xref: /openbmc/linux/drivers/base/core.c (revision 3e50b639)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/kstrtox.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/string.h>
21 #include <linux/kdev_t.h>
22 #include <linux/notifier.h>
23 #include <linux/of.h>
24 #include <linux/of_device.h>
25 #include <linux/blkdev.h>
26 #include <linux/mutex.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/mm.h>
31 #include <linux/swiotlb.h>
32 #include <linux/sysfs.h>
33 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
34 
35 #include "base.h"
36 #include "physical_location.h"
37 #include "power/power.h"
38 
39 #ifdef CONFIG_SYSFS_DEPRECATED
40 #ifdef CONFIG_SYSFS_DEPRECATED_V2
41 long sysfs_deprecated = 1;
42 #else
43 long sysfs_deprecated = 0;
44 #endif
45 static int __init sysfs_deprecated_setup(char *arg)
46 {
47 	return kstrtol(arg, 10, &sysfs_deprecated);
48 }
49 early_param("sysfs.deprecated", sysfs_deprecated_setup);
50 #endif
51 
52 /* Device links support. */
53 static LIST_HEAD(deferred_sync);
54 static unsigned int defer_sync_state_count = 1;
55 static DEFINE_MUTEX(fwnode_link_lock);
56 static bool fw_devlink_is_permissive(void);
57 static bool fw_devlink_drv_reg_done;
58 static bool fw_devlink_best_effort;
59 
60 /**
61  * fwnode_link_add - Create a link between two fwnode_handles.
62  * @con: Consumer end of the link.
63  * @sup: Supplier end of the link.
64  *
65  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
66  * represents the detail that the firmware lists @sup fwnode as supplying a
67  * resource to @con.
68  *
69  * The driver core will use the fwnode link to create a device link between the
70  * two device objects corresponding to @con and @sup when they are created. The
71  * driver core will automatically delete the fwnode link between @con and @sup
72  * after doing that.
73  *
74  * Attempts to create duplicate links between the same pair of fwnode handles
75  * are ignored and there is no reference counting.
76  */
77 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
78 {
79 	struct fwnode_link *link;
80 	int ret = 0;
81 
82 	mutex_lock(&fwnode_link_lock);
83 
84 	list_for_each_entry(link, &sup->consumers, s_hook)
85 		if (link->consumer == con)
86 			goto out;
87 
88 	link = kzalloc(sizeof(*link), GFP_KERNEL);
89 	if (!link) {
90 		ret = -ENOMEM;
91 		goto out;
92 	}
93 
94 	link->supplier = sup;
95 	INIT_LIST_HEAD(&link->s_hook);
96 	link->consumer = con;
97 	INIT_LIST_HEAD(&link->c_hook);
98 
99 	list_add(&link->s_hook, &sup->consumers);
100 	list_add(&link->c_hook, &con->suppliers);
101 	pr_debug("%pfwP Linked as a fwnode consumer to %pfwP\n",
102 		 con, sup);
103 out:
104 	mutex_unlock(&fwnode_link_lock);
105 
106 	return ret;
107 }
108 
109 /**
110  * __fwnode_link_del - Delete a link between two fwnode_handles.
111  * @link: the fwnode_link to be deleted
112  *
113  * The fwnode_link_lock needs to be held when this function is called.
114  */
115 static void __fwnode_link_del(struct fwnode_link *link)
116 {
117 	pr_debug("%pfwP Dropping the fwnode link to %pfwP\n",
118 		 link->consumer, link->supplier);
119 	list_del(&link->s_hook);
120 	list_del(&link->c_hook);
121 	kfree(link);
122 }
123 
124 /**
125  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
126  * @fwnode: fwnode whose supplier links need to be deleted
127  *
128  * Deletes all supplier links connecting directly to @fwnode.
129  */
130 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
131 {
132 	struct fwnode_link *link, *tmp;
133 
134 	mutex_lock(&fwnode_link_lock);
135 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
136 		__fwnode_link_del(link);
137 	mutex_unlock(&fwnode_link_lock);
138 }
139 
140 /**
141  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
142  * @fwnode: fwnode whose consumer links need to be deleted
143  *
144  * Deletes all consumer links connecting directly to @fwnode.
145  */
146 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
147 {
148 	struct fwnode_link *link, *tmp;
149 
150 	mutex_lock(&fwnode_link_lock);
151 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
152 		__fwnode_link_del(link);
153 	mutex_unlock(&fwnode_link_lock);
154 }
155 
156 /**
157  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
158  * @fwnode: fwnode whose links needs to be deleted
159  *
160  * Deletes all links connecting directly to a fwnode.
161  */
162 void fwnode_links_purge(struct fwnode_handle *fwnode)
163 {
164 	fwnode_links_purge_suppliers(fwnode);
165 	fwnode_links_purge_consumers(fwnode);
166 }
167 
168 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
169 {
170 	struct fwnode_handle *child;
171 
172 	/* Don't purge consumer links of an added child */
173 	if (fwnode->dev)
174 		return;
175 
176 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
177 	fwnode_links_purge_consumers(fwnode);
178 
179 	fwnode_for_each_available_child_node(fwnode, child)
180 		fw_devlink_purge_absent_suppliers(child);
181 }
182 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
183 
184 #ifdef CONFIG_SRCU
185 static DEFINE_MUTEX(device_links_lock);
186 DEFINE_STATIC_SRCU(device_links_srcu);
187 
188 static inline void device_links_write_lock(void)
189 {
190 	mutex_lock(&device_links_lock);
191 }
192 
193 static inline void device_links_write_unlock(void)
194 {
195 	mutex_unlock(&device_links_lock);
196 }
197 
198 int device_links_read_lock(void) __acquires(&device_links_srcu)
199 {
200 	return srcu_read_lock(&device_links_srcu);
201 }
202 
203 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
204 {
205 	srcu_read_unlock(&device_links_srcu, idx);
206 }
207 
208 int device_links_read_lock_held(void)
209 {
210 	return srcu_read_lock_held(&device_links_srcu);
211 }
212 
213 static void device_link_synchronize_removal(void)
214 {
215 	synchronize_srcu(&device_links_srcu);
216 }
217 
218 static void device_link_remove_from_lists(struct device_link *link)
219 {
220 	list_del_rcu(&link->s_node);
221 	list_del_rcu(&link->c_node);
222 }
223 #else /* !CONFIG_SRCU */
224 static DECLARE_RWSEM(device_links_lock);
225 
226 static inline void device_links_write_lock(void)
227 {
228 	down_write(&device_links_lock);
229 }
230 
231 static inline void device_links_write_unlock(void)
232 {
233 	up_write(&device_links_lock);
234 }
235 
236 int device_links_read_lock(void)
237 {
238 	down_read(&device_links_lock);
239 	return 0;
240 }
241 
242 void device_links_read_unlock(int not_used)
243 {
244 	up_read(&device_links_lock);
245 }
246 
247 #ifdef CONFIG_DEBUG_LOCK_ALLOC
248 int device_links_read_lock_held(void)
249 {
250 	return lockdep_is_held(&device_links_lock);
251 }
252 #endif
253 
254 static inline void device_link_synchronize_removal(void)
255 {
256 }
257 
258 static void device_link_remove_from_lists(struct device_link *link)
259 {
260 	list_del(&link->s_node);
261 	list_del(&link->c_node);
262 }
263 #endif /* !CONFIG_SRCU */
264 
265 static bool device_is_ancestor(struct device *dev, struct device *target)
266 {
267 	while (target->parent) {
268 		target = target->parent;
269 		if (dev == target)
270 			return true;
271 	}
272 	return false;
273 }
274 
275 /**
276  * device_is_dependent - Check if one device depends on another one
277  * @dev: Device to check dependencies for.
278  * @target: Device to check against.
279  *
280  * Check if @target depends on @dev or any device dependent on it (its child or
281  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
282  */
283 int device_is_dependent(struct device *dev, void *target)
284 {
285 	struct device_link *link;
286 	int ret;
287 
288 	/*
289 	 * The "ancestors" check is needed to catch the case when the target
290 	 * device has not been completely initialized yet and it is still
291 	 * missing from the list of children of its parent device.
292 	 */
293 	if (dev == target || device_is_ancestor(dev, target))
294 		return 1;
295 
296 	ret = device_for_each_child(dev, target, device_is_dependent);
297 	if (ret)
298 		return ret;
299 
300 	list_for_each_entry(link, &dev->links.consumers, s_node) {
301 		if ((link->flags & ~DL_FLAG_INFERRED) ==
302 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
303 			continue;
304 
305 		if (link->consumer == target)
306 			return 1;
307 
308 		ret = device_is_dependent(link->consumer, target);
309 		if (ret)
310 			break;
311 	}
312 	return ret;
313 }
314 
315 static void device_link_init_status(struct device_link *link,
316 				    struct device *consumer,
317 				    struct device *supplier)
318 {
319 	switch (supplier->links.status) {
320 	case DL_DEV_PROBING:
321 		switch (consumer->links.status) {
322 		case DL_DEV_PROBING:
323 			/*
324 			 * A consumer driver can create a link to a supplier
325 			 * that has not completed its probing yet as long as it
326 			 * knows that the supplier is already functional (for
327 			 * example, it has just acquired some resources from the
328 			 * supplier).
329 			 */
330 			link->status = DL_STATE_CONSUMER_PROBE;
331 			break;
332 		default:
333 			link->status = DL_STATE_DORMANT;
334 			break;
335 		}
336 		break;
337 	case DL_DEV_DRIVER_BOUND:
338 		switch (consumer->links.status) {
339 		case DL_DEV_PROBING:
340 			link->status = DL_STATE_CONSUMER_PROBE;
341 			break;
342 		case DL_DEV_DRIVER_BOUND:
343 			link->status = DL_STATE_ACTIVE;
344 			break;
345 		default:
346 			link->status = DL_STATE_AVAILABLE;
347 			break;
348 		}
349 		break;
350 	case DL_DEV_UNBINDING:
351 		link->status = DL_STATE_SUPPLIER_UNBIND;
352 		break;
353 	default:
354 		link->status = DL_STATE_DORMANT;
355 		break;
356 	}
357 }
358 
359 static int device_reorder_to_tail(struct device *dev, void *not_used)
360 {
361 	struct device_link *link;
362 
363 	/*
364 	 * Devices that have not been registered yet will be put to the ends
365 	 * of the lists during the registration, so skip them here.
366 	 */
367 	if (device_is_registered(dev))
368 		devices_kset_move_last(dev);
369 
370 	if (device_pm_initialized(dev))
371 		device_pm_move_last(dev);
372 
373 	device_for_each_child(dev, NULL, device_reorder_to_tail);
374 	list_for_each_entry(link, &dev->links.consumers, s_node) {
375 		if ((link->flags & ~DL_FLAG_INFERRED) ==
376 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
377 			continue;
378 		device_reorder_to_tail(link->consumer, NULL);
379 	}
380 
381 	return 0;
382 }
383 
384 /**
385  * device_pm_move_to_tail - Move set of devices to the end of device lists
386  * @dev: Device to move
387  *
388  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
389  *
390  * It moves the @dev along with all of its children and all of its consumers
391  * to the ends of the device_kset and dpm_list, recursively.
392  */
393 void device_pm_move_to_tail(struct device *dev)
394 {
395 	int idx;
396 
397 	idx = device_links_read_lock();
398 	device_pm_lock();
399 	device_reorder_to_tail(dev, NULL);
400 	device_pm_unlock();
401 	device_links_read_unlock(idx);
402 }
403 
404 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
405 
406 static ssize_t status_show(struct device *dev,
407 			   struct device_attribute *attr, char *buf)
408 {
409 	const char *output;
410 
411 	switch (to_devlink(dev)->status) {
412 	case DL_STATE_NONE:
413 		output = "not tracked";
414 		break;
415 	case DL_STATE_DORMANT:
416 		output = "dormant";
417 		break;
418 	case DL_STATE_AVAILABLE:
419 		output = "available";
420 		break;
421 	case DL_STATE_CONSUMER_PROBE:
422 		output = "consumer probing";
423 		break;
424 	case DL_STATE_ACTIVE:
425 		output = "active";
426 		break;
427 	case DL_STATE_SUPPLIER_UNBIND:
428 		output = "supplier unbinding";
429 		break;
430 	default:
431 		output = "unknown";
432 		break;
433 	}
434 
435 	return sysfs_emit(buf, "%s\n", output);
436 }
437 static DEVICE_ATTR_RO(status);
438 
439 static ssize_t auto_remove_on_show(struct device *dev,
440 				   struct device_attribute *attr, char *buf)
441 {
442 	struct device_link *link = to_devlink(dev);
443 	const char *output;
444 
445 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
446 		output = "supplier unbind";
447 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
448 		output = "consumer unbind";
449 	else
450 		output = "never";
451 
452 	return sysfs_emit(buf, "%s\n", output);
453 }
454 static DEVICE_ATTR_RO(auto_remove_on);
455 
456 static ssize_t runtime_pm_show(struct device *dev,
457 			       struct device_attribute *attr, char *buf)
458 {
459 	struct device_link *link = to_devlink(dev);
460 
461 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
462 }
463 static DEVICE_ATTR_RO(runtime_pm);
464 
465 static ssize_t sync_state_only_show(struct device *dev,
466 				    struct device_attribute *attr, char *buf)
467 {
468 	struct device_link *link = to_devlink(dev);
469 
470 	return sysfs_emit(buf, "%d\n",
471 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
472 }
473 static DEVICE_ATTR_RO(sync_state_only);
474 
475 static struct attribute *devlink_attrs[] = {
476 	&dev_attr_status.attr,
477 	&dev_attr_auto_remove_on.attr,
478 	&dev_attr_runtime_pm.attr,
479 	&dev_attr_sync_state_only.attr,
480 	NULL,
481 };
482 ATTRIBUTE_GROUPS(devlink);
483 
484 static void device_link_release_fn(struct work_struct *work)
485 {
486 	struct device_link *link = container_of(work, struct device_link, rm_work);
487 
488 	/* Ensure that all references to the link object have been dropped. */
489 	device_link_synchronize_removal();
490 
491 	pm_runtime_release_supplier(link);
492 	/*
493 	 * If supplier_preactivated is set, the link has been dropped between
494 	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
495 	 * in __driver_probe_device().  In that case, drop the supplier's
496 	 * PM-runtime usage counter to remove the reference taken by
497 	 * pm_runtime_get_suppliers().
498 	 */
499 	if (link->supplier_preactivated)
500 		pm_runtime_put_noidle(link->supplier);
501 
502 	pm_request_idle(link->supplier);
503 
504 	put_device(link->consumer);
505 	put_device(link->supplier);
506 	kfree(link);
507 }
508 
509 static void devlink_dev_release(struct device *dev)
510 {
511 	struct device_link *link = to_devlink(dev);
512 
513 	INIT_WORK(&link->rm_work, device_link_release_fn);
514 	/*
515 	 * It may take a while to complete this work because of the SRCU
516 	 * synchronization in device_link_release_fn() and if the consumer or
517 	 * supplier devices get deleted when it runs, so put it into the "long"
518 	 * workqueue.
519 	 */
520 	queue_work(system_long_wq, &link->rm_work);
521 }
522 
523 static struct class devlink_class = {
524 	.name = "devlink",
525 	.owner = THIS_MODULE,
526 	.dev_groups = devlink_groups,
527 	.dev_release = devlink_dev_release,
528 };
529 
530 static int devlink_add_symlinks(struct device *dev,
531 				struct class_interface *class_intf)
532 {
533 	int ret;
534 	size_t len;
535 	struct device_link *link = to_devlink(dev);
536 	struct device *sup = link->supplier;
537 	struct device *con = link->consumer;
538 	char *buf;
539 
540 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
541 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
542 	len += strlen(":");
543 	len += strlen("supplier:") + 1;
544 	buf = kzalloc(len, GFP_KERNEL);
545 	if (!buf)
546 		return -ENOMEM;
547 
548 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
549 	if (ret)
550 		goto out;
551 
552 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
553 	if (ret)
554 		goto err_con;
555 
556 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
557 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
558 	if (ret)
559 		goto err_con_dev;
560 
561 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
562 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
563 	if (ret)
564 		goto err_sup_dev;
565 
566 	goto out;
567 
568 err_sup_dev:
569 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
570 	sysfs_remove_link(&sup->kobj, buf);
571 err_con_dev:
572 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
573 err_con:
574 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
575 out:
576 	kfree(buf);
577 	return ret;
578 }
579 
580 static void devlink_remove_symlinks(struct device *dev,
581 				   struct class_interface *class_intf)
582 {
583 	struct device_link *link = to_devlink(dev);
584 	size_t len;
585 	struct device *sup = link->supplier;
586 	struct device *con = link->consumer;
587 	char *buf;
588 
589 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
590 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
591 
592 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
593 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
594 	len += strlen(":");
595 	len += strlen("supplier:") + 1;
596 	buf = kzalloc(len, GFP_KERNEL);
597 	if (!buf) {
598 		WARN(1, "Unable to properly free device link symlinks!\n");
599 		return;
600 	}
601 
602 	if (device_is_registered(con)) {
603 		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
604 		sysfs_remove_link(&con->kobj, buf);
605 	}
606 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
607 	sysfs_remove_link(&sup->kobj, buf);
608 	kfree(buf);
609 }
610 
611 static struct class_interface devlink_class_intf = {
612 	.class = &devlink_class,
613 	.add_dev = devlink_add_symlinks,
614 	.remove_dev = devlink_remove_symlinks,
615 };
616 
617 static int __init devlink_class_init(void)
618 {
619 	int ret;
620 
621 	ret = class_register(&devlink_class);
622 	if (ret)
623 		return ret;
624 
625 	ret = class_interface_register(&devlink_class_intf);
626 	if (ret)
627 		class_unregister(&devlink_class);
628 
629 	return ret;
630 }
631 postcore_initcall(devlink_class_init);
632 
633 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
634 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
635 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
636 			       DL_FLAG_SYNC_STATE_ONLY | \
637 			       DL_FLAG_INFERRED)
638 
639 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
640 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
641 
642 /**
643  * device_link_add - Create a link between two devices.
644  * @consumer: Consumer end of the link.
645  * @supplier: Supplier end of the link.
646  * @flags: Link flags.
647  *
648  * The caller is responsible for the proper synchronization of the link creation
649  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
650  * runtime PM framework to take the link into account.  Second, if the
651  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
652  * be forced into the active meta state and reference-counted upon the creation
653  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
654  * ignored.
655  *
656  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
657  * expected to release the link returned by it directly with the help of either
658  * device_link_del() or device_link_remove().
659  *
660  * If that flag is not set, however, the caller of this function is handing the
661  * management of the link over to the driver core entirely and its return value
662  * can only be used to check whether or not the link is present.  In that case,
663  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
664  * flags can be used to indicate to the driver core when the link can be safely
665  * deleted.  Namely, setting one of them in @flags indicates to the driver core
666  * that the link is not going to be used (by the given caller of this function)
667  * after unbinding the consumer or supplier driver, respectively, from its
668  * device, so the link can be deleted at that point.  If none of them is set,
669  * the link will be maintained until one of the devices pointed to by it (either
670  * the consumer or the supplier) is unregistered.
671  *
672  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
673  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
674  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
675  * be used to request the driver core to automatically probe for a consumer
676  * driver after successfully binding a driver to the supplier device.
677  *
678  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
679  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
680  * the same time is invalid and will cause NULL to be returned upfront.
681  * However, if a device link between the given @consumer and @supplier pair
682  * exists already when this function is called for them, the existing link will
683  * be returned regardless of its current type and status (the link's flags may
684  * be modified then).  The caller of this function is then expected to treat
685  * the link as though it has just been created, so (in particular) if
686  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
687  * explicitly when not needed any more (as stated above).
