xref: /openbmc/linux/drivers/base/core.c (revision 45cc842d5b75ba8f9a958f2dd12b95c6dd0452bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/fwnode.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/kdev_t.h>
19 #include <linux/notifier.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/genhd.h>
23 #include <linux/mutex.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/netdevice.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sysfs.h>
28 
29 #include "base.h"
30 #include "power/power.h"
31 
32 #ifdef CONFIG_SYSFS_DEPRECATED
33 #ifdef CONFIG_SYSFS_DEPRECATED_V2
34 long sysfs_deprecated = 1;
35 #else
36 long sysfs_deprecated = 0;
37 #endif
38 static int __init sysfs_deprecated_setup(char *arg)
39 {
40 	return kstrtol(arg, 10, &sysfs_deprecated);
41 }
42 early_param("sysfs.deprecated", sysfs_deprecated_setup);
43 #endif
44 
45 /* Device links support. */
46 
47 #ifdef CONFIG_SRCU
48 static DEFINE_MUTEX(device_links_lock);
49 DEFINE_STATIC_SRCU(device_links_srcu);
50 
51 static inline void device_links_write_lock(void)
52 {
53 	mutex_lock(&device_links_lock);
54 }
55 
56 static inline void device_links_write_unlock(void)
57 {
58 	mutex_unlock(&device_links_lock);
59 }
60 
61 int device_links_read_lock(void)
62 {
63 	return srcu_read_lock(&device_links_srcu);
64 }
65 
66 void device_links_read_unlock(int idx)
67 {
68 	srcu_read_unlock(&device_links_srcu, idx);
69 }
70 #else /* !CONFIG_SRCU */
71 static DECLARE_RWSEM(device_links_lock);
72 
73 static inline void device_links_write_lock(void)
74 {
75 	down_write(&device_links_lock);
76 }
77 
78 static inline void device_links_write_unlock(void)
79 {
80 	up_write(&device_links_lock);
81 }
82 
83 int device_links_read_lock(void)
84 {
85 	down_read(&device_links_lock);
86 	return 0;
87 }
88 
89 void device_links_read_unlock(int not_used)
90 {
91 	up_read(&device_links_lock);
92 }
93 #endif /* !CONFIG_SRCU */
94 
95 /**
96  * device_is_dependent - Check if one device depends on another one
97  * @dev: Device to check dependencies for.
98  * @target: Device to check against.
99  *
100  * Check if @target depends on @dev or any device dependent on it (its child or
101  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
102  */
103 static int device_is_dependent(struct device *dev, void *target)
104 {
105 	struct device_link *link;
106 	int ret;
107 
108 	if (WARN_ON(dev == target))
109 		return 1;
110 
111 	ret = device_for_each_child(dev, target, device_is_dependent);
112 	if (ret)
113 		return ret;
114 
115 	list_for_each_entry(link, &dev->links.consumers, s_node) {
116 		if (WARN_ON(link->consumer == target))
117 			return 1;
118 
119 		ret = device_is_dependent(link->consumer, target);
120 		if (ret)
121 			break;
122 	}
123 	return ret;
124 }
125 
126 static int device_reorder_to_tail(struct device *dev, void *not_used)
127 {
128 	struct device_link *link;
129 
130 	/*
131 	 * Devices that have not been registered yet will be put to the ends
132 	 * of the lists during the registration, so skip them here.
133 	 */
134 	if (device_is_registered(dev))
135 		devices_kset_move_last(dev);
136 
137 	if (device_pm_initialized(dev))
138 		device_pm_move_last(dev);
139 
140 	device_for_each_child(dev, NULL, device_reorder_to_tail);
141 	list_for_each_entry(link, &dev->links.consumers, s_node)
142 		device_reorder_to_tail(link->consumer, NULL);
143 
144 	return 0;
145 }
146 
147 /**
148  * device_link_add - Create a link between two devices.
149  * @consumer: Consumer end of the link.
150  * @supplier: Supplier end of the link.
151  * @flags: Link flags.
152  *
153  * The caller is responsible for the proper synchronization of the link creation
154  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
155  * runtime PM framework to take the link into account.  Second, if the
156  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
157  * be forced into the active metastate and reference-counted upon the creation
158  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
159  * ignored.
160  *
161  * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically
162  * when the consumer device driver unbinds from it.  The combination of both
163  * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL
164  * to be returned.
165  *
166  * A side effect of the link creation is re-ordering of dpm_list and the
167  * devices_kset list by moving the consumer device and all devices depending
168  * on it to the ends of these lists (that does not happen to devices that have
169  * not been registered when this function is called).
170  *
171  * The supplier device is required to be registered when this function is called
172  * and NULL will be returned if that is not the case.  The consumer device need
173  * not be registered, however.
174  */
175 struct device_link *device_link_add(struct device *consumer,
176 				    struct device *supplier, u32 flags)
177 {
178 	struct device_link *link;
179 
180 	if (!consumer || !supplier ||
181 	    ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE)))
182 		return NULL;
183 
184 	device_links_write_lock();
185 	device_pm_lock();
186 
187 	/*
188 	 * If the supplier has not been fully registered yet or there is a
189 	 * reverse dependency between the consumer and the supplier already in
190 	 * the graph, return NULL.
191 	 */
192 	if (!device_pm_initialized(supplier)
193 	    || device_is_dependent(consumer, supplier)) {
194 		link = NULL;
195 		goto out;
196 	}
197 
198 	list_for_each_entry(link, &supplier->links.consumers, s_node)
199 		if (link->consumer == consumer)
200 			goto out;
201 
202 	link = kzalloc(sizeof(*link), GFP_KERNEL);
203 	if (!link)
204 		goto out;
205 
206 	if (flags & DL_FLAG_PM_RUNTIME) {
207 		if (flags & DL_FLAG_RPM_ACTIVE) {
208 			if (pm_runtime_get_sync(supplier) < 0) {
209 				pm_runtime_put_noidle(supplier);
210 				kfree(link);
211 				link = NULL;
212 				goto out;
213 			}
214 			link->rpm_active = true;
215 		}
216 		pm_runtime_new_link(consumer);
217 	}
218 	get_device(supplier);
219 	link->supplier = supplier;
220 	INIT_LIST_HEAD(&link->s_node);
221 	get_device(consumer);
222 	link->consumer = consumer;
223 	INIT_LIST_HEAD(&link->c_node);
224 	link->flags = flags;
225 
226 	/* Determine the initial link state. */
227 	if (flags & DL_FLAG_STATELESS) {
228 		link->status = DL_STATE_NONE;
229 	} else {
230 		switch (supplier->links.status) {
231 		case DL_DEV_DRIVER_BOUND:
232 			switch (consumer->links.status) {
233 			case DL_DEV_PROBING:
234 				/*
235 				 * Balance the decrementation of the supplier's
236 				 * runtime PM usage counter after consumer probe
237 				 * in driver_probe_device().
238 				 */
239 				if (flags & DL_FLAG_PM_RUNTIME)
240 					pm_runtime_get_sync(supplier);
241 
242 				link->status = DL_STATE_CONSUMER_PROBE;
243 				break;
244 			case DL_DEV_DRIVER_BOUND:
245 				link->status = DL_STATE_ACTIVE;
246 				break;
247 			default:
248 				link->status = DL_STATE_AVAILABLE;
249 				break;
250 			}
251 			break;
252 		case DL_DEV_UNBINDING:
253 			link->status = DL_STATE_SUPPLIER_UNBIND;
254 			break;
255 		default:
256 			link->status = DL_STATE_DORMANT;
257 			break;
258 		}
259 	}
260 
261 	/*
262 	 * Move the consumer and all of the devices depending on it to the end
263 	 * of dpm_list and the devices_kset list.
264 	 *
265 	 * It is necessary to hold dpm_list locked throughout all that or else
266 	 * we may end up suspending with a wrong ordering of it.
267 	 */
268 	device_reorder_to_tail(consumer, NULL);
269 
270 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
271 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
272 
273 	dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
274 
275  out:
276 	device_pm_unlock();
277 	device_links_write_unlock();
278 	return link;
279 }
280 EXPORT_SYMBOL_GPL(device_link_add);
281 
282 static void device_link_free(struct device_link *link)
283 {
284 	put_device(link->consumer);
285 	put_device(link->supplier);
286 	kfree(link);
287 }
288 
289 #ifdef CONFIG_SRCU
290 static void __device_link_free_srcu(struct rcu_head *rhead)
291 {
292 	device_link_free(container_of(rhead, struct device_link, rcu_head));
293 }
294 
295 static void __device_link_del(struct device_link *link)
296 {
297 	dev_info(link->consumer, "Dropping the link to %s\n",
298 		 dev_name(link->supplier));
299 
300 	if (link->flags & DL_FLAG_PM_RUNTIME)
301 		pm_runtime_drop_link(link->consumer);
302 
303 	list_del_rcu(&link->s_node);
304 	list_del_rcu(&link->c_node);
305 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
306 }
307 #else /* !CONFIG_SRCU */
308 static void __device_link_del(struct device_link *link)
309 {
310 	dev_info(link->consumer, "Dropping the link to %s\n",
311 		 dev_name(link->supplier));
312 
313 	list_del(&link->s_node);
314 	list_del(&link->c_node);
315 	device_link_free(link);
316 }
317 #endif /* !CONFIG_SRCU */
318 
319 /**
320  * device_link_del - Delete a link between two devices.
321  * @link: Device link to delete.
322  *
323  * The caller must ensure proper synchronization of this function with runtime
324  * PM.
325  */
326 void device_link_del(struct device_link *link)
327 {
328 	device_links_write_lock();
329 	device_pm_lock();
330 	__device_link_del(link);
331 	device_pm_unlock();
332 	device_links_write_unlock();
333 }
334 EXPORT_SYMBOL_GPL(device_link_del);
335 
336 static void device_links_missing_supplier(struct device *dev)
337 {
338 	struct device_link *link;
339 
340 	list_for_each_entry(link, &dev->links.suppliers, c_node)
341 		if (link->status == DL_STATE_CONSUMER_PROBE)
342 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
343 }
344 
345 /**
346  * device_links_check_suppliers - Check presence of supplier drivers.
347  * @dev: Consumer device.
348  *
349  * Check links from this device to any suppliers.  Walk the list of the device's
350  * links to suppliers and see if all of them are available.  If not, simply
351  * return -EPROBE_DEFER.
352  *
353  * We need to guarantee that the supplier will not go away after the check has
354  * been positive here.  It only can go away in __device_release_driver() and
355  * that function  checks the device's links to consumers.  This means we need to
356  * mark the link as "consumer probe in progress" to make the supplier removal
357  * wait for us to complete (or bad things may happen).
358  *
359  * Links with the DL_FLAG_STATELESS flag set are ignored.
360  */
361 int device_links_check_suppliers(struct device *dev)
362 {
363 	struct device_link *link;
364 	int ret = 0;
365 
366 	device_links_write_lock();
367 
368 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
369 		if (link->flags & DL_FLAG_STATELESS)
370 			continue;
371 
372 		if (link->status != DL_STATE_AVAILABLE) {
373 			device_links_missing_supplier(dev);
374 			ret = -EPROBE_DEFER;
375 			break;
376 		}
377 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
378 	}
379 	dev->links.status = DL_DEV_PROBING;
380 
381 	device_links_write_unlock();
382 	return ret;
383 }
384 
385 /**
386  * device_links_driver_bound - Update device links after probing its driver.
387  * @dev: Device to update the links for.
388  *
389  * The probe has been successful, so update links from this device to any
390  * consumers by changing their status to "available".
391  *
392  * Also change the status of @dev's links to suppliers to "active".
393  *
394  * Links with the DL_FLAG_STATELESS flag set are ignored.
395  */
396 void device_links_driver_bound(struct device *dev)
397 {
398 	struct device_link *link;
399 
400 	device_links_write_lock();
401 
402 	list_for_each_entry(link, &dev->links.consumers, s_node) {
403 		if (link->flags & DL_FLAG_STATELESS)
404 			continue;
405 
406 		WARN_ON(link->status != DL_STATE_DORMANT);
407 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
408 	}
409 
410 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
411 		if (link->flags & DL_FLAG_STATELESS)
412 			continue;
413 
414 		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
415 		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
416 	}
417 
418 	dev->links.status = DL_DEV_DRIVER_BOUND;
419 
420 	device_links_write_unlock();
421 }
422 
423 /**
424  * __device_links_no_driver - Update links of a device without a driver.
