the supplier device. 664 * 665 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 666 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 667 * the same time is invalid and will cause NULL to be returned upfront. 668 * However, if a device link between the given @consumer and @supplier pair 669 * exists already when this function is called for them, the existing link will 670 * be returned regardless of its current type and status (the link's flags may 671 * be modified then). The caller of this function is then expected to treat 672 * the link as though it has just been created, so (in particular) if 673 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 674 * explicitly when not needed any more (as stated above). 675 * 676 * A side effect of the link creation is re-ordering of dpm_list and the 677 * devices_kset list by moving the consumer device and all devices depending 678 * on it to the ends of these lists (that does not happen to devices that have 679 * not been registered when this function is called). 680 * 681 * The supplier device is required to be registered when this function is called 682 * and NULL will be returned if that is not the case. The consumer device need 683 * not be registered, however. 684 */ 685 struct device_link *device_link_add(struct device *consumer, 686 struct device *supplier, u32 flags) 687 { 688 struct device_link *link; 689 690 if (!consumer || !supplier || consumer == supplier || 691 flags & ~DL_ADD_VALID_FLAGS || 692 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 693 (flags & DL_FLAG_SYNC_STATE_ONLY && 694 (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) || 695 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 696 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 697 DL_FLAG_AUTOREMOVE_SUPPLIER))) 698 return NULL; 699 700 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 701 if (pm_runtime_get_sync(supplier) < 0) { 702 pm_runtime_put_noidle(supplier); 703 return NULL; 704 } 705 } 706 707 if (!(flags & DL_FLAG_STATELESS)) 708 flags |= DL_FLAG_MANAGED; 709 710 device_links_write_lock(); 711 device_pm_lock(); 712 713 /* 714 * If the supplier has not been fully registered yet or there is a 715 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 716 * the supplier already in the graph, return NULL. If the link is a 717 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 718 * because it only affects sync_state() callbacks. 719 */ 720 if (!device_pm_initialized(supplier) 721 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 722 device_is_dependent(consumer, supplier))) { 723 link = NULL; 724 goto out; 725 } 726 727 /* 728 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 729 * So, only create it if the consumer hasn't probed yet. 730 */ 731 if (flags & DL_FLAG_SYNC_STATE_ONLY && 732 consumer->links.status != DL_DEV_NO_DRIVER && 733 consumer->links.status != DL_DEV_PROBING) { 734 link = NULL; 735 goto out; 736 } 737 738 /* 739 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 740 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 741 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 742 */ 743 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 744 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 745 746 list_for_each_entry(link, &supplier->links.consumers, s_node) { 747 if (link->consumer != consumer) 748 continue; 749 750 if (link->flags & DL_FLAG_INFERRED && 751 !(flags & DL_FLAG_INFERRED)) 752 link->flags &= ~DL_FLAG_INFERRED; 753 754 if (flags & DL_FLAG_PM_RUNTIME) { 755 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 756 pm_runtime_new_link(consumer); 757 link->flags |= DL_FLAG_PM_RUNTIME; 758 } 759 if (flags & DL_FLAG_RPM_ACTIVE) 760 refcount_inc(&link->rpm_active); 761 } 762 763 if (flags & DL_FLAG_STATELESS) { 764 kref_get(&link->kref); 765 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 766 !(link->flags & DL_FLAG_STATELESS)) { 767 link->flags |= DL_FLAG_STATELESS; 768 goto reorder; 769 } else { 770 link->flags |= DL_FLAG_STATELESS; 771 goto out; 772 } 773 } 774 775 /* 776 * If the life time of the link following from the new flags is 777 * longer than indicated by the flags of the existing link, 778 * update the existing link to stay around longer. 779 */ 780 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 781 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 782 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 783 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 784 } 785 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 786 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 787 DL_FLAG_AUTOREMOVE_SUPPLIER); 788 } 789 if (!(link->flags & DL_FLAG_MANAGED)) { 790 kref_get(&link->kref); 791 link->flags |= DL_FLAG_MANAGED; 792 device_link_init_status(link, consumer, supplier); 793 } 794 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 795 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 796 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 797 goto reorder; 798 } 799 800 goto out; 801 } 802 803 link = kzalloc(sizeof(*link), GFP_KERNEL); 804 if (!link) 805 goto out; 806 807 refcount_set(&link->rpm_active, 1); 808 809 get_device(supplier); 810 link->supplier = supplier; 811 INIT_LIST_HEAD(&link->s_node); 812 get_device(consumer); 813 link->consumer = consumer; 814 INIT_LIST_HEAD(&link->c_node); 815 link->flags = flags; 816 kref_init(&link->kref); 817 818 link->link_dev.class = &devlink_class; 819 device_set_pm_not_required(&link->link_dev); 820 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 821 dev_bus_name(supplier), dev_name(supplier), 822 dev_bus_name(consumer), dev_name(consumer)); 823 if (device_register(&link->link_dev)) { 824 put_device(consumer); 825 put_device(supplier); 826 kfree(link); 827 link = NULL; 828 goto out; 829 } 830 831 if (flags & DL_FLAG_PM_RUNTIME) { 832 if (flags & DL_FLAG_RPM_ACTIVE) 833 refcount_inc(&link->rpm_active); 834 835 pm_runtime_new_link(consumer); 836 } 837 838 /* Determine the initial link state. */ 839 if (flags & DL_FLAG_STATELESS) 840 link->status = DL_STATE_NONE; 841 else 842 device_link_init_status(link, consumer, supplier); 843 844 /* 845 * Some callers expect the link creation during consumer driver probe to 846 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 847 */ 848 if (link->status == DL_STATE_CONSUMER_PROBE && 849 flags & DL_FLAG_PM_RUNTIME) 850 pm_runtime_resume(supplier); 851 852 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 853 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 854 855 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 856 dev_dbg(consumer, 857 "Linked as a sync state only consumer to %s\n", 858 dev_name(supplier)); 859 goto out; 860 } 861 862 reorder: 863 /* 864 * Move the consumer and all of the devices depending on it to the end 865 * of dpm_list and the devices_kset list. 866 * 867 * It is necessary to hold dpm_list locked throughout all that or else 868 * we may end up suspending with a wrong ordering of it. 869 */ 870 device_reorder_to_tail(consumer, NULL); 871 872 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 873 874 out: 875 device_pm_unlock(); 876 device_links_write_unlock(); 877 878 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 879 pm_runtime_put(supplier); 880 881 return link; 882 } 883 EXPORT_SYMBOL_GPL(device_link_add); 884 885 static void __device_link_del(struct kref *kref) 886 { 887 struct device_link *link = container_of(kref, struct device_link, kref); 888 889 dev_dbg(link->consumer, "Dropping the link to %s\n", 890 dev_name(link->supplier)); 891 892 pm_runtime_drop_link(link); 893 894 device_link_remove_from_lists(link); 895 device_unregister(&link->link_dev); 896 } 897 898 static void device_link_put_kref(struct device_link *link) 899 { 900 if (link->flags & DL_FLAG_STATELESS) 901 kref_put(&link->kref, __device_link_del); 902 else if (!device_is_registered(link->consumer)) 903 __device_link_del(&link->kref); 904 else 905 WARN(1, "Unable to drop a managed device link reference\n"); 906 } 907 908 /** 909 * device_link_del - Delete a stateless link between two devices. 910 * @link: Device link to delete. 911 * 912 * The caller must ensure proper synchronization of this function with runtime 913 * PM. If the link was added multiple times, it needs to be deleted as often. 914 * Care is required for hotplugged devices: Their links are purged on removal 915 * and calling device_link_del() is then no longer allowed. 916 */ 917 void device_link_del(struct device_link *link) 918 { 919 device_links_write_lock(); 920 device_link_put_kref(link); 921 device_links_write_unlock(); 922 } 923 EXPORT_SYMBOL_GPL(device_link_del); 924 925 /** 926 * device_link_remove - Delete a stateless link between two devices. 927 * @consumer: Consumer end of the link. 928 * @supplier: Supplier end of the link. 929 * 930 * The caller must ensure proper synchronization of this function with runtime 931 * PM. 932 */ 933 void device_link_remove(void *consumer, struct device *supplier) 934 { 935 struct device_link *link; 936 937 if (WARN_ON(consumer == supplier)) 938 return; 939 940 device_links_write_lock(); 941 942 list_for_each_entry(link, &supplier->links.consumers, s_node) { 943 if (link->consumer == consumer) { 944 device_link_put_kref(link); 945 break; 946 } 947 } 948 949 device_links_write_unlock(); 950 } 951 EXPORT_SYMBOL_GPL(device_link_remove); 952 953 static void device_links_missing_supplier(struct device *dev) 954 { 955 struct device_link *link; 956 957 list_for_each_entry(link, &dev->links.suppliers, c_node) { 958 if (link->status != DL_STATE_CONSUMER_PROBE) 959 continue; 960 961 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 962 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 963 } else { 964 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 965 WRITE_ONCE(link->status, DL_STATE_DORMANT); 966 } 967 } 968 } 969 970 /** 971 * device_links_check_suppliers - Check presence of supplier drivers. 972 * @dev: Consumer device. 973 * 974 * Check links from this device to any suppliers. Walk the list of the device's 975 * links to suppliers and see if all of them are available. If not, simply 976 * return -EPROBE_DEFER. 977 * 978 * We need to guarantee that the supplier will not go away after the check has 979 * been positive here. It only can go away in __device_release_driver() and 980 * that function checks the device's links to consumers. This means we need to 981 * mark the link as "consumer probe in progress" to make the supplier removal 982 * wait for us to complete (or bad things may happen). 983 * 984 * Links without the DL_FLAG_MANAGED flag set are ignored. 985 */ 986 int device_links_check_suppliers(struct device *dev) 987 { 988 struct device_link *link; 989 int ret = 0; 990 struct fwnode_handle *sup_fw; 991 992 /* 993 * Device waiting for supplier to become available is not allowed to 994 * probe. 995 */ 996 mutex_lock(&fwnode_link_lock); 997 if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) && 998 !fw_devlink_is_permissive()) { 999 sup_fw = list_first_entry(&dev->fwnode->suppliers, 1000 struct fwnode_link, 1001 c_hook)->supplier; 1002 dev_err_probe(dev, -EPROBE_DEFER, "wait for supplier %pfwP\n", 1003 sup_fw); 1004 mutex_unlock(&fwnode_link_lock); 1005 return -EPROBE_DEFER; 1006 } 1007 mutex_unlock(&fwnode_link_lock); 1008 1009 device_links_write_lock(); 1010 1011 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1012 if (!(link->flags & DL_FLAG_MANAGED)) 1013 continue; 1014 1015 if (link->status != DL_STATE_AVAILABLE && 1016 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1017 device_links_missing_supplier(dev); 1018 dev_err_probe(dev, -EPROBE_DEFER, 1019 "supplier %s not ready\n", 1020 dev_name(link->supplier)); 1021 ret = -EPROBE_DEFER; 1022 break; 1023 } 1024 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1025 } 1026 dev->links.status = DL_DEV_PROBING; 1027 1028 device_links_write_unlock(); 1029 return ret; 1030 } 1031 1032 /** 1033 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1034 * @dev: Device to call sync_state() on 1035 * @list: List head to queue the @dev on 1036 * 1037 * Queues a device for a sync_state() callback when the device links write lock 1038 * isn't held. This allows the sync_state() execution flow to use device links 1039 * APIs. The caller must ensure this function is called with 1040 * device_links_write_lock() held. 1041 * 1042 * This function does a get_device() to make sure the device is not freed while 1043 * on this list. 1044 * 1045 * So the caller must also ensure that device_links_flush_sync_list() is called 1046 * as soon as the caller releases device_links_write_lock(). This is necessary 1047 * to make sure the sync_state() is called in a timely fashion and the 1048 * put_device() is called on this device. 1049 */ 1050 static void __device_links_queue_sync_state(struct device *dev, 1051 struct list_head *list) 1052 { 1053 struct device_link *link; 1054 1055 if (!dev_has_sync_state(dev)) 1056 return; 1057 if (dev->state_synced) 1058 return; 1059 1060 list_for_each_entry(link, &dev->links.consumers, s_node) { 1061 if (!(link->flags & DL_FLAG_MANAGED)) 1062 continue; 1063 if (link->status != DL_STATE_ACTIVE) 1064 return; 1065 } 1066 1067 /* 1068 * Set the flag here to avoid adding the same device to a list more 1069 * than once. This can happen if new consumers get added to the device 1070 * and probed before the list is flushed. 1071 */ 1072 dev->state_synced = true; 1073 1074 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1075 return; 1076 1077 get_device(dev); 1078 list_add_tail(&dev->links.defer_sync, list); 1079 } 1080 1081 /** 1082 * device_links_flush_sync_list - Call sync_state() on a list of devices 1083 * @list: List of devices to call sync_state() on 1084 * @dont_lock_dev: Device for which lock is already held by the caller 1085 * 1086 * Calls sync_state() on all the devices that have been queued for it. This 1087 * function is used in conjunction with __device_links_queue_sync_state(). The 1088 * @dont_lock_dev parameter is useful when this function is called from a 1089 * context where a device lock is already held. 1090 */ 1091 static void device_links_flush_sync_list(struct list_head *list, 1092 struct device *dont_lock_dev) 1093 { 1094 struct device *dev, *tmp; 1095 1096 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1097 list_del_init(&dev->links.defer_sync); 1098 1099 if (dev != dont_lock_dev) 1100 device_lock(dev); 1101 1102 if (dev->bus->sync_state) 1103 dev->bus->sync_state(dev); 1104 else if (dev->driver && dev->driver->sync_state) 1105 dev->driver->sync_state(dev); 1106 1107 if (dev != dont_lock_dev) 1108 device_unlock(dev); 1109 1110 put_device(dev); 1111 } 1112 } 1113 1114 void device_links_supplier_sync_state_pause(void) 1115 { 1116 device_links_write_lock(); 1117 defer_sync_state_count++; 1118 device_links_write_unlock(); 1119 } 1120 1121 void device_links_supplier_sync_state_resume(void) 1122 { 1123 struct device *dev, *tmp; 1124 LIST_HEAD(sync_list); 1125 1126 device_links_write_lock(); 1127 if (!defer_sync_state_count) { 1128 WARN(true, "Unmatched sync_state pause/resume!"); 1129 goto out; 1130 } 1131 defer_sync_state_count--; 1132 if (defer_sync_state_count) 1133 goto out; 1134 1135 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1136 /* 1137 * Delete from deferred_sync list before queuing it to 1138 * sync_list because defer_sync is used for both lists. 