xref: /openbmc/linux/drivers/base/core.c (revision 4494ce4f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/device.h>
13 #include <linux/err.h>
14 #include <linux/fwnode.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include <linux/kdev_t.h>
20 #include <linux/notifier.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/genhd.h>
24 #include <linux/mutex.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/netdevice.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sysfs.h>
29 
30 #include "base.h"
31 #include "power/power.h"
32 
33 #ifdef CONFIG_SYSFS_DEPRECATED
34 #ifdef CONFIG_SYSFS_DEPRECATED_V2
35 long sysfs_deprecated = 1;
36 #else
37 long sysfs_deprecated = 0;
38 #endif
39 static int __init sysfs_deprecated_setup(char *arg)
40 {
41 	return kstrtol(arg, 10, &sysfs_deprecated);
42 }
43 early_param("sysfs.deprecated", sysfs_deprecated_setup);
44 #endif
45 
46 /* Device links support. */
47 
48 #ifdef CONFIG_SRCU
49 static DEFINE_MUTEX(device_links_lock);
50 DEFINE_STATIC_SRCU(device_links_srcu);
51 
52 static inline void device_links_write_lock(void)
53 {
54 	mutex_lock(&device_links_lock);
55 }
56 
57 static inline void device_links_write_unlock(void)
58 {
59 	mutex_unlock(&device_links_lock);
60 }
61 
62 int device_links_read_lock(void)
63 {
64 	return srcu_read_lock(&device_links_srcu);
65 }
66 
67 void device_links_read_unlock(int idx)
68 {
69 	srcu_read_unlock(&device_links_srcu, idx);
70 }
71 #else /* !CONFIG_SRCU */
72 static DECLARE_RWSEM(device_links_lock);
73 
74 static inline void device_links_write_lock(void)
75 {
76 	down_write(&device_links_lock);
77 }
78 
79 static inline void device_links_write_unlock(void)
80 {
81 	up_write(&device_links_lock);
82 }
83 
84 int device_links_read_lock(void)
85 {
86 	down_read(&device_links_lock);
87 	return 0;
88 }
89 
90 void device_links_read_unlock(int not_used)
91 {
92 	up_read(&device_links_lock);
93 }
94 #endif /* !CONFIG_SRCU */
95 
96 /**
97  * device_is_dependent - Check if one device depends on another one
98  * @dev: Device to check dependencies for.
99  * @target: Device to check against.
100  *
101  * Check if @target depends on @dev or any device dependent on it (its child or
102  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
103  */
104 static int device_is_dependent(struct device *dev, void *target)
105 {
106 	struct device_link *link;
107 	int ret;
108 
109 	if (dev == target)
110 		return 1;
111 
112 	ret = device_for_each_child(dev, target, device_is_dependent);
113 	if (ret)
114 		return ret;
115 
116 	list_for_each_entry(link, &dev->links.consumers, s_node) {
117 		if (link->consumer == target)
118 			return 1;
119 
120 		ret = device_is_dependent(link->consumer, target);
121 		if (ret)
122 			break;
123 	}
124 	return ret;
125 }
126 
127 static int device_reorder_to_tail(struct device *dev, void *not_used)
128 {
129 	struct device_link *link;
130 
131 	/*
132 	 * Devices that have not been registered yet will be put to the ends
133 	 * of the lists during the registration, so skip them here.
134 	 */
135 	if (device_is_registered(dev))
136 		devices_kset_move_last(dev);
137 
138 	if (device_pm_initialized(dev))
139 		device_pm_move_last(dev);
140 
141 	device_for_each_child(dev, NULL, device_reorder_to_tail);
142 	list_for_each_entry(link, &dev->links.consumers, s_node)
143 		device_reorder_to_tail(link->consumer, NULL);
144 
145 	return 0;
146 }
147 
148 /**
149  * device_pm_move_to_tail - Move set of devices to the end of device lists
150  * @dev: Device to move
151  *
152  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
153  *
154  * It moves the @dev along with all of its children and all of its consumers
155  * to the ends of the device_kset and dpm_list, recursively.
156  */
157 void device_pm_move_to_tail(struct device *dev)
158 {
159 	int idx;
160 
161 	idx = device_links_read_lock();
162 	device_pm_lock();
163 	device_reorder_to_tail(dev, NULL);
164 	device_pm_unlock();
165 	device_links_read_unlock(idx);
166 }
167 
168 /**
169  * device_link_add - Create a link between two devices.
170  * @consumer: Consumer end of the link.
171  * @supplier: Supplier end of the link.
172  * @flags: Link flags.
173  *
174  * The caller is responsible for the proper synchronization of the link creation
175  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
176  * runtime PM framework to take the link into account.  Second, if the
177  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
178  * be forced into the active metastate and reference-counted upon the creation
179  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
180  * ignored.
181  *
182  * If the DL_FLAG_AUTOREMOVE_CONSUMER is set, the link will be removed
183  * automatically when the consumer device driver unbinds from it.
184  * The combination of both DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_STATELESS
185  * set is invalid and will cause NULL to be returned.
186  *
187  * A side effect of the link creation is re-ordering of dpm_list and the
188  * devices_kset list by moving the consumer device and all devices depending
189  * on it to the ends of these lists (that does not happen to devices that have
190  * not been registered when this function is called).
191  *
192  * The supplier device is required to be registered when this function is called
193  * and NULL will be returned if that is not the case.  The consumer device need
194  * not be registered, however.
195  */
196 struct device_link *device_link_add(struct device *consumer,
197 				    struct device *supplier, u32 flags)
198 {
199 	struct device_link *link;
200 
201 	if (!consumer || !supplier ||
202 	    ((flags & DL_FLAG_STATELESS) &&
203 	     (flags & DL_FLAG_AUTOREMOVE_CONSUMER)))
204 		return NULL;
205 
206 	device_links_write_lock();
207 	device_pm_lock();
208 
209 	/*
210 	 * If the supplier has not been fully registered yet or there is a
211 	 * reverse dependency between the consumer and the supplier already in
212 	 * the graph, return NULL.
213 	 */
214 	if (!device_pm_initialized(supplier)
215 	    || device_is_dependent(consumer, supplier)) {
216 		link = NULL;
217 		goto out;
218 	}
219 
220 	list_for_each_entry(link, &supplier->links.consumers, s_node)
221 		if (link->consumer == consumer) {
222 			kref_get(&link->kref);
223 			goto out;
224 		}
225 
226 	link = kzalloc(sizeof(*link), GFP_KERNEL);
227 	if (!link)
228 		goto out;
229 
230 	if (flags & DL_FLAG_PM_RUNTIME) {
231 		if (flags & DL_FLAG_RPM_ACTIVE) {
232 			if (pm_runtime_get_sync(supplier) < 0) {
233 				pm_runtime_put_noidle(supplier);
234 				kfree(link);
235 				link = NULL;
236 				goto out;
237 			}
238 			link->rpm_active = true;
239 		}
240 		pm_runtime_new_link(consumer);
241 		/*
242 		 * If the link is being added by the consumer driver at probe
243 		 * time, balance the decrementation of the supplier's runtime PM
244 		 * usage counter after consumer probe in driver_probe_device().
245 		 */
246 		if (consumer->links.status == DL_DEV_PROBING)
247 			pm_runtime_get_noresume(supplier);
248 	}
249 	get_device(supplier);
250 	link->supplier = supplier;
251 	INIT_LIST_HEAD(&link->s_node);
252 	get_device(consumer);
253 	link->consumer = consumer;
254 	INIT_LIST_HEAD(&link->c_node);
255 	link->flags = flags;
256 	kref_init(&link->kref);
257 
258 	/* Determine the initial link state. */
259 	if (flags & DL_FLAG_STATELESS) {
260 		link->status = DL_STATE_NONE;
261 	} else {
262 		switch (supplier->links.status) {
263 		case DL_DEV_DRIVER_BOUND:
264 			switch (consumer->links.status) {
265 			case DL_DEV_PROBING:
266 				/*
267 				 * Some callers expect the link creation during
268 				 * consumer driver probe to resume the supplier
269 				 * even without DL_FLAG_RPM_ACTIVE.
270 				 */
271 				if (flags & DL_FLAG_PM_RUNTIME)
272 					pm_runtime_resume(supplier);
273 
274 				link->status = DL_STATE_CONSUMER_PROBE;
275 				break;
276 			case DL_DEV_DRIVER_BOUND:
277 				link->status = DL_STATE_ACTIVE;
278 				break;
279 			default:
280 				link->status = DL_STATE_AVAILABLE;
281 				break;
282 			}
283 			break;
284 		case DL_DEV_UNBINDING:
285 			link->status = DL_STATE_SUPPLIER_UNBIND;
286 			break;
287 		default:
288 			link->status = DL_STATE_DORMANT;
289 			break;
290 		}
291 	}
292 
293 	/*
294 	 * Move the consumer and all of the devices depending on it to the end
295 	 * of dpm_list and the devices_kset list.
296 	 *
297 	 * It is necessary to hold dpm_list locked throughout all that or else
298 	 * we may end up suspending with a wrong ordering of it.
299 	 */
300 	device_reorder_to_tail(consumer, NULL);
301 
302 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
303 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
304 
305 	dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
306 
307  out:
308 	device_pm_unlock();
309 	device_links_write_unlock();
310 	return link;
311 }
312 EXPORT_SYMBOL_GPL(device_link_add);
313 
314 static void device_link_free(struct device_link *link)
315 {
316 	put_device(link->consumer);
317 	put_device(link->supplier);
318 	kfree(link);
319 }
320 
321 #ifdef CONFIG_SRCU
322 static void __device_link_free_srcu(struct rcu_head *rhead)
323 {
324 	device_link_free(container_of(rhead, struct device_link, rcu_head));
325 }
326 
327 static void __device_link_del(struct kref *kref)
328 {
329 	struct device_link *link = container_of(kref, struct device_link, kref);
330 
331 	dev_info(link->consumer, "Dropping the link to %s\n",
332 		 dev_name(link->supplier));
333 
334 	if (link->flags & DL_FLAG_PM_RUNTIME)
335 		pm_runtime_drop_link(link->consumer);
336 
337 	list_del_rcu(&link->s_node);
338 	list_del_rcu(&link->c_node);
339 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
340 }
341 #else /* !CONFIG_SRCU */
342 static void __device_link_del(struct kref *kref)
343 {
344 	struct device_link *link = container_of(kref, struct device_link, kref);
345 
346 	dev_info(link->consumer, "Dropping the link to %s\n",
347 		 dev_name(link->supplier));
348 
349 	if (link->flags & DL_FLAG_PM_RUNTIME)
350 		pm_runtime_drop_link(link->consumer);
351 
352 	list_del(&link->s_node);
353 	list_del(&link->c_node);
354 	device_link_free(link);
355 }
356 #endif /* !CONFIG_SRCU */
357 
358 /**
359  * device_link_del - Delete a link between two devices.
360  * @link: Device link to delete.
361  *
362  * The caller must ensure proper synchronization of this function with runtime
363  * PM.  If the link was added multiple times, it needs to be deleted as often.
364  * Care is required for hotplugged devices:  Their links are purged on removal
365  * and calling device_link_del() is then no longer allowed.
366  */
367 void device_link_del(struct device_link *link)
368 {
369 	device_links_write_lock();
370 	device_pm_lock();
371 	kref_put(&link->kref, __device_link_del);
372 	device_pm_unlock();
373 	device_links_write_unlock();
374 }
375 EXPORT_SYMBOL_GPL(device_link_del);
376 
377 /**
378  * device_link_remove - remove a link between two devices.
379  * @consumer: Consumer end of the link.
380  * @supplier: Supplier end of the link.
381  *
382  * The caller must ensure proper synchronization of this function with runtime
383  * PM.
384  */
385 void device_link_remove(void *consumer, struct device *supplier)
386 {
387 	struct device_link *link;
388 
389 	if (WARN_ON(consumer == supplier))
390 		return;
391 
392 	device_links_write_lock();
393 	device_pm_lock();
394 
395 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
396 		if (link->consumer == consumer) {
397 			kref_put(&link->kref, __device_link_del);
398 			break;
399 		}
400 	}
401 
402 	device_pm_unlock();
403 	device_links_write_unlock();
404 }
405 EXPORT_SYMBOL_GPL(device_link_remove);
406 
407 static void device_links_missing_supplier(struct device *dev)
408 {
409 	struct device_link *link;
410 
411 	list_for_each_entry(link, &dev->links.suppliers, c_node)
412 		if (link->status == DL_STATE_CONSUMER_PROBE)
413 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
414 }
415 
416 /**
417  * device_links_check_suppliers - Check presence of supplier drivers.