688  *
689  * A side effect of the link creation is re-ordering of dpm_list and the
690  * devices_kset list by moving the consumer device and all devices depending
691  * on it to the ends of these lists (that does not happen to devices that have
692  * not been registered when this function is called).
693  *
694  * The supplier device is required to be registered when this function is called
695  * and NULL will be returned if that is not the case.  The consumer device need
696  * not be registered, however.
697  */
698 struct device_link *device_link_add(struct device *consumer,
699 				    struct device *supplier, u32 flags)
700 {
701 	struct device_link *link;
702 
703 	if (!consumer || !supplier || consumer == supplier ||
704 	    flags & ~DL_ADD_VALID_FLAGS ||
705 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
706 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
707 	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
708 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
709 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
710 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
711 		return NULL;
712 
713 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
714 		if (pm_runtime_get_sync(supplier) < 0) {
715 			pm_runtime_put_noidle(supplier);
716 			return NULL;
717 		}
718 	}
719 
720 	if (!(flags & DL_FLAG_STATELESS))
721 		flags |= DL_FLAG_MANAGED;
722 
723 	device_links_write_lock();
724 	device_pm_lock();
725 
726 	/*
727 	 * If the supplier has not been fully registered yet or there is a
728 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
729 	 * the supplier already in the graph, return NULL. If the link is a
730 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
731 	 * because it only affects sync_state() callbacks.
732 	 */
733 	if (!device_pm_initialized(supplier)
734 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
735 		  device_is_dependent(consumer, supplier))) {
736 		link = NULL;
737 		goto out;
738 	}
739 
740 	/*
741 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
742 	 * So, only create it if the consumer hasn't probed yet.
743 	 */
744 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
745 	    consumer->links.status != DL_DEV_NO_DRIVER &&
746 	    consumer->links.status != DL_DEV_PROBING) {
747 		link = NULL;
748 		goto out;
749 	}
750 
751 	/*
752 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
753 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
754 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
755 	 */
756 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
757 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
758 
759 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
760 		if (link->consumer != consumer)
761 			continue;
762 
763 		if (link->flags & DL_FLAG_INFERRED &&
764 		    !(flags & DL_FLAG_INFERRED))
765 			link->flags &= ~DL_FLAG_INFERRED;
766 
767 		if (flags & DL_FLAG_PM_RUNTIME) {
768 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
769 				pm_runtime_new_link(consumer);
770 				link->flags |= DL_FLAG_PM_RUNTIME;
771 			}
772 			if (flags & DL_FLAG_RPM_ACTIVE)
773 				refcount_inc(&link->rpm_active);
774 		}
775 
776 		if (flags & DL_FLAG_STATELESS) {
777 			kref_get(&link->kref);
778 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
779 			    !(link->flags & DL_FLAG_STATELESS)) {
780 				link->flags |= DL_FLAG_STATELESS;
781 				goto reorder;
782 			} else {
783 				link->flags |= DL_FLAG_STATELESS;
784 				goto out;
785 			}
786 		}
787 
788 		/*
789 		 * If the life time of the link following from the new flags is
790 		 * longer than indicated by the flags of the existing link,
791 		 * update the existing link to stay around longer.
792 		 */
793 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
794 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
795 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
796 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
797 			}
798 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
799 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
800 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
801 		}
802 		if (!(link->flags & DL_FLAG_MANAGED)) {
803 			kref_get(&link->kref);
804 			link->flags |= DL_FLAG_MANAGED;
805 			device_link_init_status(link, consumer, supplier);
806 		}
807 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
808 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
809 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
810 			goto reorder;
811 		}
812 
813 		goto out;
814 	}
815 
816 	link = kzalloc(sizeof(*link), GFP_KERNEL);
817 	if (!link)
818 		goto out;
819 
820 	refcount_set(&link->rpm_active, 1);
821 
822 	get_device(supplier);
823 	link->supplier = supplier;
824 	INIT_LIST_HEAD(&link->s_node);
825 	get_device(consumer);
826 	link->consumer = consumer;
827 	INIT_LIST_HEAD(&link->c_node);
828 	link->flags = flags;
829 	kref_init(&link->kref);
830 
831 	link->link_dev.class = &devlink_class;
832 	device_set_pm_not_required(&link->link_dev);
833 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
834 		     dev_bus_name(supplier), dev_name(supplier),
835 		     dev_bus_name(consumer), dev_name(consumer));
836 	if (device_register(&link->link_dev)) {
837 		put_device(&link->link_dev);
838 		link = NULL;
839 		goto out;
840 	}
841 
842 	if (flags & DL_FLAG_PM_RUNTIME) {
843 		if (flags & DL_FLAG_RPM_ACTIVE)
844 			refcount_inc(&link->rpm_active);
845 
846 		pm_runtime_new_link(consumer);
847 	}
848 
849 	/* Determine the initial link state. */
850 	if (flags & DL_FLAG_STATELESS)
851 		link->status = DL_STATE_NONE;
852 	else
853 		device_link_init_status(link, consumer, supplier);
854 
855 	/*
856 	 * Some callers expect the link creation during consumer driver probe to
857 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
858 	 */
859 	if (link->status == DL_STATE_CONSUMER_PROBE &&
860 	    flags & DL_FLAG_PM_RUNTIME)
861 		pm_runtime_resume(supplier);
862 
863 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
864 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
865 
866 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
867 		dev_dbg(consumer,
868 			"Linked as a sync state only consumer to %s\n",
869 			dev_name(supplier));
870 		goto out;
871 	}
872 
873 reorder:
874 	/*
875 	 * Move the consumer and all of the devices depending on it to the end
876 	 * of dpm_list and the devices_kset list.
877 	 *
878 	 * It is necessary to hold dpm_list locked throughout all that or else
879 	 * we may end up suspending with a wrong ordering of it.
880 	 */
881 	device_reorder_to_tail(consumer, NULL);
882 
883 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
884 
885 out:
886 	device_pm_unlock();
887 	device_links_write_unlock();
888 
889 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
890 		pm_runtime_put(supplier);
891 
892 	return link;
893 }
894 EXPORT_SYMBOL_GPL(device_link_add);
895 
896 static void __device_link_del(struct kref *kref)
897 {
898 	struct device_link *link = container_of(kref, struct device_link, kref);
899 
900 	dev_dbg(link->consumer, "Dropping the link to %s\n",
901 		dev_name(link->supplier));
902 
903 	pm_runtime_drop_link(link);
904 
905 	device_link_remove_from_lists(link);
906 	device_unregister(&link->link_dev);
907 }
908 
909 static void device_link_put_kref(struct device_link *link)
910 {
911 	if (link->flags & DL_FLAG_STATELESS)
912 		kref_put(&link->kref, __device_link_del);
913 	else if (!device_is_registered(link->consumer))
914 		__device_link_del(&link->kref);
915 	else
916 		WARN(1, "Unable to drop a managed device link reference\n");
917 }
918 
919 /**
920  * device_link_del - Delete a stateless link between two devices.
921  * @link: Device link to delete.
922  *
923  * The caller must ensure proper synchronization of this function with runtime
924  * PM.  If the link was added multiple times, it needs to be deleted as often.
925  * Care is required for hotplugged devices:  Their links are purged on removal
926  * and calling device_link_del() is then no longer allowed.
927  */
928 void device_link_del(struct device_link *link)
929 {
930 	device_links_write_lock();
931 	device_link_put_kref(link);
932 	device_links_write_unlock();
933 }
934 EXPORT_SYMBOL_GPL(device_link_del);
935 
936 /**
937  * device_link_remove - Delete a stateless link between two devices.
938  * @consumer: Consumer end of the link.
939  * @supplier: Supplier end of the link.
940  *
941  * The caller must ensure proper synchronization of this function with runtime
942  * PM.
943  */
944 void device_link_remove(void *consumer, struct device *supplier)
945 {
946 	struct device_link *link;
947 
948 	if (WARN_ON(consumer == supplier))
949 		return;
950 
951 	device_links_write_lock();
952 
953 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
954 		if (link->consumer == consumer) {
955 			device_link_put_kref(link);
956 			break;
957 		}
958 	}
959 
960 	device_links_write_unlock();
961 }
962 EXPORT_SYMBOL_GPL(device_link_remove);
963 
964 static void device_links_missing_supplier(struct device *dev)
965 {
966 	struct device_link *link;
967 
968 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
969 		if (link->status != DL_STATE_CONSUMER_PROBE)
970 			continue;
971 
972 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
973 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
974 		} else {
975 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
976 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
977 		}
978 	}
979 }
980 
981 static bool dev_is_best_effort(struct device *dev)
982 {
983 	return (fw_devlink_best_effort && dev->can_match) ||
984 		(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
985 }
986 
987 /**
988  * device_links_check_suppliers - Check presence of supplier drivers.
989  * @dev: Consumer device.
990  *
991  * Check links from this device to any suppliers.  Walk the list of the device's
992  * links to suppliers and see if all of them are available.  If not, simply
993  * return -EPROBE_DEFER.
994  *
995  * We need to guarantee that the supplier will not go away after the check has
996  * been positive here.  It only can go away in __device_release_driver() and
997  * that function  checks the device's links to consumers.  This means we need to
998  * mark the link as "consumer probe in progress" to make the supplier removal
999  * wait for us to complete (or bad things may happen).
1000  *
1001  * Links without the DL_FLAG_MANAGED flag set are ignored.
1002  */
1003 int device_links_check_suppliers(struct device *dev)
1004 {
1005 	struct device_link *link;
1006 	int ret = 0, fwnode_ret = 0;
1007 	struct fwnode_handle *sup_fw;
1008 
1009 	/*
1010 	 * Device waiting for supplier to become available is not allowed to
1011 	 * probe.
1012 	 */
1013 	mutex_lock(&fwnode_link_lock);
1014 	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
1015 	    !fw_devlink_is_permissive()) {
1016 		sup_fw = list_first_entry(&dev->fwnode->suppliers,
1017 					  struct fwnode_link,
1018 					  c_hook)->supplier;
1019 		if (!dev_is_best_effort(dev)) {
1020 			fwnode_ret = -EPROBE_DEFER;
1021 			dev_err_probe(dev, -EPROBE_DEFER,
1022 				    "wait for supplier %pfwP\n", sup_fw);
1023 		} else {
1024 			fwnode_ret = -EAGAIN;
1025 		}
1026 	}
1027 	mutex_unlock(&fwnode_link_lock);
1028 	if (fwnode_ret == -EPROBE_DEFER)
1029 		return fwnode_ret;
1030 
1031 	device_links_write_lock();
1032 
1033 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1034 		if (!(link->flags & DL_FLAG_MANAGED))
1035 			continue;
1036 
1037 		if (link->status != DL_STATE_AVAILABLE &&
1038 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1039 
1040 			if (dev_is_best_effort(dev) &&
1041 			    link->flags & DL_FLAG_INFERRED &&
1042 			    !link->supplier->can_match) {
1043 				ret = -EAGAIN;
1044 				continue;
1045 			}
1046 
1047 			device_links_missing_supplier(dev);
1048 			dev_err_probe(dev, -EPROBE_DEFER,
1049 				      "supplier %s not ready\n",
1050 				      dev_name(link->supplier));
1051 			ret = -EPROBE_DEFER;
1052 			break;
1053 		}
1054 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1055 	}
1056 	dev->links.status = DL_DEV_PROBING;
1057 
1058 	device_links_write_unlock();
1059 
1060 	return ret ? ret : fwnode_ret;
1061 }
1062 
1063 /**
1064  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1065  * @dev: Device to call sync_state() on
1066  * @list: List head to queue the @dev on
1067  *
1068  * Queues a device for a sync_state() callback when the device links write lock
1069  * isn't held. This allows the sync_state() execution flow to use device links
1070  * APIs.  The caller must ensure this function is called with
1071  * device_links_write_lock() held.
1072  *
1073  * This function does a get_device() to make sure the device is not freed while
1074  * on this list.
1075  *
1076  * So the caller must also ensure that device_links_flush_sync_list() is called
1077  * as soon as the caller releases device_links_write_lock().  This is necessary
1078  * to make sure the sync_state() is called in a timely fashion and the
1079  * put_device() is called on this device.
1080  */
1081 static void __device_links_queue_sync_state(struct device *dev,
1082 					    struct list_head *list)
1083 {
1084 	struct device_link *link;
1085 
1086 	if (!dev_has_sync_state(dev))
1087 		return;
1088 	if (dev->state_synced)
1089 		return;
1090 
1091 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1092 		if (!(link->flags & DL_FLAG_MANAGED))
1093 			continue;
1094 		if (link->status != DL_STATE_ACTIVE)
1095 			return;
1096 	}
1097 
1098 	/*
1099 	 * Set the flag here to avoid adding the same device to a list more
1100 	 * than once. This can happen if new consumers get added to the device
1101 	 * and probed before the list is flushed.
1102 	 */
1103 	dev->state_synced = true;
1104 
1105 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1106 		return;
1107 
1108 	get_device(dev);
1109 	list_add_tail(&dev->links.defer_sync, list);
1110 }
1111 
1112 /**
1113  * device_links_flush_sync_list - Call sync_state() on a list of devices
1114  * @list: List of devices to call sync_state() on
1115  * @dont_lock_dev: Device for which lock is already held by the caller
1116  *
1117  * Calls sync_state() on all the devices that have been queued for it. This
1118  * function is used in conjunction with __device_links_queue_sync_state(). The
1119  * @dont_lock_dev parameter is useful when this function is called from a
1120  * context where a device lock is already held.
1121  */
1122 static void device_links_flush_sync_list(struct list_head *list,
1123 					 struct device *dont_lock_dev)
1124 {
1125 	struct device *dev, *tmp;
1126 
1127 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1128 		list_del_init(&dev->links.defer_sync);
1129 
1130 		if (dev != dont_lock_dev)
1131 			device_lock(dev);
1132 
1133 		if (dev->bus->sync_state)
1134 			dev->bus->sync_state(dev);
1135 		else if (dev->driver && dev->driver->sync_state)
1136 			dev->driver->sync_state(dev);
1137 
1138 		if (dev != dont_lock_dev)
1139 			device_unlock(dev);
1140 
1141 		put_device(dev);
1142 	}
1143 }
1144 
1145 void device_links_supplier_sync_state_pause(void)
1146 {
1147 	device_links_write_lock();
1148 	defer_sync_state_count++;
1149 	device_links_write_unlock();
1150 }
1151 
1152 void device_links_supplier_sync_state_resume(void)
1153 {
1154 	struct device *dev, *tmp;
1155 	LIST_HEAD(sync_list);
1156 
1157 	device_links_write_lock();
1158 	if (!defer_sync_state_count) {
1159 		WARN(true, "Unmatched sync_state pause/resume!");
1160 		goto out;
1161 	}
1162 	defer_sync_state_count--;
1163 	if (defer_sync_state_count)
1164 		goto out;
1165 
1166 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1167 		/*
1168 		 * Delete from deferred_sync list before queuing it to
1169 		 * sync_list because defer_sync is used for both lists.
1170 		 */
1171 		list_del_init(&dev->links.defer_sync);
1172 		__device_links_queue_sync_state(dev, &sync_list);
1173 	}
1174 out:
1175 	device_links_write_unlock();
1176 
1177 	device_links_flush_sync_list(&sync_list, NULL);
1178 }
1179 
1180 static int sync_state_resume_initcall(void)
1181 {
1182 	device_links_supplier_sync_state_resume();
1183 	return 0;
1184 }
1185 late_initcall(sync_state_resume_initcall);
1186 
1187 static void __device_links_supplier_defer_sync(struct device *sup)
1188 {
1189 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1190 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1191 }
1192 
1193 static void device_link_drop_managed(struct device_link *link)
1194 {
1195 	link->flags &= ~DL_FLAG_MANAGED;
1196 	WRITE_ONCE(link->status, DL_STATE_NONE);
1197 	kref_put(&link->kref, __device_link_del);
1198 }
1199 
1200 static ssize_t waiting_for_supplier_show(struct device *dev,
1201 					 struct device_attribute *attr,
1202 					 char *buf)
1203 {
1204 	bool val;
1205 
1206 	device_lock(dev);
1207 	val = !list_empty(&dev->fwnode->suppliers);
1208 	device_unlock(dev);
1209 	return sysfs_emit(buf, "%u\n", val);
1210 }
1211 static DEVICE_ATTR_RO(waiting_for_supplier);
1212 
1213 /**
1214  * device_links_force_bind - Prepares device to be force bound
1215  * @dev: Consumer device.
1216  *
1217  * device_bind_driver() force binds a device to a driver without calling any
1218  * driver probe functions. So the consumer really isn't going to wait for any
1219  * supplier before it's bound to the driver. We still want the device link
1220  * states to be sensible when this happens.
1221  *
1222  * In preparation for device_bind_driver(), this function goes through each
1223  * supplier device links and checks if the supplier is bound. If it is, then
1224  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1225  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1226  */
1227 void device_links_force_bind(struct device *dev)
1228 {
1229 	struct device_link *link, *ln;
1230 
1231 	device_links_write_lock();
1232 
1233 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1234 		if (!(link->flags & DL_FLAG_MANAGED))
1235 			continue;
1236 
1237 		if (link->status != DL_STATE_AVAILABLE) {
1238 			device_link_drop_managed(link);
1239 			continue;
1240 		}
1241 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1242 	}
1243 	dev->links.status = DL_DEV_PROBING;
1244 
1245 	device_links_write_unlock();
1246 }
1247 
1248 /**
1249  * device_links_driver_bound - Update device links after probing its driver.
1250  * @dev: Device to update the links for.
1251  *
1252  * The probe has been successful, so update links from this device to any
1253  * consumers by changing their status to "available".
1254  *
1255  * Also change the status of @dev's links to suppliers to "active".
1256  *
1257  * Links without the DL_FLAG_MANAGED flag set are ignored.
1258  */
1259 void device_links_driver_bound(struct device *dev)
1260 {
1261 	struct device_link *link, *ln;
1262 	LIST_HEAD(sync_list);
1263 
1264 	/*
1265 	 * If a device binds successfully, it's expected to have created all
1266 	 * the device links it needs to or make new device links as it needs
1267 	 * them. So, fw_devlink no longer needs to create device links to any
1268 	 * of the device's suppliers.
1269 	 *
1270 	 * Also, if a child firmware node of this bound device is not added as
1271 	 * a device by now, assume it is never going to be added and make sure
1272 	 * other devices don't defer probe indefinitely by waiting for such a
1273 	 * child device.
1274 	 */
1275 	if (dev->fwnode && dev->fwnode->dev == dev) {
1276 		struct fwnode_handle *child;
1277 		fwnode_links_purge_suppliers(dev->fwnode);
1278 		fwnode_for_each_available_child_node(dev->fwnode, child)
1279 			fw_devlink_purge_absent_suppliers(child);
1280 	}
1281 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1282 
1283 	device_links_write_lock();
1284 
1285 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1286 		if (!(link->flags & DL_FLAG_MANAGED))
1287 			continue;
1288 
1289 		/*
1290 		 * Links created during consumer probe may be in the "consumer
1291 		 * probe" state to start with if the supplier is still probing
1292 		 * when they are created and they may become "active" if the
1293 		 * consumer probe returns first.  Skip them here.
