1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sched/mm.h> 30 #include <linux/swiotlb.h> 31 #include <linux/sysfs.h> 32 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 33 34 #include "base.h" 35 #include "power/power.h" 36 37 #ifdef CONFIG_SYSFS_DEPRECATED 38 #ifdef CONFIG_SYSFS_DEPRECATED_V2 39 long sysfs_deprecated = 1; 40 #else 41 long sysfs_deprecated = 0; 42 #endif 43 static int __init sysfs_deprecated_setup(char *arg) 44 { 45 return kstrtol(arg, 10, &sysfs_deprecated); 46 } 47 early_param("sysfs.deprecated", sysfs_deprecated_setup); 48 #endif 49 50 /* Device links support. */ 51 static LIST_HEAD(deferred_sync); 52 static unsigned int defer_sync_state_count = 1; 53 static DEFINE_MUTEX(fwnode_link_lock); 54 static bool fw_devlink_is_permissive(void); 55 static bool fw_devlink_drv_reg_done; 56 57 /** 58 * fwnode_link_add - Create a link between two fwnode_handles. 59 * @con: Consumer end of the link. 60 * @sup: Supplier end of the link. 61 * 62 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 63 * represents the detail that the firmware lists @sup fwnode as supplying a 64 * resource to @con. 65 * 66 * The driver core will use the fwnode link to create a device link between the 67 * two device objects corresponding to @con and @sup when they are created. The 68 * driver core will automatically delete the fwnode link between @con and @sup 69 * after doing that. 70 * 71 * Attempts to create duplicate links between the same pair of fwnode handles 72 * are ignored and there is no reference counting. 73 */ 74 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup) 75 { 76 struct fwnode_link *link; 77 int ret = 0; 78 79 mutex_lock(&fwnode_link_lock); 80 81 list_for_each_entry(link, &sup->consumers, s_hook) 82 if (link->consumer == con) 83 goto out; 84 85 link = kzalloc(sizeof(*link), GFP_KERNEL); 86 if (!link) { 87 ret = -ENOMEM; 88 goto out; 89 } 90 91 link->supplier = sup; 92 INIT_LIST_HEAD(&link->s_hook); 93 link->consumer = con; 94 INIT_LIST_HEAD(&link->c_hook); 95 96 list_add(&link->s_hook, &sup->consumers); 97 list_add(&link->c_hook, &con->suppliers); 98 out: 99 mutex_unlock(&fwnode_link_lock); 100 101 return ret; 102 } 103 104 /** 105 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 106 * @fwnode: fwnode whose supplier links need to be deleted 107 * 108 * Deletes all supplier links connecting directly to @fwnode. 109 */ 110 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 111 { 112 struct fwnode_link *link, *tmp; 113 114 mutex_lock(&fwnode_link_lock); 115 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 116 list_del(&link->s_hook); 117 list_del(&link->c_hook); 118 kfree(link); 119 } 120 mutex_unlock(&fwnode_link_lock); 121 } 122 123 /** 124 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 125 * @fwnode: fwnode whose consumer links need to be deleted 126 * 127 * Deletes all consumer links connecting directly to @fwnode. 128 */ 129 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 130 { 131 struct fwnode_link *link, *tmp; 132 133 mutex_lock(&fwnode_link_lock); 134 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 135 list_del(&link->s_hook); 136 list_del(&link->c_hook); 137 kfree(link); 138 } 139 mutex_unlock(&fwnode_link_lock); 140 } 141 142 /** 143 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 144 * @fwnode: fwnode whose links needs to be deleted 145 * 146 * Deletes all links connecting directly to a fwnode. 147 */ 148 void fwnode_links_purge(struct fwnode_handle *fwnode) 149 { 150 fwnode_links_purge_suppliers(fwnode); 151 fwnode_links_purge_consumers(fwnode); 152 } 153 154 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 155 { 156 struct fwnode_handle *child; 157 158 /* Don't purge consumer links of an added child */ 159 if (fwnode->dev) 160 return; 161 162 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 163 fwnode_links_purge_consumers(fwnode); 164 165 fwnode_for_each_available_child_node(fwnode, child) 166 fw_devlink_purge_absent_suppliers(child); 167 } 168 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 169 170 #ifdef CONFIG_SRCU 171 static DEFINE_MUTEX(device_links_lock); 172 DEFINE_STATIC_SRCU(device_links_srcu); 173 174 static inline void device_links_write_lock(void) 175 { 176 mutex_lock(&device_links_lock); 177 } 178 179 static inline void device_links_write_unlock(void) 180 { 181 mutex_unlock(&device_links_lock); 182 } 183 184 int device_links_read_lock(void) __acquires(&device_links_srcu) 185 { 186 return srcu_read_lock(&device_links_srcu); 187 } 188 189 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 190 { 191 srcu_read_unlock(&device_links_srcu, idx); 192 } 193 194 int device_links_read_lock_held(void) 195 { 196 return srcu_read_lock_held(&device_links_srcu); 197 } 198 199 static void device_link_synchronize_removal(void) 200 { 201 synchronize_srcu(&device_links_srcu); 202 } 203 204 static void device_link_remove_from_lists(struct device_link *link) 205 { 206 list_del_rcu(&link->s_node); 207 list_del_rcu(&link->c_node); 208 } 209 #else /* !CONFIG_SRCU */ 210 static DECLARE_RWSEM(device_links_lock); 211 212 static inline void device_links_write_lock(void) 213 { 214 down_write(&device_links_lock); 215 } 216 217 static inline void device_links_write_unlock(void) 218 { 219 up_write(&device_links_lock); 220 } 221 222 int device_links_read_lock(void) 223 { 224 down_read(&device_links_lock); 225 return 0; 226 } 227 228 void device_links_read_unlock(int not_used) 229 { 230 up_read(&device_links_lock); 231 } 232 233 #ifdef CONFIG_DEBUG_LOCK_ALLOC 234 int device_links_read_lock_held(void) 235 { 236 return lockdep_is_held(&device_links_lock); 237 } 238 #endif 239 240 static inline void device_link_synchronize_removal(void) 241 { 242 } 243 244 static void device_link_remove_from_lists(struct device_link *link) 245 { 246 list_del(&link->s_node); 247 list_del(&link->c_node); 248 } 249 #endif /* !CONFIG_SRCU */ 250 251 static bool device_is_ancestor(struct device *dev, struct device *target) 252 { 253 while (target->parent) { 254 target = target->parent; 255 if (dev == target) 256 return true; 257 } 258 return false; 259 } 260 261 /** 262 * device_is_dependent - Check if one device depends on another one 263 * @dev: Device to check dependencies for. 264 * @target: Device to check against. 265 * 266 * Check if @target depends on @dev or any device dependent on it (its child or 267 * its consumer etc). Return 1 if that is the case or 0 otherwise. 268 */ 269 int device_is_dependent(struct device *dev, void *target) 270 { 271 struct device_link *link; 272 int ret; 273 274 /* 275 * The "ancestors" check is needed to catch the case when the target 276 * device has not been completely initialized yet and it is still 277 * missing from the list of children of its parent device. 278 */ 279 if (dev == target || device_is_ancestor(dev, target)) 280 return 1; 281 282 ret = device_for_each_child(dev, target, device_is_dependent); 283 if (ret) 284 return ret; 285 286 list_for_each_entry(link, &dev->links.consumers, s_node) { 287 if ((link->flags & ~DL_FLAG_INFERRED) == 288 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 289 continue; 290 291 if (link->consumer == target) 292 return 1; 293 294 ret = device_is_dependent(link->consumer, target); 295 if (ret) 296 break; 297 } 298 return ret; 299 } 300 301 static void device_link_init_status(struct device_link *link, 302 struct device *consumer, 303 struct device *supplier) 304 { 305 switch (supplier->links.status) { 306 case DL_DEV_PROBING: 307 switch (consumer->links.status) { 308 case DL_DEV_PROBING: 309 /* 310 * A consumer driver can create a link to a supplier 311 * that has not completed its probing yet as long as it 312 * knows that the supplier is already functional (for 313 * example, it has just acquired some resources from the 314 * supplier). 315 */ 316 link->status = DL_STATE_CONSUMER_PROBE; 317 break; 318 default: 319 link->status = DL_STATE_DORMANT; 320 break; 321 } 322 break; 323 case DL_DEV_DRIVER_BOUND: 324 switch (consumer->links.status) { 325 case DL_DEV_PROBING: 326 link->status = DL_STATE_CONSUMER_PROBE; 327 break; 328 case DL_DEV_DRIVER_BOUND: 329 link->status = DL_STATE_ACTIVE; 330 break; 331 default: 332 link->status = DL_STATE_AVAILABLE; 333 break; 334 } 335 break; 336 case DL_DEV_UNBINDING: 337 link->status = DL_STATE_SUPPLIER_UNBIND; 338 break; 339 default: 340 link->status = DL_STATE_DORMANT; 341 break; 342 } 343 } 344 345 static int device_reorder_to_tail(struct device *dev, void *not_used) 346 { 347 struct device_link *link; 348 349 /* 350 * Devices that have not been registered yet will be put to the ends 351 * of the lists during the registration, so skip them here. 352 */ 353 if (device_is_registered(dev)) 354 devices_kset_move_last(dev); 355 356 if (device_pm_initialized(dev)) 357 device_pm_move_last(dev); 358 359 device_for_each_child(dev, NULL, device_reorder_to_tail); 360 list_for_each_entry(link, &dev->links.consumers, s_node) { 361 if ((link->flags & ~DL_FLAG_INFERRED) == 362 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 363 continue; 364 device_reorder_to_tail(link->consumer, NULL); 365 } 366 367 return 0; 368 } 369 370 /** 371 * device_pm_move_to_tail - Move set of devices to the end of device lists 372 * @dev: Device to move 373 * 374 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 375 * 376 * It moves the @dev along with all of its children and all of its consumers 377 * to the ends of the device_kset and dpm_list, recursively. 378 */ 379 void device_pm_move_to_tail(struct device *dev) 380 { 381 int idx; 382 383 idx = device_links_read_lock(); 384 device_pm_lock(); 385 device_reorder_to_tail(dev, NULL); 386 device_pm_unlock(); 387 device_links_read_unlock(idx); 388 } 389 390 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 391 392 static ssize_t status_show(struct device *dev, 393 struct device_attribute *attr, char *buf) 394 { 395 const char *output; 396 397 switch (to_devlink(dev)->status) { 398 case DL_STATE_NONE: 399 output = "not tracked"; 400 break; 401 case DL_STATE_DORMANT: 402 output = "dormant"; 403 break; 404 case DL_STATE_AVAILABLE: 405 output = "available"; 406 break; 407 case DL_STATE_CONSUMER_PROBE: 408 output = "consumer probing"; 409 break; 410 case DL_STATE_ACTIVE: 411 output = "active"; 412 break; 413 case DL_STATE_SUPPLIER_UNBIND: 414 output = "supplier unbinding"; 415 break; 416 default: 417 output = "unknown"; 418 break; 419 } 420 421 return sysfs_emit(buf, "%s\n", output); 422 } 423 static DEVICE_ATTR_RO(status); 424 425 static ssize_t auto_remove_on_show(struct device *dev, 426 struct device_attribute *attr, char *buf) 427 { 428 struct device_link *link = to_devlink(dev); 429 const char *output; 430 431 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 432 output = "supplier unbind"; 433 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 434 output = "consumer unbind"; 435 else 436 output = "never"; 437 438 return sysfs_emit(buf, "%s\n", output); 439 } 440 static DEVICE_ATTR_RO(auto_remove_on); 441 442 static ssize_t runtime_pm_show(struct device *dev, 443 struct device_attribute *attr, char *buf) 444 { 445 struct device_link *link = to_devlink(dev); 446 447 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 448 } 449 static DEVICE_ATTR_RO(runtime_pm); 450 451 static ssize_t sync_state_only_show(struct device *dev, 452 struct device_attribute *attr, char *buf) 453 { 454 struct device_link *link = to_devlink(dev); 455 456 return sysfs_emit(buf, "%d\n", 457 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 458 } 459 static DEVICE_ATTR_RO(sync_state_only); 460 461 static struct attribute *devlink_attrs[] = { 462 &dev_attr_status.attr, 463 &dev_attr_auto_remove_on.attr, 464 &dev_attr_runtime_pm.attr, 465 &dev_attr_sync_state_only.attr, 466 NULL, 467 }; 468 ATTRIBUTE_GROUPS(devlink); 469 470 static void device_link_release_fn(struct work_struct *work) 471 { 472 struct device_link *link = container_of(work, struct device_link, rm_work); 473 474 /* Ensure that all references to the link object have been dropped. */ 475 device_link_synchronize_removal(); 476 477 while (refcount_dec_not_one(&link->rpm_active)) 478 pm_runtime_put(link->supplier); 479 480 put_device(link->consumer); 481 put_device(link->supplier); 482 kfree(link); 483 } 484 485 static void devlink_dev_release(struct device *dev) 486 { 487 struct device_link *link = to_devlink(dev); 488 489 INIT_WORK(&link->rm_work, device_link_release_fn); 490 /* 491 * It may take a while to complete this work because of the SRCU 492 * synchronization in device_link_release_fn() and if the consumer or 493 * supplier devices get deleted when it runs, so put it into the "long" 494 * workqueue. 495 */ 496 queue_work(system_long_wq, &link->rm_work); 497 } 498 499 static struct class devlink_class = { 500 .name = "devlink", 501 .owner = THIS_MODULE, 502 .dev_groups = devlink_groups, 503 .dev_release = devlink_dev_release, 504 }; 505 506 static int devlink_add_symlinks(struct device *dev, 507 struct class_interface *class_intf) 508 { 509 int ret; 510 size_t len; 511 struct device_link *link = to_devlink(dev); 512 struct device *sup = link->supplier; 513 struct device *con = link->consumer; 514 char *buf; 515 516 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 517 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 518 len += strlen(":"); 519 len += strlen("supplier:") + 1; 520 buf = kzalloc(len, GFP_KERNEL); 521 if (!buf) 522 return -ENOMEM; 523 524 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 525 if (ret) 526 goto out; 527 528 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 529 if (ret) 530 goto err_con; 531 532 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 533 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 534 if (ret) 535 goto err_con_dev; 536 537 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 538 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 539 if (ret) 540 goto err_sup_dev; 541 542 goto out; 543 544 err_sup_dev: 545 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 546 sysfs_remove_link(&sup->kobj, buf); 547 err_con_dev: 548 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 549 err_con: 550 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 551 out: 552 kfree(buf); 553 return ret; 554 } 555 556 static void devlink_remove_symlinks(struct device *dev, 557 struct class_interface *class_intf) 558 { 559 struct device_link *link = to_devlink(dev); 560 size_t len; 561 struct device *sup = link->supplier; 562 struct device *con = link->consumer; 563 char *buf; 564 565 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 566 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 567 568 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 569 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 570 len += strlen(":"); 571 len += strlen("supplier:") + 1; 572 buf = kzalloc(len, GFP_KERNEL); 573 if (!buf) { 574 WARN(1, "Unable to properly free device link symlinks!\n"); 575 return; 576 } 577 578 if (device_is_registered(con)) { 579 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 580 sysfs_remove_link(&con->kobj, buf); 581 } 582 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 583 sysfs_remove_link(&sup->kobj, buf); 584 kfree(buf); 585 } 586 587 static struct class_interface devlink_class_intf = { 588 .class = &devlink_class, 589 .add_dev = devlink_add_symlinks, 590 .remove_dev = devlink_remove_symlinks, 591 }; 592 593 static int __init devlink_class_init(void) 594 { 595 int ret; 596 597 ret = class_register(&devlink_class); 598 if (ret) 599 return ret; 600 601 ret = class_interface_register(&devlink_class_intf); 602 if (ret) 603 class_unregister(&devlink_class); 604 605 return ret; 606 } 607 postcore_initcall(devlink_class_init); 608 609 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 610 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 611 DL_FLAG_AUTOPROBE_CONSUMER | \ 612 DL_FLAG_SYNC_STATE_ONLY | \ 613 DL_FLAG_INFERRED) 614 615 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 616 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 617 618 /** 619 * device_link_add - Create a link between two devices. 620 * @consumer: Consumer end of the link. 621 * @supplier: Supplier end of the link. 622 * @flags: Link flags. 623 * 624 * The caller is responsible for the proper synchronization of the link creation 625 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 626 * runtime PM framework to take the link into account. Second, if the 627 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 628 * be forced into the active meta state and reference-counted upon the creation 629 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 630 * ignored. 631 * 632 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 633 * expected to release the link returned by it directly with the help of either 634 * device_link_del() or device_link_remove(). 635 * 636 * If that flag is not set, however, the caller of this function is handing the 637 * management of the link over to the driver core entirely and its return value 638 * can only be used to check whether or not the link is present. In that case, 639 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 640 * flags can be used to indicate to the driver core when the link can be safely 641 * deleted. Namely, setting one of them in @flags indicates to the driver core 642 * that the link is not going to be used (by the given caller of this function) 643 * after unbinding the consumer or supplier driver, respectively, from its 644 * device, so the link can be deleted at that point. If none of them is set, 645 * the link will be maintained until one of the devices pointed to by it (either 646 * the consumer or the supplier) is unregistered. 647 * 648 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 649 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 650 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 651 * be used to request the driver core to automatically probe for a consumer 652 * driver after successfully binding a driver to the supplier device. 