1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/device.h> 12 #include <linux/err.h> 13 #include <linux/fwnode.h> 14 #include <linux/init.h> 15 #include <linux/module.h> 16 #include <linux/slab.h> 17 #include <linux/string.h> 18 #include <linux/kdev_t.h> 19 #include <linux/notifier.h> 20 #include <linux/of.h> 21 #include <linux/of_device.h> 22 #include <linux/genhd.h> 23 #include <linux/mutex.h> 24 #include <linux/pm_runtime.h> 25 #include <linux/netdevice.h> 26 #include <linux/sched/signal.h> 27 #include <linux/sysfs.h> 28 29 #include "base.h" 30 #include "power/power.h" 31 32 #ifdef CONFIG_SYSFS_DEPRECATED 33 #ifdef CONFIG_SYSFS_DEPRECATED_V2 34 long sysfs_deprecated = 1; 35 #else 36 long sysfs_deprecated = 0; 37 #endif 38 static int __init sysfs_deprecated_setup(char *arg) 39 { 40 return kstrtol(arg, 10, &sysfs_deprecated); 41 } 42 early_param("sysfs.deprecated", sysfs_deprecated_setup); 43 #endif 44 45 /* Device links support. */ 46 47 #ifdef CONFIG_SRCU 48 static DEFINE_MUTEX(device_links_lock); 49 DEFINE_STATIC_SRCU(device_links_srcu); 50 51 static inline void device_links_write_lock(void) 52 { 53 mutex_lock(&device_links_lock); 54 } 55 56 static inline void device_links_write_unlock(void) 57 { 58 mutex_unlock(&device_links_lock); 59 } 60 61 int device_links_read_lock(void) 62 { 63 return srcu_read_lock(&device_links_srcu); 64 } 65 66 void device_links_read_unlock(int idx) 67 { 68 srcu_read_unlock(&device_links_srcu, idx); 69 } 70 #else /* !CONFIG_SRCU */ 71 static DECLARE_RWSEM(device_links_lock); 72 73 static inline void device_links_write_lock(void) 74 { 75 down_write(&device_links_lock); 76 } 77 78 static inline void device_links_write_unlock(void) 79 { 80 up_write(&device_links_lock); 81 } 82 83 int device_links_read_lock(void) 84 { 85 down_read(&device_links_lock); 86 return 0; 87 } 88 89 void device_links_read_unlock(int not_used) 90 { 91 up_read(&device_links_lock); 92 } 93 #endif /* !CONFIG_SRCU */ 94 95 /** 96 * device_is_dependent - Check if one device depends on another one 97 * @dev: Device to check dependencies for. 98 * @target: Device to check against. 99 * 100 * Check if @target depends on @dev or any device dependent on it (its child or 101 * its consumer etc). Return 1 if that is the case or 0 otherwise. 102 */ 103 static int device_is_dependent(struct device *dev, void *target) 104 { 105 struct device_link *link; 106 int ret; 107 108 if (WARN_ON(dev == target)) 109 return 1; 110 111 ret = device_for_each_child(dev, target, device_is_dependent); 112 if (ret) 113 return ret; 114 115 list_for_each_entry(link, &dev->links.consumers, s_node) { 116 if (WARN_ON(link->consumer == target)) 117 return 1; 118 119 ret = device_is_dependent(link->consumer, target); 120 if (ret) 121 break; 122 } 123 return ret; 124 } 125 126 static int device_reorder_to_tail(struct device *dev, void *not_used) 127 { 128 struct device_link *link; 129 130 /* 131 * Devices that have not been registered yet will be put to the ends 132 * of the lists during the registration, so skip them here. 133 */ 134 if (device_is_registered(dev)) 135 devices_kset_move_last(dev); 136 137 if (device_pm_initialized(dev)) 138 device_pm_move_last(dev); 139 140 device_for_each_child(dev, NULL, device_reorder_to_tail); 141 list_for_each_entry(link, &dev->links.consumers, s_node) 142 device_reorder_to_tail(link->consumer, NULL); 143 144 return 0; 145 } 146 147 /** 148 * device_link_add - Create a link between two devices. 149 * @consumer: Consumer end of the link. 150 * @supplier: Supplier end of the link. 151 * @flags: Link flags. 152 * 153 * The caller is responsible for the proper synchronization of the link creation 154 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 155 * runtime PM framework to take the link into account. Second, if the 156 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 157 * be forced into the active metastate and reference-counted upon the creation 158 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 159 * ignored. 160 * 161 * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically 162 * when the consumer device driver unbinds from it. The combination of both 163 * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL 164 * to be returned. 165 * 166 * A side effect of the link creation is re-ordering of dpm_list and the 167 * devices_kset list by moving the consumer device and all devices depending 168 * on it to the ends of these lists (that does not happen to devices that have 169 * not been registered when this function is called). 170 * 171 * The supplier device is required to be registered when this function is called 172 * and NULL will be returned if that is not the case. The consumer device need 173 * not be registered, however. 174 */ 175 struct device_link *device_link_add(struct device *consumer, 176 struct device *supplier, u32 flags) 177 { 178 struct device_link *link; 179 180 if (!consumer || !supplier || 181 ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE))) 182 return NULL; 183 184 device_links_write_lock(); 185 device_pm_lock(); 186 187 /* 188 * If the supplier has not been fully registered yet or there is a 189 * reverse dependency between the consumer and the supplier already in 190 * the graph, return NULL. 191 */ 192 if (!device_pm_initialized(supplier) 193 || device_is_dependent(consumer, supplier)) { 194 link = NULL; 195 goto out; 196 } 197 198 list_for_each_entry(link, &supplier->links.consumers, s_node) 199 if (link->consumer == consumer) 200 goto out; 201 202 link = kzalloc(sizeof(*link), GFP_KERNEL); 203 if (!link) 204 goto out; 205 206 if (flags & DL_FLAG_PM_RUNTIME) { 207 if (flags & DL_FLAG_RPM_ACTIVE) { 208 if (pm_runtime_get_sync(supplier) < 0) { 209 pm_runtime_put_noidle(supplier); 210 kfree(link); 211 link = NULL; 212 goto out; 213 } 214 link->rpm_active = true; 215 } 216 pm_runtime_new_link(consumer); 217 } 218 get_device(supplier); 219 link->supplier = supplier; 220 INIT_LIST_HEAD(&link->s_node); 221 get_device(consumer); 222 link->consumer = consumer; 223 INIT_LIST_HEAD(&link->c_node); 224 link->flags = flags; 225 226 /* Determine the initial link state. */ 227 if (flags & DL_FLAG_STATELESS) { 228 link->status = DL_STATE_NONE; 229 } else { 230 switch (supplier->links.status) { 231 case DL_DEV_DRIVER_BOUND: 232 switch (consumer->links.status) { 233 case DL_DEV_PROBING: 234 /* 235 * Balance the decrementation of the supplier's 236 * runtime PM usage counter after consumer probe 237 * in driver_probe_device(). 238 */ 239 if (flags & DL_FLAG_PM_RUNTIME) 240 pm_runtime_get_sync(supplier); 241 242 link->status = DL_STATE_CONSUMER_PROBE; 243 break; 244 case DL_DEV_DRIVER_BOUND: 245 link->status = DL_STATE_ACTIVE; 246 break; 247 default: 248 link->status = DL_STATE_AVAILABLE; 249 break; 250 } 251 break; 252 case DL_DEV_UNBINDING: 253 link->status = DL_STATE_SUPPLIER_UNBIND; 254 break; 255 default: 256 link->status = DL_STATE_DORMANT; 257 break; 258 } 259 } 260 261 /* 262 * Move the consumer and all of the devices depending on it to the end 263 * of dpm_list and the devices_kset list. 264 * 265 * It is necessary to hold dpm_list locked throughout all that or else 266 * we may end up suspending with a wrong ordering of it. 267 */ 268 device_reorder_to_tail(consumer, NULL); 269 270 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 271 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 272 273 dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 274 275 out: 276 device_pm_unlock(); 277 device_links_write_unlock(); 278 return link; 279 } 280 EXPORT_SYMBOL_GPL(device_link_add); 281 282 static void device_link_free(struct device_link *link) 283 { 284 put_device(link->consumer); 285 put_device(link->supplier); 286 kfree(link); 287 } 288 289 #ifdef CONFIG_SRCU 290 static void __device_link_free_srcu(struct rcu_head *rhead) 291 { 292 device_link_free(container_of(rhead, struct device_link, rcu_head)); 293 } 294 295 static void __device_link_del(struct device_link *link) 296 { 297 dev_info(link->consumer, "Dropping the link to %s\n", 298 dev_name(link->supplier)); 299 300 if (link->flags & DL_FLAG_PM_RUNTIME) 301 pm_runtime_drop_link(link->consumer); 302 303 list_del_rcu(&link->s_node); 304 list_del_rcu(&link->c_node); 305 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu); 306 } 307 #else /* !CONFIG_SRCU */ 308 static void __device_link_del(struct device_link *link) 309 { 310 dev_info(link->consumer, "Dropping the link to %s\n", 311 dev_name(link->supplier)); 312 313 list_del(&link->s_node); 314 list_del(&link->c_node); 315 device_link_free(link); 316 } 317 #endif /* !CONFIG_SRCU */ 318 319 /** 320 * device_link_del - Delete a link between two devices. 321 * @link: Device link to delete. 322 * 323 * The caller must ensure proper synchronization of this function with runtime 324 * PM. 325 */ 326 void device_link_del(struct device_link *link) 327 { 328 device_links_write_lock(); 329 device_pm_lock(); 330 __device_link_del(link); 331 device_pm_unlock(); 332 device_links_write_unlock(); 333 } 334 EXPORT_SYMBOL_GPL(device_link_del); 335 336 static void device_links_missing_supplier(struct device *dev) 337 { 338 struct device_link *link; 339 340 list_for_each_entry(link, &dev->links.suppliers, c_node) 341 if (link->status == DL_STATE_CONSUMER_PROBE) 342 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 343 } 344 345 /** 346 * device_links_check_suppliers - Check presence of supplier drivers. 347 * @dev: Consumer device. 348 * 349 * Check links from this device to any suppliers. Walk the list of the device's 350 * links to suppliers and see if all of them are available. If not, simply 351 * return -EPROBE_DEFER. 352 * 353 * We need to guarantee that the supplier will not go away after the check has 354 * been positive here. It only can go away in __device_release_driver() and 355 * that function checks the device's links to consumers. This means we need to 356 * mark the link as "consumer probe in progress" to make the supplier removal 357 * wait for us to complete (or bad things may happen). 358 * 359 * Links with the DL_FLAG_STATELESS flag set are ignored. 360 */ 361 int device_links_check_suppliers(struct device *dev) 362 { 363 struct device_link *link; 364 int ret = 0; 365 366 device_links_write_lock(); 367 368 list_for_each_entry(link, &dev->links.suppliers, c_node) { 369 if (link->flags & DL_FLAG_STATELESS) 370 continue; 371 372 if (link->status != DL_STATE_AVAILABLE) { 373 device_links_missing_supplier(dev); 374 ret = -EPROBE_DEFER; 375 break; 376 } 377 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 378 } 379 dev->links.status = DL_DEV_PROBING; 380 381 device_links_write_unlock(); 382 return ret; 383 } 384 385 /** 386 * device_links_driver_bound - Update device links after probing its driver. 387 * @dev: Device to update the links for. 388 * 389 * The probe has been successful, so update links from this device to any 390 * consumers by changing their status to "available". 391 * 392 * Also change the status of @dev's links to suppliers to "active". 393 * 394 * Links with the DL_FLAG_STATELESS flag set are ignored. 