1139 */ 1140 list_del_init(&dev->links.defer_sync); 1141 __device_links_queue_sync_state(dev, &sync_list); 1142 } 1143 out: 1144 device_links_write_unlock(); 1145 1146 device_links_flush_sync_list(&sync_list, NULL); 1147 } 1148 1149 static int sync_state_resume_initcall(void) 1150 { 1151 device_links_supplier_sync_state_resume(); 1152 return 0; 1153 } 1154 late_initcall(sync_state_resume_initcall); 1155 1156 static void __device_links_supplier_defer_sync(struct device *sup) 1157 { 1158 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1159 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1160 } 1161 1162 static void device_link_drop_managed(struct device_link *link) 1163 { 1164 link->flags &= ~DL_FLAG_MANAGED; 1165 WRITE_ONCE(link->status, DL_STATE_NONE); 1166 kref_put(&link->kref, __device_link_del); 1167 } 1168 1169 static ssize_t waiting_for_supplier_show(struct device *dev, 1170 struct device_attribute *attr, 1171 char *buf) 1172 { 1173 bool val; 1174 1175 device_lock(dev); 1176 val = !list_empty(&dev->fwnode->suppliers); 1177 device_unlock(dev); 1178 return sysfs_emit(buf, "%u\n", val); 1179 } 1180 static DEVICE_ATTR_RO(waiting_for_supplier); 1181 1182 /** 1183 * device_links_force_bind - Prepares device to be force bound 1184 * @dev: Consumer device. 1185 * 1186 * device_bind_driver() force binds a device to a driver without calling any 1187 * driver probe functions. So the consumer really isn't going to wait for any 1188 * supplier before it's bound to the driver. We still want the device link 1189 * states to be sensible when this happens. 1190 * 1191 * In preparation for device_bind_driver(), this function goes through each 1192 * supplier device links and checks if the supplier is bound. If it is, then 1193 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1194 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1195 */ 1196 void device_links_force_bind(struct device *dev) 1197 { 1198 struct device_link *link, *ln; 1199 1200 device_links_write_lock(); 1201 1202 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1203 if (!(link->flags & DL_FLAG_MANAGED)) 1204 continue; 1205 1206 if (link->status != DL_STATE_AVAILABLE) { 1207 device_link_drop_managed(link); 1208 continue; 1209 } 1210 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1211 } 1212 dev->links.status = DL_DEV_PROBING; 1213 1214 device_links_write_unlock(); 1215 } 1216 1217 /** 1218 * device_links_driver_bound - Update device links after probing its driver. 1219 * @dev: Device to update the links for. 1220 * 1221 * The probe has been successful, so update links from this device to any 1222 * consumers by changing their status to "available". 1223 * 1224 * Also change the status of @dev's links to suppliers to "active". 1225 * 1226 * Links without the DL_FLAG_MANAGED flag set are ignored. 1227 */ 1228 void device_links_driver_bound(struct device *dev) 1229 { 1230 struct device_link *link, *ln; 1231 LIST_HEAD(sync_list); 1232 1233 /* 1234 * If a device binds successfully, it's expected to have created all 1235 * the device links it needs to or make new device links as it needs 1236 * them. So, fw_devlink no longer needs to create device links to any 1237 * of the device's suppliers. 1238 * 1239 * Also, if a child firmware node of this bound device is not added as 1240 * a device by now, assume it is never going to be added and make sure 1241 * other devices don't defer probe indefinitely by waiting for such a 1242 * child device. 1243 */ 1244 if (dev->fwnode && dev->fwnode->dev == dev) { 1245 struct fwnode_handle *child; 1246 fwnode_links_purge_suppliers(dev->fwnode); 1247 fwnode_for_each_available_child_node(dev->fwnode, child) 1248 fw_devlink_purge_absent_suppliers(child); 1249 } 1250 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1251 1252 device_links_write_lock(); 1253 1254 list_for_each_entry(link, &dev->links.consumers, s_node) { 1255 if (!(link->flags & DL_FLAG_MANAGED)) 1256 continue; 1257 1258 /* 1259 * Links created during consumer probe may be in the "consumer 1260 * probe" state to start with if the supplier is still probing 1261 * when they are created and they may become "active" if the 1262 * consumer probe returns first. Skip them here. 1263 */ 1264 if (link->status == DL_STATE_CONSUMER_PROBE || 1265 link->status == DL_STATE_ACTIVE) 1266 continue; 1267 1268 WARN_ON(link->status != DL_STATE_DORMANT); 1269 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1270 1271 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1272 driver_deferred_probe_add(link->consumer); 1273 } 1274 1275 if (defer_sync_state_count) 1276 __device_links_supplier_defer_sync(dev); 1277 else 1278 __device_links_queue_sync_state(dev, &sync_list); 1279 1280 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1281 struct device *supplier; 1282 1283 if (!(link->flags & DL_FLAG_MANAGED)) 1284 continue; 1285 1286 supplier = link->supplier; 1287 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1288 /* 1289 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1290 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1291 * save to drop the managed link completely. 1292 */ 1293 device_link_drop_managed(link); 1294 } else { 1295 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1296 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1297 } 1298 1299 /* 1300 * This needs to be done even for the deleted 1301 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1302 * device link that was preventing the supplier from getting a 1303 * sync_state() call. 1304 */ 1305 if (defer_sync_state_count) 1306 __device_links_supplier_defer_sync(supplier); 1307 else 1308 __device_links_queue_sync_state(supplier, &sync_list); 1309 } 1310 1311 dev->links.status = DL_DEV_DRIVER_BOUND; 1312 1313 device_links_write_unlock(); 1314 1315 device_links_flush_sync_list(&sync_list, dev); 1316 } 1317 1318 /** 1319 * __device_links_no_driver - Update links of a device without a driver. 1320 * @dev: Device without a drvier. 1321 * 1322 * Delete all non-persistent links from this device to any suppliers. 1323 * 1324 * Persistent links stay around, but their status is changed to "available", 1325 * unless they already are in the "supplier unbind in progress" state in which 1326 * case they need not be updated. 1327 * 1328 * Links without the DL_FLAG_MANAGED flag set are ignored. 1329 */ 1330 static void __device_links_no_driver(struct device *dev) 1331 { 1332 struct device_link *link, *ln; 1333 1334 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1335 if (!(link->flags & DL_FLAG_MANAGED)) 1336 continue; 1337 1338 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1339 device_link_drop_managed(link); 1340 continue; 1341 } 1342 1343 if (link->status != DL_STATE_CONSUMER_PROBE && 1344 link->status != DL_STATE_ACTIVE) 1345 continue; 1346 1347 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1348 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1349 } else { 1350 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1351 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1352 } 1353 } 1354 1355 dev->links.status = DL_DEV_NO_DRIVER; 1356 } 1357 1358 /** 1359 * device_links_no_driver - Update links after failing driver probe. 1360 * @dev: Device whose driver has just failed to probe. 1361 * 1362 * Clean up leftover links to consumers for @dev and invoke 1363 * %__device_links_no_driver() to update links to suppliers for it as 1364 * appropriate. 1365 * 1366 * Links without the DL_FLAG_MANAGED flag set are ignored. 1367 */ 1368 void device_links_no_driver(struct device *dev) 1369 { 1370 struct device_link *link; 1371 1372 device_links_write_lock(); 1373 1374 list_for_each_entry(link, &dev->links.consumers, s_node) { 1375 if (!(link->flags & DL_FLAG_MANAGED)) 1376 continue; 1377 1378 /* 1379 * The probe has failed, so if the status of the link is 1380 * "consumer probe" or "active", it must have been added by 1381 * a probing consumer while this device was still probing. 1382 * Change its state to "dormant", as it represents a valid 1383 * relationship, but it is not functionally meaningful. 1384 */ 1385 if (link->status == DL_STATE_CONSUMER_PROBE || 1386 link->status == DL_STATE_ACTIVE) 1387 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1388 } 1389 1390 __device_links_no_driver(dev); 1391 1392 device_links_write_unlock(); 1393 } 1394 1395 /** 1396 * device_links_driver_cleanup - Update links after driver removal. 1397 * @dev: Device whose driver has just gone away. 1398 * 1399 * Update links to consumers for @dev by changing their status to "dormant" and 1400 * invoke %__device_links_no_driver() to update links to suppliers for it as 1401 * appropriate. 1402 * 1403 * Links without the DL_FLAG_MANAGED flag set are ignored. 1404 */ 1405 void device_links_driver_cleanup(struct device *dev) 1406 { 1407 struct device_link *link, *ln; 1408 1409 device_links_write_lock(); 1410 1411 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1412 if (!(link->flags & DL_FLAG_MANAGED)) 1413 continue; 1414 1415 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1416 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1417 1418 /* 1419 * autoremove the links between this @dev and its consumer 1420 * devices that are not active, i.e. where the link state 1421 * has moved to DL_STATE_SUPPLIER_UNBIND. 1422 */ 1423 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1424 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1425 device_link_drop_managed(link); 1426 1427 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1428 } 1429 1430 list_del_init(&dev->links.defer_sync); 1431 __device_links_no_driver(dev); 1432 1433 device_links_write_unlock(); 1434 } 1435 1436 /** 1437 * device_links_busy - Check if there are any busy links to consumers. 1438 * @dev: Device to check. 1439 * 1440 * Check each consumer of the device and return 'true' if its link's status 1441 * is one of "consumer probe" or "active" (meaning that the given consumer is 1442 * probing right now or its driver is present). Otherwise, change the link 1443 * state to "supplier unbind" to prevent the consumer from being probed 1444 * successfully going forward. 1445 * 1446 * Return 'false' if there are no probing or active consumers. 1447 * 1448 * Links without the DL_FLAG_MANAGED flag set are ignored. 1449 */ 1450 bool device_links_busy(struct device *dev) 1451 { 1452 struct device_link *link; 1453 bool ret = false; 1454 1455 device_links_write_lock(); 1456 1457 list_for_each_entry(link, &dev->links.consumers, s_node) { 1458 if (!(link->flags & DL_FLAG_MANAGED)) 1459 continue; 1460 1461 if (link->status == DL_STATE_CONSUMER_PROBE 1462 || link->status == DL_STATE_ACTIVE) { 1463 ret = true; 1464 break; 1465 } 1466 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1467 } 1468 1469 dev->links.status = DL_DEV_UNBINDING; 1470 1471 device_links_write_unlock(); 1472 return ret; 1473 } 1474 1475 /** 1476 * device_links_unbind_consumers - Force unbind consumers of the given device. 1477 * @dev: Device to unbind the consumers of. 1478 * 1479 * Walk the list of links to consumers for @dev and if any of them is in the 1480 * "consumer probe" state, wait for all device probes in progress to complete 1481 * and start over. 1482 * 1483 * If that's not the case, change the status of the link to "supplier unbind" 1484 * and check if the link was in the "active" state. If so, force the consumer 1485 * driver to unbind and start over (the consumer will not re-probe as we have 1486 * changed the state of the link already). 1487 * 1488 * Links without the DL_FLAG_MANAGED flag set are ignored. 1489 */ 1490 void device_links_unbind_consumers(struct device *dev) 1491 { 1492 struct device_link *link; 1493 1494 start: 1495 device_links_write_lock(); 1496 1497 list_for_each_entry(link, &dev->links.consumers, s_node) { 1498 enum device_link_state status; 1499 1500 if (!(link->flags & DL_FLAG_MANAGED) || 1501 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1502 continue; 1503 1504 status = link->status; 1505 if (status == DL_STATE_CONSUMER_PROBE) { 1506 device_links_write_unlock(); 1507 1508 wait_for_device_probe(); 1509 goto start; 1510 } 1511 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1512 if (status == DL_STATE_ACTIVE) { 1513 struct device *consumer = link->consumer; 1514 1515 get_device(consumer); 1516 1517 device_links_write_unlock(); 1518 1519 device_release_driver_internal(consumer, NULL, 1520 consumer->parent); 1521 put_device(consumer); 1522 goto start; 1523 } 1524 } 1525 1526 device_links_write_unlock(); 1527 } 1528 1529 /** 1530 * device_links_purge - Delete existing links to other devices. 1531 * @dev: Target device. 1532 */ 1533 static void device_links_purge(struct device *dev) 1534 { 1535 struct device_link *link, *ln; 1536 1537 if (dev->class == &devlink_class) 1538 return; 1539 1540 /* 1541 * Delete all of the remaining links from this device to any other 1542 * devices (either consumers or suppliers). 1543 */ 1544 device_links_write_lock(); 1545 1546 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1547 WARN_ON(link->status == DL_STATE_ACTIVE); 1548 __device_link_del(&link->kref); 1549 } 1550 1551 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1552 WARN_ON(link->status != DL_STATE_DORMANT && 1553 link->status != DL_STATE_NONE); 1554 __device_link_del(&link->kref); 1555 } 1556 1557 device_links_write_unlock(); 1558 } 1559 1560 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1561 DL_FLAG_SYNC_STATE_ONLY) 1562 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1563 DL_FLAG_AUTOPROBE_CONSUMER) 1564 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1565 DL_FLAG_PM_RUNTIME) 1566 1567 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1568 static int __init fw_devlink_setup(char *arg) 1569 { 1570 if (!arg) 1571 return -EINVAL; 1572 1573 if (strcmp(arg, "off") == 0) { 1574 fw_devlink_flags = 0; 1575 } else if (strcmp(arg, "permissive") == 0) { 1576 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1577 } else if (strcmp(arg, "on") == 0) { 1578 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1579 } else if (strcmp(arg, "rpm") == 0) { 1580 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1581 } 1582 return 0; 1583 } 1584 early_param("fw_devlink", fw_devlink_setup); 1585 1586 static bool fw_devlink_strict; 1587 static int __init fw_devlink_strict_setup(char *arg) 1588 { 1589 return strtobool(arg, &fw_devlink_strict); 1590 } 1591 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1592 1593 u32 fw_devlink_get_flags(void) 1594 { 1595 return fw_devlink_flags; 1596 } 1597 1598 static bool fw_devlink_is_permissive(void) 1599 { 1600 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1601 } 1602 1603 bool fw_devlink_is_strict(void) 1604 { 1605 return fw_devlink_strict && !fw_devlink_is_permissive(); 1606 } 1607 1608 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1609 { 1610 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1611 return; 1612 1613 fwnode_call_int_op(fwnode, add_links); 1614 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1615 } 1616 1617 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1618 { 1619 struct fwnode_handle *child = NULL; 1620 1621 fw_devlink_parse_fwnode(fwnode); 1622 1623 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1624 fw_devlink_parse_fwtree(child); 1625 } 1626 1627 static void fw_devlink_relax_link(struct device_link *link) 1628 { 1629 if (!(link->flags & DL_FLAG_INFERRED)) 1630 return; 1631 1632 if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE)) 1633 return; 1634 1635 pm_runtime_drop_link(link); 1636 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1637 dev_dbg(link->consumer, "Relaxing link with %s\n", 1638 dev_name(link->supplier)); 1639 } 1640 1641 static int fw_devlink_no_driver(struct device *dev, void *data) 1642 { 1643 struct device_link *link = to_devlink(dev); 1644 1645 if (!link->supplier->can_match) 1646 fw_devlink_relax_link(link); 1647 1648 return 0; 1649 } 1650 1651 void fw_devlink_drivers_done(void) 1652 { 1653 fw_devlink_drv_reg_done = true; 1654 device_links_write_lock(); 1655 class_for_each_device(&devlink_class, NULL, NULL, 1656 fw_devlink_no_driver); 1657 device_links_write_unlock(); 1658 } 1659 1660 static void fw_devlink_unblock_consumers(struct device *dev) 1661 { 1662 struct device_link *link; 1663 1664 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1665 return; 1666 1667 device_links_write_lock(); 1668 list_for_each_entry(link, &dev->links.consumers, s_node) 1669 fw_devlink_relax_link(link); 1670 device_links_write_unlock(); 1671 } 1672 1673 /** 1674 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links 1675 * @con: Device to check dependencies for. 1676 * @sup: Device to check against. 