653 * 654 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 655 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 656 * the same time is invalid and will cause NULL to be returned upfront. 657 * However, if a device link between the given @consumer and @supplier pair 658 * exists already when this function is called for them, the existing link will 659 * be returned regardless of its current type and status (the link's flags may 660 * be modified then). The caller of this function is then expected to treat 661 * the link as though it has just been created, so (in particular) if 662 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 663 * explicitly when not needed any more (as stated above). 664 * 665 * A side effect of the link creation is re-ordering of dpm_list and the 666 * devices_kset list by moving the consumer device and all devices depending 667 * on it to the ends of these lists (that does not happen to devices that have 668 * not been registered when this function is called). 669 * 670 * The supplier device is required to be registered when this function is called 671 * and NULL will be returned if that is not the case. The consumer device need 672 * not be registered, however. 673 */ 674 struct device_link *device_link_add(struct device *consumer, 675 struct device *supplier, u32 flags) 676 { 677 struct device_link *link; 678 679 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS || 680 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 681 (flags & DL_FLAG_SYNC_STATE_ONLY && 682 (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) || 683 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 684 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 685 DL_FLAG_AUTOREMOVE_SUPPLIER))) 686 return NULL; 687 688 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 689 if (pm_runtime_get_sync(supplier) < 0) { 690 pm_runtime_put_noidle(supplier); 691 return NULL; 692 } 693 } 694 695 if (!(flags & DL_FLAG_STATELESS)) 696 flags |= DL_FLAG_MANAGED; 697 698 device_links_write_lock(); 699 device_pm_lock(); 700 701 /* 702 * If the supplier has not been fully registered yet or there is a 703 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 704 * the supplier already in the graph, return NULL. If the link is a 705 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 706 * because it only affects sync_state() callbacks. 707 */ 708 if (!device_pm_initialized(supplier) 709 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 710 device_is_dependent(consumer, supplier))) { 711 link = NULL; 712 goto out; 713 } 714 715 /* 716 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 717 * So, only create it if the consumer hasn't probed yet. 718 */ 719 if (flags & DL_FLAG_SYNC_STATE_ONLY && 720 consumer->links.status != DL_DEV_NO_DRIVER && 721 consumer->links.status != DL_DEV_PROBING) { 722 link = NULL; 723 goto out; 724 } 725 726 /* 727 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 728 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 729 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 730 */ 731 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 732 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 733 734 list_for_each_entry(link, &supplier->links.consumers, s_node) { 735 if (link->consumer != consumer) 736 continue; 737 738 if (link->flags & DL_FLAG_INFERRED && 739 !(flags & DL_FLAG_INFERRED)) 740 link->flags &= ~DL_FLAG_INFERRED; 741 742 if (flags & DL_FLAG_PM_RUNTIME) { 743 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 744 pm_runtime_new_link(consumer); 745 link->flags |= DL_FLAG_PM_RUNTIME; 746 } 747 if (flags & DL_FLAG_RPM_ACTIVE) 748 refcount_inc(&link->rpm_active); 749 } 750 751 if (flags & DL_FLAG_STATELESS) { 752 kref_get(&link->kref); 753 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 754 !(link->flags & DL_FLAG_STATELESS)) { 755 link->flags |= DL_FLAG_STATELESS; 756 goto reorder; 757 } else { 758 link->flags |= DL_FLAG_STATELESS; 759 goto out; 760 } 761 } 762 763 /* 764 * If the life time of the link following from the new flags is 765 * longer than indicated by the flags of the existing link, 766 * update the existing link to stay around longer. 767 */ 768 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 769 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 770 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 771 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 772 } 773 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 774 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 775 DL_FLAG_AUTOREMOVE_SUPPLIER); 776 } 777 if (!(link->flags & DL_FLAG_MANAGED)) { 778 kref_get(&link->kref); 779 link->flags |= DL_FLAG_MANAGED; 780 device_link_init_status(link, consumer, supplier); 781 } 782 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 783 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 784 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 785 goto reorder; 786 } 787 788 goto out; 789 } 790 791 link = kzalloc(sizeof(*link), GFP_KERNEL); 792 if (!link) 793 goto out; 794 795 refcount_set(&link->rpm_active, 1); 796 797 get_device(supplier); 798 link->supplier = supplier; 799 INIT_LIST_HEAD(&link->s_node); 800 get_device(consumer); 801 link->consumer = consumer; 802 INIT_LIST_HEAD(&link->c_node); 803 link->flags = flags; 804 kref_init(&link->kref); 805 806 link->link_dev.class = &devlink_class; 807 device_set_pm_not_required(&link->link_dev); 808 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 809 dev_bus_name(supplier), dev_name(supplier), 810 dev_bus_name(consumer), dev_name(consumer)); 811 if (device_register(&link->link_dev)) { 812 put_device(consumer); 813 put_device(supplier); 814 kfree(link); 815 link = NULL; 816 goto out; 817 } 818 819 if (flags & DL_FLAG_PM_RUNTIME) { 820 if (flags & DL_FLAG_RPM_ACTIVE) 821 refcount_inc(&link->rpm_active); 822 823 pm_runtime_new_link(consumer); 824 } 825 826 /* Determine the initial link state. */ 827 if (flags & DL_FLAG_STATELESS) 828 link->status = DL_STATE_NONE; 829 else 830 device_link_init_status(link, consumer, supplier); 831 832 /* 833 * Some callers expect the link creation during consumer driver probe to 834 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 835 */ 836 if (link->status == DL_STATE_CONSUMER_PROBE && 837 flags & DL_FLAG_PM_RUNTIME) 838 pm_runtime_resume(supplier); 839 840 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 841 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 842 843 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 844 dev_dbg(consumer, 845 "Linked as a sync state only consumer to %s\n", 846 dev_name(supplier)); 847 goto out; 848 } 849 850 reorder: 851 /* 852 * Move the consumer and all of the devices depending on it to the end 853 * of dpm_list and the devices_kset list. 854 * 855 * It is necessary to hold dpm_list locked throughout all that or else 856 * we may end up suspending with a wrong ordering of it. 857 */ 858 device_reorder_to_tail(consumer, NULL); 859 860 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 861 862 out: 863 device_pm_unlock(); 864 device_links_write_unlock(); 865 866 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 867 pm_runtime_put(supplier); 868 869 return link; 870 } 871 EXPORT_SYMBOL_GPL(device_link_add); 872 873 static void __device_link_del(struct kref *kref) 874 { 875 struct device_link *link = container_of(kref, struct device_link, kref); 876 877 dev_dbg(link->consumer, "Dropping the link to %s\n", 878 dev_name(link->supplier)); 879 880 pm_runtime_drop_link(link); 881 882 device_link_remove_from_lists(link); 883 device_unregister(&link->link_dev); 884 } 885 886 static void device_link_put_kref(struct device_link *link) 887 { 888 if (link->flags & DL_FLAG_STATELESS) 889 kref_put(&link->kref, __device_link_del); 890 else if (!device_is_registered(link->consumer)) 891 __device_link_del(&link->kref); 892 else 893 WARN(1, "Unable to drop a managed device link reference\n"); 894 } 895 896 /** 897 * device_link_del - Delete a stateless link between two devices. 898 * @link: Device link to delete. 899 * 900 * The caller must ensure proper synchronization of this function with runtime 901 * PM. If the link was added multiple times, it needs to be deleted as often. 902 * Care is required for hotplugged devices: Their links are purged on removal 903 * and calling device_link_del() is then no longer allowed. 904 */ 905 void device_link_del(struct device_link *link) 906 { 907 device_links_write_lock(); 908 device_link_put_kref(link); 909 device_links_write_unlock(); 910 } 911 EXPORT_SYMBOL_GPL(device_link_del); 912 913 /** 914 * device_link_remove - Delete a stateless link between two devices. 915 * @consumer: Consumer end of the link. 916 * @supplier: Supplier end of the link. 917 * 918 * The caller must ensure proper synchronization of this function with runtime 919 * PM. 920 */ 921 void device_link_remove(void *consumer, struct device *supplier) 922 { 923 struct device_link *link; 924 925 if (WARN_ON(consumer == supplier)) 926 return; 927 928 device_links_write_lock(); 929 930 list_for_each_entry(link, &supplier->links.consumers, s_node) { 931 if (link->consumer == consumer) { 932 device_link_put_kref(link); 933 break; 934 } 935 } 936 937 device_links_write_unlock(); 938 } 939 EXPORT_SYMBOL_GPL(device_link_remove); 940 941 static void device_links_missing_supplier(struct device *dev) 942 { 943 struct device_link *link; 944 945 list_for_each_entry(link, &dev->links.suppliers, c_node) { 946 if (link->status != DL_STATE_CONSUMER_PROBE) 947 continue; 948 949 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 950 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 951 } else { 952 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 953 WRITE_ONCE(link->status, DL_STATE_DORMANT); 954 } 955 } 956 } 957 958 /** 959 * device_links_check_suppliers - Check presence of supplier drivers. 960 * @dev: Consumer device. 961 * 962 * Check links from this device to any suppliers. Walk the list of the device's 963 * links to suppliers and see if all of them are available. If not, simply 964 * return -EPROBE_DEFER. 965 * 966 * We need to guarantee that the supplier will not go away after the check has 967 * been positive here. It only can go away in __device_release_driver() and 968 * that function checks the device's links to consumers. This means we need to 969 * mark the link as "consumer probe in progress" to make the supplier removal 970 * wait for us to complete (or bad things may happen). 971 * 972 * Links without the DL_FLAG_MANAGED flag set are ignored. 973 */ 974 int device_links_check_suppliers(struct device *dev) 975 { 976 struct device_link *link; 977 int ret = 0; 978 979 /* 980 * Device waiting for supplier to become available is not allowed to 981 * probe. 982 */ 983 mutex_lock(&fwnode_link_lock); 984 if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) && 985 !fw_devlink_is_permissive()) { 986 dev_dbg(dev, "probe deferral - wait for supplier %pfwP\n", 987 list_first_entry(&dev->fwnode->suppliers, 988 struct fwnode_link, 989 c_hook)->supplier); 990 mutex_unlock(&fwnode_link_lock); 991 return -EPROBE_DEFER; 992 } 993 mutex_unlock(&fwnode_link_lock); 994 995 device_links_write_lock(); 996 997 list_for_each_entry(link, &dev->links.suppliers, c_node) { 998 if (!(link->flags & DL_FLAG_MANAGED)) 999 continue; 1000 1001 if (link->status != DL_STATE_AVAILABLE && 1002 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1003 device_links_missing_supplier(dev); 1004 dev_dbg(dev, "probe deferral - supplier %s not ready\n", 1005 dev_name(link->supplier)); 1006 ret = -EPROBE_DEFER; 1007 break; 1008 } 1009 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1010 } 1011 dev->links.status = DL_DEV_PROBING; 1012 1013 device_links_write_unlock(); 1014 return ret; 1015 } 1016 1017 /** 1018 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1019 * @dev: Device to call sync_state() on 1020 * @list: List head to queue the @dev on 1021 * 1022 * Queues a device for a sync_state() callback when the device links write lock 1023 * isn't held. This allows the sync_state() execution flow to use device links 1024 * APIs. The caller must ensure this function is called with 1025 * device_links_write_lock() held. 1026 * 1027 * This function does a get_device() to make sure the device is not freed while 1028 * on this list. 1029 * 1030 * So the caller must also ensure that device_links_flush_sync_list() is called 1031 * as soon as the caller releases device_links_write_lock(). This is necessary 1032 * to make sure the sync_state() is called in a timely fashion and the 1033 * put_device() is called on this device. 1034 */ 1035 static void __device_links_queue_sync_state(struct device *dev, 1036 struct list_head *list) 1037 { 1038 struct device_link *link; 1039 1040 if (!dev_has_sync_state(dev)) 1041 return; 1042 if (dev->state_synced) 1043 return; 1044 1045 list_for_each_entry(link, &dev->links.consumers, s_node) { 1046 if (!(link->flags & DL_FLAG_MANAGED)) 1047 continue; 1048 if (link->status != DL_STATE_ACTIVE) 1049 return; 1050 } 1051 1052 /* 1053 * Set the flag here to avoid adding the same device to a list more 1054 * than once. This can happen if new consumers get added to the device 1055 * and probed before the list is flushed. 1056 */ 1057 dev->state_synced = true; 1058 1059 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1060 return; 1061 1062 get_device(dev); 1063 list_add_tail(&dev->links.defer_sync, list); 1064 } 1065 1066 /** 1067 * device_links_flush_sync_list - Call sync_state() on a list of devices 1068 * @list: List of devices to call sync_state() on 1069 * @dont_lock_dev: Device for which lock is already held by the caller 1070 * 1071 * Calls sync_state() on all the devices that have been queued for it. This 1072 * function is used in conjunction with __device_links_queue_sync_state(). The 1073 * @dont_lock_dev parameter is useful when this function is called from a 1074 * context where a device lock is already held. 1075 */ 1076 static void device_links_flush_sync_list(struct list_head *list, 1077 struct device *dont_lock_dev) 1078 { 1079 struct device *dev, *tmp; 1080 1081 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1082 list_del_init(&dev->links.defer_sync); 1083 1084 if (dev != dont_lock_dev) 1085 device_lock(dev); 1086 1087 if (dev->bus->sync_state) 1088 dev->bus->sync_state(dev); 1089 else if (dev->driver && dev->driver->sync_state) 1090 dev->driver->sync_state(dev); 1091 1092 if (dev != dont_lock_dev) 1093 device_unlock(dev); 1094 1095 put_device(dev); 1096 } 1097 } 1098 1099 void device_links_supplier_sync_state_pause(void) 1100 { 1101 device_links_write_lock(); 1102 defer_sync_state_count++; 1103 device_links_write_unlock(); 1104 } 1105 1106 void device_links_supplier_sync_state_resume(void) 1107 { 1108 struct device *dev, *tmp; 1109 LIST_HEAD(sync_list); 1110 1111 device_links_write_lock(); 1112 if (!defer_sync_state_count) { 1113 WARN(true, "Unmatched sync_state pause/resume!"); 1114 goto out; 1115 } 1116 defer_sync_state_count--; 1117 if (defer_sync_state_count) 1118 goto out; 1119 1120 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1121 /* 1122 * Delete from deferred_sync list before queuing it to 1123 * sync_list because defer_sync is used for both lists. 1124 */ 1125 list_del_init(&dev->links.defer_sync); 1126 __device_links_queue_sync_state(dev, &sync_list); 1127 } 1128 out: 1129 device_links_write_unlock(); 1130 1131 device_links_flush_sync_list(&sync_list, NULL); 1132 } 1133 1134 static int sync_state_resume_initcall(void) 1135 { 1136 device_links_supplier_sync_state_resume(); 1137 return 0; 1138 } 1139 late_initcall(sync_state_resume_initcall); 1140 1141 static void __device_links_supplier_defer_sync(struct device *sup) 1142 { 1143 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1144 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1145 } 1146 1147 static void device_link_drop_managed(struct device_link *link) 1148 { 1149 link->flags &= ~DL_FLAG_MANAGED; 1150 WRITE_ONCE(link->status, DL_STATE_NONE); 1151 kref_put(&link->kref, __device_link_del); 1152 } 1153 1154 static ssize_t waiting_for_supplier_show(struct device *dev, 1155 struct device_attribute *attr, 1156 char *buf) 1157 { 1158 bool val; 1159 1160 device_lock(dev); 1161 val = !list_empty(&dev->fwnode->suppliers); 1162 device_unlock(dev); 1163 return sysfs_emit(buf, "%u\n", val); 1164 } 1165 static DEVICE_ATTR_RO(waiting_for_supplier); 1166 1167 /** 1168 * device_links_force_bind - Prepares device to be force bound 1169 * @dev: Consumer device. 1170 * 1171 * device_bind_driver() force binds a device to a driver without calling any 1172 * driver probe functions. So the consumer really isn't going to wait for any 1173 * supplier before it's bound to the driver. We still want the device link 1174 * states to be sensible when this happens. 1175 * 1176 * In preparation for device_bind_driver(), this function goes through each 1177 * supplier device links and checks if the supplier is bound. If it is, then 1178 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1179 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1180 */ 1181 void device_links_force_bind(struct device *dev) 1182 { 1183 struct device_link *link, *ln; 1184 1185 device_links_write_lock(); 1186 1187 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1188 if (!(link->flags & DL_FLAG_MANAGED)) 1189 continue; 1190 1191 if (link->status != DL_STATE_AVAILABLE) { 1192 device_link_drop_managed(link); 1193 continue; 1194 } 1195 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1196 } 1197 dev->links.status = DL_DEV_PROBING; 1198 1199 device_links_write_unlock(); 1200 } 1201 1202 /** 1203 * device_links_driver_bound - Update device links after probing its driver. 1204 * @dev: Device to update the links for. 1205 * 1206 * The probe has been successful, so update links from this device to any 1207 * consumers by changing their status to "available". 1208 * 1209 * Also change the status of @dev's links to suppliers to "active". 