395 */ 396 void device_links_driver_bound(struct device *dev) 397 { 398 struct device_link *link; 399 400 device_links_write_lock(); 401 402 list_for_each_entry(link, &dev->links.consumers, s_node) { 403 if (link->flags & DL_FLAG_STATELESS) 404 continue; 405 406 WARN_ON(link->status != DL_STATE_DORMANT); 407 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 408 } 409 410 list_for_each_entry(link, &dev->links.suppliers, c_node) { 411 if (link->flags & DL_FLAG_STATELESS) 412 continue; 413 414 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 415 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 416 } 417 418 dev->links.status = DL_DEV_DRIVER_BOUND; 419 420 device_links_write_unlock(); 421 } 422 423 /** 424 * __device_links_no_driver - Update links of a device without a driver. 425 * @dev: Device without a drvier. 426 * 427 * Delete all non-persistent links from this device to any suppliers. 428 * 429 * Persistent links stay around, but their status is changed to "available", 430 * unless they already are in the "supplier unbind in progress" state in which 431 * case they need not be updated. 432 * 433 * Links with the DL_FLAG_STATELESS flag set are ignored. 434 */ 435 static void __device_links_no_driver(struct device *dev) 436 { 437 struct device_link *link, *ln; 438 439 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 440 if (link->flags & DL_FLAG_STATELESS) 441 continue; 442 443 if (link->flags & DL_FLAG_AUTOREMOVE) 444 __device_link_del(link); 445 else if (link->status != DL_STATE_SUPPLIER_UNBIND) 446 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 447 } 448 449 dev->links.status = DL_DEV_NO_DRIVER; 450 } 451 452 void device_links_no_driver(struct device *dev) 453 { 454 device_links_write_lock(); 455 __device_links_no_driver(dev); 456 device_links_write_unlock(); 457 } 458 459 /** 460 * device_links_driver_cleanup - Update links after driver removal. 461 * @dev: Device whose driver has just gone away. 462 * 463 * Update links to consumers for @dev by changing their status to "dormant" and 464 * invoke %__device_links_no_driver() to update links to suppliers for it as 465 * appropriate. 466 * 467 * Links with the DL_FLAG_STATELESS flag set are ignored. 468 */ 469 void device_links_driver_cleanup(struct device *dev) 470 { 471 struct device_link *link; 472 473 device_links_write_lock(); 474 475 list_for_each_entry(link, &dev->links.consumers, s_node) { 476 if (link->flags & DL_FLAG_STATELESS) 477 continue; 478 479 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE); 480 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 481 WRITE_ONCE(link->status, DL_STATE_DORMANT); 482 } 483 484 __device_links_no_driver(dev); 485 486 device_links_write_unlock(); 487 } 488 489 /** 490 * device_links_busy - Check if there are any busy links to consumers. 491 * @dev: Device to check. 492 * 493 * Check each consumer of the device and return 'true' if its link's status 494 * is one of "consumer probe" or "active" (meaning that the given consumer is 495 * probing right now or its driver is present). Otherwise, change the link 496 * state to "supplier unbind" to prevent the consumer from being probed 497 * successfully going forward. 498 * 499 * Return 'false' if there are no probing or active consumers. 500 * 501 * Links with the DL_FLAG_STATELESS flag set are ignored. 502 */ 503 bool device_links_busy(struct device *dev) 504 { 505 struct device_link *link; 506 bool ret = false; 507 508 device_links_write_lock(); 509 510 list_for_each_entry(link, &dev->links.consumers, s_node) { 511 if (link->flags & DL_FLAG_STATELESS) 512 continue; 513 514 if (link->status == DL_STATE_CONSUMER_PROBE 515 || link->status == DL_STATE_ACTIVE) { 516 ret = true; 517 break; 518 } 519 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 520 } 521 522 dev->links.status = DL_DEV_UNBINDING; 523 524 device_links_write_unlock(); 525 return ret; 526 } 527 528 /** 529 * device_links_unbind_consumers - Force unbind consumers of the given device. 530 * @dev: Device to unbind the consumers of. 531 * 532 * Walk the list of links to consumers for @dev and if any of them is in the 533 * "consumer probe" state, wait for all device probes in progress to complete 534 * and start over. 535 * 536 * If that's not the case, change the status of the link to "supplier unbind" 537 * and check if the link was in the "active" state. If so, force the consumer 538 * driver to unbind and start over (the consumer will not re-probe as we have 539 * changed the state of the link already). 540 * 541 * Links with the DL_FLAG_STATELESS flag set are ignored. 542 */ 543 void device_links_unbind_consumers(struct device *dev) 544 { 545 struct device_link *link; 546 547 start: 548 device_links_write_lock(); 549 550 list_for_each_entry(link, &dev->links.consumers, s_node) { 551 enum device_link_state status; 552 553 if (link->flags & DL_FLAG_STATELESS) 554 continue; 555 556 status = link->status; 557 if (status == DL_STATE_CONSUMER_PROBE) { 558 device_links_write_unlock(); 559 560 wait_for_device_probe(); 561 goto start; 562 } 563 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 564 if (status == DL_STATE_ACTIVE) { 565 struct device *consumer = link->consumer; 566 567 get_device(consumer); 568 569 device_links_write_unlock(); 570 571 device_release_driver_internal(consumer, NULL, 572 consumer->parent); 573 put_device(consumer); 574 goto start; 575 } 576 } 577 578 device_links_write_unlock(); 579 } 580 581 /** 582 * device_links_purge - Delete existing links to other devices. 583 * @dev: Target device. 584 */ 585 static void device_links_purge(struct device *dev) 586 { 587 struct device_link *link, *ln; 588 589 /* 590 * Delete all of the remaining links from this device to any other 591 * devices (either consumers or suppliers). 592 */ 593 device_links_write_lock(); 594 595 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 596 WARN_ON(link->status == DL_STATE_ACTIVE); 597 __device_link_del(link); 598 } 599 600 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 601 WARN_ON(link->status != DL_STATE_DORMANT && 602 link->status != DL_STATE_NONE); 603 __device_link_del(link); 604 } 605 606 device_links_write_unlock(); 607 } 608 609 /* Device links support end. */ 610 611 int (*platform_notify)(struct device *dev) = NULL; 612 int (*platform_notify_remove)(struct device *dev) = NULL; 613 static struct kobject *dev_kobj; 614 struct kobject *sysfs_dev_char_kobj; 615 struct kobject *sysfs_dev_block_kobj; 616 617 static DEFINE_MUTEX(device_hotplug_lock); 618 619 void lock_device_hotplug(void) 620 { 621 mutex_lock(&device_hotplug_lock); 622 } 623 624 void unlock_device_hotplug(void) 625 { 626 mutex_unlock(&device_hotplug_lock); 627 } 628 629 int lock_device_hotplug_sysfs(void) 630 { 631 if (mutex_trylock(&device_hotplug_lock)) 632 return 0; 633 634 /* Avoid busy looping (5 ms of sleep should do). */ 635 msleep(5); 636 return restart_syscall(); 637 } 638 639 #ifdef CONFIG_BLOCK 640 static inline int device_is_not_partition(struct device *dev) 641 { 642 return !(dev->type == &part_type); 643 } 644 #else 645 static inline int device_is_not_partition(struct device *dev) 646 { 647 return 1; 648 } 649 #endif 650 651 /** 652 * dev_driver_string - Return a device's driver name, if at all possible 653 * @dev: struct device to get the name of 654 * 655 * Will return the device's driver's name if it is bound to a device. If 656 * the device is not bound to a driver, it will return the name of the bus 657 * it is attached to. If it is not attached to a bus either, an empty 658 * string will be returned. 659 */ 660 const char *dev_driver_string(const struct device *dev) 661 { 662 struct device_driver *drv; 663 664 /* dev->driver can change to NULL underneath us because of unbinding, 665 * so be careful about accessing it. dev->bus and dev->class should 666 * never change once they are set, so they don't need special care. 667 */ 668 drv = READ_ONCE(dev->driver); 669 return drv ? drv->name : 670 (dev->bus ? dev->bus->name : 671 (dev->class ? dev->class->name : "")); 672 } 673 EXPORT_SYMBOL(dev_driver_string); 674 675 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 676 677 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 678 char *buf) 679 { 680 struct device_attribute *dev_attr = to_dev_attr(attr); 681 struct device *dev = kobj_to_dev(kobj); 682 ssize_t ret = -EIO; 683 684 if (dev_attr->show) 685 ret = dev_attr->show(dev, dev_attr, buf); 686 if (ret >= (ssize_t)PAGE_SIZE) { 687 printk("dev_attr_show: %pS returned bad count\n", 688 dev_attr->show); 689 } 690 return ret; 691 } 692 693 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 694 const char *buf, size_t count) 695 { 696 struct device_attribute *dev_attr = to_dev_attr(attr); 697 struct device *dev = kobj_to_dev(kobj); 698 ssize_t ret = -EIO; 699 700 if (dev_attr->store) 701 ret = dev_attr->store(dev, dev_attr, buf, count); 702 return ret; 703 } 704 705 static const struct sysfs_ops dev_sysfs_ops = { 706 .show = dev_attr_show, 707 .store = dev_attr_store, 708 }; 709 710 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 711 712 ssize_t device_store_ulong(struct device *dev, 713 struct device_attribute *attr, 714 const char *buf, size_t size) 715 { 716 struct dev_ext_attribute *ea = to_ext_attr(attr); 717 char *end; 718 unsigned long new = simple_strtoul(buf, &end, 0); 719 if (end == buf) 720 return -EINVAL; 721 *(unsigned long *)(ea->var) = new; 722 /* Always return full write size even if we didn't consume all */ 723 return size; 724 } 725 EXPORT_SYMBOL_GPL(device_store_ulong); 726 727 ssize_t device_show_ulong(struct device *dev, 728 struct device_attribute *attr, 729 char *buf) 730 { 731 struct dev_ext_attribute *ea = to_ext_attr(attr); 732 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var)); 733 } 734 EXPORT_SYMBOL_GPL(device_show_ulong); 735 736 ssize_t device_store_int(struct device *dev, 737 struct device_attribute *attr, 738 const char *buf, size_t size) 739 { 740 struct dev_ext_attribute *ea = to_ext_attr(attr); 741 char *end; 742 long new = simple_strtol(buf, &end, 0); 743 if (end == buf || new > INT_MAX || new < INT_MIN) 744 return -EINVAL; 745 *(int *)(ea->var) = new; 746 /* Always return full write size even if we didn't consume all */ 747 return size; 748 } 749 EXPORT_SYMBOL_GPL(device_store_int); 750 751 ssize_t device_show_int(struct device *dev, 752 struct device_attribute *attr, 753 char *buf) 754 { 755 struct dev_ext_attribute *ea = to_ext_attr(attr); 756 757 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var)); 758 } 759 EXPORT_SYMBOL_GPL(device_show_int); 760 761 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 762 const char *buf, size_t size) 763 { 764 struct dev_ext_attribute *ea = to_ext_attr(attr); 765 766 if (strtobool(buf, ea->var) < 0) 767 return -EINVAL; 768 769 return size; 770 } 771 EXPORT_SYMBOL_GPL(device_store_bool); 772 773 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 774 char *buf) 775 { 776 struct dev_ext_attribute *ea = to_ext_attr(attr); 777 778 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var)); 779 } 780 EXPORT_SYMBOL_GPL(device_show_bool); 781 782 /** 783 * device_release - free device structure. 784 * @kobj: device's kobject. 