xref: /openbmc/linux/drivers/base/core.c (revision 4a32e1cd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/swiotlb.h>
31 #include <linux/sysfs.h>
32 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
33 
34 #include "base.h"
35 #include "power/power.h"
36 
37 #ifdef CONFIG_SYSFS_DEPRECATED
38 #ifdef CONFIG_SYSFS_DEPRECATED_V2
39 long sysfs_deprecated = 1;
40 #else
41 long sysfs_deprecated = 0;
42 #endif
43 static int __init sysfs_deprecated_setup(char *arg)
44 {
45 	return kstrtol(arg, 10, &sysfs_deprecated);
46 }
47 early_param("sysfs.deprecated", sysfs_deprecated_setup);
48 #endif
49 
50 /* Device links support. */
51 static LIST_HEAD(deferred_sync);
52 static unsigned int defer_sync_state_count = 1;
53 static DEFINE_MUTEX(fwnode_link_lock);
54 static bool fw_devlink_is_permissive(void);
55 static bool fw_devlink_drv_reg_done;
56 
57 /**
58  * fwnode_link_add - Create a link between two fwnode_handles.
59  * @con: Consumer end of the link.
60  * @sup: Supplier end of the link.
61  *
62  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
63  * represents the detail that the firmware lists @sup fwnode as supplying a
64  * resource to @con.
65  *
66  * The driver core will use the fwnode link to create a device link between the
67  * two device objects corresponding to @con and @sup when they are created. The
68  * driver core will automatically delete the fwnode link between @con and @sup
69  * after doing that.
70  *
71  * Attempts to create duplicate links between the same pair of fwnode handles
72  * are ignored and there is no reference counting.
73  */
74 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
75 {
76 	struct fwnode_link *link;
77 	int ret = 0;
78 
79 	mutex_lock(&fwnode_link_lock);
80 
81 	list_for_each_entry(link, &sup->consumers, s_hook)
82 		if (link->consumer == con)
83 			goto out;
84 
85 	link = kzalloc(sizeof(*link), GFP_KERNEL);
86 	if (!link) {
87 		ret = -ENOMEM;
88 		goto out;
89 	}
90 
91 	link->supplier = sup;
92 	INIT_LIST_HEAD(&link->s_hook);
93 	link->consumer = con;
94 	INIT_LIST_HEAD(&link->c_hook);
95 
96 	list_add(&link->s_hook, &sup->consumers);
97 	list_add(&link->c_hook, &con->suppliers);
98 	pr_debug("%pfwP Linked as a fwnode consumer to %pfwP\n",
99 		 con, sup);
100 out:
101 	mutex_unlock(&fwnode_link_lock);
102 
103 	return ret;
104 }
105 
106 /**
107  * __fwnode_link_del - Delete a link between two fwnode_handles.
108  * @link: the fwnode_link to be deleted
109  *
110  * The fwnode_link_lock needs to be held when this function is called.
111  */
112 static void __fwnode_link_del(struct fwnode_link *link)
113 {
114 	pr_debug("%pfwP Dropping the fwnode link to %pfwP\n",
115 		 link->consumer, link->supplier);
116 	list_del(&link->s_hook);
117 	list_del(&link->c_hook);
118 	kfree(link);
119 }
120 
121 /**
122  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
123  * @fwnode: fwnode whose supplier links need to be deleted
124  *
125  * Deletes all supplier links connecting directly to @fwnode.
126  */
127 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
128 {
129 	struct fwnode_link *link, *tmp;
130 
131 	mutex_lock(&fwnode_link_lock);
132 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
133 		__fwnode_link_del(link);
134 	mutex_unlock(&fwnode_link_lock);
135 }
136 
137 /**
138  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
139  * @fwnode: fwnode whose consumer links need to be deleted
140  *
141  * Deletes all consumer links connecting directly to @fwnode.
142  */
143 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
144 {
145 	struct fwnode_link *link, *tmp;
146 
147 	mutex_lock(&fwnode_link_lock);
148 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
149 		__fwnode_link_del(link);
150 	mutex_unlock(&fwnode_link_lock);
151 }
152 
153 /**
154  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
155  * @fwnode: fwnode whose links needs to be deleted
156  *
157  * Deletes all links connecting directly to a fwnode.
158  */
159 void fwnode_links_purge(struct fwnode_handle *fwnode)
160 {
161 	fwnode_links_purge_suppliers(fwnode);
162 	fwnode_links_purge_consumers(fwnode);
163 }
164 
165 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
166 {
167 	struct fwnode_handle *child;
168 
169 	/* Don't purge consumer links of an added child */
170 	if (fwnode->dev)
171 		return;
172 
173 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
174 	fwnode_links_purge_consumers(fwnode);
175 
176 	fwnode_for_each_available_child_node(fwnode, child)
177 		fw_devlink_purge_absent_suppliers(child);
178 }
179 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
180 
181 #ifdef CONFIG_SRCU
182 static DEFINE_MUTEX(device_links_lock);
183 DEFINE_STATIC_SRCU(device_links_srcu);
184 
185 static inline void device_links_write_lock(void)
186 {
187 	mutex_lock(&device_links_lock);
188 }
189 
190 static inline void device_links_write_unlock(void)
191 {
192 	mutex_unlock(&device_links_lock);
193 }
194 
195 int device_links_read_lock(void) __acquires(&device_links_srcu)
196 {
197 	return srcu_read_lock(&device_links_srcu);
198 }
199 
200 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
201 {
202 	srcu_read_unlock(&device_links_srcu, idx);
203 }
204 
205 int device_links_read_lock_held(void)
206 {
207 	return srcu_read_lock_held(&device_links_srcu);
208 }
209 
210 static void device_link_synchronize_removal(void)
211 {
212 	synchronize_srcu(&device_links_srcu);
213 }
214 
215 static void device_link_remove_from_lists(struct device_link *link)
216 {
217 	list_del_rcu(&link->s_node);
218 	list_del_rcu(&link->c_node);
219 }
220 #else /* !CONFIG_SRCU */
221 static DECLARE_RWSEM(device_links_lock);
222 
223 static inline void device_links_write_lock(void)
224 {
225 	down_write(&device_links_lock);
226 }
227 
228 static inline void device_links_write_unlock(void)
229 {
230 	up_write(&device_links_lock);
231 }
232 
233 int device_links_read_lock(void)
234 {
235 	down_read(&device_links_lock);
236 	return 0;
237 }
238 
239 void device_links_read_unlock(int not_used)
240 {
241 	up_read(&device_links_lock);
242 }
243 
244 #ifdef CONFIG_DEBUG_LOCK_ALLOC
245 int device_links_read_lock_held(void)
246 {
247 	return lockdep_is_held(&device_links_lock);
248 }
249 #endif
250 
251 static inline void device_link_synchronize_removal(void)
252 {
253 }
254 
255 static void device_link_remove_from_lists(struct device_link *link)
256 {
257 	list_del(&link->s_node);
258 	list_del(&link->c_node);
259 }
260 #endif /* !CONFIG_SRCU */
261 
262 static bool device_is_ancestor(struct device *dev, struct device *target)
263 {
264 	while (target->parent) {
265 		target = target->parent;
266 		if (dev == target)
267 			return true;
268 	}
269 	return false;
270 }
271 
272 /**
273  * device_is_dependent - Check if one device depends on another one
274  * @dev: Device to check dependencies for.
275  * @target: Device to check against.
276  *
277  * Check if @target depends on @dev or any device dependent on it (its child or
278  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
279  */
280 int device_is_dependent(struct device *dev, void *target)
281 {
282 	struct device_link *link;
283 	int ret;
284 
285 	/*
286 	 * The "ancestors" check is needed to catch the case when the target
287 	 * device has not been completely initialized yet and it is still
288 	 * missing from the list of children of its parent device.
289 	 */
290 	if (dev == target || device_is_ancestor(dev, target))
291 		return 1;
292 
293 	ret = device_for_each_child(dev, target, device_is_dependent);
294 	if (ret)
295 		return ret;
296 
297 	list_for_each_entry(link, &dev->links.consumers, s_node) {
298 		if ((link->flags & ~DL_FLAG_INFERRED) ==
299 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
300 			continue;
301 
302 		if (link->consumer == target)
303 			return 1;
304 
305 		ret = device_is_dependent(link->consumer, target);
306 		if (ret)
307 			break;
308 	}
309 	return ret;
310 }
311 
312 static void device_link_init_status(struct device_link *link,
313 				    struct device *consumer,
314 				    struct device *supplier)
315 {
316 	switch (supplier->links.status) {
317 	case DL_DEV_PROBING:
318 		switch (consumer->links.status) {
319 		case DL_DEV_PROBING:
320 			/*
321 			 * A consumer driver can create a link to a supplier
322 			 * that has not completed its probing yet as long as it
323 			 * knows that the supplier is already functional (for
324 			 * example, it has just acquired some resources from the
325 			 * supplier).
326 			 */
327 			link->status = DL_STATE_CONSUMER_PROBE;
328 			break;
329 		default:
330 			link->status = DL_STATE_DORMANT;
331 			break;
332 		}
333 		break;
334 	case DL_DEV_DRIVER_BOUND:
335 		switch (consumer->links.status) {
336 		case DL_DEV_PROBING:
337 			link->status = DL_STATE_CONSUMER_PROBE;
338 			break;
339 		case DL_DEV_DRIVER_BOUND:
340 			link->status = DL_STATE_ACTIVE;
341 			break;
342 		default:
343 			link->status = DL_STATE_AVAILABLE;
344 			break;
345 		}
346 		break;
347 	case DL_DEV_UNBINDING:
348 		link->status = DL_STATE_SUPPLIER_UNBIND;
349 		break;
350 	default:
351 		link->status = DL_STATE_DORMANT;
352 		break;
353 	}
354 }
355 
356 static int device_reorder_to_tail(struct device *dev, void *not_used)
357 {
358 	struct device_link *link;
359 
360 	/*
361 	 * Devices that have not been registered yet will be put to the ends
362 	 * of the lists during the registration, so skip them here.
363 	 */
364 	if (device_is_registered(dev))
365 		devices_kset_move_last(dev);
366 
367 	if (device_pm_initialized(dev))
368 		device_pm_move_last(dev);
369 
370 	device_for_each_child(dev, NULL, device_reorder_to_tail);
371 	list_for_each_entry(link, &dev->links.consumers, s_node) {
372 		if ((link->flags & ~DL_FLAG_INFERRED) ==
373 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
374 			continue;
375 		device_reorder_to_tail(link->consumer, NULL);
376 	}
377 
378 	return 0;
379 }
380 
381 /**
382  * device_pm_move_to_tail - Move set of devices to the end of device lists
383  * @dev: Device to move
384  *
385  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
386  *
387  * It moves the @dev along with all of its children and all of its consumers
388  * to the ends of the device_kset and dpm_list, recursively.
389  */
390 void device_pm_move_to_tail(struct device *dev)
391 {
392 	int idx;
393 
394 	idx = device_links_read_lock();
395 	device_pm_lock();
396 	device_reorder_to_tail(dev, NULL);
397 	device_pm_unlock();
398 	device_links_read_unlock(idx);
399 }
400 
401 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
402 
403 static ssize_t status_show(struct device *dev,
404 			   struct device_attribute *attr, char *buf)
405 {
406 	const char *output;
407 
408 	switch (to_devlink(dev)->status) {
409 	case DL_STATE_NONE:
410 		output = "not tracked";
411 		break;
412 	case DL_STATE_DORMANT:
413 		output = "dormant";
414 		break;
415 	case DL_STATE_AVAILABLE:
416 		output = "available";
417 		break;
418 	case DL_STATE_CONSUMER_PROBE:
419 		output = "consumer probing";
420 		break;
421 	case DL_STATE_ACTIVE:
422 		output = "active";
423 		break;
424 	case DL_STATE_SUPPLIER_UNBIND:
425 		output = "supplier unbinding";
426 		break;
427 	default:
428 		output = "unknown";
429 		break;
430 	}
431 
432 	return sysfs_emit(buf, "%s\n", output);
433 }
434 static DEVICE_ATTR_RO(status);
435 
436 static ssize_t auto_remove_on_show(struct device *dev,
437 				   struct device_attribute *attr, char *buf)
438 {
439 	struct device_link *link = to_devlink(dev);
440 	const char *output;
441 
442 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
443 		output = "supplier unbind";
444 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
445 		output = "consumer unbind";
446 	else
447 		output = "never";
448 
449 	return sysfs_emit(buf, "%s\n", output);
450 }
451 static DEVICE_ATTR_RO(auto_remove_on);
452 
453 static ssize_t runtime_pm_show(struct device *dev,
454 			       struct device_attribute *attr, char *buf)
455 {
456 	struct device_link *link = to_devlink(dev);
457 
458 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
459 }
460 static DEVICE_ATTR_RO(runtime_pm);
461 
462 static ssize_t sync_state_only_show(struct device *dev,
463 				    struct device_attribute *attr, char *buf)
464 {
465 	struct device_link *link = to_devlink(dev);
466 
467 	return sysfs_emit(buf, "%d\n",
468 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
469 }
470 static DEVICE_ATTR_RO(sync_state_only);
471 
472 static struct attribute *devlink_attrs[] = {
473 	&dev_attr_status.attr,
474 	&dev_attr_auto_remove_on.attr,
475 	&dev_attr_runtime_pm.attr,
476 	&dev_attr_sync_state_only.attr,
477 	NULL,
478 };
479 ATTRIBUTE_GROUPS(devlink);
480 
481 static void device_link_release_fn(struct work_struct *work)
482 {
483 	struct device_link *link = container_of(work, struct device_link, rm_work);
484 
485 	/* Ensure that all references to the link object have been dropped. */
486 	device_link_synchronize_removal();
487 
488 	while (refcount_dec_not_one(&link->rpm_active))
489 		pm_runtime_put(link->supplier);
490 
491 	put_device(link->consumer);
492 	put_device(link->supplier);
493 	kfree(link);
494 }
495 
496 static void devlink_dev_release(struct device *dev)
497 {
498 	struct device_link *link = to_devlink(dev);
499 
500 	INIT_WORK(&link->rm_work, device_link_release_fn);
501 	/*
502 	 * It may take a while to complete this work because of the SRCU
503 	 * synchronization in device_link_release_fn() and if the consumer or
504 	 * supplier devices get deleted when it runs, so put it into the "long"
505 	 * workqueue.
506 	 */
507 	queue_work(system_long_wq, &link->rm_work);
508 }
509 
510 static struct class devlink_class = {
511 	.name = "devlink",
512 	.owner = THIS_MODULE,
513 	.dev_groups = devlink_groups,
514 	.dev_release = devlink_dev_release,
515 };
516 
517 static int devlink_add_symlinks(struct device *dev,
518 				struct class_interface *class_intf)
519 {
520 	int ret;
521 	size_t len;
522 	struct device_link *link = to_devlink(dev);
523 	struct device *sup = link->supplier;
524 	struct device *con = link->consumer;
525 	char *buf;
526 
527 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
528 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
529 	len += strlen(":");
530 	len += strlen("supplier:") + 1;
531 	buf = kzalloc(len, GFP_KERNEL);
532 	if (!buf)
533 		return -ENOMEM;
534 
535 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
536 	if (ret)
537 		goto out;
538 
539 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
540 	if (ret)
541 		goto err_con;
542 
543 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
544 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
545 	if (ret)
546 		goto err_con_dev;
547 
548 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
549 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
550 	if (ret)
551 		goto err_sup_dev;
552 
553 	goto out;
554 
555 err_sup_dev:
556 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
557 	sysfs_remove_link(&sup->kobj, buf);
558 err_con_dev:
559 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
560 err_con:
561 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
562 out:
563 	kfree(buf);
564 	return ret;
565 }
566 
567 static void devlink_remove_symlinks(struct device *dev,
568 				   struct class_interface *class_intf)
569 {
570 	struct device_link *link = to_devlink(dev);
571 	size_t len;
572 	struct device *sup = link->supplier;
573 	struct device *con = link->consumer;
574 	char *buf;
575 
576 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
577 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
578 
579 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
580 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
581 	len += strlen(":");
582 	len += strlen("supplier:") + 1;
583 	buf = kzalloc(len, GFP_KERNEL);
584 	if (!buf) {
585 		WARN(1, "Unable to properly free device link symlinks!\n");
586 		return;
587 	}
588 
589 	if (device_is_registered(con)) {
590 		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
591 		sysfs_remove_link(&con->kobj, buf);
592 	}
593 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
594 	sysfs_remove_link(&sup->kobj, buf);
595 	kfree(buf);
596 }
597 
598 static struct class_interface devlink_class_intf = {
599 	.class = &devlink_class,
600 	.add_dev = devlink_add_symlinks,
601 	.remove_dev = devlink_remove_symlinks,
602 };
603 
604 static int __init devlink_class_init(void)
605 {
606 	int ret;
607 
608 	ret = class_register(&devlink_class);
609 	if (ret)
610 		return ret;
611 
612 	ret = class_interface_register(&devlink_class_intf);
613 	if (ret)
614 		class_unregister(&devlink_class);
615 
616 	return ret;
617 }
618 postcore_initcall(devlink_class_init);
619 
620 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
621 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
622 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
623 			       DL_FLAG_SYNC_STATE_ONLY | \
624 			       DL_FLAG_INFERRED)
625 
626 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
627 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
628 
629 /**
630  * device_link_add - Create a link between two devices.
631  * @consumer: Consumer end of the link.
632  * @supplier: Supplier end of the link.
633  * @flags: Link flags.
634  *
635  * The caller is responsible for the proper synchronization of the link creation
636  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
637  * runtime PM framework to take the link into account.  Second, if the
638  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
639  * be forced into the active meta state and reference-counted upon the creation
640  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
641  * ignored.
642  *
643  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
644  * expected to release the link returned by it directly with the help of either
645  * device_link_del() or device_link_remove().
646  *
647  * If that flag is not set, however, the caller of this function is handing the
648  * management of the link over to the driver core entirely and its return value
649  * can only be used to check whether or not the link is present.  In that case,
650  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
651  * flags can be used to indicate to the driver core when the link can be safely
652  * deleted.  Namely, setting one of them in @flags indicates to the driver core
653  * that the link is not going to be used (by the given caller of this function)
654  * after unbinding the consumer or supplier driver, respectively, from its
655  * device, so the link can be deleted at that point.  If none of them is set,
656  * the link will be maintained until one of the devices pointed to by it (either
657  * the consumer or the supplier) is unregistered.
658  *
659  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
660  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
661  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
662  * be used to request the driver core to automatically probe for a consumer
663  * driver after successfully binding a driver to the supplier device.
664  *
665  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
666  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
667  * the same time is invalid and will cause NULL to be returned upfront.
668  * However, if a device link between the given @consumer and @supplier pair
669  * exists already when this function is called for them, the existing link will
670  * be returned regardless of its current type and status (the link's flags may
671  * be modified then).  The caller of this function is then expected to treat
672  * the link as though it has just been created, so (in particular) if
673  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
674  * explicitly when not needed any more (as stated above).