1210 * 1211 * Links without the DL_FLAG_MANAGED flag set are ignored. 1212 */ 1213 void device_links_driver_bound(struct device *dev) 1214 { 1215 struct device_link *link, *ln; 1216 LIST_HEAD(sync_list); 1217 1218 /* 1219 * If a device binds successfully, it's expected to have created all 1220 * the device links it needs to or make new device links as it needs 1221 * them. So, fw_devlink no longer needs to create device links to any 1222 * of the device's suppliers. 1223 * 1224 * Also, if a child firmware node of this bound device is not added as 1225 * a device by now, assume it is never going to be added and make sure 1226 * other devices don't defer probe indefinitely by waiting for such a 1227 * child device. 1228 */ 1229 if (dev->fwnode && dev->fwnode->dev == dev) { 1230 struct fwnode_handle *child; 1231 fwnode_links_purge_suppliers(dev->fwnode); 1232 fwnode_for_each_available_child_node(dev->fwnode, child) 1233 fw_devlink_purge_absent_suppliers(child); 1234 } 1235 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1236 1237 device_links_write_lock(); 1238 1239 list_for_each_entry(link, &dev->links.consumers, s_node) { 1240 if (!(link->flags & DL_FLAG_MANAGED)) 1241 continue; 1242 1243 /* 1244 * Links created during consumer probe may be in the "consumer 1245 * probe" state to start with if the supplier is still probing 1246 * when they are created and they may become "active" if the 1247 * consumer probe returns first. Skip them here. 1248 */ 1249 if (link->status == DL_STATE_CONSUMER_PROBE || 1250 link->status == DL_STATE_ACTIVE) 1251 continue; 1252 1253 WARN_ON(link->status != DL_STATE_DORMANT); 1254 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1255 1256 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1257 driver_deferred_probe_add(link->consumer); 1258 } 1259 1260 if (defer_sync_state_count) 1261 __device_links_supplier_defer_sync(dev); 1262 else 1263 __device_links_queue_sync_state(dev, &sync_list); 1264 1265 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1266 struct device *supplier; 1267 1268 if (!(link->flags & DL_FLAG_MANAGED)) 1269 continue; 1270 1271 supplier = link->supplier; 1272 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1273 /* 1274 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1275 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1276 * save to drop the managed link completely. 1277 */ 1278 device_link_drop_managed(link); 1279 } else { 1280 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1281 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1282 } 1283 1284 /* 1285 * This needs to be done even for the deleted 1286 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1287 * device link that was preventing the supplier from getting a 1288 * sync_state() call. 1289 */ 1290 if (defer_sync_state_count) 1291 __device_links_supplier_defer_sync(supplier); 1292 else 1293 __device_links_queue_sync_state(supplier, &sync_list); 1294 } 1295 1296 dev->links.status = DL_DEV_DRIVER_BOUND; 1297 1298 device_links_write_unlock(); 1299 1300 device_links_flush_sync_list(&sync_list, dev); 1301 } 1302 1303 /** 1304 * __device_links_no_driver - Update links of a device without a driver. 1305 * @dev: Device without a drvier. 1306 * 1307 * Delete all non-persistent links from this device to any suppliers. 1308 * 1309 * Persistent links stay around, but their status is changed to "available", 1310 * unless they already are in the "supplier unbind in progress" state in which 1311 * case they need not be updated. 1312 * 1313 * Links without the DL_FLAG_MANAGED flag set are ignored. 1314 */ 1315 static void __device_links_no_driver(struct device *dev) 1316 { 1317 struct device_link *link, *ln; 1318 1319 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1320 if (!(link->flags & DL_FLAG_MANAGED)) 1321 continue; 1322 1323 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1324 device_link_drop_managed(link); 1325 continue; 1326 } 1327 1328 if (link->status != DL_STATE_CONSUMER_PROBE && 1329 link->status != DL_STATE_ACTIVE) 1330 continue; 1331 1332 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1333 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1334 } else { 1335 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1336 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1337 } 1338 } 1339 1340 dev->links.status = DL_DEV_NO_DRIVER; 1341 } 1342 1343 /** 1344 * device_links_no_driver - Update links after failing driver probe. 1345 * @dev: Device whose driver has just failed to probe. 1346 * 1347 * Clean up leftover links to consumers for @dev and invoke 1348 * %__device_links_no_driver() to update links to suppliers for it as 1349 * appropriate. 1350 * 1351 * Links without the DL_FLAG_MANAGED flag set are ignored. 1352 */ 1353 void device_links_no_driver(struct device *dev) 1354 { 1355 struct device_link *link; 1356 1357 device_links_write_lock(); 1358 1359 list_for_each_entry(link, &dev->links.consumers, s_node) { 1360 if (!(link->flags & DL_FLAG_MANAGED)) 1361 continue; 1362 1363 /* 1364 * The probe has failed, so if the status of the link is 1365 * "consumer probe" or "active", it must have been added by 1366 * a probing consumer while this device was still probing. 1367 * Change its state to "dormant", as it represents a valid 1368 * relationship, but it is not functionally meaningful. 1369 */ 1370 if (link->status == DL_STATE_CONSUMER_PROBE || 1371 link->status == DL_STATE_ACTIVE) 1372 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1373 } 1374 1375 __device_links_no_driver(dev); 1376 1377 device_links_write_unlock(); 1378 } 1379 1380 /** 1381 * device_links_driver_cleanup - Update links after driver removal. 1382 * @dev: Device whose driver has just gone away. 1383 * 1384 * Update links to consumers for @dev by changing their status to "dormant" and 1385 * invoke %__device_links_no_driver() to update links to suppliers for it as 1386 * appropriate. 1387 * 1388 * Links without the DL_FLAG_MANAGED flag set are ignored. 1389 */ 1390 void device_links_driver_cleanup(struct device *dev) 1391 { 1392 struct device_link *link, *ln; 1393 1394 device_links_write_lock(); 1395 1396 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1397 if (!(link->flags & DL_FLAG_MANAGED)) 1398 continue; 1399 1400 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1401 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1402 1403 /* 1404 * autoremove the links between this @dev and its consumer 1405 * devices that are not active, i.e. where the link state 1406 * has moved to DL_STATE_SUPPLIER_UNBIND. 1407 */ 1408 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1409 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1410 device_link_drop_managed(link); 1411 1412 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1413 } 1414 1415 list_del_init(&dev->links.defer_sync); 1416 __device_links_no_driver(dev); 1417 1418 device_links_write_unlock(); 1419 } 1420 1421 /** 1422 * device_links_busy - Check if there are any busy links to consumers. 1423 * @dev: Device to check. 1424 * 1425 * Check each consumer of the device and return 'true' if its link's status 1426 * is one of "consumer probe" or "active" (meaning that the given consumer is 1427 * probing right now or its driver is present). Otherwise, change the link 1428 * state to "supplier unbind" to prevent the consumer from being probed 1429 * successfully going forward. 1430 * 1431 * Return 'false' if there are no probing or active consumers. 1432 * 1433 * Links without the DL_FLAG_MANAGED flag set are ignored. 1434 */ 1435 bool device_links_busy(struct device *dev) 1436 { 1437 struct device_link *link; 1438 bool ret = false; 1439 1440 device_links_write_lock(); 1441 1442 list_for_each_entry(link, &dev->links.consumers, s_node) { 1443 if (!(link->flags & DL_FLAG_MANAGED)) 1444 continue; 1445 1446 if (link->status == DL_STATE_CONSUMER_PROBE 1447 || link->status == DL_STATE_ACTIVE) { 1448 ret = true; 1449 break; 1450 } 1451 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1452 } 1453 1454 dev->links.status = DL_DEV_UNBINDING; 1455 1456 device_links_write_unlock(); 1457 return ret; 1458 } 1459 1460 /** 1461 * device_links_unbind_consumers - Force unbind consumers of the given device. 1462 * @dev: Device to unbind the consumers of. 1463 * 1464 * Walk the list of links to consumers for @dev and if any of them is in the 1465 * "consumer probe" state, wait for all device probes in progress to complete 1466 * and start over. 1467 * 1468 * If that's not the case, change the status of the link to "supplier unbind" 1469 * and check if the link was in the "active" state. If so, force the consumer 1470 * driver to unbind and start over (the consumer will not re-probe as we have 1471 * changed the state of the link already). 1472 * 1473 * Links without the DL_FLAG_MANAGED flag set are ignored. 1474 */ 1475 void device_links_unbind_consumers(struct device *dev) 1476 { 1477 struct device_link *link; 1478 1479 start: 1480 device_links_write_lock(); 1481 1482 list_for_each_entry(link, &dev->links.consumers, s_node) { 1483 enum device_link_state status; 1484 1485 if (!(link->flags & DL_FLAG_MANAGED) || 1486 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1487 continue; 1488 1489 status = link->status; 1490 if (status == DL_STATE_CONSUMER_PROBE) { 1491 device_links_write_unlock(); 1492 1493 wait_for_device_probe(); 1494 goto start; 1495 } 1496 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1497 if (status == DL_STATE_ACTIVE) { 1498 struct device *consumer = link->consumer; 1499 1500 get_device(consumer); 1501 1502 device_links_write_unlock(); 1503 1504 device_release_driver_internal(consumer, NULL, 1505 consumer->parent); 1506 put_device(consumer); 1507 goto start; 1508 } 1509 } 1510 1511 device_links_write_unlock(); 1512 } 1513 1514 /** 1515 * device_links_purge - Delete existing links to other devices. 1516 * @dev: Target device. 1517 */ 1518 static void device_links_purge(struct device *dev) 1519 { 1520 struct device_link *link, *ln; 1521 1522 if (dev->class == &devlink_class) 1523 return; 1524 1525 /* 1526 * Delete all of the remaining links from this device to any other 1527 * devices (either consumers or suppliers). 1528 */ 1529 device_links_write_lock(); 1530 1531 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1532 WARN_ON(link->status == DL_STATE_ACTIVE); 1533 __device_link_del(&link->kref); 1534 } 1535 1536 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1537 WARN_ON(link->status != DL_STATE_DORMANT && 1538 link->status != DL_STATE_NONE); 1539 __device_link_del(&link->kref); 1540 } 1541 1542 device_links_write_unlock(); 1543 } 1544 1545 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1546 DL_FLAG_SYNC_STATE_ONLY) 1547 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1548 DL_FLAG_AUTOPROBE_CONSUMER) 1549 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1550 DL_FLAG_PM_RUNTIME) 1551 1552 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1553 static int __init fw_devlink_setup(char *arg) 1554 { 1555 if (!arg) 1556 return -EINVAL; 1557 1558 if (strcmp(arg, "off") == 0) { 1559 fw_devlink_flags = 0; 1560 } else if (strcmp(arg, "permissive") == 0) { 1561 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1562 } else if (strcmp(arg, "on") == 0) { 1563 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1564 } else if (strcmp(arg, "rpm") == 0) { 1565 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1566 } 1567 return 0; 1568 } 1569 early_param("fw_devlink", fw_devlink_setup); 1570 1571 static bool fw_devlink_strict; 1572 static int __init fw_devlink_strict_setup(char *arg) 1573 { 1574 return strtobool(arg, &fw_devlink_strict); 1575 } 1576 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1577 1578 u32 fw_devlink_get_flags(void) 1579 { 1580 return fw_devlink_flags; 1581 } 1582 1583 static bool fw_devlink_is_permissive(void) 1584 { 1585 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1586 } 1587 1588 bool fw_devlink_is_strict(void) 1589 { 1590 return fw_devlink_strict && !fw_devlink_is_permissive(); 1591 } 1592 1593 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1594 { 1595 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1596 return; 1597 1598 fwnode_call_int_op(fwnode, add_links); 1599 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1600 } 1601 1602 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1603 { 1604 struct fwnode_handle *child = NULL; 1605 1606 fw_devlink_parse_fwnode(fwnode); 1607 1608 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1609 fw_devlink_parse_fwtree(child); 1610 } 1611 1612 static void fw_devlink_relax_link(struct device_link *link) 1613 { 1614 if (!(link->flags & DL_FLAG_INFERRED)) 1615 return; 1616 1617 if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE)) 1618 return; 1619 1620 pm_runtime_drop_link(link); 1621 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1622 dev_dbg(link->consumer, "Relaxing link with %s\n", 1623 dev_name(link->supplier)); 1624 } 1625 1626 static int fw_devlink_no_driver(struct device *dev, void *data) 1627 { 1628 struct device_link *link = to_devlink(dev); 1629 1630 if (!link->supplier->can_match) 1631 fw_devlink_relax_link(link); 1632 1633 return 0; 1634 } 1635 1636 void fw_devlink_drivers_done(void) 1637 { 1638 fw_devlink_drv_reg_done = true; 1639 device_links_write_lock(); 1640 class_for_each_device(&devlink_class, NULL, NULL, 1641 fw_devlink_no_driver); 1642 device_links_write_unlock(); 1643 } 1644 1645 static void fw_devlink_unblock_consumers(struct device *dev) 1646 { 1647 struct device_link *link; 1648 1649 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1650 return; 1651 1652 device_links_write_lock(); 1653 list_for_each_entry(link, &dev->links.consumers, s_node) 1654 fw_devlink_relax_link(link); 1655 device_links_write_unlock(); 1656 } 1657 1658 /** 1659 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links 1660 * @con: Device to check dependencies for. 1661 * @sup: Device to check against. 1662 * 1663 * Check if @sup depends on @con or any device dependent on it (its child or 1664 * its consumer etc). When such a cyclic dependency is found, convert all 1665 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links. 1666 * This is the equivalent of doing fw_devlink=permissive just between the 1667 * devices in the cycle. We need to do this because, at this point, fw_devlink 1668 * can't tell which of these dependencies is not a real dependency. 1669 * 1670 * Return 1 if a cycle is found. Otherwise, return 0. 1671 */ 1672 static int fw_devlink_relax_cycle(struct device *con, void *sup) 1673 { 1674 struct device_link *link; 1675 int ret; 1676 1677 if (con == sup) 1678 return 1; 1679 1680 ret = device_for_each_child(con, sup, fw_devlink_relax_cycle); 1681 if (ret) 1682 return ret; 1683 1684 list_for_each_entry(link, &con->links.consumers, s_node) { 1685 if ((link->flags & ~DL_FLAG_INFERRED) == 1686 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 1687 continue; 1688 1689 if (!fw_devlink_relax_cycle(link->consumer, sup)) 1690 continue; 1691 1692 ret = 1; 1693 1694 fw_devlink_relax_link(link); 1695 } 1696 return ret; 1697 } 1698 1699 /** 1700 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 1701 * @con: consumer device for the device link 1702 * @sup_handle: fwnode handle of supplier 1703 * @flags: devlink flags 1704 * 1705 * This function will try to create a device link between the consumer device 1706 * @con and the supplier device represented by @sup_handle. 1707 * 1708 * The supplier has to be provided as a fwnode because incorrect cycles in 1709 * fwnode links can sometimes cause the supplier device to never be created. 1710 * This function detects such cases and returns an error if it cannot create a 1711 * device link from the consumer to a missing supplier. 1712 * 1713 * Returns, 1714 * 0 on successfully creating a device link 1715 * -EINVAL if the device link cannot be created as expected 1716 * -EAGAIN if the device link cannot be created right now, but it may be 1717 * possible to do that in the future 1718 */ 1719 static int fw_devlink_create_devlink(struct device *con, 1720 struct fwnode_handle *sup_handle, u32 flags) 1721 { 1722 struct device *sup_dev; 1723 int ret = 0; 1724 1725 sup_dev = get_dev_from_fwnode(sup_handle); 1726 if (sup_dev) { 1727 /* 1728 * If it's one of those drivers that don't actually bind to 1729 * their device using driver core, then don't wait on this 1730 * supplier device indefinitely. 1731 */ 1732 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 1733 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 1734 ret = -EINVAL; 1735 goto out; 1736 } 1737 1738 /* 1739 * If this fails, it is due to cycles in device links. Just 1740 * give up on this link and treat it as invalid. 1741 */ 1742 if (!device_link_add(con, sup_dev, flags) && 1743 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 1744 dev_info(con, "Fixing up cyclic dependency with %s\n", 1745 dev_name(sup_dev)); 1746 device_links_write_lock(); 1747 fw_devlink_relax_cycle(con, sup_dev); 1748 device_links_write_unlock(); 1749 device_link_add(con, sup_dev, 1750 FW_DEVLINK_FLAGS_PERMISSIVE); 1751 ret = -EINVAL; 1752 } 1753 1754 goto out; 1755 } 1756 1757 /* Supplier that's already initialized without a struct device. */ 1758 if (sup_handle->flags & FWNODE_FLAG_INITIALIZED) 1759 return -EINVAL; 1760 1761 /* 1762 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports 1763 * cycles. So cycle detection isn't necessary and shouldn't be 1764 * done. 1765 */ 1766 if (flags & DL_FLAG_SYNC_STATE_ONLY) 1767 return -EAGAIN; 1768 1769 /* 1770 * If we can't find the supplier device from its fwnode, it might be 1771 * due to a cyclic dependency between fwnodes. Some of these cycles can 1772 * be broken by applying logic. Check for these types of cycles and 1773 * break them so that devices in the cycle probe properly. 