425  * @dev: Device without a drvier.
426  *
427  * Delete all non-persistent links from this device to any suppliers.
428  *
429  * Persistent links stay around, but their status is changed to "available",
430  * unless they already are in the "supplier unbind in progress" state in which
431  * case they need not be updated.
432  *
433  * Links with the DL_FLAG_STATELESS flag set are ignored.
434  */
435 static void __device_links_no_driver(struct device *dev)
436 {
437 	struct device_link *link, *ln;
438 
439 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
440 		if (link->flags & DL_FLAG_STATELESS)
441 			continue;
442 
443 		if (link->flags & DL_FLAG_AUTOREMOVE)
444 			__device_link_del(link);
445 		else if (link->status != DL_STATE_SUPPLIER_UNBIND)
446 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
447 	}
448 
449 	dev->links.status = DL_DEV_NO_DRIVER;
450 }
451 
452 void device_links_no_driver(struct device *dev)
453 {
454 	device_links_write_lock();
455 	__device_links_no_driver(dev);
456 	device_links_write_unlock();
457 }
458 
459 /**
460  * device_links_driver_cleanup - Update links after driver removal.
461  * @dev: Device whose driver has just gone away.
462  *
463  * Update links to consumers for @dev by changing their status to "dormant" and
464  * invoke %__device_links_no_driver() to update links to suppliers for it as
465  * appropriate.
466  *
467  * Links with the DL_FLAG_STATELESS flag set are ignored.
468  */
469 void device_links_driver_cleanup(struct device *dev)
470 {
471 	struct device_link *link;
472 
473 	device_links_write_lock();
474 
475 	list_for_each_entry(link, &dev->links.consumers, s_node) {
476 		if (link->flags & DL_FLAG_STATELESS)
477 			continue;
478 
479 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE);
480 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
481 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
482 	}
483 
484 	__device_links_no_driver(dev);
485 
486 	device_links_write_unlock();
487 }
488 
489 /**
490  * device_links_busy - Check if there are any busy links to consumers.
491  * @dev: Device to check.
492  *
493  * Check each consumer of the device and return 'true' if its link's status
494  * is one of "consumer probe" or "active" (meaning that the given consumer is
495  * probing right now or its driver is present).  Otherwise, change the link
496  * state to "supplier unbind" to prevent the consumer from being probed
497  * successfully going forward.
498  *
499  * Return 'false' if there are no probing or active consumers.
500  *
501  * Links with the DL_FLAG_STATELESS flag set are ignored.
502  */
503 bool device_links_busy(struct device *dev)
504 {
505 	struct device_link *link;
506 	bool ret = false;
507 
508 	device_links_write_lock();
509 
510 	list_for_each_entry(link, &dev->links.consumers, s_node) {
511 		if (link->flags & DL_FLAG_STATELESS)
512 			continue;
513 
514 		if (link->status == DL_STATE_CONSUMER_PROBE
515 		    || link->status == DL_STATE_ACTIVE) {
516 			ret = true;
517 			break;
518 		}
519 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
520 	}
521 
522 	dev->links.status = DL_DEV_UNBINDING;
523 
524 	device_links_write_unlock();
525 	return ret;
526 }
527 
528 /**
529  * device_links_unbind_consumers - Force unbind consumers of the given device.
530  * @dev: Device to unbind the consumers of.
531  *
532  * Walk the list of links to consumers for @dev and if any of them is in the
533  * "consumer probe" state, wait for all device probes in progress to complete
534  * and start over.
535  *
536  * If that's not the case, change the status of the link to "supplier unbind"
537  * and check if the link was in the "active" state.  If so, force the consumer
538  * driver to unbind and start over (the consumer will not re-probe as we have
539  * changed the state of the link already).
540  *
541  * Links with the DL_FLAG_STATELESS flag set are ignored.
542  */
543 void device_links_unbind_consumers(struct device *dev)
544 {
545 	struct device_link *link;
546 
547  start:
548 	device_links_write_lock();
549 
550 	list_for_each_entry(link, &dev->links.consumers, s_node) {
551 		enum device_link_state status;
552 
553 		if (link->flags & DL_FLAG_STATELESS)
554 			continue;
555 
556 		status = link->status;
557 		if (status == DL_STATE_CONSUMER_PROBE) {
558 			device_links_write_unlock();
559 
560 			wait_for_device_probe();
561 			goto start;
562 		}
563 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
564 		if (status == DL_STATE_ACTIVE) {
565 			struct device *consumer = link->consumer;
566 
567 			get_device(consumer);
568 
569 			device_links_write_unlock();
570 
571 			device_release_driver_internal(consumer, NULL,
572 						       consumer->parent);
573 			put_device(consumer);
574 			goto start;
575 		}
576 	}
577 
578 	device_links_write_unlock();
579 }
580 
581 /**
582  * device_links_purge - Delete existing links to other devices.
583  * @dev: Target device.
584  */
585 static void device_links_purge(struct device *dev)
586 {
587 	struct device_link *link, *ln;
588 
589 	/*
590 	 * Delete all of the remaining links from this device to any other
591 	 * devices (either consumers or suppliers).
592 	 */
593 	device_links_write_lock();
594 
595 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
596 		WARN_ON(link->status == DL_STATE_ACTIVE);
597 		__device_link_del(link);
598 	}
599 
600 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
601 		WARN_ON(link->status != DL_STATE_DORMANT &&
602 			link->status != DL_STATE_NONE);
603 		__device_link_del(link);
604 	}
605 
606 	device_links_write_unlock();
607 }
608 
609 /* Device links support end. */
610 
611 int (*platform_notify)(struct device *dev) = NULL;
612 int (*platform_notify_remove)(struct device *dev) = NULL;
613 static struct kobject *dev_kobj;
614 struct kobject *sysfs_dev_char_kobj;
615 struct kobject *sysfs_dev_block_kobj;
616 
617 static DEFINE_MUTEX(device_hotplug_lock);
618 
619 void lock_device_hotplug(void)
620 {
621 	mutex_lock(&device_hotplug_lock);
622 }
623 
624 void unlock_device_hotplug(void)
625 {
626 	mutex_unlock(&device_hotplug_lock);
627 }
628 
629 int lock_device_hotplug_sysfs(void)
630 {
631 	if (mutex_trylock(&device_hotplug_lock))
632 		return 0;
633 
634 	/* Avoid busy looping (5 ms of sleep should do). */
635 	msleep(5);
636 	return restart_syscall();
637 }
638 
639 #ifdef CONFIG_BLOCK
640 static inline int device_is_not_partition(struct device *dev)
641 {
642 	return !(dev->type == &part_type);
643 }
644 #else
645 static inline int device_is_not_partition(struct device *dev)
646 {
647 	return 1;
648 }
649 #endif
650 
651 /**
652  * dev_driver_string - Return a device's driver name, if at all possible
653  * @dev: struct device to get the name of
654  *
655  * Will return the device's driver's name if it is bound to a device.  If
656  * the device is not bound to a driver, it will return the name of the bus
657  * it is attached to.  If it is not attached to a bus either, an empty
658  * string will be returned.
659  */
660 const char *dev_driver_string(const struct device *dev)
661 {
662 	struct device_driver *drv;
663 
664 	/* dev->driver can change to NULL underneath us because of unbinding,
665 	 * so be careful about accessing it.  dev->bus and dev->class should
666 	 * never change once they are set, so they don't need special care.
667 	 */
668 	drv = READ_ONCE(dev->driver);
669 	return drv ? drv->name :
670 			(dev->bus ? dev->bus->name :
671 			(dev->class ? dev->class->name : ""));
672 }
673 EXPORT_SYMBOL(dev_driver_string);
674 
675 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
676 
677 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
678 			     char *buf)
679 {
680 	struct device_attribute *dev_attr = to_dev_attr(attr);
681 	struct device *dev = kobj_to_dev(kobj);
682 	ssize_t ret = -EIO;
683 
684 	if (dev_attr->show)
685 		ret = dev_attr->show(dev, dev_attr, buf);
686 	if (ret >= (ssize_t)PAGE_SIZE) {
687 		printk("dev_attr_show: %pS returned bad count\n",
688 				dev_attr->show);
689 	}
690 	return ret;
691 }
692 
693 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
694 			      const char *buf, size_t count)
695 {
696 	struct device_attribute *dev_attr = to_dev_attr(attr);
697 	struct device *dev = kobj_to_dev(kobj);
698 	ssize_t ret = -EIO;
699 
700 	if (dev_attr->store)
701 		ret = dev_attr->store(dev, dev_attr, buf, count);
702 	return ret;
703 }
704 
705 static const struct sysfs_ops dev_sysfs_ops = {
706 	.show	= dev_attr_show,
707 	.store	= dev_attr_store,
708 };
709 
710 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
711 
712 ssize_t device_store_ulong(struct device *dev,
713 			   struct device_attribute *attr,
714 			   const char *buf, size_t size)
715 {
716 	struct dev_ext_attribute *ea = to_ext_attr(attr);
717 	char *end;
718 	unsigned long new = simple_strtoul(buf, &end, 0);
719 	if (end == buf)
720 		return -EINVAL;
721 	*(unsigned long *)(ea->var) = new;
722 	/* Always return full write size even if we didn't consume all */
723 	return size;
724 }
725 EXPORT_SYMBOL_GPL(device_store_ulong);
726 
727 ssize_t device_show_ulong(struct device *dev,
728 			  struct device_attribute *attr,
729 			  char *buf)
730 {
731 	struct dev_ext_attribute *ea = to_ext_attr(attr);
732 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
733 }
734 EXPORT_SYMBOL_GPL(device_show_ulong);
735 
736 ssize_t device_store_int(struct device *dev,
737 			 struct device_attribute *attr,
738 			 const char *buf, size_t size)
739 {
740 	struct dev_ext_attribute *ea = to_ext_attr(attr);
741 	char *end;
742 	long new = simple_strtol(buf, &end, 0);
743 	if (end == buf || new > INT_MAX || new < INT_MIN)
744 		return -EINVAL;
745 	*(int *)(ea->var) = new;
746 	/* Always return full write size even if we didn't consume all */
747 	return size;
748 }
749 EXPORT_SYMBOL_GPL(device_store_int);
750 
751 ssize_t device_show_int(struct device *dev,
752 			struct device_attribute *attr,
753 			char *buf)
754 {
755 	struct dev_ext_attribute *ea = to_ext_attr(attr);
756 
757 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
758 }
759 EXPORT_SYMBOL_GPL(device_show_int);
760 
761 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
762 			  const char *buf, size_t size)
763 {
764 	struct dev_ext_attribute *ea = to_ext_attr(attr);
765 
766 	if (strtobool(buf, ea->var) < 0)
767 		return -EINVAL;
768 
769 	return size;
770 }
771 EXPORT_SYMBOL_GPL(device_store_bool);
772 
773 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
774 			 char *buf)
775 {
776 	struct dev_ext_attribute *ea = to_ext_attr(attr);
777 
778 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
779 }
780 EXPORT_SYMBOL_GPL(device_show_bool);
781 
782 /**
783  * device_release - free device structure.
784  * @kobj: device's kobject.
785  *
786  * This is called once the reference count for the object
787  * reaches 0. We forward the call to the device's release
788  * method, which should handle actually freeing the structure.
789  */
790 static void device_release(struct kobject *kobj)
791 {
792 	struct device *dev = kobj_to_dev(kobj);
793 	struct device_private *p = dev->p;
794 
795 	/*
796 	 * Some platform devices are driven without driver attached
797 	 * and managed resources may have been acquired.  Make sure
798 	 * all resources are released.
799 	 *
800 	 * Drivers still can add resources into device after device
801 	 * is deleted but alive, so release devres here to avoid
802 	 * possible memory leak.