1677 * 1678 * Check if @sup depends on @con or any device dependent on it (its child or 1679 * its consumer etc). When such a cyclic dependency is found, convert all 1680 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links. 1681 * This is the equivalent of doing fw_devlink=permissive just between the 1682 * devices in the cycle. We need to do this because, at this point, fw_devlink 1683 * can't tell which of these dependencies is not a real dependency. 1684 * 1685 * Return 1 if a cycle is found. Otherwise, return 0. 1686 */ 1687 static int fw_devlink_relax_cycle(struct device *con, void *sup) 1688 { 1689 struct device_link *link; 1690 int ret; 1691 1692 if (con == sup) 1693 return 1; 1694 1695 ret = device_for_each_child(con, sup, fw_devlink_relax_cycle); 1696 if (ret) 1697 return ret; 1698 1699 list_for_each_entry(link, &con->links.consumers, s_node) { 1700 if ((link->flags & ~DL_FLAG_INFERRED) == 1701 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 1702 continue; 1703 1704 if (!fw_devlink_relax_cycle(link->consumer, sup)) 1705 continue; 1706 1707 ret = 1; 1708 1709 fw_devlink_relax_link(link); 1710 } 1711 return ret; 1712 } 1713 1714 /** 1715 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 1716 * @con: consumer device for the device link 1717 * @sup_handle: fwnode handle of supplier 1718 * @flags: devlink flags 1719 * 1720 * This function will try to create a device link between the consumer device 1721 * @con and the supplier device represented by @sup_handle. 1722 * 1723 * The supplier has to be provided as a fwnode because incorrect cycles in 1724 * fwnode links can sometimes cause the supplier device to never be created. 1725 * This function detects such cases and returns an error if it cannot create a 1726 * device link from the consumer to a missing supplier. 1727 * 1728 * Returns, 1729 * 0 on successfully creating a device link 1730 * -EINVAL if the device link cannot be created as expected 1731 * -EAGAIN if the device link cannot be created right now, but it may be 1732 * possible to do that in the future 1733 */ 1734 static int fw_devlink_create_devlink(struct device *con, 1735 struct fwnode_handle *sup_handle, u32 flags) 1736 { 1737 struct device *sup_dev; 1738 int ret = 0; 1739 1740 /* 1741 * In some cases, a device P might also be a supplier to its child node 1742 * C. However, this would defer the probe of C until the probe of P 1743 * completes successfully. This is perfectly fine in the device driver 1744 * model. device_add() doesn't guarantee probe completion of the device 1745 * by the time it returns. 1746 * 1747 * However, there are a few drivers that assume C will finish probing 1748 * as soon as it's added and before P finishes probing. So, we provide 1749 * a flag to let fw_devlink know not to delay the probe of C until the 1750 * probe of P completes successfully. 1751 * 1752 * When such a flag is set, we can't create device links where P is the 1753 * supplier of C as that would delay the probe of C. 1754 */ 1755 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 1756 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 1757 return -EINVAL; 1758 1759 sup_dev = get_dev_from_fwnode(sup_handle); 1760 if (sup_dev) { 1761 /* 1762 * If it's one of those drivers that don't actually bind to 1763 * their device using driver core, then don't wait on this 1764 * supplier device indefinitely. 1765 */ 1766 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 1767 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 1768 ret = -EINVAL; 1769 goto out; 1770 } 1771 1772 /* 1773 * If this fails, it is due to cycles in device links. Just 1774 * give up on this link and treat it as invalid. 1775 */ 1776 if (!device_link_add(con, sup_dev, flags) && 1777 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 1778 dev_info(con, "Fixing up cyclic dependency with %s\n", 1779 dev_name(sup_dev)); 1780 device_links_write_lock(); 1781 fw_devlink_relax_cycle(con, sup_dev); 1782 device_links_write_unlock(); 1783 device_link_add(con, sup_dev, 1784 FW_DEVLINK_FLAGS_PERMISSIVE); 1785 ret = -EINVAL; 1786 } 1787 1788 goto out; 1789 } 1790 1791 /* Supplier that's already initialized without a struct device. */ 1792 if (sup_handle->flags & FWNODE_FLAG_INITIALIZED) 1793 return -EINVAL; 1794 1795 /* 1796 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports 1797 * cycles. So cycle detection isn't necessary and shouldn't be 1798 * done. 1799 */ 1800 if (flags & DL_FLAG_SYNC_STATE_ONLY) 1801 return -EAGAIN; 1802 1803 /* 1804 * If we can't find the supplier device from its fwnode, it might be 1805 * due to a cyclic dependency between fwnodes. Some of these cycles can 1806 * be broken by applying logic. Check for these types of cycles and 1807 * break them so that devices in the cycle probe properly. 1808 * 1809 * If the supplier's parent is dependent on the consumer, then the 1810 * consumer and supplier have a cyclic dependency. Since fw_devlink 1811 * can't tell which of the inferred dependencies are incorrect, don't 1812 * enforce probe ordering between any of the devices in this cyclic 1813 * dependency. Do this by relaxing all the fw_devlink device links in 1814 * this cycle and by treating the fwnode link between the consumer and 1815 * the supplier as an invalid dependency. 1816 */ 1817 sup_dev = fwnode_get_next_parent_dev(sup_handle); 1818 if (sup_dev && device_is_dependent(con, sup_dev)) { 1819 dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n", 1820 sup_handle, dev_name(sup_dev)); 1821 device_links_write_lock(); 1822 fw_devlink_relax_cycle(con, sup_dev); 1823 device_links_write_unlock(); 1824 ret = -EINVAL; 1825 } else { 1826 /* 1827 * Can't check for cycles or no cycles. So let's try 1828 * again later. 1829 */ 1830 ret = -EAGAIN; 1831 } 1832 1833 out: 1834 put_device(sup_dev); 1835 return ret; 1836 } 1837 1838 /** 1839 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 1840 * @dev: Device that needs to be linked to its consumers 1841 * 1842 * This function looks at all the consumer fwnodes of @dev and creates device 1843 * links between the consumer device and @dev (supplier). 1844 * 1845 * If the consumer device has not been added yet, then this function creates a 1846 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 1847 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 1848 * sync_state() callback before the real consumer device gets to be added and 1849 * then probed. 1850 * 1851 * Once device links are created from the real consumer to @dev (supplier), the 1852 * fwnode links are deleted. 1853 */ 1854 static void __fw_devlink_link_to_consumers(struct device *dev) 1855 { 1856 struct fwnode_handle *fwnode = dev->fwnode; 1857 struct fwnode_link *link, *tmp; 1858 1859 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 1860 u32 dl_flags = fw_devlink_get_flags(); 1861 struct device *con_dev; 1862 bool own_link = true; 1863 int ret; 1864 1865 con_dev = get_dev_from_fwnode(link->consumer); 1866 /* 1867 * If consumer device is not available yet, make a "proxy" 1868 * SYNC_STATE_ONLY link from the consumer's parent device to 1869 * the supplier device. This is necessary to make sure the 1870 * supplier doesn't get a sync_state() callback before the real 1871 * consumer can create a device link to the supplier. 1872 * 1873 * This proxy link step is needed to handle the case where the 1874 * consumer's parent device is added before the supplier. 1875 */ 1876 if (!con_dev) { 1877 con_dev = fwnode_get_next_parent_dev(link->consumer); 1878 /* 1879 * However, if the consumer's parent device is also the 1880 * parent of the supplier, don't create a 1881 * consumer-supplier link from the parent to its child 1882 * device. Such a dependency is impossible. 1883 */ 1884 if (con_dev && 1885 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 1886 put_device(con_dev); 1887 con_dev = NULL; 1888 } else { 1889 own_link = false; 1890 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1891 } 1892 } 1893 1894 if (!con_dev) 1895 continue; 1896 1897 ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags); 1898 put_device(con_dev); 1899 if (!own_link || ret == -EAGAIN) 1900 continue; 1901 1902 __fwnode_link_del(link); 1903 } 1904 } 1905 1906 /** 1907 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 1908 * @dev: The consumer device that needs to be linked to its suppliers 1909 * @fwnode: Root of the fwnode tree that is used to create device links 1910 * 1911 * This function looks at all the supplier fwnodes of fwnode tree rooted at 1912 * @fwnode and creates device links between @dev (consumer) and all the 1913 * supplier devices of the entire fwnode tree at @fwnode. 1914 * 1915 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 1916 * and the real suppliers of @dev. Once these device links are created, the 1917 * fwnode links are deleted. When such device links are successfully created, 1918 * this function is called recursively on those supplier devices. This is 1919 * needed to detect and break some invalid cycles in fwnode links. See 1920 * fw_devlink_create_devlink() for more details. 1921 * 1922 * In addition, it also looks at all the suppliers of the entire fwnode tree 1923 * because some of the child devices of @dev that have not been added yet 1924 * (because @dev hasn't probed) might already have their suppliers added to 1925 * driver core. So, this function creates SYNC_STATE_ONLY device links between 1926 * @dev (consumer) and these suppliers to make sure they don't execute their 1927 * sync_state() callbacks before these child devices have a chance to create 1928 * their device links. The fwnode links that correspond to the child devices 1929 * aren't delete because they are needed later to create the device links 1930 * between the real consumer and supplier devices. 1931 */ 1932 static void __fw_devlink_link_to_suppliers(struct device *dev, 1933 struct fwnode_handle *fwnode) 1934 { 1935 bool own_link = (dev->fwnode == fwnode); 1936 struct fwnode_link *link, *tmp; 1937 struct fwnode_handle *child = NULL; 1938 u32 dl_flags; 1939 1940 if (own_link) 1941 dl_flags = fw_devlink_get_flags(); 1942 else 1943 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1944 1945 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 1946 int ret; 1947 struct device *sup_dev; 1948 struct fwnode_handle *sup = link->supplier; 1949 1950 ret = fw_devlink_create_devlink(dev, sup, dl_flags); 1951 if (!own_link || ret == -EAGAIN) 1952 continue; 1953 1954 __fwnode_link_del(link); 1955 1956 /* If no device link was created, nothing more to do. */ 1957 if (ret) 1958 continue; 1959 1960 /* 1961 * If a device link was successfully created to a supplier, we 1962 * now need to try and link the supplier to all its suppliers. 1963 * 1964 * This is needed to detect and delete false dependencies in 1965 * fwnode links that haven't been converted to a device link 1966 * yet. See comments in fw_devlink_create_devlink() for more 1967 * details on the false dependency. 1968 * 1969 * Without deleting these false dependencies, some devices will 1970 * never probe because they'll keep waiting for their false 1971 * dependency fwnode links to be converted to device links. 1972 */ 1973 sup_dev = get_dev_from_fwnode(sup); 1974 __fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode); 1975 put_device(sup_dev); 1976 } 1977 1978 /* 1979 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 1980 * all the descendants. This proxy link step is needed to handle the 1981 * case where the supplier is added before the consumer's parent device 1982 * (@dev). 1983 */ 1984 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1985 __fw_devlink_link_to_suppliers(dev, child); 1986 } 1987 1988 static void fw_devlink_link_device(struct device *dev) 1989 { 1990 struct fwnode_handle *fwnode = dev->fwnode; 1991 1992 if (!fw_devlink_flags) 1993 return; 1994 1995 fw_devlink_parse_fwtree(fwnode); 1996 1997 mutex_lock(&fwnode_link_lock); 1998 __fw_devlink_link_to_consumers(dev); 1999 __fw_devlink_link_to_suppliers(dev, fwnode); 2000 mutex_unlock(&fwnode_link_lock); 2001 } 2002 2003 /* Device links support end. */ 2004 2005 int (*platform_notify)(struct device *dev) = NULL; 2006 int (*platform_notify_remove)(struct device *dev) = NULL; 2007 static struct kobject *dev_kobj; 2008 struct kobject *sysfs_dev_char_kobj; 2009 struct kobject *sysfs_dev_block_kobj; 2010 2011 static DEFINE_MUTEX(device_hotplug_lock); 2012 2013 void lock_device_hotplug(void) 2014 { 2015 mutex_lock(&device_hotplug_lock); 2016 } 2017 2018 void unlock_device_hotplug(void) 2019 { 2020 mutex_unlock(&device_hotplug_lock); 2021 } 2022 2023 int lock_device_hotplug_sysfs(void) 2024 { 2025 if (mutex_trylock(&device_hotplug_lock)) 2026 return 0; 2027 2028 /* Avoid busy looping (5 ms of sleep should do). */ 2029 msleep(5); 2030 return restart_syscall(); 2031 } 2032 2033 #ifdef CONFIG_BLOCK 2034 static inline int device_is_not_partition(struct device *dev) 2035 { 2036 return !(dev->type == &part_type); 2037 } 2038 #else 2039 static inline int device_is_not_partition(struct device *dev) 2040 { 2041 return 1; 2042 } 2043 #endif 2044 2045 static void device_platform_notify(struct device *dev) 2046 { 2047 acpi_device_notify(dev); 2048 2049 software_node_notify(dev); 2050 2051 if (platform_notify) 2052 platform_notify(dev); 2053 } 2054 2055 static void device_platform_notify_remove(struct device *dev) 2056 { 2057 acpi_device_notify_remove(dev); 2058 2059 software_node_notify_remove(dev); 2060 2061 if (platform_notify_remove) 2062 platform_notify_remove(dev); 2063 } 2064 2065 /** 2066 * dev_driver_string - Return a device's driver name, if at all possible 2067 * @dev: struct device to get the name of 2068 * 2069 * Will return the device's driver's name if it is bound to a device. If 2070 * the device is not bound to a driver, it will return the name of the bus 2071 * it is attached to. If it is not attached to a bus either, an empty 2072 * string will be returned. 