1774 * 1775 * If the supplier's parent is dependent on the consumer, then 1776 * the consumer-supplier dependency is a false dependency. So, 1777 * treat it as an invalid link. 1778 */ 1779 sup_dev = fwnode_get_next_parent_dev(sup_handle); 1780 if (sup_dev && device_is_dependent(con, sup_dev)) { 1781 dev_dbg(con, "Not linking to %pfwP - False link\n", 1782 sup_handle); 1783 ret = -EINVAL; 1784 } else { 1785 /* 1786 * Can't check for cycles or no cycles. So let's try 1787 * again later. 1788 */ 1789 ret = -EAGAIN; 1790 } 1791 1792 out: 1793 put_device(sup_dev); 1794 return ret; 1795 } 1796 1797 /** 1798 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 1799 * @dev: Device that needs to be linked to its consumers 1800 * 1801 * This function looks at all the consumer fwnodes of @dev and creates device 1802 * links between the consumer device and @dev (supplier). 1803 * 1804 * If the consumer device has not been added yet, then this function creates a 1805 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 1806 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 1807 * sync_state() callback before the real consumer device gets to be added and 1808 * then probed. 1809 * 1810 * Once device links are created from the real consumer to @dev (supplier), the 1811 * fwnode links are deleted. 1812 */ 1813 static void __fw_devlink_link_to_consumers(struct device *dev) 1814 { 1815 struct fwnode_handle *fwnode = dev->fwnode; 1816 struct fwnode_link *link, *tmp; 1817 1818 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 1819 u32 dl_flags = fw_devlink_get_flags(); 1820 struct device *con_dev; 1821 bool own_link = true; 1822 int ret; 1823 1824 con_dev = get_dev_from_fwnode(link->consumer); 1825 /* 1826 * If consumer device is not available yet, make a "proxy" 1827 * SYNC_STATE_ONLY link from the consumer's parent device to 1828 * the supplier device. This is necessary to make sure the 1829 * supplier doesn't get a sync_state() callback before the real 1830 * consumer can create a device link to the supplier. 1831 * 1832 * This proxy link step is needed to handle the case where the 1833 * consumer's parent device is added before the supplier. 1834 */ 1835 if (!con_dev) { 1836 con_dev = fwnode_get_next_parent_dev(link->consumer); 1837 /* 1838 * However, if the consumer's parent device is also the 1839 * parent of the supplier, don't create a 1840 * consumer-supplier link from the parent to its child 1841 * device. Such a dependency is impossible. 1842 */ 1843 if (con_dev && 1844 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 1845 put_device(con_dev); 1846 con_dev = NULL; 1847 } else { 1848 own_link = false; 1849 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1850 } 1851 } 1852 1853 if (!con_dev) 1854 continue; 1855 1856 ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags); 1857 put_device(con_dev); 1858 if (!own_link || ret == -EAGAIN) 1859 continue; 1860 1861 list_del(&link->s_hook); 1862 list_del(&link->c_hook); 1863 kfree(link); 1864 } 1865 } 1866 1867 /** 1868 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 1869 * @dev: The consumer device that needs to be linked to its suppliers 1870 * @fwnode: Root of the fwnode tree that is used to create device links 1871 * 1872 * This function looks at all the supplier fwnodes of fwnode tree rooted at 1873 * @fwnode and creates device links between @dev (consumer) and all the 1874 * supplier devices of the entire fwnode tree at @fwnode. 1875 * 1876 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 1877 * and the real suppliers of @dev. Once these device links are created, the 1878 * fwnode links are deleted. When such device links are successfully created, 1879 * this function is called recursively on those supplier devices. This is 1880 * needed to detect and break some invalid cycles in fwnode links. See 1881 * fw_devlink_create_devlink() for more details. 1882 * 1883 * In addition, it also looks at all the suppliers of the entire fwnode tree 1884 * because some of the child devices of @dev that have not been added yet 1885 * (because @dev hasn't probed) might already have their suppliers added to 1886 * driver core. So, this function creates SYNC_STATE_ONLY device links between 1887 * @dev (consumer) and these suppliers to make sure they don't execute their 1888 * sync_state() callbacks before these child devices have a chance to create 1889 * their device links. The fwnode links that correspond to the child devices 1890 * aren't delete because they are needed later to create the device links 1891 * between the real consumer and supplier devices. 1892 */ 1893 static void __fw_devlink_link_to_suppliers(struct device *dev, 1894 struct fwnode_handle *fwnode) 1895 { 1896 bool own_link = (dev->fwnode == fwnode); 1897 struct fwnode_link *link, *tmp; 1898 struct fwnode_handle *child = NULL; 1899 u32 dl_flags; 1900 1901 if (own_link) 1902 dl_flags = fw_devlink_get_flags(); 1903 else 1904 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1905 1906 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 1907 int ret; 1908 struct device *sup_dev; 1909 struct fwnode_handle *sup = link->supplier; 1910 1911 ret = fw_devlink_create_devlink(dev, sup, dl_flags); 1912 if (!own_link || ret == -EAGAIN) 1913 continue; 1914 1915 list_del(&link->s_hook); 1916 list_del(&link->c_hook); 1917 kfree(link); 1918 1919 /* If no device link was created, nothing more to do. */ 1920 if (ret) 1921 continue; 1922 1923 /* 1924 * If a device link was successfully created to a supplier, we 1925 * now need to try and link the supplier to all its suppliers. 1926 * 1927 * This is needed to detect and delete false dependencies in 1928 * fwnode links that haven't been converted to a device link 1929 * yet. See comments in fw_devlink_create_devlink() for more 1930 * details on the false dependency. 1931 * 1932 * Without deleting these false dependencies, some devices will 1933 * never probe because they'll keep waiting for their false 1934 * dependency fwnode links to be converted to device links. 1935 */ 1936 sup_dev = get_dev_from_fwnode(sup); 1937 __fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode); 1938 put_device(sup_dev); 1939 } 1940 1941 /* 1942 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 1943 * all the descendants. This proxy link step is needed to handle the 1944 * case where the supplier is added before the consumer's parent device 1945 * (@dev). 1946 */ 1947 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1948 __fw_devlink_link_to_suppliers(dev, child); 1949 } 1950 1951 static void fw_devlink_link_device(struct device *dev) 1952 { 1953 struct fwnode_handle *fwnode = dev->fwnode; 1954 1955 if (!fw_devlink_flags) 1956 return; 1957 1958 fw_devlink_parse_fwtree(fwnode); 1959 1960 mutex_lock(&fwnode_link_lock); 1961 __fw_devlink_link_to_consumers(dev); 1962 __fw_devlink_link_to_suppliers(dev, fwnode); 1963 mutex_unlock(&fwnode_link_lock); 1964 } 1965 1966 /* Device links support end. */ 1967 1968 int (*platform_notify)(struct device *dev) = NULL; 1969 int (*platform_notify_remove)(struct device *dev) = NULL; 1970 static struct kobject *dev_kobj; 1971 struct kobject *sysfs_dev_char_kobj; 1972 struct kobject *sysfs_dev_block_kobj; 1973 1974 static DEFINE_MUTEX(device_hotplug_lock); 1975 1976 void lock_device_hotplug(void) 1977 { 1978 mutex_lock(&device_hotplug_lock); 1979 } 1980 1981 void unlock_device_hotplug(void) 1982 { 1983 mutex_unlock(&device_hotplug_lock); 1984 } 1985 1986 int lock_device_hotplug_sysfs(void) 1987 { 1988 if (mutex_trylock(&device_hotplug_lock)) 1989 return 0; 1990 1991 /* Avoid busy looping (5 ms of sleep should do). */ 1992 msleep(5); 1993 return restart_syscall(); 1994 } 1995 1996 #ifdef CONFIG_BLOCK 1997 static inline int device_is_not_partition(struct device *dev) 1998 { 1999 return !(dev->type == &part_type); 2000 } 2001 #else 2002 static inline int device_is_not_partition(struct device *dev) 2003 { 2004 return 1; 2005 } 2006 #endif 2007 2008 static void device_platform_notify(struct device *dev) 2009 { 2010 acpi_device_notify(dev); 2011 2012 software_node_notify(dev); 2013 2014 if (platform_notify) 2015 platform_notify(dev); 2016 } 2017 2018 static void device_platform_notify_remove(struct device *dev) 2019 { 2020 acpi_device_notify_remove(dev); 2021 2022 software_node_notify_remove(dev); 2023 2024 if (platform_notify_remove) 2025 platform_notify_remove(dev); 2026 } 2027 2028 /** 2029 * dev_driver_string - Return a device's driver name, if at all possible 2030 * @dev: struct device to get the name of 2031 * 2032 * Will return the device's driver's name if it is bound to a device. If 2033 * the device is not bound to a driver, it will return the name of the bus 2034 * it is attached to. If it is not attached to a bus either, an empty 2035 * string will be returned. 2036 */ 2037 const char *dev_driver_string(const struct device *dev) 2038 { 2039 struct device_driver *drv; 2040 2041 /* dev->driver can change to NULL underneath us because of unbinding, 2042 * so be careful about accessing it. dev->bus and dev->class should 2043 * never change once they are set, so they don't need special care. 2044 */ 2045 drv = READ_ONCE(dev->driver); 2046 return drv ? drv->name : dev_bus_name(dev); 2047 } 2048 EXPORT_SYMBOL(dev_driver_string); 2049 2050 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2051 2052 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2053 char *buf) 2054 { 2055 struct device_attribute *dev_attr = to_dev_attr(attr); 2056 struct device *dev = kobj_to_dev(kobj); 2057 ssize_t ret = -EIO; 2058 2059 if (dev_attr->show) 2060 ret = dev_attr->show(dev, dev_attr, buf); 2061 if (ret >= (ssize_t)PAGE_SIZE) { 2062 printk("dev_attr_show: %pS returned bad count\n", 2063 dev_attr->show); 2064 } 2065 return ret; 2066 } 2067 2068 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2069 const char *buf, size_t count) 2070 { 2071 struct device_attribute *dev_attr = to_dev_attr(attr); 2072 struct device *dev = kobj_to_dev(kobj); 2073 ssize_t ret = -EIO; 2074 2075 if (dev_attr->store) 2076 ret = dev_attr->store(dev, dev_attr, buf, count); 2077 return ret; 2078 } 2079 2080 static const struct sysfs_ops dev_sysfs_ops = { 2081 .show = dev_attr_show, 2082 .store = dev_attr_store, 2083 }; 2084 2085 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2086 2087 ssize_t device_store_ulong(struct device *dev, 2088 struct device_attribute *attr, 2089 const char *buf, size_t size) 2090 { 2091 struct dev_ext_attribute *ea = to_ext_attr(attr); 2092 int ret; 2093 unsigned long new; 2094 2095 ret = kstrtoul(buf, 0, &new); 2096 if (ret) 2097 return ret; 2098 *(unsigned long *)(ea->var) = new; 2099 /* Always return full write size even if we didn't consume all */ 2100 return size; 2101 } 2102 EXPORT_SYMBOL_GPL(device_store_ulong); 2103 2104 ssize_t device_show_ulong(struct device *dev, 2105 struct device_attribute *attr, 2106 char *buf) 2107 { 2108 struct dev_ext_attribute *ea = to_ext_attr(attr); 2109 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2110 } 2111 EXPORT_SYMBOL_GPL(device_show_ulong); 2112 2113 ssize_t device_store_int(struct device *dev, 2114 struct device_attribute *attr, 2115 const char *buf, size_t size) 2116 { 2117 struct dev_ext_attribute *ea = to_ext_attr(attr); 2118 int ret; 2119 long new; 2120 2121 ret = kstrtol(buf, 0, &new); 2122 if (ret) 2123 return ret; 2124 2125 if (new > INT_MAX || new < INT_MIN) 2126 return -EINVAL; 2127 *(int *)(ea->var) = new; 2128 /* Always return full write size even if we didn't consume all */ 2129 return size; 2130 } 2131 EXPORT_SYMBOL_GPL(device_store_int); 2132 2133 ssize_t device_show_int(struct device *dev, 2134 struct device_attribute *attr, 2135 char *buf) 2136 { 2137 struct dev_ext_attribute *ea = to_ext_attr(attr); 2138 2139 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2140 } 2141 EXPORT_SYMBOL_GPL(device_show_int); 2142 2143 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2144 const char *buf, size_t size) 2145 { 2146 struct dev_ext_attribute *ea = to_ext_attr(attr); 2147 2148 if (strtobool(buf, ea->var) < 0) 2149 return -EINVAL; 2150 2151 return size; 2152 } 2153 EXPORT_SYMBOL_GPL(device_store_bool); 2154 2155 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2156 char *buf) 2157 { 2158 struct dev_ext_attribute *ea = to_ext_attr(attr); 2159 2160 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2161 } 2162 EXPORT_SYMBOL_GPL(device_show_bool); 2163 2164 /** 2165 * device_release - free device structure. 2166 * @kobj: device's kobject. 2167 * 2168 * This is called once the reference count for the object 2169 * reaches 0. We forward the call to the device's release 2170 * method, which should handle actually freeing the structure. 2171 */ 2172 static void device_release(struct kobject *kobj) 2173 { 2174 struct device *dev = kobj_to_dev(kobj); 2175 struct device_private *p = dev->p; 2176 2177 /* 2178 * Some platform devices are driven without driver attached 2179 * and managed resources may have been acquired. Make sure 2180 * all resources are released. 2181 * 2182 * Drivers still can add resources into device after device 2183 * is deleted but alive, so release devres here to avoid 2184 * possible memory leak. 2185 */ 2186 devres_release_all(dev); 2187 2188 kfree(dev->dma_range_map); 2189 2190 if (dev->release) 2191 dev->release(dev); 2192 else if (dev->type && dev->type->release) 2193 dev->type->release(dev); 2194 else if (dev->class && dev->class->dev_release) 2195 dev->class->dev_release(dev); 2196 else 2197 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2198 dev_name(dev)); 2199 kfree(p); 2200 } 2201 2202 static const void *device_namespace(struct kobject *kobj) 2203 { 2204 struct device *dev = kobj_to_dev(kobj); 2205 const void *ns = NULL; 2206 2207 if (dev->class && dev->class->ns_type) 2208 ns = dev->class->namespace(dev); 2209 2210 return ns; 2211 } 2212 2213 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2214 { 2215 struct device *dev = kobj_to_dev(kobj); 2216 2217 if (dev->class && dev->class->get_ownership) 2218 dev->class->get_ownership(dev, uid, gid); 2219 } 2220 2221 static struct kobj_type device_ktype = { 2222 .release = device_release, 2223 .sysfs_ops = &dev_sysfs_ops, 2224 .namespace = device_namespace, 2225 .get_ownership = device_get_ownership, 2226 }; 2227 2228 2229 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 2230 { 2231 struct kobj_type *ktype = get_ktype(kobj); 2232 2233 if (ktype == &device_ktype) { 2234 struct device *dev = kobj_to_dev(kobj); 2235 if (dev->bus) 2236 return 1; 2237 if (dev->class) 2238 return 1; 2239 } 2240 return 0; 2241 } 2242 2243 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 2244 { 2245 struct device *dev = kobj_to_dev(kobj); 2246 2247 if (dev->bus) 2248 return dev->bus->name; 2249 if (dev->class) 2250 return dev->class->name; 2251 return NULL; 2252 } 2253 2254 static int dev_uevent(struct kset *kset, struct kobject *kobj, 2255 struct kobj_uevent_env *env) 2256 { 2257 struct device *dev = kobj_to_dev(kobj); 2258 int retval = 0; 2259 2260 /* add device node properties if present */ 2261 if (MAJOR(dev->devt)) { 2262 const char *tmp; 2263 const char *name; 2264 umode_t mode = 0; 2265 kuid_t uid = GLOBAL_ROOT_UID; 2266 kgid_t gid = GLOBAL_ROOT_GID; 2267 2268 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2269 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2270 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2271 if (name) { 2272 add_uevent_var(env, "DEVNAME=%s", name); 2273 if (mode) 2274 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2275 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2276 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2277 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2278 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2279 kfree(tmp); 2280 } 2281 } 2282 2283 if (dev->type && dev->type->name) 2284 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2285 2286 if (dev->driver) 2287 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2288 2289 /* Add common DT information about the device */ 2290 of_device_uevent(dev, env); 2291 2292 /* have the bus specific function add its stuff */ 2293 if (dev->bus && dev->bus->uevent) { 2294 retval = dev->bus->uevent(dev, env); 2295 if (retval) 2296 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2297 dev_name(dev), __func__, retval); 2298 } 2299 2300 /* have the class specific function add its stuff */ 2301 if (dev->class && dev->class->dev_uevent) { 2302 retval = dev->class->dev_uevent(dev, env); 2303 if (retval) 2304 pr_debug("device: '%s': %s: class uevent() " 2305 "returned %d\n", dev_name(dev), 2306 __func__, retval); 2307 } 2308 2309 /* have the device type specific function add its stuff */ 2310 if (dev->type && dev->type->uevent) { 2311 retval = dev->type->uevent(dev, env); 2312 if (retval) 2313 pr_debug("device: '%s': %s: dev_type uevent() " 2314 "returned %d\n", dev_name(dev), 2315 __func__, retval); 2316 } 2317 2318 return retval; 2319 } 2320 2321 static const struct kset_uevent_ops device_uevent_ops = { 2322 .filter = dev_uevent_filter, 2323 .name = dev_uevent_name, 2324 .uevent = dev_uevent, 2325 }; 2326 2327 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2328 char *buf) 2329 { 2330 struct kobject *top_kobj; 2331 struct kset *kset; 2332 struct kobj_uevent_env *env = NULL; 2333 int i; 2334 int len = 0; 2335 int retval; 2336 2337 /* search the kset, the device belongs to */ 2338 top_kobj = &dev->kobj; 2339 while (!top_kobj->kset && top_kobj->parent) 2340 top_kobj = top_kobj->parent; 2341 if (!top_kobj->kset) 2342 goto out; 2343 2344 kset = top_kobj->kset; 2345 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2346 goto out; 2347 2348 /* respect filter */ 2349 if (kset->uevent_ops && kset->uevent_ops->filter) 2350 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 2351 goto out; 2352 2353 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2354 if (!env) 2355 return -ENOMEM; 2356 2357 /* let the kset specific function add its keys */ 2358 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 2359 if (retval) 2360 goto out; 2361 2362 /* copy keys to file */ 2363 for (i = 0; i < env->envp_idx; i++) 2364 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2365 out: 