785 * 786 * This is called once the reference count for the object 787 * reaches 0. We forward the call to the device's release 788 * method, which should handle actually freeing the structure. 789 */ 790 static void device_release(struct kobject *kobj) 791 { 792 struct device *dev = kobj_to_dev(kobj); 793 struct device_private *p = dev->p; 794 795 /* 796 * Some platform devices are driven without driver attached 797 * and managed resources may have been acquired. Make sure 798 * all resources are released. 799 * 800 * Drivers still can add resources into device after device 801 * is deleted but alive, so release devres here to avoid 802 * possible memory leak. 803 */ 804 devres_release_all(dev); 805 806 if (dev->release) 807 dev->release(dev); 808 else if (dev->type && dev->type->release) 809 dev->type->release(dev); 810 else if (dev->class && dev->class->dev_release) 811 dev->class->dev_release(dev); 812 else 813 WARN(1, KERN_ERR "Device '%s' does not have a release() " 814 "function, it is broken and must be fixed.\n", 815 dev_name(dev)); 816 kfree(p); 817 } 818 819 static const void *device_namespace(struct kobject *kobj) 820 { 821 struct device *dev = kobj_to_dev(kobj); 822 const void *ns = NULL; 823 824 if (dev->class && dev->class->ns_type) 825 ns = dev->class->namespace(dev); 826 827 return ns; 828 } 829 830 static struct kobj_type device_ktype = { 831 .release = device_release, 832 .sysfs_ops = &dev_sysfs_ops, 833 .namespace = device_namespace, 834 }; 835 836 837 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 838 { 839 struct kobj_type *ktype = get_ktype(kobj); 840 841 if (ktype == &device_ktype) { 842 struct device *dev = kobj_to_dev(kobj); 843 if (dev->bus) 844 return 1; 845 if (dev->class) 846 return 1; 847 } 848 return 0; 849 } 850 851 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 852 { 853 struct device *dev = kobj_to_dev(kobj); 854 855 if (dev->bus) 856 return dev->bus->name; 857 if (dev->class) 858 return dev->class->name; 859 return NULL; 860 } 861 862 static int dev_uevent(struct kset *kset, struct kobject *kobj, 863 struct kobj_uevent_env *env) 864 { 865 struct device *dev = kobj_to_dev(kobj); 866 int retval = 0; 867 868 /* add device node properties if present */ 869 if (MAJOR(dev->devt)) { 870 const char *tmp; 871 const char *name; 872 umode_t mode = 0; 873 kuid_t uid = GLOBAL_ROOT_UID; 874 kgid_t gid = GLOBAL_ROOT_GID; 875 876 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 877 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 878 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 879 if (name) { 880 add_uevent_var(env, "DEVNAME=%s", name); 881 if (mode) 882 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 883 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 884 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 885 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 886 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 887 kfree(tmp); 888 } 889 } 890 891 if (dev->type && dev->type->name) 892 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 893 894 if (dev->driver) 895 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 896 897 /* Add common DT information about the device */ 898 of_device_uevent(dev, env); 899 900 /* have the bus specific function add its stuff */ 901 if (dev->bus && dev->bus->uevent) { 902 retval = dev->bus->uevent(dev, env); 903 if (retval) 904 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 905 dev_name(dev), __func__, retval); 906 } 907 908 /* have the class specific function add its stuff */ 909 if (dev->class && dev->class->dev_uevent) { 910 retval = dev->class->dev_uevent(dev, env); 911 if (retval) 912 pr_debug("device: '%s': %s: class uevent() " 913 "returned %d\n", dev_name(dev), 914 __func__, retval); 915 } 916 917 /* have the device type specific function add its stuff */ 918 if (dev->type && dev->type->uevent) { 919 retval = dev->type->uevent(dev, env); 920 if (retval) 921 pr_debug("device: '%s': %s: dev_type uevent() " 922 "returned %d\n", dev_name(dev), 923 __func__, retval); 924 } 925 926 return retval; 927 } 928 929 static const struct kset_uevent_ops device_uevent_ops = { 930 .filter = dev_uevent_filter, 931 .name = dev_uevent_name, 932 .uevent = dev_uevent, 933 }; 934 935 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 936 char *buf) 937 { 938 struct kobject *top_kobj; 939 struct kset *kset; 940 struct kobj_uevent_env *env = NULL; 941 int i; 942 size_t count = 0; 943 int retval; 944 945 /* search the kset, the device belongs to */ 946 top_kobj = &dev->kobj; 947 while (!top_kobj->kset && top_kobj->parent) 948 top_kobj = top_kobj->parent; 949 if (!top_kobj->kset) 950 goto out; 951 952 kset = top_kobj->kset; 953 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 954 goto out; 955 956 /* respect filter */ 957 if (kset->uevent_ops && kset->uevent_ops->filter) 958 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 959 goto out; 960 961 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 962 if (!env) 963 return -ENOMEM; 964 965 /* let the kset specific function add its keys */ 966 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 967 if (retval) 968 goto out; 969 970 /* copy keys to file */ 971 for (i = 0; i < env->envp_idx; i++) 972 count += sprintf(&buf[count], "%s\n", env->envp[i]); 973 out: 974 kfree(env); 975 return count; 976 } 977 978 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 979 const char *buf, size_t count) 980 { 981 if (kobject_synth_uevent(&dev->kobj, buf, count)) 982 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 983 984 return count; 985 } 986 static DEVICE_ATTR_RW(uevent); 987 988 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 989 char *buf) 990 { 991 bool val; 992 993 device_lock(dev); 994 val = !dev->offline; 995 device_unlock(dev); 996 return sprintf(buf, "%u\n", val); 997 } 998 999 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 1000 const char *buf, size_t count) 1001 { 1002 bool val; 1003 int ret; 1004 1005 ret = strtobool(buf, &val); 1006 if (ret < 0) 1007 return ret; 1008 1009 ret = lock_device_hotplug_sysfs(); 1010 if (ret) 1011 return ret; 1012 1013 ret = val ? device_online(dev) : device_offline(dev); 1014 unlock_device_hotplug(); 1015 return ret < 0 ? ret : count; 1016 } 1017 static DEVICE_ATTR_RW(online); 1018 1019 int device_add_groups(struct device *dev, const struct attribute_group **groups) 1020 { 1021 return sysfs_create_groups(&dev->kobj, groups); 1022 } 1023 EXPORT_SYMBOL_GPL(device_add_groups); 1024 1025 void device_remove_groups(struct device *dev, 1026 const struct attribute_group **groups) 1027 { 1028 sysfs_remove_groups(&dev->kobj, groups); 1029 } 1030 EXPORT_SYMBOL_GPL(device_remove_groups); 1031 1032 union device_attr_group_devres { 1033 const struct attribute_group *group; 1034 const struct attribute_group **groups; 1035 }; 1036 1037 static int devm_attr_group_match(struct device *dev, void *res, void *data) 1038 { 1039 return ((union device_attr_group_devres *)res)->group == data; 1040 } 1041 1042 static void devm_attr_group_remove(struct device *dev, void *res) 1043 { 1044 union device_attr_group_devres *devres = res; 1045 const struct attribute_group *group = devres->group; 1046 1047 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 1048 sysfs_remove_group(&dev->kobj, group); 1049 } 1050 1051 static void devm_attr_groups_remove(struct device *dev, void *res) 1052 { 1053 union device_attr_group_devres *devres = res; 1054 const struct attribute_group **groups = devres->groups; 1055 1056 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 1057 sysfs_remove_groups(&dev->kobj, groups); 1058 } 1059 1060 /** 1061 * devm_device_add_group - given a device, create a managed attribute group 1062 * @dev: The device to create the group for 1063 * @grp: The attribute group to create 1064 * 1065 * This function creates a group for the first time. It will explicitly 1066 * warn and error if any of the attribute files being created already exist. 1067 * 1068 * Returns 0 on success or error code on failure. 1069 */ 1070 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 1071 { 1072 union device_attr_group_devres *devres; 1073 int error; 1074 1075 devres = devres_alloc(devm_attr_group_remove, 1076 sizeof(*devres), GFP_KERNEL); 1077 if (!devres) 1078 return -ENOMEM; 1079 1080 error = sysfs_create_group(&dev->kobj, grp); 1081 if (error) { 1082 devres_free(devres); 1083 return error; 1084 } 1085 1086 devres->group = grp; 1087 devres_add(dev, devres); 1088 return 0; 1089 } 1090 EXPORT_SYMBOL_GPL(devm_device_add_group); 1091 1092 /** 1093 * devm_device_remove_group: remove a managed group from a device 1094 * @dev: device to remove the group from 1095 * @grp: group to remove 1096 * 1097 * This function removes a group of attributes from a device. The attributes 1098 * previously have to have been created for this group, otherwise it will fail. 1099 */ 1100 void devm_device_remove_group(struct device *dev, 1101 const struct attribute_group *grp) 1102 { 1103 WARN_ON(devres_release(dev, devm_attr_group_remove, 1104 devm_attr_group_match, 1105 /* cast away const */ (void *)grp)); 1106 } 1107 EXPORT_SYMBOL_GPL(devm_device_remove_group); 1108 1109 /** 1110 * devm_device_add_groups - create a bunch of managed attribute groups 1111 * @dev: The device to create the group for 1112 * @groups: The attribute groups to create, NULL terminated 1113 * 1114 * This function creates a bunch of managed attribute groups. If an error 1115 * occurs when creating a group, all previously created groups will be 1116 * removed, unwinding everything back to the original state when this 1117 * function was called. It will explicitly warn and error if any of the 1118 * attribute files being created already exist. 1119 * 1120 * Returns 0 on success or error code from sysfs_create_group on failure. 1121 */ 1122 int devm_device_add_groups(struct device *dev, 1123 const struct attribute_group **groups) 1124 { 1125 union device_attr_group_devres *devres; 1126 int error; 1127 1128 devres = devres_alloc(devm_attr_groups_remove, 1129 sizeof(*devres), GFP_KERNEL); 1130 if (!devres) 1131 return -ENOMEM; 1132 1133 error = sysfs_create_groups(&dev->kobj, groups); 1134 if (error) { 1135 devres_free(devres); 1136 return error; 1137 } 1138 1139 devres->groups = groups; 1140 devres_add(dev, devres); 1141 return 0; 1142 } 1143 EXPORT_SYMBOL_GPL(devm_device_add_groups); 1144 1145 /** 1146 * devm_device_remove_groups - remove a list of managed groups 1147 * 1148 * @dev: The device for the groups to be removed from 1149 * @groups: NULL terminated list of groups to be removed 1150 * 1151 * If groups is not NULL, remove the specified groups from the device. 