2073 */ 2074 const char *dev_driver_string(const struct device *dev) 2075 { 2076 struct device_driver *drv; 2077 2078 /* dev->driver can change to NULL underneath us because of unbinding, 2079 * so be careful about accessing it. dev->bus and dev->class should 2080 * never change once they are set, so they don't need special care. 2081 */ 2082 drv = READ_ONCE(dev->driver); 2083 return drv ? drv->name : dev_bus_name(dev); 2084 } 2085 EXPORT_SYMBOL(dev_driver_string); 2086 2087 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2088 2089 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2090 char *buf) 2091 { 2092 struct device_attribute *dev_attr = to_dev_attr(attr); 2093 struct device *dev = kobj_to_dev(kobj); 2094 ssize_t ret = -EIO; 2095 2096 if (dev_attr->show) 2097 ret = dev_attr->show(dev, dev_attr, buf); 2098 if (ret >= (ssize_t)PAGE_SIZE) { 2099 printk("dev_attr_show: %pS returned bad count\n", 2100 dev_attr->show); 2101 } 2102 return ret; 2103 } 2104 2105 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2106 const char *buf, size_t count) 2107 { 2108 struct device_attribute *dev_attr = to_dev_attr(attr); 2109 struct device *dev = kobj_to_dev(kobj); 2110 ssize_t ret = -EIO; 2111 2112 if (dev_attr->store) 2113 ret = dev_attr->store(dev, dev_attr, buf, count); 2114 return ret; 2115 } 2116 2117 static const struct sysfs_ops dev_sysfs_ops = { 2118 .show = dev_attr_show, 2119 .store = dev_attr_store, 2120 }; 2121 2122 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2123 2124 ssize_t device_store_ulong(struct device *dev, 2125 struct device_attribute *attr, 2126 const char *buf, size_t size) 2127 { 2128 struct dev_ext_attribute *ea = to_ext_attr(attr); 2129 int ret; 2130 unsigned long new; 2131 2132 ret = kstrtoul(buf, 0, &new); 2133 if (ret) 2134 return ret; 2135 *(unsigned long *)(ea->var) = new; 2136 /* Always return full write size even if we didn't consume all */ 2137 return size; 2138 } 2139 EXPORT_SYMBOL_GPL(device_store_ulong); 2140 2141 ssize_t device_show_ulong(struct device *dev, 2142 struct device_attribute *attr, 2143 char *buf) 2144 { 2145 struct dev_ext_attribute *ea = to_ext_attr(attr); 2146 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2147 } 2148 EXPORT_SYMBOL_GPL(device_show_ulong); 2149 2150 ssize_t device_store_int(struct device *dev, 2151 struct device_attribute *attr, 2152 const char *buf, size_t size) 2153 { 2154 struct dev_ext_attribute *ea = to_ext_attr(attr); 2155 int ret; 2156 long new; 2157 2158 ret = kstrtol(buf, 0, &new); 2159 if (ret) 2160 return ret; 2161 2162 if (new > INT_MAX || new < INT_MIN) 2163 return -EINVAL; 2164 *(int *)(ea->var) = new; 2165 /* Always return full write size even if we didn't consume all */ 2166 return size; 2167 } 2168 EXPORT_SYMBOL_GPL(device_store_int); 2169 2170 ssize_t device_show_int(struct device *dev, 2171 struct device_attribute *attr, 2172 char *buf) 2173 { 2174 struct dev_ext_attribute *ea = to_ext_attr(attr); 2175 2176 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2177 } 2178 EXPORT_SYMBOL_GPL(device_show_int); 2179 2180 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2181 const char *buf, size_t size) 2182 { 2183 struct dev_ext_attribute *ea = to_ext_attr(attr); 2184 2185 if (strtobool(buf, ea->var) < 0) 2186 return -EINVAL; 2187 2188 return size; 2189 } 2190 EXPORT_SYMBOL_GPL(device_store_bool); 2191 2192 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2193 char *buf) 2194 { 2195 struct dev_ext_attribute *ea = to_ext_attr(attr); 2196 2197 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2198 } 2199 EXPORT_SYMBOL_GPL(device_show_bool); 2200 2201 /** 2202 * device_release - free device structure. 2203 * @kobj: device's kobject. 2204 * 2205 * This is called once the reference count for the object 2206 * reaches 0. We forward the call to the device's release 2207 * method, which should handle actually freeing the structure. 2208 */ 2209 static void device_release(struct kobject *kobj) 2210 { 2211 struct device *dev = kobj_to_dev(kobj); 2212 struct device_private *p = dev->p; 2213 2214 /* 2215 * Some platform devices are driven without driver attached 2216 * and managed resources may have been acquired. Make sure 2217 * all resources are released. 2218 * 2219 * Drivers still can add resources into device after device 2220 * is deleted but alive, so release devres here to avoid 2221 * possible memory leak. 2222 */ 2223 devres_release_all(dev); 2224 2225 kfree(dev->dma_range_map); 2226 2227 if (dev->release) 2228 dev->release(dev); 2229 else if (dev->type && dev->type->release) 2230 dev->type->release(dev); 2231 else if (dev->class && dev->class->dev_release) 2232 dev->class->dev_release(dev); 2233 else 2234 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2235 dev_name(dev)); 2236 kfree(p); 2237 } 2238 2239 static const void *device_namespace(struct kobject *kobj) 2240 { 2241 struct device *dev = kobj_to_dev(kobj); 2242 const void *ns = NULL; 2243 2244 if (dev->class && dev->class->ns_type) 2245 ns = dev->class->namespace(dev); 2246 2247 return ns; 2248 } 2249 2250 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2251 { 2252 struct device *dev = kobj_to_dev(kobj); 2253 2254 if (dev->class && dev->class->get_ownership) 2255 dev->class->get_ownership(dev, uid, gid); 2256 } 2257 2258 static struct kobj_type device_ktype = { 2259 .release = device_release, 2260 .sysfs_ops = &dev_sysfs_ops, 2261 .namespace = device_namespace, 2262 .get_ownership = device_get_ownership, 2263 }; 2264 2265 2266 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 2267 { 2268 struct kobj_type *ktype = get_ktype(kobj); 2269 2270 if (ktype == &device_ktype) { 2271 struct device *dev = kobj_to_dev(kobj); 2272 if (dev->bus) 2273 return 1; 2274 if (dev->class) 2275 return 1; 2276 } 2277 return 0; 2278 } 2279 2280 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 2281 { 2282 struct device *dev = kobj_to_dev(kobj); 2283 2284 if (dev->bus) 2285 return dev->bus->name; 2286 if (dev->class) 2287 return dev->class->name; 2288 return NULL; 2289 } 2290 2291 static int dev_uevent(struct kset *kset, struct kobject *kobj, 2292 struct kobj_uevent_env *env) 2293 { 2294 struct device *dev = kobj_to_dev(kobj); 2295 int retval = 0; 2296 2297 /* add device node properties if present */ 2298 if (MAJOR(dev->devt)) { 2299 const char *tmp; 2300 const char *name; 2301 umode_t mode = 0; 2302 kuid_t uid = GLOBAL_ROOT_UID; 2303 kgid_t gid = GLOBAL_ROOT_GID; 2304 2305 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2306 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2307 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2308 if (name) { 2309 add_uevent_var(env, "DEVNAME=%s", name); 2310 if (mode) 2311 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2312 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2313 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2314 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2315 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2316 kfree(tmp); 2317 } 2318 } 2319 2320 if (dev->type && dev->type->name) 2321 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2322 2323 if (dev->driver) 2324 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2325 2326 /* Add common DT information about the device */ 2327 of_device_uevent(dev, env); 2328 2329 /* have the bus specific function add its stuff */ 2330 if (dev->bus && dev->bus->uevent) { 2331 retval = dev->bus->uevent(dev, env); 2332 if (retval) 2333 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2334 dev_name(dev), __func__, retval); 2335 } 2336 2337 /* have the class specific function add its stuff */ 2338 if (dev->class && dev->class->dev_uevent) { 2339 retval = dev->class->dev_uevent(dev, env); 2340 if (retval) 2341 pr_debug("device: '%s': %s: class uevent() " 2342 "returned %d\n", dev_name(dev), 2343 __func__, retval); 2344 } 2345 2346 /* have the device type specific function add its stuff */ 2347 if (dev->type && dev->type->uevent) { 2348 retval = dev->type->uevent(dev, env); 2349 if (retval) 2350 pr_debug("device: '%s': %s: dev_type uevent() " 2351 "returned %d\n", dev_name(dev), 2352 __func__, retval); 2353 } 2354 2355 return retval; 2356 } 2357 2358 static const struct kset_uevent_ops device_uevent_ops = { 2359 .filter = dev_uevent_filter, 2360 .name = dev_uevent_name, 2361 .uevent = dev_uevent, 2362 }; 2363 2364 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2365 char *buf) 2366 { 2367 struct kobject *top_kobj; 2368 struct kset *kset; 2369 struct kobj_uevent_env *env = NULL; 2370 int i; 2371 int len = 0; 2372 int retval; 2373 2374 /* search the kset, the device belongs to */ 2375 top_kobj = &dev->kobj; 2376 while (!top_kobj->kset && top_kobj->parent) 2377 top_kobj = top_kobj->parent; 2378 if (!top_kobj->kset) 2379 goto out; 2380 2381 kset = top_kobj->kset; 2382 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2383 goto out; 2384 2385 /* respect filter */ 2386 if (kset->uevent_ops && kset->uevent_ops->filter) 2387 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 2388 goto out; 2389 2390 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2391 if (!env) 2392 return -ENOMEM; 2393 2394 /* let the kset specific function add its keys */ 2395 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 2396 if (retval) 2397 goto out; 2398 2399 /* copy keys to file */ 2400 for (i = 0; i < env->envp_idx; i++) 2401 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2402 out: 2403 kfree(env); 2404 return len; 2405 } 2406 2407 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2408 const char *buf, size_t count) 2409 { 2410 int rc; 2411 2412 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2413 2414 if (rc) { 2415 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 2416 return rc; 2417 } 2418 2419 return count; 2420 } 2421 static DEVICE_ATTR_RW(uevent); 2422 2423 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2424 char *buf) 2425 { 2426 bool val; 2427 2428 device_lock(dev); 2429 val = !dev->offline; 2430 device_unlock(dev); 2431 return sysfs_emit(buf, "%u\n", val); 2432 } 2433 2434 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2435 const char *buf, size_t count) 2436 { 2437 bool val; 2438 int ret; 2439 2440 ret = strtobool(buf, &val); 2441 if (ret < 0) 2442 return ret; 2443 2444 ret = lock_device_hotplug_sysfs(); 2445 if (ret) 2446 return ret; 2447 2448 ret = val ? device_online(dev) : device_offline(dev); 2449 unlock_device_hotplug(); 2450 return ret < 0 ? ret : count; 2451 } 2452 static DEVICE_ATTR_RW(online); 2453 2454 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2455 char *buf) 2456 { 2457 const char *loc; 2458 2459 switch (dev->removable) { 2460 case DEVICE_REMOVABLE: 2461 loc = "removable"; 2462 break; 2463 case DEVICE_FIXED: 2464 loc = "fixed"; 2465 break; 2466 default: 2467 loc = "unknown"; 2468 } 2469 return sysfs_emit(buf, "%s\n", loc); 2470 } 2471 static DEVICE_ATTR_RO(removable); 2472 2473 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2474 { 2475 return sysfs_create_groups(&dev->kobj, groups); 2476 } 2477 EXPORT_SYMBOL_GPL(device_add_groups); 2478 2479 void device_remove_groups(struct device *dev, 2480 const struct attribute_group **groups) 2481 { 2482 sysfs_remove_groups(&dev->kobj, groups); 2483 } 2484 EXPORT_SYMBOL_GPL(device_remove_groups); 2485 2486 union device_attr_group_devres { 2487 const struct attribute_group *group; 2488 const struct attribute_group **groups; 2489 }; 2490 2491 static int devm_attr_group_match(struct device *dev, void *res, void *data) 2492 { 2493 return ((union device_attr_group_devres *)res)->group == data; 2494 } 2495 2496 static void devm_attr_group_remove(struct device *dev, void *res) 2497 { 2498 union device_attr_group_devres *devres = res; 2499 const struct attribute_group *group = devres->group; 2500 2501 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2502 sysfs_remove_group(&dev->kobj, group); 2503 } 2504 2505 static void devm_attr_groups_remove(struct device *dev, void *res) 2506 { 2507 union device_attr_group_devres *devres = res; 2508 const struct attribute_group **groups = devres->groups; 2509 2510 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2511 sysfs_remove_groups(&dev->kobj, groups); 2512 } 2513 2514 /** 2515 * devm_device_add_group - given a device, create a managed attribute group 2516 * @dev: The device to create the group for 2517 * @grp: The attribute group to create 2518 * 2519 * This function creates a group for the first time. It will explicitly 2520 * warn and error if any of the attribute files being created already exist. 2521 * 2522 * Returns 0 on success or error code on failure. 2523 */ 2524 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2525 { 2526 union device_attr_group_devres *devres; 2527 int error; 2528 2529 devres = devres_alloc(devm_attr_group_remove, 2530 sizeof(*devres), GFP_KERNEL); 2531 if (!devres) 2532 return -ENOMEM; 2533 2534 error = sysfs_create_group(&dev->kobj, grp); 2535 if (error) { 2536 devres_free(devres); 2537 return error; 2538 } 2539 2540 devres->group = grp; 2541 devres_add(dev, devres); 2542 return 0; 2543 } 2544 EXPORT_SYMBOL_GPL(devm_device_add_group); 2545 2546 /** 2547 * devm_device_remove_group: remove a managed group from a device 2548 * @dev: device to remove the group from 2549 * @grp: group to remove 2550 * 2551 * This function removes a group of attributes from a device. The attributes 2552 * previously have to have been created for this group, otherwise it will fail. 2553 */ 2554 void devm_device_remove_group(struct device *dev, 2555 const struct attribute_group *grp) 2556 { 2557 WARN_ON(devres_release(dev, devm_attr_group_remove, 2558 devm_attr_group_match, 2559 /* cast away const */ (void *)grp)); 2560 } 2561 EXPORT_SYMBOL_GPL(devm_device_remove_group); 2562 2563 /** 2564 * devm_device_add_groups - create a bunch of managed attribute groups 2565 * @dev: The device to create the group for 2566 * @groups: The attribute groups to create, NULL terminated 2567 * 2568 * This function creates a bunch of managed attribute groups. If an error 2569 * occurs when creating a group, all previously created groups will be 2570 * removed, unwinding everything back to the original state when this 2571 * function was called. It will explicitly warn and error if any of the 2572 * attribute files being created already exist. 2573 * 2574 * Returns 0 on success or error code from sysfs_create_group on failure. 2575 */ 2576 int devm_device_add_groups(struct device *dev, 2577 const struct attribute_group **groups) 2578 { 2579 union device_attr_group_devres *devres; 2580 int error; 2581 2582 devres = devres_alloc(devm_attr_groups_remove, 2583 sizeof(*devres), GFP_KERNEL); 2584 if (!devres) 2585 return -ENOMEM; 2586 2587 error = sysfs_create_groups(&dev->kobj, groups); 2588 if (error) { 2589 devres_free(devres); 2590 return error; 2591 } 2592 2593 devres->groups = groups; 2594 devres_add(dev, devres); 2595 return 0; 2596 } 2597 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2598 2599 /** 2600 * devm_device_remove_groups - remove a list of managed groups 2601 * 2602 * @dev: The device for the groups to be removed from 2603 * @groups: NULL terminated list of groups to be removed 2604 * 2605 * If groups is not NULL, remove the specified groups from the device. 2606 */ 2607 void devm_device_remove_groups(struct device *dev, 2608 const struct attribute_group **groups) 2609 { 2610 WARN_ON(devres_release(dev, devm_attr_groups_remove, 2611 devm_attr_group_match, 2612 /* cast away const */ (void *)groups)); 2613 } 2614 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 2615 2616 static int device_add_attrs(struct device *dev) 2617 { 2618 struct class *class = dev->class; 2619 const struct device_type *type = dev->type; 2620 int error; 2621 2622 if (class) { 2623 error = device_add_groups(dev, class->dev_groups); 2624 if (error) 2625 return error; 2626 } 2627 2628 if (type) { 2629 error = device_add_groups(dev, type->groups); 2630 if (error) 2631 goto err_remove_class_groups; 2632 } 2633 2634 error = device_add_groups(dev, dev->groups); 2635 if (error) 2636 goto err_remove_type_groups; 2637 2638 if (device_supports_offline(dev) && !dev->offline_disabled) { 2639 error = device_create_file(dev, &dev_attr_online); 2640 if (error) 2641 goto err_remove_dev_groups; 2642 } 2643 2644 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2645 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2646 if (error) 2647 goto err_remove_dev_online; 2648 } 2649 2650 if (dev_removable_is_valid(dev)) { 2651 error = device_create_file(dev, &dev_attr_removable); 2652 if (error) 2653 goto err_remove_dev_waiting_for_supplier; 2654 } 2655 2656 return 0; 2657 2658 err_remove_dev_waiting_for_supplier: 2659 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2660 err_remove_dev_online: 2661 device_remove_file(dev, &dev_attr_online); 2662 err_remove_dev_groups: 2663 device_remove_groups(dev, dev->groups); 2664 err_remove_type_groups: 2665 if (type) 2666 device_remove_groups(dev, type->groups); 2667 err_remove_class_groups: 2668 if (class) 2669 device_remove_groups(dev, class->dev_groups); 2670 2671 return error; 2672 } 2673 2674 static void device_remove_attrs(struct device *dev) 2675 { 2676 struct class *class = dev->class; 2677 const struct device_type *type = dev->type; 2678 2679 device_remove_file(dev, &dev_attr_removable); 2680 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2681 device_remove_file(dev, &dev_attr_online); 2682 device_remove_groups(dev, dev->groups); 2683 2684 if (type) 2685 device_remove_groups(dev, type->groups); 2686 2687 if (class) 2688 device_remove_groups(dev, class->dev_groups); 2689 } 2690 2691 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2692 char *buf) 2693 { 2694 return print_dev_t(buf, dev->devt); 2695 } 2696 static DEVICE_ATTR_RO(dev); 2697 2698 /* /sys/devices/ */ 2699 struct kset *devices_kset; 2700 2701 /** 2702 * devices_kset_move_before - Move device in the devices_kset's list. 2703 * @deva: Device to move. 2704 * @devb: Device @deva should come before. 