2366 kfree(env); 2367 return len; 2368 } 2369 2370 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2371 const char *buf, size_t count) 2372 { 2373 int rc; 2374 2375 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2376 2377 if (rc) { 2378 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 2379 return rc; 2380 } 2381 2382 return count; 2383 } 2384 static DEVICE_ATTR_RW(uevent); 2385 2386 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2387 char *buf) 2388 { 2389 bool val; 2390 2391 device_lock(dev); 2392 val = !dev->offline; 2393 device_unlock(dev); 2394 return sysfs_emit(buf, "%u\n", val); 2395 } 2396 2397 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2398 const char *buf, size_t count) 2399 { 2400 bool val; 2401 int ret; 2402 2403 ret = strtobool(buf, &val); 2404 if (ret < 0) 2405 return ret; 2406 2407 ret = lock_device_hotplug_sysfs(); 2408 if (ret) 2409 return ret; 2410 2411 ret = val ? device_online(dev) : device_offline(dev); 2412 unlock_device_hotplug(); 2413 return ret < 0 ? ret : count; 2414 } 2415 static DEVICE_ATTR_RW(online); 2416 2417 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2418 char *buf) 2419 { 2420 const char *loc; 2421 2422 switch (dev->removable) { 2423 case DEVICE_REMOVABLE: 2424 loc = "removable"; 2425 break; 2426 case DEVICE_FIXED: 2427 loc = "fixed"; 2428 break; 2429 default: 2430 loc = "unknown"; 2431 } 2432 return sysfs_emit(buf, "%s\n", loc); 2433 } 2434 static DEVICE_ATTR_RO(removable); 2435 2436 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2437 { 2438 return sysfs_create_groups(&dev->kobj, groups); 2439 } 2440 EXPORT_SYMBOL_GPL(device_add_groups); 2441 2442 void device_remove_groups(struct device *dev, 2443 const struct attribute_group **groups) 2444 { 2445 sysfs_remove_groups(&dev->kobj, groups); 2446 } 2447 EXPORT_SYMBOL_GPL(device_remove_groups); 2448 2449 union device_attr_group_devres { 2450 const struct attribute_group *group; 2451 const struct attribute_group **groups; 2452 }; 2453 2454 static int devm_attr_group_match(struct device *dev, void *res, void *data) 2455 { 2456 return ((union device_attr_group_devres *)res)->group == data; 2457 } 2458 2459 static void devm_attr_group_remove(struct device *dev, void *res) 2460 { 2461 union device_attr_group_devres *devres = res; 2462 const struct attribute_group *group = devres->group; 2463 2464 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2465 sysfs_remove_group(&dev->kobj, group); 2466 } 2467 2468 static void devm_attr_groups_remove(struct device *dev, void *res) 2469 { 2470 union device_attr_group_devres *devres = res; 2471 const struct attribute_group **groups = devres->groups; 2472 2473 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2474 sysfs_remove_groups(&dev->kobj, groups); 2475 } 2476 2477 /** 2478 * devm_device_add_group - given a device, create a managed attribute group 2479 * @dev: The device to create the group for 2480 * @grp: The attribute group to create 2481 * 2482 * This function creates a group for the first time. It will explicitly 2483 * warn and error if any of the attribute files being created already exist. 2484 * 2485 * Returns 0 on success or error code on failure. 2486 */ 2487 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2488 { 2489 union device_attr_group_devres *devres; 2490 int error; 2491 2492 devres = devres_alloc(devm_attr_group_remove, 2493 sizeof(*devres), GFP_KERNEL); 2494 if (!devres) 2495 return -ENOMEM; 2496 2497 error = sysfs_create_group(&dev->kobj, grp); 2498 if (error) { 2499 devres_free(devres); 2500 return error; 2501 } 2502 2503 devres->group = grp; 2504 devres_add(dev, devres); 2505 return 0; 2506 } 2507 EXPORT_SYMBOL_GPL(devm_device_add_group); 2508 2509 /** 2510 * devm_device_remove_group: remove a managed group from a device 2511 * @dev: device to remove the group from 2512 * @grp: group to remove 2513 * 2514 * This function removes a group of attributes from a device. The attributes 2515 * previously have to have been created for this group, otherwise it will fail. 2516 */ 2517 void devm_device_remove_group(struct device *dev, 2518 const struct attribute_group *grp) 2519 { 2520 WARN_ON(devres_release(dev, devm_attr_group_remove, 2521 devm_attr_group_match, 2522 /* cast away const */ (void *)grp)); 2523 } 2524 EXPORT_SYMBOL_GPL(devm_device_remove_group); 2525 2526 /** 2527 * devm_device_add_groups - create a bunch of managed attribute groups 2528 * @dev: The device to create the group for 2529 * @groups: The attribute groups to create, NULL terminated 2530 * 2531 * This function creates a bunch of managed attribute groups. If an error 2532 * occurs when creating a group, all previously created groups will be 2533 * removed, unwinding everything back to the original state when this 2534 * function was called. It will explicitly warn and error if any of the 2535 * attribute files being created already exist. 2536 * 2537 * Returns 0 on success or error code from sysfs_create_group on failure. 2538 */ 2539 int devm_device_add_groups(struct device *dev, 2540 const struct attribute_group **groups) 2541 { 2542 union device_attr_group_devres *devres; 2543 int error; 2544 2545 devres = devres_alloc(devm_attr_groups_remove, 2546 sizeof(*devres), GFP_KERNEL); 2547 if (!devres) 2548 return -ENOMEM; 2549 2550 error = sysfs_create_groups(&dev->kobj, groups); 2551 if (error) { 2552 devres_free(devres); 2553 return error; 2554 } 2555 2556 devres->groups = groups; 2557 devres_add(dev, devres); 2558 return 0; 2559 } 2560 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2561 2562 /** 2563 * devm_device_remove_groups - remove a list of managed groups 2564 * 2565 * @dev: The device for the groups to be removed from 2566 * @groups: NULL terminated list of groups to be removed 2567 * 2568 * If groups is not NULL, remove the specified groups from the device. 2569 */ 2570 void devm_device_remove_groups(struct device *dev, 2571 const struct attribute_group **groups) 2572 { 2573 WARN_ON(devres_release(dev, devm_attr_groups_remove, 2574 devm_attr_group_match, 2575 /* cast away const */ (void *)groups)); 2576 } 2577 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 2578 2579 static int device_add_attrs(struct device *dev) 2580 { 2581 struct class *class = dev->class; 2582 const struct device_type *type = dev->type; 2583 int error; 2584 2585 if (class) { 2586 error = device_add_groups(dev, class->dev_groups); 2587 if (error) 2588 return error; 2589 } 2590 2591 if (type) { 2592 error = device_add_groups(dev, type->groups); 2593 if (error) 2594 goto err_remove_class_groups; 2595 } 2596 2597 error = device_add_groups(dev, dev->groups); 2598 if (error) 2599 goto err_remove_type_groups; 2600 2601 if (device_supports_offline(dev) && !dev->offline_disabled) { 2602 error = device_create_file(dev, &dev_attr_online); 2603 if (error) 2604 goto err_remove_dev_groups; 2605 } 2606 2607 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2608 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2609 if (error) 2610 goto err_remove_dev_online; 2611 } 2612 2613 if (dev_removable_is_valid(dev)) { 2614 error = device_create_file(dev, &dev_attr_removable); 2615 if (error) 2616 goto err_remove_dev_waiting_for_supplier; 2617 } 2618 2619 return 0; 2620 2621 err_remove_dev_waiting_for_supplier: 2622 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2623 err_remove_dev_online: 2624 device_remove_file(dev, &dev_attr_online); 2625 err_remove_dev_groups: 2626 device_remove_groups(dev, dev->groups); 2627 err_remove_type_groups: 2628 if (type) 2629 device_remove_groups(dev, type->groups); 2630 err_remove_class_groups: 2631 if (class) 2632 device_remove_groups(dev, class->dev_groups); 2633 2634 return error; 2635 } 2636 2637 static void device_remove_attrs(struct device *dev) 2638 { 2639 struct class *class = dev->class; 2640 const struct device_type *type = dev->type; 2641 2642 device_remove_file(dev, &dev_attr_removable); 2643 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2644 device_remove_file(dev, &dev_attr_online); 2645 device_remove_groups(dev, dev->groups); 2646 2647 if (type) 2648 device_remove_groups(dev, type->groups); 2649 2650 if (class) 2651 device_remove_groups(dev, class->dev_groups); 2652 } 2653 2654 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2655 char *buf) 2656 { 2657 return print_dev_t(buf, dev->devt); 2658 } 2659 static DEVICE_ATTR_RO(dev); 2660 2661 /* /sys/devices/ */ 2662 struct kset *devices_kset; 2663 2664 /** 2665 * devices_kset_move_before - Move device in the devices_kset's list. 2666 * @deva: Device to move. 2667 * @devb: Device @deva should come before. 2668 */ 2669 static void devices_kset_move_before(struct device *deva, struct device *devb) 2670 { 2671 if (!devices_kset) 2672 return; 2673 pr_debug("devices_kset: Moving %s before %s\n", 2674 dev_name(deva), dev_name(devb)); 2675 spin_lock(&devices_kset->list_lock); 2676 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2677 spin_unlock(&devices_kset->list_lock); 2678 } 2679 2680 /** 2681 * devices_kset_move_after - Move device in the devices_kset's list. 2682 * @deva: Device to move 2683 * @devb: Device @deva should come after. 2684 */ 2685 static void devices_kset_move_after(struct device *deva, struct device *devb) 2686 { 2687 if (!devices_kset) 2688 return; 2689 pr_debug("devices_kset: Moving %s after %s\n", 2690 dev_name(deva), dev_name(devb)); 2691 spin_lock(&devices_kset->list_lock); 2692 list_move(&deva->kobj.entry, &devb->kobj.entry); 2693 spin_unlock(&devices_kset->list_lock); 2694 } 2695 2696 /** 2697 * devices_kset_move_last - move the device to the end of devices_kset's list. 2698 * @dev: device to move 2699 */ 2700 void devices_kset_move_last(struct device *dev) 2701 { 2702 if (!devices_kset) 2703 return; 2704 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2705 spin_lock(&devices_kset->list_lock); 2706 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2707 spin_unlock(&devices_kset->list_lock); 2708 } 2709 2710 /** 2711 * device_create_file - create sysfs attribute file for device. 2712 * @dev: device. 2713 * @attr: device attribute descriptor. 2714 */ 2715 int device_create_file(struct device *dev, 2716 const struct device_attribute *attr) 2717 { 2718 int error = 0; 2719 2720 if (dev) { 2721 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 2722 "Attribute %s: write permission without 'store'\n", 2723 attr->attr.name); 2724 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 2725 "Attribute %s: read permission without 'show'\n", 2726 attr->attr.name); 2727 error = sysfs_create_file(&dev->kobj, &attr->attr); 2728 } 2729 2730 return error; 2731 } 2732 EXPORT_SYMBOL_GPL(device_create_file); 2733 2734 /** 2735 * device_remove_file - remove sysfs attribute file. 2736 * @dev: device. 2737 * @attr: device attribute descriptor. 2738 */ 2739 void device_remove_file(struct device *dev, 2740 const struct device_attribute *attr) 2741 { 2742 if (dev) 2743 sysfs_remove_file(&dev->kobj, &attr->attr); 2744 } 2745 EXPORT_SYMBOL_GPL(device_remove_file); 2746 2747 /** 2748 * device_remove_file_self - remove sysfs attribute file from its own method. 2749 * @dev: device. 2750 * @attr: device attribute descriptor. 2751 * 2752 * See kernfs_remove_self() for details. 2753 */ 2754 bool device_remove_file_self(struct device *dev, 2755 const struct device_attribute *attr) 2756 { 2757 if (dev) 2758 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 2759 else 2760 return false; 2761 } 2762 EXPORT_SYMBOL_GPL(device_remove_file_self); 2763 2764 /** 2765 * device_create_bin_file - create sysfs binary attribute file for device. 2766 * @dev: device. 2767 * @attr: device binary attribute descriptor. 2768 */ 2769 int device_create_bin_file(struct device *dev, 2770 const struct bin_attribute *attr) 2771 { 2772 int error = -EINVAL; 2773 if (dev) 2774 error = sysfs_create_bin_file(&dev->kobj, attr); 2775 return error; 2776 } 2777 EXPORT_SYMBOL_GPL(device_create_bin_file); 2778 2779 /** 2780 * device_remove_bin_file - remove sysfs binary attribute file 2781 * @dev: device. 2782 * @attr: device binary attribute descriptor. 2783 */ 2784 void device_remove_bin_file(struct device *dev, 2785 const struct bin_attribute *attr) 2786 { 2787 if (dev) 2788 sysfs_remove_bin_file(&dev->kobj, attr); 2789 } 2790 EXPORT_SYMBOL_GPL(device_remove_bin_file); 2791 2792 static void klist_children_get(struct klist_node *n) 2793 { 2794 struct device_private *p = to_device_private_parent(n); 2795 struct device *dev = p->device; 2796 2797 get_device(dev); 2798 } 2799 2800 static void klist_children_put(struct klist_node *n) 2801 { 2802 struct device_private *p = to_device_private_parent(n); 2803 struct device *dev = p->device; 2804 2805 put_device(dev); 2806 } 2807 2808 /** 2809 * device_initialize - init device structure. 2810 * @dev: device. 2811 * 2812 * This prepares the device for use by other layers by initializing 2813 * its fields. 2814 * It is the first half of device_register(), if called by 2815 * that function, though it can also be called separately, so one 2816 * may use @dev's fields. In particular, get_device()/put_device() 2817 * may be used for reference counting of @dev after calling this 2818 * function. 2819 * 2820 * All fields in @dev must be initialized by the caller to 0, except 2821 * for those explicitly set to some other value. The simplest 2822 * approach is to use kzalloc() to allocate the structure containing 2823 * @dev. 2824 * 2825 * NOTE: Use put_device() to give up your reference instead of freeing 2826 * @dev directly once you have called this function. 2827 */ 2828 void device_initialize(struct device *dev) 2829 { 2830 dev->kobj.kset = devices_kset; 2831 kobject_init(&dev->kobj, &device_ktype); 2832 INIT_LIST_HEAD(&dev->dma_pools); 2833 mutex_init(&dev->mutex); 2834 #ifdef CONFIG_PROVE_LOCKING 2835 mutex_init(&dev->lockdep_mutex); 2836 #endif 2837 lockdep_set_novalidate_class(&dev->mutex); 2838 spin_lock_init(&dev->devres_lock); 2839 INIT_LIST_HEAD(&dev->devres_head); 2840 device_pm_init(dev); 2841 set_dev_node(dev, -1); 2842 #ifdef CONFIG_GENERIC_MSI_IRQ 2843 raw_spin_lock_init(&dev->msi_lock); 2844 INIT_LIST_HEAD(&dev->msi_list); 2845 #endif 2846 INIT_LIST_HEAD(&dev->links.consumers); 2847 INIT_LIST_HEAD(&dev->links.suppliers); 2848 INIT_LIST_HEAD(&dev->links.defer_sync); 2849 dev->links.status = DL_DEV_NO_DRIVER; 2850 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 2851 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 2852 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 2853 dev->dma_coherent = dma_default_coherent; 2854 #endif 2855 #ifdef CONFIG_SWIOTLB 2856 dev->dma_io_tlb_mem = &io_tlb_default_mem; 2857 #endif 2858 } 2859 EXPORT_SYMBOL_GPL(device_initialize); 2860 2861 struct kobject *virtual_device_parent(struct device *dev) 2862 { 2863 static struct kobject *virtual_dir = NULL; 2864 2865 if (!virtual_dir) 2866 virtual_dir = kobject_create_and_add("virtual", 2867 &devices_kset->kobj); 2868 2869 return virtual_dir; 2870 } 2871 2872 struct class_dir { 2873 struct kobject kobj; 2874 struct class *class; 2875 }; 2876 2877 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 2878 2879 static void class_dir_release(struct kobject *kobj) 2880 { 2881 struct class_dir *dir = to_class_dir(kobj); 2882 kfree(dir); 2883 } 2884 2885 static const 2886 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 2887 { 2888 struct class_dir *dir = to_class_dir(kobj); 2889 return dir->class->ns_type; 2890 } 2891 2892 static struct kobj_type class_dir_ktype = { 2893 .release = class_dir_release, 2894 .sysfs_ops = &kobj_sysfs_ops, 2895 .child_ns_type = class_dir_child_ns_type 2896 }; 2897 2898 static struct kobject * 2899 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 2900 { 2901 struct class_dir *dir; 2902 int retval; 2903 2904 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 2905 if (!dir) 2906 return ERR_PTR(-ENOMEM); 2907 2908 dir->class = class; 2909 kobject_init(&dir->kobj, &class_dir_ktype); 2910 2911 dir->kobj.kset = &class->p->glue_dirs; 2912 2913 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 2914 if (retval < 0) { 2915 kobject_put(&dir->kobj); 2916 return ERR_PTR(retval); 2917 } 2918 return &dir->kobj; 2919 } 2920 2921 static DEFINE_MUTEX(gdp_mutex); 2922 2923 static struct kobject *get_device_parent(struct device *dev, 2924 struct device *parent) 2925 { 2926 if (dev->class) { 2927 struct kobject *kobj = NULL; 2928 struct kobject *parent_kobj; 2929 struct kobject *k; 2930 2931 #ifdef CONFIG_BLOCK 2932 /* block disks show up in /sys/block */ 2933 if (sysfs_deprecated && dev->class == &block_class) { 2934 if (parent && parent->class == &block_class) 2935 return &parent->kobj; 2936 return &block_class.p->subsys.kobj; 2937 } 2938 #endif 2939 2940 /* 2941 * If we have no parent, we live in "virtual". 2942 * Class-devices with a non class-device as parent, live 2943 * in a "glue" directory to prevent namespace collisions. 2944 */ 2945 if (parent == NULL) 2946 parent_kobj = virtual_device_parent(dev); 2947 else if (parent->class && !dev->class->ns_type) 2948 return &parent->kobj; 2949 else 2950 parent_kobj = &parent->kobj; 2951 2952 mutex_lock(&gdp_mutex); 2953 2954 /* find our class-directory at the parent and reference it */ 2955 spin_lock(&dev->class->p->glue_dirs.list_lock); 2956 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 2957 if (k->parent == parent_kobj) { 2958 kobj = kobject_get(k); 2959 break; 2960 } 2961 spin_unlock(&dev->class->p->glue_dirs.list_lock); 2962 if (kobj) { 2963 mutex_unlock(&gdp_mutex); 2964 return kobj; 2965 } 2966 2967 /* or create a new class-directory at the parent device */ 2968 k = class_dir_create_and_add(dev->class, parent_kobj); 2969 /* do not emit an uevent for this simple "glue" directory */ 2970 mutex_unlock(&gdp_mutex); 2971 return k; 2972 } 2973 2974 /* subsystems can specify a default root directory for their devices */ 2975 if (!parent && dev->bus && dev->bus->dev_root) 2976 return &dev->bus->dev_root->kobj; 2977 2978 if (parent) 2979 return &parent->kobj; 2980 return NULL; 2981 } 2982 2983 static inline bool live_in_glue_dir(struct kobject *kobj, 2984 struct device *dev) 2985 { 2986 if (!kobj || !dev->class || 2987 kobj->kset != &dev->class->p->glue_dirs) 2988 return false; 2989 return true; 2990 } 2991 2992 static inline struct kobject *get_glue_dir(struct device *dev) 2993 { 2994 return dev->kobj.parent; 2995 } 2996 2997 /* 2998 * make sure cleaning up dir as the last step, we need to make 2999 * sure .release handler of kobject is run with holding the 3000 * global lock 3001 */ 3002 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3003 { 3004 unsigned int ref; 3005 3006 /* see if we live in a "glue" directory */ 3007 if (!live_in_glue_dir(glue_dir, dev)) 3008 return; 3009 3010 mutex_lock(&gdp_mutex); 3011 /** 3012 * There is a race condition between removing glue directory 3013 * and adding a new device under the glue directory. 