418  * @dev: Consumer device.
419  *
420  * Check links from this device to any suppliers.  Walk the list of the device's
421  * links to suppliers and see if all of them are available.  If not, simply
422  * return -EPROBE_DEFER.
423  *
424  * We need to guarantee that the supplier will not go away after the check has
425  * been positive here.  It only can go away in __device_release_driver() and
426  * that function  checks the device's links to consumers.  This means we need to
427  * mark the link as "consumer probe in progress" to make the supplier removal
428  * wait for us to complete (or bad things may happen).
429  *
430  * Links with the DL_FLAG_STATELESS flag set are ignored.
431  */
432 int device_links_check_suppliers(struct device *dev)
433 {
434 	struct device_link *link;
435 	int ret = 0;
436 
437 	device_links_write_lock();
438 
439 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
440 		if (link->flags & DL_FLAG_STATELESS)
441 			continue;
442 
443 		if (link->status != DL_STATE_AVAILABLE) {
444 			device_links_missing_supplier(dev);
445 			ret = -EPROBE_DEFER;
446 			break;
447 		}
448 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
449 	}
450 	dev->links.status = DL_DEV_PROBING;
451 
452 	device_links_write_unlock();
453 	return ret;
454 }
455 
456 /**
457  * device_links_driver_bound - Update device links after probing its driver.
458  * @dev: Device to update the links for.
459  *
460  * The probe has been successful, so update links from this device to any
461  * consumers by changing their status to "available".
462  *
463  * Also change the status of @dev's links to suppliers to "active".
464  *
465  * Links with the DL_FLAG_STATELESS flag set are ignored.
466  */
467 void device_links_driver_bound(struct device *dev)
468 {
469 	struct device_link *link;
470 
471 	device_links_write_lock();
472 
473 	list_for_each_entry(link, &dev->links.consumers, s_node) {
474 		if (link->flags & DL_FLAG_STATELESS)
475 			continue;
476 
477 		WARN_ON(link->status != DL_STATE_DORMANT);
478 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
479 	}
480 
481 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
482 		if (link->flags & DL_FLAG_STATELESS)
483 			continue;
484 
485 		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
486 		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
487 	}
488 
489 	dev->links.status = DL_DEV_DRIVER_BOUND;
490 
491 	device_links_write_unlock();
492 }
493 
494 /**
495  * __device_links_no_driver - Update links of a device without a driver.
496  * @dev: Device without a drvier.
497  *
498  * Delete all non-persistent links from this device to any suppliers.
499  *
500  * Persistent links stay around, but their status is changed to "available",
501  * unless they already are in the "supplier unbind in progress" state in which
502  * case they need not be updated.
503  *
504  * Links with the DL_FLAG_STATELESS flag set are ignored.
505  */
506 static void __device_links_no_driver(struct device *dev)
507 {
508 	struct device_link *link, *ln;
509 
510 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
511 		if (link->flags & DL_FLAG_STATELESS)
512 			continue;
513 
514 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
515 			kref_put(&link->kref, __device_link_del);
516 		else if (link->status != DL_STATE_SUPPLIER_UNBIND)
517 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
518 	}
519 
520 	dev->links.status = DL_DEV_NO_DRIVER;
521 }
522 
523 void device_links_no_driver(struct device *dev)
524 {
525 	device_links_write_lock();
526 	__device_links_no_driver(dev);
527 	device_links_write_unlock();
528 }
529 
530 /**
531  * device_links_driver_cleanup - Update links after driver removal.
532  * @dev: Device whose driver has just gone away.
533  *
534  * Update links to consumers for @dev by changing their status to "dormant" and
535  * invoke %__device_links_no_driver() to update links to suppliers for it as
536  * appropriate.
537  *
538  * Links with the DL_FLAG_STATELESS flag set are ignored.
539  */
540 void device_links_driver_cleanup(struct device *dev)
541 {
542 	struct device_link *link;
543 
544 	device_links_write_lock();
545 
546 	list_for_each_entry(link, &dev->links.consumers, s_node) {
547 		if (link->flags & DL_FLAG_STATELESS)
548 			continue;
549 
550 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
551 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
552 
553 		/*
554 		 * autoremove the links between this @dev and its consumer
555 		 * devices that are not active, i.e. where the link state
556 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
557 		 */
558 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
559 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
560 			kref_put(&link->kref, __device_link_del);
561 
562 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
563 	}
564 
565 	__device_links_no_driver(dev);
566 
567 	device_links_write_unlock();
568 }
569 
570 /**
571  * device_links_busy - Check if there are any busy links to consumers.
572  * @dev: Device to check.
573  *
574  * Check each consumer of the device and return 'true' if its link's status
575  * is one of "consumer probe" or "active" (meaning that the given consumer is
576  * probing right now or its driver is present).  Otherwise, change the link
577  * state to "supplier unbind" to prevent the consumer from being probed
578  * successfully going forward.
579  *
580  * Return 'false' if there are no probing or active consumers.
581  *
582  * Links with the DL_FLAG_STATELESS flag set are ignored.
583  */
584 bool device_links_busy(struct device *dev)
585 {
586 	struct device_link *link;
587 	bool ret = false;
588 
589 	device_links_write_lock();
590 
591 	list_for_each_entry(link, &dev->links.consumers, s_node) {
592 		if (link->flags & DL_FLAG_STATELESS)
593 			continue;
594 
595 		if (link->status == DL_STATE_CONSUMER_PROBE
596 		    || link->status == DL_STATE_ACTIVE) {
597 			ret = true;
598 			break;
599 		}
600 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
601 	}
602 
603 	dev->links.status = DL_DEV_UNBINDING;
604 
605 	device_links_write_unlock();
606 	return ret;
607 }
608 
609 /**
610  * device_links_unbind_consumers - Force unbind consumers of the given device.
611  * @dev: Device to unbind the consumers of.
612  *
613  * Walk the list of links to consumers for @dev and if any of them is in the
614  * "consumer probe" state, wait for all device probes in progress to complete
615  * and start over.
616  *
617  * If that's not the case, change the status of the link to "supplier unbind"
618  * and check if the link was in the "active" state.  If so, force the consumer
619  * driver to unbind and start over (the consumer will not re-probe as we have
620  * changed the state of the link already).
621  *
622  * Links with the DL_FLAG_STATELESS flag set are ignored.
623  */
624 void device_links_unbind_consumers(struct device *dev)
625 {
626 	struct device_link *link;
627 
628  start:
629 	device_links_write_lock();
630 
631 	list_for_each_entry(link, &dev->links.consumers, s_node) {
632 		enum device_link_state status;
633 
634 		if (link->flags & DL_FLAG_STATELESS)
635 			continue;
636 
637 		status = link->status;
638 		if (status == DL_STATE_CONSUMER_PROBE) {
639 			device_links_write_unlock();
640 
641 			wait_for_device_probe();
642 			goto start;
643 		}
644 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
645 		if (status == DL_STATE_ACTIVE) {
646 			struct device *consumer = link->consumer;
647 
648 			get_device(consumer);
649 
650 			device_links_write_unlock();
651 
652 			device_release_driver_internal(consumer, NULL,
653 						       consumer->parent);
654 			put_device(consumer);
655 			goto start;
656 		}
657 	}
658 
659 	device_links_write_unlock();
660 }
661 
662 /**
663  * device_links_purge - Delete existing links to other devices.
664  * @dev: Target device.
665  */
666 static void device_links_purge(struct device *dev)
667 {
668 	struct device_link *link, *ln;
669 
670 	/*
671 	 * Delete all of the remaining links from this device to any other
672 	 * devices (either consumers or suppliers).
673 	 */
674 	device_links_write_lock();
675 
676 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
677 		WARN_ON(link->status == DL_STATE_ACTIVE);
678 		__device_link_del(&link->kref);
679 	}
680 
681 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
682 		WARN_ON(link->status != DL_STATE_DORMANT &&
683 			link->status != DL_STATE_NONE);
684 		__device_link_del(&link->kref);
685 	}
686 
687 	device_links_write_unlock();
688 }
689 
690 /* Device links support end. */
691 
692 int (*platform_notify)(struct device *dev) = NULL;
693 int (*platform_notify_remove)(struct device *dev) = NULL;
694 static struct kobject *dev_kobj;
695 struct kobject *sysfs_dev_char_kobj;
696 struct kobject *sysfs_dev_block_kobj;
697 
698 static DEFINE_MUTEX(device_hotplug_lock);
699 
700 void lock_device_hotplug(void)
701 {
702 	mutex_lock(&device_hotplug_lock);
703 }
704 
705 void unlock_device_hotplug(void)
706 {
707 	mutex_unlock(&device_hotplug_lock);
708 }
709 
710 int lock_device_hotplug_sysfs(void)
711 {
712 	if (mutex_trylock(&device_hotplug_lock))
713 		return 0;
714 
715 	/* Avoid busy looping (5 ms of sleep should do). */
716 	msleep(5);
717 	return restart_syscall();
718 }
719 
720 #ifdef CONFIG_BLOCK
721 static inline int device_is_not_partition(struct device *dev)
722 {
723 	return !(dev->type == &part_type);
724 }
725 #else
726 static inline int device_is_not_partition(struct device *dev)
727 {
728 	return 1;
729 }
730 #endif
731 
732 static int
733 device_platform_notify(struct device *dev, enum kobject_action action)
734 {
735 	int ret;
736 
737 	ret = acpi_platform_notify(dev, action);
738 	if (ret)
739 		return ret;
740 
741 	ret = software_node_notify(dev, action);
742 	if (ret)
743 		return ret;
744 
745 	if (platform_notify && action == KOBJ_ADD)
746 		platform_notify(dev);
747 	else if (platform_notify_remove && action == KOBJ_REMOVE)
748 		platform_notify_remove(dev);
749 	return 0;
750 }
751 
752 /**
753  * dev_driver_string - Return a device's driver name, if at all possible
754  * @dev: struct device to get the name of
755  *
756  * Will return the device's driver's name if it is bound to a device.  If
757  * the device is not bound to a driver, it will return the name of the bus
758  * it is attached to.  If it is not attached to a bus either, an empty
759  * string will be returned.
760  */
761 const char *dev_driver_string(const struct device *dev)
762 {
763 	struct device_driver *drv;
764 
765 	/* dev->driver can change to NULL underneath us because of unbinding,
766 	 * so be careful about accessing it.  dev->bus and dev->class should
767 	 * never change once they are set, so they don't need special care.
768 	 */
769 	drv = READ_ONCE(dev->driver);
770 	return drv ? drv->name :
771 			(dev->bus ? dev->bus->name :
772 			(dev->class ? dev->class->name : ""));
773 }
774 EXPORT_SYMBOL(dev_driver_string);
775 
776 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
777 
778 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
779 			     char *buf)
780 {
781 	struct device_attribute *dev_attr = to_dev_attr(attr);
782 	struct device *dev = kobj_to_dev(kobj);
783 	ssize_t ret = -EIO;
784 
785 	if (dev_attr->show)
786 		ret = dev_attr->show(dev, dev_attr, buf);
787 	if (ret >= (ssize_t)PAGE_SIZE) {
788 		printk("dev_attr_show: %pS returned bad count\n",
789 				dev_attr->show);
790 	}
791 	return ret;
792 }
793 
794 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
795 			      const char *buf, size_t count)
796 {
797 	struct device_attribute *dev_attr = to_dev_attr(attr);
798 	struct device *dev = kobj_to_dev(kobj);
799 	ssize_t ret = -EIO;
800 
801 	if (dev_attr->store)
802 		ret = dev_attr->store(dev, dev_attr, buf, count);
803 	return ret;
804 }
805 
806 static const struct sysfs_ops dev_sysfs_ops = {
807 	.show	= dev_attr_show,
808 	.store	= dev_attr_store,
809 };
810 
811 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
812 
813 ssize_t device_store_ulong(struct device *dev,
814 			   struct device_attribute *attr,
815 			   const char *buf, size_t size)
816 {
817 	struct dev_ext_attribute *ea = to_ext_attr(attr);
818 	char *end;
819 	unsigned long new = simple_strtoul(buf, &end, 0);
820 	if (end == buf)
821 		return -EINVAL;
822 	*(unsigned long *)(ea->var) = new;
823 	/* Always return full write size even if we didn't consume all */
824 	return size;
825 }
826 EXPORT_SYMBOL_GPL(device_store_ulong);
827 
828 ssize_t device_show_ulong(struct device *dev,
829 			  struct device_attribute *attr,
830 			  char *buf)
831 {
832 	struct dev_ext_attribute *ea = to_ext_attr(attr);
833 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
834 }
835 EXPORT_SYMBOL_GPL(device_show_ulong);
836 
837 ssize_t device_store_int(struct device *dev,
838 			 struct device_attribute *attr,
839 			 const char *buf, size_t size)
840 {
841 	struct dev_ext_attribute *ea = to_ext_attr(attr);
842 	char *end;
843 	long new = simple_strtol(buf, &end, 0);
844 	if (end == buf || new > INT_MAX || new < INT_MIN)
845 		return -EINVAL;
846 	*(int *)(ea->var) = new;
847 	/* Always return full write size even if we didn't consume all */
848 	return size;
849 }
850 EXPORT_SYMBOL_GPL(device_store_int);
851 
852 ssize_t device_show_int(struct device *dev,
853 			struct device_attribute *attr,
854 			char *buf)
855 {
856 	struct dev_ext_attribute *ea = to_ext_attr(attr);
857 
858 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
859 }
860 EXPORT_SYMBOL_GPL(device_show_int);
861 
862 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
863 			  const char *buf, size_t size)
864 {
865 	struct dev_ext_attribute *ea = to_ext_attr(attr);
866 
867 	if (strtobool(buf, ea->var) < 0)
868 		return -EINVAL;
869 
870 	return size;
871 }
872 EXPORT_SYMBOL_GPL(device_store_bool);
873 
874 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
875 			 char *buf)
876 {
877 	struct dev_ext_attribute *ea = to_ext_attr(attr);
878 
879 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
880 }
881 EXPORT_SYMBOL_GPL(device_show_bool);
882 
883 /**
884  * device_release - free device structure.