803 	 */
804 	devres_release_all(dev);
805 
806 	if (dev->release)
807 		dev->release(dev);
808 	else if (dev->type && dev->type->release)
809 		dev->type->release(dev);
810 	else if (dev->class && dev->class->dev_release)
811 		dev->class->dev_release(dev);
812 	else
813 		WARN(1, KERN_ERR "Device '%s' does not have a release() "
814 			"function, it is broken and must be fixed.\n",
815 			dev_name(dev));
816 	kfree(p);
817 }
818 
819 static const void *device_namespace(struct kobject *kobj)
820 {
821 	struct device *dev = kobj_to_dev(kobj);
822 	const void *ns = NULL;
823 
824 	if (dev->class && dev->class->ns_type)
825 		ns = dev->class->namespace(dev);
826 
827 	return ns;
828 }
829 
830 static struct kobj_type device_ktype = {
831 	.release	= device_release,
832 	.sysfs_ops	= &dev_sysfs_ops,
833 	.namespace	= device_namespace,
834 };
835 
836 
837 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
838 {
839 	struct kobj_type *ktype = get_ktype(kobj);
840 
841 	if (ktype == &device_ktype) {
842 		struct device *dev = kobj_to_dev(kobj);
843 		if (dev->bus)
844 			return 1;
845 		if (dev->class)
846 			return 1;
847 	}
848 	return 0;
849 }
850 
851 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
852 {
853 	struct device *dev = kobj_to_dev(kobj);
854 
855 	if (dev->bus)
856 		return dev->bus->name;
857 	if (dev->class)
858 		return dev->class->name;
859 	return NULL;
860 }
861 
862 static int dev_uevent(struct kset *kset, struct kobject *kobj,
863 		      struct kobj_uevent_env *env)
864 {
865 	struct device *dev = kobj_to_dev(kobj);
866 	int retval = 0;
867 
868 	/* add device node properties if present */
869 	if (MAJOR(dev->devt)) {
870 		const char *tmp;
871 		const char *name;
872 		umode_t mode = 0;
873 		kuid_t uid = GLOBAL_ROOT_UID;
874 		kgid_t gid = GLOBAL_ROOT_GID;
875 
876 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
877 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
878 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
879 		if (name) {
880 			add_uevent_var(env, "DEVNAME=%s", name);
881 			if (mode)
882 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
883 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
884 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
885 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
886 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
887 			kfree(tmp);
888 		}
889 	}
890 
891 	if (dev->type && dev->type->name)
892 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
893 
894 	if (dev->driver)
895 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
896 
897 	/* Add common DT information about the device */
898 	of_device_uevent(dev, env);
899 
900 	/* have the bus specific function add its stuff */
901 	if (dev->bus && dev->bus->uevent) {
902 		retval = dev->bus->uevent(dev, env);
903 		if (retval)
904 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
905 				 dev_name(dev), __func__, retval);
906 	}
907 
908 	/* have the class specific function add its stuff */
909 	if (dev->class && dev->class->dev_uevent) {
910 		retval = dev->class->dev_uevent(dev, env);
911 		if (retval)
912 			pr_debug("device: '%s': %s: class uevent() "
913 				 "returned %d\n", dev_name(dev),
914 				 __func__, retval);
915 	}
916 
917 	/* have the device type specific function add its stuff */
918 	if (dev->type && dev->type->uevent) {
919 		retval = dev->type->uevent(dev, env);
920 		if (retval)
921 			pr_debug("device: '%s': %s: dev_type uevent() "
922 				 "returned %d\n", dev_name(dev),
923 				 __func__, retval);
924 	}
925 
926 	return retval;
927 }
928 
929 static const struct kset_uevent_ops device_uevent_ops = {
930 	.filter =	dev_uevent_filter,
931 	.name =		dev_uevent_name,
932 	.uevent =	dev_uevent,
933 };
934 
935 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
936 			   char *buf)
937 {
938 	struct kobject *top_kobj;
939 	struct kset *kset;
940 	struct kobj_uevent_env *env = NULL;
941 	int i;
942 	size_t count = 0;
943 	int retval;
944 
945 	/* search the kset, the device belongs to */
946 	top_kobj = &dev->kobj;
947 	while (!top_kobj->kset && top_kobj->parent)
948 		top_kobj = top_kobj->parent;
949 	if (!top_kobj->kset)
950 		goto out;
951 
952 	kset = top_kobj->kset;
953 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
954 		goto out;
955 
956 	/* respect filter */
957 	if (kset->uevent_ops && kset->uevent_ops->filter)
958 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
959 			goto out;
960 
961 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
962 	if (!env)
963 		return -ENOMEM;
964 
965 	/* let the kset specific function add its keys */
966 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
967 	if (retval)
968 		goto out;
969 
970 	/* copy keys to file */
971 	for (i = 0; i < env->envp_idx; i++)
972 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
973 out:
974 	kfree(env);
975 	return count;
976 }
977 
978 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
979 			    const char *buf, size_t count)
980 {
981 	if (kobject_synth_uevent(&dev->kobj, buf, count))
982 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
983 
984 	return count;
985 }
986 static DEVICE_ATTR_RW(uevent);
987 
988 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
989 			   char *buf)
990 {
991 	bool val;
992 
993 	device_lock(dev);
994 	val = !dev->offline;
995 	device_unlock(dev);
996 	return sprintf(buf, "%u\n", val);
997 }
998 
999 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1000 			    const char *buf, size_t count)
1001 {
1002 	bool val;
1003 	int ret;
1004 
1005 	ret = strtobool(buf, &val);
1006 	if (ret < 0)
1007 		return ret;
1008 
1009 	ret = lock_device_hotplug_sysfs();
1010 	if (ret)
1011 		return ret;
1012 
1013 	ret = val ? device_online(dev) : device_offline(dev);
1014 	unlock_device_hotplug();
1015 	return ret < 0 ? ret : count;
1016 }
1017 static DEVICE_ATTR_RW(online);
1018 
1019 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1020 {
1021 	return sysfs_create_groups(&dev->kobj, groups);
1022 }
1023 EXPORT_SYMBOL_GPL(device_add_groups);
1024 
1025 void device_remove_groups(struct device *dev,
1026 			  const struct attribute_group **groups)
1027 {
1028 	sysfs_remove_groups(&dev->kobj, groups);
1029 }
1030 EXPORT_SYMBOL_GPL(device_remove_groups);
1031 
1032 union device_attr_group_devres {
1033 	const struct attribute_group *group;
1034 	const struct attribute_group **groups;
1035 };
1036 
1037 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1038 {
1039 	return ((union device_attr_group_devres *)res)->group == data;
1040 }
1041 
1042 static void devm_attr_group_remove(struct device *dev, void *res)
1043 {
1044 	union device_attr_group_devres *devres = res;
1045 	const struct attribute_group *group = devres->group;
1046 
1047 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1048 	sysfs_remove_group(&dev->kobj, group);
1049 }
1050 
1051 static void devm_attr_groups_remove(struct device *dev, void *res)
1052 {
1053 	union device_attr_group_devres *devres = res;
1054 	const struct attribute_group **groups = devres->groups;
1055 
1056 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1057 	sysfs_remove_groups(&dev->kobj, groups);
1058 }
1059 
1060 /**
1061  * devm_device_add_group - given a device, create a managed attribute group
1062  * @dev:	The device to create the group for
1063  * @grp:	The attribute group to create
1064  *
1065  * This function creates a group for the first time.  It will explicitly
1066  * warn and error if any of the attribute files being created already exist.
1067  *
1068  * Returns 0 on success or error code on failure.
1069  */
1070 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1071 {
1072 	union device_attr_group_devres *devres;
1073 	int error;
1074 
1075 	devres = devres_alloc(devm_attr_group_remove,
1076 			      sizeof(*devres), GFP_KERNEL);
1077 	if (!devres)
1078 		return -ENOMEM;
1079 
1080 	error = sysfs_create_group(&dev->kobj, grp);
1081 	if (error) {
1082 		devres_free(devres);
1083 		return error;
1084 	}
1085 
1086 	devres->group = grp;
1087 	devres_add(dev, devres);
1088 	return 0;
1089 }
1090 EXPORT_SYMBOL_GPL(devm_device_add_group);
1091 
1092 /**
1093  * devm_device_remove_group: remove a managed group from a device
1094  * @dev:	device to remove the group from
1095  * @grp:	group to remove
1096  *
1097  * This function removes a group of attributes from a device. The attributes
1098  * previously have to have been created for this group, otherwise it will fail.
1099  */
1100 void devm_device_remove_group(struct device *dev,
1101 			      const struct attribute_group *grp)
1102 {
1103 	WARN_ON(devres_release(dev, devm_attr_group_remove,
1104 			       devm_attr_group_match,
1105 			       /* cast away const */ (void *)grp));
1106 }
1107 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1108 
1109 /**
1110  * devm_device_add_groups - create a bunch of managed attribute groups
1111  * @dev:	The device to create the group for
1112  * @groups:	The attribute groups to create, NULL terminated
1113  *
1114  * This function creates a bunch of managed attribute groups.  If an error
1115  * occurs when creating a group, all previously created groups will be
1116  * removed, unwinding everything back to the original state when this
1117  * function was called.  It will explicitly warn and error if any of the
1118  * attribute files being created already exist.
1119  *
1120  * Returns 0 on success or error code from sysfs_create_group on failure.
1121  */
1122 int devm_device_add_groups(struct device *dev,
1123 			   const struct attribute_group **groups)
1124 {
1125 	union device_attr_group_devres *devres;
1126 	int error;
1127 
1128 	devres = devres_alloc(devm_attr_groups_remove,
1129 			      sizeof(*devres), GFP_KERNEL);
1130 	if (!devres)
1131 		return -ENOMEM;
1132 
1133 	error = sysfs_create_groups(&dev->kobj, groups);
1134 	if (error) {
1135 		devres_free(devres);
1136 		return error;
1137 	}
1138 
1139 	devres->groups = groups;
1140 	devres_add(dev, devres);
1141 	return 0;
1142 }
1143 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1144 
1145 /**
1146  * devm_device_remove_groups - remove a list of managed groups
1147  *
1148  * @dev:	The device for the groups to be removed from
1149  * @groups:	NULL terminated list of groups to be removed
1150  *
1151  * If groups is not NULL, remove the specified groups from the device.
1152  */
1153 void devm_device_remove_groups(struct device *dev,
1154 			       const struct attribute_group **groups)
1155 {
1156 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1157 			       devm_attr_group_match,
1158 			       /* cast away const */ (void *)groups));
1159 }
1160 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1161 
1162 static int device_add_attrs(struct device *dev)
1163 {
1164 	struct class *class = dev->class;
1165 	const struct device_type *type = dev->type;
1166 	int error;
1167 
1168 	if (class) {
1169 		error = device_add_groups(dev, class->dev_groups);
1170 		if (error)
1171 			return error;
1172 	}
1173 
1174 	if (type) {
1175 		error = device_add_groups(dev, type->groups);
1176 		if (error)
1177 			goto err_remove_class_groups;
1178 	}
1179 
1180 	error = device_add_groups(dev, dev->groups);
1181 	if (error)
1182 		goto err_remove_type_groups;
1183 
1184 	if (device_supports_offline(dev) && !dev->offline_disabled) {
1185 		error = device_create_file(dev, &dev_attr_online);
1186 		if (error)
1187 			goto err_remove_dev_groups;
1188 	}
1189 
1190 	return 0;
1191 
1192  err_remove_dev_groups:
1193 	device_remove_groups(dev, dev->groups);
1194  err_remove_type_groups:
1195 	if (type)
1196 		device_remove_groups(dev, type->groups);
1197  err_remove_class_groups:
1198 	if (class)
1199 		device_remove_groups(dev, class->dev_groups);
1200 
1201 	return error;
1202 }
1203 
1204 static void device_remove_attrs(struct device *dev)
1205 {
1206 	struct class *class = dev->class;
1207 	const struct device_type *type = dev->type;
1208 
1209 	device_remove_file(dev, &dev_attr_online);
1210 	device_remove_groups(dev, dev->groups);
1211 
1212 	if (type)
1213 		device_remove_groups(dev, type->groups);
1214 
1215 	if (class)
1216 		device_remove_groups(dev, class->dev_groups);
1217 }
1218 
1219 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1220 			char *buf)
1221 {
1222 	return print_dev_t(buf, dev->devt);
1223 }
1224 static DEVICE_ATTR_RO(dev);
1225 
1226 /* /sys/devices/ */
1227 struct kset *devices_kset;
1228 
1229 /**
1230  * devices_kset_move_before - Move device in the devices_kset's list.