2705 */ 2706 static void devices_kset_move_before(struct device *deva, struct device *devb) 2707 { 2708 if (!devices_kset) 2709 return; 2710 pr_debug("devices_kset: Moving %s before %s\n", 2711 dev_name(deva), dev_name(devb)); 2712 spin_lock(&devices_kset->list_lock); 2713 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2714 spin_unlock(&devices_kset->list_lock); 2715 } 2716 2717 /** 2718 * devices_kset_move_after - Move device in the devices_kset's list. 2719 * @deva: Device to move 2720 * @devb: Device @deva should come after. 2721 */ 2722 static void devices_kset_move_after(struct device *deva, struct device *devb) 2723 { 2724 if (!devices_kset) 2725 return; 2726 pr_debug("devices_kset: Moving %s after %s\n", 2727 dev_name(deva), dev_name(devb)); 2728 spin_lock(&devices_kset->list_lock); 2729 list_move(&deva->kobj.entry, &devb->kobj.entry); 2730 spin_unlock(&devices_kset->list_lock); 2731 } 2732 2733 /** 2734 * devices_kset_move_last - move the device to the end of devices_kset's list. 2735 * @dev: device to move 2736 */ 2737 void devices_kset_move_last(struct device *dev) 2738 { 2739 if (!devices_kset) 2740 return; 2741 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2742 spin_lock(&devices_kset->list_lock); 2743 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2744 spin_unlock(&devices_kset->list_lock); 2745 } 2746 2747 /** 2748 * device_create_file - create sysfs attribute file for device. 2749 * @dev: device. 2750 * @attr: device attribute descriptor. 2751 */ 2752 int device_create_file(struct device *dev, 2753 const struct device_attribute *attr) 2754 { 2755 int error = 0; 2756 2757 if (dev) { 2758 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 2759 "Attribute %s: write permission without 'store'\n", 2760 attr->attr.name); 2761 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 2762 "Attribute %s: read permission without 'show'\n", 2763 attr->attr.name); 2764 error = sysfs_create_file(&dev->kobj, &attr->attr); 2765 } 2766 2767 return error; 2768 } 2769 EXPORT_SYMBOL_GPL(device_create_file); 2770 2771 /** 2772 * device_remove_file - remove sysfs attribute file. 2773 * @dev: device. 2774 * @attr: device attribute descriptor. 2775 */ 2776 void device_remove_file(struct device *dev, 2777 const struct device_attribute *attr) 2778 { 2779 if (dev) 2780 sysfs_remove_file(&dev->kobj, &attr->attr); 2781 } 2782 EXPORT_SYMBOL_GPL(device_remove_file); 2783 2784 /** 2785 * device_remove_file_self - remove sysfs attribute file from its own method. 2786 * @dev: device. 2787 * @attr: device attribute descriptor. 2788 * 2789 * See kernfs_remove_self() for details. 2790 */ 2791 bool device_remove_file_self(struct device *dev, 2792 const struct device_attribute *attr) 2793 { 2794 if (dev) 2795 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 2796 else 2797 return false; 2798 } 2799 EXPORT_SYMBOL_GPL(device_remove_file_self); 2800 2801 /** 2802 * device_create_bin_file - create sysfs binary attribute file for device. 2803 * @dev: device. 2804 * @attr: device binary attribute descriptor. 2805 */ 2806 int device_create_bin_file(struct device *dev, 2807 const struct bin_attribute *attr) 2808 { 2809 int error = -EINVAL; 2810 if (dev) 2811 error = sysfs_create_bin_file(&dev->kobj, attr); 2812 return error; 2813 } 2814 EXPORT_SYMBOL_GPL(device_create_bin_file); 2815 2816 /** 2817 * device_remove_bin_file - remove sysfs binary attribute file 2818 * @dev: device. 2819 * @attr: device binary attribute descriptor. 2820 */ 2821 void device_remove_bin_file(struct device *dev, 2822 const struct bin_attribute *attr) 2823 { 2824 if (dev) 2825 sysfs_remove_bin_file(&dev->kobj, attr); 2826 } 2827 EXPORT_SYMBOL_GPL(device_remove_bin_file); 2828 2829 static void klist_children_get(struct klist_node *n) 2830 { 2831 struct device_private *p = to_device_private_parent(n); 2832 struct device *dev = p->device; 2833 2834 get_device(dev); 2835 } 2836 2837 static void klist_children_put(struct klist_node *n) 2838 { 2839 struct device_private *p = to_device_private_parent(n); 2840 struct device *dev = p->device; 2841 2842 put_device(dev); 2843 } 2844 2845 /** 2846 * device_initialize - init device structure. 2847 * @dev: device. 2848 * 2849 * This prepares the device for use by other layers by initializing 2850 * its fields. 2851 * It is the first half of device_register(), if called by 2852 * that function, though it can also be called separately, so one 2853 * may use @dev's fields. In particular, get_device()/put_device() 2854 * may be used for reference counting of @dev after calling this 2855 * function. 2856 * 2857 * All fields in @dev must be initialized by the caller to 0, except 2858 * for those explicitly set to some other value. The simplest 2859 * approach is to use kzalloc() to allocate the structure containing 2860 * @dev. 2861 * 2862 * NOTE: Use put_device() to give up your reference instead of freeing 2863 * @dev directly once you have called this function. 2864 */ 2865 void device_initialize(struct device *dev) 2866 { 2867 dev->kobj.kset = devices_kset; 2868 kobject_init(&dev->kobj, &device_ktype); 2869 INIT_LIST_HEAD(&dev->dma_pools); 2870 mutex_init(&dev->mutex); 2871 #ifdef CONFIG_PROVE_LOCKING 2872 mutex_init(&dev->lockdep_mutex); 2873 #endif 2874 lockdep_set_novalidate_class(&dev->mutex); 2875 spin_lock_init(&dev->devres_lock); 2876 INIT_LIST_HEAD(&dev->devres_head); 2877 device_pm_init(dev); 2878 set_dev_node(dev, -1); 2879 #ifdef CONFIG_GENERIC_MSI_IRQ 2880 raw_spin_lock_init(&dev->msi_lock); 2881 INIT_LIST_HEAD(&dev->msi_list); 2882 #endif 2883 INIT_LIST_HEAD(&dev->links.consumers); 2884 INIT_LIST_HEAD(&dev->links.suppliers); 2885 INIT_LIST_HEAD(&dev->links.defer_sync); 2886 dev->links.status = DL_DEV_NO_DRIVER; 2887 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 2888 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 2889 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 2890 dev->dma_coherent = dma_default_coherent; 2891 #endif 2892 #ifdef CONFIG_SWIOTLB 2893 dev->dma_io_tlb_mem = &io_tlb_default_mem; 2894 #endif 2895 } 2896 EXPORT_SYMBOL_GPL(device_initialize); 2897 2898 struct kobject *virtual_device_parent(struct device *dev) 2899 { 2900 static struct kobject *virtual_dir = NULL; 2901 2902 if (!virtual_dir) 2903 virtual_dir = kobject_create_and_add("virtual", 2904 &devices_kset->kobj); 2905 2906 return virtual_dir; 2907 } 2908 2909 struct class_dir { 2910 struct kobject kobj; 2911 struct class *class; 2912 }; 2913 2914 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 2915 2916 static void class_dir_release(struct kobject *kobj) 2917 { 2918 struct class_dir *dir = to_class_dir(kobj); 2919 kfree(dir); 2920 } 2921 2922 static const 2923 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 2924 { 2925 struct class_dir *dir = to_class_dir(kobj); 2926 return dir->class->ns_type; 2927 } 2928 2929 static struct kobj_type class_dir_ktype = { 2930 .release = class_dir_release, 2931 .sysfs_ops = &kobj_sysfs_ops, 2932 .child_ns_type = class_dir_child_ns_type 2933 }; 2934 2935 static struct kobject * 2936 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 2937 { 2938 struct class_dir *dir; 2939 int retval; 2940 2941 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 2942 if (!dir) 2943 return ERR_PTR(-ENOMEM); 2944 2945 dir->class = class; 2946 kobject_init(&dir->kobj, &class_dir_ktype); 2947 2948 dir->kobj.kset = &class->p->glue_dirs; 2949 2950 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 2951 if (retval < 0) { 2952 kobject_put(&dir->kobj); 2953 return ERR_PTR(retval); 2954 } 2955 return &dir->kobj; 2956 } 2957 2958 static DEFINE_MUTEX(gdp_mutex); 2959 2960 static struct kobject *get_device_parent(struct device *dev, 2961 struct device *parent) 2962 { 2963 if (dev->class) { 2964 struct kobject *kobj = NULL; 2965 struct kobject *parent_kobj; 2966 struct kobject *k; 2967 2968 #ifdef CONFIG_BLOCK 2969 /* block disks show up in /sys/block */ 2970 if (sysfs_deprecated && dev->class == &block_class) { 2971 if (parent && parent->class == &block_class) 2972 return &parent->kobj; 2973 return &block_class.p->subsys.kobj; 2974 } 2975 #endif 2976 2977 /* 2978 * If we have no parent, we live in "virtual". 2979 * Class-devices with a non class-device as parent, live 2980 * in a "glue" directory to prevent namespace collisions. 2981 */ 2982 if (parent == NULL) 2983 parent_kobj = virtual_device_parent(dev); 2984 else if (parent->class && !dev->class->ns_type) 2985 return &parent->kobj; 2986 else 2987 parent_kobj = &parent->kobj; 2988 2989 mutex_lock(&gdp_mutex); 2990 2991 /* find our class-directory at the parent and reference it */ 2992 spin_lock(&dev->class->p->glue_dirs.list_lock); 2993 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 2994 if (k->parent == parent_kobj) { 2995 kobj = kobject_get(k); 2996 break; 2997 } 2998 spin_unlock(&dev->class->p->glue_dirs.list_lock); 2999 if (kobj) { 3000 mutex_unlock(&gdp_mutex); 3001 return kobj; 3002 } 3003 3004 /* or create a new class-directory at the parent device */ 3005 k = class_dir_create_and_add(dev->class, parent_kobj); 3006 /* do not emit an uevent for this simple "glue" directory */ 3007 mutex_unlock(&gdp_mutex); 3008 return k; 3009 } 3010 3011 /* subsystems can specify a default root directory for their devices */ 3012 if (!parent && dev->bus && dev->bus->dev_root) 3013 return &dev->bus->dev_root->kobj; 3014 3015 if (parent) 3016 return &parent->kobj; 3017 return NULL; 3018 } 3019 3020 static inline bool live_in_glue_dir(struct kobject *kobj, 3021 struct device *dev) 3022 { 3023 if (!kobj || !dev->class || 3024 kobj->kset != &dev->class->p->glue_dirs) 3025 return false; 3026 return true; 3027 } 3028 3029 static inline struct kobject *get_glue_dir(struct device *dev) 3030 { 3031 return dev->kobj.parent; 3032 } 3033 3034 /* 3035 * make sure cleaning up dir as the last step, we need to make 3036 * sure .release handler of kobject is run with holding the 3037 * global lock 3038 */ 3039 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3040 { 3041 unsigned int ref; 3042 3043 /* see if we live in a "glue" directory */ 3044 if (!live_in_glue_dir(glue_dir, dev)) 3045 return; 3046 3047 mutex_lock(&gdp_mutex); 3048 /** 3049 * There is a race condition between removing glue directory 3050 * and adding a new device under the glue directory. 3051 * 3052 * CPU1: CPU2: 3053 * 3054 * device_add() 3055 * get_device_parent() 3056 * class_dir_create_and_add() 3057 * kobject_add_internal() 3058 * create_dir() // create glue_dir 3059 * 3060 * device_add() 3061 * get_device_parent() 3062 * kobject_get() // get glue_dir 3063 * 3064 * device_del() 3065 * cleanup_glue_dir() 3066 * kobject_del(glue_dir) 3067 * 3068 * kobject_add() 3069 * kobject_add_internal() 3070 * create_dir() // in glue_dir 3071 * sysfs_create_dir_ns() 3072 * kernfs_create_dir_ns(sd) 3073 * 3074 * sysfs_remove_dir() // glue_dir->sd=NULL 3075 * sysfs_put() // free glue_dir->sd 3076 * 3077 * // sd is freed 3078 * kernfs_new_node(sd) 3079 * kernfs_get(glue_dir) 3080 * kernfs_add_one() 3081 * kernfs_put() 3082 * 3083 * Before CPU1 remove last child device under glue dir, if CPU2 add 3084 * a new device under glue dir, the glue_dir kobject reference count 3085 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3086 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3087 * and sysfs_put(). This result in glue_dir->sd is freed. 3088 * 3089 * Then the CPU2 will see a stale "empty" but still potentially used 3090 * glue dir around in kernfs_new_node(). 3091 * 3092 * In order to avoid this happening, we also should make sure that 3093 * kernfs_node for glue_dir is released in CPU1 only when refcount 3094 * for glue_dir kobj is 1. 3095 */ 3096 ref = kref_read(&glue_dir->kref); 3097 if (!kobject_has_children(glue_dir) && !--ref) 3098 kobject_del(glue_dir); 3099 kobject_put(glue_dir); 3100 mutex_unlock(&gdp_mutex); 3101 } 3102 3103 static int device_add_class_symlinks(struct device *dev) 3104 { 3105 struct device_node *of_node = dev_of_node(dev); 3106 int error; 3107 3108 if (of_node) { 3109 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3110 if (error) 3111 dev_warn(dev, "Error %d creating of_node link\n",error); 3112 /* An error here doesn't warrant bringing down the device */ 3113 } 3114 3115 if (!dev->class) 3116 return 0; 3117 3118 error = sysfs_create_link(&dev->kobj, 3119 &dev->class->p->subsys.kobj, 3120 "subsystem"); 3121 if (error) 3122 goto out_devnode; 3123 3124 if (dev->parent && device_is_not_partition(dev)) { 3125 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3126 "device"); 3127 if (error) 3128 goto out_subsys; 3129 } 3130 3131 #ifdef CONFIG_BLOCK 3132 /* /sys/block has directories and does not need symlinks */ 3133 if (sysfs_deprecated && dev->class == &block_class) 3134 return 0; 3135 #endif 3136 3137 /* link in the class directory pointing to the device */ 3138 error = sysfs_create_link(&dev->class->p->subsys.kobj, 3139 &dev->kobj, dev_name(dev)); 3140 if (error) 3141 goto out_device; 3142 3143 return 0; 3144 3145 out_device: 3146 sysfs_remove_link(&dev->kobj, "device"); 3147 3148 out_subsys: 3149 sysfs_remove_link(&dev->kobj, "subsystem"); 3150 out_devnode: 3151 sysfs_remove_link(&dev->kobj, "of_node"); 3152 return error; 3153 } 3154 3155 static void device_remove_class_symlinks(struct device *dev) 3156 { 3157 if (dev_of_node(dev)) 3158 sysfs_remove_link(&dev->kobj, "of_node"); 3159 3160 if (!dev->class) 3161 return; 3162 3163 if (dev->parent && device_is_not_partition(dev)) 3164 sysfs_remove_link(&dev->kobj, "device"); 3165 sysfs_remove_link(&dev->kobj, "subsystem"); 3166 #ifdef CONFIG_BLOCK 3167 if (sysfs_deprecated && dev->class == &block_class) 3168 return; 3169 #endif 3170 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 3171 } 3172 3173 /** 3174 * dev_set_name - set a device name 3175 * @dev: device 3176 * @fmt: format string for the device's name 3177 */ 3178 int dev_set_name(struct device *dev, const char *fmt, ...) 3179 { 3180 va_list vargs; 3181 int err; 3182 3183 va_start(vargs, fmt); 3184 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3185 va_end(vargs); 3186 return err; 3187 } 3188 EXPORT_SYMBOL_GPL(dev_set_name); 3189 3190 /** 3191 * device_to_dev_kobj - select a /sys/dev/ directory for the device 3192 * @dev: device 3193 * 3194 * By default we select char/ for new entries. Setting class->dev_obj 3195 * to NULL prevents an entry from being created. class->dev_kobj must 3196 * be set (or cleared) before any devices are registered to the class 3197 * otherwise device_create_sys_dev_entry() and 3198 * device_remove_sys_dev_entry() will disagree about the presence of 3199 * the link. 3200 */ 3201 static struct kobject *device_to_dev_kobj(struct device *dev) 3202 { 3203 struct kobject *kobj; 3204 3205 if (dev->class) 3206 kobj = dev->class->dev_kobj; 3207 else 3208 kobj = sysfs_dev_char_kobj; 3209 3210 return kobj; 3211 } 3212 3213 static int device_create_sys_dev_entry(struct device *dev) 3214 { 3215 struct kobject *kobj = device_to_dev_kobj(dev); 3216 int error = 0; 3217 char devt_str[15]; 3218 3219 if (kobj) { 3220 format_dev_t(devt_str, dev->devt); 3221 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3222 } 3223 3224 return error; 3225 } 3226 3227 static void device_remove_sys_dev_entry(struct device *dev) 3228 { 3229 struct kobject *kobj = device_to_dev_kobj(dev); 3230 char devt_str[15]; 3231 3232 if (kobj) { 3233 format_dev_t(devt_str, dev->devt); 3234 sysfs_remove_link(kobj, devt_str); 3235 } 3236 } 3237 3238 static int device_private_init(struct device *dev) 3239 { 3240 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3241 if (!dev->p) 3242 return -ENOMEM; 3243 dev->p->device = dev; 3244 klist_init(&dev->p->klist_children, klist_children_get, 3245 klist_children_put); 3246 INIT_LIST_HEAD(&dev->p->deferred_probe); 3247 return 0; 3248 } 3249 3250 /** 3251 * device_add - add device to device hierarchy. 