675  *
676  * A side effect of the link creation is re-ordering of dpm_list and the
677  * devices_kset list by moving the consumer device and all devices depending
678  * on it to the ends of these lists (that does not happen to devices that have
679  * not been registered when this function is called).
680  *
681  * The supplier device is required to be registered when this function is called
682  * and NULL will be returned if that is not the case.  The consumer device need
683  * not be registered, however.
684  */
685 struct device_link *device_link_add(struct device *consumer,
686 				    struct device *supplier, u32 flags)
687 {
688 	struct device_link *link;
689 
690 	if (!consumer || !supplier || consumer == supplier ||
691 	    flags & ~DL_ADD_VALID_FLAGS ||
692 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
693 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
694 	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
695 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
696 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
697 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
698 		return NULL;
699 
700 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
701 		if (pm_runtime_get_sync(supplier) < 0) {
702 			pm_runtime_put_noidle(supplier);
703 			return NULL;
704 		}
705 	}
706 
707 	if (!(flags & DL_FLAG_STATELESS))
708 		flags |= DL_FLAG_MANAGED;
709 
710 	device_links_write_lock();
711 	device_pm_lock();
712 
713 	/*
714 	 * If the supplier has not been fully registered yet or there is a
715 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
716 	 * the supplier already in the graph, return NULL. If the link is a
717 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
718 	 * because it only affects sync_state() callbacks.
719 	 */
720 	if (!device_pm_initialized(supplier)
721 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
722 		  device_is_dependent(consumer, supplier))) {
723 		link = NULL;
724 		goto out;
725 	}
726 
727 	/*
728 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
729 	 * So, only create it if the consumer hasn't probed yet.
730 	 */
731 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
732 	    consumer->links.status != DL_DEV_NO_DRIVER &&
733 	    consumer->links.status != DL_DEV_PROBING) {
734 		link = NULL;
735 		goto out;
736 	}
737 
738 	/*
739 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
740 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
741 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
742 	 */
743 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
744 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
745 
746 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
747 		if (link->consumer != consumer)
748 			continue;
749 
750 		if (link->flags & DL_FLAG_INFERRED &&
751 		    !(flags & DL_FLAG_INFERRED))
752 			link->flags &= ~DL_FLAG_INFERRED;
753 
754 		if (flags & DL_FLAG_PM_RUNTIME) {
755 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
756 				pm_runtime_new_link(consumer);
757 				link->flags |= DL_FLAG_PM_RUNTIME;
758 			}
759 			if (flags & DL_FLAG_RPM_ACTIVE)
760 				refcount_inc(&link->rpm_active);
761 		}
762 
763 		if (flags & DL_FLAG_STATELESS) {
764 			kref_get(&link->kref);
765 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
766 			    !(link->flags & DL_FLAG_STATELESS)) {
767 				link->flags |= DL_FLAG_STATELESS;
768 				goto reorder;
769 			} else {
770 				link->flags |= DL_FLAG_STATELESS;
771 				goto out;
772 			}
773 		}
774 
775 		/*
776 		 * If the life time of the link following from the new flags is
777 		 * longer than indicated by the flags of the existing link,
778 		 * update the existing link to stay around longer.
779 		 */
780 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
781 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
782 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
783 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
784 			}
785 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
786 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
787 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
788 		}
789 		if (!(link->flags & DL_FLAG_MANAGED)) {
790 			kref_get(&link->kref);
791 			link->flags |= DL_FLAG_MANAGED;
792 			device_link_init_status(link, consumer, supplier);
793 		}
794 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
795 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
796 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
797 			goto reorder;
798 		}
799 
800 		goto out;
801 	}
802 
803 	link = kzalloc(sizeof(*link), GFP_KERNEL);
804 	if (!link)
805 		goto out;
806 
807 	refcount_set(&link->rpm_active, 1);
808 
809 	get_device(supplier);
810 	link->supplier = supplier;
811 	INIT_LIST_HEAD(&link->s_node);
812 	get_device(consumer);
813 	link->consumer = consumer;
814 	INIT_LIST_HEAD(&link->c_node);
815 	link->flags = flags;
816 	kref_init(&link->kref);
817 
818 	link->link_dev.class = &devlink_class;
819 	device_set_pm_not_required(&link->link_dev);
820 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
821 		     dev_bus_name(supplier), dev_name(supplier),
822 		     dev_bus_name(consumer), dev_name(consumer));
823 	if (device_register(&link->link_dev)) {
824 		put_device(consumer);
825 		put_device(supplier);
826 		kfree(link);
827 		link = NULL;
828 		goto out;
829 	}
830 
831 	if (flags & DL_FLAG_PM_RUNTIME) {
832 		if (flags & DL_FLAG_RPM_ACTIVE)
833 			refcount_inc(&link->rpm_active);
834 
835 		pm_runtime_new_link(consumer);
836 	}
837 
838 	/* Determine the initial link state. */
839 	if (flags & DL_FLAG_STATELESS)
840 		link->status = DL_STATE_NONE;
841 	else
842 		device_link_init_status(link, consumer, supplier);
843 
844 	/*
845 	 * Some callers expect the link creation during consumer driver probe to
846 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
847 	 */
848 	if (link->status == DL_STATE_CONSUMER_PROBE &&
849 	    flags & DL_FLAG_PM_RUNTIME)
850 		pm_runtime_resume(supplier);
851 
852 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
853 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
854 
855 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
856 		dev_dbg(consumer,
857 			"Linked as a sync state only consumer to %s\n",
858 			dev_name(supplier));
859 		goto out;
860 	}
861 
862 reorder:
863 	/*
864 	 * Move the consumer and all of the devices depending on it to the end
865 	 * of dpm_list and the devices_kset list.
866 	 *
867 	 * It is necessary to hold dpm_list locked throughout all that or else
868 	 * we may end up suspending with a wrong ordering of it.
869 	 */
870 	device_reorder_to_tail(consumer, NULL);
871 
872 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
873 
874 out:
875 	device_pm_unlock();
876 	device_links_write_unlock();
877 
878 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
879 		pm_runtime_put(supplier);
880 
881 	return link;
882 }
883 EXPORT_SYMBOL_GPL(device_link_add);
884 
885 static void __device_link_del(struct kref *kref)
886 {
887 	struct device_link *link = container_of(kref, struct device_link, kref);
888 
889 	dev_dbg(link->consumer, "Dropping the link to %s\n",
890 		dev_name(link->supplier));
891 
892 	pm_runtime_drop_link(link);
893 
894 	device_link_remove_from_lists(link);
895 	device_unregister(&link->link_dev);
896 }
897 
898 static void device_link_put_kref(struct device_link *link)
899 {
900 	if (link->flags & DL_FLAG_STATELESS)
901 		kref_put(&link->kref, __device_link_del);
902 	else if (!device_is_registered(link->consumer))
903 		__device_link_del(&link->kref);
904 	else
905 		WARN(1, "Unable to drop a managed device link reference\n");
906 }
907 
908 /**
909  * device_link_del - Delete a stateless link between two devices.
910  * @link: Device link to delete.
911  *
912  * The caller must ensure proper synchronization of this function with runtime
913  * PM.  If the link was added multiple times, it needs to be deleted as often.
914  * Care is required for hotplugged devices:  Their links are purged on removal
915  * and calling device_link_del() is then no longer allowed.
916  */
917 void device_link_del(struct device_link *link)
918 {
919 	device_links_write_lock();
920 	device_link_put_kref(link);
921 	device_links_write_unlock();
922 }
923 EXPORT_SYMBOL_GPL(device_link_del);
924 
925 /**
926  * device_link_remove - Delete a stateless link between two devices.
927  * @consumer: Consumer end of the link.
928  * @supplier: Supplier end of the link.
929  *
930  * The caller must ensure proper synchronization of this function with runtime
931  * PM.
932  */
933 void device_link_remove(void *consumer, struct device *supplier)
934 {
935 	struct device_link *link;
936 
937 	if (WARN_ON(consumer == supplier))
938 		return;
939 
940 	device_links_write_lock();
941 
942 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
943 		if (link->consumer == consumer) {
944 			device_link_put_kref(link);
945 			break;
946 		}
947 	}
948 
949 	device_links_write_unlock();
950 }
951 EXPORT_SYMBOL_GPL(device_link_remove);
952 
953 static void device_links_missing_supplier(struct device *dev)
954 {
955 	struct device_link *link;
956 
957 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
958 		if (link->status != DL_STATE_CONSUMER_PROBE)
959 			continue;
960 
961 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
962 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
963 		} else {
964 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
965 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
966 		}
967 	}
968 }
969 
970 /**
971  * device_links_check_suppliers - Check presence of supplier drivers.
972  * @dev: Consumer device.
973  *
974  * Check links from this device to any suppliers.  Walk the list of the device's
975  * links to suppliers and see if all of them are available.  If not, simply
976  * return -EPROBE_DEFER.
977  *
978  * We need to guarantee that the supplier will not go away after the check has
979  * been positive here.  It only can go away in __device_release_driver() and
980  * that function  checks the device's links to consumers.  This means we need to
981  * mark the link as "consumer probe in progress" to make the supplier removal
982  * wait for us to complete (or bad things may happen).
983  *
984  * Links without the DL_FLAG_MANAGED flag set are ignored.
985  */
986 int device_links_check_suppliers(struct device *dev)
987 {
988 	struct device_link *link;
989 	int ret = 0;
990 	struct fwnode_handle *sup_fw;
991 
992 	/*
993 	 * Device waiting for supplier to become available is not allowed to
994 	 * probe.
995 	 */
996 	mutex_lock(&fwnode_link_lock);
997 	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
998 	    !fw_devlink_is_permissive()) {
999 		sup_fw = list_first_entry(&dev->fwnode->suppliers,
1000 					  struct fwnode_link,
1001 					  c_hook)->supplier;
1002 		dev_err_probe(dev, -EPROBE_DEFER, "wait for supplier %pfwP\n",
1003 			      sup_fw);
1004 		mutex_unlock(&fwnode_link_lock);
1005 		return -EPROBE_DEFER;
1006 	}
1007 	mutex_unlock(&fwnode_link_lock);
1008 
1009 	device_links_write_lock();
1010 
1011 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1012 		if (!(link->flags & DL_FLAG_MANAGED))
1013 			continue;
1014 
1015 		if (link->status != DL_STATE_AVAILABLE &&
1016 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1017 			device_links_missing_supplier(dev);
1018 			dev_err_probe(dev, -EPROBE_DEFER,
1019 				      "supplier %s not ready\n",
1020 				      dev_name(link->supplier));
1021 			ret = -EPROBE_DEFER;
1022 			break;
1023 		}
1024 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1025 	}
1026 	dev->links.status = DL_DEV_PROBING;
1027 
1028 	device_links_write_unlock();
1029 	return ret;
1030 }
1031 
1032 /**
1033  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1034  * @dev: Device to call sync_state() on
1035  * @list: List head to queue the @dev on
1036  *
1037  * Queues a device for a sync_state() callback when the device links write lock
1038  * isn't held. This allows the sync_state() execution flow to use device links
1039  * APIs.  The caller must ensure this function is called with
1040  * device_links_write_lock() held.
1041  *
1042  * This function does a get_device() to make sure the device is not freed while
1043  * on this list.
1044  *
1045  * So the caller must also ensure that device_links_flush_sync_list() is called
1046  * as soon as the caller releases device_links_write_lock().  This is necessary
1047  * to make sure the sync_state() is called in a timely fashion and the
1048  * put_device() is called on this device.
1049  */
1050 static void __device_links_queue_sync_state(struct device *dev,
1051 					    struct list_head *list)
1052 {
1053 	struct device_link *link;
1054 
1055 	if (!dev_has_sync_state(dev))
1056 		return;
1057 	if (dev->state_synced)
1058 		return;
1059 
1060 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1061 		if (!(link->flags & DL_FLAG_MANAGED))
1062 			continue;
1063 		if (link->status != DL_STATE_ACTIVE)
1064 			return;
1065 	}
1066 
1067 	/*
1068 	 * Set the flag here to avoid adding the same device to a list more
1069 	 * than once. This can happen if new consumers get added to the device
1070 	 * and probed before the list is flushed.
1071 	 */
1072 	dev->state_synced = true;
1073 
1074 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1075 		return;
1076 
1077 	get_device(dev);
1078 	list_add_tail(&dev->links.defer_sync, list);
1079 }
1080 
1081 /**
1082  * device_links_flush_sync_list - Call sync_state() on a list of devices
1083  * @list: List of devices to call sync_state() on
1084  * @dont_lock_dev: Device for which lock is already held by the caller
1085  *
1086  * Calls sync_state() on all the devices that have been queued for it. This
1087  * function is used in conjunction with __device_links_queue_sync_state(). The
1088  * @dont_lock_dev parameter is useful when this function is called from a
1089  * context where a device lock is already held.
1090  */
1091 static void device_links_flush_sync_list(struct list_head *list,
1092 					 struct device *dont_lock_dev)
1093 {
1094 	struct device *dev, *tmp;
1095 
1096 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1097 		list_del_init(&dev->links.defer_sync);
1098 
1099 		if (dev != dont_lock_dev)
1100 			device_lock(dev);
1101 
1102 		if (dev->bus->sync_state)
1103 			dev->bus->sync_state(dev);
1104 		else if (dev->driver && dev->driver->sync_state)
1105 			dev->driver->sync_state(dev);
1106 
1107 		if (dev != dont_lock_dev)
1108 			device_unlock(dev);
1109 
1110 		put_device(dev);
1111 	}
1112 }
1113 
1114 void device_links_supplier_sync_state_pause(void)
1115 {
1116 	device_links_write_lock();
1117 	defer_sync_state_count++;
1118 	device_links_write_unlock();
1119 }
1120 
1121 void device_links_supplier_sync_state_resume(void)
1122 {
1123 	struct device *dev, *tmp;
1124 	LIST_HEAD(sync_list);
1125 
1126 	device_links_write_lock();
1127 	if (!defer_sync_state_count) {
1128 		WARN(true, "Unmatched sync_state pause/resume!");
1129 		goto out;
1130 	}
1131 	defer_sync_state_count--;
1132 	if (defer_sync_state_count)
1133 		goto out;
1134 
1135 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1136 		/*
1137 		 * Delete from deferred_sync list before queuing it to
1138 		 * sync_list because defer_sync is used for both lists.
1139 		 */
1140 		list_del_init(&dev->links.defer_sync);
1141 		__device_links_queue_sync_state(dev, &sync_list);
1142 	}
1143 out:
1144 	device_links_write_unlock();
1145 
1146 	device_links_flush_sync_list(&sync_list, NULL);
1147 }
1148 
1149 static int sync_state_resume_initcall(void)
1150 {
1151 	device_links_supplier_sync_state_resume();
1152 	return 0;
1153 }
1154 late_initcall(sync_state_resume_initcall);
1155 
1156 static void __device_links_supplier_defer_sync(struct device *sup)
1157 {
1158 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1159 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1160 }
1161 
1162 static void device_link_drop_managed(struct device_link *link)
1163 {
1164 	link->flags &= ~DL_FLAG_MANAGED;
1165 	WRITE_ONCE(link->status, DL_STATE_NONE);
1166 	kref_put(&link->kref, __device_link_del);
1167 }
1168 
1169 static ssize_t waiting_for_supplier_show(struct device *dev,
1170 					 struct device_attribute *attr,
1171 					 char *buf)
1172 {
1173 	bool val;
1174 
1175 	device_lock(dev);
1176 	val = !list_empty(&dev->fwnode->suppliers);
1177 	device_unlock(dev);
1178 	return sysfs_emit(buf, "%u\n", val);
1179 }
1180 static DEVICE_ATTR_RO(waiting_for_supplier);
1181 
1182 /**
1183  * device_links_force_bind - Prepares device to be force bound
1184  * @dev: Consumer device.
1185  *
1186  * device_bind_driver() force binds a device to a driver without calling any
1187  * driver probe functions. So the consumer really isn't going to wait for any
1188  * supplier before it's bound to the driver. We still want the device link
1189  * states to be sensible when this happens.
1190  *
1191  * In preparation for device_bind_driver(), this function goes through each
1192  * supplier device links and checks if the supplier is bound. If it is, then
1193  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1194  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1195  */
1196 void device_links_force_bind(struct device *dev)
1197 {
1198 	struct device_link *link, *ln;
1199 
1200 	device_links_write_lock();
1201 
1202 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1203 		if (!(link->flags & DL_FLAG_MANAGED))
1204 			continue;
1205 
1206 		if (link->status != DL_STATE_AVAILABLE) {
1207 			device_link_drop_managed(link);
1208 			continue;
1209 		}
1210 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1211 	}
1212 	dev->links.status = DL_DEV_PROBING;
1213 
1214 	device_links_write_unlock();
1215 }
1216 
1217 /**
1218  * device_links_driver_bound - Update device links after probing its driver.
1219  * @dev: Device to update the links for.
1220  *
1221  * The probe has been successful, so update links from this device to any
1222  * consumers by changing their status to "available".
1223  *
1224  * Also change the status of @dev's links to suppliers to "active".
1225  *
1226  * Links without the DL_FLAG_MANAGED flag set are ignored.
1227  */
1228 void device_links_driver_bound(struct device *dev)
1229 {
1230 	struct device_link *link, *ln;
1231 	LIST_HEAD(sync_list);
1232 
1233 	/*
1234 	 * If a device binds successfully, it's expected to have created all
1235 	 * the device links it needs to or make new device links as it needs
1236 	 * them. So, fw_devlink no longer needs to create device links to any
1237 	 * of the device's suppliers.
1238 	 *
1239 	 * Also, if a child firmware node of this bound device is not added as
1240 	 * a device by now, assume it is never going to be added and make sure
1241 	 * other devices don't defer probe indefinitely by waiting for such a
1242 	 * child device.
1243 	 */
1244 	if (dev->fwnode && dev->fwnode->dev == dev) {
1245 		struct fwnode_handle *child;
1246 		fwnode_links_purge_suppliers(dev->fwnode);
1247 		fwnode_for_each_available_child_node(dev->fwnode, child)
1248 			fw_devlink_purge_absent_suppliers(child);
1249 	}
1250 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1251 
1252 	device_links_write_lock();
1253 
1254 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1255 		if (!(link->flags & DL_FLAG_MANAGED))
1256 			continue;
1257 
1258 		/*
1259 		 * Links created during consumer probe may be in the "consumer
1260 		 * probe" state to start with if the supplier is still probing
1261 		 * when they are created and they may become "active" if the
1262 		 * consumer probe returns first.  Skip them here.