1152 */ 1153 void devm_device_remove_groups(struct device *dev, 1154 const struct attribute_group **groups) 1155 { 1156 WARN_ON(devres_release(dev, devm_attr_groups_remove, 1157 devm_attr_group_match, 1158 /* cast away const */ (void *)groups)); 1159 } 1160 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 1161 1162 static int device_add_attrs(struct device *dev) 1163 { 1164 struct class *class = dev->class; 1165 const struct device_type *type = dev->type; 1166 int error; 1167 1168 if (class) { 1169 error = device_add_groups(dev, class->dev_groups); 1170 if (error) 1171 return error; 1172 } 1173 1174 if (type) { 1175 error = device_add_groups(dev, type->groups); 1176 if (error) 1177 goto err_remove_class_groups; 1178 } 1179 1180 error = device_add_groups(dev, dev->groups); 1181 if (error) 1182 goto err_remove_type_groups; 1183 1184 if (device_supports_offline(dev) && !dev->offline_disabled) { 1185 error = device_create_file(dev, &dev_attr_online); 1186 if (error) 1187 goto err_remove_dev_groups; 1188 } 1189 1190 return 0; 1191 1192 err_remove_dev_groups: 1193 device_remove_groups(dev, dev->groups); 1194 err_remove_type_groups: 1195 if (type) 1196 device_remove_groups(dev, type->groups); 1197 err_remove_class_groups: 1198 if (class) 1199 device_remove_groups(dev, class->dev_groups); 1200 1201 return error; 1202 } 1203 1204 static void device_remove_attrs(struct device *dev) 1205 { 1206 struct class *class = dev->class; 1207 const struct device_type *type = dev->type; 1208 1209 device_remove_file(dev, &dev_attr_online); 1210 device_remove_groups(dev, dev->groups); 1211 1212 if (type) 1213 device_remove_groups(dev, type->groups); 1214 1215 if (class) 1216 device_remove_groups(dev, class->dev_groups); 1217 } 1218 1219 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 1220 char *buf) 1221 { 1222 return print_dev_t(buf, dev->devt); 1223 } 1224 static DEVICE_ATTR_RO(dev); 1225 1226 /* /sys/devices/ */ 1227 struct kset *devices_kset; 1228 1229 /** 1230 * devices_kset_move_before - Move device in the devices_kset's list. 1231 * @deva: Device to move. 1232 * @devb: Device @deva should come before. 1233 */ 1234 static void devices_kset_move_before(struct device *deva, struct device *devb) 1235 { 1236 if (!devices_kset) 1237 return; 1238 pr_debug("devices_kset: Moving %s before %s\n", 1239 dev_name(deva), dev_name(devb)); 1240 spin_lock(&devices_kset->list_lock); 1241 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 1242 spin_unlock(&devices_kset->list_lock); 1243 } 1244 1245 /** 1246 * devices_kset_move_after - Move device in the devices_kset's list. 1247 * @deva: Device to move 1248 * @devb: Device @deva should come after. 1249 */ 1250 static void devices_kset_move_after(struct device *deva, struct device *devb) 1251 { 1252 if (!devices_kset) 1253 return; 1254 pr_debug("devices_kset: Moving %s after %s\n", 1255 dev_name(deva), dev_name(devb)); 1256 spin_lock(&devices_kset->list_lock); 1257 list_move(&deva->kobj.entry, &devb->kobj.entry); 1258 spin_unlock(&devices_kset->list_lock); 1259 } 1260 1261 /** 1262 * devices_kset_move_last - move the device to the end of devices_kset's list. 1263 * @dev: device to move 1264 */ 1265 void devices_kset_move_last(struct device *dev) 1266 { 1267 if (!devices_kset) 1268 return; 1269 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 1270 spin_lock(&devices_kset->list_lock); 1271 list_move_tail(&dev->kobj.entry, &devices_kset->list); 1272 spin_unlock(&devices_kset->list_lock); 1273 } 1274 1275 /** 1276 * device_create_file - create sysfs attribute file for device. 1277 * @dev: device. 1278 * @attr: device attribute descriptor. 1279 */ 1280 int device_create_file(struct device *dev, 1281 const struct device_attribute *attr) 1282 { 1283 int error = 0; 1284 1285 if (dev) { 1286 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 1287 "Attribute %s: write permission without 'store'\n", 1288 attr->attr.name); 1289 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 1290 "Attribute %s: read permission without 'show'\n", 1291 attr->attr.name); 1292 error = sysfs_create_file(&dev->kobj, &attr->attr); 1293 } 1294 1295 return error; 1296 } 1297 EXPORT_SYMBOL_GPL(device_create_file); 1298 1299 /** 1300 * device_remove_file - remove sysfs attribute file. 1301 * @dev: device. 1302 * @attr: device attribute descriptor. 1303 */ 1304 void device_remove_file(struct device *dev, 1305 const struct device_attribute *attr) 1306 { 1307 if (dev) 1308 sysfs_remove_file(&dev->kobj, &attr->attr); 1309 } 1310 EXPORT_SYMBOL_GPL(device_remove_file); 1311 1312 /** 1313 * device_remove_file_self - remove sysfs attribute file from its own method. 1314 * @dev: device. 1315 * @attr: device attribute descriptor. 1316 * 1317 * See kernfs_remove_self() for details. 1318 */ 1319 bool device_remove_file_self(struct device *dev, 1320 const struct device_attribute *attr) 1321 { 1322 if (dev) 1323 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 1324 else 1325 return false; 1326 } 1327 EXPORT_SYMBOL_GPL(device_remove_file_self); 1328 1329 /** 1330 * device_create_bin_file - create sysfs binary attribute file for device. 1331 * @dev: device. 1332 * @attr: device binary attribute descriptor. 1333 */ 1334 int device_create_bin_file(struct device *dev, 1335 const struct bin_attribute *attr) 1336 { 1337 int error = -EINVAL; 1338 if (dev) 1339 error = sysfs_create_bin_file(&dev->kobj, attr); 1340 return error; 1341 } 1342 EXPORT_SYMBOL_GPL(device_create_bin_file); 1343 1344 /** 1345 * device_remove_bin_file - remove sysfs binary attribute file 1346 * @dev: device. 1347 * @attr: device binary attribute descriptor. 1348 */ 1349 void device_remove_bin_file(struct device *dev, 1350 const struct bin_attribute *attr) 1351 { 1352 if (dev) 1353 sysfs_remove_bin_file(&dev->kobj, attr); 1354 } 1355 EXPORT_SYMBOL_GPL(device_remove_bin_file); 1356 1357 static void klist_children_get(struct klist_node *n) 1358 { 1359 struct device_private *p = to_device_private_parent(n); 1360 struct device *dev = p->device; 1361 1362 get_device(dev); 1363 } 1364 1365 static void klist_children_put(struct klist_node *n) 1366 { 1367 struct device_private *p = to_device_private_parent(n); 1368 struct device *dev = p->device; 1369 1370 put_device(dev); 1371 } 1372 1373 /** 1374 * device_initialize - init device structure. 1375 * @dev: device. 1376 * 1377 * This prepares the device for use by other layers by initializing 1378 * its fields. 1379 * It is the first half of device_register(), if called by 1380 * that function, though it can also be called separately, so one 1381 * may use @dev's fields. In particular, get_device()/put_device() 1382 * may be used for reference counting of @dev after calling this 1383 * function. 1384 * 1385 * All fields in @dev must be initialized by the caller to 0, except 1386 * for those explicitly set to some other value. The simplest 1387 * approach is to use kzalloc() to allocate the structure containing 1388 * @dev. 1389 * 1390 * NOTE: Use put_device() to give up your reference instead of freeing 1391 * @dev directly once you have called this function. 1392 */ 1393 void device_initialize(struct device *dev) 1394 { 1395 dev->kobj.kset = devices_kset; 1396 kobject_init(&dev->kobj, &device_ktype); 1397 INIT_LIST_HEAD(&dev->dma_pools); 1398 mutex_init(&dev->mutex); 1399 lockdep_set_novalidate_class(&dev->mutex); 1400 spin_lock_init(&dev->devres_lock); 1401 INIT_LIST_HEAD(&dev->devres_head); 1402 device_pm_init(dev); 1403 set_dev_node(dev, -1); 1404 #ifdef CONFIG_GENERIC_MSI_IRQ 1405 INIT_LIST_HEAD(&dev->msi_list); 1406 #endif 1407 INIT_LIST_HEAD(&dev->links.consumers); 1408 INIT_LIST_HEAD(&dev->links.suppliers); 1409 dev->links.status = DL_DEV_NO_DRIVER; 1410 } 1411 EXPORT_SYMBOL_GPL(device_initialize); 1412 1413 struct kobject *virtual_device_parent(struct device *dev) 1414 { 1415 static struct kobject *virtual_dir = NULL; 1416 1417 if (!virtual_dir) 1418 virtual_dir = kobject_create_and_add("virtual", 1419 &devices_kset->kobj); 1420 1421 return virtual_dir; 1422 } 1423 1424 struct class_dir { 1425 struct kobject kobj; 1426 struct class *class; 1427 }; 1428 1429 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 1430 1431 static void class_dir_release(struct kobject *kobj) 1432 { 1433 struct class_dir *dir = to_class_dir(kobj); 1434 kfree(dir); 1435 } 1436 1437 static const 1438 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 1439 { 1440 struct class_dir *dir = to_class_dir(kobj); 1441 return dir->class->ns_type; 1442 } 1443 1444 static struct kobj_type class_dir_ktype = { 1445 .release = class_dir_release, 1446 .sysfs_ops = &kobj_sysfs_ops, 1447 .child_ns_type = class_dir_child_ns_type 1448 }; 1449 1450 static struct kobject * 1451 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 1452 { 1453 struct class_dir *dir; 1454 int retval; 1455 1456 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 1457 if (!dir) 1458 return NULL; 1459 1460 dir->class = class; 1461 kobject_init(&dir->kobj, &class_dir_ktype); 1462 1463 dir->kobj.kset = &class->p->glue_dirs; 1464 1465 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 1466 if (retval < 0) { 1467 kobject_put(&dir->kobj); 1468 return NULL; 1469 } 1470 return &dir->kobj; 1471 } 1472 1473 static DEFINE_MUTEX(gdp_mutex); 1474 1475 static struct kobject *get_device_parent(struct device *dev, 1476 struct device *parent) 1477 { 1478 if (dev->class) { 1479 struct kobject *kobj = NULL; 1480 struct kobject *parent_kobj; 1481 struct kobject *k; 1482 1483 #ifdef CONFIG_BLOCK 1484 /* block disks show up in /sys/block */ 1485 if (sysfs_deprecated && dev->class == &block_class) { 1486 if (parent && parent->class == &block_class) 1487 return &parent->kobj; 1488 return &block_class.p->subsys.kobj; 1489 } 1490 #endif 1491 1492 /* 1493 * If we have no parent, we live in "virtual". 1494 * Class-devices with a non class-device as parent, live 1495 * in a "glue" directory to prevent namespace collisions. 