1294 		 */
1295 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1296 		    link->status == DL_STATE_ACTIVE)
1297 			continue;
1298 
1299 		WARN_ON(link->status != DL_STATE_DORMANT);
1300 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1301 
1302 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1303 			driver_deferred_probe_add(link->consumer);
1304 	}
1305 
1306 	if (defer_sync_state_count)
1307 		__device_links_supplier_defer_sync(dev);
1308 	else
1309 		__device_links_queue_sync_state(dev, &sync_list);
1310 
1311 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1312 		struct device *supplier;
1313 
1314 		if (!(link->flags & DL_FLAG_MANAGED))
1315 			continue;
1316 
1317 		supplier = link->supplier;
1318 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1319 			/*
1320 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1321 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1322 			 * save to drop the managed link completely.
1323 			 */
1324 			device_link_drop_managed(link);
1325 		} else if (dev_is_best_effort(dev) &&
1326 			   link->flags & DL_FLAG_INFERRED &&
1327 			   link->status != DL_STATE_CONSUMER_PROBE &&
1328 			   !link->supplier->can_match) {
1329 			/*
1330 			 * When dev_is_best_effort() is true, we ignore device
1331 			 * links to suppliers that don't have a driver.  If the
1332 			 * consumer device still managed to probe, there's no
1333 			 * point in maintaining a device link in a weird state
1334 			 * (consumer probed before supplier). So delete it.
1335 			 */
1336 			device_link_drop_managed(link);
1337 		} else {
1338 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1339 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1340 		}
1341 
1342 		/*
1343 		 * This needs to be done even for the deleted
1344 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1345 		 * device link that was preventing the supplier from getting a
1346 		 * sync_state() call.
1347 		 */
1348 		if (defer_sync_state_count)
1349 			__device_links_supplier_defer_sync(supplier);
1350 		else
1351 			__device_links_queue_sync_state(supplier, &sync_list);
1352 	}
1353 
1354 	dev->links.status = DL_DEV_DRIVER_BOUND;
1355 
1356 	device_links_write_unlock();
1357 
1358 	device_links_flush_sync_list(&sync_list, dev);
1359 }
1360 
1361 /**
1362  * __device_links_no_driver - Update links of a device without a driver.
1363  * @dev: Device without a drvier.
1364  *
1365  * Delete all non-persistent links from this device to any suppliers.
1366  *
1367  * Persistent links stay around, but their status is changed to "available",
1368  * unless they already are in the "supplier unbind in progress" state in which
1369  * case they need not be updated.
1370  *
1371  * Links without the DL_FLAG_MANAGED flag set are ignored.
1372  */
1373 static void __device_links_no_driver(struct device *dev)
1374 {
1375 	struct device_link *link, *ln;
1376 
1377 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1378 		if (!(link->flags & DL_FLAG_MANAGED))
1379 			continue;
1380 
1381 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1382 			device_link_drop_managed(link);
1383 			continue;
1384 		}
1385 
1386 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1387 		    link->status != DL_STATE_ACTIVE)
1388 			continue;
1389 
1390 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1391 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1392 		} else {
1393 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1394 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1395 		}
1396 	}
1397 
1398 	dev->links.status = DL_DEV_NO_DRIVER;
1399 }
1400 
1401 /**
1402  * device_links_no_driver - Update links after failing driver probe.
1403  * @dev: Device whose driver has just failed to probe.
1404  *
1405  * Clean up leftover links to consumers for @dev and invoke
1406  * %__device_links_no_driver() to update links to suppliers for it as
1407  * appropriate.
1408  *
1409  * Links without the DL_FLAG_MANAGED flag set are ignored.
1410  */
1411 void device_links_no_driver(struct device *dev)
1412 {
1413 	struct device_link *link;
1414 
1415 	device_links_write_lock();
1416 
1417 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1418 		if (!(link->flags & DL_FLAG_MANAGED))
1419 			continue;
1420 
1421 		/*
1422 		 * The probe has failed, so if the status of the link is
1423 		 * "consumer probe" or "active", it must have been added by
1424 		 * a probing consumer while this device was still probing.
1425 		 * Change its state to "dormant", as it represents a valid
1426 		 * relationship, but it is not functionally meaningful.
1427 		 */
1428 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1429 		    link->status == DL_STATE_ACTIVE)
1430 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1431 	}
1432 
1433 	__device_links_no_driver(dev);
1434 
1435 	device_links_write_unlock();
1436 }
1437 
1438 /**
1439  * device_links_driver_cleanup - Update links after driver removal.
1440  * @dev: Device whose driver has just gone away.
1441  *
1442  * Update links to consumers for @dev by changing their status to "dormant" and
1443  * invoke %__device_links_no_driver() to update links to suppliers for it as
1444  * appropriate.
1445  *
1446  * Links without the DL_FLAG_MANAGED flag set are ignored.
1447  */
1448 void device_links_driver_cleanup(struct device *dev)
1449 {
1450 	struct device_link *link, *ln;
1451 
1452 	device_links_write_lock();
1453 
1454 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1455 		if (!(link->flags & DL_FLAG_MANAGED))
1456 			continue;
1457 
1458 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1459 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1460 
1461 		/*
1462 		 * autoremove the links between this @dev and its consumer
1463 		 * devices that are not active, i.e. where the link state
1464 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1465 		 */
1466 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1467 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1468 			device_link_drop_managed(link);
1469 
1470 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1471 	}
1472 
1473 	list_del_init(&dev->links.defer_sync);
1474 	__device_links_no_driver(dev);
1475 
1476 	device_links_write_unlock();
1477 }
1478 
1479 /**
1480  * device_links_busy - Check if there are any busy links to consumers.
1481  * @dev: Device to check.
1482  *
1483  * Check each consumer of the device and return 'true' if its link's status
1484  * is one of "consumer probe" or "active" (meaning that the given consumer is
1485  * probing right now or its driver is present).  Otherwise, change the link
1486  * state to "supplier unbind" to prevent the consumer from being probed
1487  * successfully going forward.
1488  *
1489  * Return 'false' if there are no probing or active consumers.
1490  *
1491  * Links without the DL_FLAG_MANAGED flag set are ignored.
1492  */
1493 bool device_links_busy(struct device *dev)
1494 {
1495 	struct device_link *link;
1496 	bool ret = false;
1497 
1498 	device_links_write_lock();
1499 
1500 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1501 		if (!(link->flags & DL_FLAG_MANAGED))
1502 			continue;
1503 
1504 		if (link->status == DL_STATE_CONSUMER_PROBE
1505 		    || link->status == DL_STATE_ACTIVE) {
1506 			ret = true;
1507 			break;
1508 		}
1509 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1510 	}
1511 
1512 	dev->links.status = DL_DEV_UNBINDING;
1513 
1514 	device_links_write_unlock();
1515 	return ret;
1516 }
1517 
1518 /**
1519  * device_links_unbind_consumers - Force unbind consumers of the given device.
1520  * @dev: Device to unbind the consumers of.
1521  *
1522  * Walk the list of links to consumers for @dev and if any of them is in the
1523  * "consumer probe" state, wait for all device probes in progress to complete
1524  * and start over.
1525  *
1526  * If that's not the case, change the status of the link to "supplier unbind"
1527  * and check if the link was in the "active" state.  If so, force the consumer
1528  * driver to unbind and start over (the consumer will not re-probe as we have
1529  * changed the state of the link already).
1530  *
1531  * Links without the DL_FLAG_MANAGED flag set are ignored.
1532  */
1533 void device_links_unbind_consumers(struct device *dev)
1534 {
1535 	struct device_link *link;
1536 
1537  start:
1538 	device_links_write_lock();
1539 
1540 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1541 		enum device_link_state status;
1542 
1543 		if (!(link->flags & DL_FLAG_MANAGED) ||
1544 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1545 			continue;
1546 
1547 		status = link->status;
1548 		if (status == DL_STATE_CONSUMER_PROBE) {
1549 			device_links_write_unlock();
1550 
1551 			wait_for_device_probe();
1552 			goto start;
1553 		}
1554 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1555 		if (status == DL_STATE_ACTIVE) {
1556 			struct device *consumer = link->consumer;
1557 
1558 			get_device(consumer);
1559 
1560 			device_links_write_unlock();
1561 
1562 			device_release_driver_internal(consumer, NULL,
1563 						       consumer->parent);
1564 			put_device(consumer);
1565 			goto start;
1566 		}
1567 	}
1568 
1569 	device_links_write_unlock();
1570 }
1571 
1572 /**
1573  * device_links_purge - Delete existing links to other devices.
1574  * @dev: Target device.
1575  */
1576 static void device_links_purge(struct device *dev)
1577 {
1578 	struct device_link *link, *ln;
1579 
1580 	if (dev->class == &devlink_class)
1581 		return;
1582 
1583 	/*
1584 	 * Delete all of the remaining links from this device to any other
1585 	 * devices (either consumers or suppliers).
1586 	 */
1587 	device_links_write_lock();
1588 
1589 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1590 		WARN_ON(link->status == DL_STATE_ACTIVE);
1591 		__device_link_del(&link->kref);
1592 	}
1593 
1594 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1595 		WARN_ON(link->status != DL_STATE_DORMANT &&
1596 			link->status != DL_STATE_NONE);
1597 		__device_link_del(&link->kref);
1598 	}
1599 
1600 	device_links_write_unlock();
1601 }
1602 
1603 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1604 					 DL_FLAG_SYNC_STATE_ONLY)
1605 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1606 					 DL_FLAG_AUTOPROBE_CONSUMER)
1607 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1608 					 DL_FLAG_PM_RUNTIME)
1609 
1610 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1611 static int __init fw_devlink_setup(char *arg)
1612 {
1613 	if (!arg)
1614 		return -EINVAL;
1615 
1616 	if (strcmp(arg, "off") == 0) {
1617 		fw_devlink_flags = 0;
1618 	} else if (strcmp(arg, "permissive") == 0) {
1619 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1620 	} else if (strcmp(arg, "on") == 0) {
1621 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1622 	} else if (strcmp(arg, "rpm") == 0) {
1623 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1624 	}
1625 	return 0;
1626 }
1627 early_param("fw_devlink", fw_devlink_setup);
1628 
1629 static bool fw_devlink_strict;
1630 static int __init fw_devlink_strict_setup(char *arg)
1631 {
1632 	return kstrtobool(arg, &fw_devlink_strict);
1633 }
1634 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1635 
1636 u32 fw_devlink_get_flags(void)
1637 {
1638 	return fw_devlink_flags;
1639 }
1640 
1641 static bool fw_devlink_is_permissive(void)
1642 {
1643 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1644 }
1645 
1646 bool fw_devlink_is_strict(void)
1647 {
1648 	return fw_devlink_strict && !fw_devlink_is_permissive();
1649 }
1650 
1651 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1652 {
1653 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1654 		return;
1655 
1656 	fwnode_call_int_op(fwnode, add_links);
1657 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1658 }
1659 
1660 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1661 {
1662 	struct fwnode_handle *child = NULL;
1663 
1664 	fw_devlink_parse_fwnode(fwnode);
1665 
1666 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1667 		fw_devlink_parse_fwtree(child);
1668 }
1669 
1670 static void fw_devlink_relax_link(struct device_link *link)
1671 {
1672 	if (!(link->flags & DL_FLAG_INFERRED))
1673 		return;
1674 
1675 	if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1676 		return;
1677 
1678 	pm_runtime_drop_link(link);
1679 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1680 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1681 		dev_name(link->supplier));
1682 }
1683 
1684 static int fw_devlink_no_driver(struct device *dev, void *data)
1685 {
1686 	struct device_link *link = to_devlink(dev);
1687 
1688 	if (!link->supplier->can_match)
1689 		fw_devlink_relax_link(link);
1690 
1691 	return 0;
1692 }
1693 
1694 void fw_devlink_drivers_done(void)
1695 {
1696 	fw_devlink_drv_reg_done = true;
1697 	device_links_write_lock();
1698 	class_for_each_device(&devlink_class, NULL, NULL,
1699 			      fw_devlink_no_driver);
1700 	device_links_write_unlock();
1701 }
1702 
1703 /**
1704  * wait_for_init_devices_probe - Try to probe any device needed for init
1705  *
1706  * Some devices might need to be probed and bound successfully before the kernel
1707  * boot sequence can finish and move on to init/userspace. For example, a
1708  * network interface might need to be bound to be able to mount a NFS rootfs.
1709  *
1710  * With fw_devlink=on by default, some of these devices might be blocked from
1711  * probing because they are waiting on a optional supplier that doesn't have a
1712  * driver. While fw_devlink will eventually identify such devices and unblock
1713  * the probing automatically, it might be too late by the time it unblocks the
1714  * probing of devices. For example, the IP4 autoconfig might timeout before
1715  * fw_devlink unblocks probing of the network interface.
1716  *
1717  * This function is available to temporarily try and probe all devices that have
1718  * a driver even if some of their suppliers haven't been added or don't have
1719  * drivers.
1720  *
1721  * The drivers can then decide which of the suppliers are optional vs mandatory
1722  * and probe the device if possible. By the time this function returns, all such
1723  * "best effort" probes are guaranteed to be completed. If a device successfully
1724  * probes in this mode, we delete all fw_devlink discovered dependencies of that
1725  * device where the supplier hasn't yet probed successfully because they have to
1726  * be optional dependencies.
1727  *
1728  * Any devices that didn't successfully probe go back to being treated as if
1729  * this function was never called.
1730  *
1731  * This also means that some devices that aren't needed for init and could have
1732  * waited for their optional supplier to probe (when the supplier's module is
1733  * loaded later on) would end up probing prematurely with limited functionality.
1734  * So call this function only when boot would fail without it.
1735  */
1736 void __init wait_for_init_devices_probe(void)
1737 {
1738 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1739 		return;
1740 
1741 	/*
1742 	 * Wait for all ongoing probes to finish so that the "best effort" is
1743 	 * only applied to devices that can't probe otherwise.
1744 	 */
1745 	wait_for_device_probe();
1746 
1747 	pr_info("Trying to probe devices needed for running init ...\n");
1748 	fw_devlink_best_effort = true;
1749 	driver_deferred_probe_trigger();
1750 
1751 	/*
1752 	 * Wait for all "best effort" probes to finish before going back to
1753 	 * normal enforcement.
1754 	 */
1755 	wait_for_device_probe();
1756 	fw_devlink_best_effort = false;
1757 }
1758 
1759 static void fw_devlink_unblock_consumers(struct device *dev)
1760 {
1761 	struct device_link *link;
1762 
1763 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1764 		return;
1765 
1766 	device_links_write_lock();
1767 	list_for_each_entry(link, &dev->links.consumers, s_node)
1768 		fw_devlink_relax_link(link);
1769 	device_links_write_unlock();
1770 }
1771 
1772 /**
1773  * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1774  * @con: Device to check dependencies for.
1775  * @sup: Device to check against.
1776  *
1777  * Check if @sup depends on @con or any device dependent on it (its child or
1778  * its consumer etc).  When such a cyclic dependency is found, convert all
1779  * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1780  * This is the equivalent of doing fw_devlink=permissive just between the
1781  * devices in the cycle. We need to do this because, at this point, fw_devlink
1782  * can't tell which of these dependencies is not a real dependency.
1783  *
1784  * Return 1 if a cycle is found. Otherwise, return 0.
1785  */
1786 static int fw_devlink_relax_cycle(struct device *con, void *sup)
1787 {
1788 	struct device_link *link;
1789 	int ret;
1790 
1791 	if (con == sup)
1792 		return 1;
1793 
1794 	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1795 	if (ret)
1796 		return ret;
1797 
1798 	list_for_each_entry(link, &con->links.consumers, s_node) {
1799 		if ((link->flags & ~DL_FLAG_INFERRED) ==
1800 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1801 			continue;
1802 
1803 		if (!fw_devlink_relax_cycle(link->consumer, sup))
1804 			continue;
1805 
1806 		ret = 1;
1807 
1808 		fw_devlink_relax_link(link);
1809 	}
1810 	return ret;
1811 }
1812 
1813 /**
1814  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1815  * @con: consumer device for the device link
1816  * @sup_handle: fwnode handle of supplier
1817  * @flags: devlink flags
1818  *
1819  * This function will try to create a device link between the consumer device
1820  * @con and the supplier device represented by @sup_handle.
1821  *
1822  * The supplier has to be provided as a fwnode because incorrect cycles in
1823  * fwnode links can sometimes cause the supplier device to never be created.
1824  * This function detects such cases and returns an error if it cannot create a
1825  * device link from the consumer to a missing supplier.
1826  *
1827  * Returns,
1828  * 0 on successfully creating a device link
1829  * -EINVAL if the device link cannot be created as expected
1830  * -EAGAIN if the device link cannot be created right now, but it may be
1831  *  possible to do that in the future
1832  */
1833 static int fw_devlink_create_devlink(struct device *con,
1834 				     struct fwnode_handle *sup_handle, u32 flags)
1835 {
1836 	struct device *sup_dev;
1837 	int ret = 0;
1838 
1839 	/*
1840 	 * In some cases, a device P might also be a supplier to its child node
1841 	 * C. However, this would defer the probe of C until the probe of P
1842 	 * completes successfully. This is perfectly fine in the device driver
1843 	 * model. device_add() doesn't guarantee probe completion of the device
1844 	 * by the time it returns.
1845 	 *
1846 	 * However, there are a few drivers that assume C will finish probing
1847 	 * as soon as it's added and before P finishes probing. So, we provide
1848 	 * a flag to let fw_devlink know not to delay the probe of C until the
1849 	 * probe of P completes successfully.
1850 	 *
1851 	 * When such a flag is set, we can't create device links where P is the
1852 	 * supplier of C as that would delay the probe of C.
1853 	 */
1854 	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
1855 	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
1856 		return -EINVAL;
1857 
1858 	sup_dev = get_dev_from_fwnode(sup_handle);
1859 	if (sup_dev) {
1860 		/*
1861 		 * If it's one of those drivers that don't actually bind to
1862 		 * their device using driver core, then don't wait on this
1863 		 * supplier device indefinitely.
1864 		 */
1865 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1866 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1867 			ret = -EINVAL;
1868 			goto out;
1869 		}
1870 
1871 		/*
1872 		 * If this fails, it is due to cycles in device links.  Just
1873 		 * give up on this link and treat it as invalid.
1874 		 */
1875 		if (!device_link_add(con, sup_dev, flags) &&
1876 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1877 			dev_info(con, "Fixing up cyclic dependency with %s\n",
1878 				 dev_name(sup_dev));
1879 			device_links_write_lock();
1880 			fw_devlink_relax_cycle(con, sup_dev);
1881 			device_links_write_unlock();
1882 			device_link_add(con, sup_dev,
1883 					FW_DEVLINK_FLAGS_PERMISSIVE);
1884 			ret = -EINVAL;
1885 		}
1886 
1887 		goto out;
1888 	}
1889 
1890 	/* Supplier that's already initialized without a struct device. */
1891 	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1892 		return -EINVAL;
1893 
1894 	/*
1895 	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1896 	 * cycles. So cycle detection isn't necessary and shouldn't be
1897 	 * done.
1898 	 */
1899 	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1900 		return -EAGAIN;
1901 
1902 	/*
1903 	 * If we can't find the supplier device from its fwnode, it might be
1904 	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1905 	 * be broken by applying logic. Check for these types of cycles and
1906 	 * break them so that devices in the cycle probe properly.
1907 	 *
1908 	 * If the supplier's parent is dependent on the consumer, then the
1909 	 * consumer and supplier have a cyclic dependency. Since fw_devlink
1910 	 * can't tell which of the inferred dependencies are incorrect, don't
1911 	 * enforce probe ordering between any of the devices in this cyclic
1912 	 * dependency. Do this by relaxing all the fw_devlink device links in
1913 	 * this cycle and by treating the fwnode link between the consumer and
1914 	 * the supplier as an invalid dependency.