1263 		 */
1264 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1265 		    link->status == DL_STATE_ACTIVE)
1266 			continue;
1267 
1268 		WARN_ON(link->status != DL_STATE_DORMANT);
1269 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1270 
1271 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1272 			driver_deferred_probe_add(link->consumer);
1273 	}
1274 
1275 	if (defer_sync_state_count)
1276 		__device_links_supplier_defer_sync(dev);
1277 	else
1278 		__device_links_queue_sync_state(dev, &sync_list);
1279 
1280 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1281 		struct device *supplier;
1282 
1283 		if (!(link->flags & DL_FLAG_MANAGED))
1284 			continue;
1285 
1286 		supplier = link->supplier;
1287 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1288 			/*
1289 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1290 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1291 			 * save to drop the managed link completely.
1292 			 */
1293 			device_link_drop_managed(link);
1294 		} else {
1295 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1296 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1297 		}
1298 
1299 		/*
1300 		 * This needs to be done even for the deleted
1301 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1302 		 * device link that was preventing the supplier from getting a
1303 		 * sync_state() call.
1304 		 */
1305 		if (defer_sync_state_count)
1306 			__device_links_supplier_defer_sync(supplier);
1307 		else
1308 			__device_links_queue_sync_state(supplier, &sync_list);
1309 	}
1310 
1311 	dev->links.status = DL_DEV_DRIVER_BOUND;
1312 
1313 	device_links_write_unlock();
1314 
1315 	device_links_flush_sync_list(&sync_list, dev);
1316 }
1317 
1318 /**
1319  * __device_links_no_driver - Update links of a device without a driver.
1320  * @dev: Device without a drvier.
1321  *
1322  * Delete all non-persistent links from this device to any suppliers.
1323  *
1324  * Persistent links stay around, but their status is changed to "available",
1325  * unless they already are in the "supplier unbind in progress" state in which
1326  * case they need not be updated.
1327  *
1328  * Links without the DL_FLAG_MANAGED flag set are ignored.
1329  */
1330 static void __device_links_no_driver(struct device *dev)
1331 {
1332 	struct device_link *link, *ln;
1333 
1334 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1335 		if (!(link->flags & DL_FLAG_MANAGED))
1336 			continue;
1337 
1338 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1339 			device_link_drop_managed(link);
1340 			continue;
1341 		}
1342 
1343 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1344 		    link->status != DL_STATE_ACTIVE)
1345 			continue;
1346 
1347 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1348 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1349 		} else {
1350 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1351 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1352 		}
1353 	}
1354 
1355 	dev->links.status = DL_DEV_NO_DRIVER;
1356 }
1357 
1358 /**
1359  * device_links_no_driver - Update links after failing driver probe.
1360  * @dev: Device whose driver has just failed to probe.
1361  *
1362  * Clean up leftover links to consumers for @dev and invoke
1363  * %__device_links_no_driver() to update links to suppliers for it as
1364  * appropriate.
1365  *
1366  * Links without the DL_FLAG_MANAGED flag set are ignored.
1367  */
1368 void device_links_no_driver(struct device *dev)
1369 {
1370 	struct device_link *link;
1371 
1372 	device_links_write_lock();
1373 
1374 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1375 		if (!(link->flags & DL_FLAG_MANAGED))
1376 			continue;
1377 
1378 		/*
1379 		 * The probe has failed, so if the status of the link is
1380 		 * "consumer probe" or "active", it must have been added by
1381 		 * a probing consumer while this device was still probing.
1382 		 * Change its state to "dormant", as it represents a valid
1383 		 * relationship, but it is not functionally meaningful.
1384 		 */
1385 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1386 		    link->status == DL_STATE_ACTIVE)
1387 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1388 	}
1389 
1390 	__device_links_no_driver(dev);
1391 
1392 	device_links_write_unlock();
1393 }
1394 
1395 /**
1396  * device_links_driver_cleanup - Update links after driver removal.
1397  * @dev: Device whose driver has just gone away.
1398  *
1399  * Update links to consumers for @dev by changing their status to "dormant" and
1400  * invoke %__device_links_no_driver() to update links to suppliers for it as
1401  * appropriate.
1402  *
1403  * Links without the DL_FLAG_MANAGED flag set are ignored.
1404  */
1405 void device_links_driver_cleanup(struct device *dev)
1406 {
1407 	struct device_link *link, *ln;
1408 
1409 	device_links_write_lock();
1410 
1411 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1412 		if (!(link->flags & DL_FLAG_MANAGED))
1413 			continue;
1414 
1415 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1416 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1417 
1418 		/*
1419 		 * autoremove the links between this @dev and its consumer
1420 		 * devices that are not active, i.e. where the link state
1421 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1422 		 */
1423 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1424 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1425 			device_link_drop_managed(link);
1426 
1427 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1428 	}
1429 
1430 	list_del_init(&dev->links.defer_sync);
1431 	__device_links_no_driver(dev);
1432 
1433 	device_links_write_unlock();
1434 }
1435 
1436 /**
1437  * device_links_busy - Check if there are any busy links to consumers.
1438  * @dev: Device to check.
1439  *
1440  * Check each consumer of the device and return 'true' if its link's status
1441  * is one of "consumer probe" or "active" (meaning that the given consumer is
1442  * probing right now or its driver is present).  Otherwise, change the link
1443  * state to "supplier unbind" to prevent the consumer from being probed
1444  * successfully going forward.
1445  *
1446  * Return 'false' if there are no probing or active consumers.
1447  *
1448  * Links without the DL_FLAG_MANAGED flag set are ignored.
1449  */
1450 bool device_links_busy(struct device *dev)
1451 {
1452 	struct device_link *link;
1453 	bool ret = false;
1454 
1455 	device_links_write_lock();
1456 
1457 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1458 		if (!(link->flags & DL_FLAG_MANAGED))
1459 			continue;
1460 
1461 		if (link->status == DL_STATE_CONSUMER_PROBE
1462 		    || link->status == DL_STATE_ACTIVE) {
1463 			ret = true;
1464 			break;
1465 		}
1466 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1467 	}
1468 
1469 	dev->links.status = DL_DEV_UNBINDING;
1470 
1471 	device_links_write_unlock();
1472 	return ret;
1473 }
1474 
1475 /**
1476  * device_links_unbind_consumers - Force unbind consumers of the given device.
1477  * @dev: Device to unbind the consumers of.
1478  *
1479  * Walk the list of links to consumers for @dev and if any of them is in the
1480  * "consumer probe" state, wait for all device probes in progress to complete
1481  * and start over.
1482  *
1483  * If that's not the case, change the status of the link to "supplier unbind"
1484  * and check if the link was in the "active" state.  If so, force the consumer
1485  * driver to unbind and start over (the consumer will not re-probe as we have
1486  * changed the state of the link already).
1487  *
1488  * Links without the DL_FLAG_MANAGED flag set are ignored.
1489  */
1490 void device_links_unbind_consumers(struct device *dev)
1491 {
1492 	struct device_link *link;
1493 
1494  start:
1495 	device_links_write_lock();
1496 
1497 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1498 		enum device_link_state status;
1499 
1500 		if (!(link->flags & DL_FLAG_MANAGED) ||
1501 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1502 			continue;
1503 
1504 		status = link->status;
1505 		if (status == DL_STATE_CONSUMER_PROBE) {
1506 			device_links_write_unlock();
1507 
1508 			wait_for_device_probe();
1509 			goto start;
1510 		}
1511 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1512 		if (status == DL_STATE_ACTIVE) {
1513 			struct device *consumer = link->consumer;
1514 
1515 			get_device(consumer);
1516 
1517 			device_links_write_unlock();
1518 
1519 			device_release_driver_internal(consumer, NULL,
1520 						       consumer->parent);
1521 			put_device(consumer);
1522 			goto start;
1523 		}
1524 	}
1525 
1526 	device_links_write_unlock();
1527 }
1528 
1529 /**
1530  * device_links_purge - Delete existing links to other devices.
1531  * @dev: Target device.
1532  */
1533 static void device_links_purge(struct device *dev)
1534 {
1535 	struct device_link *link, *ln;
1536 
1537 	if (dev->class == &devlink_class)
1538 		return;
1539 
1540 	/*
1541 	 * Delete all of the remaining links from this device to any other
1542 	 * devices (either consumers or suppliers).
1543 	 */
1544 	device_links_write_lock();
1545 
1546 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1547 		WARN_ON(link->status == DL_STATE_ACTIVE);
1548 		__device_link_del(&link->kref);
1549 	}
1550 
1551 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1552 		WARN_ON(link->status != DL_STATE_DORMANT &&
1553 			link->status != DL_STATE_NONE);
1554 		__device_link_del(&link->kref);
1555 	}
1556 
1557 	device_links_write_unlock();
1558 }
1559 
1560 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1561 					 DL_FLAG_SYNC_STATE_ONLY)
1562 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1563 					 DL_FLAG_AUTOPROBE_CONSUMER)
1564 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1565 					 DL_FLAG_PM_RUNTIME)
1566 
1567 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1568 static int __init fw_devlink_setup(char *arg)
1569 {
1570 	if (!arg)
1571 		return -EINVAL;
1572 
1573 	if (strcmp(arg, "off") == 0) {
1574 		fw_devlink_flags = 0;
1575 	} else if (strcmp(arg, "permissive") == 0) {
1576 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1577 	} else if (strcmp(arg, "on") == 0) {
1578 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1579 	} else if (strcmp(arg, "rpm") == 0) {
1580 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1581 	}
1582 	return 0;
1583 }
1584 early_param("fw_devlink", fw_devlink_setup);
1585 
1586 static bool fw_devlink_strict;
1587 static int __init fw_devlink_strict_setup(char *arg)
1588 {
1589 	return strtobool(arg, &fw_devlink_strict);
1590 }
1591 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1592 
1593 u32 fw_devlink_get_flags(void)
1594 {
1595 	return fw_devlink_flags;
1596 }
1597 
1598 static bool fw_devlink_is_permissive(void)
1599 {
1600 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1601 }
1602 
1603 bool fw_devlink_is_strict(void)
1604 {
1605 	return fw_devlink_strict && !fw_devlink_is_permissive();
1606 }
1607 
1608 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1609 {
1610 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1611 		return;
1612 
1613 	fwnode_call_int_op(fwnode, add_links);
1614 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1615 }
1616 
1617 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1618 {
1619 	struct fwnode_handle *child = NULL;
1620 
1621 	fw_devlink_parse_fwnode(fwnode);
1622 
1623 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1624 		fw_devlink_parse_fwtree(child);
1625 }
1626 
1627 static void fw_devlink_relax_link(struct device_link *link)
1628 {
1629 	if (!(link->flags & DL_FLAG_INFERRED))
1630 		return;
1631 
1632 	if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1633 		return;
1634 
1635 	pm_runtime_drop_link(link);
1636 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1637 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1638 		dev_name(link->supplier));
1639 }
1640 
1641 static int fw_devlink_no_driver(struct device *dev, void *data)
1642 {
1643 	struct device_link *link = to_devlink(dev);
1644 
1645 	if (!link->supplier->can_match)
1646 		fw_devlink_relax_link(link);
1647 
1648 	return 0;
1649 }
1650 
1651 void fw_devlink_drivers_done(void)
1652 {
1653 	fw_devlink_drv_reg_done = true;
1654 	device_links_write_lock();
1655 	class_for_each_device(&devlink_class, NULL, NULL,
1656 			      fw_devlink_no_driver);
1657 	device_links_write_unlock();
1658 }
1659 
1660 static void fw_devlink_unblock_consumers(struct device *dev)
1661 {
1662 	struct device_link *link;
1663 
1664 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1665 		return;
1666 
1667 	device_links_write_lock();
1668 	list_for_each_entry(link, &dev->links.consumers, s_node)
1669 		fw_devlink_relax_link(link);
1670 	device_links_write_unlock();
1671 }
1672 
1673 /**
1674  * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1675  * @con: Device to check dependencies for.
1676  * @sup: Device to check against.
1677  *
1678  * Check if @sup depends on @con or any device dependent on it (its child or
1679  * its consumer etc).  When such a cyclic dependency is found, convert all
1680  * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1681  * This is the equivalent of doing fw_devlink=permissive just between the
1682  * devices in the cycle. We need to do this because, at this point, fw_devlink
1683  * can't tell which of these dependencies is not a real dependency.
1684  *
1685  * Return 1 if a cycle is found. Otherwise, return 0.
1686  */
1687 static int fw_devlink_relax_cycle(struct device *con, void *sup)
1688 {
1689 	struct device_link *link;
1690 	int ret;
1691 
1692 	if (con == sup)
1693 		return 1;
1694 
1695 	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1696 	if (ret)
1697 		return ret;
1698 
1699 	list_for_each_entry(link, &con->links.consumers, s_node) {
1700 		if ((link->flags & ~DL_FLAG_INFERRED) ==
1701 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1702 			continue;
1703 
1704 		if (!fw_devlink_relax_cycle(link->consumer, sup))
1705 			continue;
1706 
1707 		ret = 1;
1708 
1709 		fw_devlink_relax_link(link);
1710 	}
1711 	return ret;
1712 }
1713 
1714 /**
1715  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1716  * @con: consumer device for the device link
1717  * @sup_handle: fwnode handle of supplier
1718  * @flags: devlink flags
1719  *
1720  * This function will try to create a device link between the consumer device
1721  * @con and the supplier device represented by @sup_handle.
1722  *
1723  * The supplier has to be provided as a fwnode because incorrect cycles in
1724  * fwnode links can sometimes cause the supplier device to never be created.
1725  * This function detects such cases and returns an error if it cannot create a
1726  * device link from the consumer to a missing supplier.
1727  *
1728  * Returns,
1729  * 0 on successfully creating a device link
1730  * -EINVAL if the device link cannot be created as expected
1731  * -EAGAIN if the device link cannot be created right now, but it may be
1732  *  possible to do that in the future
1733  */
1734 static int fw_devlink_create_devlink(struct device *con,
1735 				     struct fwnode_handle *sup_handle, u32 flags)
1736 {
1737 	struct device *sup_dev;
1738 	int ret = 0;
1739 
1740 	/*
1741 	 * In some cases, a device P might also be a supplier to its child node
1742 	 * C. However, this would defer the probe of C until the probe of P
1743 	 * completes successfully. This is perfectly fine in the device driver
1744 	 * model. device_add() doesn't guarantee probe completion of the device
1745 	 * by the time it returns.
1746 	 *
1747 	 * However, there are a few drivers that assume C will finish probing
1748 	 * as soon as it's added and before P finishes probing. So, we provide
1749 	 * a flag to let fw_devlink know not to delay the probe of C until the
1750 	 * probe of P completes successfully.
1751 	 *
1752 	 * When such a flag is set, we can't create device links where P is the
1753 	 * supplier of C as that would delay the probe of C.
1754 	 */
1755 	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
1756 	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
1757 		return -EINVAL;
1758 
1759 	sup_dev = get_dev_from_fwnode(sup_handle);
1760 	if (sup_dev) {
1761 		/*
1762 		 * If it's one of those drivers that don't actually bind to
1763 		 * their device using driver core, then don't wait on this
1764 		 * supplier device indefinitely.
1765 		 */
1766 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1767 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1768 			ret = -EINVAL;
1769 			goto out;
1770 		}
1771 
1772 		/*
1773 		 * If this fails, it is due to cycles in device links.  Just
1774 		 * give up on this link and treat it as invalid.
1775 		 */
1776 		if (!device_link_add(con, sup_dev, flags) &&
1777 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1778 			dev_info(con, "Fixing up cyclic dependency with %s\n",
1779 				 dev_name(sup_dev));
1780 			device_links_write_lock();
1781 			fw_devlink_relax_cycle(con, sup_dev);
1782 			device_links_write_unlock();
1783 			device_link_add(con, sup_dev,
1784 					FW_DEVLINK_FLAGS_PERMISSIVE);
1785 			ret = -EINVAL;
1786 		}
1787 
1788 		goto out;
1789 	}
1790 
1791 	/* Supplier that's already initialized without a struct device. */
1792 	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1793 		return -EINVAL;
1794 
1795 	/*
1796 	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1797 	 * cycles. So cycle detection isn't necessary and shouldn't be
1798 	 * done.
1799 	 */
1800 	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1801 		return -EAGAIN;
1802 
1803 	/*
1804 	 * If we can't find the supplier device from its fwnode, it might be
1805 	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1806 	 * be broken by applying logic. Check for these types of cycles and
1807 	 * break them so that devices in the cycle probe properly.
1808 	 *
1809 	 * If the supplier's parent is dependent on the consumer, then the
1810 	 * consumer and supplier have a cyclic dependency. Since fw_devlink
1811 	 * can't tell which of the inferred dependencies are incorrect, don't
1812 	 * enforce probe ordering between any of the devices in this cyclic
1813 	 * dependency. Do this by relaxing all the fw_devlink device links in
1814 	 * this cycle and by treating the fwnode link between the consumer and
1815 	 * the supplier as an invalid dependency.
1816 	 */
1817 	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1818 	if (sup_dev && device_is_dependent(con, sup_dev)) {
1819 		dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n",
1820 			 sup_handle, dev_name(sup_dev));
1821 		device_links_write_lock();
1822 		fw_devlink_relax_cycle(con, sup_dev);
1823 		device_links_write_unlock();
1824 		ret = -EINVAL;
1825 	} else {
1826 		/*
1827 		 * Can't check for cycles or no cycles. So let's try
1828 		 * again later.
1829 		 */
1830 		ret = -EAGAIN;
1831 	}
1832 
1833 out:
1834 	put_device(sup_dev);
1835 	return ret;
1836 }
1837 
1838 /**
1839  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1840  * @dev: Device that needs to be linked to its consumers
1841  *
1842  * This function looks at all the consumer fwnodes of @dev and creates device
1843  * links between the consumer device and @dev (supplier).
1844  *
1845  * If the consumer device has not been added yet, then this function creates a
1846  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1847  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1848  * sync_state() callback before the real consumer device gets to be added and
1849  * then probed.
1850  *
1851  * Once device links are created from the real consumer to @dev (supplier), the
1852  * fwnode links are deleted.
1853  */
1854 static void __fw_devlink_link_to_consumers(struct device *dev)
1855 {
1856 	struct fwnode_handle *fwnode = dev->fwnode;
1857 	struct fwnode_link *link, *tmp;
1858 
1859 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1860 		u32 dl_flags = fw_devlink_get_flags();
1861 		struct device *con_dev;
1862 		bool own_link = true;
1863 		int ret;
1864 
1865 		con_dev = get_dev_from_fwnode(link->consumer);
1866 		/*
1867 		 * If consumer device is not available yet, make a "proxy"
1868 		 * SYNC_STATE_ONLY link from the consumer's parent device to
1869 		 * the supplier device. This is necessary to make sure the
1870 		 * supplier doesn't get a sync_state() callback before the real
1871 		 * consumer can create a device link to the supplier.
1872 		 *
1873 		 * This proxy link step is needed to handle the case where the
1874 		 * consumer's parent device is added before the supplier.
1875 		 */
1876 		if (!con_dev) {
1877 			con_dev = fwnode_get_next_parent_dev(link->consumer);
1878 			/*
1879 			 * However, if the consumer's parent device is also the
1880 			 * parent of the supplier, don't create a
1881 			 * consumer-supplier link from the parent to its child
1882 			 * device. Such a dependency is impossible.
