1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sysfs.h> 30 31 #include "base.h" 32 #include "power/power.h" 33 34 #ifdef CONFIG_SYSFS_DEPRECATED 35 #ifdef CONFIG_SYSFS_DEPRECATED_V2 36 long sysfs_deprecated = 1; 37 #else 38 long sysfs_deprecated = 0; 39 #endif 40 static int __init sysfs_deprecated_setup(char *arg) 41 { 42 return kstrtol(arg, 10, &sysfs_deprecated); 43 } 44 early_param("sysfs.deprecated", sysfs_deprecated_setup); 45 #endif 46 47 /* Device links support. */ 48 static LIST_HEAD(wait_for_suppliers); 49 static DEFINE_MUTEX(wfs_lock); 50 static LIST_HEAD(deferred_sync); 51 static unsigned int defer_sync_state_count = 1; 52 53 #ifdef CONFIG_SRCU 54 static DEFINE_MUTEX(device_links_lock); 55 DEFINE_STATIC_SRCU(device_links_srcu); 56 57 static inline void device_links_write_lock(void) 58 { 59 mutex_lock(&device_links_lock); 60 } 61 62 static inline void device_links_write_unlock(void) 63 { 64 mutex_unlock(&device_links_lock); 65 } 66 67 int device_links_read_lock(void) 68 { 69 return srcu_read_lock(&device_links_srcu); 70 } 71 72 void device_links_read_unlock(int idx) 73 { 74 srcu_read_unlock(&device_links_srcu, idx); 75 } 76 77 int device_links_read_lock_held(void) 78 { 79 return srcu_read_lock_held(&device_links_srcu); 80 } 81 #else /* !CONFIG_SRCU */ 82 static DECLARE_RWSEM(device_links_lock); 83 84 static inline void device_links_write_lock(void) 85 { 86 down_write(&device_links_lock); 87 } 88 89 static inline void device_links_write_unlock(void) 90 { 91 up_write(&device_links_lock); 92 } 93 94 int device_links_read_lock(void) 95 { 96 down_read(&device_links_lock); 97 return 0; 98 } 99 100 void device_links_read_unlock(int not_used) 101 { 102 up_read(&device_links_lock); 103 } 104 105 #ifdef CONFIG_DEBUG_LOCK_ALLOC 106 int device_links_read_lock_held(void) 107 { 108 return lockdep_is_held(&device_links_lock); 109 } 110 #endif 111 #endif /* !CONFIG_SRCU */ 112 113 /** 114 * device_is_dependent - Check if one device depends on another one 115 * @dev: Device to check dependencies for. 116 * @target: Device to check against. 117 * 118 * Check if @target depends on @dev or any device dependent on it (its child or 119 * its consumer etc). Return 1 if that is the case or 0 otherwise. 120 */ 121 static int device_is_dependent(struct device *dev, void *target) 122 { 123 struct device_link *link; 124 int ret; 125 126 if (dev == target) 127 return 1; 128 129 ret = device_for_each_child(dev, target, device_is_dependent); 130 if (ret) 131 return ret; 132 133 list_for_each_entry(link, &dev->links.consumers, s_node) { 134 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 135 continue; 136 137 if (link->consumer == target) 138 return 1; 139 140 ret = device_is_dependent(link->consumer, target); 141 if (ret) 142 break; 143 } 144 return ret; 145 } 146 147 static void device_link_init_status(struct device_link *link, 148 struct device *consumer, 149 struct device *supplier) 150 { 151 switch (supplier->links.status) { 152 case DL_DEV_PROBING: 153 switch (consumer->links.status) { 154 case DL_DEV_PROBING: 155 /* 156 * A consumer driver can create a link to a supplier 157 * that has not completed its probing yet as long as it 158 * knows that the supplier is already functional (for 159 * example, it has just acquired some resources from the 160 * supplier). 161 */ 162 link->status = DL_STATE_CONSUMER_PROBE; 163 break; 164 default: 165 link->status = DL_STATE_DORMANT; 166 break; 167 } 168 break; 169 case DL_DEV_DRIVER_BOUND: 170 switch (consumer->links.status) { 171 case DL_DEV_PROBING: 172 link->status = DL_STATE_CONSUMER_PROBE; 173 break; 174 case DL_DEV_DRIVER_BOUND: 175 link->status = DL_STATE_ACTIVE; 176 break; 177 default: 178 link->status = DL_STATE_AVAILABLE; 179 break; 180 } 181 break; 182 case DL_DEV_UNBINDING: 183 link->status = DL_STATE_SUPPLIER_UNBIND; 184 break; 185 default: 186 link->status = DL_STATE_DORMANT; 187 break; 188 } 189 } 190 191 static int device_reorder_to_tail(struct device *dev, void *not_used) 192 { 193 struct device_link *link; 194 195 /* 196 * Devices that have not been registered yet will be put to the ends 197 * of the lists during the registration, so skip them here. 198 */ 199 if (device_is_registered(dev)) 200 devices_kset_move_last(dev); 201 202 if (device_pm_initialized(dev)) 203 device_pm_move_last(dev); 204 205 device_for_each_child(dev, NULL, device_reorder_to_tail); 206 list_for_each_entry(link, &dev->links.consumers, s_node) { 207 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 208 continue; 209 device_reorder_to_tail(link->consumer, NULL); 210 } 211 212 return 0; 213 } 214 215 /** 216 * device_pm_move_to_tail - Move set of devices to the end of device lists 217 * @dev: Device to move 218 * 219 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 220 * 221 * It moves the @dev along with all of its children and all of its consumers 222 * to the ends of the device_kset and dpm_list, recursively. 223 */ 224 void device_pm_move_to_tail(struct device *dev) 225 { 226 int idx; 227 228 idx = device_links_read_lock(); 229 device_pm_lock(); 230 device_reorder_to_tail(dev, NULL); 231 device_pm_unlock(); 232 device_links_read_unlock(idx); 233 } 234 235 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 236 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 237 DL_FLAG_AUTOPROBE_CONSUMER | \ 238 DL_FLAG_SYNC_STATE_ONLY) 239 240 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 241 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 242 243 /** 244 * device_link_add - Create a link between two devices. 245 * @consumer: Consumer end of the link. 246 * @supplier: Supplier end of the link. 247 * @flags: Link flags. 248 * 249 * The caller is responsible for the proper synchronization of the link creation 250 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 251 * runtime PM framework to take the link into account. Second, if the 252 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 253 * be forced into the active metastate and reference-counted upon the creation 254 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 255 * ignored. 256 * 257 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 258 * expected to release the link returned by it directly with the help of either 259 * device_link_del() or device_link_remove(). 260 * 261 * If that flag is not set, however, the caller of this function is handing the 262 * management of the link over to the driver core entirely and its return value 263 * can only be used to check whether or not the link is present. In that case, 264 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 265 * flags can be used to indicate to the driver core when the link can be safely 266 * deleted. Namely, setting one of them in @flags indicates to the driver core 267 * that the link is not going to be used (by the given caller of this function) 268 * after unbinding the consumer or supplier driver, respectively, from its 269 * device, so the link can be deleted at that point. If none of them is set, 270 * the link will be maintained until one of the devices pointed to by it (either 271 * the consumer or the supplier) is unregistered. 272 * 273 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 274 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 275 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 276 * be used to request the driver core to automaticall probe for a consmer 277 * driver after successfully binding a driver to the supplier device. 278 * 279 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 280 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 281 * the same time is invalid and will cause NULL to be returned upfront. 282 * However, if a device link between the given @consumer and @supplier pair 283 * exists already when this function is called for them, the existing link will 284 * be returned regardless of its current type and status (the link's flags may 285 * be modified then). The caller of this function is then expected to treat 286 * the link as though it has just been created, so (in particular) if 287 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 288 * explicitly when not needed any more (as stated above). 