1915 	 */
1916 	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1917 	if (sup_dev && device_is_dependent(con, sup_dev)) {
1918 		dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n",
1919 			 sup_handle, dev_name(sup_dev));
1920 		device_links_write_lock();
1921 		fw_devlink_relax_cycle(con, sup_dev);
1922 		device_links_write_unlock();
1923 		ret = -EINVAL;
1924 	} else {
1925 		/*
1926 		 * Can't check for cycles or no cycles. So let's try
1927 		 * again later.
1928 		 */
1929 		ret = -EAGAIN;
1930 	}
1931 
1932 out:
1933 	put_device(sup_dev);
1934 	return ret;
1935 }
1936 
1937 /**
1938  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1939  * @dev: Device that needs to be linked to its consumers
1940  *
1941  * This function looks at all the consumer fwnodes of @dev and creates device
1942  * links between the consumer device and @dev (supplier).
1943  *
1944  * If the consumer device has not been added yet, then this function creates a
1945  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1946  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1947  * sync_state() callback before the real consumer device gets to be added and
1948  * then probed.
1949  *
1950  * Once device links are created from the real consumer to @dev (supplier), the
1951  * fwnode links are deleted.
1952  */
1953 static void __fw_devlink_link_to_consumers(struct device *dev)
1954 {
1955 	struct fwnode_handle *fwnode = dev->fwnode;
1956 	struct fwnode_link *link, *tmp;
1957 
1958 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1959 		u32 dl_flags = fw_devlink_get_flags();
1960 		struct device *con_dev;
1961 		bool own_link = true;
1962 		int ret;
1963 
1964 		con_dev = get_dev_from_fwnode(link->consumer);
1965 		/*
1966 		 * If consumer device is not available yet, make a "proxy"
1967 		 * SYNC_STATE_ONLY link from the consumer's parent device to
1968 		 * the supplier device. This is necessary to make sure the
1969 		 * supplier doesn't get a sync_state() callback before the real
1970 		 * consumer can create a device link to the supplier.
1971 		 *
1972 		 * This proxy link step is needed to handle the case where the
1973 		 * consumer's parent device is added before the supplier.
1974 		 */
1975 		if (!con_dev) {
1976 			con_dev = fwnode_get_next_parent_dev(link->consumer);
1977 			/*
1978 			 * However, if the consumer's parent device is also the
1979 			 * parent of the supplier, don't create a
1980 			 * consumer-supplier link from the parent to its child
1981 			 * device. Such a dependency is impossible.
1982 			 */
1983 			if (con_dev &&
1984 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1985 				put_device(con_dev);
1986 				con_dev = NULL;
1987 			} else {
1988 				own_link = false;
1989 				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1990 			}
1991 		}
1992 
1993 		if (!con_dev)
1994 			continue;
1995 
1996 		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1997 		put_device(con_dev);
1998 		if (!own_link || ret == -EAGAIN)
1999 			continue;
2000 
2001 		__fwnode_link_del(link);
2002 	}
2003 }
2004 
2005 /**
2006  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2007  * @dev: The consumer device that needs to be linked to its suppliers
2008  * @fwnode: Root of the fwnode tree that is used to create device links
2009  *
2010  * This function looks at all the supplier fwnodes of fwnode tree rooted at
2011  * @fwnode and creates device links between @dev (consumer) and all the
2012  * supplier devices of the entire fwnode tree at @fwnode.
2013  *
2014  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2015  * and the real suppliers of @dev. Once these device links are created, the
2016  * fwnode links are deleted. When such device links are successfully created,
2017  * this function is called recursively on those supplier devices. This is
2018  * needed to detect and break some invalid cycles in fwnode links.  See
2019  * fw_devlink_create_devlink() for more details.
2020  *
2021  * In addition, it also looks at all the suppliers of the entire fwnode tree
2022  * because some of the child devices of @dev that have not been added yet
2023  * (because @dev hasn't probed) might already have their suppliers added to
2024  * driver core. So, this function creates SYNC_STATE_ONLY device links between
2025  * @dev (consumer) and these suppliers to make sure they don't execute their
2026  * sync_state() callbacks before these child devices have a chance to create
2027  * their device links. The fwnode links that correspond to the child devices
2028  * aren't delete because they are needed later to create the device links
2029  * between the real consumer and supplier devices.
2030  */
2031 static void __fw_devlink_link_to_suppliers(struct device *dev,
2032 					   struct fwnode_handle *fwnode)
2033 {
2034 	bool own_link = (dev->fwnode == fwnode);
2035 	struct fwnode_link *link, *tmp;
2036 	struct fwnode_handle *child = NULL;
2037 	u32 dl_flags;
2038 
2039 	if (own_link)
2040 		dl_flags = fw_devlink_get_flags();
2041 	else
2042 		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2043 
2044 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2045 		int ret;
2046 		struct device *sup_dev;
2047 		struct fwnode_handle *sup = link->supplier;
2048 
2049 		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
2050 		if (!own_link || ret == -EAGAIN)
2051 			continue;
2052 
2053 		__fwnode_link_del(link);
2054 
2055 		/* If no device link was created, nothing more to do. */
2056 		if (ret)
2057 			continue;
2058 
2059 		/*
2060 		 * If a device link was successfully created to a supplier, we
2061 		 * now need to try and link the supplier to all its suppliers.
2062 		 *
2063 		 * This is needed to detect and delete false dependencies in
2064 		 * fwnode links that haven't been converted to a device link
2065 		 * yet. See comments in fw_devlink_create_devlink() for more
2066 		 * details on the false dependency.
2067 		 *
2068 		 * Without deleting these false dependencies, some devices will
2069 		 * never probe because they'll keep waiting for their false
2070 		 * dependency fwnode links to be converted to device links.
2071 		 */
2072 		sup_dev = get_dev_from_fwnode(sup);
2073 		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
2074 		put_device(sup_dev);
2075 	}
2076 
2077 	/*
2078 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2079 	 * all the descendants. This proxy link step is needed to handle the
2080 	 * case where the supplier is added before the consumer's parent device
2081 	 * (@dev).
2082 	 */
2083 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2084 		__fw_devlink_link_to_suppliers(dev, child);
2085 }
2086 
2087 static void fw_devlink_link_device(struct device *dev)
2088 {
2089 	struct fwnode_handle *fwnode = dev->fwnode;
2090 
2091 	if (!fw_devlink_flags)
2092 		return;
2093 
2094 	fw_devlink_parse_fwtree(fwnode);
2095 
2096 	mutex_lock(&fwnode_link_lock);
2097 	__fw_devlink_link_to_consumers(dev);
2098 	__fw_devlink_link_to_suppliers(dev, fwnode);
2099 	mutex_unlock(&fwnode_link_lock);
2100 }
2101 
2102 /* Device links support end. */
2103 
2104 int (*platform_notify)(struct device *dev) = NULL;
2105 int (*platform_notify_remove)(struct device *dev) = NULL;
2106 static struct kobject *dev_kobj;
2107 struct kobject *sysfs_dev_char_kobj;
2108 struct kobject *sysfs_dev_block_kobj;
2109 
2110 static DEFINE_MUTEX(device_hotplug_lock);
2111 
2112 void lock_device_hotplug(void)
2113 {
2114 	mutex_lock(&device_hotplug_lock);
2115 }
2116 
2117 void unlock_device_hotplug(void)
2118 {
2119 	mutex_unlock(&device_hotplug_lock);
2120 }
2121 
2122 int lock_device_hotplug_sysfs(void)
2123 {
2124 	if (mutex_trylock(&device_hotplug_lock))
2125 		return 0;
2126 
2127 	/* Avoid busy looping (5 ms of sleep should do). */
2128 	msleep(5);
2129 	return restart_syscall();
2130 }
2131 
2132 #ifdef CONFIG_BLOCK
2133 static inline int device_is_not_partition(struct device *dev)
2134 {
2135 	return !(dev->type == &part_type);
2136 }
2137 #else
2138 static inline int device_is_not_partition(struct device *dev)
2139 {
2140 	return 1;
2141 }
2142 #endif
2143 
2144 static void device_platform_notify(struct device *dev)
2145 {
2146 	acpi_device_notify(dev);
2147 
2148 	software_node_notify(dev);
2149 
2150 	if (platform_notify)
2151 		platform_notify(dev);
2152 }
2153 
2154 static void device_platform_notify_remove(struct device *dev)
2155 {
2156 	acpi_device_notify_remove(dev);
2157 
2158 	software_node_notify_remove(dev);
2159 
2160 	if (platform_notify_remove)
2161 		platform_notify_remove(dev);
2162 }
2163 
2164 /**
2165  * dev_driver_string - Return a device's driver name, if at all possible
2166  * @dev: struct device to get the name of
2167  *
2168  * Will return the device's driver's name if it is bound to a device.  If
2169  * the device is not bound to a driver, it will return the name of the bus
2170  * it is attached to.  If it is not attached to a bus either, an empty
2171  * string will be returned.
2172  */
2173 const char *dev_driver_string(const struct device *dev)
2174 {
2175 	struct device_driver *drv;
2176 
2177 	/* dev->driver can change to NULL underneath us because of unbinding,
2178 	 * so be careful about accessing it.  dev->bus and dev->class should
2179 	 * never change once they are set, so they don't need special care.
2180 	 */
2181 	drv = READ_ONCE(dev->driver);
2182 	return drv ? drv->name : dev_bus_name(dev);
2183 }
2184 EXPORT_SYMBOL(dev_driver_string);
2185 
2186 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2187 
2188 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2189 			     char *buf)
2190 {
2191 	struct device_attribute *dev_attr = to_dev_attr(attr);
2192 	struct device *dev = kobj_to_dev(kobj);
2193 	ssize_t ret = -EIO;
2194 
2195 	if (dev_attr->show)
2196 		ret = dev_attr->show(dev, dev_attr, buf);
2197 	if (ret >= (ssize_t)PAGE_SIZE) {
2198 		printk("dev_attr_show: %pS returned bad count\n",
2199 				dev_attr->show);
2200 	}
2201 	return ret;
2202 }
2203 
2204 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2205 			      const char *buf, size_t count)
2206 {
2207 	struct device_attribute *dev_attr = to_dev_attr(attr);
2208 	struct device *dev = kobj_to_dev(kobj);
2209 	ssize_t ret = -EIO;
2210 
2211 	if (dev_attr->store)
2212 		ret = dev_attr->store(dev, dev_attr, buf, count);
2213 	return ret;
2214 }
2215 
2216 static const struct sysfs_ops dev_sysfs_ops = {
2217 	.show	= dev_attr_show,
2218 	.store	= dev_attr_store,
2219 };
2220 
2221 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2222 
2223 ssize_t device_store_ulong(struct device *dev,
2224 			   struct device_attribute *attr,
2225 			   const char *buf, size_t size)
2226 {
2227 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2228 	int ret;
2229 	unsigned long new;
2230 
2231 	ret = kstrtoul(buf, 0, &new);
2232 	if (ret)
2233 		return ret;
2234 	*(unsigned long *)(ea->var) = new;
2235 	/* Always return full write size even if we didn't consume all */
2236 	return size;
2237 }
2238 EXPORT_SYMBOL_GPL(device_store_ulong);
2239 
2240 ssize_t device_show_ulong(struct device *dev,
2241 			  struct device_attribute *attr,
2242 			  char *buf)
2243 {
2244 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2245 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2246 }
2247 EXPORT_SYMBOL_GPL(device_show_ulong);
2248 
2249 ssize_t device_store_int(struct device *dev,
2250 			 struct device_attribute *attr,
2251 			 const char *buf, size_t size)
2252 {
2253 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2254 	int ret;
2255 	long new;
2256 
2257 	ret = kstrtol(buf, 0, &new);
2258 	if (ret)
2259 		return ret;
2260 
2261 	if (new > INT_MAX || new < INT_MIN)
2262 		return -EINVAL;
2263 	*(int *)(ea->var) = new;
2264 	/* Always return full write size even if we didn't consume all */
2265 	return size;
2266 }
2267 EXPORT_SYMBOL_GPL(device_store_int);
2268 
2269 ssize_t device_show_int(struct device *dev,
2270 			struct device_attribute *attr,
2271 			char *buf)
2272 {
2273 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2274 
2275 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2276 }
2277 EXPORT_SYMBOL_GPL(device_show_int);
2278 
2279 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2280 			  const char *buf, size_t size)
2281 {
2282 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2283 
2284 	if (kstrtobool(buf, ea->var) < 0)
2285 		return -EINVAL;
2286 
2287 	return size;
2288 }
2289 EXPORT_SYMBOL_GPL(device_store_bool);
2290 
2291 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2292 			 char *buf)
2293 {
2294 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2295 
2296 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2297 }
2298 EXPORT_SYMBOL_GPL(device_show_bool);
2299 
2300 /**
2301  * device_release - free device structure.
2302  * @kobj: device's kobject.
2303  *
2304  * This is called once the reference count for the object
2305  * reaches 0. We forward the call to the device's release
2306  * method, which should handle actually freeing the structure.
2307  */
2308 static void device_release(struct kobject *kobj)
2309 {
2310 	struct device *dev = kobj_to_dev(kobj);
2311 	struct device_private *p = dev->p;
2312 
2313 	/*
2314 	 * Some platform devices are driven without driver attached
2315 	 * and managed resources may have been acquired.  Make sure
2316 	 * all resources are released.
2317 	 *
2318 	 * Drivers still can add resources into device after device
2319 	 * is deleted but alive, so release devres here to avoid
2320 	 * possible memory leak.
2321 	 */
2322 	devres_release_all(dev);
2323 
2324 	kfree(dev->dma_range_map);
2325 
2326 	if (dev->release)
2327 		dev->release(dev);
2328 	else if (dev->type && dev->type->release)
2329 		dev->type->release(dev);
2330 	else if (dev->class && dev->class->dev_release)
2331 		dev->class->dev_release(dev);
2332 	else
2333 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2334 			dev_name(dev));
2335 	kfree(p);
2336 }
2337 
2338 static const void *device_namespace(const struct kobject *kobj)
2339 {
2340 	const struct device *dev = kobj_to_dev(kobj);
2341 	const void *ns = NULL;
2342 
2343 	if (dev->class && dev->class->ns_type)
2344 		ns = dev->class->namespace(dev);
2345 
2346 	return ns;
2347 }
2348 
2349 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2350 {
2351 	const struct device *dev = kobj_to_dev(kobj);
2352 
2353 	if (dev->class && dev->class->get_ownership)
2354 		dev->class->get_ownership(dev, uid, gid);
2355 }
2356 
2357 static struct kobj_type device_ktype = {
2358 	.release	= device_release,
2359 	.sysfs_ops	= &dev_sysfs_ops,
2360 	.namespace	= device_namespace,
2361 	.get_ownership	= device_get_ownership,
2362 };
2363 
2364 
2365 static int dev_uevent_filter(const struct kobject *kobj)
2366 {
2367 	const struct kobj_type *ktype = get_ktype(kobj);
2368 
2369 	if (ktype == &device_ktype) {
2370 		const struct device *dev = kobj_to_dev(kobj);
2371 		if (dev->bus)
2372 			return 1;
2373 		if (dev->class)
2374 			return 1;
2375 	}
2376 	return 0;
2377 }
2378 
2379 static const char *dev_uevent_name(const struct kobject *kobj)
2380 {
2381 	const struct device *dev = kobj_to_dev(kobj);
2382 
2383 	if (dev->bus)
2384 		return dev->bus->name;
2385 	if (dev->class)
2386 		return dev->class->name;
2387 	return NULL;
2388 }
2389 
2390 static int dev_uevent(struct kobject *kobj, struct kobj_uevent_env *env)
2391 {
2392 	struct device *dev = kobj_to_dev(kobj);
2393 	int retval = 0;
2394 
2395 	/* add device node properties if present */
2396 	if (MAJOR(dev->devt)) {
2397 		const char *tmp;
2398 		const char *name;
2399 		umode_t mode = 0;
2400 		kuid_t uid = GLOBAL_ROOT_UID;
2401 		kgid_t gid = GLOBAL_ROOT_GID;
2402 
2403 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2404 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2405 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2406 		if (name) {
2407 			add_uevent_var(env, "DEVNAME=%s", name);
2408 			if (mode)
2409 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2410 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2411 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2412 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2413 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2414 			kfree(tmp);
2415 		}
2416 	}
2417 
2418 	if (dev->type && dev->type->name)
2419 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2420 
2421 	if (dev->driver)
2422 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2423 
2424 	/* Add common DT information about the device */
2425 	of_device_uevent(dev, env);
2426 
2427 	/* have the bus specific function add its stuff */
2428 	if (dev->bus && dev->bus->uevent) {
2429 		retval = dev->bus->uevent(dev, env);
2430 		if (retval)
2431 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2432 				 dev_name(dev), __func__, retval);
2433 	}
2434 
2435 	/* have the class specific function add its stuff */
2436 	if (dev->class && dev->class->dev_uevent) {
2437 		retval = dev->class->dev_uevent(dev, env);
2438 		if (retval)
2439 			pr_debug("device: '%s': %s: class uevent() "
2440 				 "returned %d\n", dev_name(dev),
2441 				 __func__, retval);
2442 	}
2443 
2444 	/* have the device type specific function add its stuff */
2445 	if (dev->type && dev->type->uevent) {
2446 		retval = dev->type->uevent(dev, env);
2447 		if (retval)
2448 			pr_debug("device: '%s': %s: dev_type uevent() "
2449 				 "returned %d\n", dev_name(dev),
2450 				 __func__, retval);
2451 	}
2452 
2453 	return retval;
2454 }
2455 
2456 static const struct kset_uevent_ops device_uevent_ops = {
2457 	.filter =	dev_uevent_filter,
2458 	.name =		dev_uevent_name,
2459 	.uevent =	dev_uevent,
2460 };
2461 
2462 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2463 			   char *buf)
2464 {
2465 	struct kobject *top_kobj;
2466 	struct kset *kset;
2467 	struct kobj_uevent_env *env = NULL;
2468 	int i;
2469 	int len = 0;
2470 	int retval;
2471 
2472 	/* search the kset, the device belongs to */
2473 	top_kobj = &dev->kobj;
2474 	while (!top_kobj->kset && top_kobj->parent)
2475 		top_kobj = top_kobj->parent;
2476 	if (!top_kobj->kset)
2477 		goto out;
2478 
2479 	kset = top_kobj->kset;
2480 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2481 		goto out;
2482 
2483 	/* respect filter */
2484 	if (kset->uevent_ops && kset->uevent_ops->filter)
2485 		if (!kset->uevent_ops->filter(&dev->kobj))
2486 			goto out;
2487 
2488 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2489 	if (!env)
2490 		return -ENOMEM;
2491 
2492 	/* let the kset specific function add its keys */
2493 	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2494 	if (retval)
2495 		goto out;
2496 
2497 	/* copy keys to file */
2498 	for (i = 0; i < env->envp_idx; i++)
2499 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2500 out:
2501 	kfree(env);
2502 	return len;
2503 }
2504 
2505 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2506 			    const char *buf, size_t count)
2507 {
2508 	int rc;
2509 
2510 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2511 
2512 	if (rc) {
2513 		dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2514 		return rc;
2515 	}
2516 
2517 	return count;
2518 }
2519 static DEVICE_ATTR_RW(uevent);
2520 
2521 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2522 			   char *buf)
2523 {
2524 	bool val;
2525 
2526 	device_lock(dev);
2527 	val = !dev->offline;
2528 	device_unlock(dev);
2529 	return sysfs_emit(buf, "%u\n", val);
2530 }
2531 
2532 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2533 			    const char *buf, size_t count)
2534 {
2535 	bool val;
2536 	int ret;
2537 
2538 	ret = kstrtobool(buf, &val);
2539 	if (ret < 0)
2540 		return ret;
2541 
2542 	ret = lock_device_hotplug_sysfs();
2543 	if (ret)
2544 		return ret;
2545 
2546 	ret = val ? device_online(dev) : device_offline(dev);
2547 	unlock_device_hotplug();
2548 	return ret < 0 ? ret : count;
2549 }
2550 static DEVICE_ATTR_RW(online);
2551 
2552 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2553 			      char *buf)
2554 {
2555 	const char *loc;
2556 
2557 	switch (dev->removable) {
2558 	case DEVICE_REMOVABLE:
2559 		loc = "removable";
2560 		break;
2561 	case DEVICE_FIXED:
2562 		loc = "fixed";
2563 		break;
2564 	default:
2565 		loc = "unknown";
2566 	}
2567 	return sysfs_emit(buf, "%s\n", loc);
2568 }
2569 static DEVICE_ATTR_RO(removable);
2570 
2571 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2572 {
2573 	return sysfs_create_groups(&dev->kobj, groups);
2574 }
2575 EXPORT_SYMBOL_GPL(device_add_groups);
2576 
2577 void device_remove_groups(struct device *dev,
2578 			  const struct attribute_group **groups)
2579 {
2580 	sysfs_remove_groups(&dev->kobj, groups);
2581 }
2582 EXPORT_SYMBOL_GPL(device_remove_groups);
2583 
2584 union device_attr_group_devres {
2585 	const struct attribute_group *group;
2586 	const struct attribute_group **groups;
2587 };
2588 
2589 static void devm_attr_group_remove(struct device *dev, void *res)
2590 {
2591 	union device_attr_group_devres *devres = res;
2592 	const struct attribute_group *group = devres->group;
2593 
2594 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2595 	sysfs_remove_group(&dev->kobj, group);
2596 }
2597 
2598 static void devm_attr_groups_remove(struct device *dev, void *res)
2599 {
2600 	union device_attr_group_devres *devres = res;
2601 	const struct attribute_group **groups = devres->groups;
2602 
2603 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2604 	sysfs_remove_groups(&dev->kobj, groups);
2605 }
2606 
2607 /**
2608  * devm_device_add_group - given a device, create a managed attribute group
2609  * @dev:	The device to create the group for
2610  * @grp:	The attribute group to create
2611  *
2612  * This function creates a group for the first time.  It will explicitly
2613  * warn and error if any of the attribute files being created already exist.