1496 */ 1497 if (parent == NULL) 1498 parent_kobj = virtual_device_parent(dev); 1499 else if (parent->class && !dev->class->ns_type) 1500 return &parent->kobj; 1501 else 1502 parent_kobj = &parent->kobj; 1503 1504 mutex_lock(&gdp_mutex); 1505 1506 /* find our class-directory at the parent and reference it */ 1507 spin_lock(&dev->class->p->glue_dirs.list_lock); 1508 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 1509 if (k->parent == parent_kobj) { 1510 kobj = kobject_get(k); 1511 break; 1512 } 1513 spin_unlock(&dev->class->p->glue_dirs.list_lock); 1514 if (kobj) { 1515 mutex_unlock(&gdp_mutex); 1516 return kobj; 1517 } 1518 1519 /* or create a new class-directory at the parent device */ 1520 k = class_dir_create_and_add(dev->class, parent_kobj); 1521 /* do not emit an uevent for this simple "glue" directory */ 1522 mutex_unlock(&gdp_mutex); 1523 return k; 1524 } 1525 1526 /* subsystems can specify a default root directory for their devices */ 1527 if (!parent && dev->bus && dev->bus->dev_root) 1528 return &dev->bus->dev_root->kobj; 1529 1530 if (parent) 1531 return &parent->kobj; 1532 return NULL; 1533 } 1534 1535 static inline bool live_in_glue_dir(struct kobject *kobj, 1536 struct device *dev) 1537 { 1538 if (!kobj || !dev->class || 1539 kobj->kset != &dev->class->p->glue_dirs) 1540 return false; 1541 return true; 1542 } 1543 1544 static inline struct kobject *get_glue_dir(struct device *dev) 1545 { 1546 return dev->kobj.parent; 1547 } 1548 1549 /* 1550 * make sure cleaning up dir as the last step, we need to make 1551 * sure .release handler of kobject is run with holding the 1552 * global lock 1553 */ 1554 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 1555 { 1556 /* see if we live in a "glue" directory */ 1557 if (!live_in_glue_dir(glue_dir, dev)) 1558 return; 1559 1560 mutex_lock(&gdp_mutex); 1561 kobject_put(glue_dir); 1562 mutex_unlock(&gdp_mutex); 1563 } 1564 1565 static int device_add_class_symlinks(struct device *dev) 1566 { 1567 struct device_node *of_node = dev_of_node(dev); 1568 int error; 1569 1570 if (of_node) { 1571 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 1572 if (error) 1573 dev_warn(dev, "Error %d creating of_node link\n",error); 1574 /* An error here doesn't warrant bringing down the device */ 1575 } 1576 1577 if (!dev->class) 1578 return 0; 1579 1580 error = sysfs_create_link(&dev->kobj, 1581 &dev->class->p->subsys.kobj, 1582 "subsystem"); 1583 if (error) 1584 goto out_devnode; 1585 1586 if (dev->parent && device_is_not_partition(dev)) { 1587 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 1588 "device"); 1589 if (error) 1590 goto out_subsys; 1591 } 1592 1593 #ifdef CONFIG_BLOCK 1594 /* /sys/block has directories and does not need symlinks */ 1595 if (sysfs_deprecated && dev->class == &block_class) 1596 return 0; 1597 #endif 1598 1599 /* link in the class directory pointing to the device */ 1600 error = sysfs_create_link(&dev->class->p->subsys.kobj, 1601 &dev->kobj, dev_name(dev)); 1602 if (error) 1603 goto out_device; 1604 1605 return 0; 1606 1607 out_device: 1608 sysfs_remove_link(&dev->kobj, "device"); 1609 1610 out_subsys: 1611 sysfs_remove_link(&dev->kobj, "subsystem"); 1612 out_devnode: 1613 sysfs_remove_link(&dev->kobj, "of_node"); 1614 return error; 1615 } 1616 1617 static void device_remove_class_symlinks(struct device *dev) 1618 { 1619 if (dev_of_node(dev)) 1620 sysfs_remove_link(&dev->kobj, "of_node"); 1621 1622 if (!dev->class) 1623 return; 1624 1625 if (dev->parent && device_is_not_partition(dev)) 1626 sysfs_remove_link(&dev->kobj, "device"); 1627 sysfs_remove_link(&dev->kobj, "subsystem"); 1628 #ifdef CONFIG_BLOCK 1629 if (sysfs_deprecated && dev->class == &block_class) 1630 return; 1631 #endif 1632 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 1633 } 1634 1635 /** 1636 * dev_set_name - set a device name 1637 * @dev: device 1638 * @fmt: format string for the device's name 1639 */ 1640 int dev_set_name(struct device *dev, const char *fmt, ...) 1641 { 1642 va_list vargs; 1643 int err; 1644 1645 va_start(vargs, fmt); 1646 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 1647 va_end(vargs); 1648 return err; 1649 } 1650 EXPORT_SYMBOL_GPL(dev_set_name); 1651 1652 /** 1653 * device_to_dev_kobj - select a /sys/dev/ directory for the device 1654 * @dev: device 1655 * 1656 * By default we select char/ for new entries. Setting class->dev_obj 1657 * to NULL prevents an entry from being created. class->dev_kobj must 1658 * be set (or cleared) before any devices are registered to the class 1659 * otherwise device_create_sys_dev_entry() and 1660 * device_remove_sys_dev_entry() will disagree about the presence of 1661 * the link. 1662 */ 1663 static struct kobject *device_to_dev_kobj(struct device *dev) 1664 { 1665 struct kobject *kobj; 1666 1667 if (dev->class) 1668 kobj = dev->class->dev_kobj; 1669 else 1670 kobj = sysfs_dev_char_kobj; 1671 1672 return kobj; 1673 } 1674 1675 static int device_create_sys_dev_entry(struct device *dev) 1676 { 1677 struct kobject *kobj = device_to_dev_kobj(dev); 1678 int error = 0; 1679 char devt_str[15]; 1680 1681 if (kobj) { 1682 format_dev_t(devt_str, dev->devt); 1683 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 1684 } 1685 1686 return error; 1687 } 1688 1689 static void device_remove_sys_dev_entry(struct device *dev) 1690 { 1691 struct kobject *kobj = device_to_dev_kobj(dev); 1692 char devt_str[15]; 1693 1694 if (kobj) { 1695 format_dev_t(devt_str, dev->devt); 1696 sysfs_remove_link(kobj, devt_str); 1697 } 1698 } 1699 1700 int device_private_init(struct device *dev) 1701 { 1702 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 1703 if (!dev->p) 1704 return -ENOMEM; 1705 dev->p->device = dev; 1706 klist_init(&dev->p->klist_children, klist_children_get, 1707 klist_children_put); 1708 INIT_LIST_HEAD(&dev->p->deferred_probe); 1709 return 0; 1710 } 1711 1712 /** 1713 * device_add - add device to device hierarchy. 1714 * @dev: device. 1715 * 1716 * This is part 2 of device_register(), though may be called 1717 * separately _iff_ device_initialize() has been called separately. 1718 * 1719 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 1720 * to the global and sibling lists for the device, then 1721 * adds it to the other relevant subsystems of the driver model. 1722 * 1723 * Do not call this routine or device_register() more than once for 1724 * any device structure. The driver model core is not designed to work 1725 * with devices that get unregistered and then spring back to life. 1726 * (Among other things, it's very hard to guarantee that all references 1727 * to the previous incarnation of @dev have been dropped.) Allocate 1728 * and register a fresh new struct device instead. 1729 * 1730 * NOTE: _Never_ directly free @dev after calling this function, even 1731 * if it returned an error! Always use put_device() to give up your 1732 * reference instead. 1733 */ 1734 int device_add(struct device *dev) 1735 { 1736 struct device *parent; 1737 struct kobject *kobj; 1738 struct class_interface *class_intf; 1739 int error = -EINVAL; 1740 struct kobject *glue_dir = NULL; 1741 1742 dev = get_device(dev); 1743 if (!dev) 1744 goto done; 1745 1746 if (!dev->p) { 1747 error = device_private_init(dev); 1748 if (error) 1749 goto done; 1750 } 1751 1752 /* 1753 * for statically allocated devices, which should all be converted 1754 * some day, we need to initialize the name. We prevent reading back 1755 * the name, and force the use of dev_name() 1756 */ 1757 if (dev->init_name) { 1758 dev_set_name(dev, "%s", dev->init_name); 1759 dev->init_name = NULL; 1760 } 1761 1762 /* subsystems can specify simple device enumeration */ 1763 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 1764 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 1765 1766 if (!dev_name(dev)) { 1767 error = -EINVAL; 1768 goto name_error; 1769 } 1770 1771 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 1772 1773 parent = get_device(dev->parent); 1774 kobj = get_device_parent(dev, parent); 1775 if (kobj) 1776 dev->kobj.parent = kobj; 1777 1778 /* use parent numa_node */ 1779 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 1780 set_dev_node(dev, dev_to_node(parent)); 1781 1782 /* first, register with generic layer. */ 1783 /* we require the name to be set before, and pass NULL */ 1784 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 1785 if (error) { 1786 glue_dir = get_glue_dir(dev); 1787 goto Error; 1788 } 1789 1790 /* notify platform of device entry */ 1791 if (platform_notify) 1792 platform_notify(dev); 1793 1794 error = device_create_file(dev, &dev_attr_uevent); 1795 if (error) 1796 goto attrError; 1797 1798 error = device_add_class_symlinks(dev); 1799 if (error) 1800 goto SymlinkError; 1801 error = device_add_attrs(dev); 1802 if (error) 1803 goto AttrsError; 1804 error = bus_add_device(dev); 1805 if (error) 1806 goto BusError; 1807 error = dpm_sysfs_add(dev); 1808 if (error) 1809 goto DPMError; 1810 device_pm_add(dev); 1811 1812 if (MAJOR(dev->devt)) { 1813 error = device_create_file(dev, &dev_attr_dev); 1814 if (error) 1815 goto DevAttrError; 1816 1817 error = device_create_sys_dev_entry(dev); 1818 if (error) 1819 goto SysEntryError; 1820 1821 devtmpfs_create_node(dev); 1822 } 1823 1824 /* Notify clients of device addition. This call must come 1825 * after dpm_sysfs_add() and before kobject_uevent(). 1826 */ 1827 if (dev->bus) 1828 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1829 BUS_NOTIFY_ADD_DEVICE, dev); 1830 1831 kobject_uevent(&dev->kobj, KOBJ_ADD); 1832 bus_probe_device(dev); 1833 if (parent) 1834 klist_add_tail(&dev->p->knode_parent, 1835 &parent->p->klist_children); 1836 1837 if (dev->class) { 1838 mutex_lock(&dev->class->p->mutex); 1839 /* tie the class to the device */ 1840 klist_add_tail(&dev->knode_class, 1841 &dev->class->p->klist_devices); 1842 1843 /* notify any interfaces that the device is here */ 1844 list_for_each_entry(class_intf, 1845 &dev->class->p->interfaces, node) 1846 if (class_intf->add_dev) 1847 class_intf->add_dev(dev, class_intf); 1848 mutex_unlock(&dev->class->p->mutex); 1849 } 1850 done: 1851 put_device(dev); 1852 return error; 1853 SysEntryError: 1854 if (MAJOR(dev->devt)) 1855 device_remove_file(dev, &dev_attr_dev); 1856 DevAttrError: 1857 device_pm_remove(dev); 1858 dpm_sysfs_remove(dev); 1859 DPMError: 1860 bus_remove_device(dev); 1861 BusError: 1862 device_remove_attrs(dev); 1863 AttrsError: 1864 device_remove_class_symlinks(dev); 1865 SymlinkError: 1866 device_remove_file(dev, &dev_attr_uevent); 1867 attrError: 1868 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 1869 glue_dir = get_glue_dir(dev); 1870 kobject_del(&dev->kobj); 1871 Error: 1872 cleanup_glue_dir(dev, glue_dir); 1873 put_device(parent); 1874 name_error: 1875 kfree(dev->p); 1876 dev->p = NULL; 1877 goto done; 1878 } 1879 EXPORT_SYMBOL_GPL(device_add); 1880 1881 /** 1882 * device_register - register a device with the system. 1883 * @dev: pointer to the device structure 1884 * 1885 * This happens in two clean steps - initialize the device 1886 * and add it to the system. The two steps can be called 1887 * separately, but this is the easiest and most common. 1888 * I.e. you should only call the two helpers separately if 1889 * have a clearly defined need to use and refcount the device 1890 * before it is added to the hierarchy. 1891 * 1892 * For more information, see the kerneldoc for device_initialize() 1893 * and device_add(). 1894 * 1895 * NOTE: _Never_ directly free @dev after calling this function, even 1896 * if it returned an error! Always use put_device() to give up the 1897 * reference initialized in this function instead. 1898 */ 1899 int device_register(struct device *dev) 1900 { 1901 device_initialize(dev); 1902 return device_add(dev); 1903 } 1904 EXPORT_SYMBOL_GPL(device_register); 1905 1906 /** 1907 * get_device - increment reference count for device. 1908 * @dev: device. 1909 * 1910 * This simply forwards the call to kobject_get(), though 1911 * we do take care to provide for the case that we get a NULL 1912 * pointer passed in. 1913 */ 1914 struct device *get_device(struct device *dev) 1915 { 1916 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 1917 } 1918 EXPORT_SYMBOL_GPL(get_device); 1919 1920 /** 1921 * put_device - decrement reference count. 1922 * @dev: device in question. 1923 */ 1924 void put_device(struct device *dev) 1925 { 1926 /* might_sleep(); */ 1927 if (dev) 1928 kobject_put(&dev->kobj); 1929 } 1930 EXPORT_SYMBOL_GPL(put_device); 1931 1932 /** 1933 * device_del - delete device from system. 1934 * @dev: device. 1935 * 1936 * This is the first part of the device unregistration 1937 * sequence. This removes the device from the lists we control 1938 * from here, has it removed from the other driver model 1939 * subsystems it was added to in device_add(), and removes it 1940 * from the kobject hierarchy. 