1883 			 */
1884 			if (con_dev &&
1885 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1886 				put_device(con_dev);
1887 				con_dev = NULL;
1888 			} else {
1889 				own_link = false;
1890 				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1891 			}
1892 		}
1893 
1894 		if (!con_dev)
1895 			continue;
1896 
1897 		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1898 		put_device(con_dev);
1899 		if (!own_link || ret == -EAGAIN)
1900 			continue;
1901 
1902 		__fwnode_link_del(link);
1903 	}
1904 }
1905 
1906 /**
1907  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1908  * @dev: The consumer device that needs to be linked to its suppliers
1909  * @fwnode: Root of the fwnode tree that is used to create device links
1910  *
1911  * This function looks at all the supplier fwnodes of fwnode tree rooted at
1912  * @fwnode and creates device links between @dev (consumer) and all the
1913  * supplier devices of the entire fwnode tree at @fwnode.
1914  *
1915  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1916  * and the real suppliers of @dev. Once these device links are created, the
1917  * fwnode links are deleted. When such device links are successfully created,
1918  * this function is called recursively on those supplier devices. This is
1919  * needed to detect and break some invalid cycles in fwnode links.  See
1920  * fw_devlink_create_devlink() for more details.
1921  *
1922  * In addition, it also looks at all the suppliers of the entire fwnode tree
1923  * because some of the child devices of @dev that have not been added yet
1924  * (because @dev hasn't probed) might already have their suppliers added to
1925  * driver core. So, this function creates SYNC_STATE_ONLY device links between
1926  * @dev (consumer) and these suppliers to make sure they don't execute their
1927  * sync_state() callbacks before these child devices have a chance to create
1928  * their device links. The fwnode links that correspond to the child devices
1929  * aren't delete because they are needed later to create the device links
1930  * between the real consumer and supplier devices.
1931  */
1932 static void __fw_devlink_link_to_suppliers(struct device *dev,
1933 					   struct fwnode_handle *fwnode)
1934 {
1935 	bool own_link = (dev->fwnode == fwnode);
1936 	struct fwnode_link *link, *tmp;
1937 	struct fwnode_handle *child = NULL;
1938 	u32 dl_flags;
1939 
1940 	if (own_link)
1941 		dl_flags = fw_devlink_get_flags();
1942 	else
1943 		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1944 
1945 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1946 		int ret;
1947 		struct device *sup_dev;
1948 		struct fwnode_handle *sup = link->supplier;
1949 
1950 		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1951 		if (!own_link || ret == -EAGAIN)
1952 			continue;
1953 
1954 		__fwnode_link_del(link);
1955 
1956 		/* If no device link was created, nothing more to do. */
1957 		if (ret)
1958 			continue;
1959 
1960 		/*
1961 		 * If a device link was successfully created to a supplier, we
1962 		 * now need to try and link the supplier to all its suppliers.
1963 		 *
1964 		 * This is needed to detect and delete false dependencies in
1965 		 * fwnode links that haven't been converted to a device link
1966 		 * yet. See comments in fw_devlink_create_devlink() for more
1967 		 * details on the false dependency.
1968 		 *
1969 		 * Without deleting these false dependencies, some devices will
1970 		 * never probe because they'll keep waiting for their false
1971 		 * dependency fwnode links to be converted to device links.
1972 		 */
1973 		sup_dev = get_dev_from_fwnode(sup);
1974 		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1975 		put_device(sup_dev);
1976 	}
1977 
1978 	/*
1979 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1980 	 * all the descendants. This proxy link step is needed to handle the
1981 	 * case where the supplier is added before the consumer's parent device
1982 	 * (@dev).
1983 	 */
1984 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1985 		__fw_devlink_link_to_suppliers(dev, child);
1986 }
1987 
1988 static void fw_devlink_link_device(struct device *dev)
1989 {
1990 	struct fwnode_handle *fwnode = dev->fwnode;
1991 
1992 	if (!fw_devlink_flags)
1993 		return;
1994 
1995 	fw_devlink_parse_fwtree(fwnode);
1996 
1997 	mutex_lock(&fwnode_link_lock);
1998 	__fw_devlink_link_to_consumers(dev);
1999 	__fw_devlink_link_to_suppliers(dev, fwnode);
2000 	mutex_unlock(&fwnode_link_lock);
2001 }
2002 
2003 /* Device links support end. */
2004 
2005 int (*platform_notify)(struct device *dev) = NULL;
2006 int (*platform_notify_remove)(struct device *dev) = NULL;
2007 static struct kobject *dev_kobj;
2008 struct kobject *sysfs_dev_char_kobj;
2009 struct kobject *sysfs_dev_block_kobj;
2010 
2011 static DEFINE_MUTEX(device_hotplug_lock);
2012 
2013 void lock_device_hotplug(void)
2014 {
2015 	mutex_lock(&device_hotplug_lock);
2016 }
2017 
2018 void unlock_device_hotplug(void)
2019 {
2020 	mutex_unlock(&device_hotplug_lock);
2021 }
2022 
2023 int lock_device_hotplug_sysfs(void)
2024 {
2025 	if (mutex_trylock(&device_hotplug_lock))
2026 		return 0;
2027 
2028 	/* Avoid busy looping (5 ms of sleep should do). */
2029 	msleep(5);
2030 	return restart_syscall();
2031 }
2032 
2033 #ifdef CONFIG_BLOCK
2034 static inline int device_is_not_partition(struct device *dev)
2035 {
2036 	return !(dev->type == &part_type);
2037 }
2038 #else
2039 static inline int device_is_not_partition(struct device *dev)
2040 {
2041 	return 1;
2042 }
2043 #endif
2044 
2045 static void device_platform_notify(struct device *dev)
2046 {
2047 	acpi_device_notify(dev);
2048 
2049 	software_node_notify(dev);
2050 
2051 	if (platform_notify)
2052 		platform_notify(dev);
2053 }
2054 
2055 static void device_platform_notify_remove(struct device *dev)
2056 {
2057 	acpi_device_notify_remove(dev);
2058 
2059 	software_node_notify_remove(dev);
2060 
2061 	if (platform_notify_remove)
2062 		platform_notify_remove(dev);
2063 }
2064 
2065 /**
2066  * dev_driver_string - Return a device's driver name, if at all possible
2067  * @dev: struct device to get the name of
2068  *
2069  * Will return the device's driver's name if it is bound to a device.  If
2070  * the device is not bound to a driver, it will return the name of the bus
2071  * it is attached to.  If it is not attached to a bus either, an empty
2072  * string will be returned.
2073  */
2074 const char *dev_driver_string(const struct device *dev)
2075 {
2076 	struct device_driver *drv;
2077 
2078 	/* dev->driver can change to NULL underneath us because of unbinding,
2079 	 * so be careful about accessing it.  dev->bus and dev->class should
2080 	 * never change once they are set, so they don't need special care.
2081 	 */
2082 	drv = READ_ONCE(dev->driver);
2083 	return drv ? drv->name : dev_bus_name(dev);
2084 }
2085 EXPORT_SYMBOL(dev_driver_string);
2086 
2087 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2088 
2089 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2090 			     char *buf)
2091 {
2092 	struct device_attribute *dev_attr = to_dev_attr(attr);
2093 	struct device *dev = kobj_to_dev(kobj);
2094 	ssize_t ret = -EIO;
2095 
2096 	if (dev_attr->show)
2097 		ret = dev_attr->show(dev, dev_attr, buf);
2098 	if (ret >= (ssize_t)PAGE_SIZE) {
2099 		printk("dev_attr_show: %pS returned bad count\n",
2100 				dev_attr->show);
2101 	}
2102 	return ret;
2103 }
2104 
2105 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2106 			      const char *buf, size_t count)
2107 {
2108 	struct device_attribute *dev_attr = to_dev_attr(attr);
2109 	struct device *dev = kobj_to_dev(kobj);
2110 	ssize_t ret = -EIO;
2111 
2112 	if (dev_attr->store)
2113 		ret = dev_attr->store(dev, dev_attr, buf, count);
2114 	return ret;
2115 }
2116 
2117 static const struct sysfs_ops dev_sysfs_ops = {
2118 	.show	= dev_attr_show,
2119 	.store	= dev_attr_store,
2120 };
2121 
2122 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2123 
2124 ssize_t device_store_ulong(struct device *dev,
2125 			   struct device_attribute *attr,
2126 			   const char *buf, size_t size)
2127 {
2128 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2129 	int ret;
2130 	unsigned long new;
2131 
2132 	ret = kstrtoul(buf, 0, &new);
2133 	if (ret)
2134 		return ret;
2135 	*(unsigned long *)(ea->var) = new;
2136 	/* Always return full write size even if we didn't consume all */
2137 	return size;
2138 }
2139 EXPORT_SYMBOL_GPL(device_store_ulong);
2140 
2141 ssize_t device_show_ulong(struct device *dev,
2142 			  struct device_attribute *attr,
2143 			  char *buf)
2144 {
2145 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2146 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2147 }
2148 EXPORT_SYMBOL_GPL(device_show_ulong);
2149 
2150 ssize_t device_store_int(struct device *dev,
2151 			 struct device_attribute *attr,
2152 			 const char *buf, size_t size)
2153 {
2154 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2155 	int ret;
2156 	long new;
2157 
2158 	ret = kstrtol(buf, 0, &new);
2159 	if (ret)
2160 		return ret;
2161 
2162 	if (new > INT_MAX || new < INT_MIN)
2163 		return -EINVAL;
2164 	*(int *)(ea->var) = new;
2165 	/* Always return full write size even if we didn't consume all */
2166 	return size;
2167 }
2168 EXPORT_SYMBOL_GPL(device_store_int);
2169 
2170 ssize_t device_show_int(struct device *dev,
2171 			struct device_attribute *attr,
2172 			char *buf)
2173 {
2174 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2175 
2176 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2177 }
2178 EXPORT_SYMBOL_GPL(device_show_int);
2179 
2180 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2181 			  const char *buf, size_t size)
2182 {
2183 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2184 
2185 	if (strtobool(buf, ea->var) < 0)
2186 		return -EINVAL;
2187 
2188 	return size;
2189 }
2190 EXPORT_SYMBOL_GPL(device_store_bool);
2191 
2192 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2193 			 char *buf)
2194 {
2195 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2196 
2197 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2198 }
2199 EXPORT_SYMBOL_GPL(device_show_bool);
2200 
2201 /**
2202  * device_release - free device structure.
2203  * @kobj: device's kobject.
2204  *
2205  * This is called once the reference count for the object
2206  * reaches 0. We forward the call to the device's release
2207  * method, which should handle actually freeing the structure.
2208  */
2209 static void device_release(struct kobject *kobj)
2210 {
2211 	struct device *dev = kobj_to_dev(kobj);
2212 	struct device_private *p = dev->p;
2213 
2214 	/*
2215 	 * Some platform devices are driven without driver attached
2216 	 * and managed resources may have been acquired.  Make sure
2217 	 * all resources are released.
2218 	 *
2219 	 * Drivers still can add resources into device after device
2220 	 * is deleted but alive, so release devres here to avoid
2221 	 * possible memory leak.
2222 	 */
2223 	devres_release_all(dev);
2224 
2225 	kfree(dev->dma_range_map);
2226 
2227 	if (dev->release)
2228 		dev->release(dev);
2229 	else if (dev->type && dev->type->release)
2230 		dev->type->release(dev);
2231 	else if (dev->class && dev->class->dev_release)
2232 		dev->class->dev_release(dev);
2233 	else
2234 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2235 			dev_name(dev));
2236 	kfree(p);
2237 }
2238 
2239 static const void *device_namespace(struct kobject *kobj)
2240 {
2241 	struct device *dev = kobj_to_dev(kobj);
2242 	const void *ns = NULL;
2243 
2244 	if (dev->class && dev->class->ns_type)
2245 		ns = dev->class->namespace(dev);
2246 
2247 	return ns;
2248 }
2249 
2250 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2251 {
2252 	struct device *dev = kobj_to_dev(kobj);
2253 
2254 	if (dev->class && dev->class->get_ownership)
2255 		dev->class->get_ownership(dev, uid, gid);
2256 }
2257 
2258 static struct kobj_type device_ktype = {
2259 	.release	= device_release,
2260 	.sysfs_ops	= &dev_sysfs_ops,
2261 	.namespace	= device_namespace,
2262 	.get_ownership	= device_get_ownership,
2263 };
2264 
2265 
2266 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
2267 {
2268 	struct kobj_type *ktype = get_ktype(kobj);
2269 
2270 	if (ktype == &device_ktype) {
2271 		struct device *dev = kobj_to_dev(kobj);
2272 		if (dev->bus)
2273 			return 1;
2274 		if (dev->class)
2275 			return 1;
2276 	}
2277 	return 0;
2278 }
2279 
2280 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2281 {
2282 	struct device *dev = kobj_to_dev(kobj);
2283 
2284 	if (dev->bus)
2285 		return dev->bus->name;
2286 	if (dev->class)
2287 		return dev->class->name;
2288 	return NULL;
2289 }
2290 
2291 static int dev_uevent(struct kset *kset, struct kobject *kobj,
2292 		      struct kobj_uevent_env *env)
2293 {
2294 	struct device *dev = kobj_to_dev(kobj);
2295 	int retval = 0;
2296 
2297 	/* add device node properties if present */
2298 	if (MAJOR(dev->devt)) {
2299 		const char *tmp;
2300 		const char *name;
2301 		umode_t mode = 0;
2302 		kuid_t uid = GLOBAL_ROOT_UID;
2303 		kgid_t gid = GLOBAL_ROOT_GID;
2304 
2305 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2306 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2307 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2308 		if (name) {
2309 			add_uevent_var(env, "DEVNAME=%s", name);
2310 			if (mode)
2311 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2312 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2313 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2314 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2315 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2316 			kfree(tmp);
2317 		}
2318 	}
2319 
2320 	if (dev->type && dev->type->name)
2321 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2322 
2323 	if (dev->driver)
2324 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2325 
2326 	/* Add common DT information about the device */
2327 	of_device_uevent(dev, env);
2328 
2329 	/* have the bus specific function add its stuff */
2330 	if (dev->bus && dev->bus->uevent) {
2331 		retval = dev->bus->uevent(dev, env);
2332 		if (retval)
2333 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2334 				 dev_name(dev), __func__, retval);
2335 	}
2336 
2337 	/* have the class specific function add its stuff */
2338 	if (dev->class && dev->class->dev_uevent) {
2339 		retval = dev->class->dev_uevent(dev, env);
2340 		if (retval)
2341 			pr_debug("device: '%s': %s: class uevent() "
2342 				 "returned %d\n", dev_name(dev),
2343 				 __func__, retval);
2344 	}
2345 
2346 	/* have the device type specific function add its stuff */
2347 	if (dev->type && dev->type->uevent) {
2348 		retval = dev->type->uevent(dev, env);
2349 		if (retval)
2350 			pr_debug("device: '%s': %s: dev_type uevent() "
2351 				 "returned %d\n", dev_name(dev),
2352 				 __func__, retval);
2353 	}
2354 
2355 	return retval;
2356 }
2357 
2358 static const struct kset_uevent_ops device_uevent_ops = {
2359 	.filter =	dev_uevent_filter,
2360 	.name =		dev_uevent_name,
2361 	.uevent =	dev_uevent,
2362 };
2363 
2364 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2365 			   char *buf)
2366 {
2367 	struct kobject *top_kobj;
2368 	struct kset *kset;
2369 	struct kobj_uevent_env *env = NULL;
2370 	int i;
2371 	int len = 0;
2372 	int retval;
2373 
2374 	/* search the kset, the device belongs to */
2375 	top_kobj = &dev->kobj;
2376 	while (!top_kobj->kset && top_kobj->parent)
2377 		top_kobj = top_kobj->parent;
2378 	if (!top_kobj->kset)
2379 		goto out;
2380 
2381 	kset = top_kobj->kset;
2382 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2383 		goto out;
2384 
2385 	/* respect filter */
2386 	if (kset->uevent_ops && kset->uevent_ops->filter)
2387 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
2388 			goto out;
2389 
2390 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2391 	if (!env)
2392 		return -ENOMEM;
2393 
2394 	/* let the kset specific function add its keys */
2395 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2396 	if (retval)
2397 		goto out;
2398 
2399 	/* copy keys to file */
2400 	for (i = 0; i < env->envp_idx; i++)
2401 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2402 out:
2403 	kfree(env);
2404 	return len;
2405 }
2406 
2407 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2408 			    const char *buf, size_t count)
2409 {
2410 	int rc;
2411 
2412 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2413 
2414 	if (rc) {
2415 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
2416 		return rc;
2417 	}
2418 
2419 	return count;
2420 }
2421 static DEVICE_ATTR_RW(uevent);
2422 
2423 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2424 			   char *buf)
2425 {
2426 	bool val;
2427 
2428 	device_lock(dev);
2429 	val = !dev->offline;
2430 	device_unlock(dev);
2431 	return sysfs_emit(buf, "%u\n", val);
2432 }
2433 
2434 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2435 			    const char *buf, size_t count)
2436 {
2437 	bool val;
2438 	int ret;
2439 
2440 	ret = strtobool(buf, &val);
2441 	if (ret < 0)
2442 		return ret;
2443 
2444 	ret = lock_device_hotplug_sysfs();
2445 	if (ret)
2446 		return ret;
2447 
2448 	ret = val ? device_online(dev) : device_offline(dev);
2449 	unlock_device_hotplug();
2450 	return ret < 0 ? ret : count;
2451 }
2452 static DEVICE_ATTR_RW(online);
2453 
2454 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2455 			      char *buf)
2456 {
2457 	const char *loc;
2458 
2459 	switch (dev->removable) {
2460 	case DEVICE_REMOVABLE:
2461 		loc = "removable";
2462 		break;
2463 	case DEVICE_FIXED:
2464 		loc = "fixed";
2465 		break;
2466 	default:
2467 		loc = "unknown";
2468 	}
2469 	return sysfs_emit(buf, "%s\n", loc);
2470 }
2471 static DEVICE_ATTR_RO(removable);
2472 
2473 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2474 {
2475 	return sysfs_create_groups(&dev->kobj, groups);
2476 }
2477 EXPORT_SYMBOL_GPL(device_add_groups);
2478 
2479 void device_remove_groups(struct device *dev,
2480 			  const struct attribute_group **groups)
2481 {
2482 	sysfs_remove_groups(&dev->kobj, groups);
2483 }
2484 EXPORT_SYMBOL_GPL(device_remove_groups);
2485 
2486 union device_attr_group_devres {
2487 	const struct attribute_group *group;
2488 	const struct attribute_group **groups;
2489 };
2490 
2491 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2492 {
2493 	return ((union device_attr_group_devres *)res)->group == data;
2494 }
2495 
2496 static void devm_attr_group_remove(struct device *dev, void *res)
2497 {
2498 	union device_attr_group_devres *devres = res;
2499 	const struct attribute_group *group = devres->group;
2500 
2501 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2502 	sysfs_remove_group(&dev->kobj, group);
2503 }
2504 
2505 static void devm_attr_groups_remove(struct device *dev, void *res)
2506 {
2507 	union device_attr_group_devres *devres = res;
2508 	const struct attribute_group **groups = devres->groups;
2509 
2510 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2511 	sysfs_remove_groups(&dev->kobj, groups);
2512 }
2513 
2514 /**
2515  * devm_device_add_group - given a device, create a managed attribute group
2516  * @dev:	The device to create the group for
2517  * @grp:	The attribute group to create
2518  *
2519  * This function creates a group for the first time.  It will explicitly
2520  * warn and error if any of the attribute files being created already exist.