289 * 290 * A side effect of the link creation is re-ordering of dpm_list and the 291 * devices_kset list by moving the consumer device and all devices depending 292 * on it to the ends of these lists (that does not happen to devices that have 293 * not been registered when this function is called). 294 * 295 * The supplier device is required to be registered when this function is called 296 * and NULL will be returned if that is not the case. The consumer device need 297 * not be registered, however. 298 */ 299 struct device_link *device_link_add(struct device *consumer, 300 struct device *supplier, u32 flags) 301 { 302 struct device_link *link; 303 304 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS || 305 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 306 (flags & DL_FLAG_SYNC_STATE_ONLY && 307 flags != DL_FLAG_SYNC_STATE_ONLY) || 308 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 309 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 310 DL_FLAG_AUTOREMOVE_SUPPLIER))) 311 return NULL; 312 313 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 314 if (pm_runtime_get_sync(supplier) < 0) { 315 pm_runtime_put_noidle(supplier); 316 return NULL; 317 } 318 } 319 320 if (!(flags & DL_FLAG_STATELESS)) 321 flags |= DL_FLAG_MANAGED; 322 323 device_links_write_lock(); 324 device_pm_lock(); 325 326 /* 327 * If the supplier has not been fully registered yet or there is a 328 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 329 * the supplier already in the graph, return NULL. If the link is a 330 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 331 * because it only affects sync_state() callbacks. 332 */ 333 if (!device_pm_initialized(supplier) 334 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 335 device_is_dependent(consumer, supplier))) { 336 link = NULL; 337 goto out; 338 } 339 340 /* 341 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 342 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 343 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 344 */ 345 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 346 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 347 348 list_for_each_entry(link, &supplier->links.consumers, s_node) { 349 if (link->consumer != consumer) 350 continue; 351 352 if (flags & DL_FLAG_PM_RUNTIME) { 353 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 354 pm_runtime_new_link(consumer); 355 link->flags |= DL_FLAG_PM_RUNTIME; 356 } 357 if (flags & DL_FLAG_RPM_ACTIVE) 358 refcount_inc(&link->rpm_active); 359 } 360 361 if (flags & DL_FLAG_STATELESS) { 362 kref_get(&link->kref); 363 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 364 !(link->flags & DL_FLAG_STATELESS)) { 365 link->flags |= DL_FLAG_STATELESS; 366 goto reorder; 367 } else { 368 goto out; 369 } 370 } 371 372 /* 373 * If the life time of the link following from the new flags is 374 * longer than indicated by the flags of the existing link, 375 * update the existing link to stay around longer. 376 */ 377 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 378 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 379 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 380 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 381 } 382 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 383 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 384 DL_FLAG_AUTOREMOVE_SUPPLIER); 385 } 386 if (!(link->flags & DL_FLAG_MANAGED)) { 387 kref_get(&link->kref); 388 link->flags |= DL_FLAG_MANAGED; 389 device_link_init_status(link, consumer, supplier); 390 } 391 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 392 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 393 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 394 goto reorder; 395 } 396 397 goto out; 398 } 399 400 link = kzalloc(sizeof(*link), GFP_KERNEL); 401 if (!link) 402 goto out; 403 404 refcount_set(&link->rpm_active, 1); 405 406 if (flags & DL_FLAG_PM_RUNTIME) { 407 if (flags & DL_FLAG_RPM_ACTIVE) 408 refcount_inc(&link->rpm_active); 409 410 pm_runtime_new_link(consumer); 411 } 412 413 get_device(supplier); 414 link->supplier = supplier; 415 INIT_LIST_HEAD(&link->s_node); 416 get_device(consumer); 417 link->consumer = consumer; 418 INIT_LIST_HEAD(&link->c_node); 419 link->flags = flags; 420 kref_init(&link->kref); 421 422 /* Determine the initial link state. */ 423 if (flags & DL_FLAG_STATELESS) 424 link->status = DL_STATE_NONE; 425 else 426 device_link_init_status(link, consumer, supplier); 427 428 /* 429 * Some callers expect the link creation during consumer driver probe to 430 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 431 */ 432 if (link->status == DL_STATE_CONSUMER_PROBE && 433 flags & DL_FLAG_PM_RUNTIME) 434 pm_runtime_resume(supplier); 435 436 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 437 dev_dbg(consumer, 438 "Linked as a sync state only consumer to %s\n", 439 dev_name(supplier)); 440 goto out; 441 } 442 reorder: 443 /* 444 * Move the consumer and all of the devices depending on it to the end 445 * of dpm_list and the devices_kset list. 446 * 447 * It is necessary to hold dpm_list locked throughout all that or else 448 * we may end up suspending with a wrong ordering of it. 449 */ 450 device_reorder_to_tail(consumer, NULL); 451 452 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 453 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 454 455 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 456 457 out: 458 device_pm_unlock(); 459 device_links_write_unlock(); 460 461 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 462 pm_runtime_put(supplier); 463 464 return link; 465 } 466 EXPORT_SYMBOL_GPL(device_link_add); 467 468 /** 469 * device_link_wait_for_supplier - Add device to wait_for_suppliers list 470 * @consumer: Consumer device 471 * 472 * Marks the @consumer device as waiting for suppliers to become available by 473 * adding it to the wait_for_suppliers list. The consumer device will never be 474 * probed until it's removed from the wait_for_suppliers list. 475 * 476 * The caller is responsible for adding the links to the supplier devices once 477 * they are available and removing the @consumer device from the 478 * wait_for_suppliers list once links to all the suppliers have been created. 479 * 480 * This function is NOT meant to be called from the probe function of the 481 * consumer but rather from code that creates/adds the consumer device. 482 */ 483 static void device_link_wait_for_supplier(struct device *consumer, 484 bool need_for_probe) 485 { 486 mutex_lock(&wfs_lock); 487 list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers); 488 consumer->links.need_for_probe = need_for_probe; 489 mutex_unlock(&wfs_lock); 490 } 491 492 static void device_link_wait_for_mandatory_supplier(struct device *consumer) 493 { 494 device_link_wait_for_supplier(consumer, true); 495 } 496 497 static void device_link_wait_for_optional_supplier(struct device *consumer) 498 { 499 device_link_wait_for_supplier(consumer, false); 500 } 501 502 /** 503 * device_link_add_missing_supplier_links - Add links from consumer devices to 504 * supplier devices, leaving any 505 * consumer with inactive suppliers on 506 * the wait_for_suppliers list 507 * 508 * Loops through all consumers waiting on suppliers and tries to add all their 509 * supplier links. If that succeeds, the consumer device is removed from 510 * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers 511 * list. Devices left on the wait_for_suppliers list will not be probed. 512 * 513 * The fwnode add_links callback is expected to return 0 if it has found and 514 * added all the supplier links for the consumer device. It should return an 515 * error if it isn't able to do so. 516 * 517 * The caller of device_link_wait_for_supplier() is expected to call this once 518 * it's aware of potential suppliers becoming available. 