885  * @kobj: device's kobject.
886  *
887  * This is called once the reference count for the object
888  * reaches 0. We forward the call to the device's release
889  * method, which should handle actually freeing the structure.
890  */
891 static void device_release(struct kobject *kobj)
892 {
893 	struct device *dev = kobj_to_dev(kobj);
894 	struct device_private *p = dev->p;
895 
896 	/*
897 	 * Some platform devices are driven without driver attached
898 	 * and managed resources may have been acquired.  Make sure
899 	 * all resources are released.
900 	 *
901 	 * Drivers still can add resources into device after device
902 	 * is deleted but alive, so release devres here to avoid
903 	 * possible memory leak.
904 	 */
905 	devres_release_all(dev);
906 
907 	if (dev->release)
908 		dev->release(dev);
909 	else if (dev->type && dev->type->release)
910 		dev->type->release(dev);
911 	else if (dev->class && dev->class->dev_release)
912 		dev->class->dev_release(dev);
913 	else
914 		WARN(1, KERN_ERR "Device '%s' does not have a release() "
915 			"function, it is broken and must be fixed.\n",
916 			dev_name(dev));
917 	kfree(p);
918 }
919 
920 static const void *device_namespace(struct kobject *kobj)
921 {
922 	struct device *dev = kobj_to_dev(kobj);
923 	const void *ns = NULL;
924 
925 	if (dev->class && dev->class->ns_type)
926 		ns = dev->class->namespace(dev);
927 
928 	return ns;
929 }
930 
931 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
932 {
933 	struct device *dev = kobj_to_dev(kobj);
934 
935 	if (dev->class && dev->class->get_ownership)
936 		dev->class->get_ownership(dev, uid, gid);
937 }
938 
939 static struct kobj_type device_ktype = {
940 	.release	= device_release,
941 	.sysfs_ops	= &dev_sysfs_ops,
942 	.namespace	= device_namespace,
943 	.get_ownership	= device_get_ownership,
944 };
945 
946 
947 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
948 {
949 	struct kobj_type *ktype = get_ktype(kobj);
950 
951 	if (ktype == &device_ktype) {
952 		struct device *dev = kobj_to_dev(kobj);
953 		if (dev->bus)
954 			return 1;
955 		if (dev->class)
956 			return 1;
957 	}
958 	return 0;
959 }
960 
961 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
962 {
963 	struct device *dev = kobj_to_dev(kobj);
964 
965 	if (dev->bus)
966 		return dev->bus->name;
967 	if (dev->class)
968 		return dev->class->name;
969 	return NULL;
970 }
971 
972 static int dev_uevent(struct kset *kset, struct kobject *kobj,
973 		      struct kobj_uevent_env *env)
974 {
975 	struct device *dev = kobj_to_dev(kobj);
976 	int retval = 0;
977 
978 	/* add device node properties if present */
979 	if (MAJOR(dev->devt)) {
980 		const char *tmp;
981 		const char *name;
982 		umode_t mode = 0;
983 		kuid_t uid = GLOBAL_ROOT_UID;
984 		kgid_t gid = GLOBAL_ROOT_GID;
985 
986 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
987 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
988 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
989 		if (name) {
990 			add_uevent_var(env, "DEVNAME=%s", name);
991 			if (mode)
992 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
993 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
994 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
995 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
996 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
997 			kfree(tmp);
998 		}
999 	}
1000 
1001 	if (dev->type && dev->type->name)
1002 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1003 
1004 	if (dev->driver)
1005 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1006 
1007 	/* Add common DT information about the device */
1008 	of_device_uevent(dev, env);
1009 
1010 	/* have the bus specific function add its stuff */
1011 	if (dev->bus && dev->bus->uevent) {
1012 		retval = dev->bus->uevent(dev, env);
1013 		if (retval)
1014 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1015 				 dev_name(dev), __func__, retval);
1016 	}
1017 
1018 	/* have the class specific function add its stuff */
1019 	if (dev->class && dev->class->dev_uevent) {
1020 		retval = dev->class->dev_uevent(dev, env);
1021 		if (retval)
1022 			pr_debug("device: '%s': %s: class uevent() "
1023 				 "returned %d\n", dev_name(dev),
1024 				 __func__, retval);
1025 	}
1026 
1027 	/* have the device type specific function add its stuff */
1028 	if (dev->type && dev->type->uevent) {
1029 		retval = dev->type->uevent(dev, env);
1030 		if (retval)
1031 			pr_debug("device: '%s': %s: dev_type uevent() "
1032 				 "returned %d\n", dev_name(dev),
1033 				 __func__, retval);
1034 	}
1035 
1036 	return retval;
1037 }
1038 
1039 static const struct kset_uevent_ops device_uevent_ops = {
1040 	.filter =	dev_uevent_filter,
1041 	.name =		dev_uevent_name,
1042 	.uevent =	dev_uevent,
1043 };
1044 
1045 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1046 			   char *buf)
1047 {
1048 	struct kobject *top_kobj;
1049 	struct kset *kset;
1050 	struct kobj_uevent_env *env = NULL;
1051 	int i;
1052 	size_t count = 0;
1053 	int retval;
1054 
1055 	/* search the kset, the device belongs to */
1056 	top_kobj = &dev->kobj;
1057 	while (!top_kobj->kset && top_kobj->parent)
1058 		top_kobj = top_kobj->parent;
1059 	if (!top_kobj->kset)
1060 		goto out;
1061 
1062 	kset = top_kobj->kset;
1063 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1064 		goto out;
1065 
1066 	/* respect filter */
1067 	if (kset->uevent_ops && kset->uevent_ops->filter)
1068 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1069 			goto out;
1070 
1071 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1072 	if (!env)
1073 		return -ENOMEM;
1074 
1075 	/* let the kset specific function add its keys */
1076 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1077 	if (retval)
1078 		goto out;
1079 
1080 	/* copy keys to file */
1081 	for (i = 0; i < env->envp_idx; i++)
1082 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1083 out:
1084 	kfree(env);
1085 	return count;
1086 }
1087 
1088 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1089 			    const char *buf, size_t count)
1090 {
1091 	if (kobject_synth_uevent(&dev->kobj, buf, count))
1092 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1093 
1094 	return count;
1095 }
1096 static DEVICE_ATTR_RW(uevent);
1097 
1098 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1099 			   char *buf)
1100 {
1101 	bool val;
1102 
1103 	device_lock(dev);
1104 	val = !dev->offline;
1105 	device_unlock(dev);
1106 	return sprintf(buf, "%u\n", val);
1107 }
1108 
1109 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1110 			    const char *buf, size_t count)
1111 {
1112 	bool val;
1113 	int ret;
1114 
1115 	ret = strtobool(buf, &val);
1116 	if (ret < 0)
1117 		return ret;
1118 
1119 	ret = lock_device_hotplug_sysfs();
1120 	if (ret)
1121 		return ret;
1122 
1123 	ret = val ? device_online(dev) : device_offline(dev);
1124 	unlock_device_hotplug();
1125 	return ret < 0 ? ret : count;
1126 }
1127 static DEVICE_ATTR_RW(online);
1128 
1129 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1130 {
1131 	return sysfs_create_groups(&dev->kobj, groups);
1132 }
1133 EXPORT_SYMBOL_GPL(device_add_groups);
1134 
1135 void device_remove_groups(struct device *dev,
1136 			  const struct attribute_group **groups)
1137 {
1138 	sysfs_remove_groups(&dev->kobj, groups);
1139 }
1140 EXPORT_SYMBOL_GPL(device_remove_groups);
1141 
1142 union device_attr_group_devres {
1143 	const struct attribute_group *group;
1144 	const struct attribute_group **groups;
1145 };
1146 
1147 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1148 {
1149 	return ((union device_attr_group_devres *)res)->group == data;
1150 }
1151 
1152 static void devm_attr_group_remove(struct device *dev, void *res)
1153 {
1154 	union device_attr_group_devres *devres = res;
1155 	const struct attribute_group *group = devres->group;
1156 
1157 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1158 	sysfs_remove_group(&dev->kobj, group);
1159 }
1160 
1161 static void devm_attr_groups_remove(struct device *dev, void *res)
1162 {
1163 	union device_attr_group_devres *devres = res;
1164 	const struct attribute_group **groups = devres->groups;
1165 
1166 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1167 	sysfs_remove_groups(&dev->kobj, groups);
1168 }
1169 
1170 /**
1171  * devm_device_add_group - given a device, create a managed attribute group
1172  * @dev:	The device to create the group for
1173  * @grp:	The attribute group to create
1174  *
1175  * This function creates a group for the first time.  It will explicitly
1176  * warn and error if any of the attribute files being created already exist.
1177  *
1178  * Returns 0 on success or error code on failure.
1179  */
1180 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1181 {
1182 	union device_attr_group_devres *devres;
1183 	int error;
1184 
1185 	devres = devres_alloc(devm_attr_group_remove,
1186 			      sizeof(*devres), GFP_KERNEL);
1187 	if (!devres)
1188 		return -ENOMEM;
1189 
1190 	error = sysfs_create_group(&dev->kobj, grp);
1191 	if (error) {
1192 		devres_free(devres);
1193 		return error;
1194 	}
1195 
1196 	devres->group = grp;
1197 	devres_add(dev, devres);
1198 	return 0;
1199 }
1200 EXPORT_SYMBOL_GPL(devm_device_add_group);
1201 
1202 /**
1203  * devm_device_remove_group: remove a managed group from a device
1204  * @dev:	device to remove the group from
1205  * @grp:	group to remove
1206  *
1207  * This function removes a group of attributes from a device. The attributes
1208  * previously have to have been created for this group, otherwise it will fail.
1209  */
1210 void devm_device_remove_group(struct device *dev,
1211 			      const struct attribute_group *grp)
1212 {
1213 	WARN_ON(devres_release(dev, devm_attr_group_remove,
1214 			       devm_attr_group_match,
1215 			       /* cast away const */ (void *)grp));
1216 }
1217 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1218 
1219 /**
1220  * devm_device_add_groups - create a bunch of managed attribute groups
1221  * @dev:	The device to create the group for
1222  * @groups:	The attribute groups to create, NULL terminated
1223  *
1224  * This function creates a bunch of managed attribute groups.  If an error
1225  * occurs when creating a group, all previously created groups will be
1226  * removed, unwinding everything back to the original state when this
1227  * function was called.  It will explicitly warn and error if any of the
1228  * attribute files being created already exist.
1229  *
1230  * Returns 0 on success or error code from sysfs_create_group on failure.
1231  */
1232 int devm_device_add_groups(struct device *dev,
1233 			   const struct attribute_group **groups)
1234 {
1235 	union device_attr_group_devres *devres;
1236 	int error;
1237 
1238 	devres = devres_alloc(devm_attr_groups_remove,
1239 			      sizeof(*devres), GFP_KERNEL);
1240 	if (!devres)
1241 		return -ENOMEM;
1242 
1243 	error = sysfs_create_groups(&dev->kobj, groups);
1244 	if (error) {
1245 		devres_free(devres);
1246 		return error;
1247 	}
1248 
1249 	devres->groups = groups;
1250 	devres_add(dev, devres);
1251 	return 0;
1252 }
1253 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1254 
1255 /**
1256  * devm_device_remove_groups - remove a list of managed groups
1257  *
1258  * @dev:	The device for the groups to be removed from
1259  * @groups:	NULL terminated list of groups to be removed
1260  *
1261  * If groups is not NULL, remove the specified groups from the device.