2614  *
2615  * Returns 0 on success or error code on failure.
2616  */
2617 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2618 {
2619 	union device_attr_group_devres *devres;
2620 	int error;
2621 
2622 	devres = devres_alloc(devm_attr_group_remove,
2623 			      sizeof(*devres), GFP_KERNEL);
2624 	if (!devres)
2625 		return -ENOMEM;
2626 
2627 	error = sysfs_create_group(&dev->kobj, grp);
2628 	if (error) {
2629 		devres_free(devres);
2630 		return error;
2631 	}
2632 
2633 	devres->group = grp;
2634 	devres_add(dev, devres);
2635 	return 0;
2636 }
2637 EXPORT_SYMBOL_GPL(devm_device_add_group);
2638 
2639 /**
2640  * devm_device_add_groups - create a bunch of managed attribute groups
2641  * @dev:	The device to create the group for
2642  * @groups:	The attribute groups to create, NULL terminated
2643  *
2644  * This function creates a bunch of managed attribute groups.  If an error
2645  * occurs when creating a group, all previously created groups will be
2646  * removed, unwinding everything back to the original state when this
2647  * function was called.  It will explicitly warn and error if any of the
2648  * attribute files being created already exist.
2649  *
2650  * Returns 0 on success or error code from sysfs_create_group on failure.
2651  */
2652 int devm_device_add_groups(struct device *dev,
2653 			   const struct attribute_group **groups)
2654 {
2655 	union device_attr_group_devres *devres;
2656 	int error;
2657 
2658 	devres = devres_alloc(devm_attr_groups_remove,
2659 			      sizeof(*devres), GFP_KERNEL);
2660 	if (!devres)
2661 		return -ENOMEM;
2662 
2663 	error = sysfs_create_groups(&dev->kobj, groups);
2664 	if (error) {
2665 		devres_free(devres);
2666 		return error;
2667 	}
2668 
2669 	devres->groups = groups;
2670 	devres_add(dev, devres);
2671 	return 0;
2672 }
2673 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2674 
2675 static int device_add_attrs(struct device *dev)
2676 {
2677 	struct class *class = dev->class;
2678 	const struct device_type *type = dev->type;
2679 	int error;
2680 
2681 	if (class) {
2682 		error = device_add_groups(dev, class->dev_groups);
2683 		if (error)
2684 			return error;
2685 	}
2686 
2687 	if (type) {
2688 		error = device_add_groups(dev, type->groups);
2689 		if (error)
2690 			goto err_remove_class_groups;
2691 	}
2692 
2693 	error = device_add_groups(dev, dev->groups);
2694 	if (error)
2695 		goto err_remove_type_groups;
2696 
2697 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2698 		error = device_create_file(dev, &dev_attr_online);
2699 		if (error)
2700 			goto err_remove_dev_groups;
2701 	}
2702 
2703 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2704 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2705 		if (error)
2706 			goto err_remove_dev_online;
2707 	}
2708 
2709 	if (dev_removable_is_valid(dev)) {
2710 		error = device_create_file(dev, &dev_attr_removable);
2711 		if (error)
2712 			goto err_remove_dev_waiting_for_supplier;
2713 	}
2714 
2715 	if (dev_add_physical_location(dev)) {
2716 		error = device_add_group(dev,
2717 			&dev_attr_physical_location_group);
2718 		if (error)
2719 			goto err_remove_dev_removable;
2720 	}
2721 
2722 	return 0;
2723 
2724  err_remove_dev_removable:
2725 	device_remove_file(dev, &dev_attr_removable);
2726  err_remove_dev_waiting_for_supplier:
2727 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2728  err_remove_dev_online:
2729 	device_remove_file(dev, &dev_attr_online);
2730  err_remove_dev_groups:
2731 	device_remove_groups(dev, dev->groups);
2732  err_remove_type_groups:
2733 	if (type)
2734 		device_remove_groups(dev, type->groups);
2735  err_remove_class_groups:
2736 	if (class)
2737 		device_remove_groups(dev, class->dev_groups);
2738 
2739 	return error;
2740 }
2741 
2742 static void device_remove_attrs(struct device *dev)
2743 {
2744 	struct class *class = dev->class;
2745 	const struct device_type *type = dev->type;
2746 
2747 	if (dev->physical_location) {
2748 		device_remove_group(dev, &dev_attr_physical_location_group);
2749 		kfree(dev->physical_location);
2750 	}
2751 
2752 	device_remove_file(dev, &dev_attr_removable);
2753 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2754 	device_remove_file(dev, &dev_attr_online);
2755 	device_remove_groups(dev, dev->groups);
2756 
2757 	if (type)
2758 		device_remove_groups(dev, type->groups);
2759 
2760 	if (class)
2761 		device_remove_groups(dev, class->dev_groups);
2762 }
2763 
2764 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2765 			char *buf)
2766 {
2767 	return print_dev_t(buf, dev->devt);
2768 }
2769 static DEVICE_ATTR_RO(dev);
2770 
2771 /* /sys/devices/ */
2772 struct kset *devices_kset;
2773 
2774 /**
2775  * devices_kset_move_before - Move device in the devices_kset's list.
2776  * @deva: Device to move.
2777  * @devb: Device @deva should come before.
2778  */
2779 static void devices_kset_move_before(struct device *deva, struct device *devb)
2780 {
2781 	if (!devices_kset)
2782 		return;
2783 	pr_debug("devices_kset: Moving %s before %s\n",
2784 		 dev_name(deva), dev_name(devb));
2785 	spin_lock(&devices_kset->list_lock);
2786 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2787 	spin_unlock(&devices_kset->list_lock);
2788 }
2789 
2790 /**
2791  * devices_kset_move_after - Move device in the devices_kset's list.
2792  * @deva: Device to move
2793  * @devb: Device @deva should come after.
2794  */
2795 static void devices_kset_move_after(struct device *deva, struct device *devb)
2796 {
2797 	if (!devices_kset)
2798 		return;
2799 	pr_debug("devices_kset: Moving %s after %s\n",
2800 		 dev_name(deva), dev_name(devb));
2801 	spin_lock(&devices_kset->list_lock);
2802 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2803 	spin_unlock(&devices_kset->list_lock);
2804 }
2805 
2806 /**
2807  * devices_kset_move_last - move the device to the end of devices_kset's list.
2808  * @dev: device to move
2809  */
2810 void devices_kset_move_last(struct device *dev)
2811 {
2812 	if (!devices_kset)
2813 		return;
2814 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2815 	spin_lock(&devices_kset->list_lock);
2816 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2817 	spin_unlock(&devices_kset->list_lock);
2818 }
2819 
2820 /**
2821  * device_create_file - create sysfs attribute file for device.
2822  * @dev: device.
2823  * @attr: device attribute descriptor.
2824  */
2825 int device_create_file(struct device *dev,
2826 		       const struct device_attribute *attr)
2827 {
2828 	int error = 0;
2829 
2830 	if (dev) {
2831 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2832 			"Attribute %s: write permission without 'store'\n",
2833 			attr->attr.name);
2834 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2835 			"Attribute %s: read permission without 'show'\n",
2836 			attr->attr.name);
2837 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2838 	}
2839 
2840 	return error;
2841 }
2842 EXPORT_SYMBOL_GPL(device_create_file);
2843 
2844 /**
2845  * device_remove_file - remove sysfs attribute file.
2846  * @dev: device.
2847  * @attr: device attribute descriptor.
2848  */
2849 void device_remove_file(struct device *dev,
2850 			const struct device_attribute *attr)
2851 {
2852 	if (dev)
2853 		sysfs_remove_file(&dev->kobj, &attr->attr);
2854 }
2855 EXPORT_SYMBOL_GPL(device_remove_file);
2856 
2857 /**
2858  * device_remove_file_self - remove sysfs attribute file from its own method.
2859  * @dev: device.
2860  * @attr: device attribute descriptor.
2861  *
2862  * See kernfs_remove_self() for details.
2863  */
2864 bool device_remove_file_self(struct device *dev,
2865 			     const struct device_attribute *attr)
2866 {
2867 	if (dev)
2868 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2869 	else
2870 		return false;
2871 }
2872 EXPORT_SYMBOL_GPL(device_remove_file_self);
2873 
2874 /**
2875  * device_create_bin_file - create sysfs binary attribute file for device.
2876  * @dev: device.
2877  * @attr: device binary attribute descriptor.
2878  */
2879 int device_create_bin_file(struct device *dev,
2880 			   const struct bin_attribute *attr)
2881 {
2882 	int error = -EINVAL;
2883 	if (dev)
2884 		error = sysfs_create_bin_file(&dev->kobj, attr);
2885 	return error;
2886 }
2887 EXPORT_SYMBOL_GPL(device_create_bin_file);
2888 
2889 /**
2890  * device_remove_bin_file - remove sysfs binary attribute file
2891  * @dev: device.
2892  * @attr: device binary attribute descriptor.
2893  */
2894 void device_remove_bin_file(struct device *dev,
2895 			    const struct bin_attribute *attr)
2896 {
2897 	if (dev)
2898 		sysfs_remove_bin_file(&dev->kobj, attr);
2899 }
2900 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2901 
2902 static void klist_children_get(struct klist_node *n)
2903 {
2904 	struct device_private *p = to_device_private_parent(n);
2905 	struct device *dev = p->device;
2906 
2907 	get_device(dev);
2908 }
2909 
2910 static void klist_children_put(struct klist_node *n)
2911 {
2912 	struct device_private *p = to_device_private_parent(n);
2913 	struct device *dev = p->device;
2914 
2915 	put_device(dev);
2916 }
2917 
2918 /**
2919  * device_initialize - init device structure.
2920  * @dev: device.
2921  *
2922  * This prepares the device for use by other layers by initializing
2923  * its fields.
2924  * It is the first half of device_register(), if called by
2925  * that function, though it can also be called separately, so one
2926  * may use @dev's fields. In particular, get_device()/put_device()
2927  * may be used for reference counting of @dev after calling this
2928  * function.
2929  *
2930  * All fields in @dev must be initialized by the caller to 0, except
2931  * for those explicitly set to some other value.  The simplest
2932  * approach is to use kzalloc() to allocate the structure containing
2933  * @dev.
2934  *
2935  * NOTE: Use put_device() to give up your reference instead of freeing
2936  * @dev directly once you have called this function.
2937  */
2938 void device_initialize(struct device *dev)
2939 {
2940 	dev->kobj.kset = devices_kset;
2941 	kobject_init(&dev->kobj, &device_ktype);
2942 	INIT_LIST_HEAD(&dev->dma_pools);
2943 	mutex_init(&dev->mutex);
2944 	lockdep_set_novalidate_class(&dev->mutex);
2945 	spin_lock_init(&dev->devres_lock);
2946 	INIT_LIST_HEAD(&dev->devres_head);
2947 	device_pm_init(dev);
2948 	set_dev_node(dev, NUMA_NO_NODE);
2949 	INIT_LIST_HEAD(&dev->links.consumers);
2950 	INIT_LIST_HEAD(&dev->links.suppliers);
2951 	INIT_LIST_HEAD(&dev->links.defer_sync);
2952 	dev->links.status = DL_DEV_NO_DRIVER;
2953 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2954     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2955     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2956 	dev->dma_coherent = dma_default_coherent;
2957 #endif
2958 #ifdef CONFIG_SWIOTLB
2959 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
2960 #endif
2961 }
2962 EXPORT_SYMBOL_GPL(device_initialize);
2963 
2964 struct kobject *virtual_device_parent(struct device *dev)
2965 {
2966 	static struct kobject *virtual_dir = NULL;
2967 
2968 	if (!virtual_dir)
2969 		virtual_dir = kobject_create_and_add("virtual",
2970 						     &devices_kset->kobj);
2971 
2972 	return virtual_dir;
2973 }
2974 
2975 struct class_dir {
2976 	struct kobject kobj;
2977 	struct class *class;
2978 };
2979 
2980 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2981 
2982 static void class_dir_release(struct kobject *kobj)
2983 {
2984 	struct class_dir *dir = to_class_dir(kobj);
2985 	kfree(dir);
2986 }
2987 
2988 static const
2989 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
2990 {
2991 	const struct class_dir *dir = to_class_dir(kobj);
2992 	return dir->class->ns_type;
2993 }
2994 
2995 static struct kobj_type class_dir_ktype = {
2996 	.release	= class_dir_release,
2997 	.sysfs_ops	= &kobj_sysfs_ops,
2998 	.child_ns_type	= class_dir_child_ns_type
2999 };
3000 
3001 static struct kobject *
3002 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
3003 {
3004 	struct class_dir *dir;
3005 	int retval;
3006 
3007 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3008 	if (!dir)
3009 		return ERR_PTR(-ENOMEM);
3010 
3011 	dir->class = class;
3012 	kobject_init(&dir->kobj, &class_dir_ktype);
3013 
3014 	dir->kobj.kset = &class->p->glue_dirs;
3015 
3016 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
3017 	if (retval < 0) {
3018 		kobject_put(&dir->kobj);
3019 		return ERR_PTR(retval);
3020 	}
3021 	return &dir->kobj;
3022 }
3023 
3024 static DEFINE_MUTEX(gdp_mutex);
3025 
3026 static struct kobject *get_device_parent(struct device *dev,
3027 					 struct device *parent)
3028 {
3029 	if (dev->class) {
3030 		struct kobject *kobj = NULL;
3031 		struct kobject *parent_kobj;
3032 		struct kobject *k;
3033 
3034 #ifdef CONFIG_BLOCK
3035 		/* block disks show up in /sys/block */
3036 		if (sysfs_deprecated && dev->class == &block_class) {
3037 			if (parent && parent->class == &block_class)
3038 				return &parent->kobj;
3039 			return &block_class.p->subsys.kobj;
3040 		}
3041 #endif
3042 
3043 		/*
3044 		 * If we have no parent, we live in "virtual".
3045 		 * Class-devices with a non class-device as parent, live
3046 		 * in a "glue" directory to prevent namespace collisions.
3047 		 */
3048 		if (parent == NULL)
3049 			parent_kobj = virtual_device_parent(dev);
3050 		else if (parent->class && !dev->class->ns_type)
3051 			return &parent->kobj;
3052 		else
3053 			parent_kobj = &parent->kobj;
3054 
3055 		mutex_lock(&gdp_mutex);
3056 
3057 		/* find our class-directory at the parent and reference it */
3058 		spin_lock(&dev->class->p->glue_dirs.list_lock);
3059 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
3060 			if (k->parent == parent_kobj) {
3061 				kobj = kobject_get(k);
3062 				break;
3063 			}
3064 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
3065 		if (kobj) {
3066 			mutex_unlock(&gdp_mutex);
3067 			return kobj;
3068 		}
3069 
3070 		/* or create a new class-directory at the parent device */
3071 		k = class_dir_create_and_add(dev->class, parent_kobj);
3072 		/* do not emit an uevent for this simple "glue" directory */
3073 		mutex_unlock(&gdp_mutex);
3074 		return k;
3075 	}
3076 
3077 	/* subsystems can specify a default root directory for their devices */
3078 	if (!parent && dev->bus && dev->bus->dev_root)
3079 		return &dev->bus->dev_root->kobj;
3080 
3081 	if (parent)
3082 		return &parent->kobj;
3083 	return NULL;
3084 }
3085 
3086 static inline bool live_in_glue_dir(struct kobject *kobj,
3087 				    struct device *dev)
3088 {
3089 	if (!kobj || !dev->class ||
3090 	    kobj->kset != &dev->class->p->glue_dirs)
3091 		return false;
3092 	return true;
3093 }
3094 
3095 static inline struct kobject *get_glue_dir(struct device *dev)
3096 {
3097 	return dev->kobj.parent;
3098 }
3099 
3100 /**
3101  * kobject_has_children - Returns whether a kobject has children.
3102  * @kobj: the object to test
3103  *
3104  * This will return whether a kobject has other kobjects as children.
3105  *
3106  * It does NOT account for the presence of attribute files, only sub
3107  * directories. It also assumes there is no concurrent addition or
3108  * removal of such children, and thus relies on external locking.
3109  */
3110 static inline bool kobject_has_children(struct kobject *kobj)
3111 {
3112 	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3113 
3114 	return kobj->sd && kobj->sd->dir.subdirs;
3115 }
3116 
3117 /*
3118  * make sure cleaning up dir as the last step, we need to make
3119  * sure .release handler of kobject is run with holding the
3120  * global lock
3121  */
3122 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3123 {
3124 	unsigned int ref;
3125 
3126 	/* see if we live in a "glue" directory */
3127 	if (!live_in_glue_dir(glue_dir, dev))
3128 		return;
3129 
3130 	mutex_lock(&gdp_mutex);
3131 	/**
3132 	 * There is a race condition between removing glue directory
3133 	 * and adding a new device under the glue directory.