519 */ 520 static void device_link_add_missing_supplier_links(void) 521 { 522 struct device *dev, *tmp; 523 524 mutex_lock(&wfs_lock); 525 list_for_each_entry_safe(dev, tmp, &wait_for_suppliers, 526 links.needs_suppliers) 527 if (!fwnode_call_int_op(dev->fwnode, add_links, dev)) 528 list_del_init(&dev->links.needs_suppliers); 529 mutex_unlock(&wfs_lock); 530 } 531 532 static void device_link_free(struct device_link *link) 533 { 534 while (refcount_dec_not_one(&link->rpm_active)) 535 pm_runtime_put(link->supplier); 536 537 put_device(link->consumer); 538 put_device(link->supplier); 539 kfree(link); 540 } 541 542 #ifdef CONFIG_SRCU 543 static void __device_link_free_srcu(struct rcu_head *rhead) 544 { 545 device_link_free(container_of(rhead, struct device_link, rcu_head)); 546 } 547 548 static void __device_link_del(struct kref *kref) 549 { 550 struct device_link *link = container_of(kref, struct device_link, kref); 551 552 dev_dbg(link->consumer, "Dropping the link to %s\n", 553 dev_name(link->supplier)); 554 555 if (link->flags & DL_FLAG_PM_RUNTIME) 556 pm_runtime_drop_link(link->consumer); 557 558 list_del_rcu(&link->s_node); 559 list_del_rcu(&link->c_node); 560 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu); 561 } 562 #else /* !CONFIG_SRCU */ 563 static void __device_link_del(struct kref *kref) 564 { 565 struct device_link *link = container_of(kref, struct device_link, kref); 566 567 dev_info(link->consumer, "Dropping the link to %s\n", 568 dev_name(link->supplier)); 569 570 if (link->flags & DL_FLAG_PM_RUNTIME) 571 pm_runtime_drop_link(link->consumer); 572 573 list_del(&link->s_node); 574 list_del(&link->c_node); 575 device_link_free(link); 576 } 577 #endif /* !CONFIG_SRCU */ 578 579 static void device_link_put_kref(struct device_link *link) 580 { 581 if (link->flags & DL_FLAG_STATELESS) 582 kref_put(&link->kref, __device_link_del); 583 else 584 WARN(1, "Unable to drop a managed device link reference\n"); 585 } 586 587 /** 588 * device_link_del - Delete a stateless link between two devices. 589 * @link: Device link to delete. 590 * 591 * The caller must ensure proper synchronization of this function with runtime 592 * PM. If the link was added multiple times, it needs to be deleted as often. 593 * Care is required for hotplugged devices: Their links are purged on removal 594 * and calling device_link_del() is then no longer allowed. 595 */ 596 void device_link_del(struct device_link *link) 597 { 598 device_links_write_lock(); 599 device_pm_lock(); 600 device_link_put_kref(link); 601 device_pm_unlock(); 602 device_links_write_unlock(); 603 } 604 EXPORT_SYMBOL_GPL(device_link_del); 605 606 /** 607 * device_link_remove - Delete a stateless link between two devices. 608 * @consumer: Consumer end of the link. 609 * @supplier: Supplier end of the link. 610 * 611 * The caller must ensure proper synchronization of this function with runtime 612 * PM. 613 */ 614 void device_link_remove(void *consumer, struct device *supplier) 615 { 616 struct device_link *link; 617 618 if (WARN_ON(consumer == supplier)) 619 return; 620 621 device_links_write_lock(); 622 device_pm_lock(); 623 624 list_for_each_entry(link, &supplier->links.consumers, s_node) { 625 if (link->consumer == consumer) { 626 device_link_put_kref(link); 627 break; 628 } 629 } 630 631 device_pm_unlock(); 632 device_links_write_unlock(); 633 } 634 EXPORT_SYMBOL_GPL(device_link_remove); 635 636 static void device_links_missing_supplier(struct device *dev) 637 { 638 struct device_link *link; 639 640 list_for_each_entry(link, &dev->links.suppliers, c_node) 641 if (link->status == DL_STATE_CONSUMER_PROBE) 642 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 643 } 644 645 /** 646 * device_links_check_suppliers - Check presence of supplier drivers. 647 * @dev: Consumer device. 648 * 649 * Check links from this device to any suppliers. Walk the list of the device's 650 * links to suppliers and see if all of them are available. If not, simply 651 * return -EPROBE_DEFER. 652 * 653 * We need to guarantee that the supplier will not go away after the check has 654 * been positive here. It only can go away in __device_release_driver() and 655 * that function checks the device's links to consumers. This means we need to 656 * mark the link as "consumer probe in progress" to make the supplier removal 657 * wait for us to complete (or bad things may happen). 658 * 659 * Links without the DL_FLAG_MANAGED flag set are ignored. 660 */ 661 int device_links_check_suppliers(struct device *dev) 662 { 663 struct device_link *link; 664 int ret = 0; 665 666 /* 667 * Device waiting for supplier to become available is not allowed to 668 * probe. 669 */ 670 mutex_lock(&wfs_lock); 671 if (!list_empty(&dev->links.needs_suppliers) && 672 dev->links.need_for_probe) { 673 mutex_unlock(&wfs_lock); 674 return -EPROBE_DEFER; 675 } 676 mutex_unlock(&wfs_lock); 677 678 device_links_write_lock(); 679 680 list_for_each_entry(link, &dev->links.suppliers, c_node) { 681 if (!(link->flags & DL_FLAG_MANAGED) || 682 link->flags & DL_FLAG_SYNC_STATE_ONLY) 683 continue; 684 685 if (link->status != DL_STATE_AVAILABLE) { 686 device_links_missing_supplier(dev); 687 ret = -EPROBE_DEFER; 688 break; 689 } 690 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 691 } 692 dev->links.status = DL_DEV_PROBING; 693 694 device_links_write_unlock(); 695 return ret; 696 } 697 698 /** 699 * __device_links_queue_sync_state - Queue a device for sync_state() callback 700 * @dev: Device to call sync_state() on 701 * @list: List head to queue the @dev on 702 * 703 * Queues a device for a sync_state() callback when the device links write lock 704 * isn't held. This allows the sync_state() execution flow to use device links 705 * APIs. The caller must ensure this function is called with 706 * device_links_write_lock() held. 707 * 708 * This function does a get_device() to make sure the device is not freed while 709 * on this list. 710 * 711 * So the caller must also ensure that device_links_flush_sync_list() is called 712 * as soon as the caller releases device_links_write_lock(). This is necessary 713 * to make sure the sync_state() is called in a timely fashion and the 714 * put_device() is called on this device. 715 */ 716 static void __device_links_queue_sync_state(struct device *dev, 717 struct list_head *list) 718 { 719 struct device_link *link; 720 721 if (!dev_has_sync_state(dev)) 722 return; 723 if (dev->state_synced) 724 return; 725 726 list_for_each_entry(link, &dev->links.consumers, s_node) { 727 if (!(link->flags & DL_FLAG_MANAGED)) 728 continue; 729 if (link->status != DL_STATE_ACTIVE) 730 return; 731 } 732 733 /* 734 * Set the flag here to avoid adding the same device to a list more 735 * than once. This can happen if new consumers get added to the device 736 * and probed before the list is flushed. 737 */ 738 dev->state_synced = true; 739 740 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 741 return; 742 743 get_device(dev); 744 list_add_tail(&dev->links.defer_sync, list); 745 } 746 747 /** 748 * device_links_flush_sync_list - Call sync_state() on a list of devices 749 * @list: List of devices to call sync_state() on 750 * @dont_lock_dev: Device for which lock is already held by the caller 751 * 752 * Calls sync_state() on all the devices that have been queued for it. This 753 * function is used in conjunction with __device_links_queue_sync_state(). The 754 * @dont_lock_dev parameter is useful when this function is called from a 755 * context where a device lock is already held. 756 */ 757 static void device_links_flush_sync_list(struct list_head *list, 758 struct device *dont_lock_dev) 759 { 760 struct device *dev, *tmp; 761 762 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 763 list_del_init(&dev->links.defer_sync); 764 765 if (dev != dont_lock_dev) 766 device_lock(dev); 767 768 if (dev->bus->sync_state) 769 dev->bus->sync_state(dev); 770 else if (dev->driver && dev->driver->sync_state) 771 dev->driver->sync_state(dev); 772 773 if (dev != dont_lock_dev) 774 device_unlock(dev); 775 776 put_device(dev); 777 } 778 } 779 780 void device_links_supplier_sync_state_pause(void) 781 { 782 device_links_write_lock(); 783 defer_sync_state_count++; 784 device_links_write_unlock(); 785 } 786 787 void device_links_supplier_sync_state_resume(void) 788 { 789 struct device *dev, *tmp; 790 LIST_HEAD(sync_list); 791 792 device_links_write_lock(); 793 if (!defer_sync_state_count) { 794 WARN(true, "Unmatched sync_state pause/resume!"); 795 goto out; 796 } 797 defer_sync_state_count--; 798 if (defer_sync_state_count) 799 goto out; 800 801 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 802 /* 803 * Delete from deferred_sync list before queuing it to 804 * sync_list because defer_sync is used for both lists. 