3252 * @dev: device. 3253 * 3254 * This is part 2 of device_register(), though may be called 3255 * separately _iff_ device_initialize() has been called separately. 3256 * 3257 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3258 * to the global and sibling lists for the device, then 3259 * adds it to the other relevant subsystems of the driver model. 3260 * 3261 * Do not call this routine or device_register() more than once for 3262 * any device structure. The driver model core is not designed to work 3263 * with devices that get unregistered and then spring back to life. 3264 * (Among other things, it's very hard to guarantee that all references 3265 * to the previous incarnation of @dev have been dropped.) Allocate 3266 * and register a fresh new struct device instead. 3267 * 3268 * NOTE: _Never_ directly free @dev after calling this function, even 3269 * if it returned an error! Always use put_device() to give up your 3270 * reference instead. 3271 * 3272 * Rule of thumb is: if device_add() succeeds, you should call 3273 * device_del() when you want to get rid of it. If device_add() has 3274 * *not* succeeded, use *only* put_device() to drop the reference 3275 * count. 3276 */ 3277 int device_add(struct device *dev) 3278 { 3279 struct device *parent; 3280 struct kobject *kobj; 3281 struct class_interface *class_intf; 3282 int error = -EINVAL; 3283 struct kobject *glue_dir = NULL; 3284 3285 dev = get_device(dev); 3286 if (!dev) 3287 goto done; 3288 3289 if (!dev->p) { 3290 error = device_private_init(dev); 3291 if (error) 3292 goto done; 3293 } 3294 3295 /* 3296 * for statically allocated devices, which should all be converted 3297 * some day, we need to initialize the name. We prevent reading back 3298 * the name, and force the use of dev_name() 3299 */ 3300 if (dev->init_name) { 3301 dev_set_name(dev, "%s", dev->init_name); 3302 dev->init_name = NULL; 3303 } 3304 3305 /* subsystems can specify simple device enumeration */ 3306 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 3307 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3308 3309 if (!dev_name(dev)) { 3310 error = -EINVAL; 3311 goto name_error; 3312 } 3313 3314 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3315 3316 parent = get_device(dev->parent); 3317 kobj = get_device_parent(dev, parent); 3318 if (IS_ERR(kobj)) { 3319 error = PTR_ERR(kobj); 3320 goto parent_error; 3321 } 3322 if (kobj) 3323 dev->kobj.parent = kobj; 3324 3325 /* use parent numa_node */ 3326 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3327 set_dev_node(dev, dev_to_node(parent)); 3328 3329 /* first, register with generic layer. */ 3330 /* we require the name to be set before, and pass NULL */ 3331 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3332 if (error) { 3333 glue_dir = get_glue_dir(dev); 3334 goto Error; 3335 } 3336 3337 /* notify platform of device entry */ 3338 device_platform_notify(dev); 3339 3340 error = device_create_file(dev, &dev_attr_uevent); 3341 if (error) 3342 goto attrError; 3343 3344 error = device_add_class_symlinks(dev); 3345 if (error) 3346 goto SymlinkError; 3347 error = device_add_attrs(dev); 3348 if (error) 3349 goto AttrsError; 3350 error = bus_add_device(dev); 3351 if (error) 3352 goto BusError; 3353 error = dpm_sysfs_add(dev); 3354 if (error) 3355 goto DPMError; 3356 device_pm_add(dev); 3357 3358 if (MAJOR(dev->devt)) { 3359 error = device_create_file(dev, &dev_attr_dev); 3360 if (error) 3361 goto DevAttrError; 3362 3363 error = device_create_sys_dev_entry(dev); 3364 if (error) 3365 goto SysEntryError; 3366 3367 devtmpfs_create_node(dev); 3368 } 3369 3370 /* Notify clients of device addition. This call must come 3371 * after dpm_sysfs_add() and before kobject_uevent(). 3372 */ 3373 if (dev->bus) 3374 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3375 BUS_NOTIFY_ADD_DEVICE, dev); 3376 3377 kobject_uevent(&dev->kobj, KOBJ_ADD); 3378 3379 /* 3380 * Check if any of the other devices (consumers) have been waiting for 3381 * this device (supplier) to be added so that they can create a device 3382 * link to it. 3383 * 3384 * This needs to happen after device_pm_add() because device_link_add() 3385 * requires the supplier be registered before it's called. 3386 * 3387 * But this also needs to happen before bus_probe_device() to make sure 3388 * waiting consumers can link to it before the driver is bound to the 3389 * device and the driver sync_state callback is called for this device. 3390 */ 3391 if (dev->fwnode && !dev->fwnode->dev) { 3392 dev->fwnode->dev = dev; 3393 fw_devlink_link_device(dev); 3394 } 3395 3396 bus_probe_device(dev); 3397 3398 /* 3399 * If all driver registration is done and a newly added device doesn't 3400 * match with any driver, don't block its consumers from probing in 3401 * case the consumer device is able to operate without this supplier. 3402 */ 3403 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3404 fw_devlink_unblock_consumers(dev); 3405 3406 if (parent) 3407 klist_add_tail(&dev->p->knode_parent, 3408 &parent->p->klist_children); 3409 3410 if (dev->class) { 3411 mutex_lock(&dev->class->p->mutex); 3412 /* tie the class to the device */ 3413 klist_add_tail(&dev->p->knode_class, 3414 &dev->class->p->klist_devices); 3415 3416 /* notify any interfaces that the device is here */ 3417 list_for_each_entry(class_intf, 3418 &dev->class->p->interfaces, node) 3419 if (class_intf->add_dev) 3420 class_intf->add_dev(dev, class_intf); 3421 mutex_unlock(&dev->class->p->mutex); 3422 } 3423 done: 3424 put_device(dev); 3425 return error; 3426 SysEntryError: 3427 if (MAJOR(dev->devt)) 3428 device_remove_file(dev, &dev_attr_dev); 3429 DevAttrError: 3430 device_pm_remove(dev); 3431 dpm_sysfs_remove(dev); 3432 DPMError: 3433 bus_remove_device(dev); 3434 BusError: 3435 device_remove_attrs(dev); 3436 AttrsError: 3437 device_remove_class_symlinks(dev); 3438 SymlinkError: 3439 device_remove_file(dev, &dev_attr_uevent); 3440 attrError: 3441 device_platform_notify_remove(dev); 3442 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3443 glue_dir = get_glue_dir(dev); 3444 kobject_del(&dev->kobj); 3445 Error: 3446 cleanup_glue_dir(dev, glue_dir); 3447 parent_error: 3448 put_device(parent); 3449 name_error: 3450 kfree(dev->p); 3451 dev->p = NULL; 3452 goto done; 3453 } 3454 EXPORT_SYMBOL_GPL(device_add); 3455 3456 /** 3457 * device_register - register a device with the system. 3458 * @dev: pointer to the device structure 3459 * 3460 * This happens in two clean steps - initialize the device 3461 * and add it to the system. The two steps can be called 3462 * separately, but this is the easiest and most common. 3463 * I.e. you should only call the two helpers separately if 3464 * have a clearly defined need to use and refcount the device 3465 * before it is added to the hierarchy. 3466 * 3467 * For more information, see the kerneldoc for device_initialize() 3468 * and device_add(). 3469 * 3470 * NOTE: _Never_ directly free @dev after calling this function, even 3471 * if it returned an error! Always use put_device() to give up the 3472 * reference initialized in this function instead. 3473 */ 3474 int device_register(struct device *dev) 3475 { 3476 device_initialize(dev); 3477 return device_add(dev); 3478 } 3479 EXPORT_SYMBOL_GPL(device_register); 3480 3481 /** 3482 * get_device - increment reference count for device. 3483 * @dev: device. 3484 * 3485 * This simply forwards the call to kobject_get(), though 3486 * we do take care to provide for the case that we get a NULL 3487 * pointer passed in. 3488 */ 3489 struct device *get_device(struct device *dev) 3490 { 3491 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3492 } 3493 EXPORT_SYMBOL_GPL(get_device); 3494 3495 /** 3496 * put_device - decrement reference count. 3497 * @dev: device in question. 3498 */ 3499 void put_device(struct device *dev) 3500 { 3501 /* might_sleep(); */ 3502 if (dev) 3503 kobject_put(&dev->kobj); 3504 } 3505 EXPORT_SYMBOL_GPL(put_device); 3506 3507 bool kill_device(struct device *dev) 3508 { 3509 /* 3510 * Require the device lock and set the "dead" flag to guarantee that 3511 * the update behavior is consistent with the other bitfields near 3512 * it and that we cannot have an asynchronous probe routine trying 3513 * to run while we are tearing out the bus/class/sysfs from 3514 * underneath the device. 3515 */ 3516 device_lock_assert(dev); 3517 3518 if (dev->p->dead) 3519 return false; 3520 dev->p->dead = true; 3521 return true; 3522 } 3523 EXPORT_SYMBOL_GPL(kill_device); 3524 3525 /** 3526 * device_del - delete device from system. 3527 * @dev: device. 3528 * 3529 * This is the first part of the device unregistration 3530 * sequence. This removes the device from the lists we control 3531 * from here, has it removed from the other driver model 3532 * subsystems it was added to in device_add(), and removes it 3533 * from the kobject hierarchy. 3534 * 3535 * NOTE: this should be called manually _iff_ device_add() was 3536 * also called manually. 3537 */ 3538 void device_del(struct device *dev) 3539 { 3540 struct device *parent = dev->parent; 3541 struct kobject *glue_dir = NULL; 3542 struct class_interface *class_intf; 3543 unsigned int noio_flag; 3544 3545 device_lock(dev); 3546 kill_device(dev); 3547 device_unlock(dev); 3548 3549 if (dev->fwnode && dev->fwnode->dev == dev) 3550 dev->fwnode->dev = NULL; 3551 3552 /* Notify clients of device removal. This call must come 3553 * before dpm_sysfs_remove(). 3554 */ 3555 noio_flag = memalloc_noio_save(); 3556 if (dev->bus) 3557 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3558 BUS_NOTIFY_DEL_DEVICE, dev); 3559 3560 dpm_sysfs_remove(dev); 3561 if (parent) 3562 klist_del(&dev->p->knode_parent); 3563 if (MAJOR(dev->devt)) { 3564 devtmpfs_delete_node(dev); 3565 device_remove_sys_dev_entry(dev); 3566 device_remove_file(dev, &dev_attr_dev); 3567 } 3568 if (dev->class) { 3569 device_remove_class_symlinks(dev); 3570 3571 mutex_lock(&dev->class->p->mutex); 3572 /* notify any interfaces that the device is now gone */ 3573 list_for_each_entry(class_intf, 3574 &dev->class->p->interfaces, node) 3575 if (class_intf->remove_dev) 3576 class_intf->remove_dev(dev, class_intf); 3577 /* remove the device from the class list */ 3578 klist_del(&dev->p->knode_class); 3579 mutex_unlock(&dev->class->p->mutex); 3580 } 3581 device_remove_file(dev, &dev_attr_uevent); 3582 device_remove_attrs(dev); 3583 bus_remove_device(dev); 3584 device_pm_remove(dev); 3585 driver_deferred_probe_del(dev); 3586 device_platform_notify_remove(dev); 3587 device_remove_properties(dev); 3588 device_links_purge(dev); 3589 3590 if (dev->bus) 3591 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3592 BUS_NOTIFY_REMOVED_DEVICE, dev); 3593 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3594 glue_dir = get_glue_dir(dev); 3595 kobject_del(&dev->kobj); 3596 cleanup_glue_dir(dev, glue_dir); 3597 memalloc_noio_restore(noio_flag); 3598 put_device(parent); 3599 } 3600 EXPORT_SYMBOL_GPL(device_del); 3601 3602 /** 3603 * device_unregister - unregister device from system. 3604 * @dev: device going away. 3605 * 3606 * We do this in two parts, like we do device_register(). First, 3607 * we remove it from all the subsystems with device_del(), then 3608 * we decrement the reference count via put_device(). If that 3609 * is the final reference count, the device will be cleaned up 3610 * via device_release() above. Otherwise, the structure will 3611 * stick around until the final reference to the device is dropped. 3612 */ 3613 void device_unregister(struct device *dev) 3614 { 3615 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3616 device_del(dev); 3617 put_device(dev); 3618 } 3619 EXPORT_SYMBOL_GPL(device_unregister); 3620 3621 static struct device *prev_device(struct klist_iter *i) 3622 { 3623 struct klist_node *n = klist_prev(i); 3624 struct device *dev = NULL; 3625 struct device_private *p; 3626 3627 if (n) { 3628 p = to_device_private_parent(n); 3629 dev = p->device; 3630 } 3631 return dev; 3632 } 3633 3634 static struct device *next_device(struct klist_iter *i) 3635 { 3636 struct klist_node *n = klist_next(i); 3637 struct device *dev = NULL; 3638 struct device_private *p; 3639 3640 if (n) { 3641 p = to_device_private_parent(n); 3642 dev = p->device; 3643 } 3644 return dev; 3645 } 3646 3647 /** 3648 * device_get_devnode - path of device node file 3649 * @dev: device 3650 * @mode: returned file access mode 3651 * @uid: returned file owner 3652 * @gid: returned file group 3653 * @tmp: possibly allocated string 3654 * 3655 * Return the relative path of a possible device node. 3656 * Non-default names may need to allocate a memory to compose 3657 * a name. This memory is returned in tmp and needs to be 3658 * freed by the caller. 3659 */ 3660 const char *device_get_devnode(struct device *dev, 3661 umode_t *mode, kuid_t *uid, kgid_t *gid, 3662 const char **tmp) 3663 { 3664 char *s; 3665 3666 *tmp = NULL; 3667 3668 /* the device type may provide a specific name */ 3669 if (dev->type && dev->type->devnode) 3670 *tmp = dev->type->devnode(dev, mode, uid, gid); 3671 if (*tmp) 3672 return *tmp; 3673 3674 /* the class may provide a specific name */ 3675 if (dev->class && dev->class->devnode) 3676 *tmp = dev->class->devnode(dev, mode); 3677 if (*tmp) 3678 return *tmp; 3679 3680 /* return name without allocation, tmp == NULL */ 3681 if (strchr(dev_name(dev), '!') == NULL) 3682 return dev_name(dev); 3683 3684 /* replace '!' in the name with '/' */ 3685 s = kstrdup(dev_name(dev), GFP_KERNEL); 3686 if (!s) 3687 return NULL; 3688 strreplace(s, '!', '/'); 3689 return *tmp = s; 3690 } 3691 3692 /** 3693 * device_for_each_child - device child iterator. 3694 * @parent: parent struct device. 3695 * @fn: function to be called for each device. 3696 * @data: data for the callback. 3697 * 3698 * Iterate over @parent's child devices, and call @fn for each, 3699 * passing it @data. 3700 * 3701 * We check the return of @fn each time. If it returns anything 3702 * other than 0, we break out and return that value. 3703 */ 3704 int device_for_each_child(struct device *parent, void *data, 3705 int (*fn)(struct device *dev, void *data)) 3706 { 3707 struct klist_iter i; 3708 struct device *child; 3709 int error = 0; 3710 3711 if (!parent->p) 3712 return 0; 3713 3714 klist_iter_init(&parent->p->klist_children, &i); 3715 while (!error && (child = next_device(&i))) 3716 error = fn(child, data); 3717 klist_iter_exit(&i); 3718 return error; 3719 } 3720 EXPORT_SYMBOL_GPL(device_for_each_child); 3721 3722 /** 3723 * device_for_each_child_reverse - device child iterator in reversed order. 3724 * @parent: parent struct device. 3725 * @fn: function to be called for each device. 3726 * @data: data for the callback. 3727 * 3728 * Iterate over @parent's child devices, and call @fn for each, 3729 * passing it @data. 3730 * 3731 * We check the return of @fn each time. If it returns anything 3732 * other than 0, we break out and return that value. 3733 */ 3734 int device_for_each_child_reverse(struct device *parent, void *data, 3735 int (*fn)(struct device *dev, void *data)) 3736 { 3737 struct klist_iter i; 3738 struct device *child; 3739 int error = 0; 3740 3741 if (!parent->p) 3742 return 0; 3743 3744 klist_iter_init(&parent->p->klist_children, &i); 3745 while ((child = prev_device(&i)) && !error) 3746 error = fn(child, data); 3747 klist_iter_exit(&i); 3748 return error; 3749 } 3750 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 3751 3752 /** 3753 * device_find_child - device iterator for locating a particular device. 3754 * @parent: parent struct device 3755 * @match: Callback function to check device 3756 * @data: Data to pass to match function 3757 * 3758 * This is similar to the device_for_each_child() function above, but it 3759 * returns a reference to a device that is 'found' for later use, as 3760 * determined by the @match callback. 