2521  *
2522  * Returns 0 on success or error code on failure.
2523  */
2524 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2525 {
2526 	union device_attr_group_devres *devres;
2527 	int error;
2528 
2529 	devres = devres_alloc(devm_attr_group_remove,
2530 			      sizeof(*devres), GFP_KERNEL);
2531 	if (!devres)
2532 		return -ENOMEM;
2533 
2534 	error = sysfs_create_group(&dev->kobj, grp);
2535 	if (error) {
2536 		devres_free(devres);
2537 		return error;
2538 	}
2539 
2540 	devres->group = grp;
2541 	devres_add(dev, devres);
2542 	return 0;
2543 }
2544 EXPORT_SYMBOL_GPL(devm_device_add_group);
2545 
2546 /**
2547  * devm_device_remove_group: remove a managed group from a device
2548  * @dev:	device to remove the group from
2549  * @grp:	group to remove
2550  *
2551  * This function removes a group of attributes from a device. The attributes
2552  * previously have to have been created for this group, otherwise it will fail.
2553  */
2554 void devm_device_remove_group(struct device *dev,
2555 			      const struct attribute_group *grp)
2556 {
2557 	WARN_ON(devres_release(dev, devm_attr_group_remove,
2558 			       devm_attr_group_match,
2559 			       /* cast away const */ (void *)grp));
2560 }
2561 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2562 
2563 /**
2564  * devm_device_add_groups - create a bunch of managed attribute groups
2565  * @dev:	The device to create the group for
2566  * @groups:	The attribute groups to create, NULL terminated
2567  *
2568  * This function creates a bunch of managed attribute groups.  If an error
2569  * occurs when creating a group, all previously created groups will be
2570  * removed, unwinding everything back to the original state when this
2571  * function was called.  It will explicitly warn and error if any of the
2572  * attribute files being created already exist.
2573  *
2574  * Returns 0 on success or error code from sysfs_create_group on failure.
2575  */
2576 int devm_device_add_groups(struct device *dev,
2577 			   const struct attribute_group **groups)
2578 {
2579 	union device_attr_group_devres *devres;
2580 	int error;
2581 
2582 	devres = devres_alloc(devm_attr_groups_remove,
2583 			      sizeof(*devres), GFP_KERNEL);
2584 	if (!devres)
2585 		return -ENOMEM;
2586 
2587 	error = sysfs_create_groups(&dev->kobj, groups);
2588 	if (error) {
2589 		devres_free(devres);
2590 		return error;
2591 	}
2592 
2593 	devres->groups = groups;
2594 	devres_add(dev, devres);
2595 	return 0;
2596 }
2597 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2598 
2599 /**
2600  * devm_device_remove_groups - remove a list of managed groups
2601  *
2602  * @dev:	The device for the groups to be removed from
2603  * @groups:	NULL terminated list of groups to be removed
2604  *
2605  * If groups is not NULL, remove the specified groups from the device.
2606  */
2607 void devm_device_remove_groups(struct device *dev,
2608 			       const struct attribute_group **groups)
2609 {
2610 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2611 			       devm_attr_group_match,
2612 			       /* cast away const */ (void *)groups));
2613 }
2614 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2615 
2616 static int device_add_attrs(struct device *dev)
2617 {
2618 	struct class *class = dev->class;
2619 	const struct device_type *type = dev->type;
2620 	int error;
2621 
2622 	if (class) {
2623 		error = device_add_groups(dev, class->dev_groups);
2624 		if (error)
2625 			return error;
2626 	}
2627 
2628 	if (type) {
2629 		error = device_add_groups(dev, type->groups);
2630 		if (error)
2631 			goto err_remove_class_groups;
2632 	}
2633 
2634 	error = device_add_groups(dev, dev->groups);
2635 	if (error)
2636 		goto err_remove_type_groups;
2637 
2638 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2639 		error = device_create_file(dev, &dev_attr_online);
2640 		if (error)
2641 			goto err_remove_dev_groups;
2642 	}
2643 
2644 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2645 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2646 		if (error)
2647 			goto err_remove_dev_online;
2648 	}
2649 
2650 	if (dev_removable_is_valid(dev)) {
2651 		error = device_create_file(dev, &dev_attr_removable);
2652 		if (error)
2653 			goto err_remove_dev_waiting_for_supplier;
2654 	}
2655 
2656 	return 0;
2657 
2658  err_remove_dev_waiting_for_supplier:
2659 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2660  err_remove_dev_online:
2661 	device_remove_file(dev, &dev_attr_online);
2662  err_remove_dev_groups:
2663 	device_remove_groups(dev, dev->groups);
2664  err_remove_type_groups:
2665 	if (type)
2666 		device_remove_groups(dev, type->groups);
2667  err_remove_class_groups:
2668 	if (class)
2669 		device_remove_groups(dev, class->dev_groups);
2670 
2671 	return error;
2672 }
2673 
2674 static void device_remove_attrs(struct device *dev)
2675 {
2676 	struct class *class = dev->class;
2677 	const struct device_type *type = dev->type;
2678 
2679 	device_remove_file(dev, &dev_attr_removable);
2680 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2681 	device_remove_file(dev, &dev_attr_online);
2682 	device_remove_groups(dev, dev->groups);
2683 
2684 	if (type)
2685 		device_remove_groups(dev, type->groups);
2686 
2687 	if (class)
2688 		device_remove_groups(dev, class->dev_groups);
2689 }
2690 
2691 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2692 			char *buf)
2693 {
2694 	return print_dev_t(buf, dev->devt);
2695 }
2696 static DEVICE_ATTR_RO(dev);
2697 
2698 /* /sys/devices/ */
2699 struct kset *devices_kset;
2700 
2701 /**
2702  * devices_kset_move_before - Move device in the devices_kset's list.
2703  * @deva: Device to move.
2704  * @devb: Device @deva should come before.
2705  */
2706 static void devices_kset_move_before(struct device *deva, struct device *devb)
2707 {
2708 	if (!devices_kset)
2709 		return;
2710 	pr_debug("devices_kset: Moving %s before %s\n",
2711 		 dev_name(deva), dev_name(devb));
2712 	spin_lock(&devices_kset->list_lock);
2713 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2714 	spin_unlock(&devices_kset->list_lock);
2715 }
2716 
2717 /**
2718  * devices_kset_move_after - Move device in the devices_kset's list.
2719  * @deva: Device to move
2720  * @devb: Device @deva should come after.
2721  */
2722 static void devices_kset_move_after(struct device *deva, struct device *devb)
2723 {
2724 	if (!devices_kset)
2725 		return;
2726 	pr_debug("devices_kset: Moving %s after %s\n",
2727 		 dev_name(deva), dev_name(devb));
2728 	spin_lock(&devices_kset->list_lock);
2729 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2730 	spin_unlock(&devices_kset->list_lock);
2731 }
2732 
2733 /**
2734  * devices_kset_move_last - move the device to the end of devices_kset's list.
2735  * @dev: device to move
2736  */
2737 void devices_kset_move_last(struct device *dev)
2738 {
2739 	if (!devices_kset)
2740 		return;
2741 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2742 	spin_lock(&devices_kset->list_lock);
2743 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2744 	spin_unlock(&devices_kset->list_lock);
2745 }
2746 
2747 /**
2748  * device_create_file - create sysfs attribute file for device.
2749  * @dev: device.
2750  * @attr: device attribute descriptor.
2751  */
2752 int device_create_file(struct device *dev,
2753 		       const struct device_attribute *attr)
2754 {
2755 	int error = 0;
2756 
2757 	if (dev) {
2758 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2759 			"Attribute %s: write permission without 'store'\n",
2760 			attr->attr.name);
2761 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2762 			"Attribute %s: read permission without 'show'\n",
2763 			attr->attr.name);
2764 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2765 	}
2766 
2767 	return error;
2768 }
2769 EXPORT_SYMBOL_GPL(device_create_file);
2770 
2771 /**
2772  * device_remove_file - remove sysfs attribute file.
2773  * @dev: device.
2774  * @attr: device attribute descriptor.
2775  */
2776 void device_remove_file(struct device *dev,
2777 			const struct device_attribute *attr)
2778 {
2779 	if (dev)
2780 		sysfs_remove_file(&dev->kobj, &attr->attr);
2781 }
2782 EXPORT_SYMBOL_GPL(device_remove_file);
2783 
2784 /**
2785  * device_remove_file_self - remove sysfs attribute file from its own method.
2786  * @dev: device.
2787  * @attr: device attribute descriptor.
2788  *
2789  * See kernfs_remove_self() for details.
2790  */
2791 bool device_remove_file_self(struct device *dev,
2792 			     const struct device_attribute *attr)
2793 {
2794 	if (dev)
2795 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2796 	else
2797 		return false;
2798 }
2799 EXPORT_SYMBOL_GPL(device_remove_file_self);
2800 
2801 /**
2802  * device_create_bin_file - create sysfs binary attribute file for device.
2803  * @dev: device.
2804  * @attr: device binary attribute descriptor.
2805  */
2806 int device_create_bin_file(struct device *dev,
2807 			   const struct bin_attribute *attr)
2808 {
2809 	int error = -EINVAL;
2810 	if (dev)
2811 		error = sysfs_create_bin_file(&dev->kobj, attr);
2812 	return error;
2813 }
2814 EXPORT_SYMBOL_GPL(device_create_bin_file);
2815 
2816 /**
2817  * device_remove_bin_file - remove sysfs binary attribute file
2818  * @dev: device.
2819  * @attr: device binary attribute descriptor.
2820  */
2821 void device_remove_bin_file(struct device *dev,
2822 			    const struct bin_attribute *attr)
2823 {
2824 	if (dev)
2825 		sysfs_remove_bin_file(&dev->kobj, attr);
2826 }
2827 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2828 
2829 static void klist_children_get(struct klist_node *n)
2830 {
2831 	struct device_private *p = to_device_private_parent(n);
2832 	struct device *dev = p->device;
2833 
2834 	get_device(dev);
2835 }
2836 
2837 static void klist_children_put(struct klist_node *n)
2838 {
2839 	struct device_private *p = to_device_private_parent(n);
2840 	struct device *dev = p->device;
2841 
2842 	put_device(dev);
2843 }
2844 
2845 /**
2846  * device_initialize - init device structure.
2847  * @dev: device.
2848  *
2849  * This prepares the device for use by other layers by initializing
2850  * its fields.
2851  * It is the first half of device_register(), if called by
2852  * that function, though it can also be called separately, so one
2853  * may use @dev's fields. In particular, get_device()/put_device()
2854  * may be used for reference counting of @dev after calling this
2855  * function.
2856  *
2857  * All fields in @dev must be initialized by the caller to 0, except
2858  * for those explicitly set to some other value.  The simplest
2859  * approach is to use kzalloc() to allocate the structure containing
2860  * @dev.
2861  *
2862  * NOTE: Use put_device() to give up your reference instead of freeing
2863  * @dev directly once you have called this function.
2864  */
2865 void device_initialize(struct device *dev)
2866 {
2867 	dev->kobj.kset = devices_kset;
2868 	kobject_init(&dev->kobj, &device_ktype);
2869 	INIT_LIST_HEAD(&dev->dma_pools);
2870 	mutex_init(&dev->mutex);
2871 #ifdef CONFIG_PROVE_LOCKING
2872 	mutex_init(&dev->lockdep_mutex);
2873 #endif
2874 	lockdep_set_novalidate_class(&dev->mutex);
2875 	spin_lock_init(&dev->devres_lock);
2876 	INIT_LIST_HEAD(&dev->devres_head);
2877 	device_pm_init(dev);
2878 	set_dev_node(dev, -1);
2879 #ifdef CONFIG_GENERIC_MSI_IRQ
2880 	raw_spin_lock_init(&dev->msi_lock);
2881 	INIT_LIST_HEAD(&dev->msi_list);
2882 #endif
2883 	INIT_LIST_HEAD(&dev->links.consumers);
2884 	INIT_LIST_HEAD(&dev->links.suppliers);
2885 	INIT_LIST_HEAD(&dev->links.defer_sync);
2886 	dev->links.status = DL_DEV_NO_DRIVER;
2887 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2888     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2889     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2890 	dev->dma_coherent = dma_default_coherent;
2891 #endif
2892 #ifdef CONFIG_SWIOTLB
2893 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
2894 #endif
2895 }
2896 EXPORT_SYMBOL_GPL(device_initialize);
2897 
2898 struct kobject *virtual_device_parent(struct device *dev)
2899 {
2900 	static struct kobject *virtual_dir = NULL;
2901 
2902 	if (!virtual_dir)
2903 		virtual_dir = kobject_create_and_add("virtual",
2904 						     &devices_kset->kobj);
2905 
2906 	return virtual_dir;
2907 }
2908 
2909 struct class_dir {
2910 	struct kobject kobj;
2911 	struct class *class;
2912 };
2913 
2914 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2915 
2916 static void class_dir_release(struct kobject *kobj)
2917 {
2918 	struct class_dir *dir = to_class_dir(kobj);
2919 	kfree(dir);
2920 }
2921 
2922 static const
2923 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2924 {
2925 	struct class_dir *dir = to_class_dir(kobj);
2926 	return dir->class->ns_type;
2927 }
2928 
2929 static struct kobj_type class_dir_ktype = {
2930 	.release	= class_dir_release,
2931 	.sysfs_ops	= &kobj_sysfs_ops,
2932 	.child_ns_type	= class_dir_child_ns_type
2933 };
2934 
2935 static struct kobject *
2936 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2937 {
2938 	struct class_dir *dir;
2939 	int retval;
2940 
2941 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2942 	if (!dir)
2943 		return ERR_PTR(-ENOMEM);
2944 
2945 	dir->class = class;
2946 	kobject_init(&dir->kobj, &class_dir_ktype);
2947 
2948 	dir->kobj.kset = &class->p->glue_dirs;
2949 
2950 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2951 	if (retval < 0) {
2952 		kobject_put(&dir->kobj);
2953 		return ERR_PTR(retval);
2954 	}
2955 	return &dir->kobj;
2956 }
2957 
2958 static DEFINE_MUTEX(gdp_mutex);
2959 
2960 static struct kobject *get_device_parent(struct device *dev,
2961 					 struct device *parent)
2962 {
2963 	if (dev->class) {
2964 		struct kobject *kobj = NULL;
2965 		struct kobject *parent_kobj;
2966 		struct kobject *k;
2967 
2968 #ifdef CONFIG_BLOCK
2969 		/* block disks show up in /sys/block */
2970 		if (sysfs_deprecated && dev->class == &block_class) {
2971 			if (parent && parent->class == &block_class)
2972 				return &parent->kobj;
2973 			return &block_class.p->subsys.kobj;
2974 		}
2975 #endif
2976 
2977 		/*
2978 		 * If we have no parent, we live in "virtual".
2979 		 * Class-devices with a non class-device as parent, live
2980 		 * in a "glue" directory to prevent namespace collisions.
2981 		 */
2982 		if (parent == NULL)
2983 			parent_kobj = virtual_device_parent(dev);
2984 		else if (parent->class && !dev->class->ns_type)
2985 			return &parent->kobj;
2986 		else
2987 			parent_kobj = &parent->kobj;
2988 
2989 		mutex_lock(&gdp_mutex);
2990 
2991 		/* find our class-directory at the parent and reference it */
2992 		spin_lock(&dev->class->p->glue_dirs.list_lock);
2993 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2994 			if (k->parent == parent_kobj) {
2995 				kobj = kobject_get(k);
2996 				break;
2997 			}
2998 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2999 		if (kobj) {
3000 			mutex_unlock(&gdp_mutex);
3001 			return kobj;
3002 		}
3003 
3004 		/* or create a new class-directory at the parent device */
3005 		k = class_dir_create_and_add(dev->class, parent_kobj);
3006 		/* do not emit an uevent for this simple "glue" directory */
3007 		mutex_unlock(&gdp_mutex);
3008 		return k;
3009 	}
3010 
3011 	/* subsystems can specify a default root directory for their devices */
3012 	if (!parent && dev->bus && dev->bus->dev_root)
3013 		return &dev->bus->dev_root->kobj;
3014 
3015 	if (parent)
3016 		return &parent->kobj;
3017 	return NULL;
3018 }
3019 
3020 static inline bool live_in_glue_dir(struct kobject *kobj,
3021 				    struct device *dev)
3022 {
3023 	if (!kobj || !dev->class ||
3024 	    kobj->kset != &dev->class->p->glue_dirs)
3025 		return false;
3026 	return true;
3027 }
3028 
3029 static inline struct kobject *get_glue_dir(struct device *dev)
3030 {
3031 	return dev->kobj.parent;
3032 }
3033 
3034 /*
3035  * make sure cleaning up dir as the last step, we need to make
3036  * sure .release handler of kobject is run with holding the
3037  * global lock
3038  */
3039 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3040 {
3041 	unsigned int ref;
3042 
3043 	/* see if we live in a "glue" directory */
3044 	if (!live_in_glue_dir(glue_dir, dev))
3045 		return;
3046 
3047 	mutex_lock(&gdp_mutex);
3048 	/**
3049 	 * There is a race condition between removing glue directory
3050 	 * and adding a new device under the glue directory.
3051 	 *
3052 	 * CPU1:                                         CPU2:
3053 	 *
3054 	 * device_add()
3055 	 *   get_device_parent()
3056 	 *     class_dir_create_and_add()
3057 	 *       kobject_add_internal()
3058 	 *         create_dir()    // create glue_dir
3059 	 *
3060 	 *                                               device_add()
3061 	 *                                                 get_device_parent()
3062 	 *                                                   kobject_get() // get glue_dir
3063 	 *
3064 	 * device_del()
3065 	 *   cleanup_glue_dir()
3066 	 *     kobject_del(glue_dir)
3067 	 *
3068 	 *                                               kobject_add()
3069 	 *                                                 kobject_add_internal()
3070 	 *                                                   create_dir() // in glue_dir
3071 	 *                                                     sysfs_create_dir_ns()
3072 	 *                                                       kernfs_create_dir_ns(sd)
3073 	 *
3074 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3075 	 *       sysfs_put()        // free glue_dir->sd
3076 	 *
3077 	 *                                                         // sd is freed
3078 	 *                                                         kernfs_new_node(sd)
3079 	 *                                                           kernfs_get(glue_dir)
3080 	 *                                                           kernfs_add_one()
3081 	 *                                                           kernfs_put()
3082 	 *
3083 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3084 	 * a new device under glue dir, the glue_dir kobject reference count
3085 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3086 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3087 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3088 	 *
3089 	 * Then the CPU2 will see a stale "empty" but still potentially used
3090 	 * glue dir around in kernfs_new_node().