3014 * 3015 * CPU1: CPU2: 3016 * 3017 * device_add() 3018 * get_device_parent() 3019 * class_dir_create_and_add() 3020 * kobject_add_internal() 3021 * create_dir() // create glue_dir 3022 * 3023 * device_add() 3024 * get_device_parent() 3025 * kobject_get() // get glue_dir 3026 * 3027 * device_del() 3028 * cleanup_glue_dir() 3029 * kobject_del(glue_dir) 3030 * 3031 * kobject_add() 3032 * kobject_add_internal() 3033 * create_dir() // in glue_dir 3034 * sysfs_create_dir_ns() 3035 * kernfs_create_dir_ns(sd) 3036 * 3037 * sysfs_remove_dir() // glue_dir->sd=NULL 3038 * sysfs_put() // free glue_dir->sd 3039 * 3040 * // sd is freed 3041 * kernfs_new_node(sd) 3042 * kernfs_get(glue_dir) 3043 * kernfs_add_one() 3044 * kernfs_put() 3045 * 3046 * Before CPU1 remove last child device under glue dir, if CPU2 add 3047 * a new device under glue dir, the glue_dir kobject reference count 3048 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3049 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3050 * and sysfs_put(). This result in glue_dir->sd is freed. 3051 * 3052 * Then the CPU2 will see a stale "empty" but still potentially used 3053 * glue dir around in kernfs_new_node(). 3054 * 3055 * In order to avoid this happening, we also should make sure that 3056 * kernfs_node for glue_dir is released in CPU1 only when refcount 3057 * for glue_dir kobj is 1. 3058 */ 3059 ref = kref_read(&glue_dir->kref); 3060 if (!kobject_has_children(glue_dir) && !--ref) 3061 kobject_del(glue_dir); 3062 kobject_put(glue_dir); 3063 mutex_unlock(&gdp_mutex); 3064 } 3065 3066 static int device_add_class_symlinks(struct device *dev) 3067 { 3068 struct device_node *of_node = dev_of_node(dev); 3069 int error; 3070 3071 if (of_node) { 3072 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3073 if (error) 3074 dev_warn(dev, "Error %d creating of_node link\n",error); 3075 /* An error here doesn't warrant bringing down the device */ 3076 } 3077 3078 if (!dev->class) 3079 return 0; 3080 3081 error = sysfs_create_link(&dev->kobj, 3082 &dev->class->p->subsys.kobj, 3083 "subsystem"); 3084 if (error) 3085 goto out_devnode; 3086 3087 if (dev->parent && device_is_not_partition(dev)) { 3088 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3089 "device"); 3090 if (error) 3091 goto out_subsys; 3092 } 3093 3094 #ifdef CONFIG_BLOCK 3095 /* /sys/block has directories and does not need symlinks */ 3096 if (sysfs_deprecated && dev->class == &block_class) 3097 return 0; 3098 #endif 3099 3100 /* link in the class directory pointing to the device */ 3101 error = sysfs_create_link(&dev->class->p->subsys.kobj, 3102 &dev->kobj, dev_name(dev)); 3103 if (error) 3104 goto out_device; 3105 3106 return 0; 3107 3108 out_device: 3109 sysfs_remove_link(&dev->kobj, "device"); 3110 3111 out_subsys: 3112 sysfs_remove_link(&dev->kobj, "subsystem"); 3113 out_devnode: 3114 sysfs_remove_link(&dev->kobj, "of_node"); 3115 return error; 3116 } 3117 3118 static void device_remove_class_symlinks(struct device *dev) 3119 { 3120 if (dev_of_node(dev)) 3121 sysfs_remove_link(&dev->kobj, "of_node"); 3122 3123 if (!dev->class) 3124 return; 3125 3126 if (dev->parent && device_is_not_partition(dev)) 3127 sysfs_remove_link(&dev->kobj, "device"); 3128 sysfs_remove_link(&dev->kobj, "subsystem"); 3129 #ifdef CONFIG_BLOCK 3130 if (sysfs_deprecated && dev->class == &block_class) 3131 return; 3132 #endif 3133 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 3134 } 3135 3136 /** 3137 * dev_set_name - set a device name 3138 * @dev: device 3139 * @fmt: format string for the device's name 3140 */ 3141 int dev_set_name(struct device *dev, const char *fmt, ...) 3142 { 3143 va_list vargs; 3144 int err; 3145 3146 va_start(vargs, fmt); 3147 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3148 va_end(vargs); 3149 return err; 3150 } 3151 EXPORT_SYMBOL_GPL(dev_set_name); 3152 3153 /** 3154 * device_to_dev_kobj - select a /sys/dev/ directory for the device 3155 * @dev: device 3156 * 3157 * By default we select char/ for new entries. Setting class->dev_obj 3158 * to NULL prevents an entry from being created. class->dev_kobj must 3159 * be set (or cleared) before any devices are registered to the class 3160 * otherwise device_create_sys_dev_entry() and 3161 * device_remove_sys_dev_entry() will disagree about the presence of 3162 * the link. 3163 */ 3164 static struct kobject *device_to_dev_kobj(struct device *dev) 3165 { 3166 struct kobject *kobj; 3167 3168 if (dev->class) 3169 kobj = dev->class->dev_kobj; 3170 else 3171 kobj = sysfs_dev_char_kobj; 3172 3173 return kobj; 3174 } 3175 3176 static int device_create_sys_dev_entry(struct device *dev) 3177 { 3178 struct kobject *kobj = device_to_dev_kobj(dev); 3179 int error = 0; 3180 char devt_str[15]; 3181 3182 if (kobj) { 3183 format_dev_t(devt_str, dev->devt); 3184 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3185 } 3186 3187 return error; 3188 } 3189 3190 static void device_remove_sys_dev_entry(struct device *dev) 3191 { 3192 struct kobject *kobj = device_to_dev_kobj(dev); 3193 char devt_str[15]; 3194 3195 if (kobj) { 3196 format_dev_t(devt_str, dev->devt); 3197 sysfs_remove_link(kobj, devt_str); 3198 } 3199 } 3200 3201 static int device_private_init(struct device *dev) 3202 { 3203 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3204 if (!dev->p) 3205 return -ENOMEM; 3206 dev->p->device = dev; 3207 klist_init(&dev->p->klist_children, klist_children_get, 3208 klist_children_put); 3209 INIT_LIST_HEAD(&dev->p->deferred_probe); 3210 return 0; 3211 } 3212 3213 /** 3214 * device_add - add device to device hierarchy. 3215 * @dev: device. 3216 * 3217 * This is part 2 of device_register(), though may be called 3218 * separately _iff_ device_initialize() has been called separately. 3219 * 3220 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3221 * to the global and sibling lists for the device, then 3222 * adds it to the other relevant subsystems of the driver model. 3223 * 3224 * Do not call this routine or device_register() more than once for 3225 * any device structure. The driver model core is not designed to work 3226 * with devices that get unregistered and then spring back to life. 3227 * (Among other things, it's very hard to guarantee that all references 3228 * to the previous incarnation of @dev have been dropped.) Allocate 3229 * and register a fresh new struct device instead. 3230 * 3231 * NOTE: _Never_ directly free @dev after calling this function, even 3232 * if it returned an error! Always use put_device() to give up your 3233 * reference instead. 3234 * 3235 * Rule of thumb is: if device_add() succeeds, you should call 3236 * device_del() when you want to get rid of it. If device_add() has 3237 * *not* succeeded, use *only* put_device() to drop the reference 3238 * count. 3239 */ 3240 int device_add(struct device *dev) 3241 { 3242 struct device *parent; 3243 struct kobject *kobj; 3244 struct class_interface *class_intf; 3245 int error = -EINVAL; 3246 struct kobject *glue_dir = NULL; 3247 3248 dev = get_device(dev); 3249 if (!dev) 3250 goto done; 3251 3252 if (!dev->p) { 3253 error = device_private_init(dev); 3254 if (error) 3255 goto done; 3256 } 3257 3258 /* 3259 * for statically allocated devices, which should all be converted 3260 * some day, we need to initialize the name. We prevent reading back 3261 * the name, and force the use of dev_name() 3262 */ 3263 if (dev->init_name) { 3264 dev_set_name(dev, "%s", dev->init_name); 3265 dev->init_name = NULL; 3266 } 3267 3268 /* subsystems can specify simple device enumeration */ 3269 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 3270 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3271 3272 if (!dev_name(dev)) { 3273 error = -EINVAL; 3274 goto name_error; 3275 } 3276 3277 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3278 3279 parent = get_device(dev->parent); 3280 kobj = get_device_parent(dev, parent); 3281 if (IS_ERR(kobj)) { 3282 error = PTR_ERR(kobj); 3283 goto parent_error; 3284 } 3285 if (kobj) 3286 dev->kobj.parent = kobj; 3287 3288 /* use parent numa_node */ 3289 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3290 set_dev_node(dev, dev_to_node(parent)); 3291 3292 /* first, register with generic layer. */ 3293 /* we require the name to be set before, and pass NULL */ 3294 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3295 if (error) { 3296 glue_dir = get_glue_dir(dev); 3297 goto Error; 3298 } 3299 3300 /* notify platform of device entry */ 3301 device_platform_notify(dev); 3302 3303 error = device_create_file(dev, &dev_attr_uevent); 3304 if (error) 3305 goto attrError; 3306 3307 error = device_add_class_symlinks(dev); 3308 if (error) 3309 goto SymlinkError; 3310 error = device_add_attrs(dev); 3311 if (error) 3312 goto AttrsError; 3313 error = bus_add_device(dev); 3314 if (error) 3315 goto BusError; 3316 error = dpm_sysfs_add(dev); 3317 if (error) 3318 goto DPMError; 3319 device_pm_add(dev); 3320 3321 if (MAJOR(dev->devt)) { 3322 error = device_create_file(dev, &dev_attr_dev); 3323 if (error) 3324 goto DevAttrError; 3325 3326 error = device_create_sys_dev_entry(dev); 3327 if (error) 3328 goto SysEntryError; 3329 3330 devtmpfs_create_node(dev); 3331 } 3332 3333 /* Notify clients of device addition. This call must come 3334 * after dpm_sysfs_add() and before kobject_uevent(). 3335 */ 3336 if (dev->bus) 3337 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3338 BUS_NOTIFY_ADD_DEVICE, dev); 3339 3340 kobject_uevent(&dev->kobj, KOBJ_ADD); 3341 3342 /* 3343 * Check if any of the other devices (consumers) have been waiting for 3344 * this device (supplier) to be added so that they can create a device 3345 * link to it. 3346 * 3347 * This needs to happen after device_pm_add() because device_link_add() 3348 * requires the supplier be registered before it's called. 3349 * 3350 * But this also needs to happen before bus_probe_device() to make sure 3351 * waiting consumers can link to it before the driver is bound to the 3352 * device and the driver sync_state callback is called for this device. 3353 */ 3354 if (dev->fwnode && !dev->fwnode->dev) { 3355 dev->fwnode->dev = dev; 3356 fw_devlink_link_device(dev); 3357 } 3358 3359 bus_probe_device(dev); 3360 3361 /* 3362 * If all driver registration is done and a newly added device doesn't 3363 * match with any driver, don't block its consumers from probing in 3364 * case the consumer device is able to operate without this supplier. 3365 */ 3366 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3367 fw_devlink_unblock_consumers(dev); 3368 3369 if (parent) 3370 klist_add_tail(&dev->p->knode_parent, 3371 &parent->p->klist_children); 3372 3373 if (dev->class) { 3374 mutex_lock(&dev->class->p->mutex); 3375 /* tie the class to the device */ 3376 klist_add_tail(&dev->p->knode_class, 3377 &dev->class->p->klist_devices); 3378 3379 /* notify any interfaces that the device is here */ 3380 list_for_each_entry(class_intf, 3381 &dev->class->p->interfaces, node) 3382 if (class_intf->add_dev) 3383 class_intf->add_dev(dev, class_intf); 3384 mutex_unlock(&dev->class->p->mutex); 3385 } 3386 done: 3387 put_device(dev); 3388 return error; 3389 SysEntryError: 3390 if (MAJOR(dev->devt)) 3391 device_remove_file(dev, &dev_attr_dev); 3392 DevAttrError: 3393 device_pm_remove(dev); 3394 dpm_sysfs_remove(dev); 3395 DPMError: 3396 bus_remove_device(dev); 3397 BusError: 3398 device_remove_attrs(dev); 3399 AttrsError: 3400 device_remove_class_symlinks(dev); 3401 SymlinkError: 3402 device_remove_file(dev, &dev_attr_uevent); 3403 attrError: 3404 device_platform_notify_remove(dev); 3405 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3406 glue_dir = get_glue_dir(dev); 3407 kobject_del(&dev->kobj); 3408 Error: 3409 cleanup_glue_dir(dev, glue_dir); 3410 parent_error: 3411 put_device(parent); 3412 name_error: 3413 kfree(dev->p); 3414 dev->p = NULL; 3415 goto done; 3416 } 3417 EXPORT_SYMBOL_GPL(device_add); 3418 3419 /** 3420 * device_register - register a device with the system. 3421 * @dev: pointer to the device structure 3422 * 3423 * This happens in two clean steps - initialize the device 3424 * and add it to the system. The two steps can be called 3425 * separately, but this is the easiest and most common. 3426 * I.e. you should only call the two helpers separately if 3427 * have a clearly defined need to use and refcount the device 3428 * before it is added to the hierarchy. 3429 * 3430 * For more information, see the kerneldoc for device_initialize() 3431 * and device_add(). 3432 * 3433 * NOTE: _Never_ directly free @dev after calling this function, even 3434 * if it returned an error! Always use put_device() to give up the 3435 * reference initialized in this function instead. 3436 */ 3437 int device_register(struct device *dev) 3438 { 3439 device_initialize(dev); 3440 return device_add(dev); 3441 } 3442 EXPORT_SYMBOL_GPL(device_register); 3443 3444 /** 3445 * get_device - increment reference count for device. 3446 * @dev: device. 3447 * 3448 * This simply forwards the call to kobject_get(), though 3449 * we do take care to provide for the case that we get a NULL 3450 * pointer passed in. 3451 */ 3452 struct device *get_device(struct device *dev) 3453 { 3454 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3455 } 3456 EXPORT_SYMBOL_GPL(get_device); 3457 3458 /** 3459 * put_device - decrement reference count. 3460 * @dev: device in question. 3461 */ 3462 void put_device(struct device *dev) 3463 { 3464 /* might_sleep(); */ 3465 if (dev) 3466 kobject_put(&dev->kobj); 3467 } 3468 EXPORT_SYMBOL_GPL(put_device); 3469 3470 bool kill_device(struct device *dev) 3471 { 3472 /* 3473 * Require the device lock and set the "dead" flag to guarantee that 3474 * the update behavior is consistent with the other bitfields near 3475 * it and that we cannot have an asynchronous probe routine trying 3476 * to run while we are tearing out the bus/class/sysfs from 3477 * underneath the device. 3478 */ 3479 device_lock_assert(dev); 3480 3481 if (dev->p->dead) 3482 return false; 3483 dev->p->dead = true; 3484 return true; 3485 } 3486 EXPORT_SYMBOL_GPL(kill_device); 3487 3488 /** 3489 * device_del - delete device from system. 3490 * @dev: device. 3491 * 3492 * This is the first part of the device unregistration 3493 * sequence. This removes the device from the lists we control 3494 * from here, has it removed from the other driver model 3495 * subsystems it was added to in device_add(), and removes it 3496 * from the kobject hierarchy. 3497 * 3498 * NOTE: this should be called manually _iff_ device_add() was 3499 * also called manually. 3500 */ 3501 void device_del(struct device *dev) 3502 { 3503 struct device *parent = dev->parent; 3504 struct kobject *glue_dir = NULL; 3505 struct class_interface *class_intf; 3506 unsigned int noio_flag; 3507 3508 device_lock(dev); 3509 kill_device(dev); 3510 device_unlock(dev); 3511 3512 if (dev->fwnode && dev->fwnode->dev == dev) 3513 dev->fwnode->dev = NULL; 3514 3515 /* Notify clients of device removal. This call must come 3516 * before dpm_sysfs_remove(). 3517 */ 3518 noio_flag = memalloc_noio_save(); 3519 if (dev->bus) 3520 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3521 BUS_NOTIFY_DEL_DEVICE, dev); 3522 3523 dpm_sysfs_remove(dev); 3524 if (parent) 3525 klist_del(&dev->p->knode_parent); 3526 if (MAJOR(dev->devt)) { 3527 devtmpfs_delete_node(dev); 3528 device_remove_sys_dev_entry(dev); 3529 device_remove_file(dev, &dev_attr_dev); 3530 } 3531 if (dev->class) { 3532 device_remove_class_symlinks(dev); 3533 3534 mutex_lock(&dev->class->p->mutex); 3535 /* notify any interfaces that the device is now gone */ 3536 list_for_each_entry(class_intf, 3537 &dev->class->p->interfaces, node) 3538 if (class_intf->remove_dev) 3539 class_intf->remove_dev(dev, class_intf); 3540 /* remove the device from the class list */ 3541 klist_del(&dev->p->knode_class); 3542 mutex_unlock(&dev->class->p->mutex); 3543 } 3544 device_remove_file(dev, &dev_attr_uevent); 3545 device_remove_attrs(dev); 3546 bus_remove_device(dev); 3547 device_pm_remove(dev); 3548 driver_deferred_probe_del(dev); 3549 device_platform_notify_remove(dev); 3550 device_remove_properties(dev); 3551 device_links_purge(dev); 3552 3553 if (dev->bus) 3554 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3555 BUS_NOTIFY_REMOVED_DEVICE, dev); 3556 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3557 glue_dir = get_glue_dir(dev); 3558 kobject_del(&dev->kobj); 3559 cleanup_glue_dir(dev, glue_dir); 3560 memalloc_noio_restore(noio_flag); 3561 put_device(parent); 3562 } 3563 EXPORT_SYMBOL_GPL(device_del); 3564 3565 /** 3566 * device_unregister - unregister device from system. 3567 * @dev: device going away. 3568 * 3569 * We do this in two parts, like we do device_register(). First, 3570 * we remove it from all the subsystems with device_del(), then 3571 * we decrement the reference count via put_device(). If that 3572 * is the final reference count, the device will be cleaned up 3573 * via device_release() above. Otherwise, the structure will 3574 * stick around until the final reference to the device is dropped. 