1231  * @deva: Device to move.
1232  * @devb: Device @deva should come before.
1233  */
1234 static void devices_kset_move_before(struct device *deva, struct device *devb)
1235 {
1236 	if (!devices_kset)
1237 		return;
1238 	pr_debug("devices_kset: Moving %s before %s\n",
1239 		 dev_name(deva), dev_name(devb));
1240 	spin_lock(&devices_kset->list_lock);
1241 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1242 	spin_unlock(&devices_kset->list_lock);
1243 }
1244 
1245 /**
1246  * devices_kset_move_after - Move device in the devices_kset's list.
1247  * @deva: Device to move
1248  * @devb: Device @deva should come after.
1249  */
1250 static void devices_kset_move_after(struct device *deva, struct device *devb)
1251 {
1252 	if (!devices_kset)
1253 		return;
1254 	pr_debug("devices_kset: Moving %s after %s\n",
1255 		 dev_name(deva), dev_name(devb));
1256 	spin_lock(&devices_kset->list_lock);
1257 	list_move(&deva->kobj.entry, &devb->kobj.entry);
1258 	spin_unlock(&devices_kset->list_lock);
1259 }
1260 
1261 /**
1262  * devices_kset_move_last - move the device to the end of devices_kset's list.
1263  * @dev: device to move
1264  */
1265 void devices_kset_move_last(struct device *dev)
1266 {
1267 	if (!devices_kset)
1268 		return;
1269 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1270 	spin_lock(&devices_kset->list_lock);
1271 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1272 	spin_unlock(&devices_kset->list_lock);
1273 }
1274 
1275 /**
1276  * device_create_file - create sysfs attribute file for device.
1277  * @dev: device.
1278  * @attr: device attribute descriptor.
1279  */
1280 int device_create_file(struct device *dev,
1281 		       const struct device_attribute *attr)
1282 {
1283 	int error = 0;
1284 
1285 	if (dev) {
1286 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1287 			"Attribute %s: write permission without 'store'\n",
1288 			attr->attr.name);
1289 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1290 			"Attribute %s: read permission without 'show'\n",
1291 			attr->attr.name);
1292 		error = sysfs_create_file(&dev->kobj, &attr->attr);
1293 	}
1294 
1295 	return error;
1296 }
1297 EXPORT_SYMBOL_GPL(device_create_file);
1298 
1299 /**
1300  * device_remove_file - remove sysfs attribute file.
1301  * @dev: device.
1302  * @attr: device attribute descriptor.
1303  */
1304 void device_remove_file(struct device *dev,
1305 			const struct device_attribute *attr)
1306 {
1307 	if (dev)
1308 		sysfs_remove_file(&dev->kobj, &attr->attr);
1309 }
1310 EXPORT_SYMBOL_GPL(device_remove_file);
1311 
1312 /**
1313  * device_remove_file_self - remove sysfs attribute file from its own method.
1314  * @dev: device.
1315  * @attr: device attribute descriptor.
1316  *
1317  * See kernfs_remove_self() for details.
1318  */
1319 bool device_remove_file_self(struct device *dev,
1320 			     const struct device_attribute *attr)
1321 {
1322 	if (dev)
1323 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1324 	else
1325 		return false;
1326 }
1327 EXPORT_SYMBOL_GPL(device_remove_file_self);
1328 
1329 /**
1330  * device_create_bin_file - create sysfs binary attribute file for device.
1331  * @dev: device.
1332  * @attr: device binary attribute descriptor.
1333  */
1334 int device_create_bin_file(struct device *dev,
1335 			   const struct bin_attribute *attr)
1336 {
1337 	int error = -EINVAL;
1338 	if (dev)
1339 		error = sysfs_create_bin_file(&dev->kobj, attr);
1340 	return error;
1341 }
1342 EXPORT_SYMBOL_GPL(device_create_bin_file);
1343 
1344 /**
1345  * device_remove_bin_file - remove sysfs binary attribute file
1346  * @dev: device.
1347  * @attr: device binary attribute descriptor.
1348  */
1349 void device_remove_bin_file(struct device *dev,
1350 			    const struct bin_attribute *attr)
1351 {
1352 	if (dev)
1353 		sysfs_remove_bin_file(&dev->kobj, attr);
1354 }
1355 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1356 
1357 static void klist_children_get(struct klist_node *n)
1358 {
1359 	struct device_private *p = to_device_private_parent(n);
1360 	struct device *dev = p->device;
1361 
1362 	get_device(dev);
1363 }
1364 
1365 static void klist_children_put(struct klist_node *n)
1366 {
1367 	struct device_private *p = to_device_private_parent(n);
1368 	struct device *dev = p->device;
1369 
1370 	put_device(dev);
1371 }
1372 
1373 /**
1374  * device_initialize - init device structure.
1375  * @dev: device.
1376  *
1377  * This prepares the device for use by other layers by initializing
1378  * its fields.
1379  * It is the first half of device_register(), if called by
1380  * that function, though it can also be called separately, so one
1381  * may use @dev's fields. In particular, get_device()/put_device()
1382  * may be used for reference counting of @dev after calling this
1383  * function.
1384  *
1385  * All fields in @dev must be initialized by the caller to 0, except
1386  * for those explicitly set to some other value.  The simplest
1387  * approach is to use kzalloc() to allocate the structure containing
1388  * @dev.
1389  *
1390  * NOTE: Use put_device() to give up your reference instead of freeing
1391  * @dev directly once you have called this function.
1392  */
1393 void device_initialize(struct device *dev)
1394 {
1395 	dev->kobj.kset = devices_kset;
1396 	kobject_init(&dev->kobj, &device_ktype);
1397 	INIT_LIST_HEAD(&dev->dma_pools);
1398 	mutex_init(&dev->mutex);
1399 	lockdep_set_novalidate_class(&dev->mutex);
1400 	spin_lock_init(&dev->devres_lock);
1401 	INIT_LIST_HEAD(&dev->devres_head);
1402 	device_pm_init(dev);
1403 	set_dev_node(dev, -1);
1404 #ifdef CONFIG_GENERIC_MSI_IRQ
1405 	INIT_LIST_HEAD(&dev->msi_list);
1406 #endif
1407 	INIT_LIST_HEAD(&dev->links.consumers);
1408 	INIT_LIST_HEAD(&dev->links.suppliers);
1409 	dev->links.status = DL_DEV_NO_DRIVER;
1410 }
1411 EXPORT_SYMBOL_GPL(device_initialize);
1412 
1413 struct kobject *virtual_device_parent(struct device *dev)
1414 {
1415 	static struct kobject *virtual_dir = NULL;
1416 
1417 	if (!virtual_dir)
1418 		virtual_dir = kobject_create_and_add("virtual",
1419 						     &devices_kset->kobj);
1420 
1421 	return virtual_dir;
1422 }
1423 
1424 struct class_dir {
1425 	struct kobject kobj;
1426 	struct class *class;
1427 };
1428 
1429 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1430 
1431 static void class_dir_release(struct kobject *kobj)
1432 {
1433 	struct class_dir *dir = to_class_dir(kobj);
1434 	kfree(dir);
1435 }
1436 
1437 static const
1438 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1439 {
1440 	struct class_dir *dir = to_class_dir(kobj);
1441 	return dir->class->ns_type;
1442 }
1443 
1444 static struct kobj_type class_dir_ktype = {
1445 	.release	= class_dir_release,
1446 	.sysfs_ops	= &kobj_sysfs_ops,
1447 	.child_ns_type	= class_dir_child_ns_type
1448 };
1449 
1450 static struct kobject *
1451 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1452 {
1453 	struct class_dir *dir;
1454 	int retval;
1455 
1456 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1457 	if (!dir)
1458 		return NULL;
1459 
1460 	dir->class = class;
1461 	kobject_init(&dir->kobj, &class_dir_ktype);
1462 
1463 	dir->kobj.kset = &class->p->glue_dirs;
1464 
1465 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1466 	if (retval < 0) {
1467 		kobject_put(&dir->kobj);
1468 		return NULL;
1469 	}
1470 	return &dir->kobj;
1471 }
1472 
1473 static DEFINE_MUTEX(gdp_mutex);
1474 
1475 static struct kobject *get_device_parent(struct device *dev,
1476 					 struct device *parent)
1477 {
1478 	if (dev->class) {
1479 		struct kobject *kobj = NULL;
1480 		struct kobject *parent_kobj;
1481 		struct kobject *k;
1482 
1483 #ifdef CONFIG_BLOCK
1484 		/* block disks show up in /sys/block */
1485 		if (sysfs_deprecated && dev->class == &block_class) {
1486 			if (parent && parent->class == &block_class)
1487 				return &parent->kobj;
1488 			return &block_class.p->subsys.kobj;
1489 		}
1490 #endif
1491 
1492 		/*
1493 		 * If we have no parent, we live in "virtual".
1494 		 * Class-devices with a non class-device as parent, live
1495 		 * in a "glue" directory to prevent namespace collisions.
1496 		 */
1497 		if (parent == NULL)
1498 			parent_kobj = virtual_device_parent(dev);
1499 		else if (parent->class && !dev->class->ns_type)
1500 			return &parent->kobj;
1501 		else
1502 			parent_kobj = &parent->kobj;
1503 
1504 		mutex_lock(&gdp_mutex);
1505 
1506 		/* find our class-directory at the parent and reference it */
1507 		spin_lock(&dev->class->p->glue_dirs.list_lock);
1508 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1509 			if (k->parent == parent_kobj) {
1510 				kobj = kobject_get(k);
1511 				break;
1512 			}
1513 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1514 		if (kobj) {
1515 			mutex_unlock(&gdp_mutex);
1516 			return kobj;
1517 		}
1518 
1519 		/* or create a new class-directory at the parent device */
1520 		k = class_dir_create_and_add(dev->class, parent_kobj);
1521 		/* do not emit an uevent for this simple "glue" directory */
1522 		mutex_unlock(&gdp_mutex);
1523 		return k;
1524 	}
1525 
1526 	/* subsystems can specify a default root directory for their devices */
1527 	if (!parent && dev->bus && dev->bus->dev_root)
1528 		return &dev->bus->dev_root->kobj;
1529 
1530 	if (parent)
1531 		return &parent->kobj;
1532 	return NULL;
1533 }
1534 
1535 static inline bool live_in_glue_dir(struct kobject *kobj,
1536 				    struct device *dev)
1537 {
1538 	if (!kobj || !dev->class ||
1539 	    kobj->kset != &dev->class->p->glue_dirs)
1540 		return false;
1541 	return true;
1542 }
1543 
1544 static inline struct kobject *get_glue_dir(struct device *dev)
1545 {
1546 	return dev->kobj.parent;
1547 }
1548 
1549 /*
1550  * make sure cleaning up dir as the last step, we need to make
1551  * sure .release handler of kobject is run with holding the
1552  * global lock
1553  */
1554 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1555 {
1556 	/* see if we live in a "glue" directory */
1557 	if (!live_in_glue_dir(glue_dir, dev))
1558 		return;
1559 
1560 	mutex_lock(&gdp_mutex);
1561 	kobject_put(glue_dir);
1562 	mutex_unlock(&gdp_mutex);
1563 }
1564 
1565 static int device_add_class_symlinks(struct device *dev)
1566 {
1567 	struct device_node *of_node = dev_of_node(dev);
1568 	int error;
1569 
1570 	if (of_node) {
1571 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1572 		if (error)
1573 			dev_warn(dev, "Error %d creating of_node link\n",error);
1574 		/* An error here doesn't warrant bringing down the device */
1575 	}
1576 
1577 	if (!dev->class)
1578 		return 0;
1579 
1580 	error = sysfs_create_link(&dev->kobj,
1581 				  &dev->class->p->subsys.kobj,
1582 				  "subsystem");
1583 	if (error)
1584 		goto out_devnode;
1585 
1586 	if (dev->parent && device_is_not_partition(dev)) {
1587 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1588 					  "device");
1589 		if (error)
1590 			goto out_subsys;
1591 	}
1592 
1593 #ifdef CONFIG_BLOCK
1594 	/* /sys/block has directories and does not need symlinks */
1595 	if (sysfs_deprecated && dev->class == &block_class)
1596 		return 0;
1597 #endif
1598 
1599 	/* link in the class directory pointing to the device */
1600 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1601 				  &dev->kobj, dev_name(dev));
1602 	if (error)
1603 		goto out_device;
1604 
1605 	return 0;
1606 
1607 out_device:
1608 	sysfs_remove_link(&dev->kobj, "device");
1609 
1610 out_subsys:
1611 	sysfs_remove_link(&dev->kobj, "subsystem");
1612 out_devnode:
1613 	sysfs_remove_link(&dev->kobj, "of_node");
1614 	return error;
1615 }
1616 
1617 static void device_remove_class_symlinks(struct device *dev)
1618 {
1619 	if (dev_of_node(dev))
1620 		sysfs_remove_link(&dev->kobj, "of_node");
1621 
1622 	if (!dev->class)
1623 		return;
1624 
1625 	if (dev->parent && device_is_not_partition(dev))
1626 		sysfs_remove_link(&dev->kobj, "device");
1627 	sysfs_remove_link(&dev->kobj, "subsystem");
1628 #ifdef CONFIG_BLOCK
1629 	if (sysfs_deprecated && dev->class == &block_class)
1630 		return;
1631 #endif
1632 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1633 }
1634 
1635 /**
1636  * dev_set_name - set a device name
1637  * @dev: device
1638  * @fmt: format string for the device's name
1639  */
1640 int dev_set_name(struct device *dev, const char *fmt, ...)