3134 	 *
3135 	 * CPU1:                                         CPU2:
3136 	 *
3137 	 * device_add()
3138 	 *   get_device_parent()
3139 	 *     class_dir_create_and_add()
3140 	 *       kobject_add_internal()
3141 	 *         create_dir()    // create glue_dir
3142 	 *
3143 	 *                                               device_add()
3144 	 *                                                 get_device_parent()
3145 	 *                                                   kobject_get() // get glue_dir
3146 	 *
3147 	 * device_del()
3148 	 *   cleanup_glue_dir()
3149 	 *     kobject_del(glue_dir)
3150 	 *
3151 	 *                                               kobject_add()
3152 	 *                                                 kobject_add_internal()
3153 	 *                                                   create_dir() // in glue_dir
3154 	 *                                                     sysfs_create_dir_ns()
3155 	 *                                                       kernfs_create_dir_ns(sd)
3156 	 *
3157 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3158 	 *       sysfs_put()        // free glue_dir->sd
3159 	 *
3160 	 *                                                         // sd is freed
3161 	 *                                                         kernfs_new_node(sd)
3162 	 *                                                           kernfs_get(glue_dir)
3163 	 *                                                           kernfs_add_one()
3164 	 *                                                           kernfs_put()
3165 	 *
3166 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3167 	 * a new device under glue dir, the glue_dir kobject reference count
3168 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3169 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3170 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3171 	 *
3172 	 * Then the CPU2 will see a stale "empty" but still potentially used
3173 	 * glue dir around in kernfs_new_node().
3174 	 *
3175 	 * In order to avoid this happening, we also should make sure that
3176 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3177 	 * for glue_dir kobj is 1.
3178 	 */
3179 	ref = kref_read(&glue_dir->kref);
3180 	if (!kobject_has_children(glue_dir) && !--ref)
3181 		kobject_del(glue_dir);
3182 	kobject_put(glue_dir);
3183 	mutex_unlock(&gdp_mutex);
3184 }
3185 
3186 static int device_add_class_symlinks(struct device *dev)
3187 {
3188 	struct device_node *of_node = dev_of_node(dev);
3189 	int error;
3190 
3191 	if (of_node) {
3192 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3193 		if (error)
3194 			dev_warn(dev, "Error %d creating of_node link\n",error);
3195 		/* An error here doesn't warrant bringing down the device */
3196 	}
3197 
3198 	if (!dev->class)
3199 		return 0;
3200 
3201 	error = sysfs_create_link(&dev->kobj,
3202 				  &dev->class->p->subsys.kobj,
3203 				  "subsystem");
3204 	if (error)
3205 		goto out_devnode;
3206 
3207 	if (dev->parent && device_is_not_partition(dev)) {
3208 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3209 					  "device");
3210 		if (error)
3211 			goto out_subsys;
3212 	}
3213 
3214 #ifdef CONFIG_BLOCK
3215 	/* /sys/block has directories and does not need symlinks */
3216 	if (sysfs_deprecated && dev->class == &block_class)
3217 		return 0;
3218 #endif
3219 
3220 	/* link in the class directory pointing to the device */
3221 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3222 				  &dev->kobj, dev_name(dev));
3223 	if (error)
3224 		goto out_device;
3225 
3226 	return 0;
3227 
3228 out_device:
3229 	sysfs_remove_link(&dev->kobj, "device");
3230 
3231 out_subsys:
3232 	sysfs_remove_link(&dev->kobj, "subsystem");
3233 out_devnode:
3234 	sysfs_remove_link(&dev->kobj, "of_node");
3235 	return error;
3236 }
3237 
3238 static void device_remove_class_symlinks(struct device *dev)
3239 {
3240 	if (dev_of_node(dev))
3241 		sysfs_remove_link(&dev->kobj, "of_node");
3242 
3243 	if (!dev->class)
3244 		return;
3245 
3246 	if (dev->parent && device_is_not_partition(dev))
3247 		sysfs_remove_link(&dev->kobj, "device");
3248 	sysfs_remove_link(&dev->kobj, "subsystem");
3249 #ifdef CONFIG_BLOCK
3250 	if (sysfs_deprecated && dev->class == &block_class)
3251 		return;
3252 #endif
3253 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3254 }
3255 
3256 /**
3257  * dev_set_name - set a device name
3258  * @dev: device
3259  * @fmt: format string for the device's name
3260  */
3261 int dev_set_name(struct device *dev, const char *fmt, ...)
3262 {
3263 	va_list vargs;
3264 	int err;
3265 
3266 	va_start(vargs, fmt);
3267 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3268 	va_end(vargs);
3269 	return err;
3270 }
3271 EXPORT_SYMBOL_GPL(dev_set_name);
3272 
3273 /**
3274  * device_to_dev_kobj - select a /sys/dev/ directory for the device
3275  * @dev: device
3276  *
3277  * By default we select char/ for new entries.  Setting class->dev_obj
3278  * to NULL prevents an entry from being created.  class->dev_kobj must
3279  * be set (or cleared) before any devices are registered to the class
3280  * otherwise device_create_sys_dev_entry() and
3281  * device_remove_sys_dev_entry() will disagree about the presence of
3282  * the link.
3283  */
3284 static struct kobject *device_to_dev_kobj(struct device *dev)
3285 {
3286 	struct kobject *kobj;
3287 
3288 	if (dev->class)
3289 		kobj = dev->class->dev_kobj;
3290 	else
3291 		kobj = sysfs_dev_char_kobj;
3292 
3293 	return kobj;
3294 }
3295 
3296 static int device_create_sys_dev_entry(struct device *dev)
3297 {
3298 	struct kobject *kobj = device_to_dev_kobj(dev);
3299 	int error = 0;
3300 	char devt_str[15];
3301 
3302 	if (kobj) {
3303 		format_dev_t(devt_str, dev->devt);
3304 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3305 	}
3306 
3307 	return error;
3308 }
3309 
3310 static void device_remove_sys_dev_entry(struct device *dev)
3311 {
3312 	struct kobject *kobj = device_to_dev_kobj(dev);
3313 	char devt_str[15];
3314 
3315 	if (kobj) {
3316 		format_dev_t(devt_str, dev->devt);
3317 		sysfs_remove_link(kobj, devt_str);
3318 	}
3319 }
3320 
3321 static int device_private_init(struct device *dev)
3322 {
3323 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3324 	if (!dev->p)
3325 		return -ENOMEM;
3326 	dev->p->device = dev;
3327 	klist_init(&dev->p->klist_children, klist_children_get,
3328 		   klist_children_put);
3329 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3330 	return 0;
3331 }
3332 
3333 /**
3334  * device_add - add device to device hierarchy.
3335  * @dev: device.
3336  *
3337  * This is part 2 of device_register(), though may be called
3338  * separately _iff_ device_initialize() has been called separately.
3339  *
3340  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3341  * to the global and sibling lists for the device, then
3342  * adds it to the other relevant subsystems of the driver model.
3343  *
3344  * Do not call this routine or device_register() more than once for
3345  * any device structure.  The driver model core is not designed to work
3346  * with devices that get unregistered and then spring back to life.
3347  * (Among other things, it's very hard to guarantee that all references
3348  * to the previous incarnation of @dev have been dropped.)  Allocate
3349  * and register a fresh new struct device instead.
3350  *
3351  * NOTE: _Never_ directly free @dev after calling this function, even
3352  * if it returned an error! Always use put_device() to give up your
3353  * reference instead.
3354  *
3355  * Rule of thumb is: if device_add() succeeds, you should call
3356  * device_del() when you want to get rid of it. If device_add() has
3357  * *not* succeeded, use *only* put_device() to drop the reference
3358  * count.
3359  */
3360 int device_add(struct device *dev)
3361 {
3362 	struct device *parent;
3363 	struct kobject *kobj;
3364 	struct class_interface *class_intf;
3365 	int error = -EINVAL;
3366 	struct kobject *glue_dir = NULL;
3367 
3368 	dev = get_device(dev);
3369 	if (!dev)
3370 		goto done;
3371 
3372 	if (!dev->p) {
3373 		error = device_private_init(dev);
3374 		if (error)
3375 			goto done;
3376 	}
3377 
3378 	/*
3379 	 * for statically allocated devices, which should all be converted
3380 	 * some day, we need to initialize the name. We prevent reading back
3381 	 * the name, and force the use of dev_name()
3382 	 */
3383 	if (dev->init_name) {
3384 		dev_set_name(dev, "%s", dev->init_name);
3385 		dev->init_name = NULL;
3386 	}
3387 
3388 	/* subsystems can specify simple device enumeration */
3389 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3390 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3391 
3392 	if (!dev_name(dev)) {
3393 		error = -EINVAL;
3394 		goto name_error;
3395 	}
3396 
3397 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3398 
3399 	parent = get_device(dev->parent);
3400 	kobj = get_device_parent(dev, parent);
3401 	if (IS_ERR(kobj)) {
3402 		error = PTR_ERR(kobj);
3403 		goto parent_error;
3404 	}
3405 	if (kobj)
3406 		dev->kobj.parent = kobj;
3407 
3408 	/* use parent numa_node */
3409 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3410 		set_dev_node(dev, dev_to_node(parent));
3411 
3412 	/* first, register with generic layer. */
3413 	/* we require the name to be set before, and pass NULL */
3414 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3415 	if (error) {
3416 		glue_dir = get_glue_dir(dev);
3417 		goto Error;
3418 	}
3419 
3420 	/* notify platform of device entry */
3421 	device_platform_notify(dev);
3422 
3423 	error = device_create_file(dev, &dev_attr_uevent);
3424 	if (error)
3425 		goto attrError;
3426 
3427 	error = device_add_class_symlinks(dev);
3428 	if (error)
3429 		goto SymlinkError;
3430 	error = device_add_attrs(dev);
3431 	if (error)
3432 		goto AttrsError;
3433 	error = bus_add_device(dev);
3434 	if (error)
3435 		goto BusError;
3436 	error = dpm_sysfs_add(dev);
3437 	if (error)
3438 		goto DPMError;
3439 	device_pm_add(dev);
3440 
3441 	if (MAJOR(dev->devt)) {
3442 		error = device_create_file(dev, &dev_attr_dev);
3443 		if (error)
3444 			goto DevAttrError;
3445 
3446 		error = device_create_sys_dev_entry(dev);
3447 		if (error)
3448 			goto SysEntryError;
3449 
3450 		devtmpfs_create_node(dev);
3451 	}
3452 
3453 	/* Notify clients of device addition.  This call must come
3454 	 * after dpm_sysfs_add() and before kobject_uevent().
3455 	 */
3456 	if (dev->bus)
3457 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3458 					     BUS_NOTIFY_ADD_DEVICE, dev);
3459 
3460 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3461 
3462 	/*
3463 	 * Check if any of the other devices (consumers) have been waiting for
3464 	 * this device (supplier) to be added so that they can create a device
3465 	 * link to it.
3466 	 *
3467 	 * This needs to happen after device_pm_add() because device_link_add()
3468 	 * requires the supplier be registered before it's called.
3469 	 *
3470 	 * But this also needs to happen before bus_probe_device() to make sure
3471 	 * waiting consumers can link to it before the driver is bound to the
3472 	 * device and the driver sync_state callback is called for this device.
3473 	 */
3474 	if (dev->fwnode && !dev->fwnode->dev) {
3475 		dev->fwnode->dev = dev;
3476 		fw_devlink_link_device(dev);
3477 	}
3478 
3479 	bus_probe_device(dev);
3480 
3481 	/*
3482 	 * If all driver registration is done and a newly added device doesn't
3483 	 * match with any driver, don't block its consumers from probing in
3484 	 * case the consumer device is able to operate without this supplier.
3485 	 */
3486 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3487 		fw_devlink_unblock_consumers(dev);
3488 
3489 	if (parent)
3490 		klist_add_tail(&dev->p->knode_parent,
3491 			       &parent->p->klist_children);
3492 
3493 	if (dev->class) {
3494 		mutex_lock(&dev->class->p->mutex);
3495 		/* tie the class to the device */
3496 		klist_add_tail(&dev->p->knode_class,
3497 			       &dev->class->p->klist_devices);
3498 
3499 		/* notify any interfaces that the device is here */
3500 		list_for_each_entry(class_intf,
3501 				    &dev->class->p->interfaces, node)
3502 			if (class_intf->add_dev)
3503 				class_intf->add_dev(dev, class_intf);
3504 		mutex_unlock(&dev->class->p->mutex);
3505 	}
3506 done:
3507 	put_device(dev);
3508 	return error;
3509  SysEntryError:
3510 	if (MAJOR(dev->devt))
3511 		device_remove_file(dev, &dev_attr_dev);
3512  DevAttrError:
3513 	device_pm_remove(dev);
3514 	dpm_sysfs_remove(dev);
3515  DPMError:
3516 	bus_remove_device(dev);
3517  BusError:
3518 	device_remove_attrs(dev);
3519  AttrsError:
3520 	device_remove_class_symlinks(dev);
3521  SymlinkError:
3522 	device_remove_file(dev, &dev_attr_uevent);
3523  attrError:
3524 	device_platform_notify_remove(dev);
3525 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3526 	glue_dir = get_glue_dir(dev);
3527 	kobject_del(&dev->kobj);
3528  Error:
3529 	cleanup_glue_dir(dev, glue_dir);
3530 parent_error:
3531 	put_device(parent);
3532 name_error:
3533 	kfree(dev->p);
3534 	dev->p = NULL;
3535 	goto done;
3536 }
3537 EXPORT_SYMBOL_GPL(device_add);
3538 
3539 /**
3540  * device_register - register a device with the system.
3541  * @dev: pointer to the device structure
3542  *
3543  * This happens in two clean steps - initialize the device
3544  * and add it to the system. The two steps can be called
3545  * separately, but this is the easiest and most common.
3546  * I.e. you should only call the two helpers separately if
3547  * have a clearly defined need to use and refcount the device
3548  * before it is added to the hierarchy.
3549  *
3550  * For more information, see the kerneldoc for device_initialize()
3551  * and device_add().
3552  *
3553  * NOTE: _Never_ directly free @dev after calling this function, even
3554  * if it returned an error! Always use put_device() to give up the
3555  * reference initialized in this function instead.
3556  */
3557 int device_register(struct device *dev)
3558 {
3559 	device_initialize(dev);
3560 	return device_add(dev);
3561 }
3562 EXPORT_SYMBOL_GPL(device_register);
3563 
3564 /**
3565  * get_device - increment reference count for device.
3566  * @dev: device.
3567  *
3568  * This simply forwards the call to kobject_get(), though
3569  * we do take care to provide for the case that we get a NULL
3570  * pointer passed in.
3571  */
3572 struct device *get_device(struct device *dev)
3573 {
3574 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3575 }
3576 EXPORT_SYMBOL_GPL(get_device);
3577 
3578 /**
3579  * put_device - decrement reference count.
3580  * @dev: device in question.
3581  */
3582 void put_device(struct device *dev)
3583 {
3584 	/* might_sleep(); */
3585 	if (dev)
3586 		kobject_put(&dev->kobj);
3587 }
3588 EXPORT_SYMBOL_GPL(put_device);
3589 
3590 bool kill_device(struct device *dev)
3591 {
3592 	/*
3593 	 * Require the device lock and set the "dead" flag to guarantee that
3594 	 * the update behavior is consistent with the other bitfields near
3595 	 * it and that we cannot have an asynchronous probe routine trying
3596 	 * to run while we are tearing out the bus/class/sysfs from
3597 	 * underneath the device.
3598 	 */
3599 	device_lock_assert(dev);
3600 
3601 	if (dev->p->dead)
3602 		return false;
3603 	dev->p->dead = true;
3604 	return true;
3605 }
3606 EXPORT_SYMBOL_GPL(kill_device);
3607 
3608 /**
3609  * device_del - delete device from system.
3610  * @dev: device.
3611  *
3612  * This is the first part of the device unregistration
3613  * sequence. This removes the device from the lists we control
3614  * from here, has it removed from the other driver model
3615  * subsystems it was added to in device_add(), and removes it
3616  * from the kobject hierarchy.
3617  *
3618  * NOTE: this should be called manually _iff_ device_add() was
3619  * also called manually.
3620  */
3621 void device_del(struct device *dev)
3622 {
3623 	struct device *parent = dev->parent;
3624 	struct kobject *glue_dir = NULL;
3625 	struct class_interface *class_intf;
3626 	unsigned int noio_flag;
3627 
3628 	device_lock(dev);
3629 	kill_device(dev);
3630 	device_unlock(dev);
3631 
3632 	if (dev->fwnode && dev->fwnode->dev == dev)
3633 		dev->fwnode->dev = NULL;
3634 
3635 	/* Notify clients of device removal.  This call must come
3636 	 * before dpm_sysfs_remove().
3637 	 */
3638 	noio_flag = memalloc_noio_save();
3639 	if (dev->bus)
3640 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3641 					     BUS_NOTIFY_DEL_DEVICE, dev);
3642 
3643 	dpm_sysfs_remove(dev);
3644 	if (parent)
3645 		klist_del(&dev->p->knode_parent);
3646 	if (MAJOR(dev->devt)) {
3647 		devtmpfs_delete_node(dev);
3648 		device_remove_sys_dev_entry(dev);
3649 		device_remove_file(dev, &dev_attr_dev);
3650 	}
3651 	if (dev->class) {
3652 		device_remove_class_symlinks(dev);
3653 
3654 		mutex_lock(&dev->class->p->mutex);
3655 		/* notify any interfaces that the device is now gone */
3656 		list_for_each_entry(class_intf,
3657 				    &dev->class->p->interfaces, node)
3658 			if (class_intf->remove_dev)
3659 				class_intf->remove_dev(dev, class_intf);
3660 		/* remove the device from the class list */
3661 		klist_del(&dev->p->knode_class);
3662 		mutex_unlock(&dev->class->p->mutex);
3663 	}
3664 	device_remove_file(dev, &dev_attr_uevent);
3665 	device_remove_attrs(dev);
3666 	bus_remove_device(dev);
3667 	device_pm_remove(dev);
3668 	driver_deferred_probe_del(dev);
3669 	device_platform_notify_remove(dev);
3670 	device_links_purge(dev);
3671 
3672 	if (dev->bus)
3673 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3674 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3675 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3676 	glue_dir = get_glue_dir(dev);
3677 	kobject_del(&dev->kobj);
3678 	cleanup_glue_dir(dev, glue_dir);
3679 	memalloc_noio_restore(noio_flag);
3680 	put_device(parent);
3681 }
3682 EXPORT_SYMBOL_GPL(device_del);
3683 
3684 /**
3685  * device_unregister - unregister device from system.
3686  * @dev: device going away.
3687  *
3688  * We do this in two parts, like we do device_register(). First,
3689  * we remove it from all the subsystems with device_del(), then
3690  * we decrement the reference count via put_device(). If that
3691  * is the final reference count, the device will be cleaned up
3692  * via device_release() above. Otherwise, the structure will
3693  * stick around until the final reference to the device is dropped.
3694  */
3695 void device_unregister(struct device *dev)
3696 {
3697 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3698 	device_del(dev);
3699 	put_device(dev);
3700 }
3701 EXPORT_SYMBOL_GPL(device_unregister);
3702 
3703 static struct device *prev_device(struct klist_iter *i)
3704 {
3705 	struct klist_node *n = klist_prev(i);
3706 	struct device *dev = NULL;
3707 	struct device_private *p;
3708 
3709 	if (n) {
3710 		p = to_device_private_parent(n);
3711 		dev = p->device;
3712 	}
3713 	return dev;
3714 }
3715 
3716 static struct device *next_device(struct klist_iter *i)
3717 {
3718 	struct klist_node *n = klist_next(i);
3719 	struct device *dev = NULL;
3720 	struct device_private *p;
3721 
3722 	if (n) {
3723 		p = to_device_private_parent(n);
3724 		dev = p->device;
3725 	}
3726 	return dev;
3727 }
3728 
3729 /**
3730  * device_get_devnode - path of device node file
3731  * @dev: device
3732  * @mode: returned file access mode
3733  * @uid: returned file owner
3734  * @gid: returned file group
3735  * @tmp: possibly allocated string
3736  *
3737  * Return the relative path of a possible device node.