3575 */ 3576 void device_unregister(struct device *dev) 3577 { 3578 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3579 device_del(dev); 3580 put_device(dev); 3581 } 3582 EXPORT_SYMBOL_GPL(device_unregister); 3583 3584 static struct device *prev_device(struct klist_iter *i) 3585 { 3586 struct klist_node *n = klist_prev(i); 3587 struct device *dev = NULL; 3588 struct device_private *p; 3589 3590 if (n) { 3591 p = to_device_private_parent(n); 3592 dev = p->device; 3593 } 3594 return dev; 3595 } 3596 3597 static struct device *next_device(struct klist_iter *i) 3598 { 3599 struct klist_node *n = klist_next(i); 3600 struct device *dev = NULL; 3601 struct device_private *p; 3602 3603 if (n) { 3604 p = to_device_private_parent(n); 3605 dev = p->device; 3606 } 3607 return dev; 3608 } 3609 3610 /** 3611 * device_get_devnode - path of device node file 3612 * @dev: device 3613 * @mode: returned file access mode 3614 * @uid: returned file owner 3615 * @gid: returned file group 3616 * @tmp: possibly allocated string 3617 * 3618 * Return the relative path of a possible device node. 3619 * Non-default names may need to allocate a memory to compose 3620 * a name. This memory is returned in tmp and needs to be 3621 * freed by the caller. 3622 */ 3623 const char *device_get_devnode(struct device *dev, 3624 umode_t *mode, kuid_t *uid, kgid_t *gid, 3625 const char **tmp) 3626 { 3627 char *s; 3628 3629 *tmp = NULL; 3630 3631 /* the device type may provide a specific name */ 3632 if (dev->type && dev->type->devnode) 3633 *tmp = dev->type->devnode(dev, mode, uid, gid); 3634 if (*tmp) 3635 return *tmp; 3636 3637 /* the class may provide a specific name */ 3638 if (dev->class && dev->class->devnode) 3639 *tmp = dev->class->devnode(dev, mode); 3640 if (*tmp) 3641 return *tmp; 3642 3643 /* return name without allocation, tmp == NULL */ 3644 if (strchr(dev_name(dev), '!') == NULL) 3645 return dev_name(dev); 3646 3647 /* replace '!' in the name with '/' */ 3648 s = kstrdup(dev_name(dev), GFP_KERNEL); 3649 if (!s) 3650 return NULL; 3651 strreplace(s, '!', '/'); 3652 return *tmp = s; 3653 } 3654 3655 /** 3656 * device_for_each_child - device child iterator. 3657 * @parent: parent struct device. 3658 * @fn: function to be called for each device. 3659 * @data: data for the callback. 3660 * 3661 * Iterate over @parent's child devices, and call @fn for each, 3662 * passing it @data. 3663 * 3664 * We check the return of @fn each time. If it returns anything 3665 * other than 0, we break out and return that value. 3666 */ 3667 int device_for_each_child(struct device *parent, void *data, 3668 int (*fn)(struct device *dev, void *data)) 3669 { 3670 struct klist_iter i; 3671 struct device *child; 3672 int error = 0; 3673 3674 if (!parent->p) 3675 return 0; 3676 3677 klist_iter_init(&parent->p->klist_children, &i); 3678 while (!error && (child = next_device(&i))) 3679 error = fn(child, data); 3680 klist_iter_exit(&i); 3681 return error; 3682 } 3683 EXPORT_SYMBOL_GPL(device_for_each_child); 3684 3685 /** 3686 * device_for_each_child_reverse - device child iterator in reversed order. 3687 * @parent: parent struct device. 3688 * @fn: function to be called for each device. 3689 * @data: data for the callback. 3690 * 3691 * Iterate over @parent's child devices, and call @fn for each, 3692 * passing it @data. 3693 * 3694 * We check the return of @fn each time. If it returns anything 3695 * other than 0, we break out and return that value. 3696 */ 3697 int device_for_each_child_reverse(struct device *parent, void *data, 3698 int (*fn)(struct device *dev, void *data)) 3699 { 3700 struct klist_iter i; 3701 struct device *child; 3702 int error = 0; 3703 3704 if (!parent->p) 3705 return 0; 3706 3707 klist_iter_init(&parent->p->klist_children, &i); 3708 while ((child = prev_device(&i)) && !error) 3709 error = fn(child, data); 3710 klist_iter_exit(&i); 3711 return error; 3712 } 3713 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 3714 3715 /** 3716 * device_find_child - device iterator for locating a particular device. 3717 * @parent: parent struct device 3718 * @match: Callback function to check device 3719 * @data: Data to pass to match function 3720 * 3721 * This is similar to the device_for_each_child() function above, but it 3722 * returns a reference to a device that is 'found' for later use, as 3723 * determined by the @match callback. 3724 * 3725 * The callback should return 0 if the device doesn't match and non-zero 3726 * if it does. If the callback returns non-zero and a reference to the 3727 * current device can be obtained, this function will return to the caller 3728 * and not iterate over any more devices. 3729 * 3730 * NOTE: you will need to drop the reference with put_device() after use. 3731 */ 3732 struct device *device_find_child(struct device *parent, void *data, 3733 int (*match)(struct device *dev, void *data)) 3734 { 3735 struct klist_iter i; 3736 struct device *child; 3737 3738 if (!parent) 3739 return NULL; 3740 3741 klist_iter_init(&parent->p->klist_children, &i); 3742 while ((child = next_device(&i))) 3743 if (match(child, data) && get_device(child)) 3744 break; 3745 klist_iter_exit(&i); 3746 return child; 3747 } 3748 EXPORT_SYMBOL_GPL(device_find_child); 3749 3750 /** 3751 * device_find_child_by_name - device iterator for locating a child device. 3752 * @parent: parent struct device 3753 * @name: name of the child device 3754 * 3755 * This is similar to the device_find_child() function above, but it 3756 * returns a reference to a device that has the name @name. 3757 * 3758 * NOTE: you will need to drop the reference with put_device() after use. 3759 */ 3760 struct device *device_find_child_by_name(struct device *parent, 3761 const char *name) 3762 { 3763 struct klist_iter i; 3764 struct device *child; 3765 3766 if (!parent) 3767 return NULL; 3768 3769 klist_iter_init(&parent->p->klist_children, &i); 3770 while ((child = next_device(&i))) 3771 if (sysfs_streq(dev_name(child), name) && get_device(child)) 3772 break; 3773 klist_iter_exit(&i); 3774 return child; 3775 } 3776 EXPORT_SYMBOL_GPL(device_find_child_by_name); 3777 3778 int __init devices_init(void) 3779 { 3780 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 3781 if (!devices_kset) 3782 return -ENOMEM; 3783 dev_kobj = kobject_create_and_add("dev", NULL); 3784 if (!dev_kobj) 3785 goto dev_kobj_err; 3786 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 3787 if (!sysfs_dev_block_kobj) 3788 goto block_kobj_err; 3789 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 3790 if (!sysfs_dev_char_kobj) 3791 goto char_kobj_err; 3792 3793 return 0; 3794 3795 char_kobj_err: 3796 kobject_put(sysfs_dev_block_kobj); 3797 block_kobj_err: 3798 kobject_put(dev_kobj); 3799 dev_kobj_err: 3800 kset_unregister(devices_kset); 3801 return -ENOMEM; 3802 } 3803 3804 static int device_check_offline(struct device *dev, void *not_used) 3805 { 3806 int ret; 3807 3808 ret = device_for_each_child(dev, NULL, device_check_offline); 3809 if (ret) 3810 return ret; 3811 3812 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 3813 } 3814 3815 /** 3816 * device_offline - Prepare the device for hot-removal. 3817 * @dev: Device to be put offline. 3818 * 3819 * Execute the device bus type's .offline() callback, if present, to prepare 3820 * the device for a subsequent hot-removal. If that succeeds, the device must 3821 * not be used until either it is removed or its bus type's .online() callback 3822 * is executed. 3823 * 3824 * Call under device_hotplug_lock. 3825 */ 3826 int device_offline(struct device *dev) 3827 { 3828 int ret; 3829 3830 if (dev->offline_disabled) 3831 return -EPERM; 3832 3833 ret = device_for_each_child(dev, NULL, device_check_offline); 3834 if (ret) 3835 return ret; 3836 3837 device_lock(dev); 3838 if (device_supports_offline(dev)) { 3839 if (dev->offline) { 3840 ret = 1; 3841 } else { 3842 ret = dev->bus->offline(dev); 3843 if (!ret) { 3844 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 3845 dev->offline = true; 3846 } 3847 } 3848 } 3849 device_unlock(dev); 3850 3851 return ret; 3852 } 3853 3854 /** 3855 * device_online - Put the device back online after successful device_offline(). 3856 * @dev: Device to be put back online. 3857 * 3858 * If device_offline() has been successfully executed for @dev, but the device 3859 * has not been removed subsequently, execute its bus type's .online() callback 3860 * to indicate that the device can be used again. 3861 * 3862 * Call under device_hotplug_lock. 3863 */ 3864 int device_online(struct device *dev) 3865 { 3866 int ret = 0; 3867 3868 device_lock(dev); 3869 if (device_supports_offline(dev)) { 3870 if (dev->offline) { 3871 ret = dev->bus->online(dev); 3872 if (!ret) { 3873 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 3874 dev->offline = false; 3875 } 3876 } else { 3877 ret = 1; 3878 } 3879 } 3880 device_unlock(dev); 3881 3882 return ret; 3883 } 3884 3885 struct root_device { 3886 struct device dev; 3887 struct module *owner; 3888 }; 3889 3890 static inline struct root_device *to_root_device(struct device *d) 3891 { 3892 return container_of(d, struct root_device, dev); 3893 } 3894 3895 static void root_device_release(struct device *dev) 3896 { 3897 kfree(to_root_device(dev)); 3898 } 3899 3900 /** 3901 * __root_device_register - allocate and register a root device 3902 * @name: root device name 3903 * @owner: owner module of the root device, usually THIS_MODULE 3904 * 3905 * This function allocates a root device and registers it 3906 * using device_register(). In order to free the returned 3907 * device, use root_device_unregister(). 3908 * 3909 * Root devices are dummy devices which allow other devices 3910 * to be grouped under /sys/devices. Use this function to 3911 * allocate a root device and then use it as the parent of 3912 * any device which should appear under /sys/devices/{name} 3913 * 3914 * The /sys/devices/{name} directory will also contain a 3915 * 'module' symlink which points to the @owner directory 3916 * in sysfs. 3917 * 3918 * Returns &struct device pointer on success, or ERR_PTR() on error. 3919 * 3920 * Note: You probably want to use root_device_register(). 3921 */ 3922 struct device *__root_device_register(const char *name, struct module *owner) 3923 { 3924 struct root_device *root; 3925 int err = -ENOMEM; 3926 3927 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 3928 if (!root) 3929 return ERR_PTR(err); 3930 3931 err = dev_set_name(&root->dev, "%s", name); 3932 if (err) { 3933 kfree(root); 3934 return ERR_PTR(err); 3935 } 3936 3937 root->dev.release = root_device_release; 3938 3939 err = device_register(&root->dev); 3940 if (err) { 3941 put_device(&root->dev); 3942 return ERR_PTR(err); 3943 } 3944 3945 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 3946 if (owner) { 3947 struct module_kobject *mk = &owner->mkobj; 3948 3949 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 3950 if (err) { 3951 device_unregister(&root->dev); 3952 return ERR_PTR(err); 3953 } 3954 root->owner = owner; 3955 } 3956 #endif 3957 3958 return &root->dev; 3959 } 3960 EXPORT_SYMBOL_GPL(__root_device_register); 3961 3962 /** 3963 * root_device_unregister - unregister and free a root device 3964 * @dev: device going away 3965 * 3966 * This function unregisters and cleans up a device that was created by 3967 * root_device_register(). 3968 */ 3969 void root_device_unregister(struct device *dev) 3970 { 3971 struct root_device *root = to_root_device(dev); 3972 3973 if (root->owner) 3974 sysfs_remove_link(&root->dev.kobj, "module"); 3975 3976 device_unregister(dev); 3977 } 3978 EXPORT_SYMBOL_GPL(root_device_unregister); 3979 3980 3981 static void device_create_release(struct device *dev) 3982 { 3983 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3984 kfree(dev); 3985 } 3986 3987 static __printf(6, 0) struct device * 3988 device_create_groups_vargs(struct class *class, struct device *parent, 3989 dev_t devt, void *drvdata, 3990 const struct attribute_group **groups, 3991 const char *fmt, va_list args) 3992 { 3993 struct device *dev = NULL; 3994 int retval = -ENODEV; 3995 3996 if (class == NULL || IS_ERR(class)) 3997 goto error; 3998 3999 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4000 if (!dev) { 4001 retval = -ENOMEM; 4002 goto error; 4003 } 4004 4005 device_initialize(dev); 4006 dev->devt = devt; 4007 dev->class = class; 4008 dev->parent = parent; 4009 dev->groups = groups; 4010 dev->release = device_create_release; 4011 dev_set_drvdata(dev, drvdata); 4012 4013 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4014 if (retval) 4015 goto error; 4016 4017 retval = device_add(dev); 4018 if (retval) 4019 goto error; 4020 4021 return dev; 4022 4023 error: 4024 put_device(dev); 4025 return ERR_PTR(retval); 4026 } 4027 4028 /** 4029 * device_create - creates a device and registers it with sysfs 4030 * @class: pointer to the struct class that this device should be registered to 4031 * @parent: pointer to the parent struct device of this new device, if any 4032 * @devt: the dev_t for the char device to be added 4033 * @drvdata: the data to be added to the device for callbacks 4034 * @fmt: string for the device's name 4035 * 4036 * This function can be used by char device classes. A struct device 4037 * will be created in sysfs, registered to the specified class. 4038 * 4039 * A "dev" file will be created, showing the dev_t for the device, if 4040 * the dev_t is not 0,0. 4041 * If a pointer to a parent struct device is passed in, the newly created 4042 * struct device will be a child of that device in sysfs. 4043 * The pointer to the struct device will be returned from the call. 4044 * Any further sysfs files that might be required can be created using this 4045 * pointer. 4046 * 4047 * Returns &struct device pointer on success, or ERR_PTR() on error. 4048 * 4049 * Note: the struct class passed to this function must have previously 4050 * been created with a call to class_create(). 4051 */ 4052 struct device *device_create(struct class *class, struct device *parent, 4053 dev_t devt, void *drvdata, const char *fmt, ...) 4054 { 4055 va_list vargs; 4056 struct device *dev; 4057 4058 va_start(vargs, fmt); 4059 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4060 fmt, vargs); 4061 va_end(vargs); 4062 return dev; 4063 } 4064 EXPORT_SYMBOL_GPL(device_create); 4065 4066 /** 4067 * device_create_with_groups - creates a device and registers it with sysfs 4068 * @class: pointer to the struct class that this device should be registered to 4069 * @parent: pointer to the parent struct device of this new device, if any 4070 * @devt: the dev_t for the char device to be added 4071 * @drvdata: the data to be added to the device for callbacks 4072 * @groups: NULL-terminated list of attribute groups to be created 4073 * @fmt: string for the device's name 4074 * 4075 * This function can be used by char device classes. A struct device 4076 * will be created in sysfs, registered to the specified class. 4077 * Additional attributes specified in the groups parameter will also 4078 * be created automatically. 4079 * 4080 * A "dev" file will be created, showing the dev_t for the device, if 4081 * the dev_t is not 0,0. 4082 * If a pointer to a parent struct device is passed in, the newly created 4083 * struct device will be a child of that device in sysfs. 4084 * The pointer to the struct device will be returned from the call. 4085 * Any further sysfs files that might be required can be created using this 4086 * pointer. 4087 * 4088 * Returns &struct device pointer on success, or ERR_PTR() on error. 4089 * 4090 * Note: the struct class passed to this function must have previously 4091 * been created with a call to class_create(). 4092 */ 4093 struct device *device_create_with_groups(struct class *class, 4094 struct device *parent, dev_t devt, 4095 void *drvdata, 4096 const struct attribute_group **groups, 4097 const char *fmt, ...) 4098 { 4099 va_list vargs; 4100 struct device *dev; 4101 4102 va_start(vargs, fmt); 4103 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4104 fmt, vargs); 4105 va_end(vargs); 4106 return dev; 4107 } 4108 EXPORT_SYMBOL_GPL(device_create_with_groups); 4109 4110 /** 4111 * device_destroy - removes a device that was created with device_create() 4112 * @class: pointer to the struct class that this device was registered with 4113 * @devt: the dev_t of the device that was previously registered 4114 * 4115 * This call unregisters and cleans up a device that was created with a 4116 * call to device_create(). 4117 */ 4118 void device_destroy(struct class *class, dev_t devt) 4119 { 4120 struct device *dev; 4121 4122 dev = class_find_device_by_devt(class, devt); 4123 if (dev) { 4124 put_device(dev); 4125 device_unregister(dev); 4126 } 4127 } 4128 EXPORT_SYMBOL_GPL(device_destroy); 4129 4130 /** 4131 * device_rename - renames a device 4132 * @dev: the pointer to the struct device to be renamed 4133 * @new_name: the new name of the device 4134 * 4135 * It is the responsibility of the caller to provide mutual 4136 * exclusion between two different calls of device_rename 4137 * on the same device to ensure that new_name is valid and 4138 * won't conflict with other devices. 4139 * 4140 * Note: Don't call this function. Currently, the networking layer calls this 4141 * function, but that will change. The following text from Kay Sievers offers 4142 * some insight: 4143 * 4144 * Renaming devices is racy at many levels, symlinks and other stuff are not 4145 * replaced atomically, and you get a "move" uevent, but it's not easy to 4146 * connect the event to the old and new device. Device nodes are not renamed at 4147 * all, there isn't even support for that in the kernel now. 4148 * 4149 * In the meantime, during renaming, your target name might be taken by another 4150 * driver, creating conflicts. Or the old name is taken directly after you 4151 * renamed it -- then you get events for the same DEVPATH, before you even see 4152 * the "move" event. It's just a mess, and nothing new should ever rely on 4153 * kernel device renaming. Besides that, it's not even implemented now for 4154 * other things than (driver-core wise very simple) network devices. 