1262  */
1263 void devm_device_remove_groups(struct device *dev,
1264 			       const struct attribute_group **groups)
1265 {
1266 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1267 			       devm_attr_group_match,
1268 			       /* cast away const */ (void *)groups));
1269 }
1270 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1271 
1272 static int device_add_attrs(struct device *dev)
1273 {
1274 	struct class *class = dev->class;
1275 	const struct device_type *type = dev->type;
1276 	int error;
1277 
1278 	if (class) {
1279 		error = device_add_groups(dev, class->dev_groups);
1280 		if (error)
1281 			return error;
1282 	}
1283 
1284 	if (type) {
1285 		error = device_add_groups(dev, type->groups);
1286 		if (error)
1287 			goto err_remove_class_groups;
1288 	}
1289 
1290 	error = device_add_groups(dev, dev->groups);
1291 	if (error)
1292 		goto err_remove_type_groups;
1293 
1294 	if (device_supports_offline(dev) && !dev->offline_disabled) {
1295 		error = device_create_file(dev, &dev_attr_online);
1296 		if (error)
1297 			goto err_remove_dev_groups;
1298 	}
1299 
1300 	return 0;
1301 
1302  err_remove_dev_groups:
1303 	device_remove_groups(dev, dev->groups);
1304  err_remove_type_groups:
1305 	if (type)
1306 		device_remove_groups(dev, type->groups);
1307  err_remove_class_groups:
1308 	if (class)
1309 		device_remove_groups(dev, class->dev_groups);
1310 
1311 	return error;
1312 }
1313 
1314 static void device_remove_attrs(struct device *dev)
1315 {
1316 	struct class *class = dev->class;
1317 	const struct device_type *type = dev->type;
1318 
1319 	device_remove_file(dev, &dev_attr_online);
1320 	device_remove_groups(dev, dev->groups);
1321 
1322 	if (type)
1323 		device_remove_groups(dev, type->groups);
1324 
1325 	if (class)
1326 		device_remove_groups(dev, class->dev_groups);
1327 }
1328 
1329 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1330 			char *buf)
1331 {
1332 	return print_dev_t(buf, dev->devt);
1333 }
1334 static DEVICE_ATTR_RO(dev);
1335 
1336 /* /sys/devices/ */
1337 struct kset *devices_kset;
1338 
1339 /**
1340  * devices_kset_move_before - Move device in the devices_kset's list.
1341  * @deva: Device to move.
1342  * @devb: Device @deva should come before.
1343  */
1344 static void devices_kset_move_before(struct device *deva, struct device *devb)
1345 {
1346 	if (!devices_kset)
1347 		return;
1348 	pr_debug("devices_kset: Moving %s before %s\n",
1349 		 dev_name(deva), dev_name(devb));
1350 	spin_lock(&devices_kset->list_lock);
1351 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1352 	spin_unlock(&devices_kset->list_lock);
1353 }
1354 
1355 /**
1356  * devices_kset_move_after - Move device in the devices_kset's list.
1357  * @deva: Device to move
1358  * @devb: Device @deva should come after.
1359  */
1360 static void devices_kset_move_after(struct device *deva, struct device *devb)
1361 {
1362 	if (!devices_kset)
1363 		return;
1364 	pr_debug("devices_kset: Moving %s after %s\n",
1365 		 dev_name(deva), dev_name(devb));
1366 	spin_lock(&devices_kset->list_lock);
1367 	list_move(&deva->kobj.entry, &devb->kobj.entry);
1368 	spin_unlock(&devices_kset->list_lock);
1369 }
1370 
1371 /**
1372  * devices_kset_move_last - move the device to the end of devices_kset's list.
1373  * @dev: device to move
1374  */
1375 void devices_kset_move_last(struct device *dev)
1376 {
1377 	if (!devices_kset)
1378 		return;
1379 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1380 	spin_lock(&devices_kset->list_lock);
1381 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1382 	spin_unlock(&devices_kset->list_lock);
1383 }
1384 
1385 /**
1386  * device_create_file - create sysfs attribute file for device.
1387  * @dev: device.
1388  * @attr: device attribute descriptor.
1389  */
1390 int device_create_file(struct device *dev,
1391 		       const struct device_attribute *attr)
1392 {
1393 	int error = 0;
1394 
1395 	if (dev) {
1396 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1397 			"Attribute %s: write permission without 'store'\n",
1398 			attr->attr.name);
1399 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1400 			"Attribute %s: read permission without 'show'\n",
1401 			attr->attr.name);
1402 		error = sysfs_create_file(&dev->kobj, &attr->attr);
1403 	}
1404 
1405 	return error;
1406 }
1407 EXPORT_SYMBOL_GPL(device_create_file);
1408 
1409 /**
1410  * device_remove_file - remove sysfs attribute file.
1411  * @dev: device.
1412  * @attr: device attribute descriptor.
1413  */
1414 void device_remove_file(struct device *dev,
1415 			const struct device_attribute *attr)
1416 {
1417 	if (dev)
1418 		sysfs_remove_file(&dev->kobj, &attr->attr);
1419 }
1420 EXPORT_SYMBOL_GPL(device_remove_file);
1421 
1422 /**
1423  * device_remove_file_self - remove sysfs attribute file from its own method.
1424  * @dev: device.
1425  * @attr: device attribute descriptor.
1426  *
1427  * See kernfs_remove_self() for details.
1428  */
1429 bool device_remove_file_self(struct device *dev,
1430 			     const struct device_attribute *attr)
1431 {
1432 	if (dev)
1433 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1434 	else
1435 		return false;
1436 }
1437 EXPORT_SYMBOL_GPL(device_remove_file_self);
1438 
1439 /**
1440  * device_create_bin_file - create sysfs binary attribute file for device.
1441  * @dev: device.
1442  * @attr: device binary attribute descriptor.
1443  */
1444 int device_create_bin_file(struct device *dev,
1445 			   const struct bin_attribute *attr)
1446 {
1447 	int error = -EINVAL;
1448 	if (dev)
1449 		error = sysfs_create_bin_file(&dev->kobj, attr);
1450 	return error;
1451 }
1452 EXPORT_SYMBOL_GPL(device_create_bin_file);
1453 
1454 /**
1455  * device_remove_bin_file - remove sysfs binary attribute file
1456  * @dev: device.
1457  * @attr: device binary attribute descriptor.
1458  */
1459 void device_remove_bin_file(struct device *dev,
1460 			    const struct bin_attribute *attr)
1461 {
1462 	if (dev)
1463 		sysfs_remove_bin_file(&dev->kobj, attr);
1464 }
1465 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1466 
1467 static void klist_children_get(struct klist_node *n)
1468 {
1469 	struct device_private *p = to_device_private_parent(n);
1470 	struct device *dev = p->device;
1471 
1472 	get_device(dev);
1473 }
1474 
1475 static void klist_children_put(struct klist_node *n)
1476 {
1477 	struct device_private *p = to_device_private_parent(n);
1478 	struct device *dev = p->device;
1479 
1480 	put_device(dev);
1481 }
1482 
1483 /**
1484  * device_initialize - init device structure.
1485  * @dev: device.
1486  *
1487  * This prepares the device for use by other layers by initializing
1488  * its fields.
1489  * It is the first half of device_register(), if called by
1490  * that function, though it can also be called separately, so one
1491  * may use @dev's fields. In particular, get_device()/put_device()
1492  * may be used for reference counting of @dev after calling this
1493  * function.
1494  *
1495  * All fields in @dev must be initialized by the caller to 0, except
1496  * for those explicitly set to some other value.  The simplest
1497  * approach is to use kzalloc() to allocate the structure containing
1498  * @dev.
1499  *
1500  * NOTE: Use put_device() to give up your reference instead of freeing
1501  * @dev directly once you have called this function.
1502  */
1503 void device_initialize(struct device *dev)
1504 {
1505 	dev->kobj.kset = devices_kset;
1506 	kobject_init(&dev->kobj, &device_ktype);
1507 	INIT_LIST_HEAD(&dev->dma_pools);
1508 	mutex_init(&dev->mutex);
1509 	lockdep_set_novalidate_class(&dev->mutex);
1510 	spin_lock_init(&dev->devres_lock);
1511 	INIT_LIST_HEAD(&dev->devres_head);
1512 	device_pm_init(dev);
1513 	set_dev_node(dev, -1);
1514 #ifdef CONFIG_GENERIC_MSI_IRQ
1515 	INIT_LIST_HEAD(&dev->msi_list);
1516 #endif
1517 	INIT_LIST_HEAD(&dev->links.consumers);
1518 	INIT_LIST_HEAD(&dev->links.suppliers);
1519 	dev->links.status = DL_DEV_NO_DRIVER;
1520 }
1521 EXPORT_SYMBOL_GPL(device_initialize);
1522 
1523 struct kobject *virtual_device_parent(struct device *dev)
1524 {
1525 	static struct kobject *virtual_dir = NULL;
1526 
1527 	if (!virtual_dir)
1528 		virtual_dir = kobject_create_and_add("virtual",
1529 						     &devices_kset->kobj);
1530 
1531 	return virtual_dir;
1532 }
1533 
1534 struct class_dir {
1535 	struct kobject kobj;
1536 	struct class *class;
1537 };
1538 
1539 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1540 
1541 static void class_dir_release(struct kobject *kobj)
1542 {
1543 	struct class_dir *dir = to_class_dir(kobj);
1544 	kfree(dir);
1545 }
1546 
1547 static const
1548 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1549 {
1550 	struct class_dir *dir = to_class_dir(kobj);
1551 	return dir->class->ns_type;
1552 }
1553 
1554 static struct kobj_type class_dir_ktype = {
1555 	.release	= class_dir_release,
1556 	.sysfs_ops	= &kobj_sysfs_ops,
1557 	.child_ns_type	= class_dir_child_ns_type
1558 };
1559 
1560 static struct kobject *
1561 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1562 {
1563 	struct class_dir *dir;
1564 	int retval;
1565 
1566 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1567 	if (!dir)
1568 		return ERR_PTR(-ENOMEM);
1569 
1570 	dir->class = class;
1571 	kobject_init(&dir->kobj, &class_dir_ktype);
1572 
1573 	dir->kobj.kset = &class->p->glue_dirs;
1574 
1575 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1576 	if (retval < 0) {
1577 		kobject_put(&dir->kobj);
1578 		return ERR_PTR(retval);
1579 	}
1580 	return &dir->kobj;
1581 }
1582 
1583 static DEFINE_MUTEX(gdp_mutex);
1584 
1585 static struct kobject *get_device_parent(struct device *dev,
1586 					 struct device *parent)
1587 {
1588 	if (dev->class) {
1589 		struct kobject *kobj = NULL;
1590 		struct kobject *parent_kobj;
1591 		struct kobject *k;
1592 
1593 #ifdef CONFIG_BLOCK
1594 		/* block disks show up in /sys/block */
1595 		if (sysfs_deprecated && dev->class == &block_class) {
1596 			if (parent && parent->class == &block_class)
1597 				return &parent->kobj;
1598 			return &block_class.p->subsys.kobj;
1599 		}
1600 #endif
1601 
1602 		/*
1603 		 * If we have no parent, we live in "virtual".
1604 		 * Class-devices with a non class-device as parent, live
1605 		 * in a "glue" directory to prevent namespace collisions.