805 */ 806 list_del_init(&dev->links.defer_sync); 807 __device_links_queue_sync_state(dev, &sync_list); 808 } 809 out: 810 device_links_write_unlock(); 811 812 device_links_flush_sync_list(&sync_list, NULL); 813 } 814 815 static int sync_state_resume_initcall(void) 816 { 817 device_links_supplier_sync_state_resume(); 818 return 0; 819 } 820 late_initcall(sync_state_resume_initcall); 821 822 static void __device_links_supplier_defer_sync(struct device *sup) 823 { 824 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 825 list_add_tail(&sup->links.defer_sync, &deferred_sync); 826 } 827 828 /** 829 * device_links_driver_bound - Update device links after probing its driver. 830 * @dev: Device to update the links for. 831 * 832 * The probe has been successful, so update links from this device to any 833 * consumers by changing their status to "available". 834 * 835 * Also change the status of @dev's links to suppliers to "active". 836 * 837 * Links without the DL_FLAG_MANAGED flag set are ignored. 838 */ 839 void device_links_driver_bound(struct device *dev) 840 { 841 struct device_link *link; 842 LIST_HEAD(sync_list); 843 844 /* 845 * If a device probes successfully, it's expected to have created all 846 * the device links it needs to or make new device links as it needs 847 * them. So, it no longer needs to wait on any suppliers. 848 */ 849 mutex_lock(&wfs_lock); 850 list_del_init(&dev->links.needs_suppliers); 851 mutex_unlock(&wfs_lock); 852 853 device_links_write_lock(); 854 855 list_for_each_entry(link, &dev->links.consumers, s_node) { 856 if (!(link->flags & DL_FLAG_MANAGED)) 857 continue; 858 859 /* 860 * Links created during consumer probe may be in the "consumer 861 * probe" state to start with if the supplier is still probing 862 * when they are created and they may become "active" if the 863 * consumer probe returns first. Skip them here. 864 */ 865 if (link->status == DL_STATE_CONSUMER_PROBE || 866 link->status == DL_STATE_ACTIVE) 867 continue; 868 869 WARN_ON(link->status != DL_STATE_DORMANT); 870 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 871 872 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 873 driver_deferred_probe_add(link->consumer); 874 } 875 876 if (defer_sync_state_count) 877 __device_links_supplier_defer_sync(dev); 878 else 879 __device_links_queue_sync_state(dev, &sync_list); 880 881 list_for_each_entry(link, &dev->links.suppliers, c_node) { 882 if (!(link->flags & DL_FLAG_MANAGED)) 883 continue; 884 885 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 886 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 887 888 if (defer_sync_state_count) 889 __device_links_supplier_defer_sync(link->supplier); 890 else 891 __device_links_queue_sync_state(link->supplier, 892 &sync_list); 893 } 894 895 dev->links.status = DL_DEV_DRIVER_BOUND; 896 897 device_links_write_unlock(); 898 899 device_links_flush_sync_list(&sync_list, dev); 900 } 901 902 static void device_link_drop_managed(struct device_link *link) 903 { 904 link->flags &= ~DL_FLAG_MANAGED; 905 WRITE_ONCE(link->status, DL_STATE_NONE); 906 kref_put(&link->kref, __device_link_del); 907 } 908 909 /** 910 * __device_links_no_driver - Update links of a device without a driver. 911 * @dev: Device without a drvier. 912 * 913 * Delete all non-persistent links from this device to any suppliers. 914 * 915 * Persistent links stay around, but their status is changed to "available", 916 * unless they already are in the "supplier unbind in progress" state in which 917 * case they need not be updated. 918 * 919 * Links without the DL_FLAG_MANAGED flag set are ignored. 920 */ 921 static void __device_links_no_driver(struct device *dev) 922 { 923 struct device_link *link, *ln; 924 925 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 926 if (!(link->flags & DL_FLAG_MANAGED)) 927 continue; 928 929 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 930 device_link_drop_managed(link); 931 else if (link->status == DL_STATE_CONSUMER_PROBE || 932 link->status == DL_STATE_ACTIVE) 933 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 934 } 935 936 dev->links.status = DL_DEV_NO_DRIVER; 937 } 938 939 /** 940 * device_links_no_driver - Update links after failing driver probe. 941 * @dev: Device whose driver has just failed to probe. 942 * 943 * Clean up leftover links to consumers for @dev and invoke 944 * %__device_links_no_driver() to update links to suppliers for it as 945 * appropriate. 946 * 947 * Links without the DL_FLAG_MANAGED flag set are ignored. 948 */ 949 void device_links_no_driver(struct device *dev) 950 { 951 struct device_link *link; 952 953 device_links_write_lock(); 954 955 list_for_each_entry(link, &dev->links.consumers, s_node) { 956 if (!(link->flags & DL_FLAG_MANAGED)) 957 continue; 958 959 /* 960 * The probe has failed, so if the status of the link is 961 * "consumer probe" or "active", it must have been added by 962 * a probing consumer while this device was still probing. 963 * Change its state to "dormant", as it represents a valid 964 * relationship, but it is not functionally meaningful. 965 */ 966 if (link->status == DL_STATE_CONSUMER_PROBE || 967 link->status == DL_STATE_ACTIVE) 968 WRITE_ONCE(link->status, DL_STATE_DORMANT); 969 } 970 971 __device_links_no_driver(dev); 972 973 device_links_write_unlock(); 974 } 975 976 /** 977 * device_links_driver_cleanup - Update links after driver removal. 978 * @dev: Device whose driver has just gone away. 979 * 980 * Update links to consumers for @dev by changing their status to "dormant" and 981 * invoke %__device_links_no_driver() to update links to suppliers for it as 982 * appropriate. 983 * 984 * Links without the DL_FLAG_MANAGED flag set are ignored. 985 */ 986 void device_links_driver_cleanup(struct device *dev) 987 { 988 struct device_link *link, *ln; 989 990 device_links_write_lock(); 991 992 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 993 if (!(link->flags & DL_FLAG_MANAGED)) 994 continue; 995 996 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 997 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 998 999 /* 1000 * autoremove the links between this @dev and its consumer 1001 * devices that are not active, i.e. where the link state 1002 * has moved to DL_STATE_SUPPLIER_UNBIND. 1003 */ 1004 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1005 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1006 device_link_drop_managed(link); 1007 1008 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1009 } 1010 1011 list_del_init(&dev->links.defer_sync); 1012 __device_links_no_driver(dev); 1013 1014 device_links_write_unlock(); 1015 } 1016 1017 /** 1018 * device_links_busy - Check if there are any busy links to consumers. 1019 * @dev: Device to check. 1020 * 1021 * Check each consumer of the device and return 'true' if its link's status 1022 * is one of "consumer probe" or "active" (meaning that the given consumer is 1023 * probing right now or its driver is present). Otherwise, change the link 1024 * state to "supplier unbind" to prevent the consumer from being probed 1025 * successfully going forward. 1026 * 1027 * Return 'false' if there are no probing or active consumers. 