1941 * 1942 * NOTE: this should be called manually _iff_ device_add() was 1943 * also called manually. 1944 */ 1945 void device_del(struct device *dev) 1946 { 1947 struct device *parent = dev->parent; 1948 struct kobject *glue_dir = NULL; 1949 struct class_interface *class_intf; 1950 1951 /* Notify clients of device removal. This call must come 1952 * before dpm_sysfs_remove(). 1953 */ 1954 if (dev->bus) 1955 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1956 BUS_NOTIFY_DEL_DEVICE, dev); 1957 1958 dpm_sysfs_remove(dev); 1959 if (parent) 1960 klist_del(&dev->p->knode_parent); 1961 if (MAJOR(dev->devt)) { 1962 devtmpfs_delete_node(dev); 1963 device_remove_sys_dev_entry(dev); 1964 device_remove_file(dev, &dev_attr_dev); 1965 } 1966 if (dev->class) { 1967 device_remove_class_symlinks(dev); 1968 1969 mutex_lock(&dev->class->p->mutex); 1970 /* notify any interfaces that the device is now gone */ 1971 list_for_each_entry(class_intf, 1972 &dev->class->p->interfaces, node) 1973 if (class_intf->remove_dev) 1974 class_intf->remove_dev(dev, class_intf); 1975 /* remove the device from the class list */ 1976 klist_del(&dev->knode_class); 1977 mutex_unlock(&dev->class->p->mutex); 1978 } 1979 device_remove_file(dev, &dev_attr_uevent); 1980 device_remove_attrs(dev); 1981 bus_remove_device(dev); 1982 device_pm_remove(dev); 1983 driver_deferred_probe_del(dev); 1984 device_remove_properties(dev); 1985 device_links_purge(dev); 1986 1987 /* Notify the platform of the removal, in case they 1988 * need to do anything... 1989 */ 1990 if (platform_notify_remove) 1991 platform_notify_remove(dev); 1992 if (dev->bus) 1993 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1994 BUS_NOTIFY_REMOVED_DEVICE, dev); 1995 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 1996 glue_dir = get_glue_dir(dev); 1997 kobject_del(&dev->kobj); 1998 cleanup_glue_dir(dev, glue_dir); 1999 put_device(parent); 2000 } 2001 EXPORT_SYMBOL_GPL(device_del); 2002 2003 /** 2004 * device_unregister - unregister device from system. 2005 * @dev: device going away. 2006 * 2007 * We do this in two parts, like we do device_register(). First, 2008 * we remove it from all the subsystems with device_del(), then 2009 * we decrement the reference count via put_device(). If that 2010 * is the final reference count, the device will be cleaned up 2011 * via device_release() above. Otherwise, the structure will 2012 * stick around until the final reference to the device is dropped. 2013 */ 2014 void device_unregister(struct device *dev) 2015 { 2016 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2017 device_del(dev); 2018 put_device(dev); 2019 } 2020 EXPORT_SYMBOL_GPL(device_unregister); 2021 2022 static struct device *prev_device(struct klist_iter *i) 2023 { 2024 struct klist_node *n = klist_prev(i); 2025 struct device *dev = NULL; 2026 struct device_private *p; 2027 2028 if (n) { 2029 p = to_device_private_parent(n); 2030 dev = p->device; 2031 } 2032 return dev; 2033 } 2034 2035 static struct device *next_device(struct klist_iter *i) 2036 { 2037 struct klist_node *n = klist_next(i); 2038 struct device *dev = NULL; 2039 struct device_private *p; 2040 2041 if (n) { 2042 p = to_device_private_parent(n); 2043 dev = p->device; 2044 } 2045 return dev; 2046 } 2047 2048 /** 2049 * device_get_devnode - path of device node file 2050 * @dev: device 2051 * @mode: returned file access mode 2052 * @uid: returned file owner 2053 * @gid: returned file group 2054 * @tmp: possibly allocated string 2055 * 2056 * Return the relative path of a possible device node. 2057 * Non-default names may need to allocate a memory to compose 2058 * a name. This memory is returned in tmp and needs to be 2059 * freed by the caller. 2060 */ 2061 const char *device_get_devnode(struct device *dev, 2062 umode_t *mode, kuid_t *uid, kgid_t *gid, 2063 const char **tmp) 2064 { 2065 char *s; 2066 2067 *tmp = NULL; 2068 2069 /* the device type may provide a specific name */ 2070 if (dev->type && dev->type->devnode) 2071 *tmp = dev->type->devnode(dev, mode, uid, gid); 2072 if (*tmp) 2073 return *tmp; 2074 2075 /* the class may provide a specific name */ 2076 if (dev->class && dev->class->devnode) 2077 *tmp = dev->class->devnode(dev, mode); 2078 if (*tmp) 2079 return *tmp; 2080 2081 /* return name without allocation, tmp == NULL */ 2082 if (strchr(dev_name(dev), '!') == NULL) 2083 return dev_name(dev); 2084 2085 /* replace '!' in the name with '/' */ 2086 s = kstrdup(dev_name(dev), GFP_KERNEL); 2087 if (!s) 2088 return NULL; 2089 strreplace(s, '!', '/'); 2090 return *tmp = s; 2091 } 2092 2093 /** 2094 * device_for_each_child - device child iterator. 2095 * @parent: parent struct device. 2096 * @fn: function to be called for each device. 2097 * @data: data for the callback. 2098 * 2099 * Iterate over @parent's child devices, and call @fn for each, 2100 * passing it @data. 2101 * 2102 * We check the return of @fn each time. If it returns anything 2103 * other than 0, we break out and return that value. 2104 */ 2105 int device_for_each_child(struct device *parent, void *data, 2106 int (*fn)(struct device *dev, void *data)) 2107 { 2108 struct klist_iter i; 2109 struct device *child; 2110 int error = 0; 2111 2112 if (!parent->p) 2113 return 0; 2114 2115 klist_iter_init(&parent->p->klist_children, &i); 2116 while (!error && (child = next_device(&i))) 2117 error = fn(child, data); 2118 klist_iter_exit(&i); 2119 return error; 2120 } 2121 EXPORT_SYMBOL_GPL(device_for_each_child); 2122 2123 /** 2124 * device_for_each_child_reverse - device child iterator in reversed order. 2125 * @parent: parent struct device. 2126 * @fn: function to be called for each device. 2127 * @data: data for the callback. 2128 * 2129 * Iterate over @parent's child devices, and call @fn for each, 2130 * passing it @data. 2131 * 2132 * We check the return of @fn each time. If it returns anything 2133 * other than 0, we break out and return that value. 2134 */ 2135 int device_for_each_child_reverse(struct device *parent, void *data, 2136 int (*fn)(struct device *dev, void *data)) 2137 { 2138 struct klist_iter i; 2139 struct device *child; 2140 int error = 0; 2141 2142 if (!parent->p) 2143 return 0; 2144 2145 klist_iter_init(&parent->p->klist_children, &i); 2146 while ((child = prev_device(&i)) && !error) 2147 error = fn(child, data); 2148 klist_iter_exit(&i); 2149 return error; 2150 } 2151 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 2152 2153 /** 2154 * device_find_child - device iterator for locating a particular device. 2155 * @parent: parent struct device 2156 * @match: Callback function to check device 2157 * @data: Data to pass to match function 2158 * 2159 * This is similar to the device_for_each_child() function above, but it 2160 * returns a reference to a device that is 'found' for later use, as 2161 * determined by the @match callback. 2162 * 2163 * The callback should return 0 if the device doesn't match and non-zero 2164 * if it does. If the callback returns non-zero and a reference to the 2165 * current device can be obtained, this function will return to the caller 2166 * and not iterate over any more devices. 2167 * 2168 * NOTE: you will need to drop the reference with put_device() after use. 2169 */ 2170 struct device *device_find_child(struct device *parent, void *data, 2171 int (*match)(struct device *dev, void *data)) 2172 { 2173 struct klist_iter i; 2174 struct device *child; 2175 2176 if (!parent) 2177 return NULL; 2178 2179 klist_iter_init(&parent->p->klist_children, &i); 2180 while ((child = next_device(&i))) 2181 if (match(child, data) && get_device(child)) 2182 break; 2183 klist_iter_exit(&i); 2184 return child; 2185 } 2186 EXPORT_SYMBOL_GPL(device_find_child); 2187 2188 int __init devices_init(void) 2189 { 2190 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 2191 if (!devices_kset) 2192 return -ENOMEM; 2193 dev_kobj = kobject_create_and_add("dev", NULL); 2194 if (!dev_kobj) 2195 goto dev_kobj_err; 2196 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 2197 if (!sysfs_dev_block_kobj) 2198 goto block_kobj_err; 2199 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 2200 if (!sysfs_dev_char_kobj) 2201 goto char_kobj_err; 2202 2203 return 0; 2204 2205 char_kobj_err: 2206 kobject_put(sysfs_dev_block_kobj); 2207 block_kobj_err: 2208 kobject_put(dev_kobj); 2209 dev_kobj_err: 2210 kset_unregister(devices_kset); 2211 return -ENOMEM; 2212 } 2213 2214 static int device_check_offline(struct device *dev, void *not_used) 2215 { 2216 int ret; 2217 2218 ret = device_for_each_child(dev, NULL, device_check_offline); 2219 if (ret) 2220 return ret; 2221 2222 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 2223 } 2224 2225 /** 2226 * device_offline - Prepare the device for hot-removal. 2227 * @dev: Device to be put offline. 2228 * 2229 * Execute the device bus type's .offline() callback, if present, to prepare 2230 * the device for a subsequent hot-removal. If that succeeds, the device must 2231 * not be used until either it is removed or its bus type's .online() callback 2232 * is executed. 2233 * 2234 * Call under device_hotplug_lock. 2235 */ 2236 int device_offline(struct device *dev) 2237 { 2238 int ret; 2239 2240 if (dev->offline_disabled) 2241 return -EPERM; 2242 2243 ret = device_for_each_child(dev, NULL, device_check_offline); 2244 if (ret) 2245 return ret; 2246 2247 device_lock(dev); 2248 if (device_supports_offline(dev)) { 2249 if (dev->offline) { 2250 ret = 1; 2251 } else { 2252 ret = dev->bus->offline(dev); 2253 if (!ret) { 2254 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2255 dev->offline = true; 2256 } 2257 } 2258 } 2259 device_unlock(dev); 2260 2261 return ret; 2262 } 2263 2264 /** 2265 * device_online - Put the device back online after successful device_offline(). 2266 * @dev: Device to be put back online. 2267 * 2268 * If device_offline() has been successfully executed for @dev, but the device 2269 * has not been removed subsequently, execute its bus type's .online() callback 2270 * to indicate that the device can be used again. 2271 * 2272 * Call under device_hotplug_lock. 2273 */ 2274 int device_online(struct device *dev) 2275 { 2276 int ret = 0; 2277 2278 device_lock(dev); 2279 if (device_supports_offline(dev)) { 2280 if (dev->offline) { 2281 ret = dev->bus->online(dev); 2282 if (!ret) { 2283 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2284 dev->offline = false; 2285 } 2286 } else { 2287 ret = 1; 2288 } 2289 } 2290 device_unlock(dev); 2291 2292 return ret; 2293 } 2294 2295 struct root_device { 2296 struct device dev; 2297 struct module *owner; 2298 }; 2299 2300 static inline struct root_device *to_root_device(struct device *d) 2301 { 2302 return container_of(d, struct root_device, dev); 2303 } 2304 2305 static void root_device_release(struct device *dev) 2306 { 2307 kfree(to_root_device(dev)); 2308 } 2309 2310 /** 2311 * __root_device_register - allocate and register a root device 2312 * @name: root device name 2313 * @owner: owner module of the root device, usually THIS_MODULE 2314 * 2315 * This function allocates a root device and registers it 2316 * using device_register(). In order to free the returned 2317 * device, use root_device_unregister(). 