3091 	 *
3092 	 * In order to avoid this happening, we also should make sure that
3093 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3094 	 * for glue_dir kobj is 1.
3095 	 */
3096 	ref = kref_read(&glue_dir->kref);
3097 	if (!kobject_has_children(glue_dir) && !--ref)
3098 		kobject_del(glue_dir);
3099 	kobject_put(glue_dir);
3100 	mutex_unlock(&gdp_mutex);
3101 }
3102 
3103 static int device_add_class_symlinks(struct device *dev)
3104 {
3105 	struct device_node *of_node = dev_of_node(dev);
3106 	int error;
3107 
3108 	if (of_node) {
3109 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3110 		if (error)
3111 			dev_warn(dev, "Error %d creating of_node link\n",error);
3112 		/* An error here doesn't warrant bringing down the device */
3113 	}
3114 
3115 	if (!dev->class)
3116 		return 0;
3117 
3118 	error = sysfs_create_link(&dev->kobj,
3119 				  &dev->class->p->subsys.kobj,
3120 				  "subsystem");
3121 	if (error)
3122 		goto out_devnode;
3123 
3124 	if (dev->parent && device_is_not_partition(dev)) {
3125 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3126 					  "device");
3127 		if (error)
3128 			goto out_subsys;
3129 	}
3130 
3131 #ifdef CONFIG_BLOCK
3132 	/* /sys/block has directories and does not need symlinks */
3133 	if (sysfs_deprecated && dev->class == &block_class)
3134 		return 0;
3135 #endif
3136 
3137 	/* link in the class directory pointing to the device */
3138 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3139 				  &dev->kobj, dev_name(dev));
3140 	if (error)
3141 		goto out_device;
3142 
3143 	return 0;
3144 
3145 out_device:
3146 	sysfs_remove_link(&dev->kobj, "device");
3147 
3148 out_subsys:
3149 	sysfs_remove_link(&dev->kobj, "subsystem");
3150 out_devnode:
3151 	sysfs_remove_link(&dev->kobj, "of_node");
3152 	return error;
3153 }
3154 
3155 static void device_remove_class_symlinks(struct device *dev)
3156 {
3157 	if (dev_of_node(dev))
3158 		sysfs_remove_link(&dev->kobj, "of_node");
3159 
3160 	if (!dev->class)
3161 		return;
3162 
3163 	if (dev->parent && device_is_not_partition(dev))
3164 		sysfs_remove_link(&dev->kobj, "device");
3165 	sysfs_remove_link(&dev->kobj, "subsystem");
3166 #ifdef CONFIG_BLOCK
3167 	if (sysfs_deprecated && dev->class == &block_class)
3168 		return;
3169 #endif
3170 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3171 }
3172 
3173 /**
3174  * dev_set_name - set a device name
3175  * @dev: device
3176  * @fmt: format string for the device's name
3177  */
3178 int dev_set_name(struct device *dev, const char *fmt, ...)
3179 {
3180 	va_list vargs;
3181 	int err;
3182 
3183 	va_start(vargs, fmt);
3184 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3185 	va_end(vargs);
3186 	return err;
3187 }
3188 EXPORT_SYMBOL_GPL(dev_set_name);
3189 
3190 /**
3191  * device_to_dev_kobj - select a /sys/dev/ directory for the device
3192  * @dev: device
3193  *
3194  * By default we select char/ for new entries.  Setting class->dev_obj
3195  * to NULL prevents an entry from being created.  class->dev_kobj must
3196  * be set (or cleared) before any devices are registered to the class
3197  * otherwise device_create_sys_dev_entry() and
3198  * device_remove_sys_dev_entry() will disagree about the presence of
3199  * the link.
3200  */
3201 static struct kobject *device_to_dev_kobj(struct device *dev)
3202 {
3203 	struct kobject *kobj;
3204 
3205 	if (dev->class)
3206 		kobj = dev->class->dev_kobj;
3207 	else
3208 		kobj = sysfs_dev_char_kobj;
3209 
3210 	return kobj;
3211 }
3212 
3213 static int device_create_sys_dev_entry(struct device *dev)
3214 {
3215 	struct kobject *kobj = device_to_dev_kobj(dev);
3216 	int error = 0;
3217 	char devt_str[15];
3218 
3219 	if (kobj) {
3220 		format_dev_t(devt_str, dev->devt);
3221 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3222 	}
3223 
3224 	return error;
3225 }
3226 
3227 static void device_remove_sys_dev_entry(struct device *dev)
3228 {
3229 	struct kobject *kobj = device_to_dev_kobj(dev);
3230 	char devt_str[15];
3231 
3232 	if (kobj) {
3233 		format_dev_t(devt_str, dev->devt);
3234 		sysfs_remove_link(kobj, devt_str);
3235 	}
3236 }
3237 
3238 static int device_private_init(struct device *dev)
3239 {
3240 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3241 	if (!dev->p)
3242 		return -ENOMEM;
3243 	dev->p->device = dev;
3244 	klist_init(&dev->p->klist_children, klist_children_get,
3245 		   klist_children_put);
3246 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3247 	return 0;
3248 }
3249 
3250 /**
3251  * device_add - add device to device hierarchy.
3252  * @dev: device.
3253  *
3254  * This is part 2 of device_register(), though may be called
3255  * separately _iff_ device_initialize() has been called separately.
3256  *
3257  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3258  * to the global and sibling lists for the device, then
3259  * adds it to the other relevant subsystems of the driver model.
3260  *
3261  * Do not call this routine or device_register() more than once for
3262  * any device structure.  The driver model core is not designed to work
3263  * with devices that get unregistered and then spring back to life.
3264  * (Among other things, it's very hard to guarantee that all references
3265  * to the previous incarnation of @dev have been dropped.)  Allocate
3266  * and register a fresh new struct device instead.
3267  *
3268  * NOTE: _Never_ directly free @dev after calling this function, even
3269  * if it returned an error! Always use put_device() to give up your
3270  * reference instead.
3271  *
3272  * Rule of thumb is: if device_add() succeeds, you should call
3273  * device_del() when you want to get rid of it. If device_add() has
3274  * *not* succeeded, use *only* put_device() to drop the reference
3275  * count.
3276  */
3277 int device_add(struct device *dev)
3278 {
3279 	struct device *parent;
3280 	struct kobject *kobj;
3281 	struct class_interface *class_intf;
3282 	int error = -EINVAL;
3283 	struct kobject *glue_dir = NULL;
3284 
3285 	dev = get_device(dev);
3286 	if (!dev)
3287 		goto done;
3288 
3289 	if (!dev->p) {
3290 		error = device_private_init(dev);
3291 		if (error)
3292 			goto done;
3293 	}
3294 
3295 	/*
3296 	 * for statically allocated devices, which should all be converted
3297 	 * some day, we need to initialize the name. We prevent reading back
3298 	 * the name, and force the use of dev_name()
3299 	 */
3300 	if (dev->init_name) {
3301 		dev_set_name(dev, "%s", dev->init_name);
3302 		dev->init_name = NULL;
3303 	}
3304 
3305 	/* subsystems can specify simple device enumeration */
3306 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3307 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3308 
3309 	if (!dev_name(dev)) {
3310 		error = -EINVAL;
3311 		goto name_error;
3312 	}
3313 
3314 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3315 
3316 	parent = get_device(dev->parent);
3317 	kobj = get_device_parent(dev, parent);
3318 	if (IS_ERR(kobj)) {
3319 		error = PTR_ERR(kobj);
3320 		goto parent_error;
3321 	}
3322 	if (kobj)
3323 		dev->kobj.parent = kobj;
3324 
3325 	/* use parent numa_node */
3326 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3327 		set_dev_node(dev, dev_to_node(parent));
3328 
3329 	/* first, register with generic layer. */
3330 	/* we require the name to be set before, and pass NULL */
3331 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3332 	if (error) {
3333 		glue_dir = get_glue_dir(dev);
3334 		goto Error;
3335 	}
3336 
3337 	/* notify platform of device entry */
3338 	device_platform_notify(dev);
3339 
3340 	error = device_create_file(dev, &dev_attr_uevent);
3341 	if (error)
3342 		goto attrError;
3343 
3344 	error = device_add_class_symlinks(dev);
3345 	if (error)
3346 		goto SymlinkError;
3347 	error = device_add_attrs(dev);
3348 	if (error)
3349 		goto AttrsError;
3350 	error = bus_add_device(dev);
3351 	if (error)
3352 		goto BusError;
3353 	error = dpm_sysfs_add(dev);
3354 	if (error)
3355 		goto DPMError;
3356 	device_pm_add(dev);
3357 
3358 	if (MAJOR(dev->devt)) {
3359 		error = device_create_file(dev, &dev_attr_dev);
3360 		if (error)
3361 			goto DevAttrError;
3362 
3363 		error = device_create_sys_dev_entry(dev);
3364 		if (error)
3365 			goto SysEntryError;
3366 
3367 		devtmpfs_create_node(dev);
3368 	}
3369 
3370 	/* Notify clients of device addition.  This call must come
3371 	 * after dpm_sysfs_add() and before kobject_uevent().
3372 	 */
3373 	if (dev->bus)
3374 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3375 					     BUS_NOTIFY_ADD_DEVICE, dev);
3376 
3377 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3378 
3379 	/*
3380 	 * Check if any of the other devices (consumers) have been waiting for
3381 	 * this device (supplier) to be added so that they can create a device
3382 	 * link to it.
3383 	 *
3384 	 * This needs to happen after device_pm_add() because device_link_add()
3385 	 * requires the supplier be registered before it's called.
3386 	 *
3387 	 * But this also needs to happen before bus_probe_device() to make sure
3388 	 * waiting consumers can link to it before the driver is bound to the
3389 	 * device and the driver sync_state callback is called for this device.
3390 	 */
3391 	if (dev->fwnode && !dev->fwnode->dev) {
3392 		dev->fwnode->dev = dev;
3393 		fw_devlink_link_device(dev);
3394 	}
3395 
3396 	bus_probe_device(dev);
3397 
3398 	/*
3399 	 * If all driver registration is done and a newly added device doesn't
3400 	 * match with any driver, don't block its consumers from probing in
3401 	 * case the consumer device is able to operate without this supplier.
3402 	 */
3403 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3404 		fw_devlink_unblock_consumers(dev);
3405 
3406 	if (parent)
3407 		klist_add_tail(&dev->p->knode_parent,
3408 			       &parent->p->klist_children);
3409 
3410 	if (dev->class) {
3411 		mutex_lock(&dev->class->p->mutex);
3412 		/* tie the class to the device */
3413 		klist_add_tail(&dev->p->knode_class,
3414 			       &dev->class->p->klist_devices);
3415 
3416 		/* notify any interfaces that the device is here */
3417 		list_for_each_entry(class_intf,
3418 				    &dev->class->p->interfaces, node)
3419 			if (class_intf->add_dev)
3420 				class_intf->add_dev(dev, class_intf);
3421 		mutex_unlock(&dev->class->p->mutex);
3422 	}
3423 done:
3424 	put_device(dev);
3425 	return error;
3426  SysEntryError:
3427 	if (MAJOR(dev->devt))
3428 		device_remove_file(dev, &dev_attr_dev);
3429  DevAttrError:
3430 	device_pm_remove(dev);
3431 	dpm_sysfs_remove(dev);
3432  DPMError:
3433 	bus_remove_device(dev);
3434  BusError:
3435 	device_remove_attrs(dev);
3436  AttrsError:
3437 	device_remove_class_symlinks(dev);
3438  SymlinkError:
3439 	device_remove_file(dev, &dev_attr_uevent);
3440  attrError:
3441 	device_platform_notify_remove(dev);
3442 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3443 	glue_dir = get_glue_dir(dev);
3444 	kobject_del(&dev->kobj);
3445  Error:
3446 	cleanup_glue_dir(dev, glue_dir);
3447 parent_error:
3448 	put_device(parent);
3449 name_error:
3450 	kfree(dev->p);
3451 	dev->p = NULL;
3452 	goto done;
3453 }
3454 EXPORT_SYMBOL_GPL(device_add);
3455 
3456 /**
3457  * device_register - register a device with the system.
3458  * @dev: pointer to the device structure
3459  *
3460  * This happens in two clean steps - initialize the device
3461  * and add it to the system. The two steps can be called
3462  * separately, but this is the easiest and most common.
3463  * I.e. you should only call the two helpers separately if
3464  * have a clearly defined need to use and refcount the device
3465  * before it is added to the hierarchy.
3466  *
3467  * For more information, see the kerneldoc for device_initialize()
3468  * and device_add().
3469  *
3470  * NOTE: _Never_ directly free @dev after calling this function, even
3471  * if it returned an error! Always use put_device() to give up the
3472  * reference initialized in this function instead.
3473  */
3474 int device_register(struct device *dev)
3475 {
3476 	device_initialize(dev);
3477 	return device_add(dev);
3478 }
3479 EXPORT_SYMBOL_GPL(device_register);
3480 
3481 /**
3482  * get_device - increment reference count for device.
3483  * @dev: device.
3484  *
3485  * This simply forwards the call to kobject_get(), though
3486  * we do take care to provide for the case that we get a NULL
3487  * pointer passed in.
3488  */
3489 struct device *get_device(struct device *dev)
3490 {
3491 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3492 }
3493 EXPORT_SYMBOL_GPL(get_device);
3494 
3495 /**
3496  * put_device - decrement reference count.
3497  * @dev: device in question.
3498  */
3499 void put_device(struct device *dev)
3500 {
3501 	/* might_sleep(); */
3502 	if (dev)
3503 		kobject_put(&dev->kobj);
3504 }
3505 EXPORT_SYMBOL_GPL(put_device);
3506 
3507 bool kill_device(struct device *dev)
3508 {
3509 	/*
3510 	 * Require the device lock and set the "dead" flag to guarantee that
3511 	 * the update behavior is consistent with the other bitfields near
3512 	 * it and that we cannot have an asynchronous probe routine trying
3513 	 * to run while we are tearing out the bus/class/sysfs from
3514 	 * underneath the device.
3515 	 */
3516 	device_lock_assert(dev);
3517 
3518 	if (dev->p->dead)
3519 		return false;
3520 	dev->p->dead = true;
3521 	return true;
3522 }
3523 EXPORT_SYMBOL_GPL(kill_device);
3524 
3525 /**
3526  * device_del - delete device from system.
3527  * @dev: device.
3528  *
3529  * This is the first part of the device unregistration
3530  * sequence. This removes the device from the lists we control
3531  * from here, has it removed from the other driver model
3532  * subsystems it was added to in device_add(), and removes it
3533  * from the kobject hierarchy.
3534  *
3535  * NOTE: this should be called manually _iff_ device_add() was
3536  * also called manually.
3537  */
3538 void device_del(struct device *dev)
3539 {
3540 	struct device *parent = dev->parent;
3541 	struct kobject *glue_dir = NULL;
3542 	struct class_interface *class_intf;
3543 	unsigned int noio_flag;
3544 
3545 	device_lock(dev);
3546 	kill_device(dev);
3547 	device_unlock(dev);
3548 
3549 	if (dev->fwnode && dev->fwnode->dev == dev)
3550 		dev->fwnode->dev = NULL;
3551 
3552 	/* Notify clients of device removal.  This call must come
3553 	 * before dpm_sysfs_remove().
3554 	 */
3555 	noio_flag = memalloc_noio_save();
3556 	if (dev->bus)
3557 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3558 					     BUS_NOTIFY_DEL_DEVICE, dev);
3559 
3560 	dpm_sysfs_remove(dev);
3561 	if (parent)
3562 		klist_del(&dev->p->knode_parent);
3563 	if (MAJOR(dev->devt)) {
3564 		devtmpfs_delete_node(dev);
3565 		device_remove_sys_dev_entry(dev);
3566 		device_remove_file(dev, &dev_attr_dev);
3567 	}
3568 	if (dev->class) {
3569 		device_remove_class_symlinks(dev);
3570 
3571 		mutex_lock(&dev->class->p->mutex);
3572 		/* notify any interfaces that the device is now gone */
3573 		list_for_each_entry(class_intf,
3574 				    &dev->class->p->interfaces, node)
3575 			if (class_intf->remove_dev)
3576 				class_intf->remove_dev(dev, class_intf);
3577 		/* remove the device from the class list */
3578 		klist_del(&dev->p->knode_class);
3579 		mutex_unlock(&dev->class->p->mutex);
3580 	}
3581 	device_remove_file(dev, &dev_attr_uevent);
3582 	device_remove_attrs(dev);
3583 	bus_remove_device(dev);
3584 	device_pm_remove(dev);
3585 	driver_deferred_probe_del(dev);
3586 	device_platform_notify_remove(dev);
3587 	device_remove_properties(dev);
3588 	device_links_purge(dev);
3589 
3590 	if (dev->bus)
3591 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3592 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3593 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3594 	glue_dir = get_glue_dir(dev);
3595 	kobject_del(&dev->kobj);
3596 	cleanup_glue_dir(dev, glue_dir);
3597 	memalloc_noio_restore(noio_flag);
3598 	put_device(parent);
3599 }
3600 EXPORT_SYMBOL_GPL(device_del);
3601 
3602 /**
3603  * device_unregister - unregister device from system.
3604  * @dev: device going away.
3605  *
3606  * We do this in two parts, like we do device_register(). First,
3607  * we remove it from all the subsystems with device_del(), then
3608  * we decrement the reference count via put_device(). If that
3609  * is the final reference count, the device will be cleaned up
3610  * via device_release() above. Otherwise, the structure will
3611  * stick around until the final reference to the device is dropped.
3612  */
3613 void device_unregister(struct device *dev)
3614 {
3615 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3616 	device_del(dev);
3617 	put_device(dev);
3618 }
3619 EXPORT_SYMBOL_GPL(device_unregister);
3620 
3621 static struct device *prev_device(struct klist_iter *i)
3622 {
3623 	struct klist_node *n = klist_prev(i);
3624 	struct device *dev = NULL;
3625 	struct device_private *p;
3626 
3627 	if (n) {
3628 		p = to_device_private_parent(n);
3629 		dev = p->device;
3630 	}
3631 	return dev;
3632 }
3633 
3634 static struct device *next_device(struct klist_iter *i)
3635 {
3636 	struct klist_node *n = klist_next(i);
3637 	struct device *dev = NULL;
3638 	struct device_private *p;
3639 
3640 	if (n) {
3641 		p = to_device_private_parent(n);
3642 		dev = p->device;
3643 	}
3644 	return dev;
3645 }
3646 
3647 /**
3648  * device_get_devnode - path of device node file
3649  * @dev: device
3650  * @mode: returned file access mode
3651  * @uid: returned file owner
3652  * @gid: returned file group
3653  * @tmp: possibly allocated string
3654  *
3655  * Return the relative path of a possible device node.