1028 * 1029 * Links without the DL_FLAG_MANAGED flag set are ignored. 1030 */ 1031 bool device_links_busy(struct device *dev) 1032 { 1033 struct device_link *link; 1034 bool ret = false; 1035 1036 device_links_write_lock(); 1037 1038 list_for_each_entry(link, &dev->links.consumers, s_node) { 1039 if (!(link->flags & DL_FLAG_MANAGED)) 1040 continue; 1041 1042 if (link->status == DL_STATE_CONSUMER_PROBE 1043 || link->status == DL_STATE_ACTIVE) { 1044 ret = true; 1045 break; 1046 } 1047 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1048 } 1049 1050 dev->links.status = DL_DEV_UNBINDING; 1051 1052 device_links_write_unlock(); 1053 return ret; 1054 } 1055 1056 /** 1057 * device_links_unbind_consumers - Force unbind consumers of the given device. 1058 * @dev: Device to unbind the consumers of. 1059 * 1060 * Walk the list of links to consumers for @dev and if any of them is in the 1061 * "consumer probe" state, wait for all device probes in progress to complete 1062 * and start over. 1063 * 1064 * If that's not the case, change the status of the link to "supplier unbind" 1065 * and check if the link was in the "active" state. If so, force the consumer 1066 * driver to unbind and start over (the consumer will not re-probe as we have 1067 * changed the state of the link already). 1068 * 1069 * Links without the DL_FLAG_MANAGED flag set are ignored. 1070 */ 1071 void device_links_unbind_consumers(struct device *dev) 1072 { 1073 struct device_link *link; 1074 1075 start: 1076 device_links_write_lock(); 1077 1078 list_for_each_entry(link, &dev->links.consumers, s_node) { 1079 enum device_link_state status; 1080 1081 if (!(link->flags & DL_FLAG_MANAGED) || 1082 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1083 continue; 1084 1085 status = link->status; 1086 if (status == DL_STATE_CONSUMER_PROBE) { 1087 device_links_write_unlock(); 1088 1089 wait_for_device_probe(); 1090 goto start; 1091 } 1092 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1093 if (status == DL_STATE_ACTIVE) { 1094 struct device *consumer = link->consumer; 1095 1096 get_device(consumer); 1097 1098 device_links_write_unlock(); 1099 1100 device_release_driver_internal(consumer, NULL, 1101 consumer->parent); 1102 put_device(consumer); 1103 goto start; 1104 } 1105 } 1106 1107 device_links_write_unlock(); 1108 } 1109 1110 /** 1111 * device_links_purge - Delete existing links to other devices. 1112 * @dev: Target device. 1113 */ 1114 static void device_links_purge(struct device *dev) 1115 { 1116 struct device_link *link, *ln; 1117 1118 mutex_lock(&wfs_lock); 1119 list_del(&dev->links.needs_suppliers); 1120 mutex_unlock(&wfs_lock); 1121 1122 /* 1123 * Delete all of the remaining links from this device to any other 1124 * devices (either consumers or suppliers). 1125 */ 1126 device_links_write_lock(); 1127 1128 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1129 WARN_ON(link->status == DL_STATE_ACTIVE); 1130 __device_link_del(&link->kref); 1131 } 1132 1133 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1134 WARN_ON(link->status != DL_STATE_DORMANT && 1135 link->status != DL_STATE_NONE); 1136 __device_link_del(&link->kref); 1137 } 1138 1139 device_links_write_unlock(); 1140 } 1141 1142 /* Device links support end. */ 1143 1144 int (*platform_notify)(struct device *dev) = NULL; 1145 int (*platform_notify_remove)(struct device *dev) = NULL; 1146 static struct kobject *dev_kobj; 1147 struct kobject *sysfs_dev_char_kobj; 1148 struct kobject *sysfs_dev_block_kobj; 1149 1150 static DEFINE_MUTEX(device_hotplug_lock); 1151 1152 void lock_device_hotplug(void) 1153 { 1154 mutex_lock(&device_hotplug_lock); 1155 } 1156 1157 void unlock_device_hotplug(void) 1158 { 1159 mutex_unlock(&device_hotplug_lock); 1160 } 1161 1162 int lock_device_hotplug_sysfs(void) 1163 { 1164 if (mutex_trylock(&device_hotplug_lock)) 1165 return 0; 1166 1167 /* Avoid busy looping (5 ms of sleep should do). */ 1168 msleep(5); 1169 return restart_syscall(); 1170 } 1171 1172 #ifdef CONFIG_BLOCK 1173 static inline int device_is_not_partition(struct device *dev) 1174 { 1175 return !(dev->type == &part_type); 1176 } 1177 #else 1178 static inline int device_is_not_partition(struct device *dev) 1179 { 1180 return 1; 1181 } 1182 #endif 1183 1184 static int 1185 device_platform_notify(struct device *dev, enum kobject_action action) 1186 { 1187 int ret; 1188 1189 ret = acpi_platform_notify(dev, action); 1190 if (ret) 1191 return ret; 1192 1193 ret = software_node_notify(dev, action); 1194 if (ret) 1195 return ret; 1196 1197 if (platform_notify && action == KOBJ_ADD) 1198 platform_notify(dev); 1199 else if (platform_notify_remove && action == KOBJ_REMOVE) 1200 platform_notify_remove(dev); 1201 return 0; 1202 } 1203 1204 /** 1205 * dev_driver_string - Return a device's driver name, if at all possible 1206 * @dev: struct device to get the name of 1207 * 1208 * Will return the device's driver's name if it is bound to a device. If 1209 * the device is not bound to a driver, it will return the name of the bus 1210 * it is attached to. If it is not attached to a bus either, an empty 1211 * string will be returned. 1212 */ 1213 const char *dev_driver_string(const struct device *dev) 1214 { 1215 struct device_driver *drv; 1216 1217 /* dev->driver can change to NULL underneath us because of unbinding, 1218 * so be careful about accessing it. dev->bus and dev->class should 1219 * never change once they are set, so they don't need special care. 1220 */ 1221 drv = READ_ONCE(dev->driver); 1222 return drv ? drv->name : 1223 (dev->bus ? dev->bus->name : 1224 (dev->class ? dev->class->name : "")); 1225 } 1226 EXPORT_SYMBOL(dev_driver_string); 1227 1228 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 1229 1230 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 1231 char *buf) 1232 { 1233 struct device_attribute *dev_attr = to_dev_attr(attr); 1234 struct device *dev = kobj_to_dev(kobj); 1235 ssize_t ret = -EIO; 1236 1237 if (dev_attr->show) 1238 ret = dev_attr->show(dev, dev_attr, buf); 1239 if (ret >= (ssize_t)PAGE_SIZE) { 1240 printk("dev_attr_show: %pS returned bad count\n", 1241 dev_attr->show); 1242 } 1243 return ret; 1244 } 1245 1246 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 1247 const char *buf, size_t count) 1248 { 1249 struct device_attribute *dev_attr = to_dev_attr(attr); 1250 struct device *dev = kobj_to_dev(kobj); 1251 ssize_t ret = -EIO; 1252 1253 if (dev_attr->store) 1254 ret = dev_attr->store(dev, dev_attr, buf, count); 1255 return ret; 1256 } 1257 1258 static const struct sysfs_ops dev_sysfs_ops = { 1259 .show = dev_attr_show, 1260 .store = dev_attr_store, 1261 }; 1262 1263 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 1264 1265 ssize_t device_store_ulong(struct device *dev, 1266 struct device_attribute *attr, 1267 const char *buf, size_t size) 1268 { 1269 struct dev_ext_attribute *ea = to_ext_attr(attr); 1270 int ret; 1271 unsigned long new; 1272 1273 ret = kstrtoul(buf, 0, &new); 1274 if (ret) 1275 return ret; 1276 *(unsigned long *)(ea->var) = new; 1277 /* Always return full write size even if we didn't consume all */ 1278 return size; 1279 } 1280 EXPORT_SYMBOL_GPL(device_store_ulong); 1281 1282 ssize_t device_show_ulong(struct device *dev, 1283 struct device_attribute *attr, 1284 char *buf) 1285 { 1286 struct dev_ext_attribute *ea = to_ext_attr(attr); 1287 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var)); 1288 } 1289 EXPORT_SYMBOL_GPL(device_show_ulong); 1290 1291 ssize_t device_store_int(struct device *dev, 1292 struct device_attribute *attr, 1293 const char *buf, size_t size) 1294 { 1295 struct dev_ext_attribute *ea = to_ext_attr(attr); 1296 int ret; 1297 long new; 1298 1299 ret = kstrtol(buf, 0, &new); 1300 if (ret) 1301 return ret; 1302 1303 if (new > INT_MAX || new < INT_MIN) 1304 return -EINVAL; 1305 *(int *)(ea->var) = new; 1306 /* Always return full write size even if we didn't consume all */ 1307 return size; 1308 } 1309 EXPORT_SYMBOL_GPL(device_store_int); 1310 1311 ssize_t device_show_int(struct device *dev, 1312 struct device_attribute *attr, 1313 char *buf) 1314 { 1315 struct dev_ext_attribute *ea = to_ext_attr(attr); 1316 1317 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var)); 1318 } 1319 EXPORT_SYMBOL_GPL(device_show_int); 1320 1321 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 1322 const char *buf, size_t size) 1323 { 1324 struct dev_ext_attribute *ea = to_ext_attr(attr); 1325 1326 if (strtobool(buf, ea->var) < 0) 1327 return -EINVAL; 1328 1329 return size; 1330 } 1331 EXPORT_SYMBOL_GPL(device_store_bool); 1332 1333 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 1334 char *buf) 1335 { 1336 struct dev_ext_attribute *ea = to_ext_attr(attr); 1337 1338 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var)); 1339 } 1340 EXPORT_SYMBOL_GPL(device_show_bool); 1341 1342 /** 1343 * device_release - free device structure. 