1641 {
1642 	va_list vargs;
1643 	int err;
1644 
1645 	va_start(vargs, fmt);
1646 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1647 	va_end(vargs);
1648 	return err;
1649 }
1650 EXPORT_SYMBOL_GPL(dev_set_name);
1651 
1652 /**
1653  * device_to_dev_kobj - select a /sys/dev/ directory for the device
1654  * @dev: device
1655  *
1656  * By default we select char/ for new entries.  Setting class->dev_obj
1657  * to NULL prevents an entry from being created.  class->dev_kobj must
1658  * be set (or cleared) before any devices are registered to the class
1659  * otherwise device_create_sys_dev_entry() and
1660  * device_remove_sys_dev_entry() will disagree about the presence of
1661  * the link.
1662  */
1663 static struct kobject *device_to_dev_kobj(struct device *dev)
1664 {
1665 	struct kobject *kobj;
1666 
1667 	if (dev->class)
1668 		kobj = dev->class->dev_kobj;
1669 	else
1670 		kobj = sysfs_dev_char_kobj;
1671 
1672 	return kobj;
1673 }
1674 
1675 static int device_create_sys_dev_entry(struct device *dev)
1676 {
1677 	struct kobject *kobj = device_to_dev_kobj(dev);
1678 	int error = 0;
1679 	char devt_str[15];
1680 
1681 	if (kobj) {
1682 		format_dev_t(devt_str, dev->devt);
1683 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1684 	}
1685 
1686 	return error;
1687 }
1688 
1689 static void device_remove_sys_dev_entry(struct device *dev)
1690 {
1691 	struct kobject *kobj = device_to_dev_kobj(dev);
1692 	char devt_str[15];
1693 
1694 	if (kobj) {
1695 		format_dev_t(devt_str, dev->devt);
1696 		sysfs_remove_link(kobj, devt_str);
1697 	}
1698 }
1699 
1700 int device_private_init(struct device *dev)
1701 {
1702 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1703 	if (!dev->p)
1704 		return -ENOMEM;
1705 	dev->p->device = dev;
1706 	klist_init(&dev->p->klist_children, klist_children_get,
1707 		   klist_children_put);
1708 	INIT_LIST_HEAD(&dev->p->deferred_probe);
1709 	return 0;
1710 }
1711 
1712 /**
1713  * device_add - add device to device hierarchy.
1714  * @dev: device.
1715  *
1716  * This is part 2 of device_register(), though may be called
1717  * separately _iff_ device_initialize() has been called separately.
1718  *
1719  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1720  * to the global and sibling lists for the device, then
1721  * adds it to the other relevant subsystems of the driver model.
1722  *
1723  * Do not call this routine or device_register() more than once for
1724  * any device structure.  The driver model core is not designed to work
1725  * with devices that get unregistered and then spring back to life.
1726  * (Among other things, it's very hard to guarantee that all references
1727  * to the previous incarnation of @dev have been dropped.)  Allocate
1728  * and register a fresh new struct device instead.
1729  *
1730  * NOTE: _Never_ directly free @dev after calling this function, even
1731  * if it returned an error! Always use put_device() to give up your
1732  * reference instead.
1733  */
1734 int device_add(struct device *dev)
1735 {
1736 	struct device *parent;
1737 	struct kobject *kobj;
1738 	struct class_interface *class_intf;
1739 	int error = -EINVAL;
1740 	struct kobject *glue_dir = NULL;
1741 
1742 	dev = get_device(dev);
1743 	if (!dev)
1744 		goto done;
1745 
1746 	if (!dev->p) {
1747 		error = device_private_init(dev);
1748 		if (error)
1749 			goto done;
1750 	}
1751 
1752 	/*
1753 	 * for statically allocated devices, which should all be converted
1754 	 * some day, we need to initialize the name. We prevent reading back
1755 	 * the name, and force the use of dev_name()
1756 	 */
1757 	if (dev->init_name) {
1758 		dev_set_name(dev, "%s", dev->init_name);
1759 		dev->init_name = NULL;
1760 	}
1761 
1762 	/* subsystems can specify simple device enumeration */
1763 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1764 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1765 
1766 	if (!dev_name(dev)) {
1767 		error = -EINVAL;
1768 		goto name_error;
1769 	}
1770 
1771 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1772 
1773 	parent = get_device(dev->parent);
1774 	kobj = get_device_parent(dev, parent);
1775 	if (kobj)
1776 		dev->kobj.parent = kobj;
1777 
1778 	/* use parent numa_node */
1779 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1780 		set_dev_node(dev, dev_to_node(parent));
1781 
1782 	/* first, register with generic layer. */
1783 	/* we require the name to be set before, and pass NULL */
1784 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1785 	if (error) {
1786 		glue_dir = get_glue_dir(dev);
1787 		goto Error;
1788 	}
1789 
1790 	/* notify platform of device entry */
1791 	if (platform_notify)
1792 		platform_notify(dev);
1793 
1794 	error = device_create_file(dev, &dev_attr_uevent);
1795 	if (error)
1796 		goto attrError;
1797 
1798 	error = device_add_class_symlinks(dev);
1799 	if (error)
1800 		goto SymlinkError;
1801 	error = device_add_attrs(dev);
1802 	if (error)
1803 		goto AttrsError;
1804 	error = bus_add_device(dev);
1805 	if (error)
1806 		goto BusError;
1807 	error = dpm_sysfs_add(dev);
1808 	if (error)
1809 		goto DPMError;
1810 	device_pm_add(dev);
1811 
1812 	if (MAJOR(dev->devt)) {
1813 		error = device_create_file(dev, &dev_attr_dev);
1814 		if (error)
1815 			goto DevAttrError;
1816 
1817 		error = device_create_sys_dev_entry(dev);
1818 		if (error)
1819 			goto SysEntryError;
1820 
1821 		devtmpfs_create_node(dev);
1822 	}
1823 
1824 	/* Notify clients of device addition.  This call must come
1825 	 * after dpm_sysfs_add() and before kobject_uevent().
1826 	 */
1827 	if (dev->bus)
1828 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1829 					     BUS_NOTIFY_ADD_DEVICE, dev);
1830 
1831 	kobject_uevent(&dev->kobj, KOBJ_ADD);
1832 	bus_probe_device(dev);
1833 	if (parent)
1834 		klist_add_tail(&dev->p->knode_parent,
1835 			       &parent->p->klist_children);
1836 
1837 	if (dev->class) {
1838 		mutex_lock(&dev->class->p->mutex);
1839 		/* tie the class to the device */
1840 		klist_add_tail(&dev->knode_class,
1841 			       &dev->class->p->klist_devices);
1842 
1843 		/* notify any interfaces that the device is here */
1844 		list_for_each_entry(class_intf,
1845 				    &dev->class->p->interfaces, node)
1846 			if (class_intf->add_dev)
1847 				class_intf->add_dev(dev, class_intf);
1848 		mutex_unlock(&dev->class->p->mutex);
1849 	}
1850 done:
1851 	put_device(dev);
1852 	return error;
1853  SysEntryError:
1854 	if (MAJOR(dev->devt))
1855 		device_remove_file(dev, &dev_attr_dev);
1856  DevAttrError:
1857 	device_pm_remove(dev);
1858 	dpm_sysfs_remove(dev);
1859  DPMError:
1860 	bus_remove_device(dev);
1861  BusError:
1862 	device_remove_attrs(dev);
1863  AttrsError:
1864 	device_remove_class_symlinks(dev);
1865  SymlinkError:
1866 	device_remove_file(dev, &dev_attr_uevent);
1867  attrError:
1868 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1869 	glue_dir = get_glue_dir(dev);
1870 	kobject_del(&dev->kobj);
1871  Error:
1872 	cleanup_glue_dir(dev, glue_dir);
1873 	put_device(parent);
1874 name_error:
1875 	kfree(dev->p);
1876 	dev->p = NULL;
1877 	goto done;
1878 }
1879 EXPORT_SYMBOL_GPL(device_add);
1880 
1881 /**
1882  * device_register - register a device with the system.
1883  * @dev: pointer to the device structure
1884  *
1885  * This happens in two clean steps - initialize the device
1886  * and add it to the system. The two steps can be called
1887  * separately, but this is the easiest and most common.
1888  * I.e. you should only call the two helpers separately if
1889  * have a clearly defined need to use and refcount the device
1890  * before it is added to the hierarchy.
1891  *
1892  * For more information, see the kerneldoc for device_initialize()
1893  * and device_add().
1894  *
1895  * NOTE: _Never_ directly free @dev after calling this function, even
1896  * if it returned an error! Always use put_device() to give up the
1897  * reference initialized in this function instead.
1898  */
1899 int device_register(struct device *dev)
1900 {
1901 	device_initialize(dev);
1902 	return device_add(dev);
1903 }
1904 EXPORT_SYMBOL_GPL(device_register);
1905 
1906 /**
1907  * get_device - increment reference count for device.
1908  * @dev: device.
1909  *
1910  * This simply forwards the call to kobject_get(), though
1911  * we do take care to provide for the case that we get a NULL
1912  * pointer passed in.
1913  */
1914 struct device *get_device(struct device *dev)
1915 {
1916 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1917 }
1918 EXPORT_SYMBOL_GPL(get_device);
1919 
1920 /**
1921  * put_device - decrement reference count.
1922  * @dev: device in question.
1923  */
1924 void put_device(struct device *dev)
1925 {
1926 	/* might_sleep(); */
1927 	if (dev)
1928 		kobject_put(&dev->kobj);
1929 }
1930 EXPORT_SYMBOL_GPL(put_device);
1931 
1932 /**
1933  * device_del - delete device from system.
1934  * @dev: device.
1935  *
1936  * This is the first part of the device unregistration
1937  * sequence. This removes the device from the lists we control
1938  * from here, has it removed from the other driver model
1939  * subsystems it was added to in device_add(), and removes it
1940  * from the kobject hierarchy.
1941  *
1942  * NOTE: this should be called manually _iff_ device_add() was
1943  * also called manually.