3738  * Non-default names may need to allocate a memory to compose
3739  * a name. This memory is returned in tmp and needs to be
3740  * freed by the caller.
3741  */
3742 const char *device_get_devnode(struct device *dev,
3743 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3744 			       const char **tmp)
3745 {
3746 	char *s;
3747 
3748 	*tmp = NULL;
3749 
3750 	/* the device type may provide a specific name */
3751 	if (dev->type && dev->type->devnode)
3752 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3753 	if (*tmp)
3754 		return *tmp;
3755 
3756 	/* the class may provide a specific name */
3757 	if (dev->class && dev->class->devnode)
3758 		*tmp = dev->class->devnode(dev, mode);
3759 	if (*tmp)
3760 		return *tmp;
3761 
3762 	/* return name without allocation, tmp == NULL */
3763 	if (strchr(dev_name(dev), '!') == NULL)
3764 		return dev_name(dev);
3765 
3766 	/* replace '!' in the name with '/' */
3767 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3768 	if (!s)
3769 		return NULL;
3770 	strreplace(s, '!', '/');
3771 	return *tmp = s;
3772 }
3773 
3774 /**
3775  * device_for_each_child - device child iterator.
3776  * @parent: parent struct device.
3777  * @fn: function to be called for each device.
3778  * @data: data for the callback.
3779  *
3780  * Iterate over @parent's child devices, and call @fn for each,
3781  * passing it @data.
3782  *
3783  * We check the return of @fn each time. If it returns anything
3784  * other than 0, we break out and return that value.
3785  */
3786 int device_for_each_child(struct device *parent, void *data,
3787 			  int (*fn)(struct device *dev, void *data))
3788 {
3789 	struct klist_iter i;
3790 	struct device *child;
3791 	int error = 0;
3792 
3793 	if (!parent->p)
3794 		return 0;
3795 
3796 	klist_iter_init(&parent->p->klist_children, &i);
3797 	while (!error && (child = next_device(&i)))
3798 		error = fn(child, data);
3799 	klist_iter_exit(&i);
3800 	return error;
3801 }
3802 EXPORT_SYMBOL_GPL(device_for_each_child);
3803 
3804 /**
3805  * device_for_each_child_reverse - device child iterator in reversed order.
3806  * @parent: parent struct device.
3807  * @fn: function to be called for each device.
3808  * @data: data for the callback.
3809  *
3810  * Iterate over @parent's child devices, and call @fn for each,
3811  * passing it @data.
3812  *
3813  * We check the return of @fn each time. If it returns anything
3814  * other than 0, we break out and return that value.
3815  */
3816 int device_for_each_child_reverse(struct device *parent, void *data,
3817 				  int (*fn)(struct device *dev, void *data))
3818 {
3819 	struct klist_iter i;
3820 	struct device *child;
3821 	int error = 0;
3822 
3823 	if (!parent->p)
3824 		return 0;
3825 
3826 	klist_iter_init(&parent->p->klist_children, &i);
3827 	while ((child = prev_device(&i)) && !error)
3828 		error = fn(child, data);
3829 	klist_iter_exit(&i);
3830 	return error;
3831 }
3832 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3833 
3834 /**
3835  * device_find_child - device iterator for locating a particular device.
3836  * @parent: parent struct device
3837  * @match: Callback function to check device
3838  * @data: Data to pass to match function
3839  *
3840  * This is similar to the device_for_each_child() function above, but it
3841  * returns a reference to a device that is 'found' for later use, as
3842  * determined by the @match callback.
3843  *
3844  * The callback should return 0 if the device doesn't match and non-zero
3845  * if it does.  If the callback returns non-zero and a reference to the
3846  * current device can be obtained, this function will return to the caller
3847  * and not iterate over any more devices.
3848  *
3849  * NOTE: you will need to drop the reference with put_device() after use.
3850  */
3851 struct device *device_find_child(struct device *parent, void *data,
3852 				 int (*match)(struct device *dev, void *data))
3853 {
3854 	struct klist_iter i;
3855 	struct device *child;
3856 
3857 	if (!parent)
3858 		return NULL;
3859 
3860 	klist_iter_init(&parent->p->klist_children, &i);
3861 	while ((child = next_device(&i)))
3862 		if (match(child, data) && get_device(child))
3863 			break;
3864 	klist_iter_exit(&i);
3865 	return child;
3866 }
3867 EXPORT_SYMBOL_GPL(device_find_child);
3868 
3869 /**
3870  * device_find_child_by_name - device iterator for locating a child device.
3871  * @parent: parent struct device
3872  * @name: name of the child device
3873  *
3874  * This is similar to the device_find_child() function above, but it
3875  * returns a reference to a device that has the name @name.
3876  *
3877  * NOTE: you will need to drop the reference with put_device() after use.
3878  */
3879 struct device *device_find_child_by_name(struct device *parent,
3880 					 const char *name)
3881 {
3882 	struct klist_iter i;
3883 	struct device *child;
3884 
3885 	if (!parent)
3886 		return NULL;
3887 
3888 	klist_iter_init(&parent->p->klist_children, &i);
3889 	while ((child = next_device(&i)))
3890 		if (sysfs_streq(dev_name(child), name) && get_device(child))
3891 			break;
3892 	klist_iter_exit(&i);
3893 	return child;
3894 }
3895 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3896 
3897 static int match_any(struct device *dev, void *unused)
3898 {
3899 	return 1;
3900 }
3901 
3902 /**
3903  * device_find_any_child - device iterator for locating a child device, if any.
3904  * @parent: parent struct device
3905  *
3906  * This is similar to the device_find_child() function above, but it
3907  * returns a reference to a child device, if any.
3908  *
3909  * NOTE: you will need to drop the reference with put_device() after use.
3910  */
3911 struct device *device_find_any_child(struct device *parent)
3912 {
3913 	return device_find_child(parent, NULL, match_any);
3914 }
3915 EXPORT_SYMBOL_GPL(device_find_any_child);
3916 
3917 int __init devices_init(void)
3918 {
3919 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3920 	if (!devices_kset)
3921 		return -ENOMEM;
3922 	dev_kobj = kobject_create_and_add("dev", NULL);
3923 	if (!dev_kobj)
3924 		goto dev_kobj_err;
3925 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3926 	if (!sysfs_dev_block_kobj)
3927 		goto block_kobj_err;
3928 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3929 	if (!sysfs_dev_char_kobj)
3930 		goto char_kobj_err;
3931 
3932 	return 0;
3933 
3934  char_kobj_err:
3935 	kobject_put(sysfs_dev_block_kobj);
3936  block_kobj_err:
3937 	kobject_put(dev_kobj);
3938  dev_kobj_err:
3939 	kset_unregister(devices_kset);
3940 	return -ENOMEM;
3941 }
3942 
3943 static int device_check_offline(struct device *dev, void *not_used)
3944 {
3945 	int ret;
3946 
3947 	ret = device_for_each_child(dev, NULL, device_check_offline);
3948 	if (ret)
3949 		return ret;
3950 
3951 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3952 }
3953 
3954 /**
3955  * device_offline - Prepare the device for hot-removal.
3956  * @dev: Device to be put offline.
3957  *
3958  * Execute the device bus type's .offline() callback, if present, to prepare
3959  * the device for a subsequent hot-removal.  If that succeeds, the device must
3960  * not be used until either it is removed or its bus type's .online() callback
3961  * is executed.
3962  *
3963  * Call under device_hotplug_lock.
3964  */
3965 int device_offline(struct device *dev)
3966 {
3967 	int ret;
3968 
3969 	if (dev->offline_disabled)
3970 		return -EPERM;
3971 
3972 	ret = device_for_each_child(dev, NULL, device_check_offline);
3973 	if (ret)
3974 		return ret;
3975 
3976 	device_lock(dev);
3977 	if (device_supports_offline(dev)) {
3978 		if (dev->offline) {
3979 			ret = 1;
3980 		} else {
3981 			ret = dev->bus->offline(dev);
3982 			if (!ret) {
3983 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3984 				dev->offline = true;
3985 			}
3986 		}
3987 	}
3988 	device_unlock(dev);
3989 
3990 	return ret;
3991 }
3992 
3993 /**
3994  * device_online - Put the device back online after successful device_offline().
3995  * @dev: Device to be put back online.
3996  *
3997  * If device_offline() has been successfully executed for @dev, but the device
3998  * has not been removed subsequently, execute its bus type's .online() callback
3999  * to indicate that the device can be used again.
4000  *
4001  * Call under device_hotplug_lock.
4002  */
4003 int device_online(struct device *dev)
4004 {
4005 	int ret = 0;
4006 
4007 	device_lock(dev);
4008 	if (device_supports_offline(dev)) {
4009 		if (dev->offline) {
4010 			ret = dev->bus->online(dev);
4011 			if (!ret) {
4012 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4013 				dev->offline = false;
4014 			}
4015 		} else {
4016 			ret = 1;
4017 		}
4018 	}
4019 	device_unlock(dev);
4020 
4021 	return ret;
4022 }
4023 
4024 struct root_device {
4025 	struct device dev;
4026 	struct module *owner;
4027 };
4028 
4029 static inline struct root_device *to_root_device(struct device *d)
4030 {
4031 	return container_of(d, struct root_device, dev);
4032 }
4033 
4034 static void root_device_release(struct device *dev)
4035 {
4036 	kfree(to_root_device(dev));
4037 }
4038 
4039 /**
4040  * __root_device_register - allocate and register a root device
4041  * @name: root device name
4042  * @owner: owner module of the root device, usually THIS_MODULE
4043  *
4044  * This function allocates a root device and registers it
4045  * using device_register(). In order to free the returned
4046  * device, use root_device_unregister().
4047  *
4048  * Root devices are dummy devices which allow other devices
4049  * to be grouped under /sys/devices. Use this function to
4050  * allocate a root device and then use it as the parent of
4051  * any device which should appear under /sys/devices/{name}
4052  *
4053  * The /sys/devices/{name} directory will also contain a
4054  * 'module' symlink which points to the @owner directory
4055  * in sysfs.
4056  *
4057  * Returns &struct device pointer on success, or ERR_PTR() on error.
4058  *
4059  * Note: You probably want to use root_device_register().
4060  */
4061 struct device *__root_device_register(const char *name, struct module *owner)
4062 {
4063 	struct root_device *root;
4064 	int err = -ENOMEM;
4065 
4066 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4067 	if (!root)
4068 		return ERR_PTR(err);
4069 
4070 	err = dev_set_name(&root->dev, "%s", name);
4071 	if (err) {
4072 		kfree(root);
4073 		return ERR_PTR(err);
4074 	}
4075 
4076 	root->dev.release = root_device_release;
4077 
4078 	err = device_register(&root->dev);
4079 	if (err) {
4080 		put_device(&root->dev);
4081 		return ERR_PTR(err);
4082 	}
4083 
4084 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4085 	if (owner) {
4086 		struct module_kobject *mk = &owner->mkobj;
4087 
4088 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4089 		if (err) {
4090 			device_unregister(&root->dev);
4091 			return ERR_PTR(err);
4092 		}
4093 		root->owner = owner;
4094 	}
4095 #endif
4096 
4097 	return &root->dev;
4098 }
4099 EXPORT_SYMBOL_GPL(__root_device_register);
4100 
4101 /**
4102  * root_device_unregister - unregister and free a root device
4103  * @dev: device going away
4104  *
4105  * This function unregisters and cleans up a device that was created by
4106  * root_device_register().
4107  */
4108 void root_device_unregister(struct device *dev)
4109 {
4110 	struct root_device *root = to_root_device(dev);
4111 
4112 	if (root->owner)
4113 		sysfs_remove_link(&root->dev.kobj, "module");
4114 
4115 	device_unregister(dev);
4116 }
4117 EXPORT_SYMBOL_GPL(root_device_unregister);
4118 
4119 
4120 static void device_create_release(struct device *dev)
4121 {
4122 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4123 	kfree(dev);
4124 }
4125 
4126 static __printf(6, 0) struct device *
4127 device_create_groups_vargs(struct class *class, struct device *parent,
4128 			   dev_t devt, void *drvdata,
4129 			   const struct attribute_group **groups,
4130 			   const char *fmt, va_list args)
4131 {
4132 	struct device *dev = NULL;
4133 	int retval = -ENODEV;
4134 
4135 	if (IS_ERR_OR_NULL(class))
4136 		goto error;
4137 
4138 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4139 	if (!dev) {
4140 		retval = -ENOMEM;
4141 		goto error;
4142 	}
4143 
4144 	device_initialize(dev);
4145 	dev->devt = devt;
4146 	dev->class = class;
4147 	dev->parent = parent;
4148 	dev->groups = groups;
4149 	dev->release = device_create_release;
4150 	dev_set_drvdata(dev, drvdata);
4151 
4152 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4153 	if (retval)
4154 		goto error;
4155 
4156 	retval = device_add(dev);
4157 	if (retval)
4158 		goto error;
4159 
4160 	return dev;
4161 
4162 error:
4163 	put_device(dev);
4164 	return ERR_PTR(retval);
4165 }
4166 
4167 /**
4168  * device_create - creates a device and registers it with sysfs
4169  * @class: pointer to the struct class that this device should be registered to
4170  * @parent: pointer to the parent struct device of this new device, if any
4171  * @devt: the dev_t for the char device to be added
4172  * @drvdata: the data to be added to the device for callbacks
4173  * @fmt: string for the device's name
4174  *
4175  * This function can be used by char device classes.  A struct device
4176  * will be created in sysfs, registered to the specified class.
4177  *
4178  * A "dev" file will be created, showing the dev_t for the device, if
4179  * the dev_t is not 0,0.
4180  * If a pointer to a parent struct device is passed in, the newly created
4181  * struct device will be a child of that device in sysfs.
4182  * The pointer to the struct device will be returned from the call.
4183  * Any further sysfs files that might be required can be created using this
4184  * pointer.
4185  *
4186  * Returns &struct device pointer on success, or ERR_PTR() on error.
4187  *
4188  * Note: the struct class passed to this function must have previously
4189  * been created with a call to class_create().
4190  */
4191 struct device *device_create(struct class *class, struct device *parent,
4192 			     dev_t devt, void *drvdata, const char *fmt, ...)
4193 {
4194 	va_list vargs;
4195 	struct device *dev;
4196 
4197 	va_start(vargs, fmt);
4198 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4199 					  fmt, vargs);
4200 	va_end(vargs);
4201 	return dev;
4202 }
4203 EXPORT_SYMBOL_GPL(device_create);
4204 
4205 /**
4206  * device_create_with_groups - creates a device and registers it with sysfs
4207  * @class: pointer to the struct class that this device should be registered to
4208  * @parent: pointer to the parent struct device of this new device, if any
4209  * @devt: the dev_t for the char device to be added
4210  * @drvdata: the data to be added to the device for callbacks
4211  * @groups: NULL-terminated list of attribute groups to be created
4212  * @fmt: string for the device's name
4213  *
4214  * This function can be used by char device classes.  A struct device
4215  * will be created in sysfs, registered to the specified class.
4216  * Additional attributes specified in the groups parameter will also
4217  * be created automatically.
4218  *
4219  * A "dev" file will be created, showing the dev_t for the device, if
4220  * the dev_t is not 0,0.
4221  * If a pointer to a parent struct device is passed in, the newly created
4222  * struct device will be a child of that device in sysfs.
4223  * The pointer to the struct device will be returned from the call.
4224  * Any further sysfs files that might be required can be created using this
4225  * pointer.
4226  *
4227  * Returns &struct device pointer on success, or ERR_PTR() on error.
4228  *
4229  * Note: the struct class passed to this function must have previously
4230  * been created with a call to class_create().
4231  */
4232 struct device *device_create_with_groups(struct class *class,
4233 					 struct device *parent, dev_t devt,
4234 					 void *drvdata,
4235 					 const struct attribute_group **groups,
4236 					 const char *fmt, ...)
4237 {
4238 	va_list vargs;
4239 	struct device *dev;
4240 
4241 	va_start(vargs, fmt);
4242 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4243 					 fmt, vargs);
4244 	va_end(vargs);
4245 	return dev;
4246 }
4247 EXPORT_SYMBOL_GPL(device_create_with_groups);
4248 
4249 /**
4250  * device_destroy - removes a device that was created with device_create()
4251  * @class: pointer to the struct class that this device was registered with
4252  * @devt: the dev_t of the device that was previously registered
4253  *
4254  * This call unregisters and cleans up a device that was created with a
4255  * call to device_create().
4256  */
4257 void device_destroy(struct class *class, dev_t devt)
4258 {
4259 	struct device *dev;
4260 
4261 	dev = class_find_device_by_devt(class, devt);
4262 	if (dev) {
4263 		put_device(dev);
4264 		device_unregister(dev);
4265 	}
4266 }
4267 EXPORT_SYMBOL_GPL(device_destroy);
4268 
4269 /**
4270  * device_rename - renames a device
4271  * @dev: the pointer to the struct device to be renamed
4272  * @new_name: the new name of the device
4273  *
4274  * It is the responsibility of the caller to provide mutual
4275  * exclusion between two different calls of device_rename
4276  * on the same device to ensure that new_name is valid and
4277  * won't conflict with other devices.
4278  *
4279  * Note: Don't call this function.  Currently, the networking layer calls this
4280  * function, but that will change.  The following text from Kay Sievers offers
4281  * some insight:
4282  *
4283  * Renaming devices is racy at many levels, symlinks and other stuff are not
4284  * replaced atomically, and you get a "move" uevent, but it's not easy to
4285  * connect the event to the old and new device. Device nodes are not renamed at
4286  * all, there isn't even support for that in the kernel now.
4287  *
4288  * In the meantime, during renaming, your target name might be taken by another
4289  * driver, creating conflicts. Or the old name is taken directly after you
4290  * renamed it -- then you get events for the same DEVPATH, before you even see
4291  * the "move" event. It's just a mess, and nothing new should ever rely on
4292  * kernel device renaming. Besides that, it's not even implemented now for
4293  * other things than (driver-core wise very simple) network devices.
4294  *
4295  * We are currently about to change network renaming in udev to completely
4296  * disallow renaming of devices in the same namespace as the kernel uses,
4297  * because we can't solve the problems properly, that arise with swapping names
4298  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4299  * be allowed to some other name than eth[0-9]*, for the aforementioned
4300  * reasons.