1606 		 */
1607 		if (parent == NULL)
1608 			parent_kobj = virtual_device_parent(dev);
1609 		else if (parent->class && !dev->class->ns_type)
1610 			return &parent->kobj;
1611 		else
1612 			parent_kobj = &parent->kobj;
1613 
1614 		mutex_lock(&gdp_mutex);
1615 
1616 		/* find our class-directory at the parent and reference it */
1617 		spin_lock(&dev->class->p->glue_dirs.list_lock);
1618 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1619 			if (k->parent == parent_kobj) {
1620 				kobj = kobject_get(k);
1621 				break;
1622 			}
1623 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1624 		if (kobj) {
1625 			mutex_unlock(&gdp_mutex);
1626 			return kobj;
1627 		}
1628 
1629 		/* or create a new class-directory at the parent device */
1630 		k = class_dir_create_and_add(dev->class, parent_kobj);
1631 		/* do not emit an uevent for this simple "glue" directory */
1632 		mutex_unlock(&gdp_mutex);
1633 		return k;
1634 	}
1635 
1636 	/* subsystems can specify a default root directory for their devices */
1637 	if (!parent && dev->bus && dev->bus->dev_root)
1638 		return &dev->bus->dev_root->kobj;
1639 
1640 	if (parent)
1641 		return &parent->kobj;
1642 	return NULL;
1643 }
1644 
1645 static inline bool live_in_glue_dir(struct kobject *kobj,
1646 				    struct device *dev)
1647 {
1648 	if (!kobj || !dev->class ||
1649 	    kobj->kset != &dev->class->p->glue_dirs)
1650 		return false;
1651 	return true;
1652 }
1653 
1654 static inline struct kobject *get_glue_dir(struct device *dev)
1655 {
1656 	return dev->kobj.parent;
1657 }
1658 
1659 /*
1660  * make sure cleaning up dir as the last step, we need to make
1661  * sure .release handler of kobject is run with holding the
1662  * global lock
1663  */
1664 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1665 {
1666 	/* see if we live in a "glue" directory */
1667 	if (!live_in_glue_dir(glue_dir, dev))
1668 		return;
1669 
1670 	mutex_lock(&gdp_mutex);
1671 	if (!kobject_has_children(glue_dir))
1672 		kobject_del(glue_dir);
1673 	kobject_put(glue_dir);
1674 	mutex_unlock(&gdp_mutex);
1675 }
1676 
1677 static int device_add_class_symlinks(struct device *dev)
1678 {
1679 	struct device_node *of_node = dev_of_node(dev);
1680 	int error;
1681 
1682 	if (of_node) {
1683 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1684 		if (error)
1685 			dev_warn(dev, "Error %d creating of_node link\n",error);
1686 		/* An error here doesn't warrant bringing down the device */
1687 	}
1688 
1689 	if (!dev->class)
1690 		return 0;
1691 
1692 	error = sysfs_create_link(&dev->kobj,
1693 				  &dev->class->p->subsys.kobj,
1694 				  "subsystem");
1695 	if (error)
1696 		goto out_devnode;
1697 
1698 	if (dev->parent && device_is_not_partition(dev)) {
1699 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1700 					  "device");
1701 		if (error)
1702 			goto out_subsys;
1703 	}
1704 
1705 #ifdef CONFIG_BLOCK
1706 	/* /sys/block has directories and does not need symlinks */
1707 	if (sysfs_deprecated && dev->class == &block_class)
1708 		return 0;
1709 #endif
1710 
1711 	/* link in the class directory pointing to the device */
1712 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1713 				  &dev->kobj, dev_name(dev));
1714 	if (error)
1715 		goto out_device;
1716 
1717 	return 0;
1718 
1719 out_device:
1720 	sysfs_remove_link(&dev->kobj, "device");
1721 
1722 out_subsys:
1723 	sysfs_remove_link(&dev->kobj, "subsystem");
1724 out_devnode:
1725 	sysfs_remove_link(&dev->kobj, "of_node");
1726 	return error;
1727 }
1728 
1729 static void device_remove_class_symlinks(struct device *dev)
1730 {
1731 	if (dev_of_node(dev))
1732 		sysfs_remove_link(&dev->kobj, "of_node");
1733 
1734 	if (!dev->class)
1735 		return;
1736 
1737 	if (dev->parent && device_is_not_partition(dev))
1738 		sysfs_remove_link(&dev->kobj, "device");
1739 	sysfs_remove_link(&dev->kobj, "subsystem");
1740 #ifdef CONFIG_BLOCK
1741 	if (sysfs_deprecated && dev->class == &block_class)
1742 		return;
1743 #endif
1744 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1745 }
1746 
1747 /**
1748  * dev_set_name - set a device name
1749  * @dev: device
1750  * @fmt: format string for the device's name
1751  */
1752 int dev_set_name(struct device *dev, const char *fmt, ...)
1753 {
1754 	va_list vargs;
1755 	int err;
1756 
1757 	va_start(vargs, fmt);
1758 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1759 	va_end(vargs);
1760 	return err;
1761 }
1762 EXPORT_SYMBOL_GPL(dev_set_name);
1763 
1764 /**
1765  * device_to_dev_kobj - select a /sys/dev/ directory for the device
1766  * @dev: device
1767  *
1768  * By default we select char/ for new entries.  Setting class->dev_obj
1769  * to NULL prevents an entry from being created.  class->dev_kobj must
1770  * be set (or cleared) before any devices are registered to the class
1771  * otherwise device_create_sys_dev_entry() and
1772  * device_remove_sys_dev_entry() will disagree about the presence of
1773  * the link.
1774  */
1775 static struct kobject *device_to_dev_kobj(struct device *dev)
1776 {
1777 	struct kobject *kobj;
1778 
1779 	if (dev->class)
1780 		kobj = dev->class->dev_kobj;
1781 	else
1782 		kobj = sysfs_dev_char_kobj;
1783 
1784 	return kobj;
1785 }
1786 
1787 static int device_create_sys_dev_entry(struct device *dev)
1788 {
1789 	struct kobject *kobj = device_to_dev_kobj(dev);
1790 	int error = 0;
1791 	char devt_str[15];
1792 
1793 	if (kobj) {
1794 		format_dev_t(devt_str, dev->devt);
1795 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1796 	}
1797 
1798 	return error;
1799 }
1800 
1801 static void device_remove_sys_dev_entry(struct device *dev)
1802 {
1803 	struct kobject *kobj = device_to_dev_kobj(dev);
1804 	char devt_str[15];
1805 
1806 	if (kobj) {
1807 		format_dev_t(devt_str, dev->devt);
1808 		sysfs_remove_link(kobj, devt_str);
1809 	}
1810 }
1811 
1812 static int device_private_init(struct device *dev)
1813 {
1814 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1815 	if (!dev->p)
1816 		return -ENOMEM;
1817 	dev->p->device = dev;
1818 	klist_init(&dev->p->klist_children, klist_children_get,
1819 		   klist_children_put);
1820 	INIT_LIST_HEAD(&dev->p->deferred_probe);
1821 	return 0;
1822 }
1823 
1824 /**
1825  * device_add - add device to device hierarchy.
1826  * @dev: device.
1827  *
1828  * This is part 2 of device_register(), though may be called
1829  * separately _iff_ device_initialize() has been called separately.
1830  *
1831  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1832  * to the global and sibling lists for the device, then
1833  * adds it to the other relevant subsystems of the driver model.
1834  *
1835  * Do not call this routine or device_register() more than once for
1836  * any device structure.  The driver model core is not designed to work
1837  * with devices that get unregistered and then spring back to life.
1838  * (Among other things, it's very hard to guarantee that all references
1839  * to the previous incarnation of @dev have been dropped.)  Allocate
1840  * and register a fresh new struct device instead.
1841  *
1842  * NOTE: _Never_ directly free @dev after calling this function, even
1843  * if it returned an error! Always use put_device() to give up your
1844  * reference instead.
1845  */
1846 int device_add(struct device *dev)
1847 {
1848 	struct device *parent;
1849 	struct kobject *kobj;
1850 	struct class_interface *class_intf;
1851 	int error = -EINVAL;
1852 	struct kobject *glue_dir = NULL;
1853 
1854 	dev = get_device(dev);
1855 	if (!dev)
1856 		goto done;
1857 
1858 	if (!dev->p) {
1859 		error = device_private_init(dev);
1860 		if (error)
1861 			goto done;
1862 	}
1863 
1864 	/*
1865 	 * for statically allocated devices, which should all be converted
1866 	 * some day, we need to initialize the name. We prevent reading back
1867 	 * the name, and force the use of dev_name()
1868 	 */
1869 	if (dev->init_name) {
1870 		dev_set_name(dev, "%s", dev->init_name);
1871 		dev->init_name = NULL;
1872 	}
1873 
1874 	/* subsystems can specify simple device enumeration */
1875 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1876 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1877 
1878 	if (!dev_name(dev)) {
1879 		error = -EINVAL;
1880 		goto name_error;
1881 	}
1882 
1883 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1884 
1885 	parent = get_device(dev->parent);
1886 	kobj = get_device_parent(dev, parent);
1887 	if (IS_ERR(kobj)) {
1888 		error = PTR_ERR(kobj);
1889 		goto parent_error;
1890 	}
1891 	if (kobj)
1892 		dev->kobj.parent = kobj;
1893 
1894 	/* use parent numa_node */
1895 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1896 		set_dev_node(dev, dev_to_node(parent));
1897 
1898 	/* first, register with generic layer. */
1899 	/* we require the name to be set before, and pass NULL */
1900 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1901 	if (error) {
1902 		glue_dir = get_glue_dir(dev);
1903 		goto Error;
1904 	}
1905 
1906 	/* notify platform of device entry */
1907 	error = device_platform_notify(dev, KOBJ_ADD);
1908 	if (error)
1909 		goto platform_error;
1910 
1911 	error = device_create_file(dev, &dev_attr_uevent);
1912 	if (error)
1913 		goto attrError;
1914 
1915 	error = device_add_class_symlinks(dev);
1916 	if (error)
1917 		goto SymlinkError;
1918 	error = device_add_attrs(dev);
1919 	if (error)
1920 		goto AttrsError;
1921 	error = bus_add_device(dev);
1922 	if (error)
1923 		goto BusError;
1924 	error = dpm_sysfs_add(dev);
1925 	if (error)
1926 		goto DPMError;
1927 	device_pm_add(dev);
1928 
1929 	if (MAJOR(dev->devt)) {
1930 		error = device_create_file(dev, &dev_attr_dev);
1931 		if (error)
1932 			goto DevAttrError;
1933 
1934 		error = device_create_sys_dev_entry(dev);
1935 		if (error)
1936 			goto SysEntryError;
1937 
1938 		devtmpfs_create_node(dev);
1939 	}
1940 
1941 	/* Notify clients of device addition.  This call must come
1942 	 * after dpm_sysfs_add() and before kobject_uevent().
1943 	 */
1944 	if (dev->bus)
1945 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1946 					     BUS_NOTIFY_ADD_DEVICE, dev);
1947 
1948 	kobject_uevent(&dev->kobj, KOBJ_ADD);
1949 	bus_probe_device(dev);
1950 	if (parent)
1951 		klist_add_tail(&dev->p->knode_parent,
1952 			       &parent->p->klist_children);
1953 
1954 	if (dev->class) {
1955 		mutex_lock(&dev->class->p->mutex);
1956 		/* tie the class to the device */
1957 		klist_add_tail(&dev->knode_class,
1958 			       &dev->class->p->klist_devices);
1959 
1960 		/* notify any interfaces that the device is here */
1961 		list_for_each_entry(class_intf,
1962 				    &dev->class->p->interfaces, node)
1963 			if (class_intf->add_dev)
1964 				class_intf->add_dev(dev, class_intf);
1965 		mutex_unlock(&dev->class->p->mutex);
1966 	}
1967 done:
1968 	put_device(dev);
1969 	return error;
1970  SysEntryError:
1971 	if (MAJOR(dev->devt))
1972 		device_remove_file(dev, &dev_attr_dev);
1973  DevAttrError:
1974 	device_pm_remove(dev);
1975 	dpm_sysfs_remove(dev);
1976  DPMError:
1977 	bus_remove_device(dev);
1978  BusError:
1979 	device_remove_attrs(dev);
1980  AttrsError:
1981 	device_remove_class_symlinks(dev);
1982  SymlinkError:
1983 	device_remove_file(dev, &dev_attr_uevent);
1984  attrError:
1985 	device_platform_notify(dev, KOBJ_REMOVE);
1986 platform_error:
1987 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1988 	glue_dir = get_glue_dir(dev);
1989 	kobject_del(&dev->kobj);
1990  Error:
1991 	cleanup_glue_dir(dev, glue_dir);
1992 parent_error:
1993 	put_device(parent);
1994 name_error:
1995 	kfree(dev->p);
1996 	dev->p = NULL;
1997 	goto done;
1998 }
1999 EXPORT_SYMBOL_GPL(device_add);
2000 
2001 /**
2002  * device_register - register a device with the system.
2003  * @dev: pointer to the device structure
2004  *
2005  * This happens in two clean steps - initialize the device
2006  * and add it to the system. The two steps can be called
2007  * separately, but this is the easiest and most common.
2008  * I.e. you should only call the two helpers separately if
2009  * have a clearly defined need to use and refcount the device
2010  * before it is added to the hierarchy.
2011  *
2012  * For more information, see the kerneldoc for device_initialize()
2013  * and device_add().
2014  *
2015  * NOTE: _Never_ directly free @dev after calling this function, even
2016  * if it returned an error! Always use put_device() to give up the
2017  * reference initialized in this function instead.