1944  */
1945 void device_del(struct device *dev)
1946 {
1947 	struct device *parent = dev->parent;
1948 	struct kobject *glue_dir = NULL;
1949 	struct class_interface *class_intf;
1950 
1951 	/* Notify clients of device removal.  This call must come
1952 	 * before dpm_sysfs_remove().
1953 	 */
1954 	if (dev->bus)
1955 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1956 					     BUS_NOTIFY_DEL_DEVICE, dev);
1957 
1958 	dpm_sysfs_remove(dev);
1959 	if (parent)
1960 		klist_del(&dev->p->knode_parent);
1961 	if (MAJOR(dev->devt)) {
1962 		devtmpfs_delete_node(dev);
1963 		device_remove_sys_dev_entry(dev);
1964 		device_remove_file(dev, &dev_attr_dev);
1965 	}
1966 	if (dev->class) {
1967 		device_remove_class_symlinks(dev);
1968 
1969 		mutex_lock(&dev->class->p->mutex);
1970 		/* notify any interfaces that the device is now gone */
1971 		list_for_each_entry(class_intf,
1972 				    &dev->class->p->interfaces, node)
1973 			if (class_intf->remove_dev)
1974 				class_intf->remove_dev(dev, class_intf);
1975 		/* remove the device from the class list */
1976 		klist_del(&dev->knode_class);
1977 		mutex_unlock(&dev->class->p->mutex);
1978 	}
1979 	device_remove_file(dev, &dev_attr_uevent);
1980 	device_remove_attrs(dev);
1981 	bus_remove_device(dev);
1982 	device_pm_remove(dev);
1983 	driver_deferred_probe_del(dev);
1984 	device_remove_properties(dev);
1985 	device_links_purge(dev);
1986 
1987 	/* Notify the platform of the removal, in case they
1988 	 * need to do anything...
1989 	 */
1990 	if (platform_notify_remove)
1991 		platform_notify_remove(dev);
1992 	if (dev->bus)
1993 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1994 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
1995 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1996 	glue_dir = get_glue_dir(dev);
1997 	kobject_del(&dev->kobj);
1998 	cleanup_glue_dir(dev, glue_dir);
1999 	put_device(parent);
2000 }
2001 EXPORT_SYMBOL_GPL(device_del);
2002 
2003 /**
2004  * device_unregister - unregister device from system.
2005  * @dev: device going away.
2006  *
2007  * We do this in two parts, like we do device_register(). First,
2008  * we remove it from all the subsystems with device_del(), then
2009  * we decrement the reference count via put_device(). If that
2010  * is the final reference count, the device will be cleaned up
2011  * via device_release() above. Otherwise, the structure will
2012  * stick around until the final reference to the device is dropped.
2013  */
2014 void device_unregister(struct device *dev)
2015 {
2016 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2017 	device_del(dev);
2018 	put_device(dev);
2019 }
2020 EXPORT_SYMBOL_GPL(device_unregister);
2021 
2022 static struct device *prev_device(struct klist_iter *i)
2023 {
2024 	struct klist_node *n = klist_prev(i);
2025 	struct device *dev = NULL;
2026 	struct device_private *p;
2027 
2028 	if (n) {
2029 		p = to_device_private_parent(n);
2030 		dev = p->device;
2031 	}
2032 	return dev;
2033 }
2034 
2035 static struct device *next_device(struct klist_iter *i)
2036 {
2037 	struct klist_node *n = klist_next(i);
2038 	struct device *dev = NULL;
2039 	struct device_private *p;
2040 
2041 	if (n) {
2042 		p = to_device_private_parent(n);
2043 		dev = p->device;
2044 	}
2045 	return dev;
2046 }
2047 
2048 /**
2049  * device_get_devnode - path of device node file
2050  * @dev: device
2051  * @mode: returned file access mode
2052  * @uid: returned file owner
2053  * @gid: returned file group
2054  * @tmp: possibly allocated string
2055  *
2056  * Return the relative path of a possible device node.
2057  * Non-default names may need to allocate a memory to compose
2058  * a name. This memory is returned in tmp and needs to be
2059  * freed by the caller.
2060  */
2061 const char *device_get_devnode(struct device *dev,
2062 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2063 			       const char **tmp)
2064 {
2065 	char *s;
2066 
2067 	*tmp = NULL;
2068 
2069 	/* the device type may provide a specific name */
2070 	if (dev->type && dev->type->devnode)
2071 		*tmp = dev->type->devnode(dev, mode, uid, gid);
2072 	if (*tmp)
2073 		return *tmp;
2074 
2075 	/* the class may provide a specific name */
2076 	if (dev->class && dev->class->devnode)
2077 		*tmp = dev->class->devnode(dev, mode);
2078 	if (*tmp)
2079 		return *tmp;
2080 
2081 	/* return name without allocation, tmp == NULL */
2082 	if (strchr(dev_name(dev), '!') == NULL)
2083 		return dev_name(dev);
2084 
2085 	/* replace '!' in the name with '/' */
2086 	s = kstrdup(dev_name(dev), GFP_KERNEL);
2087 	if (!s)
2088 		return NULL;
2089 	strreplace(s, '!', '/');
2090 	return *tmp = s;
2091 }
2092 
2093 /**
2094  * device_for_each_child - device child iterator.
2095  * @parent: parent struct device.
2096  * @fn: function to be called for each device.
2097  * @data: data for the callback.
2098  *
2099  * Iterate over @parent's child devices, and call @fn for each,
2100  * passing it @data.
2101  *
2102  * We check the return of @fn each time. If it returns anything
2103  * other than 0, we break out and return that value.
2104  */
2105 int device_for_each_child(struct device *parent, void *data,
2106 			  int (*fn)(struct device *dev, void *data))
2107 {
2108 	struct klist_iter i;
2109 	struct device *child;
2110 	int error = 0;
2111 
2112 	if (!parent->p)
2113 		return 0;
2114 
2115 	klist_iter_init(&parent->p->klist_children, &i);
2116 	while (!error && (child = next_device(&i)))
2117 		error = fn(child, data);
2118 	klist_iter_exit(&i);
2119 	return error;
2120 }
2121 EXPORT_SYMBOL_GPL(device_for_each_child);
2122 
2123 /**
2124  * device_for_each_child_reverse - device child iterator in reversed order.
2125  * @parent: parent struct device.
2126  * @fn: function to be called for each device.
2127  * @data: data for the callback.
2128  *
2129  * Iterate over @parent's child devices, and call @fn for each,
2130  * passing it @data.
2131  *
2132  * We check the return of @fn each time. If it returns anything
2133  * other than 0, we break out and return that value.
2134  */
2135 int device_for_each_child_reverse(struct device *parent, void *data,
2136 				  int (*fn)(struct device *dev, void *data))
2137 {
2138 	struct klist_iter i;
2139 	struct device *child;
2140 	int error = 0;
2141 
2142 	if (!parent->p)
2143 		return 0;
2144 
2145 	klist_iter_init(&parent->p->klist_children, &i);
2146 	while ((child = prev_device(&i)) && !error)
2147 		error = fn(child, data);
2148 	klist_iter_exit(&i);
2149 	return error;
2150 }
2151 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2152 
2153 /**
2154  * device_find_child - device iterator for locating a particular device.
2155  * @parent: parent struct device
2156  * @match: Callback function to check device
2157  * @data: Data to pass to match function
2158  *
2159  * This is similar to the device_for_each_child() function above, but it
2160  * returns a reference to a device that is 'found' for later use, as
2161  * determined by the @match callback.
2162  *
2163  * The callback should return 0 if the device doesn't match and non-zero
2164  * if it does.  If the callback returns non-zero and a reference to the
2165  * current device can be obtained, this function will return to the caller
2166  * and not iterate over any more devices.
2167  *
2168  * NOTE: you will need to drop the reference with put_device() after use.
2169  */
2170 struct device *device_find_child(struct device *parent, void *data,
2171 				 int (*match)(struct device *dev, void *data))
2172 {
2173 	struct klist_iter i;
2174 	struct device *child;
2175 
2176 	if (!parent)
2177 		return NULL;
2178 
2179 	klist_iter_init(&parent->p->klist_children, &i);
2180 	while ((child = next_device(&i)))
2181 		if (match(child, data) && get_device(child))
2182 			break;
2183 	klist_iter_exit(&i);
2184 	return child;
2185 }
2186 EXPORT_SYMBOL_GPL(device_find_child);
2187 
2188 int __init devices_init(void)
2189 {
2190 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2191 	if (!devices_kset)
2192 		return -ENOMEM;
2193 	dev_kobj = kobject_create_and_add("dev", NULL);
2194 	if (!dev_kobj)
2195 		goto dev_kobj_err;
2196 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2197 	if (!sysfs_dev_block_kobj)
2198 		goto block_kobj_err;
2199 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2200 	if (!sysfs_dev_char_kobj)
2201 		goto char_kobj_err;
2202 
2203 	return 0;
2204 
2205  char_kobj_err:
2206 	kobject_put(sysfs_dev_block_kobj);
2207  block_kobj_err:
2208 	kobject_put(dev_kobj);
2209  dev_kobj_err:
2210 	kset_unregister(devices_kset);
2211 	return -ENOMEM;
2212 }
2213 
2214 static int device_check_offline(struct device *dev, void *not_used)
2215 {
2216 	int ret;
2217 
2218 	ret = device_for_each_child(dev, NULL, device_check_offline);
2219 	if (ret)
2220 		return ret;
2221 
2222 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2223 }
2224 
2225 /**
2226  * device_offline - Prepare the device for hot-removal.
2227  * @dev: Device to be put offline.
2228  *
2229  * Execute the device bus type's .offline() callback, if present, to prepare
2230  * the device for a subsequent hot-removal.  If that succeeds, the device must
2231  * not be used until either it is removed or its bus type's .online() callback
2232  * is executed.
2233  *
2234  * Call under device_hotplug_lock.
2235  */
2236 int device_offline(struct device *dev)
2237 {
2238 	int ret;
2239 
2240 	if (dev->offline_disabled)
2241 		return -EPERM;
2242 
2243 	ret = device_for_each_child(dev, NULL, device_check_offline);
2244 	if (ret)
2245 		return ret;
2246 
2247 	device_lock(dev);
2248 	if (device_supports_offline(dev)) {
2249 		if (dev->offline) {
2250 			ret = 1;
2251 		} else {
2252 			ret = dev->bus->offline(dev);
2253 			if (!ret) {
2254 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2255 				dev->offline = true;
2256 			}
2257 		}
2258 	}
2259 	device_unlock(dev);
2260 
2261 	return ret;
2262 }
2263 
2264 /**
2265  * device_online - Put the device back online after successful device_offline().
2266  * @dev: Device to be put back online.
2267  *
2268  * If device_offline() has been successfully executed for @dev, but the device
2269  * has not been removed subsequently, execute its bus type's .online() callback
2270  * to indicate that the device can be used again.
2271  *
2272  * Call under device_hotplug_lock.
2273  */
2274 int device_online(struct device *dev)
2275 {
2276 	int ret = 0;
2277 
2278 	device_lock(dev);
2279 	if (device_supports_offline(dev)) {
2280 		if (dev->offline) {
2281 			ret = dev->bus->online(dev);
2282 			if (!ret) {
2283 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2284 				dev->offline = false;
2285 			}
2286 		} else {
2287 			ret = 1;
2288 		}
2289 	}
2290 	device_unlock(dev);
2291 
2292 	return ret;
2293 }
2294 
2295 struct root_device {
2296 	struct device dev;
2297 	struct module *owner;
2298 };
2299 
2300 static inline struct root_device *to_root_device(struct device *d)
2301 {
2302 	return container_of(d, struct root_device, dev);
2303 }
2304 
2305 static void root_device_release(struct device *dev)
2306 {
2307 	kfree(to_root_device(dev));
2308 }
2309 
2310 /**
2311  * __root_device_register - allocate and register a root device
2312  * @name: root device name
2313  * @owner: owner module of the root device, usually THIS_MODULE
2314  *
2315  * This function allocates a root device and registers it
2316  * using device_register(). In order to free the returned
2317  * device, use root_device_unregister().