3656  * Non-default names may need to allocate a memory to compose
3657  * a name. This memory is returned in tmp and needs to be
3658  * freed by the caller.
3659  */
3660 const char *device_get_devnode(struct device *dev,
3661 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3662 			       const char **tmp)
3663 {
3664 	char *s;
3665 
3666 	*tmp = NULL;
3667 
3668 	/* the device type may provide a specific name */
3669 	if (dev->type && dev->type->devnode)
3670 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3671 	if (*tmp)
3672 		return *tmp;
3673 
3674 	/* the class may provide a specific name */
3675 	if (dev->class && dev->class->devnode)
3676 		*tmp = dev->class->devnode(dev, mode);
3677 	if (*tmp)
3678 		return *tmp;
3679 
3680 	/* return name without allocation, tmp == NULL */
3681 	if (strchr(dev_name(dev), '!') == NULL)
3682 		return dev_name(dev);
3683 
3684 	/* replace '!' in the name with '/' */
3685 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3686 	if (!s)
3687 		return NULL;
3688 	strreplace(s, '!', '/');
3689 	return *tmp = s;
3690 }
3691 
3692 /**
3693  * device_for_each_child - device child iterator.
3694  * @parent: parent struct device.
3695  * @fn: function to be called for each device.
3696  * @data: data for the callback.
3697  *
3698  * Iterate over @parent's child devices, and call @fn for each,
3699  * passing it @data.
3700  *
3701  * We check the return of @fn each time. If it returns anything
3702  * other than 0, we break out and return that value.
3703  */
3704 int device_for_each_child(struct device *parent, void *data,
3705 			  int (*fn)(struct device *dev, void *data))
3706 {
3707 	struct klist_iter i;
3708 	struct device *child;
3709 	int error = 0;
3710 
3711 	if (!parent->p)
3712 		return 0;
3713 
3714 	klist_iter_init(&parent->p->klist_children, &i);
3715 	while (!error && (child = next_device(&i)))
3716 		error = fn(child, data);
3717 	klist_iter_exit(&i);
3718 	return error;
3719 }
3720 EXPORT_SYMBOL_GPL(device_for_each_child);
3721 
3722 /**
3723  * device_for_each_child_reverse - device child iterator in reversed order.
3724  * @parent: parent struct device.
3725  * @fn: function to be called for each device.
3726  * @data: data for the callback.
3727  *
3728  * Iterate over @parent's child devices, and call @fn for each,
3729  * passing it @data.
3730  *
3731  * We check the return of @fn each time. If it returns anything
3732  * other than 0, we break out and return that value.
3733  */
3734 int device_for_each_child_reverse(struct device *parent, void *data,
3735 				  int (*fn)(struct device *dev, void *data))
3736 {
3737 	struct klist_iter i;
3738 	struct device *child;
3739 	int error = 0;
3740 
3741 	if (!parent->p)
3742 		return 0;
3743 
3744 	klist_iter_init(&parent->p->klist_children, &i);
3745 	while ((child = prev_device(&i)) && !error)
3746 		error = fn(child, data);
3747 	klist_iter_exit(&i);
3748 	return error;
3749 }
3750 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3751 
3752 /**
3753  * device_find_child - device iterator for locating a particular device.
3754  * @parent: parent struct device
3755  * @match: Callback function to check device
3756  * @data: Data to pass to match function
3757  *
3758  * This is similar to the device_for_each_child() function above, but it
3759  * returns a reference to a device that is 'found' for later use, as
3760  * determined by the @match callback.
3761  *
3762  * The callback should return 0 if the device doesn't match and non-zero
3763  * if it does.  If the callback returns non-zero and a reference to the
3764  * current device can be obtained, this function will return to the caller
3765  * and not iterate over any more devices.
3766  *
3767  * NOTE: you will need to drop the reference with put_device() after use.
3768  */
3769 struct device *device_find_child(struct device *parent, void *data,
3770 				 int (*match)(struct device *dev, void *data))
3771 {
3772 	struct klist_iter i;
3773 	struct device *child;
3774 
3775 	if (!parent)
3776 		return NULL;
3777 
3778 	klist_iter_init(&parent->p->klist_children, &i);
3779 	while ((child = next_device(&i)))
3780 		if (match(child, data) && get_device(child))
3781 			break;
3782 	klist_iter_exit(&i);
3783 	return child;
3784 }
3785 EXPORT_SYMBOL_GPL(device_find_child);
3786 
3787 /**
3788  * device_find_child_by_name - device iterator for locating a child device.
3789  * @parent: parent struct device
3790  * @name: name of the child device
3791  *
3792  * This is similar to the device_find_child() function above, but it
3793  * returns a reference to a device that has the name @name.
3794  *
3795  * NOTE: you will need to drop the reference with put_device() after use.
3796  */
3797 struct device *device_find_child_by_name(struct device *parent,
3798 					 const char *name)
3799 {
3800 	struct klist_iter i;
3801 	struct device *child;
3802 
3803 	if (!parent)
3804 		return NULL;
3805 
3806 	klist_iter_init(&parent->p->klist_children, &i);
3807 	while ((child = next_device(&i)))
3808 		if (sysfs_streq(dev_name(child), name) && get_device(child))
3809 			break;
3810 	klist_iter_exit(&i);
3811 	return child;
3812 }
3813 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3814 
3815 int __init devices_init(void)
3816 {
3817 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3818 	if (!devices_kset)
3819 		return -ENOMEM;
3820 	dev_kobj = kobject_create_and_add("dev", NULL);
3821 	if (!dev_kobj)
3822 		goto dev_kobj_err;
3823 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3824 	if (!sysfs_dev_block_kobj)
3825 		goto block_kobj_err;
3826 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3827 	if (!sysfs_dev_char_kobj)
3828 		goto char_kobj_err;
3829 
3830 	return 0;
3831 
3832  char_kobj_err:
3833 	kobject_put(sysfs_dev_block_kobj);
3834  block_kobj_err:
3835 	kobject_put(dev_kobj);
3836  dev_kobj_err:
3837 	kset_unregister(devices_kset);
3838 	return -ENOMEM;
3839 }
3840 
3841 static int device_check_offline(struct device *dev, void *not_used)
3842 {
3843 	int ret;
3844 
3845 	ret = device_for_each_child(dev, NULL, device_check_offline);
3846 	if (ret)
3847 		return ret;
3848 
3849 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3850 }
3851 
3852 /**
3853  * device_offline - Prepare the device for hot-removal.
3854  * @dev: Device to be put offline.
3855  *
3856  * Execute the device bus type's .offline() callback, if present, to prepare
3857  * the device for a subsequent hot-removal.  If that succeeds, the device must
3858  * not be used until either it is removed or its bus type's .online() callback
3859  * is executed.
3860  *
3861  * Call under device_hotplug_lock.
3862  */
3863 int device_offline(struct device *dev)
3864 {
3865 	int ret;
3866 
3867 	if (dev->offline_disabled)
3868 		return -EPERM;
3869 
3870 	ret = device_for_each_child(dev, NULL, device_check_offline);
3871 	if (ret)
3872 		return ret;
3873 
3874 	device_lock(dev);
3875 	if (device_supports_offline(dev)) {
3876 		if (dev->offline) {
3877 			ret = 1;
3878 		} else {
3879 			ret = dev->bus->offline(dev);
3880 			if (!ret) {
3881 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3882 				dev->offline = true;
3883 			}
3884 		}
3885 	}
3886 	device_unlock(dev);
3887 
3888 	return ret;
3889 }
3890 
3891 /**
3892  * device_online - Put the device back online after successful device_offline().
3893  * @dev: Device to be put back online.
3894  *
3895  * If device_offline() has been successfully executed for @dev, but the device
3896  * has not been removed subsequently, execute its bus type's .online() callback
3897  * to indicate that the device can be used again.
3898  *
3899  * Call under device_hotplug_lock.
3900  */
3901 int device_online(struct device *dev)
3902 {
3903 	int ret = 0;
3904 
3905 	device_lock(dev);
3906 	if (device_supports_offline(dev)) {
3907 		if (dev->offline) {
3908 			ret = dev->bus->online(dev);
3909 			if (!ret) {
3910 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3911 				dev->offline = false;
3912 			}
3913 		} else {
3914 			ret = 1;
3915 		}
3916 	}
3917 	device_unlock(dev);
3918 
3919 	return ret;
3920 }
3921 
3922 struct root_device {
3923 	struct device dev;
3924 	struct module *owner;
3925 };
3926 
3927 static inline struct root_device *to_root_device(struct device *d)
3928 {
3929 	return container_of(d, struct root_device, dev);
3930 }
3931 
3932 static void root_device_release(struct device *dev)
3933 {
3934 	kfree(to_root_device(dev));
3935 }
3936 
3937 /**
3938  * __root_device_register - allocate and register a root device
3939  * @name: root device name
3940  * @owner: owner module of the root device, usually THIS_MODULE
3941  *
3942  * This function allocates a root device and registers it
3943  * using device_register(). In order to free the returned
3944  * device, use root_device_unregister().
3945  *
3946  * Root devices are dummy devices which allow other devices
3947  * to be grouped under /sys/devices. Use this function to
3948  * allocate a root device and then use it as the parent of
3949  * any device which should appear under /sys/devices/{name}
3950  *
3951  * The /sys/devices/{name} directory will also contain a
3952  * 'module' symlink which points to the @owner directory
3953  * in sysfs.
3954  *
3955  * Returns &struct device pointer on success, or ERR_PTR() on error.
3956  *
3957  * Note: You probably want to use root_device_register().
3958  */
3959 struct device *__root_device_register(const char *name, struct module *owner)
3960 {
3961 	struct root_device *root;
3962 	int err = -ENOMEM;
3963 
3964 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3965 	if (!root)
3966 		return ERR_PTR(err);
3967 
3968 	err = dev_set_name(&root->dev, "%s", name);
3969 	if (err) {
3970 		kfree(root);
3971 		return ERR_PTR(err);
3972 	}
3973 
3974 	root->dev.release = root_device_release;
3975 
3976 	err = device_register(&root->dev);
3977 	if (err) {
3978 		put_device(&root->dev);
3979 		return ERR_PTR(err);
3980 	}
3981 
3982 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3983 	if (owner) {
3984 		struct module_kobject *mk = &owner->mkobj;
3985 
3986 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3987 		if (err) {
3988 			device_unregister(&root->dev);
3989 			return ERR_PTR(err);
3990 		}
3991 		root->owner = owner;
3992 	}
3993 #endif
3994 
3995 	return &root->dev;
3996 }
3997 EXPORT_SYMBOL_GPL(__root_device_register);
3998 
3999 /**
4000  * root_device_unregister - unregister and free a root device
4001  * @dev: device going away
4002  *
4003  * This function unregisters and cleans up a device that was created by
4004  * root_device_register().
4005  */
4006 void root_device_unregister(struct device *dev)
4007 {
4008 	struct root_device *root = to_root_device(dev);
4009 
4010 	if (root->owner)
4011 		sysfs_remove_link(&root->dev.kobj, "module");
4012 
4013 	device_unregister(dev);
4014 }
4015 EXPORT_SYMBOL_GPL(root_device_unregister);
4016 
4017 
4018 static void device_create_release(struct device *dev)
4019 {
4020 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4021 	kfree(dev);
4022 }
4023 
4024 static __printf(6, 0) struct device *
4025 device_create_groups_vargs(struct class *class, struct device *parent,
4026 			   dev_t devt, void *drvdata,
4027 			   const struct attribute_group **groups,
4028 			   const char *fmt, va_list args)
4029 {
4030 	struct device *dev = NULL;
4031 	int retval = -ENODEV;
4032 
4033 	if (class == NULL || IS_ERR(class))
4034 		goto error;
4035 
4036 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4037 	if (!dev) {
4038 		retval = -ENOMEM;
4039 		goto error;
4040 	}
4041 
4042 	device_initialize(dev);
4043 	dev->devt = devt;
4044 	dev->class = class;
4045 	dev->parent = parent;
4046 	dev->groups = groups;
4047 	dev->release = device_create_release;
4048 	dev_set_drvdata(dev, drvdata);
4049 
4050 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4051 	if (retval)
4052 		goto error;
4053 
4054 	retval = device_add(dev);
4055 	if (retval)
4056 		goto error;
4057 
4058 	return dev;
4059 
4060 error:
4061 	put_device(dev);
4062 	return ERR_PTR(retval);
4063 }
4064 
4065 /**
4066  * device_create - creates a device and registers it with sysfs
4067  * @class: pointer to the struct class that this device should be registered to
4068  * @parent: pointer to the parent struct device of this new device, if any
4069  * @devt: the dev_t for the char device to be added
4070  * @drvdata: the data to be added to the device for callbacks
4071  * @fmt: string for the device's name
4072  *
4073  * This function can be used by char device classes.  A struct device
4074  * will be created in sysfs, registered to the specified class.
4075  *
4076  * A "dev" file will be created, showing the dev_t for the device, if
4077  * the dev_t is not 0,0.
4078  * If a pointer to a parent struct device is passed in, the newly created
4079  * struct device will be a child of that device in sysfs.
4080  * The pointer to the struct device will be returned from the call.
4081  * Any further sysfs files that might be required can be created using this
4082  * pointer.
4083  *
4084  * Returns &struct device pointer on success, or ERR_PTR() on error.
4085  *
4086  * Note: the struct class passed to this function must have previously
4087  * been created with a call to class_create().
4088  */
4089 struct device *device_create(struct class *class, struct device *parent,
4090 			     dev_t devt, void *drvdata, const char *fmt, ...)
4091 {
4092 	va_list vargs;
4093 	struct device *dev;
4094 
4095 	va_start(vargs, fmt);
4096 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4097 					  fmt, vargs);
4098 	va_end(vargs);
4099 	return dev;
4100 }
4101 EXPORT_SYMBOL_GPL(device_create);
4102 
4103 /**
4104  * device_create_with_groups - creates a device and registers it with sysfs
4105  * @class: pointer to the struct class that this device should be registered to
4106  * @parent: pointer to the parent struct device of this new device, if any
4107  * @devt: the dev_t for the char device to be added
4108  * @drvdata: the data to be added to the device for callbacks
4109  * @groups: NULL-terminated list of attribute groups to be created
4110  * @fmt: string for the device's name
4111  *
4112  * This function can be used by char device classes.  A struct device
4113  * will be created in sysfs, registered to the specified class.
4114  * Additional attributes specified in the groups parameter will also
4115  * be created automatically.
4116  *
4117  * A "dev" file will be created, showing the dev_t for the device, if
4118  * the dev_t is not 0,0.
4119  * If a pointer to a parent struct device is passed in, the newly created
4120  * struct device will be a child of that device in sysfs.
4121  * The pointer to the struct device will be returned from the call.
4122  * Any further sysfs files that might be required can be created using this
4123  * pointer.
4124  *
4125  * Returns &struct device pointer on success, or ERR_PTR() on error.
4126  *
4127  * Note: the struct class passed to this function must have previously
4128  * been created with a call to class_create().
4129  */
4130 struct device *device_create_with_groups(struct class *class,
4131 					 struct device *parent, dev_t devt,
4132 					 void *drvdata,
4133 					 const struct attribute_group **groups,
4134 					 const char *fmt, ...)
4135 {
4136 	va_list vargs;
4137 	struct device *dev;
4138 
4139 	va_start(vargs, fmt);
4140 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4141 					 fmt, vargs);
4142 	va_end(vargs);
4143 	return dev;
4144 }
4145 EXPORT_SYMBOL_GPL(device_create_with_groups);
4146 
4147 /**
4148  * device_destroy - removes a device that was created with device_create()
4149  * @class: pointer to the struct class that this device was registered with
4150  * @devt: the dev_t of the device that was previously registered
4151  *
4152  * This call unregisters and cleans up a device that was created with a
4153  * call to device_create().
4154  */
4155 void device_destroy(struct class *class, dev_t devt)
4156 {
4157 	struct device *dev;
4158 
4159 	dev = class_find_device_by_devt(class, devt);
4160 	if (dev) {
4161 		put_device(dev);
4162 		device_unregister(dev);
4163 	}
4164 }
4165 EXPORT_SYMBOL_GPL(device_destroy);
4166 
4167 /**
4168  * device_rename - renames a device
4169  * @dev: the pointer to the struct device to be renamed
4170  * @new_name: the new name of the device
4171  *
4172  * It is the responsibility of the caller to provide mutual
4173  * exclusion between two different calls of device_rename
4174  * on the same device to ensure that new_name is valid and
4175  * won't conflict with other devices.
4176  *
4177  * Note: Don't call this function.  Currently, the networking layer calls this
4178  * function, but that will change.  The following text from Kay Sievers offers
4179  * some insight:
4180  *
4181  * Renaming devices is racy at many levels, symlinks and other stuff are not
4182  * replaced atomically, and you get a "move" uevent, but it's not easy to
4183  * connect the event to the old and new device. Device nodes are not renamed at
4184  * all, there isn't even support for that in the kernel now.
4185  *
4186  * In the meantime, during renaming, your target name might be taken by another
4187  * driver, creating conflicts. Or the old name is taken directly after you
4188  * renamed it -- then you get events for the same DEVPATH, before you even see
4189  * the "move" event. It's just a mess, and nothing new should ever rely on
4190  * kernel device renaming. Besides that, it's not even implemented now for
4191  * other things than (driver-core wise very simple) network devices.
4192  *
4193  * We are currently about to change network renaming in udev to completely
4194  * disallow renaming of devices in the same namespace as the kernel uses,
4195  * because we can't solve the problems properly, that arise with swapping names
4196  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4197  * be allowed to some other name than eth[0-9]*, for the aforementioned
4198  * reasons.