2018  */
2019 int device_register(struct device *dev)
2020 {
2021 	device_initialize(dev);
2022 	return device_add(dev);
2023 }
2024 EXPORT_SYMBOL_GPL(device_register);
2025 
2026 /**
2027  * get_device - increment reference count for device.
2028  * @dev: device.
2029  *
2030  * This simply forwards the call to kobject_get(), though
2031  * we do take care to provide for the case that we get a NULL
2032  * pointer passed in.
2033  */
2034 struct device *get_device(struct device *dev)
2035 {
2036 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2037 }
2038 EXPORT_SYMBOL_GPL(get_device);
2039 
2040 /**
2041  * put_device - decrement reference count.
2042  * @dev: device in question.
2043  */
2044 void put_device(struct device *dev)
2045 {
2046 	/* might_sleep(); */
2047 	if (dev)
2048 		kobject_put(&dev->kobj);
2049 }
2050 EXPORT_SYMBOL_GPL(put_device);
2051 
2052 /**
2053  * device_del - delete device from system.
2054  * @dev: device.
2055  *
2056  * This is the first part of the device unregistration
2057  * sequence. This removes the device from the lists we control
2058  * from here, has it removed from the other driver model
2059  * subsystems it was added to in device_add(), and removes it
2060  * from the kobject hierarchy.
2061  *
2062  * NOTE: this should be called manually _iff_ device_add() was
2063  * also called manually.
2064  */
2065 void device_del(struct device *dev)
2066 {
2067 	struct device *parent = dev->parent;
2068 	struct kobject *glue_dir = NULL;
2069 	struct class_interface *class_intf;
2070 
2071 	/* Notify clients of device removal.  This call must come
2072 	 * before dpm_sysfs_remove().
2073 	 */
2074 	if (dev->bus)
2075 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2076 					     BUS_NOTIFY_DEL_DEVICE, dev);
2077 
2078 	dpm_sysfs_remove(dev);
2079 	if (parent)
2080 		klist_del(&dev->p->knode_parent);
2081 	if (MAJOR(dev->devt)) {
2082 		devtmpfs_delete_node(dev);
2083 		device_remove_sys_dev_entry(dev);
2084 		device_remove_file(dev, &dev_attr_dev);
2085 	}
2086 	if (dev->class) {
2087 		device_remove_class_symlinks(dev);
2088 
2089 		mutex_lock(&dev->class->p->mutex);
2090 		/* notify any interfaces that the device is now gone */
2091 		list_for_each_entry(class_intf,
2092 				    &dev->class->p->interfaces, node)
2093 			if (class_intf->remove_dev)
2094 				class_intf->remove_dev(dev, class_intf);
2095 		/* remove the device from the class list */
2096 		klist_del(&dev->knode_class);
2097 		mutex_unlock(&dev->class->p->mutex);
2098 	}
2099 	device_remove_file(dev, &dev_attr_uevent);
2100 	device_remove_attrs(dev);
2101 	bus_remove_device(dev);
2102 	device_pm_remove(dev);
2103 	driver_deferred_probe_del(dev);
2104 	device_platform_notify(dev, KOBJ_REMOVE);
2105 	device_remove_properties(dev);
2106 	device_links_purge(dev);
2107 
2108 	if (dev->bus)
2109 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2110 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
2111 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2112 	glue_dir = get_glue_dir(dev);
2113 	kobject_del(&dev->kobj);
2114 	cleanup_glue_dir(dev, glue_dir);
2115 	put_device(parent);
2116 }
2117 EXPORT_SYMBOL_GPL(device_del);
2118 
2119 /**
2120  * device_unregister - unregister device from system.
2121  * @dev: device going away.
2122  *
2123  * We do this in two parts, like we do device_register(). First,
2124  * we remove it from all the subsystems with device_del(), then
2125  * we decrement the reference count via put_device(). If that
2126  * is the final reference count, the device will be cleaned up
2127  * via device_release() above. Otherwise, the structure will
2128  * stick around until the final reference to the device is dropped.
2129  */
2130 void device_unregister(struct device *dev)
2131 {
2132 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2133 	device_del(dev);
2134 	put_device(dev);
2135 }
2136 EXPORT_SYMBOL_GPL(device_unregister);
2137 
2138 static struct device *prev_device(struct klist_iter *i)
2139 {
2140 	struct klist_node *n = klist_prev(i);
2141 	struct device *dev = NULL;
2142 	struct device_private *p;
2143 
2144 	if (n) {
2145 		p = to_device_private_parent(n);
2146 		dev = p->device;
2147 	}
2148 	return dev;
2149 }
2150 
2151 static struct device *next_device(struct klist_iter *i)
2152 {
2153 	struct klist_node *n = klist_next(i);
2154 	struct device *dev = NULL;
2155 	struct device_private *p;
2156 
2157 	if (n) {
2158 		p = to_device_private_parent(n);
2159 		dev = p->device;
2160 	}
2161 	return dev;
2162 }
2163 
2164 /**
2165  * device_get_devnode - path of device node file
2166  * @dev: device
2167  * @mode: returned file access mode
2168  * @uid: returned file owner
2169  * @gid: returned file group
2170  * @tmp: possibly allocated string
2171  *
2172  * Return the relative path of a possible device node.
2173  * Non-default names may need to allocate a memory to compose
2174  * a name. This memory is returned in tmp and needs to be
2175  * freed by the caller.
2176  */
2177 const char *device_get_devnode(struct device *dev,
2178 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2179 			       const char **tmp)
2180 {
2181 	char *s;
2182 
2183 	*tmp = NULL;
2184 
2185 	/* the device type may provide a specific name */
2186 	if (dev->type && dev->type->devnode)
2187 		*tmp = dev->type->devnode(dev, mode, uid, gid);
2188 	if (*tmp)
2189 		return *tmp;
2190 
2191 	/* the class may provide a specific name */
2192 	if (dev->class && dev->class->devnode)
2193 		*tmp = dev->class->devnode(dev, mode);
2194 	if (*tmp)
2195 		return *tmp;
2196 
2197 	/* return name without allocation, tmp == NULL */
2198 	if (strchr(dev_name(dev), '!') == NULL)
2199 		return dev_name(dev);
2200 
2201 	/* replace '!' in the name with '/' */
2202 	s = kstrdup(dev_name(dev), GFP_KERNEL);
2203 	if (!s)
2204 		return NULL;
2205 	strreplace(s, '!', '/');
2206 	return *tmp = s;
2207 }
2208 
2209 /**
2210  * device_for_each_child - device child iterator.
2211  * @parent: parent struct device.
2212  * @fn: function to be called for each device.
2213  * @data: data for the callback.
2214  *
2215  * Iterate over @parent's child devices, and call @fn for each,
2216  * passing it @data.
2217  *
2218  * We check the return of @fn each time. If it returns anything
2219  * other than 0, we break out and return that value.
2220  */
2221 int device_for_each_child(struct device *parent, void *data,
2222 			  int (*fn)(struct device *dev, void *data))
2223 {
2224 	struct klist_iter i;
2225 	struct device *child;
2226 	int error = 0;
2227 
2228 	if (!parent->p)
2229 		return 0;
2230 
2231 	klist_iter_init(&parent->p->klist_children, &i);
2232 	while (!error && (child = next_device(&i)))
2233 		error = fn(child, data);
2234 	klist_iter_exit(&i);
2235 	return error;
2236 }
2237 EXPORT_SYMBOL_GPL(device_for_each_child);
2238 
2239 /**
2240  * device_for_each_child_reverse - device child iterator in reversed order.
2241  * @parent: parent struct device.
2242  * @fn: function to be called for each device.
2243  * @data: data for the callback.
2244  *
2245  * Iterate over @parent's child devices, and call @fn for each,
2246  * passing it @data.
2247  *
2248  * We check the return of @fn each time. If it returns anything
2249  * other than 0, we break out and return that value.
2250  */
2251 int device_for_each_child_reverse(struct device *parent, void *data,
2252 				  int (*fn)(struct device *dev, void *data))
2253 {
2254 	struct klist_iter i;
2255 	struct device *child;
2256 	int error = 0;
2257 
2258 	if (!parent->p)
2259 		return 0;
2260 
2261 	klist_iter_init(&parent->p->klist_children, &i);
2262 	while ((child = prev_device(&i)) && !error)
2263 		error = fn(child, data);
2264 	klist_iter_exit(&i);
2265 	return error;
2266 }
2267 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2268 
2269 /**
2270  * device_find_child - device iterator for locating a particular device.
2271  * @parent: parent struct device
2272  * @match: Callback function to check device
2273  * @data: Data to pass to match function
2274  *
2275  * This is similar to the device_for_each_child() function above, but it
2276  * returns a reference to a device that is 'found' for later use, as
2277  * determined by the @match callback.
2278  *
2279  * The callback should return 0 if the device doesn't match and non-zero
2280  * if it does.  If the callback returns non-zero and a reference to the
2281  * current device can be obtained, this function will return to the caller
2282  * and not iterate over any more devices.
2283  *
2284  * NOTE: you will need to drop the reference with put_device() after use.
2285  */
2286 struct device *device_find_child(struct device *parent, void *data,
2287 				 int (*match)(struct device *dev, void *data))
2288 {
2289 	struct klist_iter i;
2290 	struct device *child;
2291 
2292 	if (!parent)
2293 		return NULL;
2294 
2295 	klist_iter_init(&parent->p->klist_children, &i);
2296 	while ((child = next_device(&i)))
2297 		if (match(child, data) && get_device(child))
2298 			break;
2299 	klist_iter_exit(&i);
2300 	return child;
2301 }
2302 EXPORT_SYMBOL_GPL(device_find_child);
2303 
2304 int __init devices_init(void)
2305 {
2306 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2307 	if (!devices_kset)
2308 		return -ENOMEM;
2309 	dev_kobj = kobject_create_and_add("dev", NULL);
2310 	if (!dev_kobj)
2311 		goto dev_kobj_err;
2312 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2313 	if (!sysfs_dev_block_kobj)
2314 		goto block_kobj_err;
2315 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2316 	if (!sysfs_dev_char_kobj)
2317 		goto char_kobj_err;
2318 
2319 	return 0;
2320 
2321  char_kobj_err:
2322 	kobject_put(sysfs_dev_block_kobj);
2323  block_kobj_err:
2324 	kobject_put(dev_kobj);
2325  dev_kobj_err:
2326 	kset_unregister(devices_kset);
2327 	return -ENOMEM;
2328 }
2329 
2330 static int device_check_offline(struct device *dev, void *not_used)
2331 {
2332 	int ret;
2333 
2334 	ret = device_for_each_child(dev, NULL, device_check_offline);
2335 	if (ret)
2336 		return ret;
2337 
2338 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2339 }
2340 
2341 /**
2342  * device_offline - Prepare the device for hot-removal.
2343  * @dev: Device to be put offline.
2344  *
2345  * Execute the device bus type's .offline() callback, if present, to prepare
2346  * the device for a subsequent hot-removal.  If that succeeds, the device must
2347  * not be used until either it is removed or its bus type's .online() callback
2348  * is executed.
2349  *
2350  * Call under device_hotplug_lock.
2351  */
2352 int device_offline(struct device *dev)
2353 {
2354 	int ret;
2355 
2356 	if (dev->offline_disabled)
2357 		return -EPERM;
2358 
2359 	ret = device_for_each_child(dev, NULL, device_check_offline);
2360 	if (ret)
2361 		return ret;
2362 
2363 	device_lock(dev);
2364 	if (device_supports_offline(dev)) {
2365 		if (dev->offline) {
2366 			ret = 1;
2367 		} else {
2368 			ret = dev->bus->offline(dev);
2369 			if (!ret) {
2370 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2371 				dev->offline = true;
2372 			}
2373 		}
2374 	}
2375 	device_unlock(dev);
2376 
2377 	return ret;
2378 }
2379 
2380 /**
2381  * device_online - Put the device back online after successful device_offline().
2382  * @dev: Device to be put back online.
2383  *
2384  * If device_offline() has been successfully executed for @dev, but the device
2385  * has not been removed subsequently, execute its bus type's .online() callback
2386  * to indicate that the device can be used again.
2387  *
2388  * Call under device_hotplug_lock.