4155 * 4156 * We are currently about to change network renaming in udev to completely 4157 * disallow renaming of devices in the same namespace as the kernel uses, 4158 * because we can't solve the problems properly, that arise with swapping names 4159 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 4160 * be allowed to some other name than eth[0-9]*, for the aforementioned 4161 * reasons. 4162 * 4163 * Make up a "real" name in the driver before you register anything, or add 4164 * some other attributes for userspace to find the device, or use udev to add 4165 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4166 * don't even want to get into that and try to implement the missing pieces in 4167 * the core. We really have other pieces to fix in the driver core mess. :) 4168 */ 4169 int device_rename(struct device *dev, const char *new_name) 4170 { 4171 struct kobject *kobj = &dev->kobj; 4172 char *old_device_name = NULL; 4173 int error; 4174 4175 dev = get_device(dev); 4176 if (!dev) 4177 return -EINVAL; 4178 4179 dev_dbg(dev, "renaming to %s\n", new_name); 4180 4181 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4182 if (!old_device_name) { 4183 error = -ENOMEM; 4184 goto out; 4185 } 4186 4187 if (dev->class) { 4188 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 4189 kobj, old_device_name, 4190 new_name, kobject_namespace(kobj)); 4191 if (error) 4192 goto out; 4193 } 4194 4195 error = kobject_rename(kobj, new_name); 4196 if (error) 4197 goto out; 4198 4199 out: 4200 put_device(dev); 4201 4202 kfree(old_device_name); 4203 4204 return error; 4205 } 4206 EXPORT_SYMBOL_GPL(device_rename); 4207 4208 static int device_move_class_links(struct device *dev, 4209 struct device *old_parent, 4210 struct device *new_parent) 4211 { 4212 int error = 0; 4213 4214 if (old_parent) 4215 sysfs_remove_link(&dev->kobj, "device"); 4216 if (new_parent) 4217 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4218 "device"); 4219 return error; 4220 } 4221 4222 /** 4223 * device_move - moves a device to a new parent 4224 * @dev: the pointer to the struct device to be moved 4225 * @new_parent: the new parent of the device (can be NULL) 4226 * @dpm_order: how to reorder the dpm_list 4227 */ 4228 int device_move(struct device *dev, struct device *new_parent, 4229 enum dpm_order dpm_order) 4230 { 4231 int error; 4232 struct device *old_parent; 4233 struct kobject *new_parent_kobj; 4234 4235 dev = get_device(dev); 4236 if (!dev) 4237 return -EINVAL; 4238 4239 device_pm_lock(); 4240 new_parent = get_device(new_parent); 4241 new_parent_kobj = get_device_parent(dev, new_parent); 4242 if (IS_ERR(new_parent_kobj)) { 4243 error = PTR_ERR(new_parent_kobj); 4244 put_device(new_parent); 4245 goto out; 4246 } 4247 4248 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4249 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4250 error = kobject_move(&dev->kobj, new_parent_kobj); 4251 if (error) { 4252 cleanup_glue_dir(dev, new_parent_kobj); 4253 put_device(new_parent); 4254 goto out; 4255 } 4256 old_parent = dev->parent; 4257 dev->parent = new_parent; 4258 if (old_parent) 4259 klist_remove(&dev->p->knode_parent); 4260 if (new_parent) { 4261 klist_add_tail(&dev->p->knode_parent, 4262 &new_parent->p->klist_children); 4263 set_dev_node(dev, dev_to_node(new_parent)); 4264 } 4265 4266 if (dev->class) { 4267 error = device_move_class_links(dev, old_parent, new_parent); 4268 if (error) { 4269 /* We ignore errors on cleanup since we're hosed anyway... */ 4270 device_move_class_links(dev, new_parent, old_parent); 4271 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4272 if (new_parent) 4273 klist_remove(&dev->p->knode_parent); 4274 dev->parent = old_parent; 4275 if (old_parent) { 4276 klist_add_tail(&dev->p->knode_parent, 4277 &old_parent->p->klist_children); 4278 set_dev_node(dev, dev_to_node(old_parent)); 4279 } 4280 } 4281 cleanup_glue_dir(dev, new_parent_kobj); 4282 put_device(new_parent); 4283 goto out; 4284 } 4285 } 4286 switch (dpm_order) { 4287 case DPM_ORDER_NONE: 4288 break; 4289 case DPM_ORDER_DEV_AFTER_PARENT: 4290 device_pm_move_after(dev, new_parent); 4291 devices_kset_move_after(dev, new_parent); 4292 break; 4293 case DPM_ORDER_PARENT_BEFORE_DEV: 4294 device_pm_move_before(new_parent, dev); 4295 devices_kset_move_before(new_parent, dev); 4296 break; 4297 case DPM_ORDER_DEV_LAST: 4298 device_pm_move_last(dev); 4299 devices_kset_move_last(dev); 4300 break; 4301 } 4302 4303 put_device(old_parent); 4304 out: 4305 device_pm_unlock(); 4306 put_device(dev); 4307 return error; 4308 } 4309 EXPORT_SYMBOL_GPL(device_move); 4310 4311 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4312 kgid_t kgid) 4313 { 4314 struct kobject *kobj = &dev->kobj; 4315 struct class *class = dev->class; 4316 const struct device_type *type = dev->type; 4317 int error; 4318 4319 if (class) { 4320 /* 4321 * Change the device groups of the device class for @dev to 4322 * @kuid/@kgid. 4323 */ 4324 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4325 kgid); 4326 if (error) 4327 return error; 4328 } 4329 4330 if (type) { 4331 /* 4332 * Change the device groups of the device type for @dev to 4333 * @kuid/@kgid. 4334 */ 4335 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4336 kgid); 4337 if (error) 4338 return error; 4339 } 4340 4341 /* Change the device groups of @dev to @kuid/@kgid. */ 4342 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4343 if (error) 4344 return error; 4345 4346 if (device_supports_offline(dev) && !dev->offline_disabled) { 4347 /* Change online device attributes of @dev to @kuid/@kgid. */ 4348 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4349 kuid, kgid); 4350 if (error) 4351 return error; 4352 } 4353 4354 return 0; 4355 } 4356 4357 /** 4358 * device_change_owner - change the owner of an existing device. 4359 * @dev: device. 4360 * @kuid: new owner's kuid 4361 * @kgid: new owner's kgid 4362 * 4363 * This changes the owner of @dev and its corresponding sysfs entries to 4364 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4365 * core. 4366 * 4367 * Returns 0 on success or error code on failure. 4368 */ 4369 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4370 { 4371 int error; 4372 struct kobject *kobj = &dev->kobj; 4373 4374 dev = get_device(dev); 4375 if (!dev) 4376 return -EINVAL; 4377 4378 /* 4379 * Change the kobject and the default attributes and groups of the 4380 * ktype associated with it to @kuid/@kgid. 4381 */ 4382 error = sysfs_change_owner(kobj, kuid, kgid); 4383 if (error) 4384 goto out; 4385 4386 /* 4387 * Change the uevent file for @dev to the new owner. The uevent file 4388 * was created in a separate step when @dev got added and we mirror 4389 * that step here. 4390 */ 4391 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4392 kgid); 4393 if (error) 4394 goto out; 4395 4396 /* 4397 * Change the device groups, the device groups associated with the 4398 * device class, and the groups associated with the device type of @dev 4399 * to @kuid/@kgid. 4400 */ 4401 error = device_attrs_change_owner(dev, kuid, kgid); 4402 if (error) 4403 goto out; 4404 4405 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4406 if (error) 4407 goto out; 4408 4409 #ifdef CONFIG_BLOCK 4410 if (sysfs_deprecated && dev->class == &block_class) 4411 goto out; 4412 #endif 4413 4414 /* 4415 * Change the owner of the symlink located in the class directory of 4416 * the device class associated with @dev which points to the actual 4417 * directory entry for @dev to @kuid/@kgid. This ensures that the 4418 * symlink shows the same permissions as its target. 4419 */ 4420 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj, 4421 dev_name(dev), kuid, kgid); 4422 if (error) 4423 goto out; 4424 4425 out: 4426 put_device(dev); 4427 return error; 4428 } 4429 EXPORT_SYMBOL_GPL(device_change_owner); 4430 4431 /** 4432 * device_shutdown - call ->shutdown() on each device to shutdown. 4433 */ 4434 void device_shutdown(void) 4435 { 4436 struct device *dev, *parent; 4437 4438 wait_for_device_probe(); 4439 device_block_probing(); 4440 4441 cpufreq_suspend(); 4442 4443 spin_lock(&devices_kset->list_lock); 4444 /* 4445 * Walk the devices list backward, shutting down each in turn. 4446 * Beware that device unplug events may also start pulling 4447 * devices offline, even as the system is shutting down. 4448 */ 4449 while (!list_empty(&devices_kset->list)) { 4450 dev = list_entry(devices_kset->list.prev, struct device, 4451 kobj.entry); 4452 4453 /* 4454 * hold reference count of device's parent to 4455 * prevent it from being freed because parent's 4456 * lock is to be held 4457 */ 4458 parent = get_device(dev->parent); 4459 get_device(dev); 4460 /* 4461 * Make sure the device is off the kset list, in the 4462 * event that dev->*->shutdown() doesn't remove it. 4463 */ 4464 list_del_init(&dev->kobj.entry); 4465 spin_unlock(&devices_kset->list_lock); 4466 4467 /* hold lock to avoid race with probe/release */ 4468 if (parent) 4469 device_lock(parent); 4470 device_lock(dev); 4471 4472 /* Don't allow any more runtime suspends */ 4473 pm_runtime_get_noresume(dev); 4474 pm_runtime_barrier(dev); 4475 4476 if (dev->class && dev->class->shutdown_pre) { 4477 if (initcall_debug) 4478 dev_info(dev, "shutdown_pre\n"); 4479 dev->class->shutdown_pre(dev); 4480 } 4481 if (dev->bus && dev->bus->shutdown) { 4482 if (initcall_debug) 4483 dev_info(dev, "shutdown\n"); 4484 dev->bus->shutdown(dev); 4485 } else if (dev->driver && dev->driver->shutdown) { 4486 if (initcall_debug) 4487 dev_info(dev, "shutdown\n"); 4488 dev->driver->shutdown(dev); 4489 } 4490 4491 device_unlock(dev); 4492 if (parent) 4493 device_unlock(parent); 4494 4495 put_device(dev); 4496 put_device(parent); 4497 4498 spin_lock(&devices_kset->list_lock); 4499 } 4500 spin_unlock(&devices_kset->list_lock); 4501 } 4502 4503 /* 4504 * Device logging functions 4505 */ 4506 4507 #ifdef CONFIG_PRINTK 4508 static void 4509 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4510 { 4511 const char *subsys; 4512 4513 memset(dev_info, 0, sizeof(*dev_info)); 4514 4515 if (dev->class) 4516 subsys = dev->class->name; 4517 else if (dev->bus) 4518 subsys = dev->bus->name; 4519 else 4520 return; 4521 4522 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4523 4524 /* 4525 * Add device identifier DEVICE=: 4526 * b12:8 block dev_t 4527 * c127:3 char dev_t 4528 * n8 netdev ifindex 4529 * +sound:card0 subsystem:devname 4530 */ 4531 if (MAJOR(dev->devt)) { 4532 char c; 4533 4534 if (strcmp(subsys, "block") == 0) 4535 c = 'b'; 4536 else 4537 c = 'c'; 4538 4539 snprintf(dev_info->device, sizeof(dev_info->device), 4540 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4541 } else if (strcmp(subsys, "net") == 0) { 4542 struct net_device *net = to_net_dev(dev); 4543 4544 snprintf(dev_info->device, sizeof(dev_info->device), 4545 "n%u", net->ifindex); 4546 } else { 4547 snprintf(dev_info->device, sizeof(dev_info->device), 4548 "+%s:%s", subsys, dev_name(dev)); 4549 } 4550 } 4551 4552 int dev_vprintk_emit(int level, const struct device *dev, 4553 const char *fmt, va_list args) 4554 { 4555 struct dev_printk_info dev_info; 4556 4557 set_dev_info(dev, &dev_info); 4558 4559 return vprintk_emit(0, level, &dev_info, fmt, args); 4560 } 4561 EXPORT_SYMBOL(dev_vprintk_emit); 4562 4563 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4564 { 4565 va_list args; 4566 int r; 4567 4568 va_start(args, fmt); 4569 4570 r = dev_vprintk_emit(level, dev, fmt, args); 4571 4572 va_end(args); 4573 4574 return r; 4575 } 4576 EXPORT_SYMBOL(dev_printk_emit); 4577 4578 static void __dev_printk(const char *level, const struct device *dev, 4579 struct va_format *vaf) 4580 { 4581 if (dev) 4582 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4583 dev_driver_string(dev), dev_name(dev), vaf); 4584 else 4585 printk("%s(NULL device *): %pV", level, vaf); 4586 } 4587 4588 void _dev_printk(const char *level, const struct device *dev, 4589 const char *fmt, ...) 4590 { 4591 struct va_format vaf; 4592 va_list args; 4593 4594 va_start(args, fmt); 4595 4596 vaf.fmt = fmt; 4597 vaf.va = &args; 4598 4599 __dev_printk(level, dev, &vaf); 4600 4601 va_end(args); 4602 } 4603 EXPORT_SYMBOL(_dev_printk); 4604 4605 #define define_dev_printk_level(func, kern_level) \ 4606 void func(const struct device *dev, const char *fmt, ...) \ 4607 { \ 4608 struct va_format vaf; \ 4609 va_list args; \ 4610 \ 4611 va_start(args, fmt); \ 4612 \ 4613 vaf.fmt = fmt; \ 4614 vaf.va = &args; \ 4615 \ 4616 __dev_printk(kern_level, dev, &vaf); \ 4617 \ 4618 va_end(args); \ 4619 } \ 4620 EXPORT_SYMBOL(func); 4621 4622 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4623 define_dev_printk_level(_dev_alert, KERN_ALERT); 4624 define_dev_printk_level(_dev_crit, KERN_CRIT); 4625 define_dev_printk_level(_dev_err, KERN_ERR); 4626 define_dev_printk_level(_dev_warn, KERN_WARNING); 4627 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4628 define_dev_printk_level(_dev_info, KERN_INFO); 4629 4630 #endif 4631 4632 /** 4633 * dev_err_probe - probe error check and log helper 4634 * @dev: the pointer to the struct device 4635 * @err: error value to test 4636 * @fmt: printf-style format string 4637 * @...: arguments as specified in the format string 4638 * 4639 * This helper implements common pattern present in probe functions for error 4640 * checking: print debug or error message depending if the error value is 4641 * -EPROBE_DEFER and propagate error upwards. 4642 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4643 * checked later by reading devices_deferred debugfs attribute. 4644 * It replaces code sequence:: 4645 * 4646 * if (err != -EPROBE_DEFER) 4647 * dev_err(dev, ...); 4648 * else 4649 * dev_dbg(dev, ...); 4650 * return err; 4651 * 4652 * with:: 4653 * 4654 * return dev_err_probe(dev, err, ...); 4655 * 4656 * Returns @err. 4657 * 4658 */ 4659 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4660 { 4661 struct va_format vaf; 4662 va_list args; 4663 4664 va_start(args, fmt); 4665 vaf.fmt = fmt; 4666 vaf.va = &args; 4667 4668 if (err != -EPROBE_DEFER) { 4669 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4670 } else { 4671 device_set_deferred_probe_reason(dev, &vaf); 4672 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4673 } 4674 4675 va_end(args); 4676 4677 return err; 4678 } 4679 EXPORT_SYMBOL_GPL(dev_err_probe); 4680 4681 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 4682 { 4683 return fwnode && !IS_ERR(fwnode->secondary); 4684 } 4685 4686 /** 4687 * set_primary_fwnode - Change the primary firmware node of a given device. 4688 * @dev: Device to handle. 4689 * @fwnode: New primary firmware node of the device. 4690 * 4691 * Set the device's firmware node pointer to @fwnode, but if a secondary 4692 * firmware node of the device is present, preserve it. 4693 * 4694 * Valid fwnode cases are: 4695 * - primary --> secondary --> -ENODEV 4696 * - primary --> NULL 4697 * - secondary --> -ENODEV 4698 * - NULL 4699 */ 4700 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4701 { 4702 struct device *parent = dev->parent; 4703 struct fwnode_handle *fn = dev->fwnode; 4704 4705 if (fwnode) { 4706 if (fwnode_is_primary(fn)) 4707 fn = fn->secondary; 4708 4709 if (fn) { 4710 WARN_ON(fwnode->secondary); 4711 fwnode->secondary = fn; 4712 } 4713 dev->fwnode = fwnode; 4714 } else { 4715 if (fwnode_is_primary(fn)) { 4716 dev->fwnode = fn->secondary; 4717 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 4718 if (!(parent && fn == parent->fwnode)) 4719 fn->secondary = NULL; 4720 } else { 4721 dev->fwnode = NULL; 4722 } 4723 } 4724 } 4725 EXPORT_SYMBOL_GPL(set_primary_fwnode); 4726 4727 /** 4728 * set_secondary_fwnode - Change the secondary firmware node of a given device. 4729 * @dev: Device to handle. 4730 * @fwnode: New secondary firmware node of the device. 4731 * 4732 * If a primary firmware node of the device is present, set its secondary 4733 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 4734 * @fwnode. 4735 */ 4736 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4737 { 4738 if (fwnode) 4739 fwnode->secondary = ERR_PTR(-ENODEV); 4740 4741 if (fwnode_is_primary(dev->fwnode)) 4742 dev->fwnode->secondary = fwnode; 4743 else 4744 dev->fwnode = fwnode; 4745 } 4746 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 4747 4748 /** 4749 * device_set_of_node_from_dev - reuse device-tree node of another device 4750 * @dev: device whose device-tree node is being set 4751 * @dev2: device whose device-tree node is being reused 4752 * 4753 * Takes another reference to the new device-tree node after first dropping 4754 * any reference held to the old node. 4755 */ 4756 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 4757 { 4758 of_node_put(dev->of_node); 4759 dev->of_node = of_node_get(dev2->of_node); 4760 dev->of_node_reused = true; 4761 } 4762 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 4763 4764 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 4765 { 4766 dev->fwnode = fwnode; 4767 dev->of_node = to_of_node(fwnode); 4768 } 4769 EXPORT_SYMBOL_GPL(device_set_node); 4770 4771 int device_match_name(struct device *dev, const void *name) 4772 { 4773 return sysfs_streq(dev_name(dev), name); 4774 } 4775 EXPORT_SYMBOL_GPL(device_match_name); 4776 4777 int device_match_of_node(struct device *dev, const void *np) 4778 { 4779 return dev->of_node == np; 4780 } 4781 EXPORT_SYMBOL_GPL(device_match_of_node); 4782 4783 int device_match_fwnode(struct device *dev, const void *fwnode) 4784 { 4785 return dev_fwnode(dev) == fwnode; 4786 } 4787 EXPORT_SYMBOL_GPL(device_match_fwnode); 4788 4789 int device_match_devt(struct device *dev, const void *pdevt) 4790 { 4791 return dev->devt == *(dev_t *)pdevt; 4792 } 4793 EXPORT_SYMBOL_GPL(device_match_devt); 4794 4795 int device_match_acpi_dev(struct device *dev, const void *adev) 4796 { 4797 return ACPI_COMPANION(dev) == adev; 4798 } 4799 EXPORT_SYMBOL(device_match_acpi_dev); 4800 4801 int device_match_any(struct device *dev, const void *unused) 4802 { 4803 return 1; 4804 } 4805 EXPORT_SYMBOL_GPL(device_match_any); 4806