1344 * @kobj: device's kobject. 1345 * 1346 * This is called once the reference count for the object 1347 * reaches 0. We forward the call to the device's release 1348 * method, which should handle actually freeing the structure. 1349 */ 1350 static void device_release(struct kobject *kobj) 1351 { 1352 struct device *dev = kobj_to_dev(kobj); 1353 struct device_private *p = dev->p; 1354 1355 /* 1356 * Some platform devices are driven without driver attached 1357 * and managed resources may have been acquired. Make sure 1358 * all resources are released. 1359 * 1360 * Drivers still can add resources into device after device 1361 * is deleted but alive, so release devres here to avoid 1362 * possible memory leak. 1363 */ 1364 devres_release_all(dev); 1365 1366 if (dev->release) 1367 dev->release(dev); 1368 else if (dev->type && dev->type->release) 1369 dev->type->release(dev); 1370 else if (dev->class && dev->class->dev_release) 1371 dev->class->dev_release(dev); 1372 else 1373 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt.\n", 1374 dev_name(dev)); 1375 kfree(p); 1376 } 1377 1378 static const void *device_namespace(struct kobject *kobj) 1379 { 1380 struct device *dev = kobj_to_dev(kobj); 1381 const void *ns = NULL; 1382 1383 if (dev->class && dev->class->ns_type) 1384 ns = dev->class->namespace(dev); 1385 1386 return ns; 1387 } 1388 1389 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) 1390 { 1391 struct device *dev = kobj_to_dev(kobj); 1392 1393 if (dev->class && dev->class->get_ownership) 1394 dev->class->get_ownership(dev, uid, gid); 1395 } 1396 1397 static struct kobj_type device_ktype = { 1398 .release = device_release, 1399 .sysfs_ops = &dev_sysfs_ops, 1400 .namespace = device_namespace, 1401 .get_ownership = device_get_ownership, 1402 }; 1403 1404 1405 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 1406 { 1407 struct kobj_type *ktype = get_ktype(kobj); 1408 1409 if (ktype == &device_ktype) { 1410 struct device *dev = kobj_to_dev(kobj); 1411 if (dev->bus) 1412 return 1; 1413 if (dev->class) 1414 return 1; 1415 } 1416 return 0; 1417 } 1418 1419 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 1420 { 1421 struct device *dev = kobj_to_dev(kobj); 1422 1423 if (dev->bus) 1424 return dev->bus->name; 1425 if (dev->class) 1426 return dev->class->name; 1427 return NULL; 1428 } 1429 1430 static int dev_uevent(struct kset *kset, struct kobject *kobj, 1431 struct kobj_uevent_env *env) 1432 { 1433 struct device *dev = kobj_to_dev(kobj); 1434 int retval = 0; 1435 1436 /* add device node properties if present */ 1437 if (MAJOR(dev->devt)) { 1438 const char *tmp; 1439 const char *name; 1440 umode_t mode = 0; 1441 kuid_t uid = GLOBAL_ROOT_UID; 1442 kgid_t gid = GLOBAL_ROOT_GID; 1443 1444 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 1445 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 1446 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 1447 if (name) { 1448 add_uevent_var(env, "DEVNAME=%s", name); 1449 if (mode) 1450 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 1451 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 1452 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 1453 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 1454 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 1455 kfree(tmp); 1456 } 1457 } 1458 1459 if (dev->type && dev->type->name) 1460 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 1461 1462 if (dev->driver) 1463 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 1464 1465 /* Add common DT information about the device */ 1466 of_device_uevent(dev, env); 1467 1468 /* have the bus specific function add its stuff */ 1469 if (dev->bus && dev->bus->uevent) { 1470 retval = dev->bus->uevent(dev, env); 1471 if (retval) 1472 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 1473 dev_name(dev), __func__, retval); 1474 } 1475 1476 /* have the class specific function add its stuff */ 1477 if (dev->class && dev->class->dev_uevent) { 1478 retval = dev->class->dev_uevent(dev, env); 1479 if (retval) 1480 pr_debug("device: '%s': %s: class uevent() " 1481 "returned %d\n", dev_name(dev), 1482 __func__, retval); 1483 } 1484 1485 /* have the device type specific function add its stuff */ 1486 if (dev->type && dev->type->uevent) { 1487 retval = dev->type->uevent(dev, env); 1488 if (retval) 1489 pr_debug("device: '%s': %s: dev_type uevent() " 1490 "returned %d\n", dev_name(dev), 1491 __func__, retval); 1492 } 1493 1494 return retval; 1495 } 1496 1497 static const struct kset_uevent_ops device_uevent_ops = { 1498 .filter = dev_uevent_filter, 1499 .name = dev_uevent_name, 1500 .uevent = dev_uevent, 1501 }; 1502 1503 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 1504 char *buf) 1505 { 1506 struct kobject *top_kobj; 1507 struct kset *kset; 1508 struct kobj_uevent_env *env = NULL; 1509 int i; 1510 size_t count = 0; 1511 int retval; 1512 1513 /* search the kset, the device belongs to */ 1514 top_kobj = &dev->kobj; 1515 while (!top_kobj->kset && top_kobj->parent) 1516 top_kobj = top_kobj->parent; 1517 if (!top_kobj->kset) 1518 goto out; 1519 1520 kset = top_kobj->kset; 1521 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 1522 goto out; 1523 1524 /* respect filter */ 1525 if (kset->uevent_ops && kset->uevent_ops->filter) 1526 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 1527 goto out; 1528 1529 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 1530 if (!env) 1531 return -ENOMEM; 1532 1533 /* let the kset specific function add its keys */ 1534 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 1535 if (retval) 1536 goto out; 1537 1538 /* copy keys to file */ 1539 for (i = 0; i < env->envp_idx; i++) 1540 count += sprintf(&buf[count], "%s\n", env->envp[i]); 1541 out: 1542 kfree(env); 1543 return count; 1544 } 1545 1546 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 1547 const char *buf, size_t count) 1548 { 1549 int rc; 1550 1551 rc = kobject_synth_uevent(&dev->kobj, buf, count); 1552 1553 if (rc) { 1554 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 1555 return rc; 1556 } 1557 1558 return count; 1559 } 1560 static DEVICE_ATTR_RW(uevent); 1561 1562 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 1563 char *buf) 1564 { 1565 bool val; 1566 1567 device_lock(dev); 1568 val = !dev->offline; 1569 device_unlock(dev); 1570 return sprintf(buf, "%u\n", val); 1571 } 1572 1573 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 1574 const char *buf, size_t count) 1575 { 1576 bool val; 1577 int ret; 1578 1579 ret = strtobool(buf, &val); 1580 if (ret < 0) 1581 return ret; 1582 1583 ret = lock_device_hotplug_sysfs(); 1584 if (ret) 1585 return ret; 1586 1587 ret = val ? device_online(dev) : device_offline(dev); 1588 unlock_device_hotplug(); 1589 return ret < 0 ? ret : count; 1590 } 1591 static DEVICE_ATTR_RW(online); 1592 1593 int device_add_groups(struct device *dev, const struct attribute_group **groups) 1594 { 1595 return sysfs_create_groups(&dev->kobj, groups); 1596 } 1597 EXPORT_SYMBOL_GPL(device_add_groups); 1598 1599 void device_remove_groups(struct device *dev, 1600 const struct attribute_group **groups) 1601 { 1602 sysfs_remove_groups(&dev->kobj, groups); 