2389  */
2390 int device_online(struct device *dev)
2391 {
2392 	int ret = 0;
2393 
2394 	device_lock(dev);
2395 	if (device_supports_offline(dev)) {
2396 		if (dev->offline) {
2397 			ret = dev->bus->online(dev);
2398 			if (!ret) {
2399 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2400 				dev->offline = false;
2401 			}
2402 		} else {
2403 			ret = 1;
2404 		}
2405 	}
2406 	device_unlock(dev);
2407 
2408 	return ret;
2409 }
2410 
2411 struct root_device {
2412 	struct device dev;
2413 	struct module *owner;
2414 };
2415 
2416 static inline struct root_device *to_root_device(struct device *d)
2417 {
2418 	return container_of(d, struct root_device, dev);
2419 }
2420 
2421 static void root_device_release(struct device *dev)
2422 {
2423 	kfree(to_root_device(dev));
2424 }
2425 
2426 /**
2427  * __root_device_register - allocate and register a root device
2428  * @name: root device name
2429  * @owner: owner module of the root device, usually THIS_MODULE
2430  *
2431  * This function allocates a root device and registers it
2432  * using device_register(). In order to free the returned
2433  * device, use root_device_unregister().
2434  *
2435  * Root devices are dummy devices which allow other devices
2436  * to be grouped under /sys/devices. Use this function to
2437  * allocate a root device and then use it as the parent of
2438  * any device which should appear under /sys/devices/{name}
2439  *
2440  * The /sys/devices/{name} directory will also contain a
2441  * 'module' symlink which points to the @owner directory
2442  * in sysfs.
2443  *
2444  * Returns &struct device pointer on success, or ERR_PTR() on error.
2445  *
2446  * Note: You probably want to use root_device_register().
2447  */
2448 struct device *__root_device_register(const char *name, struct module *owner)
2449 {
2450 	struct root_device *root;
2451 	int err = -ENOMEM;
2452 
2453 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2454 	if (!root)
2455 		return ERR_PTR(err);
2456 
2457 	err = dev_set_name(&root->dev, "%s", name);
2458 	if (err) {
2459 		kfree(root);
2460 		return ERR_PTR(err);
2461 	}
2462 
2463 	root->dev.release = root_device_release;
2464 
2465 	err = device_register(&root->dev);
2466 	if (err) {
2467 		put_device(&root->dev);
2468 		return ERR_PTR(err);
2469 	}
2470 
2471 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2472 	if (owner) {
2473 		struct module_kobject *mk = &owner->mkobj;
2474 
2475 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2476 		if (err) {
2477 			device_unregister(&root->dev);
2478 			return ERR_PTR(err);
2479 		}
2480 		root->owner = owner;
2481 	}
2482 #endif
2483 
2484 	return &root->dev;
2485 }
2486 EXPORT_SYMBOL_GPL(__root_device_register);
2487 
2488 /**
2489  * root_device_unregister - unregister and free a root device
2490  * @dev: device going away
2491  *
2492  * This function unregisters and cleans up a device that was created by
2493  * root_device_register().
2494  */
2495 void root_device_unregister(struct device *dev)
2496 {
2497 	struct root_device *root = to_root_device(dev);
2498 
2499 	if (root->owner)
2500 		sysfs_remove_link(&root->dev.kobj, "module");
2501 
2502 	device_unregister(dev);
2503 }
2504 EXPORT_SYMBOL_GPL(root_device_unregister);
2505 
2506 
2507 static void device_create_release(struct device *dev)
2508 {
2509 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2510 	kfree(dev);
2511 }
2512 
2513 static __printf(6, 0) struct device *
2514 device_create_groups_vargs(struct class *class, struct device *parent,
2515 			   dev_t devt, void *drvdata,
2516 			   const struct attribute_group **groups,
2517 			   const char *fmt, va_list args)
2518 {
2519 	struct device *dev = NULL;
2520 	int retval = -ENODEV;
2521 
2522 	if (class == NULL || IS_ERR(class))
2523 		goto error;
2524 
2525 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2526 	if (!dev) {
2527 		retval = -ENOMEM;
2528 		goto error;
2529 	}
2530 
2531 	device_initialize(dev);
2532 	dev->devt = devt;
2533 	dev->class = class;
2534 	dev->parent = parent;
2535 	dev->groups = groups;
2536 	dev->release = device_create_release;
2537 	dev_set_drvdata(dev, drvdata);
2538 
2539 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2540 	if (retval)
2541 		goto error;
2542 
2543 	retval = device_add(dev);
2544 	if (retval)
2545 		goto error;
2546 
2547 	return dev;
2548 
2549 error:
2550 	put_device(dev);
2551 	return ERR_PTR(retval);
2552 }
2553 
2554 /**
2555  * device_create_vargs - creates a device and registers it with sysfs
2556  * @class: pointer to the struct class that this device should be registered to
2557  * @parent: pointer to the parent struct device of this new device, if any
2558  * @devt: the dev_t for the char device to be added
2559  * @drvdata: the data to be added to the device for callbacks
2560  * @fmt: string for the device's name
2561  * @args: va_list for the device's name
2562  *
2563  * This function can be used by char device classes.  A struct device
2564  * will be created in sysfs, registered to the specified class.
2565  *
2566  * A "dev" file will be created, showing the dev_t for the device, if
2567  * the dev_t is not 0,0.
2568  * If a pointer to a parent struct device is passed in, the newly created
2569  * struct device will be a child of that device in sysfs.
2570  * The pointer to the struct device will be returned from the call.
2571  * Any further sysfs files that might be required can be created using this
2572  * pointer.
2573  *
2574  * Returns &struct device pointer on success, or ERR_PTR() on error.
2575  *
2576  * Note: the struct class passed to this function must have previously
2577  * been created with a call to class_create().
2578  */
2579 struct device *device_create_vargs(struct class *class, struct device *parent,
2580 				   dev_t devt, void *drvdata, const char *fmt,
2581 				   va_list args)
2582 {
2583 	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2584 					  fmt, args);
2585 }
2586 EXPORT_SYMBOL_GPL(device_create_vargs);
2587 
2588 /**
2589  * device_create - creates a device and registers it with sysfs
2590  * @class: pointer to the struct class that this device should be registered to
2591  * @parent: pointer to the parent struct device of this new device, if any
2592  * @devt: the dev_t for the char device to be added
2593  * @drvdata: the data to be added to the device for callbacks
2594  * @fmt: string for the device's name
2595  *
2596  * This function can be used by char device classes.  A struct device
2597  * will be created in sysfs, registered to the specified class.
2598  *
2599  * A "dev" file will be created, showing the dev_t for the device, if
2600  * the dev_t is not 0,0.
2601  * If a pointer to a parent struct device is passed in, the newly created
2602  * struct device will be a child of that device in sysfs.
2603  * The pointer to the struct device will be returned from the call.
2604  * Any further sysfs files that might be required can be created using this
2605  * pointer.
2606  *
2607  * Returns &struct device pointer on success, or ERR_PTR() on error.
2608  *
2609  * Note: the struct class passed to this function must have previously
2610  * been created with a call to class_create().
2611  */
2612 struct device *device_create(struct class *class, struct device *parent,
2613 			     dev_t devt, void *drvdata, const char *fmt, ...)
2614 {
2615 	va_list vargs;
2616 	struct device *dev;
2617 
2618 	va_start(vargs, fmt);
2619 	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2620 	va_end(vargs);
2621 	return dev;
2622 }
2623 EXPORT_SYMBOL_GPL(device_create);
2624 
2625 /**
2626  * device_create_with_groups - creates a device and registers it with sysfs
2627  * @class: pointer to the struct class that this device should be registered to
2628  * @parent: pointer to the parent struct device of this new device, if any
2629  * @devt: the dev_t for the char device to be added
2630  * @drvdata: the data to be added to the device for callbacks
2631  * @groups: NULL-terminated list of attribute groups to be created
2632  * @fmt: string for the device's name
2633  *
2634  * This function can be used by char device classes.  A struct device
2635  * will be created in sysfs, registered to the specified class.
2636  * Additional attributes specified in the groups parameter will also
2637  * be created automatically.
2638  *
2639  * A "dev" file will be created, showing the dev_t for the device, if
2640  * the dev_t is not 0,0.
2641  * If a pointer to a parent struct device is passed in, the newly created
2642  * struct device will be a child of that device in sysfs.
2643  * The pointer to the struct device will be returned from the call.
2644  * Any further sysfs files that might be required can be created using this
2645  * pointer.
2646  *
2647  * Returns &struct device pointer on success, or ERR_PTR() on error.
2648  *
2649  * Note: the struct class passed to this function must have previously
2650  * been created with a call to class_create().
2651  */
2652 struct device *device_create_with_groups(struct class *class,
2653 					 struct device *parent, dev_t devt,
2654 					 void *drvdata,
2655 					 const struct attribute_group **groups,
2656 					 const char *fmt, ...)
2657 {
2658 	va_list vargs;
2659 	struct device *dev;
2660 
2661 	va_start(vargs, fmt);
2662 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2663 					 fmt, vargs);
2664 	va_end(vargs);
2665 	return dev;
2666 }
2667 EXPORT_SYMBOL_GPL(device_create_with_groups);
2668 
2669 static int __match_devt(struct device *dev, const void *data)
2670 {
2671 	const dev_t *devt = data;
2672 
2673 	return dev->devt == *devt;
2674 }
2675 
2676 /**
2677  * device_destroy - removes a device that was created with device_create()
2678  * @class: pointer to the struct class that this device was registered with
2679  * @devt: the dev_t of the device that was previously registered
2680  *
2681  * This call unregisters and cleans up a device that was created with a
2682  * call to device_create().
2683  */
2684 void device_destroy(struct class *class, dev_t devt)
2685 {
2686 	struct device *dev;
2687 
2688 	dev = class_find_device(class, NULL, &devt, __match_devt);
2689 	if (dev) {
2690 		put_device(dev);
2691 		device_unregister(dev);
2692 	}
2693 }
2694 EXPORT_SYMBOL_GPL(device_destroy);
2695 
2696 /**
2697  * device_rename - renames a device
2698  * @dev: the pointer to the struct device to be renamed
2699  * @new_name: the new name of the device
2700  *
2701  * It is the responsibility of the caller to provide mutual
2702  * exclusion between two different calls of device_rename
2703  * on the same device to ensure that new_name is valid and
2704  * won't conflict with other devices.
2705  *
2706  * Note: Don't call this function.  Currently, the networking layer calls this
2707  * function, but that will change.  The following text from Kay Sievers offers
2708  * some insight:
2709  *
2710  * Renaming devices is racy at many levels, symlinks and other stuff are not
2711  * replaced atomically, and you get a "move" uevent, but it's not easy to
2712  * connect the event to the old and new device. Device nodes are not renamed at
2713  * all, there isn't even support for that in the kernel now.
2714  *
2715  * In the meantime, during renaming, your target name might be taken by another
2716  * driver, creating conflicts. Or the old name is taken directly after you
2717  * renamed it -- then you get events for the same DEVPATH, before you even see
2718  * the "move" event. It's just a mess, and nothing new should ever rely on
2719  * kernel device renaming. Besides that, it's not even implemented now for
2720  * other things than (driver-core wise very simple) network devices.
2721  *
2722  * We are currently about to change network renaming in udev to completely
2723  * disallow renaming of devices in the same namespace as the kernel uses,
2724  * because we can't solve the problems properly, that arise with swapping names
2725  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2726  * be allowed to some other name than eth[0-9]*, for the aforementioned
2727  * reasons.