4199  *
4200  * Make up a "real" name in the driver before you register anything, or add
4201  * some other attributes for userspace to find the device, or use udev to add
4202  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4203  * don't even want to get into that and try to implement the missing pieces in
4204  * the core. We really have other pieces to fix in the driver core mess. :)
4205  */
4206 int device_rename(struct device *dev, const char *new_name)
4207 {
4208 	struct kobject *kobj = &dev->kobj;
4209 	char *old_device_name = NULL;
4210 	int error;
4211 
4212 	dev = get_device(dev);
4213 	if (!dev)
4214 		return -EINVAL;
4215 
4216 	dev_dbg(dev, "renaming to %s\n", new_name);
4217 
4218 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4219 	if (!old_device_name) {
4220 		error = -ENOMEM;
4221 		goto out;
4222 	}
4223 
4224 	if (dev->class) {
4225 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4226 					     kobj, old_device_name,
4227 					     new_name, kobject_namespace(kobj));
4228 		if (error)
4229 			goto out;
4230 	}
4231 
4232 	error = kobject_rename(kobj, new_name);
4233 	if (error)
4234 		goto out;
4235 
4236 out:
4237 	put_device(dev);
4238 
4239 	kfree(old_device_name);
4240 
4241 	return error;
4242 }
4243 EXPORT_SYMBOL_GPL(device_rename);
4244 
4245 static int device_move_class_links(struct device *dev,
4246 				   struct device *old_parent,
4247 				   struct device *new_parent)
4248 {
4249 	int error = 0;
4250 
4251 	if (old_parent)
4252 		sysfs_remove_link(&dev->kobj, "device");
4253 	if (new_parent)
4254 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4255 					  "device");
4256 	return error;
4257 }
4258 
4259 /**
4260  * device_move - moves a device to a new parent
4261  * @dev: the pointer to the struct device to be moved
4262  * @new_parent: the new parent of the device (can be NULL)
4263  * @dpm_order: how to reorder the dpm_list
4264  */
4265 int device_move(struct device *dev, struct device *new_parent,
4266 		enum dpm_order dpm_order)
4267 {
4268 	int error;
4269 	struct device *old_parent;
4270 	struct kobject *new_parent_kobj;
4271 
4272 	dev = get_device(dev);
4273 	if (!dev)
4274 		return -EINVAL;
4275 
4276 	device_pm_lock();
4277 	new_parent = get_device(new_parent);
4278 	new_parent_kobj = get_device_parent(dev, new_parent);
4279 	if (IS_ERR(new_parent_kobj)) {
4280 		error = PTR_ERR(new_parent_kobj);
4281 		put_device(new_parent);
4282 		goto out;
4283 	}
4284 
4285 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4286 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4287 	error = kobject_move(&dev->kobj, new_parent_kobj);
4288 	if (error) {
4289 		cleanup_glue_dir(dev, new_parent_kobj);
4290 		put_device(new_parent);
4291 		goto out;
4292 	}
4293 	old_parent = dev->parent;
4294 	dev->parent = new_parent;
4295 	if (old_parent)
4296 		klist_remove(&dev->p->knode_parent);
4297 	if (new_parent) {
4298 		klist_add_tail(&dev->p->knode_parent,
4299 			       &new_parent->p->klist_children);
4300 		set_dev_node(dev, dev_to_node(new_parent));
4301 	}
4302 
4303 	if (dev->class) {
4304 		error = device_move_class_links(dev, old_parent, new_parent);
4305 		if (error) {
4306 			/* We ignore errors on cleanup since we're hosed anyway... */
4307 			device_move_class_links(dev, new_parent, old_parent);
4308 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4309 				if (new_parent)
4310 					klist_remove(&dev->p->knode_parent);
4311 				dev->parent = old_parent;
4312 				if (old_parent) {
4313 					klist_add_tail(&dev->p->knode_parent,
4314 						       &old_parent->p->klist_children);
4315 					set_dev_node(dev, dev_to_node(old_parent));
4316 				}
4317 			}
4318 			cleanup_glue_dir(dev, new_parent_kobj);
4319 			put_device(new_parent);
4320 			goto out;
4321 		}
4322 	}
4323 	switch (dpm_order) {
4324 	case DPM_ORDER_NONE:
4325 		break;
4326 	case DPM_ORDER_DEV_AFTER_PARENT:
4327 		device_pm_move_after(dev, new_parent);
4328 		devices_kset_move_after(dev, new_parent);
4329 		break;
4330 	case DPM_ORDER_PARENT_BEFORE_DEV:
4331 		device_pm_move_before(new_parent, dev);
4332 		devices_kset_move_before(new_parent, dev);
4333 		break;
4334 	case DPM_ORDER_DEV_LAST:
4335 		device_pm_move_last(dev);
4336 		devices_kset_move_last(dev);
4337 		break;
4338 	}
4339 
4340 	put_device(old_parent);
4341 out:
4342 	device_pm_unlock();
4343 	put_device(dev);
4344 	return error;
4345 }
4346 EXPORT_SYMBOL_GPL(device_move);
4347 
4348 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4349 				     kgid_t kgid)
4350 {
4351 	struct kobject *kobj = &dev->kobj;
4352 	struct class *class = dev->class;
4353 	const struct device_type *type = dev->type;
4354 	int error;
4355 
4356 	if (class) {
4357 		/*
4358 		 * Change the device groups of the device class for @dev to
4359 		 * @kuid/@kgid.
4360 		 */
4361 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4362 						  kgid);
4363 		if (error)
4364 			return error;
4365 	}
4366 
4367 	if (type) {
4368 		/*
4369 		 * Change the device groups of the device type for @dev to
4370 		 * @kuid/@kgid.
4371 		 */
4372 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4373 						  kgid);
4374 		if (error)
4375 			return error;
4376 	}
4377 
4378 	/* Change the device groups of @dev to @kuid/@kgid. */
4379 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4380 	if (error)
4381 		return error;
4382 
4383 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4384 		/* Change online device attributes of @dev to @kuid/@kgid. */
4385 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4386 						kuid, kgid);
4387 		if (error)
4388 			return error;
4389 	}
4390 
4391 	return 0;
4392 }
4393 
4394 /**
4395  * device_change_owner - change the owner of an existing device.
4396  * @dev: device.
4397  * @kuid: new owner's kuid
4398  * @kgid: new owner's kgid
4399  *
4400  * This changes the owner of @dev and its corresponding sysfs entries to
4401  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4402  * core.
4403  *
4404  * Returns 0 on success or error code on failure.
4405  */
4406 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4407 {
4408 	int error;
4409 	struct kobject *kobj = &dev->kobj;
4410 
4411 	dev = get_device(dev);
4412 	if (!dev)
4413 		return -EINVAL;
4414 
4415 	/*
4416 	 * Change the kobject and the default attributes and groups of the
4417 	 * ktype associated with it to @kuid/@kgid.
4418 	 */
4419 	error = sysfs_change_owner(kobj, kuid, kgid);
4420 	if (error)
4421 		goto out;
4422 
4423 	/*
4424 	 * Change the uevent file for @dev to the new owner. The uevent file
4425 	 * was created in a separate step when @dev got added and we mirror
4426 	 * that step here.
4427 	 */
4428 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4429 					kgid);
4430 	if (error)
4431 		goto out;
4432 
4433 	/*
4434 	 * Change the device groups, the device groups associated with the
4435 	 * device class, and the groups associated with the device type of @dev
4436 	 * to @kuid/@kgid.
4437 	 */
4438 	error = device_attrs_change_owner(dev, kuid, kgid);
4439 	if (error)
4440 		goto out;
4441 
4442 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4443 	if (error)
4444 		goto out;
4445 
4446 #ifdef CONFIG_BLOCK
4447 	if (sysfs_deprecated && dev->class == &block_class)
4448 		goto out;
4449 #endif
4450 
4451 	/*
4452 	 * Change the owner of the symlink located in the class directory of
4453 	 * the device class associated with @dev which points to the actual
4454 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4455 	 * symlink shows the same permissions as its target.
4456 	 */
4457 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4458 					dev_name(dev), kuid, kgid);
4459 	if (error)
4460 		goto out;
4461 
4462 out:
4463 	put_device(dev);
4464 	return error;
4465 }
4466 EXPORT_SYMBOL_GPL(device_change_owner);
4467 
4468 /**
4469  * device_shutdown - call ->shutdown() on each device to shutdown.
4470  */
4471 void device_shutdown(void)
4472 {
4473 	struct device *dev, *parent;
4474 
4475 	wait_for_device_probe();
4476 	device_block_probing();
4477 
4478 	cpufreq_suspend();
4479 
4480 	spin_lock(&devices_kset->list_lock);
4481 	/*
4482 	 * Walk the devices list backward, shutting down each in turn.
4483 	 * Beware that device unplug events may also start pulling
4484 	 * devices offline, even as the system is shutting down.
4485 	 */
4486 	while (!list_empty(&devices_kset->list)) {
4487 		dev = list_entry(devices_kset->list.prev, struct device,
4488 				kobj.entry);
4489 
4490 		/*
4491 		 * hold reference count of device's parent to
4492 		 * prevent it from being freed because parent's
4493 		 * lock is to be held
4494 		 */
4495 		parent = get_device(dev->parent);
4496 		get_device(dev);
4497 		/*
4498 		 * Make sure the device is off the kset list, in the
4499 		 * event that dev->*->shutdown() doesn't remove it.
4500 		 */
4501 		list_del_init(&dev->kobj.entry);
4502 		spin_unlock(&devices_kset->list_lock);
4503 
4504 		/* hold lock to avoid race with probe/release */
4505 		if (parent)
4506 			device_lock(parent);
4507 		device_lock(dev);
4508 
4509 		/* Don't allow any more runtime suspends */
4510 		pm_runtime_get_noresume(dev);
4511 		pm_runtime_barrier(dev);
4512 
4513 		if (dev->class && dev->class->shutdown_pre) {
4514 			if (initcall_debug)
4515 				dev_info(dev, "shutdown_pre\n");
4516 			dev->class->shutdown_pre(dev);
4517 		}
4518 		if (dev->bus && dev->bus->shutdown) {
4519 			if (initcall_debug)
4520 				dev_info(dev, "shutdown\n");
4521 			dev->bus->shutdown(dev);
4522 		} else if (dev->driver && dev->driver->shutdown) {
4523 			if (initcall_debug)
4524 				dev_info(dev, "shutdown\n");
4525 			dev->driver->shutdown(dev);
4526 		}
4527 
4528 		device_unlock(dev);
4529 		if (parent)
4530 			device_unlock(parent);
4531 
4532 		put_device(dev);
4533 		put_device(parent);
4534 
4535 		spin_lock(&devices_kset->list_lock);
4536 	}
4537 	spin_unlock(&devices_kset->list_lock);
4538 }
4539 
4540 /*
4541  * Device logging functions
4542  */
4543 
4544 #ifdef CONFIG_PRINTK
4545 static void
4546 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4547 {
4548 	const char *subsys;
4549 
4550 	memset(dev_info, 0, sizeof(*dev_info));
4551 
4552 	if (dev->class)
4553 		subsys = dev->class->name;
4554 	else if (dev->bus)
4555 		subsys = dev->bus->name;
4556 	else
4557 		return;
4558 
4559 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4560 
4561 	/*
4562 	 * Add device identifier DEVICE=:
4563 	 *   b12:8         block dev_t
4564 	 *   c127:3        char dev_t
4565 	 *   n8            netdev ifindex
4566 	 *   +sound:card0  subsystem:devname
4567 	 */
4568 	if (MAJOR(dev->devt)) {
4569 		char c;
4570 
4571 		if (strcmp(subsys, "block") == 0)
4572 			c = 'b';
4573 		else
4574 			c = 'c';
4575 
4576 		snprintf(dev_info->device, sizeof(dev_info->device),
4577 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4578 	} else if (strcmp(subsys, "net") == 0) {
4579 		struct net_device *net = to_net_dev(dev);
4580 
4581 		snprintf(dev_info->device, sizeof(dev_info->device),
4582 			 "n%u", net->ifindex);
4583 	} else {
4584 		snprintf(dev_info->device, sizeof(dev_info->device),
4585 			 "+%s:%s", subsys, dev_name(dev));
4586 	}
4587 }
4588 
4589 int dev_vprintk_emit(int level, const struct device *dev,
4590 		     const char *fmt, va_list args)
4591 {
4592 	struct dev_printk_info dev_info;
4593 
4594 	set_dev_info(dev, &dev_info);
4595 
4596 	return vprintk_emit(0, level, &dev_info, fmt, args);
4597 }
4598 EXPORT_SYMBOL(dev_vprintk_emit);
4599 
4600 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4601 {
4602 	va_list args;
4603 	int r;
4604 
4605 	va_start(args, fmt);
4606 
4607 	r = dev_vprintk_emit(level, dev, fmt, args);
4608 
4609 	va_end(args);
4610 
4611 	return r;
4612 }
4613 EXPORT_SYMBOL(dev_printk_emit);
4614 
4615 static void __dev_printk(const char *level, const struct device *dev,
4616 			struct va_format *vaf)
4617 {
4618 	if (dev)
4619 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4620 				dev_driver_string(dev), dev_name(dev), vaf);
4621 	else
4622 		printk("%s(NULL device *): %pV", level, vaf);
4623 }
4624 
4625 void _dev_printk(const char *level, const struct device *dev,
4626 		 const char *fmt, ...)
4627 {
4628 	struct va_format vaf;
4629 	va_list args;
4630 
4631 	va_start(args, fmt);
4632 
4633 	vaf.fmt = fmt;
4634 	vaf.va = &args;
4635 
4636 	__dev_printk(level, dev, &vaf);
4637 
4638 	va_end(args);
4639 }
4640 EXPORT_SYMBOL(_dev_printk);
4641 
4642 #define define_dev_printk_level(func, kern_level)		\
4643 void func(const struct device *dev, const char *fmt, ...)	\
4644 {								\
4645 	struct va_format vaf;					\
4646 	va_list args;						\
4647 								\
4648 	va_start(args, fmt);					\
4649 								\
4650 	vaf.fmt = fmt;						\
4651 	vaf.va = &args;						\
4652 								\
4653 	__dev_printk(kern_level, dev, &vaf);			\
4654 								\
4655 	va_end(args);						\
4656 }								\
4657 EXPORT_SYMBOL(func);
4658 
4659 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4660 define_dev_printk_level(_dev_alert, KERN_ALERT);
4661 define_dev_printk_level(_dev_crit, KERN_CRIT);
4662 define_dev_printk_level(_dev_err, KERN_ERR);
4663 define_dev_printk_level(_dev_warn, KERN_WARNING);
4664 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4665 define_dev_printk_level(_dev_info, KERN_INFO);
4666 
4667 #endif
4668 
4669 /**
4670  * dev_err_probe - probe error check and log helper
4671  * @dev: the pointer to the struct device
4672  * @err: error value to test
4673  * @fmt: printf-style format string
4674  * @...: arguments as specified in the format string
4675  *
4676  * This helper implements common pattern present in probe functions for error
4677  * checking: print debug or error message depending if the error value is
4678  * -EPROBE_DEFER and propagate error upwards.
4679  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4680  * checked later by reading devices_deferred debugfs attribute.
4681  * It replaces code sequence::
4682  *
4683  * 	if (err != -EPROBE_DEFER)
4684  * 		dev_err(dev, ...);
4685  * 	else
4686  * 		dev_dbg(dev, ...);
4687  * 	return err;
4688  *
4689  * with::
4690  *
4691  * 	return dev_err_probe(dev, err, ...);
4692  *
4693  * Returns @err.
4694  *
4695  */
4696 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4697 {
4698 	struct va_format vaf;
4699 	va_list args;
4700 
4701 	va_start(args, fmt);
4702 	vaf.fmt = fmt;
4703 	vaf.va = &args;
4704 
4705 	if (err != -EPROBE_DEFER) {
4706 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4707 	} else {
4708 		device_set_deferred_probe_reason(dev, &vaf);
4709 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4710 	}
4711 
4712 	va_end(args);
4713 
4714 	return err;
4715 }
4716 EXPORT_SYMBOL_GPL(dev_err_probe);
4717 
4718 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4719 {
4720 	return fwnode && !IS_ERR(fwnode->secondary);
4721 }
4722 
4723 /**
4724  * set_primary_fwnode - Change the primary firmware node of a given device.
4725  * @dev: Device to handle.
4726  * @fwnode: New primary firmware node of the device.
4727  *
4728  * Set the device's firmware node pointer to @fwnode, but if a secondary
4729  * firmware node of the device is present, preserve it.
4730  *
4731  * Valid fwnode cases are:
4732  *  - primary --> secondary --> -ENODEV
4733  *  - primary --> NULL
4734  *  - secondary --> -ENODEV
4735  *  - NULL
4736  */
4737 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4738 {
4739 	struct device *parent = dev->parent;
4740 	struct fwnode_handle *fn = dev->fwnode;
4741 
4742 	if (fwnode) {
4743 		if (fwnode_is_primary(fn))
4744 			fn = fn->secondary;
4745 
4746 		if (fn) {
4747 			WARN_ON(fwnode->secondary);
4748 			fwnode->secondary = fn;
4749 		}
4750 		dev->fwnode = fwnode;
4751 	} else {
4752 		if (fwnode_is_primary(fn)) {
4753 			dev->fwnode = fn->secondary;
4754 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4755 			if (!(parent && fn == parent->fwnode))
4756 				fn->secondary = NULL;
4757 		} else {
4758 			dev->fwnode = NULL;
4759 		}
4760 	}
4761 }
4762 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4763 
4764 /**
4765  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4766  * @dev: Device to handle.
4767  * @fwnode: New secondary firmware node of the device.
4768  *
4769  * If a primary firmware node of the device is present, set its secondary
4770  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4771  * @fwnode.
4772  */
4773 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4774 {
4775 	if (fwnode)
4776 		fwnode->secondary = ERR_PTR(-ENODEV);
4777 
4778 	if (fwnode_is_primary(dev->fwnode))
4779 		dev->fwnode->secondary = fwnode;
4780 	else
4781 		dev->fwnode = fwnode;
4782 }
4783 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4784 
4785 /**
4786  * device_set_of_node_from_dev - reuse device-tree node of another device
4787  * @dev: device whose device-tree node is being set
4788  * @dev2: device whose device-tree node is being reused
4789  *
4790  * Takes another reference to the new device-tree node after first dropping
4791  * any reference held to the old node.
4792  */
4793 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4794 {
4795 	of_node_put(dev->of_node);
4796 	dev->of_node = of_node_get(dev2->of_node);
4797 	dev->of_node_reused = true;
4798 }
4799 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4800 
4801 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4802 {
4803 	dev->fwnode = fwnode;
4804 	dev->of_node = to_of_node(fwnode);
4805 }
4806 EXPORT_SYMBOL_GPL(device_set_node);
4807 
4808 int device_match_name(struct device *dev, const void *name)
4809 {
4810 	return sysfs_streq(dev_name(dev), name);
4811 }
4812 EXPORT_SYMBOL_GPL(device_match_name);
4813 
4814 int device_match_of_node(struct device *dev, const void *np)
4815 {
4816 	return dev->of_node == np;
4817 }
4818 EXPORT_SYMBOL_GPL(device_match_of_node);
4819 
4820 int device_match_fwnode(struct device *dev, const void *fwnode)
4821 {
4822 	return dev_fwnode(dev) == fwnode;
4823 }
4824 EXPORT_SYMBOL_GPL(device_match_fwnode);
4825 
4826 int device_match_devt(struct device *dev, const void *pdevt)
4827 {
4828 	return dev->devt == *(dev_t *)pdevt;
4829 }
4830 EXPORT_SYMBOL_GPL(device_match_devt);
4831 
4832 int device_match_acpi_dev(struct device *dev, const void *adev)
4833 {
4834 	return ACPI_COMPANION(dev) == adev;
4835 }
4836 EXPORT_SYMBOL(device_match_acpi_dev);
4837 
4838 int device_match_any(struct device *dev, const void *unused)
4839 {
4840 	return 1;
4841 }
4842 EXPORT_SYMBOL_GPL(device_match_any);
4843