3761 * 3762 * The callback should return 0 if the device doesn't match and non-zero 3763 * if it does. If the callback returns non-zero and a reference to the 3764 * current device can be obtained, this function will return to the caller 3765 * and not iterate over any more devices. 3766 * 3767 * NOTE: you will need to drop the reference with put_device() after use. 3768 */ 3769 struct device *device_find_child(struct device *parent, void *data, 3770 int (*match)(struct device *dev, void *data)) 3771 { 3772 struct klist_iter i; 3773 struct device *child; 3774 3775 if (!parent) 3776 return NULL; 3777 3778 klist_iter_init(&parent->p->klist_children, &i); 3779 while ((child = next_device(&i))) 3780 if (match(child, data) && get_device(child)) 3781 break; 3782 klist_iter_exit(&i); 3783 return child; 3784 } 3785 EXPORT_SYMBOL_GPL(device_find_child); 3786 3787 /** 3788 * device_find_child_by_name - device iterator for locating a child device. 3789 * @parent: parent struct device 3790 * @name: name of the child device 3791 * 3792 * This is similar to the device_find_child() function above, but it 3793 * returns a reference to a device that has the name @name. 3794 * 3795 * NOTE: you will need to drop the reference with put_device() after use. 3796 */ 3797 struct device *device_find_child_by_name(struct device *parent, 3798 const char *name) 3799 { 3800 struct klist_iter i; 3801 struct device *child; 3802 3803 if (!parent) 3804 return NULL; 3805 3806 klist_iter_init(&parent->p->klist_children, &i); 3807 while ((child = next_device(&i))) 3808 if (sysfs_streq(dev_name(child), name) && get_device(child)) 3809 break; 3810 klist_iter_exit(&i); 3811 return child; 3812 } 3813 EXPORT_SYMBOL_GPL(device_find_child_by_name); 3814 3815 int __init devices_init(void) 3816 { 3817 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 3818 if (!devices_kset) 3819 return -ENOMEM; 3820 dev_kobj = kobject_create_and_add("dev", NULL); 3821 if (!dev_kobj) 3822 goto dev_kobj_err; 3823 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 3824 if (!sysfs_dev_block_kobj) 3825 goto block_kobj_err; 3826 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 3827 if (!sysfs_dev_char_kobj) 3828 goto char_kobj_err; 3829 3830 return 0; 3831 3832 char_kobj_err: 3833 kobject_put(sysfs_dev_block_kobj); 3834 block_kobj_err: 3835 kobject_put(dev_kobj); 3836 dev_kobj_err: 3837 kset_unregister(devices_kset); 3838 return -ENOMEM; 3839 } 3840 3841 static int device_check_offline(struct device *dev, void *not_used) 3842 { 3843 int ret; 3844 3845 ret = device_for_each_child(dev, NULL, device_check_offline); 3846 if (ret) 3847 return ret; 3848 3849 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 3850 } 3851 3852 /** 3853 * device_offline - Prepare the device for hot-removal. 3854 * @dev: Device to be put offline. 3855 * 3856 * Execute the device bus type's .offline() callback, if present, to prepare 3857 * the device for a subsequent hot-removal. If that succeeds, the device must 3858 * not be used until either it is removed or its bus type's .online() callback 3859 * is executed. 3860 * 3861 * Call under device_hotplug_lock. 3862 */ 3863 int device_offline(struct device *dev) 3864 { 3865 int ret; 3866 3867 if (dev->offline_disabled) 3868 return -EPERM; 3869 3870 ret = device_for_each_child(dev, NULL, device_check_offline); 3871 if (ret) 3872 return ret; 3873 3874 device_lock(dev); 3875 if (device_supports_offline(dev)) { 3876 if (dev->offline) { 3877 ret = 1; 3878 } else { 3879 ret = dev->bus->offline(dev); 3880 if (!ret) { 3881 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 3882 dev->offline = true; 3883 } 3884 } 3885 } 3886 device_unlock(dev); 3887 3888 return ret; 3889 } 3890 3891 /** 3892 * device_online - Put the device back online after successful device_offline(). 3893 * @dev: Device to be put back online. 3894 * 3895 * If device_offline() has been successfully executed for @dev, but the device 3896 * has not been removed subsequently, execute its bus type's .online() callback 3897 * to indicate that the device can be used again. 3898 * 3899 * Call under device_hotplug_lock. 3900 */ 3901 int device_online(struct device *dev) 3902 { 3903 int ret = 0; 3904 3905 device_lock(dev); 3906 if (device_supports_offline(dev)) { 3907 if (dev->offline) { 3908 ret = dev->bus->online(dev); 3909 if (!ret) { 3910 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 3911 dev->offline = false; 3912 } 3913 } else { 3914 ret = 1; 3915 } 3916 } 3917 device_unlock(dev); 3918 3919 return ret; 3920 } 3921 3922 struct root_device { 3923 struct device dev; 3924 struct module *owner; 3925 }; 3926 3927 static inline struct root_device *to_root_device(struct device *d) 3928 { 3929 return container_of(d, struct root_device, dev); 3930 } 3931 3932 static void root_device_release(struct device *dev) 3933 { 3934 kfree(to_root_device(dev)); 3935 } 3936 3937 /** 3938 * __root_device_register - allocate and register a root device 3939 * @name: root device name 3940 * @owner: owner module of the root device, usually THIS_MODULE 3941 * 3942 * This function allocates a root device and registers it 3943 * using device_register(). In order to free the returned 3944 * device, use root_device_unregister(). 3945 * 3946 * Root devices are dummy devices which allow other devices 3947 * to be grouped under /sys/devices. Use this function to 3948 * allocate a root device and then use it as the parent of 3949 * any device which should appear under /sys/devices/{name} 3950 * 3951 * The /sys/devices/{name} directory will also contain a 3952 * 'module' symlink which points to the @owner directory 3953 * in sysfs. 3954 * 3955 * Returns &struct device pointer on success, or ERR_PTR() on error. 3956 * 3957 * Note: You probably want to use root_device_register(). 3958 */ 3959 struct device *__root_device_register(const char *name, struct module *owner) 3960 { 3961 struct root_device *root; 3962 int err = -ENOMEM; 3963 3964 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 3965 if (!root) 3966 return ERR_PTR(err); 3967 3968 err = dev_set_name(&root->dev, "%s", name); 3969 if (err) { 3970 kfree(root); 3971 return ERR_PTR(err); 3972 } 3973 3974 root->dev.release = root_device_release; 3975 3976 err = device_register(&root->dev); 3977 if (err) { 3978 put_device(&root->dev); 3979 return ERR_PTR(err); 3980 } 3981 3982 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 3983 if (owner) { 3984 struct module_kobject *mk = &owner->mkobj; 3985 3986 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 3987 if (err) { 3988 device_unregister(&root->dev); 3989 return ERR_PTR(err); 3990 } 3991 root->owner = owner; 3992 } 3993 #endif 3994 3995 return &root->dev; 3996 } 3997 EXPORT_SYMBOL_GPL(__root_device_register); 3998 3999 /** 4000 * root_device_unregister - unregister and free a root device 4001 * @dev: device going away 4002 * 4003 * This function unregisters and cleans up a device that was created by 4004 * root_device_register(). 4005 */ 4006 void root_device_unregister(struct device *dev) 4007 { 4008 struct root_device *root = to_root_device(dev); 4009 4010 if (root->owner) 4011 sysfs_remove_link(&root->dev.kobj, "module"); 4012 4013 device_unregister(dev); 4014 } 4015 EXPORT_SYMBOL_GPL(root_device_unregister); 4016 4017 4018 static void device_create_release(struct device *dev) 4019 { 4020 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4021 kfree(dev); 4022 } 4023 4024 static __printf(6, 0) struct device * 4025 device_create_groups_vargs(struct class *class, struct device *parent, 4026 dev_t devt, void *drvdata, 4027 const struct attribute_group **groups, 4028 const char *fmt, va_list args) 4029 { 4030 struct device *dev = NULL; 4031 int retval = -ENODEV; 4032 4033 if (class == NULL || IS_ERR(class)) 4034 goto error; 4035 4036 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4037 if (!dev) { 4038 retval = -ENOMEM; 4039 goto error; 4040 } 4041 4042 device_initialize(dev); 4043 dev->devt = devt; 4044 dev->class = class; 4045 dev->parent = parent; 4046 dev->groups = groups; 4047 dev->release = device_create_release; 4048 dev_set_drvdata(dev, drvdata); 4049 4050 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4051 if (retval) 4052 goto error; 4053 4054 retval = device_add(dev); 4055 if (retval) 4056 goto error; 4057 4058 return dev; 4059 4060 error: 4061 put_device(dev); 4062 return ERR_PTR(retval); 4063 } 4064 4065 /** 4066 * device_create - creates a device and registers it with sysfs 4067 * @class: pointer to the struct class that this device should be registered to 4068 * @parent: pointer to the parent struct device of this new device, if any 4069 * @devt: the dev_t for the char device to be added 4070 * @drvdata: the data to be added to the device for callbacks 4071 * @fmt: string for the device's name 4072 * 4073 * This function can be used by char device classes. A struct device 4074 * will be created in sysfs, registered to the specified class. 4075 * 4076 * A "dev" file will be created, showing the dev_t for the device, if 4077 * the dev_t is not 0,0. 4078 * If a pointer to a parent struct device is passed in, the newly created 4079 * struct device will be a child of that device in sysfs. 4080 * The pointer to the struct device will be returned from the call. 4081 * Any further sysfs files that might be required can be created using this 4082 * pointer. 4083 * 4084 * Returns &struct device pointer on success, or ERR_PTR() on error. 4085 * 4086 * Note: the struct class passed to this function must have previously 4087 * been created with a call to class_create(). 4088 */ 4089 struct device *device_create(struct class *class, struct device *parent, 4090 dev_t devt, void *drvdata, const char *fmt, ...) 4091 { 4092 va_list vargs; 4093 struct device *dev; 4094 4095 va_start(vargs, fmt); 4096 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4097 fmt, vargs); 4098 va_end(vargs); 4099 return dev; 4100 } 4101 EXPORT_SYMBOL_GPL(device_create); 4102 4103 /** 4104 * device_create_with_groups - creates a device and registers it with sysfs 4105 * @class: pointer to the struct class that this device should be registered to 4106 * @parent: pointer to the parent struct device of this new device, if any 4107 * @devt: the dev_t for the char device to be added 4108 * @drvdata: the data to be added to the device for callbacks 4109 * @groups: NULL-terminated list of attribute groups to be created 4110 * @fmt: string for the device's name 4111 * 4112 * This function can be used by char device classes. A struct device 4113 * will be created in sysfs, registered to the specified class. 4114 * Additional attributes specified in the groups parameter will also 4115 * be created automatically. 4116 * 4117 * A "dev" file will be created, showing the dev_t for the device, if 4118 * the dev_t is not 0,0. 4119 * If a pointer to a parent struct device is passed in, the newly created 4120 * struct device will be a child of that device in sysfs. 4121 * The pointer to the struct device will be returned from the call. 4122 * Any further sysfs files that might be required can be created using this 4123 * pointer. 4124 * 4125 * Returns &struct device pointer on success, or ERR_PTR() on error. 4126 * 4127 * Note: the struct class passed to this function must have previously 4128 * been created with a call to class_create(). 4129 */ 4130 struct device *device_create_with_groups(struct class *class, 4131 struct device *parent, dev_t devt, 4132 void *drvdata, 4133 const struct attribute_group **groups, 4134 const char *fmt, ...) 4135 { 4136 va_list vargs; 4137 struct device *dev; 4138 4139 va_start(vargs, fmt); 4140 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4141 fmt, vargs); 4142 va_end(vargs); 4143 return dev; 4144 } 4145 EXPORT_SYMBOL_GPL(device_create_with_groups); 4146 4147 /** 4148 * device_destroy - removes a device that was created with device_create() 4149 * @class: pointer to the struct class that this device was registered with 4150 * @devt: the dev_t of the device that was previously registered 4151 * 4152 * This call unregisters and cleans up a device that was created with a 4153 * call to device_create(). 4154 */ 4155 void device_destroy(struct class *class, dev_t devt) 4156 { 4157 struct device *dev; 4158 4159 dev = class_find_device_by_devt(class, devt); 4160 if (dev) { 4161 put_device(dev); 4162 device_unregister(dev); 4163 } 4164 } 4165 EXPORT_SYMBOL_GPL(device_destroy); 4166 4167 /** 4168 * device_rename - renames a device 4169 * @dev: the pointer to the struct device to be renamed 4170 * @new_name: the new name of the device 4171 * 4172 * It is the responsibility of the caller to provide mutual 4173 * exclusion between two different calls of device_rename 4174 * on the same device to ensure that new_name is valid and 4175 * won't conflict with other devices. 4176 * 4177 * Note: Don't call this function. Currently, the networking layer calls this 4178 * function, but that will change. The following text from Kay Sievers offers 4179 * some insight: 4180 * 4181 * Renaming devices is racy at many levels, symlinks and other stuff are not 4182 * replaced atomically, and you get a "move" uevent, but it's not easy to 4183 * connect the event to the old and new device. Device nodes are not renamed at 4184 * all, there isn't even support for that in the kernel now. 4185 * 4186 * In the meantime, during renaming, your target name might be taken by another 4187 * driver, creating conflicts. Or the old name is taken directly after you 4188 * renamed it -- then you get events for the same DEVPATH, before you even see 4189 * the "move" event. It's just a mess, and nothing new should ever rely on 4190 * kernel device renaming. Besides that, it's not even implemented now for 4191 * other things than (driver-core wise very simple) network devices. 4192 * 4193 * We are currently about to change network renaming in udev to completely 4194 * disallow renaming of devices in the same namespace as the kernel uses, 4195 * because we can't solve the problems properly, that arise with swapping names 4196 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 4197 * be allowed to some other name than eth[0-9]*, for the aforementioned 4198 * reasons. 