2728  *
2729  * Make up a "real" name in the driver before you register anything, or add
2730  * some other attributes for userspace to find the device, or use udev to add
2731  * symlinks -- but never rename kernel devices later, it's a complete mess. We
2732  * don't even want to get into that and try to implement the missing pieces in
2733  * the core. We really have other pieces to fix in the driver core mess. :)
2734  */
2735 int device_rename(struct device *dev, const char *new_name)
2736 {
2737 	struct kobject *kobj = &dev->kobj;
2738 	char *old_device_name = NULL;
2739 	int error;
2740 
2741 	dev = get_device(dev);
2742 	if (!dev)
2743 		return -EINVAL;
2744 
2745 	dev_dbg(dev, "renaming to %s\n", new_name);
2746 
2747 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2748 	if (!old_device_name) {
2749 		error = -ENOMEM;
2750 		goto out;
2751 	}
2752 
2753 	if (dev->class) {
2754 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2755 					     kobj, old_device_name,
2756 					     new_name, kobject_namespace(kobj));
2757 		if (error)
2758 			goto out;
2759 	}
2760 
2761 	error = kobject_rename(kobj, new_name);
2762 	if (error)
2763 		goto out;
2764 
2765 out:
2766 	put_device(dev);
2767 
2768 	kfree(old_device_name);
2769 
2770 	return error;
2771 }
2772 EXPORT_SYMBOL_GPL(device_rename);
2773 
2774 static int device_move_class_links(struct device *dev,
2775 				   struct device *old_parent,
2776 				   struct device *new_parent)
2777 {
2778 	int error = 0;
2779 
2780 	if (old_parent)
2781 		sysfs_remove_link(&dev->kobj, "device");
2782 	if (new_parent)
2783 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2784 					  "device");
2785 	return error;
2786 }
2787 
2788 /**
2789  * device_move - moves a device to a new parent
2790  * @dev: the pointer to the struct device to be moved
2791  * @new_parent: the new parent of the device (can be NULL)
2792  * @dpm_order: how to reorder the dpm_list
2793  */
2794 int device_move(struct device *dev, struct device *new_parent,
2795 		enum dpm_order dpm_order)
2796 {
2797 	int error;
2798 	struct device *old_parent;
2799 	struct kobject *new_parent_kobj;
2800 
2801 	dev = get_device(dev);
2802 	if (!dev)
2803 		return -EINVAL;
2804 
2805 	device_pm_lock();
2806 	new_parent = get_device(new_parent);
2807 	new_parent_kobj = get_device_parent(dev, new_parent);
2808 	if (IS_ERR(new_parent_kobj)) {
2809 		error = PTR_ERR(new_parent_kobj);
2810 		put_device(new_parent);
2811 		goto out;
2812 	}
2813 
2814 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2815 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2816 	error = kobject_move(&dev->kobj, new_parent_kobj);
2817 	if (error) {
2818 		cleanup_glue_dir(dev, new_parent_kobj);
2819 		put_device(new_parent);
2820 		goto out;
2821 	}
2822 	old_parent = dev->parent;
2823 	dev->parent = new_parent;
2824 	if (old_parent)
2825 		klist_remove(&dev->p->knode_parent);
2826 	if (new_parent) {
2827 		klist_add_tail(&dev->p->knode_parent,
2828 			       &new_parent->p->klist_children);
2829 		set_dev_node(dev, dev_to_node(new_parent));
2830 	}
2831 
2832 	if (dev->class) {
2833 		error = device_move_class_links(dev, old_parent, new_parent);
2834 		if (error) {
2835 			/* We ignore errors on cleanup since we're hosed anyway... */
2836 			device_move_class_links(dev, new_parent, old_parent);
2837 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2838 				if (new_parent)
2839 					klist_remove(&dev->p->knode_parent);
2840 				dev->parent = old_parent;
2841 				if (old_parent) {
2842 					klist_add_tail(&dev->p->knode_parent,
2843 						       &old_parent->p->klist_children);
2844 					set_dev_node(dev, dev_to_node(old_parent));
2845 				}
2846 			}
2847 			cleanup_glue_dir(dev, new_parent_kobj);
2848 			put_device(new_parent);
2849 			goto out;
2850 		}
2851 	}
2852 	switch (dpm_order) {
2853 	case DPM_ORDER_NONE:
2854 		break;
2855 	case DPM_ORDER_DEV_AFTER_PARENT:
2856 		device_pm_move_after(dev, new_parent);
2857 		devices_kset_move_after(dev, new_parent);
2858 		break;
2859 	case DPM_ORDER_PARENT_BEFORE_DEV:
2860 		device_pm_move_before(new_parent, dev);
2861 		devices_kset_move_before(new_parent, dev);
2862 		break;
2863 	case DPM_ORDER_DEV_LAST:
2864 		device_pm_move_last(dev);
2865 		devices_kset_move_last(dev);
2866 		break;
2867 	}
2868 
2869 	put_device(old_parent);
2870 out:
2871 	device_pm_unlock();
2872 	put_device(dev);
2873 	return error;
2874 }
2875 EXPORT_SYMBOL_GPL(device_move);
2876 
2877 /**
2878  * device_shutdown - call ->shutdown() on each device to shutdown.
2879  */
2880 void device_shutdown(void)
2881 {
2882 	struct device *dev, *parent;
2883 
2884 	wait_for_device_probe();
2885 	device_block_probing();
2886 
2887 	spin_lock(&devices_kset->list_lock);
2888 	/*
2889 	 * Walk the devices list backward, shutting down each in turn.
2890 	 * Beware that device unplug events may also start pulling
2891 	 * devices offline, even as the system is shutting down.
2892 	 */
2893 	while (!list_empty(&devices_kset->list)) {
2894 		dev = list_entry(devices_kset->list.prev, struct device,
2895 				kobj.entry);
2896 
2897 		/*
2898 		 * hold reference count of device's parent to
2899 		 * prevent it from being freed because parent's
2900 		 * lock is to be held
2901 		 */
2902 		parent = get_device(dev->parent);
2903 		get_device(dev);
2904 		/*
2905 		 * Make sure the device is off the kset list, in the
2906 		 * event that dev->*->shutdown() doesn't remove it.
2907 		 */
2908 		list_del_init(&dev->kobj.entry);
2909 		spin_unlock(&devices_kset->list_lock);
2910 
2911 		/* hold lock to avoid race with probe/release */
2912 		if (parent)
2913 			device_lock(parent);
2914 		device_lock(dev);
2915 
2916 		/* Don't allow any more runtime suspends */
2917 		pm_runtime_get_noresume(dev);
2918 		pm_runtime_barrier(dev);
2919 
2920 		if (dev->class && dev->class->shutdown_pre) {
2921 			if (initcall_debug)
2922 				dev_info(dev, "shutdown_pre\n");
2923 			dev->class->shutdown_pre(dev);
2924 		}
2925 		if (dev->bus && dev->bus->shutdown) {
2926 			if (initcall_debug)
2927 				dev_info(dev, "shutdown\n");
2928 			dev->bus->shutdown(dev);
2929 		} else if (dev->driver && dev->driver->shutdown) {
2930 			if (initcall_debug)
2931 				dev_info(dev, "shutdown\n");
2932 			dev->driver->shutdown(dev);
2933 		}
2934 
2935 		device_unlock(dev);
2936 		if (parent)
2937 			device_unlock(parent);
2938 
2939 		put_device(dev);
2940 		put_device(parent);
2941 
2942 		spin_lock(&devices_kset->list_lock);
2943 	}
2944 	spin_unlock(&devices_kset->list_lock);
2945 }
2946 
2947 /*
2948  * Device logging functions
2949  */
2950 
2951 #ifdef CONFIG_PRINTK
2952 static int
2953 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2954 {
2955 	const char *subsys;
2956 	size_t pos = 0;
2957 
2958 	if (dev->class)
2959 		subsys = dev->class->name;
2960 	else if (dev->bus)
2961 		subsys = dev->bus->name;
2962 	else
2963 		return 0;
2964 
2965 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2966 	if (pos >= hdrlen)
2967 		goto overflow;
2968 
2969 	/*
2970 	 * Add device identifier DEVICE=:
2971 	 *   b12:8         block dev_t
2972 	 *   c127:3        char dev_t
2973 	 *   n8            netdev ifindex
2974 	 *   +sound:card0  subsystem:devname
2975 	 */
2976 	if (MAJOR(dev->devt)) {
2977 		char c;
2978 
2979 		if (strcmp(subsys, "block") == 0)
2980 			c = 'b';
2981 		else
2982 			c = 'c';
2983 		pos++;
2984 		pos += snprintf(hdr + pos, hdrlen - pos,
2985 				"DEVICE=%c%u:%u",
2986 				c, MAJOR(dev->devt), MINOR(dev->devt));
2987 	} else if (strcmp(subsys, "net") == 0) {
2988 		struct net_device *net = to_net_dev(dev);
2989 
2990 		pos++;
2991 		pos += snprintf(hdr + pos, hdrlen - pos,
2992 				"DEVICE=n%u", net->ifindex);
2993 	} else {
2994 		pos++;
2995 		pos += snprintf(hdr + pos, hdrlen - pos,
2996 				"DEVICE=+%s:%s", subsys, dev_name(dev));
2997 	}
2998 
2999 	if (pos >= hdrlen)
3000 		goto overflow;
3001 
3002 	return pos;
3003 
3004 overflow:
3005 	dev_WARN(dev, "device/subsystem name too long");
3006 	return 0;
3007 }
3008 
3009 int dev_vprintk_emit(int level, const struct device *dev,
3010 		     const char *fmt, va_list args)
3011 {
3012 	char hdr[128];
3013 	size_t hdrlen;
3014 
3015 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
3016 
3017 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
3018 }
3019 EXPORT_SYMBOL(dev_vprintk_emit);
3020 
3021 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3022 {
3023 	va_list args;
3024 	int r;
3025 
3026 	va_start(args, fmt);
3027 
3028 	r = dev_vprintk_emit(level, dev, fmt, args);
3029 
3030 	va_end(args);
3031 
3032 	return r;
3033 }
3034 EXPORT_SYMBOL(dev_printk_emit);
3035 
3036 static void __dev_printk(const char *level, const struct device *dev,
3037 			struct va_format *vaf)
3038 {
3039 	if (dev)
3040 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3041 				dev_driver_string(dev), dev_name(dev), vaf);
3042 	else
3043 		printk("%s(NULL device *): %pV", level, vaf);
3044 }
3045 
3046 void dev_printk(const char *level, const struct device *dev,
3047 		const char *fmt, ...)
3048 {
3049 	struct va_format vaf;
3050 	va_list args;
3051 
3052 	va_start(args, fmt);
3053 
3054 	vaf.fmt = fmt;
3055 	vaf.va = &args;
3056 
3057 	__dev_printk(level, dev, &vaf);
3058 
3059 	va_end(args);
3060 }
3061 EXPORT_SYMBOL(dev_printk);
3062 
3063 #define define_dev_printk_level(func, kern_level)		\
3064 void func(const struct device *dev, const char *fmt, ...)	\
3065 {								\
3066 	struct va_format vaf;					\
3067 	va_list args;						\
3068 								\
3069 	va_start(args, fmt);					\
3070 								\
3071 	vaf.fmt = fmt;						\
3072 	vaf.va = &args;						\
3073 								\
3074 	__dev_printk(kern_level, dev, &vaf);			\
3075 								\
3076 	va_end(args);						\
3077 }								\
3078 EXPORT_SYMBOL(func);
3079 
3080 define_dev_printk_level(_dev_emerg, KERN_EMERG);
3081 define_dev_printk_level(_dev_alert, KERN_ALERT);
3082 define_dev_printk_level(_dev_crit, KERN_CRIT);
3083 define_dev_printk_level(_dev_err, KERN_ERR);
3084 define_dev_printk_level(_dev_warn, KERN_WARNING);
3085 define_dev_printk_level(_dev_notice, KERN_NOTICE);
3086 define_dev_printk_level(_dev_info, KERN_INFO);
3087 
3088 #endif
3089 
3090 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3091 {
3092 	return fwnode && !IS_ERR(fwnode->secondary);
3093 }
3094 
3095 /**
3096  * set_primary_fwnode - Change the primary firmware node of a given device.
3097  * @dev: Device to handle.
3098  * @fwnode: New primary firmware node of the device.
3099  *
3100  * Set the device's firmware node pointer to @fwnode, but if a secondary
3101  * firmware node of the device is present, preserve it.
3102  */
3103 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3104 {
3105 	if (fwnode) {
3106 		struct fwnode_handle *fn = dev->fwnode;
3107 
3108 		if (fwnode_is_primary(fn))
3109 			fn = fn->secondary;
3110 
3111 		if (fn) {
3112 			WARN_ON(fwnode->secondary);
3113 			fwnode->secondary = fn;
3114 		}
3115 		dev->fwnode = fwnode;
3116 	} else {
3117 		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3118 			dev->fwnode->secondary : NULL;
3119 	}
3120 }
3121 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3122 
3123 /**
3124  * set_secondary_fwnode - Change the secondary firmware node of a given device.
3125  * @dev: Device to handle.
3126  * @fwnode: New secondary firmware node of the device.
3127  *
3128  * If a primary firmware node of the device is present, set its secondary
3129  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3130  * @fwnode.
3131  */
3132 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3133 {
3134 	if (fwnode)
3135 		fwnode->secondary = ERR_PTR(-ENODEV);
3136 
3137 	if (fwnode_is_primary(dev->fwnode))
3138 		dev->fwnode->secondary = fwnode;
3139 	else
3140 		dev->fwnode = fwnode;
3141 }
3142 
3143 /**
3144  * device_set_of_node_from_dev - reuse device-tree node of another device
3145  * @dev: device whose device-tree node is being set
3146  * @dev2: device whose device-tree node is being reused
3147  *
3148  * Takes another reference to the new device-tree node after first dropping
3149  * any reference held to the old node.
3150  */
3151 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3152 {
3153 	of_node_put(dev->of_node);
3154 	dev->of_node = of_node_get(dev2->of_node);
3155 	dev->of_node_reused = true;
3156 }
3157 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3158