2318 * 2319 * Root devices are dummy devices which allow other devices 2320 * to be grouped under /sys/devices. Use this function to 2321 * allocate a root device and then use it as the parent of 2322 * any device which should appear under /sys/devices/{name} 2323 * 2324 * The /sys/devices/{name} directory will also contain a 2325 * 'module' symlink which points to the @owner directory 2326 * in sysfs. 2327 * 2328 * Returns &struct device pointer on success, or ERR_PTR() on error. 2329 * 2330 * Note: You probably want to use root_device_register(). 2331 */ 2332 struct device *__root_device_register(const char *name, struct module *owner) 2333 { 2334 struct root_device *root; 2335 int err = -ENOMEM; 2336 2337 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 2338 if (!root) 2339 return ERR_PTR(err); 2340 2341 err = dev_set_name(&root->dev, "%s", name); 2342 if (err) { 2343 kfree(root); 2344 return ERR_PTR(err); 2345 } 2346 2347 root->dev.release = root_device_release; 2348 2349 err = device_register(&root->dev); 2350 if (err) { 2351 put_device(&root->dev); 2352 return ERR_PTR(err); 2353 } 2354 2355 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 2356 if (owner) { 2357 struct module_kobject *mk = &owner->mkobj; 2358 2359 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 2360 if (err) { 2361 device_unregister(&root->dev); 2362 return ERR_PTR(err); 2363 } 2364 root->owner = owner; 2365 } 2366 #endif 2367 2368 return &root->dev; 2369 } 2370 EXPORT_SYMBOL_GPL(__root_device_register); 2371 2372 /** 2373 * root_device_unregister - unregister and free a root device 2374 * @dev: device going away 2375 * 2376 * This function unregisters and cleans up a device that was created by 2377 * root_device_register(). 2378 */ 2379 void root_device_unregister(struct device *dev) 2380 { 2381 struct root_device *root = to_root_device(dev); 2382 2383 if (root->owner) 2384 sysfs_remove_link(&root->dev.kobj, "module"); 2385 2386 device_unregister(dev); 2387 } 2388 EXPORT_SYMBOL_GPL(root_device_unregister); 2389 2390 2391 static void device_create_release(struct device *dev) 2392 { 2393 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2394 kfree(dev); 2395 } 2396 2397 static struct device * 2398 device_create_groups_vargs(struct class *class, struct device *parent, 2399 dev_t devt, void *drvdata, 2400 const struct attribute_group **groups, 2401 const char *fmt, va_list args) 2402 { 2403 struct device *dev = NULL; 2404 int retval = -ENODEV; 2405 2406 if (class == NULL || IS_ERR(class)) 2407 goto error; 2408 2409 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2410 if (!dev) { 2411 retval = -ENOMEM; 2412 goto error; 2413 } 2414 2415 device_initialize(dev); 2416 dev->devt = devt; 2417 dev->class = class; 2418 dev->parent = parent; 2419 dev->groups = groups; 2420 dev->release = device_create_release; 2421 dev_set_drvdata(dev, drvdata); 2422 2423 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 2424 if (retval) 2425 goto error; 2426 2427 retval = device_add(dev); 2428 if (retval) 2429 goto error; 2430 2431 return dev; 2432 2433 error: 2434 put_device(dev); 2435 return ERR_PTR(retval); 2436 } 2437 2438 /** 2439 * device_create_vargs - creates a device and registers it with sysfs 2440 * @class: pointer to the struct class that this device should be registered to 2441 * @parent: pointer to the parent struct device of this new device, if any 2442 * @devt: the dev_t for the char device to be added 2443 * @drvdata: the data to be added to the device for callbacks 2444 * @fmt: string for the device's name 2445 * @args: va_list for the device's name 2446 * 2447 * This function can be used by char device classes. A struct device 2448 * will be created in sysfs, registered to the specified class. 2449 * 2450 * A "dev" file will be created, showing the dev_t for the device, if 2451 * the dev_t is not 0,0. 2452 * If a pointer to a parent struct device is passed in, the newly created 2453 * struct device will be a child of that device in sysfs. 2454 * The pointer to the struct device will be returned from the call. 2455 * Any further sysfs files that might be required can be created using this 2456 * pointer. 2457 * 2458 * Returns &struct device pointer on success, or ERR_PTR() on error. 2459 * 2460 * Note: the struct class passed to this function must have previously 2461 * been created with a call to class_create(). 2462 */ 2463 struct device *device_create_vargs(struct class *class, struct device *parent, 2464 dev_t devt, void *drvdata, const char *fmt, 2465 va_list args) 2466 { 2467 return device_create_groups_vargs(class, parent, devt, drvdata, NULL, 2468 fmt, args); 2469 } 2470 EXPORT_SYMBOL_GPL(device_create_vargs); 2471 2472 /** 2473 * device_create - creates a device and registers it with sysfs 2474 * @class: pointer to the struct class that this device should be registered to 2475 * @parent: pointer to the parent struct device of this new device, if any 2476 * @devt: the dev_t for the char device to be added 2477 * @drvdata: the data to be added to the device for callbacks 2478 * @fmt: string for the device's name 2479 * 2480 * This function can be used by char device classes. A struct device 2481 * will be created in sysfs, registered to the specified class. 2482 * 2483 * A "dev" file will be created, showing the dev_t for the device, if 2484 * the dev_t is not 0,0. 2485 * If a pointer to a parent struct device is passed in, the newly created 2486 * struct device will be a child of that device in sysfs. 2487 * The pointer to the struct device will be returned from the call. 2488 * Any further sysfs files that might be required can be created using this 2489 * pointer. 2490 * 2491 * Returns &struct device pointer on success, or ERR_PTR() on error. 2492 * 2493 * Note: the struct class passed to this function must have previously 2494 * been created with a call to class_create(). 2495 */ 2496 struct device *device_create(struct class *class, struct device *parent, 2497 dev_t devt, void *drvdata, const char *fmt, ...) 2498 { 2499 va_list vargs; 2500 struct device *dev; 2501 2502 va_start(vargs, fmt); 2503 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs); 2504 va_end(vargs); 2505 return dev; 2506 } 2507 EXPORT_SYMBOL_GPL(device_create); 2508 2509 /** 2510 * device_create_with_groups - creates a device and registers it with sysfs 2511 * @class: pointer to the struct class that this device should be registered to 2512 * @parent: pointer to the parent struct device of this new device, if any 2513 * @devt: the dev_t for the char device to be added 2514 * @drvdata: the data to be added to the device for callbacks 2515 * @groups: NULL-terminated list of attribute groups to be created 2516 * @fmt: string for the device's name 2517 * 2518 * This function can be used by char device classes. A struct device 2519 * will be created in sysfs, registered to the specified class. 2520 * Additional attributes specified in the groups parameter will also 2521 * be created automatically. 2522 * 2523 * A "dev" file will be created, showing the dev_t for the device, if 2524 * the dev_t is not 0,0. 2525 * If a pointer to a parent struct device is passed in, the newly created 2526 * struct device will be a child of that device in sysfs. 2527 * The pointer to the struct device will be returned from the call. 2528 * Any further sysfs files that might be required can be created using this 2529 * pointer. 2530 * 2531 * Returns &struct device pointer on success, or ERR_PTR() on error. 2532 * 2533 * Note: the struct class passed to this function must have previously 2534 * been created with a call to class_create(). 2535 */ 2536 struct device *device_create_with_groups(struct class *class, 2537 struct device *parent, dev_t devt, 2538 void *drvdata, 2539 const struct attribute_group **groups, 2540 const char *fmt, ...) 2541 { 2542 va_list vargs; 2543 struct device *dev; 2544 2545 va_start(vargs, fmt); 2546 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 2547 fmt, vargs); 2548 va_end(vargs); 2549 return dev; 2550 } 2551 EXPORT_SYMBOL_GPL(device_create_with_groups); 2552 2553 static int __match_devt(struct device *dev, const void *data) 2554 { 2555 const dev_t *devt = data; 2556 2557 return dev->devt == *devt; 2558 } 2559 2560 /** 2561 * device_destroy - removes a device that was created with device_create() 2562 * @class: pointer to the struct class that this device was registered with 2563 * @devt: the dev_t of the device that was previously registered 2564 * 2565 * This call unregisters and cleans up a device that was created with a 2566 * call to device_create(). 2567 */ 2568 void device_destroy(struct class *class, dev_t devt) 2569 { 2570 struct device *dev; 2571 2572 dev = class_find_device(class, NULL, &devt, __match_devt); 2573 if (dev) { 2574 put_device(dev); 2575 device_unregister(dev); 2576 } 2577 } 2578 EXPORT_SYMBOL_GPL(device_destroy); 2579 2580 /** 2581 * device_rename - renames a device 2582 * @dev: the pointer to the struct device to be renamed 2583 * @new_name: the new name of the device 2584 * 2585 * It is the responsibility of the caller to provide mutual 2586 * exclusion between two different calls of device_rename 2587 * on the same device to ensure that new_name is valid and 2588 * won't conflict with other devices. 2589 * 2590 * Note: Don't call this function. Currently, the networking layer calls this 2591 * function, but that will change. The following text from Kay Sievers offers 2592 * some insight: 2593 * 2594 * Renaming devices is racy at many levels, symlinks and other stuff are not 2595 * replaced atomically, and you get a "move" uevent, but it's not easy to 2596 * connect the event to the old and new device. Device nodes are not renamed at 2597 * all, there isn't even support for that in the kernel now. 2598 * 2599 * In the meantime, during renaming, your target name might be taken by another 2600 * driver, creating conflicts. Or the old name is taken directly after you 2601 * renamed it -- then you get events for the same DEVPATH, before you even see 2602 * the "move" event. It's just a mess, and nothing new should ever rely on 2603 * kernel device renaming. Besides that, it's not even implemented now for 2604 * other things than (driver-core wise very simple) network devices. 2605 * 2606 * We are currently about to change network renaming in udev to completely 2607 * disallow renaming of devices in the same namespace as the kernel uses, 2608 * because we can't solve the problems properly, that arise with swapping names 2609 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 2610 * be allowed to some other name than eth[0-9]*, for the aforementioned 2611 * reasons. 