1603 } 1604 EXPORT_SYMBOL_GPL(device_remove_groups); 1605 1606 union device_attr_group_devres { 1607 const struct attribute_group *group; 1608 const struct attribute_group **groups; 1609 }; 1610 1611 static int devm_attr_group_match(struct device *dev, void *res, void *data) 1612 { 1613 return ((union device_attr_group_devres *)res)->group == data; 1614 } 1615 1616 static void devm_attr_group_remove(struct device *dev, void *res) 1617 { 1618 union device_attr_group_devres *devres = res; 1619 const struct attribute_group *group = devres->group; 1620 1621 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 1622 sysfs_remove_group(&dev->kobj, group); 1623 } 1624 1625 static void devm_attr_groups_remove(struct device *dev, void *res) 1626 { 1627 union device_attr_group_devres *devres = res; 1628 const struct attribute_group **groups = devres->groups; 1629 1630 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 1631 sysfs_remove_groups(&dev->kobj, groups); 1632 } 1633 1634 /** 1635 * devm_device_add_group - given a device, create a managed attribute group 1636 * @dev: The device to create the group for 1637 * @grp: The attribute group to create 1638 * 1639 * This function creates a group for the first time. It will explicitly 1640 * warn and error if any of the attribute files being created already exist. 1641 * 1642 * Returns 0 on success or error code on failure. 1643 */ 1644 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 1645 { 1646 union device_attr_group_devres *devres; 1647 int error; 1648 1649 devres = devres_alloc(devm_attr_group_remove, 1650 sizeof(*devres), GFP_KERNEL); 1651 if (!devres) 1652 return -ENOMEM; 1653 1654 error = sysfs_create_group(&dev->kobj, grp); 1655 if (error) { 1656 devres_free(devres); 1657 return error; 1658 } 1659 1660 devres->group = grp; 1661 devres_add(dev, devres); 1662 return 0; 1663 } 1664 EXPORT_SYMBOL_GPL(devm_device_add_group); 1665 1666 /** 1667 * devm_device_remove_group: remove a managed group from a device 1668 * @dev: device to remove the group from 1669 * @grp: group to remove 1670 * 1671 * This function removes a group of attributes from a device. The attributes 1672 * previously have to have been created for this group, otherwise it will fail. 1673 */ 1674 void devm_device_remove_group(struct device *dev, 1675 const struct attribute_group *grp) 1676 { 1677 WARN_ON(devres_release(dev, devm_attr_group_remove, 1678 devm_attr_group_match, 1679 /* cast away const */ (void *)grp)); 1680 } 1681 EXPORT_SYMBOL_GPL(devm_device_remove_group); 1682 1683 /** 1684 * devm_device_add_groups - create a bunch of managed attribute groups 1685 * @dev: The device to create the group for 1686 * @groups: The attribute groups to create, NULL terminated 1687 * 1688 * This function creates a bunch of managed attribute groups. If an error 1689 * occurs when creating a group, all previously created groups will be 1690 * removed, unwinding everything back to the original state when this 1691 * function was called. It will explicitly warn and error if any of the 1692 * attribute files being created already exist. 1693 * 1694 * Returns 0 on success or error code from sysfs_create_group on failure. 1695 */ 1696 int devm_device_add_groups(struct device *dev, 1697 const struct attribute_group **groups) 1698 { 1699 union device_attr_group_devres *devres; 1700 int error; 1701 1702 devres = devres_alloc(devm_attr_groups_remove, 1703 sizeof(*devres), GFP_KERNEL); 1704 if (!devres) 1705 return -ENOMEM; 1706 1707 error = sysfs_create_groups(&dev->kobj, groups); 1708 if (error) { 1709 devres_free(devres); 1710 return error; 1711 } 1712 1713 devres->groups = groups; 1714 devres_add(dev, devres); 1715 return 0; 1716 } 1717 EXPORT_SYMBOL_GPL(devm_device_add_groups); 1718 1719 /** 1720 * devm_device_remove_groups - remove a list of managed groups 1721 * 1722 * @dev: The device for the groups to be removed from 1723 * @groups: NULL terminated list of groups to be removed 1724 * 1725 * If groups is not NULL, remove the specified groups from the device. 1726 */ 1727 void devm_device_remove_groups(struct device *dev, 1728 const struct attribute_group **groups) 1729 { 1730 WARN_ON(devres_release(dev, devm_attr_groups_remove, 1731 devm_attr_group_match, 1732 /* cast away const */ (void *)groups)); 1733 } 1734 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 1735 1736 static int device_add_attrs(struct device *dev) 1737 { 1738 struct class *class = dev->class; 1739 const struct device_type *type = dev->type; 1740 int error; 1741 1742 if (class) { 1743 error = device_add_groups(dev, class->dev_groups); 1744 if (error) 1745 return error; 1746 } 1747 1748 if (type) { 1749 error = device_add_groups(dev, type->groups); 1750 if (error) 1751 goto err_remove_class_groups; 1752 } 1753 1754 error = device_add_groups(dev, dev->groups); 1755 if (error) 1756 goto err_remove_type_groups; 1757 1758 if (device_supports_offline(dev) && !dev->offline_disabled) { 1759 error = device_create_file(dev, &dev_attr_online); 1760 if (error) 1761 goto err_remove_dev_groups; 1762 } 1763 1764 return 0; 1765 1766 err_remove_dev_groups: 1767 device_remove_groups(dev, dev->groups); 1768 err_remove_type_groups: 1769 if (type) 1770 device_remove_groups(dev, type->groups); 1771 err_remove_class_groups: 1772 if (class) 1773 device_remove_groups(dev, class->dev_groups); 1774 1775 return error; 1776 } 1777 1778 static void device_remove_attrs(struct device *dev) 1779 { 1780 struct class *class = dev->class; 1781 const struct device_type *type = dev->type; 1782 1783 device_remove_file(dev, &dev_attr_online); 1784 device_remove_groups(dev, dev->groups); 1785 1786 if (type) 1787 device_remove_groups(dev, type->groups); 1788 1789 if (class) 1790 device_remove_groups(dev, class->dev_groups); 1791 } 1792 1793 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 1794 char *buf) 1795 { 1796 return print_dev_t(buf, dev->devt); 1797 } 1798 static DEVICE_ATTR_RO(dev); 1799 1800 /* /sys/devices/ */ 1801 struct kset *devices_kset; 1802 1803 /** 1804 * devices_kset_move_before - Move device in the devices_kset's list. 1805 * @deva: Device to move. 1806 * @devb: Device @deva should come before. 1807 */ 1808 static void devices_kset_move_before(struct device *deva, struct device *devb) 1809 { 1810 if (!devices_kset) 1811 return; 1812 pr_debug("devices_kset: Moving %s before %s\n", 1813 dev_name(deva), dev_name(devb)); 1814 spin_lock(&devices_kset->list_lock); 1815 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 1816 spin_unlock(&devices_kset->list_lock); 1817 } 1818 1819 /** 1820 * devices_kset_move_after - Move device in the devices_kset's list. 1821 * @deva: Device to move 1822 * @devb: Device @deva should come after. 1823 */ 1824 static void devices_kset_move_after(struct device *deva, struct device *devb) 1825 { 1826 if (!devices_kset) 1827 return; 1828 pr_debug("devices_kset: Moving %s after %s\n", 1829 dev_name(deva), dev_name(devb)); 1830 spin_lock(&devices_kset->list_lock); 1831 list_move(&deva->kobj.entry, &devb->kobj.entry); 1832 spin_unlock(&devices_kset->list_lock); 1833 } 1834 1835 /** 1836 * devices_kset_move_last - move the device to the end of devices_kset's list. 1837 * @dev: device to move 1838 */ 1839 void devices_kset_move_last(struct device *dev) 1840 { 1841 if (!devices_kset) 1842 return; 1843 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 1844 spin_lock(&devices_kset->list_lock); 1845 list_move_tail(&dev->kobj.entry, &devices_kset->list); 1846 spin_unlock(&devices_kset->list_lock); 1847 } 1848 1849 /** 1850 * device_create_file - create sysfs attribute file for device. 1851 * @dev: device. 1852 * @attr: device attribute descriptor. 1853 */ 1854 int device_create_file(struct device *dev, 1855 const struct device_attribute *attr) 1856 { 1857 int error = 0; 1858 1859 if (dev) { 1860 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 1861 "Attribute %s: write permission without 'store'\n", 1862 attr->attr.name); 1863 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 1864 "Attribute %s: read permission without 'show'\n", 1865 attr->attr.name); 1866 error = sysfs_create_file(&dev->kobj, &attr->attr); 1867 } 1868 1869 return error; 1870 } 1871 EXPORT_SYMBOL_GPL(device_create_file); 1872 1873 /** 1874 * device_remove_file - remove sysfs attribute file. 1875 * @dev: device. 