2318  *
2319  * Root devices are dummy devices which allow other devices
2320  * to be grouped under /sys/devices. Use this function to
2321  * allocate a root device and then use it as the parent of
2322  * any device which should appear under /sys/devices/{name}
2323  *
2324  * The /sys/devices/{name} directory will also contain a
2325  * 'module' symlink which points to the @owner directory
2326  * in sysfs.
2327  *
2328  * Returns &struct device pointer on success, or ERR_PTR() on error.
2329  *
2330  * Note: You probably want to use root_device_register().
2331  */
2332 struct device *__root_device_register(const char *name, struct module *owner)
2333 {
2334 	struct root_device *root;
2335 	int err = -ENOMEM;
2336 
2337 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2338 	if (!root)
2339 		return ERR_PTR(err);
2340 
2341 	err = dev_set_name(&root->dev, "%s", name);
2342 	if (err) {
2343 		kfree(root);
2344 		return ERR_PTR(err);
2345 	}
2346 
2347 	root->dev.release = root_device_release;
2348 
2349 	err = device_register(&root->dev);
2350 	if (err) {
2351 		put_device(&root->dev);
2352 		return ERR_PTR(err);
2353 	}
2354 
2355 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2356 	if (owner) {
2357 		struct module_kobject *mk = &owner->mkobj;
2358 
2359 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2360 		if (err) {
2361 			device_unregister(&root->dev);
2362 			return ERR_PTR(err);
2363 		}
2364 		root->owner = owner;
2365 	}
2366 #endif
2367 
2368 	return &root->dev;
2369 }
2370 EXPORT_SYMBOL_GPL(__root_device_register);
2371 
2372 /**
2373  * root_device_unregister - unregister and free a root device
2374  * @dev: device going away
2375  *
2376  * This function unregisters and cleans up a device that was created by
2377  * root_device_register().
2378  */
2379 void root_device_unregister(struct device *dev)
2380 {
2381 	struct root_device *root = to_root_device(dev);
2382 
2383 	if (root->owner)
2384 		sysfs_remove_link(&root->dev.kobj, "module");
2385 
2386 	device_unregister(dev);
2387 }
2388 EXPORT_SYMBOL_GPL(root_device_unregister);
2389 
2390 
2391 static void device_create_release(struct device *dev)
2392 {
2393 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2394 	kfree(dev);
2395 }
2396 
2397 static struct device *
2398 device_create_groups_vargs(struct class *class, struct device *parent,
2399 			   dev_t devt, void *drvdata,
2400 			   const struct attribute_group **groups,
2401 			   const char *fmt, va_list args)
2402 {
2403 	struct device *dev = NULL;
2404 	int retval = -ENODEV;
2405 
2406 	if (class == NULL || IS_ERR(class))
2407 		goto error;
2408 
2409 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2410 	if (!dev) {
2411 		retval = -ENOMEM;
2412 		goto error;
2413 	}
2414 
2415 	device_initialize(dev);
2416 	dev->devt = devt;
2417 	dev->class = class;
2418 	dev->parent = parent;
2419 	dev->groups = groups;
2420 	dev->release = device_create_release;
2421 	dev_set_drvdata(dev, drvdata);
2422 
2423 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2424 	if (retval)
2425 		goto error;
2426 
2427 	retval = device_add(dev);
2428 	if (retval)
2429 		goto error;
2430 
2431 	return dev;
2432 
2433 error:
2434 	put_device(dev);
2435 	return ERR_PTR(retval);
2436 }
2437 
2438 /**
2439  * device_create_vargs - creates a device and registers it with sysfs
2440  * @class: pointer to the struct class that this device should be registered to
2441  * @parent: pointer to the parent struct device of this new device, if any
2442  * @devt: the dev_t for the char device to be added
2443  * @drvdata: the data to be added to the device for callbacks
2444  * @fmt: string for the device's name
2445  * @args: va_list for the device's name
2446  *
2447  * This function can be used by char device classes.  A struct device
2448  * will be created in sysfs, registered to the specified class.
2449  *
2450  * A "dev" file will be created, showing the dev_t for the device, if
2451  * the dev_t is not 0,0.
2452  * If a pointer to a parent struct device is passed in, the newly created
2453  * struct device will be a child of that device in sysfs.
2454  * The pointer to the struct device will be returned from the call.
2455  * Any further sysfs files that might be required can be created using this
2456  * pointer.
2457  *
2458  * Returns &struct device pointer on success, or ERR_PTR() on error.
2459  *
2460  * Note: the struct class passed to this function must have previously
2461  * been created with a call to class_create().
2462  */
2463 struct device *device_create_vargs(struct class *class, struct device *parent,
2464 				   dev_t devt, void *drvdata, const char *fmt,
2465 				   va_list args)
2466 {
2467 	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2468 					  fmt, args);
2469 }
2470 EXPORT_SYMBOL_GPL(device_create_vargs);
2471 
2472 /**
2473  * device_create - creates a device and registers it with sysfs
2474  * @class: pointer to the struct class that this device should be registered to
2475  * @parent: pointer to the parent struct device of this new device, if any
2476  * @devt: the dev_t for the char device to be added
2477  * @drvdata: the data to be added to the device for callbacks
2478  * @fmt: string for the device's name
2479  *
2480  * This function can be used by char device classes.  A struct device
2481  * will be created in sysfs, registered to the specified class.
2482  *
2483  * A "dev" file will be created, showing the dev_t for the device, if
2484  * the dev_t is not 0,0.
2485  * If a pointer to a parent struct device is passed in, the newly created
2486  * struct device will be a child of that device in sysfs.
2487  * The pointer to the struct device will be returned from the call.
2488  * Any further sysfs files that might be required can be created using this
2489  * pointer.
2490  *
2491  * Returns &struct device pointer on success, or ERR_PTR() on error.
2492  *
2493  * Note: the struct class passed to this function must have previously
2494  * been created with a call to class_create().
2495  */
2496 struct device *device_create(struct class *class, struct device *parent,
2497 			     dev_t devt, void *drvdata, const char *fmt, ...)
2498 {
2499 	va_list vargs;
2500 	struct device *dev;
2501 
2502 	va_start(vargs, fmt);
2503 	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2504 	va_end(vargs);
2505 	return dev;
2506 }
2507 EXPORT_SYMBOL_GPL(device_create);
2508 
2509 /**
2510  * device_create_with_groups - creates a device and registers it with sysfs
2511  * @class: pointer to the struct class that this device should be registered to
2512  * @parent: pointer to the parent struct device of this new device, if any
2513  * @devt: the dev_t for the char device to be added
2514  * @drvdata: the data to be added to the device for callbacks
2515  * @groups: NULL-terminated list of attribute groups to be created
2516  * @fmt: string for the device's name
2517  *
2518  * This function can be used by char device classes.  A struct device
2519  * will be created in sysfs, registered to the specified class.
2520  * Additional attributes specified in the groups parameter will also
2521  * be created automatically.
2522  *
2523  * A "dev" file will be created, showing the dev_t for the device, if
2524  * the dev_t is not 0,0.
2525  * If a pointer to a parent struct device is passed in, the newly created
2526  * struct device will be a child of that device in sysfs.
2527  * The pointer to the struct device will be returned from the call.
2528  * Any further sysfs files that might be required can be created using this
2529  * pointer.
2530  *
2531  * Returns &struct device pointer on success, or ERR_PTR() on error.
2532  *
2533  * Note: the struct class passed to this function must have previously
2534  * been created with a call to class_create().
2535  */
2536 struct device *device_create_with_groups(struct class *class,
2537 					 struct device *parent, dev_t devt,
2538 					 void *drvdata,
2539 					 const struct attribute_group **groups,
2540 					 const char *fmt, ...)
2541 {
2542 	va_list vargs;
2543 	struct device *dev;
2544 
2545 	va_start(vargs, fmt);
2546 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2547 					 fmt, vargs);
2548 	va_end(vargs);
2549 	return dev;
2550 }
2551 EXPORT_SYMBOL_GPL(device_create_with_groups);
2552 
2553 static int __match_devt(struct device *dev, const void *data)
2554 {
2555 	const dev_t *devt = data;
2556 
2557 	return dev->devt == *devt;
2558 }
2559 
2560 /**
2561  * device_destroy - removes a device that was created with device_create()
2562  * @class: pointer to the struct class that this device was registered with
2563  * @devt: the dev_t of the device that was previously registered
2564  *
2565  * This call unregisters and cleans up a device that was created with a
2566  * call to device_create().
2567  */
2568 void device_destroy(struct class *class, dev_t devt)
2569 {
2570 	struct device *dev;
2571 
2572 	dev = class_find_device(class, NULL, &devt, __match_devt);
2573 	if (dev) {
2574 		put_device(dev);
2575 		device_unregister(dev);
2576 	}
2577 }
2578 EXPORT_SYMBOL_GPL(device_destroy);
2579 
2580 /**
2581  * device_rename - renames a device
2582  * @dev: the pointer to the struct device to be renamed
2583  * @new_name: the new name of the device
2584  *
2585  * It is the responsibility of the caller to provide mutual
2586  * exclusion between two different calls of device_rename
2587  * on the same device to ensure that new_name is valid and
2588  * won't conflict with other devices.
2589  *
2590  * Note: Don't call this function.  Currently, the networking layer calls this
2591  * function, but that will change.  The following text from Kay Sievers offers
2592  * some insight:
2593  *
2594  * Renaming devices is racy at many levels, symlinks and other stuff are not
2595  * replaced atomically, and you get a "move" uevent, but it's not easy to
2596  * connect the event to the old and new device. Device nodes are not renamed at
2597  * all, there isn't even support for that in the kernel now.
2598  *
2599  * In the meantime, during renaming, your target name might be taken by another
2600  * driver, creating conflicts. Or the old name is taken directly after you
2601  * renamed it -- then you get events for the same DEVPATH, before you even see
2602  * the "move" event. It's just a mess, and nothing new should ever rely on
2603  * kernel device renaming. Besides that, it's not even implemented now for
2604  * other things than (driver-core wise very simple) network devices.
2605  *
2606  * We are currently about to change network renaming in udev to completely
2607  * disallow renaming of devices in the same namespace as the kernel uses,
2608  * because we can't solve the problems properly, that arise with swapping names
2609  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2610  * be allowed to some other name than eth[0-9]*, for the aforementioned
2611  * reasons.