4199 * 4200 * Make up a "real" name in the driver before you register anything, or add 4201 * some other attributes for userspace to find the device, or use udev to add 4202 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4203 * don't even want to get into that and try to implement the missing pieces in 4204 * the core. We really have other pieces to fix in the driver core mess. :) 4205 */ 4206 int device_rename(struct device *dev, const char *new_name) 4207 { 4208 struct kobject *kobj = &dev->kobj; 4209 char *old_device_name = NULL; 4210 int error; 4211 4212 dev = get_device(dev); 4213 if (!dev) 4214 return -EINVAL; 4215 4216 dev_dbg(dev, "renaming to %s\n", new_name); 4217 4218 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4219 if (!old_device_name) { 4220 error = -ENOMEM; 4221 goto out; 4222 } 4223 4224 if (dev->class) { 4225 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 4226 kobj, old_device_name, 4227 new_name, kobject_namespace(kobj)); 4228 if (error) 4229 goto out; 4230 } 4231 4232 error = kobject_rename(kobj, new_name); 4233 if (error) 4234 goto out; 4235 4236 out: 4237 put_device(dev); 4238 4239 kfree(old_device_name); 4240 4241 return error; 4242 } 4243 EXPORT_SYMBOL_GPL(device_rename); 4244 4245 static int device_move_class_links(struct device *dev, 4246 struct device *old_parent, 4247 struct device *new_parent) 4248 { 4249 int error = 0; 4250 4251 if (old_parent) 4252 sysfs_remove_link(&dev->kobj, "device"); 4253 if (new_parent) 4254 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4255 "device"); 4256 return error; 4257 } 4258 4259 /** 4260 * device_move - moves a device to a new parent 4261 * @dev: the pointer to the struct device to be moved 4262 * @new_parent: the new parent of the device (can be NULL) 4263 * @dpm_order: how to reorder the dpm_list 4264 */ 4265 int device_move(struct device *dev, struct device *new_parent, 4266 enum dpm_order dpm_order) 4267 { 4268 int error; 4269 struct device *old_parent; 4270 struct kobject *new_parent_kobj; 4271 4272 dev = get_device(dev); 4273 if (!dev) 4274 return -EINVAL; 4275 4276 device_pm_lock(); 4277 new_parent = get_device(new_parent); 4278 new_parent_kobj = get_device_parent(dev, new_parent); 4279 if (IS_ERR(new_parent_kobj)) { 4280 error = PTR_ERR(new_parent_kobj); 4281 put_device(new_parent); 4282 goto out; 4283 } 4284 4285 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4286 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4287 error = kobject_move(&dev->kobj, new_parent_kobj); 4288 if (error) { 4289 cleanup_glue_dir(dev, new_parent_kobj); 4290 put_device(new_parent); 4291 goto out; 4292 } 4293 old_parent = dev->parent; 4294 dev->parent = new_parent; 4295 if (old_parent) 4296 klist_remove(&dev->p->knode_parent); 4297 if (new_parent) { 4298 klist_add_tail(&dev->p->knode_parent, 4299 &new_parent->p->klist_children); 4300 set_dev_node(dev, dev_to_node(new_parent)); 4301 } 4302 4303 if (dev->class) { 4304 error = device_move_class_links(dev, old_parent, new_parent); 4305 if (error) { 4306 /* We ignore errors on cleanup since we're hosed anyway... */ 4307 device_move_class_links(dev, new_parent, old_parent); 4308 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4309 if (new_parent) 4310 klist_remove(&dev->p->knode_parent); 4311 dev->parent = old_parent; 4312 if (old_parent) { 4313 klist_add_tail(&dev->p->knode_parent, 4314 &old_parent->p->klist_children); 4315 set_dev_node(dev, dev_to_node(old_parent)); 4316 } 4317 } 4318 cleanup_glue_dir(dev, new_parent_kobj); 4319 put_device(new_parent); 4320 goto out; 4321 } 4322 } 4323 switch (dpm_order) { 4324 case DPM_ORDER_NONE: 4325 break; 4326 case DPM_ORDER_DEV_AFTER_PARENT: 4327 device_pm_move_after(dev, new_parent); 4328 devices_kset_move_after(dev, new_parent); 4329 break; 4330 case DPM_ORDER_PARENT_BEFORE_DEV: 4331 device_pm_move_before(new_parent, dev); 4332 devices_kset_move_before(new_parent, dev); 4333 break; 4334 case DPM_ORDER_DEV_LAST: 4335 device_pm_move_last(dev); 4336 devices_kset_move_last(dev); 4337 break; 4338 } 4339 4340 put_device(old_parent); 4341 out: 4342 device_pm_unlock(); 4343 put_device(dev); 4344 return error; 4345 } 4346 EXPORT_SYMBOL_GPL(device_move); 4347 4348 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4349 kgid_t kgid) 4350 { 4351 struct kobject *kobj = &dev->kobj; 4352 struct class *class = dev->class; 4353 const struct device_type *type = dev->type; 4354 int error; 4355 4356 if (class) { 4357 /* 4358 * Change the device groups of the device class for @dev to 4359 * @kuid/@kgid. 4360 */ 4361 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4362 kgid); 4363 if (error) 4364 return error; 4365 } 4366 4367 if (type) { 4368 /* 4369 * Change the device groups of the device type for @dev to 4370 * @kuid/@kgid. 4371 */ 4372 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4373 kgid); 4374 if (error) 4375 return error; 4376 } 4377 4378 /* Change the device groups of @dev to @kuid/@kgid. */ 4379 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4380 if (error) 4381 return error; 4382 4383 if (device_supports_offline(dev) && !dev->offline_disabled) { 4384 /* Change online device attributes of @dev to @kuid/@kgid. */ 4385 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4386 kuid, kgid); 4387 if (error) 4388 return error; 4389 } 4390 4391 return 0; 4392 } 4393 4394 /** 4395 * device_change_owner - change the owner of an existing device. 4396 * @dev: device. 4397 * @kuid: new owner's kuid 4398 * @kgid: new owner's kgid 4399 * 4400 * This changes the owner of @dev and its corresponding sysfs entries to 4401 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4402 * core. 4403 * 4404 * Returns 0 on success or error code on failure. 4405 */ 4406 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4407 { 4408 int error; 4409 struct kobject *kobj = &dev->kobj; 4410 4411 dev = get_device(dev); 4412 if (!dev) 4413 return -EINVAL; 4414 4415 /* 4416 * Change the kobject and the default attributes and groups of the 4417 * ktype associated with it to @kuid/@kgid. 4418 */ 4419 error = sysfs_change_owner(kobj, kuid, kgid); 4420 if (error) 4421 goto out; 4422 4423 /* 4424 * Change the uevent file for @dev to the new owner. The uevent file 4425 * was created in a separate step when @dev got added and we mirror 4426 * that step here. 4427 */ 4428 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4429 kgid); 4430 if (error) 4431 goto out; 4432 4433 /* 4434 * Change the device groups, the device groups associated with the 4435 * device class, and the groups associated with the device type of @dev 4436 * to @kuid/@kgid. 4437 */ 4438 error = device_attrs_change_owner(dev, kuid, kgid); 4439 if (error) 4440 goto out; 4441 4442 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4443 if (error) 4444 goto out; 4445 4446 #ifdef CONFIG_BLOCK 4447 if (sysfs_deprecated && dev->class == &block_class) 4448 goto out; 4449 #endif 4450 4451 /* 4452 * Change the owner of the symlink located in the class directory of 4453 * the device class associated with @dev which points to the actual 4454 * directory entry for @dev to @kuid/@kgid. This ensures that the 4455 * symlink shows the same permissions as its target. 4456 */ 4457 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj, 4458 dev_name(dev), kuid, kgid); 4459 if (error) 4460 goto out; 4461 4462 out: 4463 put_device(dev); 4464 return error; 4465 } 4466 EXPORT_SYMBOL_GPL(device_change_owner); 4467 4468 /** 4469 * device_shutdown - call ->shutdown() on each device to shutdown. 4470 */ 4471 void device_shutdown(void) 4472 { 4473 struct device *dev, *parent; 4474 4475 wait_for_device_probe(); 4476 device_block_probing(); 4477 4478 cpufreq_suspend(); 4479 4480 spin_lock(&devices_kset->list_lock); 4481 /* 4482 * Walk the devices list backward, shutting down each in turn. 4483 * Beware that device unplug events may also start pulling 4484 * devices offline, even as the system is shutting down. 4485 */ 4486 while (!list_empty(&devices_kset->list)) { 4487 dev = list_entry(devices_kset->list.prev, struct device, 4488 kobj.entry); 4489 4490 /* 4491 * hold reference count of device's parent to 4492 * prevent it from being freed because parent's 4493 * lock is to be held 4494 */ 4495 parent = get_device(dev->parent); 4496 get_device(dev); 4497 /* 4498 * Make sure the device is off the kset list, in the 4499 * event that dev->*->shutdown() doesn't remove it. 4500 */ 4501 list_del_init(&dev->kobj.entry); 4502 spin_unlock(&devices_kset->list_lock); 4503 4504 /* hold lock to avoid race with probe/release */ 4505 if (parent) 4506 device_lock(parent); 4507 device_lock(dev); 4508 4509 /* Don't allow any more runtime suspends */ 4510 pm_runtime_get_noresume(dev); 4511 pm_runtime_barrier(dev); 4512 4513 if (dev->class && dev->class->shutdown_pre) { 4514 if (initcall_debug) 4515 dev_info(dev, "shutdown_pre\n"); 4516 dev->class->shutdown_pre(dev); 4517 } 4518 if (dev->bus && dev->bus->shutdown) { 4519 if (initcall_debug) 4520 dev_info(dev, "shutdown\n"); 4521 dev->bus->shutdown(dev); 4522 } else if (dev->driver && dev->driver->shutdown) { 4523 if (initcall_debug) 4524 dev_info(dev, "shutdown\n"); 4525 dev->driver->shutdown(dev); 4526 } 4527 4528 device_unlock(dev); 4529 if (parent) 4530 device_unlock(parent); 4531 4532 put_device(dev); 4533 put_device(parent); 4534 4535 spin_lock(&devices_kset->list_lock); 4536 } 4537 spin_unlock(&devices_kset->list_lock); 4538 } 4539 4540 /* 4541 * Device logging functions 4542 */ 4543 4544 #ifdef CONFIG_PRINTK 4545 static void 4546 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4547 { 4548 const char *subsys; 4549 4550 memset(dev_info, 0, sizeof(*dev_info)); 4551 4552 if (dev->class) 4553 subsys = dev->class->name; 4554 else if (dev->bus) 4555 subsys = dev->bus->name; 4556 else 4557 return; 4558 4559 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4560 4561 /* 4562 * Add device identifier DEVICE=: 4563 * b12:8 block dev_t 4564 * c127:3 char dev_t 4565 * n8 netdev ifindex 4566 * +sound:card0 subsystem:devname 4567 */ 4568 if (MAJOR(dev->devt)) { 4569 char c; 4570 4571 if (strcmp(subsys, "block") == 0) 4572 c = 'b'; 4573 else 4574 c = 'c'; 4575 4576 snprintf(dev_info->device, sizeof(dev_info->device), 4577 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4578 } else if (strcmp(subsys, "net") == 0) { 4579 struct net_device *net = to_net_dev(dev); 4580 4581 snprintf(dev_info->device, sizeof(dev_info->device), 4582 "n%u", net->ifindex); 4583 } else { 4584 snprintf(dev_info->device, sizeof(dev_info->device), 4585 "+%s:%s", subsys, dev_name(dev)); 4586 } 4587 } 4588 4589 int dev_vprintk_emit(int level, const struct device *dev, 4590 const char *fmt, va_list args) 4591 { 4592 struct dev_printk_info dev_info; 4593 4594 set_dev_info(dev, &dev_info); 4595 4596 return vprintk_emit(0, level, &dev_info, fmt, args); 4597 } 4598 EXPORT_SYMBOL(dev_vprintk_emit); 4599 4600 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4601 { 4602 va_list args; 4603 int r; 4604 4605 va_start(args, fmt); 4606 4607 r = dev_vprintk_emit(level, dev, fmt, args); 4608 4609 va_end(args); 4610 4611 return r; 4612 } 4613 EXPORT_SYMBOL(dev_printk_emit); 4614 4615 static void __dev_printk(const char *level, const struct device *dev, 4616 struct va_format *vaf) 4617 { 4618 if (dev) 4619 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4620 dev_driver_string(dev), dev_name(dev), vaf); 4621 else 4622 printk("%s(NULL device *): %pV", level, vaf); 4623 } 4624 4625 void _dev_printk(const char *level, const struct device *dev, 4626 const char *fmt, ...) 4627 { 4628 struct va_format vaf; 4629 va_list args; 4630 4631 va_start(args, fmt); 4632 4633 vaf.fmt = fmt; 4634 vaf.va = &args; 4635 4636 __dev_printk(level, dev, &vaf); 4637 4638 va_end(args); 4639 } 4640 EXPORT_SYMBOL(_dev_printk); 4641 4642 #define define_dev_printk_level(func, kern_level) \ 4643 void func(const struct device *dev, const char *fmt, ...) \ 4644 { \ 4645 struct va_format vaf; \ 4646 va_list args; \ 4647 \ 4648 va_start(args, fmt); \ 4649 \ 4650 vaf.fmt = fmt; \ 4651 vaf.va = &args; \ 4652 \ 4653 __dev_printk(kern_level, dev, &vaf); \ 4654 \ 4655 va_end(args); \ 4656 } \ 4657 EXPORT_SYMBOL(func); 4658 4659 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4660 define_dev_printk_level(_dev_alert, KERN_ALERT); 4661 define_dev_printk_level(_dev_crit, KERN_CRIT); 4662 define_dev_printk_level(_dev_err, KERN_ERR); 4663 define_dev_printk_level(_dev_warn, KERN_WARNING); 4664 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4665 define_dev_printk_level(_dev_info, KERN_INFO); 4666 4667 #endif 4668 4669 /** 4670 * dev_err_probe - probe error check and log helper 4671 * @dev: the pointer to the struct device 4672 * @err: error value to test 4673 * @fmt: printf-style format string 4674 * @...: arguments as specified in the format string 4675 * 4676 * This helper implements common pattern present in probe functions for error 4677 * checking: print debug or error message depending if the error value is 4678 * -EPROBE_DEFER and propagate error upwards. 4679 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4680 * checked later by reading devices_deferred debugfs attribute. 4681 * It replaces code sequence:: 4682 * 4683 * if (err != -EPROBE_DEFER) 4684 * dev_err(dev, ...); 4685 * else 4686 * dev_dbg(dev, ...); 4687 * return err; 4688 * 4689 * with:: 4690 * 4691 * return dev_err_probe(dev, err, ...); 4692 * 4693 * Returns @err. 4694 * 4695 */ 4696 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4697 { 4698 struct va_format vaf; 4699 va_list args; 4700 4701 va_start(args, fmt); 4702 vaf.fmt = fmt; 4703 vaf.va = &args; 4704 4705 if (err != -EPROBE_DEFER) { 4706 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4707 } else { 4708 device_set_deferred_probe_reason(dev, &vaf); 4709 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4710 } 4711 4712 va_end(args); 4713 4714 return err; 4715 } 4716 EXPORT_SYMBOL_GPL(dev_err_probe); 4717 4718 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 4719 { 4720 return fwnode && !IS_ERR(fwnode->secondary); 4721 } 4722 4723 /** 4724 * set_primary_fwnode - Change the primary firmware node of a given device. 4725 * @dev: Device to handle. 4726 * @fwnode: New primary firmware node of the device. 4727 * 4728 * Set the device's firmware node pointer to @fwnode, but if a secondary 4729 * firmware node of the device is present, preserve it. 4730 * 4731 * Valid fwnode cases are: 4732 * - primary --> secondary --> -ENODEV 4733 * - primary --> NULL 4734 * - secondary --> -ENODEV 4735 * - NULL 4736 */ 4737 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4738 { 4739 struct device *parent = dev->parent; 4740 struct fwnode_handle *fn = dev->fwnode; 4741 4742 if (fwnode) { 4743 if (fwnode_is_primary(fn)) 4744 fn = fn->secondary; 4745 4746 if (fn) { 4747 WARN_ON(fwnode->secondary); 4748 fwnode->secondary = fn; 4749 } 4750 dev->fwnode = fwnode; 4751 } else { 4752 if (fwnode_is_primary(fn)) { 4753 dev->fwnode = fn->secondary; 4754 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 4755 if (!(parent && fn == parent->fwnode)) 4756 fn->secondary = NULL; 4757 } else { 4758 dev->fwnode = NULL; 4759 } 4760 } 4761 } 4762 EXPORT_SYMBOL_GPL(set_primary_fwnode); 4763 4764 /** 4765 * set_secondary_fwnode - Change the secondary firmware node of a given device. 4766 * @dev: Device to handle. 4767 * @fwnode: New secondary firmware node of the device. 4768 * 4769 * If a primary firmware node of the device is present, set its secondary 4770 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 4771 * @fwnode. 4772 */ 4773 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4774 { 4775 if (fwnode) 4776 fwnode->secondary = ERR_PTR(-ENODEV); 4777 4778 if (fwnode_is_primary(dev->fwnode)) 4779 dev->fwnode->secondary = fwnode; 4780 else 4781 dev->fwnode = fwnode; 4782 } 4783 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 4784 4785 /** 4786 * device_set_of_node_from_dev - reuse device-tree node of another device 4787 * @dev: device whose device-tree node is being set 4788 * @dev2: device whose device-tree node is being reused 4789 * 4790 * Takes another reference to the new device-tree node after first dropping 4791 * any reference held to the old node. 4792 */ 4793 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 4794 { 4795 of_node_put(dev->of_node); 4796 dev->of_node = of_node_get(dev2->of_node); 4797 dev->of_node_reused = true; 4798 } 4799 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 4800 4801 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 4802 { 4803 dev->fwnode = fwnode; 4804 dev->of_node = to_of_node(fwnode); 4805 } 4806 EXPORT_SYMBOL_GPL(device_set_node); 4807 4808 int device_match_name(struct device *dev, const void *name) 4809 { 4810 return sysfs_streq(dev_name(dev), name); 4811 } 4812 EXPORT_SYMBOL_GPL(device_match_name); 4813 4814 int device_match_of_node(struct device *dev, const void *np) 4815 { 4816 return dev->of_node == np; 4817 } 4818 EXPORT_SYMBOL_GPL(device_match_of_node); 4819 4820 int device_match_fwnode(struct device *dev, const void *fwnode) 4821 { 4822 return dev_fwnode(dev) == fwnode; 4823 } 4824 EXPORT_SYMBOL_GPL(device_match_fwnode); 4825 4826 int device_match_devt(struct device *dev, const void *pdevt) 4827 { 4828 return dev->devt == *(dev_t *)pdevt; 4829 } 4830 EXPORT_SYMBOL_GPL(device_match_devt); 4831 4832 int device_match_acpi_dev(struct device *dev, const void *adev) 4833 { 4834 return ACPI_COMPANION(dev) == adev; 4835 } 4836 EXPORT_SYMBOL(device_match_acpi_dev); 4837 4838 int device_match_any(struct device *dev, const void *unused) 4839 { 4840 return 1; 4841 } 4842 EXPORT_SYMBOL_GPL(device_match_any); 4843