2612 * 2613 * Make up a "real" name in the driver before you register anything, or add 2614 * some other attributes for userspace to find the device, or use udev to add 2615 * symlinks -- but never rename kernel devices later, it's a complete mess. We 2616 * don't even want to get into that and try to implement the missing pieces in 2617 * the core. We really have other pieces to fix in the driver core mess. :) 2618 */ 2619 int device_rename(struct device *dev, const char *new_name) 2620 { 2621 struct kobject *kobj = &dev->kobj; 2622 char *old_device_name = NULL; 2623 int error; 2624 2625 dev = get_device(dev); 2626 if (!dev) 2627 return -EINVAL; 2628 2629 dev_dbg(dev, "renaming to %s\n", new_name); 2630 2631 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 2632 if (!old_device_name) { 2633 error = -ENOMEM; 2634 goto out; 2635 } 2636 2637 if (dev->class) { 2638 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 2639 kobj, old_device_name, 2640 new_name, kobject_namespace(kobj)); 2641 if (error) 2642 goto out; 2643 } 2644 2645 error = kobject_rename(kobj, new_name); 2646 if (error) 2647 goto out; 2648 2649 out: 2650 put_device(dev); 2651 2652 kfree(old_device_name); 2653 2654 return error; 2655 } 2656 EXPORT_SYMBOL_GPL(device_rename); 2657 2658 static int device_move_class_links(struct device *dev, 2659 struct device *old_parent, 2660 struct device *new_parent) 2661 { 2662 int error = 0; 2663 2664 if (old_parent) 2665 sysfs_remove_link(&dev->kobj, "device"); 2666 if (new_parent) 2667 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 2668 "device"); 2669 return error; 2670 } 2671 2672 /** 2673 * device_move - moves a device to a new parent 2674 * @dev: the pointer to the struct device to be moved 2675 * @new_parent: the new parent of the device (can by NULL) 2676 * @dpm_order: how to reorder the dpm_list 2677 */ 2678 int device_move(struct device *dev, struct device *new_parent, 2679 enum dpm_order dpm_order) 2680 { 2681 int error; 2682 struct device *old_parent; 2683 struct kobject *new_parent_kobj; 2684 2685 dev = get_device(dev); 2686 if (!dev) 2687 return -EINVAL; 2688 2689 device_pm_lock(); 2690 new_parent = get_device(new_parent); 2691 new_parent_kobj = get_device_parent(dev, new_parent); 2692 2693 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 2694 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 2695 error = kobject_move(&dev->kobj, new_parent_kobj); 2696 if (error) { 2697 cleanup_glue_dir(dev, new_parent_kobj); 2698 put_device(new_parent); 2699 goto out; 2700 } 2701 old_parent = dev->parent; 2702 dev->parent = new_parent; 2703 if (old_parent) 2704 klist_remove(&dev->p->knode_parent); 2705 if (new_parent) { 2706 klist_add_tail(&dev->p->knode_parent, 2707 &new_parent->p->klist_children); 2708 set_dev_node(dev, dev_to_node(new_parent)); 2709 } 2710 2711 if (dev->class) { 2712 error = device_move_class_links(dev, old_parent, new_parent); 2713 if (error) { 2714 /* We ignore errors on cleanup since we're hosed anyway... */ 2715 device_move_class_links(dev, new_parent, old_parent); 2716 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 2717 if (new_parent) 2718 klist_remove(&dev->p->knode_parent); 2719 dev->parent = old_parent; 2720 if (old_parent) { 2721 klist_add_tail(&dev->p->knode_parent, 2722 &old_parent->p->klist_children); 2723 set_dev_node(dev, dev_to_node(old_parent)); 2724 } 2725 } 2726 cleanup_glue_dir(dev, new_parent_kobj); 2727 put_device(new_parent); 2728 goto out; 2729 } 2730 } 2731 switch (dpm_order) { 2732 case DPM_ORDER_NONE: 2733 break; 2734 case DPM_ORDER_DEV_AFTER_PARENT: 2735 device_pm_move_after(dev, new_parent); 2736 devices_kset_move_after(dev, new_parent); 2737 break; 2738 case DPM_ORDER_PARENT_BEFORE_DEV: 2739 device_pm_move_before(new_parent, dev); 2740 devices_kset_move_before(new_parent, dev); 2741 break; 2742 case DPM_ORDER_DEV_LAST: 2743 device_pm_move_last(dev); 2744 devices_kset_move_last(dev); 2745 break; 2746 } 2747 2748 put_device(old_parent); 2749 out: 2750 device_pm_unlock(); 2751 put_device(dev); 2752 return error; 2753 } 2754 EXPORT_SYMBOL_GPL(device_move); 2755 2756 /** 2757 * device_shutdown - call ->shutdown() on each device to shutdown. 2758 */ 2759 void device_shutdown(void) 2760 { 2761 struct device *dev, *parent; 2762 2763 spin_lock(&devices_kset->list_lock); 2764 /* 2765 * Walk the devices list backward, shutting down each in turn. 2766 * Beware that device unplug events may also start pulling 2767 * devices offline, even as the system is shutting down. 2768 */ 2769 while (!list_empty(&devices_kset->list)) { 2770 dev = list_entry(devices_kset->list.prev, struct device, 2771 kobj.entry); 2772 2773 /* 2774 * hold reference count of device's parent to 2775 * prevent it from being freed because parent's 2776 * lock is to be held 2777 */ 2778 parent = get_device(dev->parent); 2779 get_device(dev); 2780 /* 2781 * Make sure the device is off the kset list, in the 2782 * event that dev->*->shutdown() doesn't remove it. 2783 */ 2784 list_del_init(&dev->kobj.entry); 2785 spin_unlock(&devices_kset->list_lock); 2786 2787 /* hold lock to avoid race with probe/release */ 2788 if (parent) 2789 device_lock(parent); 2790 device_lock(dev); 2791 2792 /* Don't allow any more runtime suspends */ 2793 pm_runtime_get_noresume(dev); 2794 pm_runtime_barrier(dev); 2795 2796 if (dev->class && dev->class->shutdown_pre) { 2797 if (initcall_debug) 2798 dev_info(dev, "shutdown_pre\n"); 2799 dev->class->shutdown_pre(dev); 2800 } 2801 if (dev->bus && dev->bus->shutdown) { 2802 if (initcall_debug) 2803 dev_info(dev, "shutdown\n"); 2804 dev->bus->shutdown(dev); 2805 } else if (dev->driver && dev->driver->shutdown) { 2806 if (initcall_debug) 2807 dev_info(dev, "shutdown\n"); 2808 dev->driver->shutdown(dev); 2809 } 2810 2811 device_unlock(dev); 2812 if (parent) 2813 device_unlock(parent); 2814 2815 put_device(dev); 2816 put_device(parent); 2817 2818 spin_lock(&devices_kset->list_lock); 2819 } 2820 spin_unlock(&devices_kset->list_lock); 2821 } 2822 2823 /* 2824 * Device logging functions 2825 */ 2826 2827 #ifdef CONFIG_PRINTK 2828 static int 2829 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen) 2830 { 2831 const char *subsys; 2832 size_t pos = 0; 2833 2834 if (dev->class) 2835 subsys = dev->class->name; 2836 else if (dev->bus) 2837 subsys = dev->bus->name; 2838 else 2839 return 0; 2840 2841 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys); 2842 if (pos >= hdrlen) 2843 goto overflow; 2844 2845 /* 2846 * Add device identifier DEVICE=: 2847 * b12:8 block dev_t 2848 * c127:3 char dev_t 2849 * n8 netdev ifindex 2850 * +sound:card0 subsystem:devname 2851 */ 2852 if (MAJOR(dev->devt)) { 2853 char c; 2854 2855 if (strcmp(subsys, "block") == 0) 2856 c = 'b'; 2857 else 2858 c = 'c'; 2859 pos++; 2860 pos += snprintf(hdr + pos, hdrlen - pos, 2861 "DEVICE=%c%u:%u", 2862 c, MAJOR(dev->devt), MINOR(dev->devt)); 2863 } else if (strcmp(subsys, "net") == 0) { 2864 struct net_device *net = to_net_dev(dev); 2865 2866 pos++; 2867 pos += snprintf(hdr + pos, hdrlen - pos, 2868 "DEVICE=n%u", net->ifindex); 2869 } else { 2870 pos++; 2871 pos += snprintf(hdr + pos, hdrlen - pos, 2872 "DEVICE=+%s:%s", subsys, dev_name(dev)); 2873 } 2874 2875 if (pos >= hdrlen) 2876 goto overflow; 2877 2878 return pos; 2879 2880 overflow: 2881 dev_WARN(dev, "device/subsystem name too long"); 2882 return 0; 2883 } 2884 2885 int dev_vprintk_emit(int level, const struct device *dev, 2886 const char *fmt, va_list args) 2887 { 2888 char hdr[128]; 2889 size_t hdrlen; 2890 2891 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr)); 2892 2893 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args); 2894 } 2895 EXPORT_SYMBOL(dev_vprintk_emit); 2896 2897 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 2898 { 2899 va_list args; 2900 int r; 2901 2902 va_start(args, fmt); 2903 2904 r = dev_vprintk_emit(level, dev, fmt, args); 2905 2906 va_end(args); 2907 2908 return r; 2909 } 2910 EXPORT_SYMBOL(dev_printk_emit); 2911 2912 static void __dev_printk(const char *level, const struct device *dev, 2913 struct va_format *vaf) 2914 { 2915 if (dev) 2916 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 2917 dev_driver_string(dev), dev_name(dev), vaf); 2918 else 2919 printk("%s(NULL device *): %pV", level, vaf); 2920 } 2921 2922 void dev_printk(const char *level, const struct device *dev, 2923 const char *fmt, ...) 2924 { 2925 struct va_format vaf; 2926 va_list args; 2927 2928 va_start(args, fmt); 2929 2930 vaf.fmt = fmt; 2931 vaf.va = &args; 2932 2933 __dev_printk(level, dev, &vaf); 2934 2935 va_end(args); 2936 } 2937 EXPORT_SYMBOL(dev_printk); 2938 2939 #define define_dev_printk_level(func, kern_level) \ 2940 void func(const struct device *dev, const char *fmt, ...) \ 2941 { \ 2942 struct va_format vaf; \ 2943 va_list args; \ 2944 \ 2945 va_start(args, fmt); \ 2946 \ 2947 vaf.fmt = fmt; \ 2948 vaf.va = &args; \ 2949 \ 2950 __dev_printk(kern_level, dev, &vaf); \ 2951 \ 2952 va_end(args); \ 2953 } \ 2954 EXPORT_SYMBOL(func); 2955 2956 define_dev_printk_level(dev_emerg, KERN_EMERG); 2957 define_dev_printk_level(dev_alert, KERN_ALERT); 2958 define_dev_printk_level(dev_crit, KERN_CRIT); 2959 define_dev_printk_level(dev_err, KERN_ERR); 2960 define_dev_printk_level(dev_warn, KERN_WARNING); 2961 define_dev_printk_level(dev_notice, KERN_NOTICE); 2962 define_dev_printk_level(_dev_info, KERN_INFO); 2963 2964 #endif 2965 2966 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 2967 { 2968 return fwnode && !IS_ERR(fwnode->secondary); 2969 } 2970 2971 /** 2972 * set_primary_fwnode - Change the primary firmware node of a given device. 2973 * @dev: Device to handle. 2974 * @fwnode: New primary firmware node of the device. 2975 * 2976 * Set the device's firmware node pointer to @fwnode, but if a secondary 2977 * firmware node of the device is present, preserve it. 2978 */ 2979 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 2980 { 2981 if (fwnode) { 2982 struct fwnode_handle *fn = dev->fwnode; 2983 2984 if (fwnode_is_primary(fn)) 2985 fn = fn->secondary; 2986 2987 if (fn) { 2988 WARN_ON(fwnode->secondary); 2989 fwnode->secondary = fn; 2990 } 2991 dev->fwnode = fwnode; 2992 } else { 2993 dev->fwnode = fwnode_is_primary(dev->fwnode) ? 2994 dev->fwnode->secondary : NULL; 2995 } 2996 } 2997 EXPORT_SYMBOL_GPL(set_primary_fwnode); 2998 2999 /** 3000 * set_secondary_fwnode - Change the secondary firmware node of a given device. 3001 * @dev: Device to handle. 3002 * @fwnode: New secondary firmware node of the device. 3003 * 3004 * If a primary firmware node of the device is present, set its secondary 3005 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 3006 * @fwnode. 3007 */ 3008 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 3009 { 3010 if (fwnode) 3011 fwnode->secondary = ERR_PTR(-ENODEV); 3012 3013 if (fwnode_is_primary(dev->fwnode)) 3014 dev->fwnode->secondary = fwnode; 3015 else 3016 dev->fwnode = fwnode; 3017 } 3018 3019 /** 3020 * device_set_of_node_from_dev - reuse device-tree node of another device 3021 * @dev: device whose device-tree node is being set 3022 * @dev2: device whose device-tree node is being reused 3023 * 3024 * Takes another reference to the new device-tree node after first dropping 3025 * any reference held to the old node. 3026 */ 3027 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 3028 { 3029 of_node_put(dev->of_node); 3030 dev->of_node = of_node_get(dev2->of_node); 3031 dev->of_node_reused = true; 3032 } 3033 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 3034