2612  *
2613  * Make up a "real" name in the driver before you register anything, or add
2614  * some other attributes for userspace to find the device, or use udev to add
2615  * symlinks -- but never rename kernel devices later, it's a complete mess. We
2616  * don't even want to get into that and try to implement the missing pieces in
2617  * the core. We really have other pieces to fix in the driver core mess. :)
2618  */
2619 int device_rename(struct device *dev, const char *new_name)
2620 {
2621 	struct kobject *kobj = &dev->kobj;
2622 	char *old_device_name = NULL;
2623 	int error;
2624 
2625 	dev = get_device(dev);
2626 	if (!dev)
2627 		return -EINVAL;
2628 
2629 	dev_dbg(dev, "renaming to %s\n", new_name);
2630 
2631 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2632 	if (!old_device_name) {
2633 		error = -ENOMEM;
2634 		goto out;
2635 	}
2636 
2637 	if (dev->class) {
2638 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2639 					     kobj, old_device_name,
2640 					     new_name, kobject_namespace(kobj));
2641 		if (error)
2642 			goto out;
2643 	}
2644 
2645 	error = kobject_rename(kobj, new_name);
2646 	if (error)
2647 		goto out;
2648 
2649 out:
2650 	put_device(dev);
2651 
2652 	kfree(old_device_name);
2653 
2654 	return error;
2655 }
2656 EXPORT_SYMBOL_GPL(device_rename);
2657 
2658 static int device_move_class_links(struct device *dev,
2659 				   struct device *old_parent,
2660 				   struct device *new_parent)
2661 {
2662 	int error = 0;
2663 
2664 	if (old_parent)
2665 		sysfs_remove_link(&dev->kobj, "device");
2666 	if (new_parent)
2667 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2668 					  "device");
2669 	return error;
2670 }
2671 
2672 /**
2673  * device_move - moves a device to a new parent
2674  * @dev: the pointer to the struct device to be moved
2675  * @new_parent: the new parent of the device (can by NULL)
2676  * @dpm_order: how to reorder the dpm_list
2677  */
2678 int device_move(struct device *dev, struct device *new_parent,
2679 		enum dpm_order dpm_order)
2680 {
2681 	int error;
2682 	struct device *old_parent;
2683 	struct kobject *new_parent_kobj;
2684 
2685 	dev = get_device(dev);
2686 	if (!dev)
2687 		return -EINVAL;
2688 
2689 	device_pm_lock();
2690 	new_parent = get_device(new_parent);
2691 	new_parent_kobj = get_device_parent(dev, new_parent);
2692 
2693 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2694 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2695 	error = kobject_move(&dev->kobj, new_parent_kobj);
2696 	if (error) {
2697 		cleanup_glue_dir(dev, new_parent_kobj);
2698 		put_device(new_parent);
2699 		goto out;
2700 	}
2701 	old_parent = dev->parent;
2702 	dev->parent = new_parent;
2703 	if (old_parent)
2704 		klist_remove(&dev->p->knode_parent);
2705 	if (new_parent) {
2706 		klist_add_tail(&dev->p->knode_parent,
2707 			       &new_parent->p->klist_children);
2708 		set_dev_node(dev, dev_to_node(new_parent));
2709 	}
2710 
2711 	if (dev->class) {
2712 		error = device_move_class_links(dev, old_parent, new_parent);
2713 		if (error) {
2714 			/* We ignore errors on cleanup since we're hosed anyway... */
2715 			device_move_class_links(dev, new_parent, old_parent);
2716 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2717 				if (new_parent)
2718 					klist_remove(&dev->p->knode_parent);
2719 				dev->parent = old_parent;
2720 				if (old_parent) {
2721 					klist_add_tail(&dev->p->knode_parent,
2722 						       &old_parent->p->klist_children);
2723 					set_dev_node(dev, dev_to_node(old_parent));
2724 				}
2725 			}
2726 			cleanup_glue_dir(dev, new_parent_kobj);
2727 			put_device(new_parent);
2728 			goto out;
2729 		}
2730 	}
2731 	switch (dpm_order) {
2732 	case DPM_ORDER_NONE:
2733 		break;
2734 	case DPM_ORDER_DEV_AFTER_PARENT:
2735 		device_pm_move_after(dev, new_parent);
2736 		devices_kset_move_after(dev, new_parent);
2737 		break;
2738 	case DPM_ORDER_PARENT_BEFORE_DEV:
2739 		device_pm_move_before(new_parent, dev);
2740 		devices_kset_move_before(new_parent, dev);
2741 		break;
2742 	case DPM_ORDER_DEV_LAST:
2743 		device_pm_move_last(dev);
2744 		devices_kset_move_last(dev);
2745 		break;
2746 	}
2747 
2748 	put_device(old_parent);
2749 out:
2750 	device_pm_unlock();
2751 	put_device(dev);
2752 	return error;
2753 }
2754 EXPORT_SYMBOL_GPL(device_move);
2755 
2756 /**
2757  * device_shutdown - call ->shutdown() on each device to shutdown.
2758  */
2759 void device_shutdown(void)
2760 {
2761 	struct device *dev, *parent;
2762 
2763 	spin_lock(&devices_kset->list_lock);
2764 	/*
2765 	 * Walk the devices list backward, shutting down each in turn.
2766 	 * Beware that device unplug events may also start pulling
2767 	 * devices offline, even as the system is shutting down.
2768 	 */
2769 	while (!list_empty(&devices_kset->list)) {
2770 		dev = list_entry(devices_kset->list.prev, struct device,
2771 				kobj.entry);
2772 
2773 		/*
2774 		 * hold reference count of device's parent to
2775 		 * prevent it from being freed because parent's
2776 		 * lock is to be held
2777 		 */
2778 		parent = get_device(dev->parent);
2779 		get_device(dev);
2780 		/*
2781 		 * Make sure the device is off the kset list, in the
2782 		 * event that dev->*->shutdown() doesn't remove it.
2783 		 */
2784 		list_del_init(&dev->kobj.entry);
2785 		spin_unlock(&devices_kset->list_lock);
2786 
2787 		/* hold lock to avoid race with probe/release */
2788 		if (parent)
2789 			device_lock(parent);
2790 		device_lock(dev);
2791 
2792 		/* Don't allow any more runtime suspends */
2793 		pm_runtime_get_noresume(dev);
2794 		pm_runtime_barrier(dev);
2795 
2796 		if (dev->class && dev->class->shutdown_pre) {
2797 			if (initcall_debug)
2798 				dev_info(dev, "shutdown_pre\n");
2799 			dev->class->shutdown_pre(dev);
2800 		}
2801 		if (dev->bus && dev->bus->shutdown) {
2802 			if (initcall_debug)
2803 				dev_info(dev, "shutdown\n");
2804 			dev->bus->shutdown(dev);
2805 		} else if (dev->driver && dev->driver->shutdown) {
2806 			if (initcall_debug)
2807 				dev_info(dev, "shutdown\n");
2808 			dev->driver->shutdown(dev);
2809 		}
2810 
2811 		device_unlock(dev);
2812 		if (parent)
2813 			device_unlock(parent);
2814 
2815 		put_device(dev);
2816 		put_device(parent);
2817 
2818 		spin_lock(&devices_kset->list_lock);
2819 	}
2820 	spin_unlock(&devices_kset->list_lock);
2821 }
2822 
2823 /*
2824  * Device logging functions
2825  */
2826 
2827 #ifdef CONFIG_PRINTK
2828 static int
2829 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2830 {
2831 	const char *subsys;
2832 	size_t pos = 0;
2833 
2834 	if (dev->class)
2835 		subsys = dev->class->name;
2836 	else if (dev->bus)
2837 		subsys = dev->bus->name;
2838 	else
2839 		return 0;
2840 
2841 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2842 	if (pos >= hdrlen)
2843 		goto overflow;
2844 
2845 	/*
2846 	 * Add device identifier DEVICE=:
2847 	 *   b12:8         block dev_t
2848 	 *   c127:3        char dev_t
2849 	 *   n8            netdev ifindex
2850 	 *   +sound:card0  subsystem:devname
2851 	 */
2852 	if (MAJOR(dev->devt)) {
2853 		char c;
2854 
2855 		if (strcmp(subsys, "block") == 0)
2856 			c = 'b';
2857 		else
2858 			c = 'c';
2859 		pos++;
2860 		pos += snprintf(hdr + pos, hdrlen - pos,
2861 				"DEVICE=%c%u:%u",
2862 				c, MAJOR(dev->devt), MINOR(dev->devt));
2863 	} else if (strcmp(subsys, "net") == 0) {
2864 		struct net_device *net = to_net_dev(dev);
2865 
2866 		pos++;
2867 		pos += snprintf(hdr + pos, hdrlen - pos,
2868 				"DEVICE=n%u", net->ifindex);
2869 	} else {
2870 		pos++;
2871 		pos += snprintf(hdr + pos, hdrlen - pos,
2872 				"DEVICE=+%s:%s", subsys, dev_name(dev));
2873 	}
2874 
2875 	if (pos >= hdrlen)
2876 		goto overflow;
2877 
2878 	return pos;
2879 
2880 overflow:
2881 	dev_WARN(dev, "device/subsystem name too long");
2882 	return 0;
2883 }
2884 
2885 int dev_vprintk_emit(int level, const struct device *dev,
2886 		     const char *fmt, va_list args)
2887 {
2888 	char hdr[128];
2889 	size_t hdrlen;
2890 
2891 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2892 
2893 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2894 }
2895 EXPORT_SYMBOL(dev_vprintk_emit);
2896 
2897 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2898 {
2899 	va_list args;
2900 	int r;
2901 
2902 	va_start(args, fmt);
2903 
2904 	r = dev_vprintk_emit(level, dev, fmt, args);
2905 
2906 	va_end(args);
2907 
2908 	return r;
2909 }
2910 EXPORT_SYMBOL(dev_printk_emit);
2911 
2912 static void __dev_printk(const char *level, const struct device *dev,
2913 			struct va_format *vaf)
2914 {
2915 	if (dev)
2916 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2917 				dev_driver_string(dev), dev_name(dev), vaf);
2918 	else
2919 		printk("%s(NULL device *): %pV", level, vaf);
2920 }
2921 
2922 void dev_printk(const char *level, const struct device *dev,
2923 		const char *fmt, ...)
2924 {
2925 	struct va_format vaf;
2926 	va_list args;
2927 
2928 	va_start(args, fmt);
2929 
2930 	vaf.fmt = fmt;
2931 	vaf.va = &args;
2932 
2933 	__dev_printk(level, dev, &vaf);
2934 
2935 	va_end(args);
2936 }
2937 EXPORT_SYMBOL(dev_printk);
2938 
2939 #define define_dev_printk_level(func, kern_level)		\
2940 void func(const struct device *dev, const char *fmt, ...)	\
2941 {								\
2942 	struct va_format vaf;					\
2943 	va_list args;						\
2944 								\
2945 	va_start(args, fmt);					\
2946 								\
2947 	vaf.fmt = fmt;						\
2948 	vaf.va = &args;						\
2949 								\
2950 	__dev_printk(kern_level, dev, &vaf);			\
2951 								\
2952 	va_end(args);						\
2953 }								\
2954 EXPORT_SYMBOL(func);
2955 
2956 define_dev_printk_level(dev_emerg, KERN_EMERG);
2957 define_dev_printk_level(dev_alert, KERN_ALERT);
2958 define_dev_printk_level(dev_crit, KERN_CRIT);
2959 define_dev_printk_level(dev_err, KERN_ERR);
2960 define_dev_printk_level(dev_warn, KERN_WARNING);
2961 define_dev_printk_level(dev_notice, KERN_NOTICE);
2962 define_dev_printk_level(_dev_info, KERN_INFO);
2963 
2964 #endif
2965 
2966 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
2967 {
2968 	return fwnode && !IS_ERR(fwnode->secondary);
2969 }
2970 
2971 /**
2972  * set_primary_fwnode - Change the primary firmware node of a given device.
2973  * @dev: Device to handle.
2974  * @fwnode: New primary firmware node of the device.
2975  *
2976  * Set the device's firmware node pointer to @fwnode, but if a secondary
2977  * firmware node of the device is present, preserve it.
2978  */
2979 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2980 {
2981 	if (fwnode) {
2982 		struct fwnode_handle *fn = dev->fwnode;
2983 
2984 		if (fwnode_is_primary(fn))
2985 			fn = fn->secondary;
2986 
2987 		if (fn) {
2988 			WARN_ON(fwnode->secondary);
2989 			fwnode->secondary = fn;
2990 		}
2991 		dev->fwnode = fwnode;
2992 	} else {
2993 		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
2994 			dev->fwnode->secondary : NULL;
2995 	}
2996 }
2997 EXPORT_SYMBOL_GPL(set_primary_fwnode);
2998 
2999 /**
3000  * set_secondary_fwnode - Change the secondary firmware node of a given device.
3001  * @dev: Device to handle.
3002  * @fwnode: New secondary firmware node of the device.
3003  *
3004  * If a primary firmware node of the device is present, set its secondary
3005  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3006  * @fwnode.
3007  */
3008 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3009 {
3010 	if (fwnode)
3011 		fwnode->secondary = ERR_PTR(-ENODEV);
3012 
3013 	if (fwnode_is_primary(dev->fwnode))
3014 		dev->fwnode->secondary = fwnode;
3015 	else
3016 		dev->fwnode = fwnode;
3017 }
3018 
3019 /**
3020  * device_set_of_node_from_dev - reuse device-tree node of another device
3021  * @dev: device whose device-tree node is being set
3022  * @dev2: device whose device-tree node is being reused
3023  *
3024  * Takes another reference to the new device-tree node after first dropping
3025  * any reference held to the old node.
3026  */
3027 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3028 {
3029 	of_node_put(dev->of_node);
3030 	dev->of_node = of_node_get(dev2->of_node);
3031 	dev->of_node_reused = true;
3032 }
3033 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3034