4301  *
4302  * Make up a "real" name in the driver before you register anything, or add
4303  * some other attributes for userspace to find the device, or use udev to add
4304  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4305  * don't even want to get into that and try to implement the missing pieces in
4306  * the core. We really have other pieces to fix in the driver core mess. :)
4307  */
4308 int device_rename(struct device *dev, const char *new_name)
4309 {
4310 	struct kobject *kobj = &dev->kobj;
4311 	char *old_device_name = NULL;
4312 	int error;
4313 
4314 	dev = get_device(dev);
4315 	if (!dev)
4316 		return -EINVAL;
4317 
4318 	dev_dbg(dev, "renaming to %s\n", new_name);
4319 
4320 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4321 	if (!old_device_name) {
4322 		error = -ENOMEM;
4323 		goto out;
4324 	}
4325 
4326 	if (dev->class) {
4327 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4328 					     kobj, old_device_name,
4329 					     new_name, kobject_namespace(kobj));
4330 		if (error)
4331 			goto out;
4332 	}
4333 
4334 	error = kobject_rename(kobj, new_name);
4335 	if (error)
4336 		goto out;
4337 
4338 out:
4339 	put_device(dev);
4340 
4341 	kfree(old_device_name);
4342 
4343 	return error;
4344 }
4345 EXPORT_SYMBOL_GPL(device_rename);
4346 
4347 static int device_move_class_links(struct device *dev,
4348 				   struct device *old_parent,
4349 				   struct device *new_parent)
4350 {
4351 	int error = 0;
4352 
4353 	if (old_parent)
4354 		sysfs_remove_link(&dev->kobj, "device");
4355 	if (new_parent)
4356 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4357 					  "device");
4358 	return error;
4359 }
4360 
4361 /**
4362  * device_move - moves a device to a new parent
4363  * @dev: the pointer to the struct device to be moved
4364  * @new_parent: the new parent of the device (can be NULL)
4365  * @dpm_order: how to reorder the dpm_list
4366  */
4367 int device_move(struct device *dev, struct device *new_parent,
4368 		enum dpm_order dpm_order)
4369 {
4370 	int error;
4371 	struct device *old_parent;
4372 	struct kobject *new_parent_kobj;
4373 
4374 	dev = get_device(dev);
4375 	if (!dev)
4376 		return -EINVAL;
4377 
4378 	device_pm_lock();
4379 	new_parent = get_device(new_parent);
4380 	new_parent_kobj = get_device_parent(dev, new_parent);
4381 	if (IS_ERR(new_parent_kobj)) {
4382 		error = PTR_ERR(new_parent_kobj);
4383 		put_device(new_parent);
4384 		goto out;
4385 	}
4386 
4387 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4388 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4389 	error = kobject_move(&dev->kobj, new_parent_kobj);
4390 	if (error) {
4391 		cleanup_glue_dir(dev, new_parent_kobj);
4392 		put_device(new_parent);
4393 		goto out;
4394 	}
4395 	old_parent = dev->parent;
4396 	dev->parent = new_parent;
4397 	if (old_parent)
4398 		klist_remove(&dev->p->knode_parent);
4399 	if (new_parent) {
4400 		klist_add_tail(&dev->p->knode_parent,
4401 			       &new_parent->p->klist_children);
4402 		set_dev_node(dev, dev_to_node(new_parent));
4403 	}
4404 
4405 	if (dev->class) {
4406 		error = device_move_class_links(dev, old_parent, new_parent);
4407 		if (error) {
4408 			/* We ignore errors on cleanup since we're hosed anyway... */
4409 			device_move_class_links(dev, new_parent, old_parent);
4410 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4411 				if (new_parent)
4412 					klist_remove(&dev->p->knode_parent);
4413 				dev->parent = old_parent;
4414 				if (old_parent) {
4415 					klist_add_tail(&dev->p->knode_parent,
4416 						       &old_parent->p->klist_children);
4417 					set_dev_node(dev, dev_to_node(old_parent));
4418 				}
4419 			}
4420 			cleanup_glue_dir(dev, new_parent_kobj);
4421 			put_device(new_parent);
4422 			goto out;
4423 		}
4424 	}
4425 	switch (dpm_order) {
4426 	case DPM_ORDER_NONE:
4427 		break;
4428 	case DPM_ORDER_DEV_AFTER_PARENT:
4429 		device_pm_move_after(dev, new_parent);
4430 		devices_kset_move_after(dev, new_parent);
4431 		break;
4432 	case DPM_ORDER_PARENT_BEFORE_DEV:
4433 		device_pm_move_before(new_parent, dev);
4434 		devices_kset_move_before(new_parent, dev);
4435 		break;
4436 	case DPM_ORDER_DEV_LAST:
4437 		device_pm_move_last(dev);
4438 		devices_kset_move_last(dev);
4439 		break;
4440 	}
4441 
4442 	put_device(old_parent);
4443 out:
4444 	device_pm_unlock();
4445 	put_device(dev);
4446 	return error;
4447 }
4448 EXPORT_SYMBOL_GPL(device_move);
4449 
4450 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4451 				     kgid_t kgid)
4452 {
4453 	struct kobject *kobj = &dev->kobj;
4454 	struct class *class = dev->class;
4455 	const struct device_type *type = dev->type;
4456 	int error;
4457 
4458 	if (class) {
4459 		/*
4460 		 * Change the device groups of the device class for @dev to
4461 		 * @kuid/@kgid.
4462 		 */
4463 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4464 						  kgid);
4465 		if (error)
4466 			return error;
4467 	}
4468 
4469 	if (type) {
4470 		/*
4471 		 * Change the device groups of the device type for @dev to
4472 		 * @kuid/@kgid.
4473 		 */
4474 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4475 						  kgid);
4476 		if (error)
4477 			return error;
4478 	}
4479 
4480 	/* Change the device groups of @dev to @kuid/@kgid. */
4481 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4482 	if (error)
4483 		return error;
4484 
4485 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4486 		/* Change online device attributes of @dev to @kuid/@kgid. */
4487 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4488 						kuid, kgid);
4489 		if (error)
4490 			return error;
4491 	}
4492 
4493 	return 0;
4494 }
4495 
4496 /**
4497  * device_change_owner - change the owner of an existing device.
4498  * @dev: device.
4499  * @kuid: new owner's kuid
4500  * @kgid: new owner's kgid
4501  *
4502  * This changes the owner of @dev and its corresponding sysfs entries to
4503  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4504  * core.
4505  *
4506  * Returns 0 on success or error code on failure.
4507  */
4508 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4509 {
4510 	int error;
4511 	struct kobject *kobj = &dev->kobj;
4512 
4513 	dev = get_device(dev);
4514 	if (!dev)
4515 		return -EINVAL;
4516 
4517 	/*
4518 	 * Change the kobject and the default attributes and groups of the
4519 	 * ktype associated with it to @kuid/@kgid.
4520 	 */
4521 	error = sysfs_change_owner(kobj, kuid, kgid);
4522 	if (error)
4523 		goto out;
4524 
4525 	/*
4526 	 * Change the uevent file for @dev to the new owner. The uevent file
4527 	 * was created in a separate step when @dev got added and we mirror
4528 	 * that step here.
4529 	 */
4530 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4531 					kgid);
4532 	if (error)
4533 		goto out;
4534 
4535 	/*
4536 	 * Change the device groups, the device groups associated with the
4537 	 * device class, and the groups associated with the device type of @dev
4538 	 * to @kuid/@kgid.
4539 	 */
4540 	error = device_attrs_change_owner(dev, kuid, kgid);
4541 	if (error)
4542 		goto out;
4543 
4544 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4545 	if (error)
4546 		goto out;
4547 
4548 #ifdef CONFIG_BLOCK
4549 	if (sysfs_deprecated && dev->class == &block_class)
4550 		goto out;
4551 #endif
4552 
4553 	/*
4554 	 * Change the owner of the symlink located in the class directory of
4555 	 * the device class associated with @dev which points to the actual
4556 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4557 	 * symlink shows the same permissions as its target.
4558 	 */
4559 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4560 					dev_name(dev), kuid, kgid);
4561 	if (error)
4562 		goto out;
4563 
4564 out:
4565 	put_device(dev);
4566 	return error;
4567 }
4568 EXPORT_SYMBOL_GPL(device_change_owner);
4569 
4570 /**
4571  * device_shutdown - call ->shutdown() on each device to shutdown.
4572  */
4573 void device_shutdown(void)
4574 {
4575 	struct device *dev, *parent;
4576 
4577 	wait_for_device_probe();
4578 	device_block_probing();
4579 
4580 	cpufreq_suspend();
4581 
4582 	spin_lock(&devices_kset->list_lock);
4583 	/*
4584 	 * Walk the devices list backward, shutting down each in turn.
4585 	 * Beware that device unplug events may also start pulling
4586 	 * devices offline, even as the system is shutting down.
4587 	 */
4588 	while (!list_empty(&devices_kset->list)) {
4589 		dev = list_entry(devices_kset->list.prev, struct device,
4590 				kobj.entry);
4591 
4592 		/*
4593 		 * hold reference count of device's parent to
4594 		 * prevent it from being freed because parent's
4595 		 * lock is to be held
4596 		 */
4597 		parent = get_device(dev->parent);
4598 		get_device(dev);
4599 		/*
4600 		 * Make sure the device is off the kset list, in the
4601 		 * event that dev->*->shutdown() doesn't remove it.
4602 		 */
4603 		list_del_init(&dev->kobj.entry);
4604 		spin_unlock(&devices_kset->list_lock);
4605 
4606 		/* hold lock to avoid race with probe/release */
4607 		if (parent)
4608 			device_lock(parent);
4609 		device_lock(dev);
4610 
4611 		/* Don't allow any more runtime suspends */
4612 		pm_runtime_get_noresume(dev);
4613 		pm_runtime_barrier(dev);
4614 
4615 		if (dev->class && dev->class->shutdown_pre) {
4616 			if (initcall_debug)
4617 				dev_info(dev, "shutdown_pre\n");
4618 			dev->class->shutdown_pre(dev);
4619 		}
4620 		if (dev->bus && dev->bus->shutdown) {
4621 			if (initcall_debug)
4622 				dev_info(dev, "shutdown\n");
4623 			dev->bus->shutdown(dev);
4624 		} else if (dev->driver && dev->driver->shutdown) {
4625 			if (initcall_debug)
4626 				dev_info(dev, "shutdown\n");
4627 			dev->driver->shutdown(dev);
4628 		}
4629 
4630 		device_unlock(dev);
4631 		if (parent)
4632 			device_unlock(parent);
4633 
4634 		put_device(dev);
4635 		put_device(parent);
4636 
4637 		spin_lock(&devices_kset->list_lock);
4638 	}
4639 	spin_unlock(&devices_kset->list_lock);
4640 }
4641 
4642 /*
4643  * Device logging functions
4644  */
4645 
4646 #ifdef CONFIG_PRINTK
4647 static void
4648 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4649 {
4650 	const char *subsys;
4651 
4652 	memset(dev_info, 0, sizeof(*dev_info));
4653 
4654 	if (dev->class)
4655 		subsys = dev->class->name;
4656 	else if (dev->bus)
4657 		subsys = dev->bus->name;
4658 	else
4659 		return;
4660 
4661 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4662 
4663 	/*
4664 	 * Add device identifier DEVICE=:
4665 	 *   b12:8         block dev_t
4666 	 *   c127:3        char dev_t
4667 	 *   n8            netdev ifindex
4668 	 *   +sound:card0  subsystem:devname
4669 	 */
4670 	if (MAJOR(dev->devt)) {
4671 		char c;
4672 
4673 		if (strcmp(subsys, "block") == 0)
4674 			c = 'b';
4675 		else
4676 			c = 'c';
4677 
4678 		snprintf(dev_info->device, sizeof(dev_info->device),
4679 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4680 	} else if (strcmp(subsys, "net") == 0) {
4681 		struct net_device *net = to_net_dev(dev);
4682 
4683 		snprintf(dev_info->device, sizeof(dev_info->device),
4684 			 "n%u", net->ifindex);
4685 	} else {
4686 		snprintf(dev_info->device, sizeof(dev_info->device),
4687 			 "+%s:%s", subsys, dev_name(dev));
4688 	}
4689 }
4690 
4691 int dev_vprintk_emit(int level, const struct device *dev,
4692 		     const char *fmt, va_list args)
4693 {
4694 	struct dev_printk_info dev_info;
4695 
4696 	set_dev_info(dev, &dev_info);
4697 
4698 	return vprintk_emit(0, level, &dev_info, fmt, args);
4699 }
4700 EXPORT_SYMBOL(dev_vprintk_emit);
4701 
4702 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4703 {
4704 	va_list args;
4705 	int r;
4706 
4707 	va_start(args, fmt);
4708 
4709 	r = dev_vprintk_emit(level, dev, fmt, args);
4710 
4711 	va_end(args);
4712 
4713 	return r;
4714 }
4715 EXPORT_SYMBOL(dev_printk_emit);
4716 
4717 static void __dev_printk(const char *level, const struct device *dev,
4718 			struct va_format *vaf)
4719 {
4720 	if (dev)
4721 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4722 				dev_driver_string(dev), dev_name(dev), vaf);
4723 	else
4724 		printk("%s(NULL device *): %pV", level, vaf);
4725 }
4726 
4727 void _dev_printk(const char *level, const struct device *dev,
4728 		 const char *fmt, ...)
4729 {
4730 	struct va_format vaf;
4731 	va_list args;
4732 
4733 	va_start(args, fmt);
4734 
4735 	vaf.fmt = fmt;
4736 	vaf.va = &args;
4737 
4738 	__dev_printk(level, dev, &vaf);
4739 
4740 	va_end(args);
4741 }
4742 EXPORT_SYMBOL(_dev_printk);
4743 
4744 #define define_dev_printk_level(func, kern_level)		\
4745 void func(const struct device *dev, const char *fmt, ...)	\
4746 {								\
4747 	struct va_format vaf;					\
4748 	va_list args;						\
4749 								\
4750 	va_start(args, fmt);					\
4751 								\
4752 	vaf.fmt = fmt;						\
4753 	vaf.va = &args;						\
4754 								\
4755 	__dev_printk(kern_level, dev, &vaf);			\
4756 								\
4757 	va_end(args);						\
4758 }								\
4759 EXPORT_SYMBOL(func);
4760 
4761 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4762 define_dev_printk_level(_dev_alert, KERN_ALERT);
4763 define_dev_printk_level(_dev_crit, KERN_CRIT);
4764 define_dev_printk_level(_dev_err, KERN_ERR);
4765 define_dev_printk_level(_dev_warn, KERN_WARNING);
4766 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4767 define_dev_printk_level(_dev_info, KERN_INFO);
4768 
4769 #endif
4770 
4771 /**
4772  * dev_err_probe - probe error check and log helper
4773  * @dev: the pointer to the struct device
4774  * @err: error value to test
4775  * @fmt: printf-style format string
4776  * @...: arguments as specified in the format string
4777  *
4778  * This helper implements common pattern present in probe functions for error
4779  * checking: print debug or error message depending if the error value is
4780  * -EPROBE_DEFER and propagate error upwards.
4781  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4782  * checked later by reading devices_deferred debugfs attribute.
4783  * It replaces code sequence::
4784  *
4785  * 	if (err != -EPROBE_DEFER)
4786  * 		dev_err(dev, ...);
4787  * 	else
4788  * 		dev_dbg(dev, ...);
4789  * 	return err;
4790  *
4791  * with::
4792  *
4793  * 	return dev_err_probe(dev, err, ...);
4794  *
4795  * Note that it is deemed acceptable to use this function for error
4796  * prints during probe even if the @err is known to never be -EPROBE_DEFER.
4797  * The benefit compared to a normal dev_err() is the standardized format
4798  * of the error code and the fact that the error code is returned.
4799  *
4800  * Returns @err.
4801  *
4802  */
4803 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4804 {
4805 	struct va_format vaf;
4806 	va_list args;
4807 
4808 	va_start(args, fmt);
4809 	vaf.fmt = fmt;
4810 	vaf.va = &args;
4811 
4812 	if (err != -EPROBE_DEFER) {
4813 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4814 	} else {
4815 		device_set_deferred_probe_reason(dev, &vaf);
4816 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4817 	}
4818 
4819 	va_end(args);
4820 
4821 	return err;
4822 }
4823 EXPORT_SYMBOL_GPL(dev_err_probe);
4824 
4825 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4826 {
4827 	return fwnode && !IS_ERR(fwnode->secondary);
4828 }
4829 
4830 /**
4831  * set_primary_fwnode - Change the primary firmware node of a given device.
4832  * @dev: Device to handle.
4833  * @fwnode: New primary firmware node of the device.
4834  *
4835  * Set the device's firmware node pointer to @fwnode, but if a secondary
4836  * firmware node of the device is present, preserve it.
4837  *
4838  * Valid fwnode cases are:
4839  *  - primary --> secondary --> -ENODEV
4840  *  - primary --> NULL
4841  *  - secondary --> -ENODEV
4842  *  - NULL
4843  */
4844 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4845 {
4846 	struct device *parent = dev->parent;
4847 	struct fwnode_handle *fn = dev->fwnode;
4848 
4849 	if (fwnode) {
4850 		if (fwnode_is_primary(fn))
4851 			fn = fn->secondary;
4852 
4853 		if (fn) {
4854 			WARN_ON(fwnode->secondary);
4855 			fwnode->secondary = fn;
4856 		}
4857 		dev->fwnode = fwnode;
4858 	} else {
4859 		if (fwnode_is_primary(fn)) {
4860 			dev->fwnode = fn->secondary;
4861 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4862 			if (!(parent && fn == parent->fwnode))
4863 				fn->secondary = NULL;
4864 		} else {
4865 			dev->fwnode = NULL;
4866 		}
4867 	}
4868 }
4869 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4870 
4871 /**
4872  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4873  * @dev: Device to handle.
4874  * @fwnode: New secondary firmware node of the device.
4875  *
4876  * If a primary firmware node of the device is present, set its secondary
4877  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4878  * @fwnode.
4879  */
4880 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4881 {
4882 	if (fwnode)
4883 		fwnode->secondary = ERR_PTR(-ENODEV);
4884 
4885 	if (fwnode_is_primary(dev->fwnode))
4886 		dev->fwnode->secondary = fwnode;
4887 	else
4888 		dev->fwnode = fwnode;
4889 }
4890 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4891 
4892 /**
4893  * device_set_of_node_from_dev - reuse device-tree node of another device
4894  * @dev: device whose device-tree node is being set
4895  * @dev2: device whose device-tree node is being reused
4896  *
4897  * Takes another reference to the new device-tree node after first dropping
4898  * any reference held to the old node.
4899  */
4900 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4901 {
4902 	of_node_put(dev->of_node);
4903 	dev->of_node = of_node_get(dev2->of_node);
4904 	dev->of_node_reused = true;
4905 }
4906 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4907 
4908 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4909 {
4910 	dev->fwnode = fwnode;
4911 	dev->of_node = to_of_node(fwnode);
4912 }
4913 EXPORT_SYMBOL_GPL(device_set_node);
4914 
4915 int device_match_name(struct device *dev, const void *name)
4916 {
4917 	return sysfs_streq(dev_name(dev), name);
4918 }
4919 EXPORT_SYMBOL_GPL(device_match_name);
4920 
4921 int device_match_of_node(struct device *dev, const void *np)
4922 {
4923 	return dev->of_node == np;
4924 }
4925 EXPORT_SYMBOL_GPL(device_match_of_node);
4926 
4927 int device_match_fwnode(struct device *dev, const void *fwnode)
4928 {
4929 	return dev_fwnode(dev) == fwnode;
4930 }
4931 EXPORT_SYMBOL_GPL(device_match_fwnode);
4932 
4933 int device_match_devt(struct device *dev, const void *pdevt)
4934 {
4935 	return dev->devt == *(dev_t *)pdevt;
4936 }
4937 EXPORT_SYMBOL_GPL(device_match_devt);
4938 
4939 int device_match_acpi_dev(struct device *dev, const void *adev)
4940 {
4941 	return ACPI_COMPANION(dev) == adev;
4942 }
4943 EXPORT_SYMBOL(device_match_acpi_dev);
4944 
4945 int device_match_acpi_handle(struct device *dev, const void *handle)
4946 {
4947 	return ACPI_HANDLE(dev) == handle;
4948 }
4949 EXPORT_SYMBOL(device_match_acpi_handle);
4950 
4951 int device_match_any(struct device *dev, const void *unused)
4952 {
4953 	return 1;
4954 }
4955 EXPORT_SYMBOL_GPL(device_match_any);
4956