1876 * @attr: device attribute descriptor. 1877 */ 1878 void device_remove_file(struct device *dev, 1879 const struct device_attribute *attr) 1880 { 1881 if (dev) 1882 sysfs_remove_file(&dev->kobj, &attr->attr); 1883 } 1884 EXPORT_SYMBOL_GPL(device_remove_file); 1885 1886 /** 1887 * device_remove_file_self - remove sysfs attribute file from its own method. 1888 * @dev: device. 1889 * @attr: device attribute descriptor. 1890 * 1891 * See kernfs_remove_self() for details. 1892 */ 1893 bool device_remove_file_self(struct device *dev, 1894 const struct device_attribute *attr) 1895 { 1896 if (dev) 1897 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 1898 else 1899 return false; 1900 } 1901 EXPORT_SYMBOL_GPL(device_remove_file_self); 1902 1903 /** 1904 * device_create_bin_file - create sysfs binary attribute file for device. 1905 * @dev: device. 1906 * @attr: device binary attribute descriptor. 1907 */ 1908 int device_create_bin_file(struct device *dev, 1909 const struct bin_attribute *attr) 1910 { 1911 int error = -EINVAL; 1912 if (dev) 1913 error = sysfs_create_bin_file(&dev->kobj, attr); 1914 return error; 1915 } 1916 EXPORT_SYMBOL_GPL(device_create_bin_file); 1917 1918 /** 1919 * device_remove_bin_file - remove sysfs binary attribute file 1920 * @dev: device. 1921 * @attr: device binary attribute descriptor. 1922 */ 1923 void device_remove_bin_file(struct device *dev, 1924 const struct bin_attribute *attr) 1925 { 1926 if (dev) 1927 sysfs_remove_bin_file(&dev->kobj, attr); 1928 } 1929 EXPORT_SYMBOL_GPL(device_remove_bin_file); 1930 1931 static void klist_children_get(struct klist_node *n) 1932 { 1933 struct device_private *p = to_device_private_parent(n); 1934 struct device *dev = p->device; 1935 1936 get_device(dev); 1937 } 1938 1939 static void klist_children_put(struct klist_node *n) 1940 { 1941 struct device_private *p = to_device_private_parent(n); 1942 struct device *dev = p->device; 1943 1944 put_device(dev); 1945 } 1946 1947 /** 1948 * device_initialize - init device structure. 1949 * @dev: device. 1950 * 1951 * This prepares the device for use by other layers by initializing 1952 * its fields. 1953 * It is the first half of device_register(), if called by 1954 * that function, though it can also be called separately, so one 1955 * may use @dev's fields. In particular, get_device()/put_device() 1956 * may be used for reference counting of @dev after calling this 1957 * function. 1958 * 1959 * All fields in @dev must be initialized by the caller to 0, except 1960 * for those explicitly set to some other value. The simplest 1961 * approach is to use kzalloc() to allocate the structure containing 1962 * @dev. 1963 * 1964 * NOTE: Use put_device() to give up your reference instead of freeing 1965 * @dev directly once you have called this function. 1966 */ 1967 void device_initialize(struct device *dev) 1968 { 1969 dev->kobj.kset = devices_kset; 1970 kobject_init(&dev->kobj, &device_ktype); 1971 INIT_LIST_HEAD(&dev->dma_pools); 1972 mutex_init(&dev->mutex); 1973 #ifdef CONFIG_PROVE_LOCKING 1974 mutex_init(&dev->lockdep_mutex); 1975 #endif 1976 lockdep_set_novalidate_class(&dev->mutex); 1977 spin_lock_init(&dev->devres_lock); 1978 INIT_LIST_HEAD(&dev->devres_head); 1979 device_pm_init(dev); 1980 set_dev_node(dev, -1); 1981 #ifdef CONFIG_GENERIC_MSI_IRQ 1982 INIT_LIST_HEAD(&dev->msi_list); 1983 #endif 1984 INIT_LIST_HEAD(&dev->links.consumers); 1985 INIT_LIST_HEAD(&dev->links.suppliers); 1986 INIT_LIST_HEAD(&dev->links.needs_suppliers); 1987 INIT_LIST_HEAD(&dev->links.defer_sync); 1988 dev->links.status = DL_DEV_NO_DRIVER; 1989 } 1990 EXPORT_SYMBOL_GPL(device_initialize); 1991 1992 struct kobject *virtual_device_parent(struct device *dev) 1993 { 1994 static struct kobject *virtual_dir = NULL; 1995 1996 if (!virtual_dir) 1997 virtual_dir = kobject_create_and_add("virtual", 1998 &devices_kset->kobj); 1999 2000 return virtual_dir; 2001 } 2002 2003 struct class_dir { 2004 struct kobject kobj; 2005 struct class *class; 2006 }; 2007 2008 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 2009 2010 static void class_dir_release(struct kobject *kobj) 2011 { 2012 struct class_dir *dir = to_class_dir(kobj); 2013 kfree(dir); 2014 } 2015 2016 static const 2017 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 2018 { 2019 struct class_dir *dir = to_class_dir(kobj); 2020 return dir->class->ns_type; 2021 } 2022 2023 static struct kobj_type class_dir_ktype = { 2024 .release = class_dir_release, 2025 .sysfs_ops = &kobj_sysfs_ops, 2026 .child_ns_type = class_dir_child_ns_type 2027 }; 2028 2029 static struct kobject * 2030 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 2031 { 2032 struct class_dir *dir; 2033 int retval; 2034 2035 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 2036 if (!dir) 2037 return ERR_PTR(-ENOMEM); 2038 2039 dir->class = class; 2040 kobject_init(&dir->kobj, &class_dir_ktype); 2041 2042 dir->kobj.kset = &class->p->glue_dirs; 2043 2044 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 2045 if (retval < 0) { 2046 kobject_put(&dir->kobj); 2047 return ERR_PTR(retval); 2048 } 2049 return &dir->kobj; 2050 } 2051 2052 static DEFINE_MUTEX(gdp_mutex); 2053 2054 static struct kobject *get_device_parent(struct device *dev, 2055 struct device *parent) 2056 { 2057 if (dev->class) { 2058 struct kobject *kobj = NULL; 2059 struct kobject *parent_kobj; 2060 struct kobject *k; 2061 2062 #ifdef CONFIG_BLOCK 2063 /* block disks show up in /sys/block */ 2064 if (sysfs_deprecated && dev->class == &block_class) { 2065 if (parent && parent->class == &block_class) 2066 return &parent->kobj; 2067 return &block_class.p->subsys.kobj; 2068 } 2069 #endif 2070 2071 /* 2072 * If we have no parent, we live in "virtual". 2073 * Class-devices with a non class-device as parent, live 2074 * in a "glue" directory to prevent namespace collisions. 2075 */ 2076 if (parent == NULL) 2077 parent_kobj = virtual_device_parent(dev); 2078 else if (parent->class && !dev->class->ns_type) 2079 return &parent->kobj; 2080 else 2081 parent_kobj = &parent->kobj; 2082 2083 mutex_lock(&gdp_mutex); 2084 2085 /* find our class-directory at the parent and reference it */ 2086 spin_lock(&dev->class->p->glue_dirs.list_lock); 2087 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 2088 if (k->parent == parent_kobj) { 2089 kobj = kobject_get(k); 2090 break; 2091 } 2092 spin_unlock(&dev->class->p->glue_dirs.list_lock); 2093 if (kobj) { 2094 mutex_unlock(&gdp_mutex); 2095 return kobj; 2096 } 2097 2098 /* or create a new class-directory at the parent device */ 2099 k = class_dir_create_and_add(dev->class, parent_kobj); 2100 /* do not emit an uevent for this simple "glue" directory */ 2101 mutex_unlock(&gdp_mutex); 2102 return k; 2103 } 2104 2105 /* subsystems can specify a default root directory for their devices */ 2106 if (!parent && dev->bus && dev->bus->dev_root) 2107 return &dev->bus->dev_root->kobj; 2108 2109 if (parent) 2110 return &parent->kobj; 2111 return NULL; 2112 } 2113 2114 static inline bool live_in_glue_dir(struct kobject *kobj, 2115 struct device *dev) 2116 { 2117 if (!kobj || !dev->class || 2118 kobj->kset != &dev->class->p->glue_dirs) 2119 return false; 2120 return true; 2121 } 2122 2123 static inline struct kobject *get_glue_dir(struct device *dev) 2124 { 2125 return dev->kobj.parent; 2126 } 2127 2128 /* 2129 * make sure cleaning up dir as the last step, we need to make 2130 * sure .release handler of kobject is run with holding the 2131 * global lock 2132 */ 2133 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 2134 { 2135 unsigned int ref; 2136 2137 /* see if we live in a "glue" directory */ 2138 if (!live_in_glue_dir(glue_dir, dev)) 2139 return; 2140 2141 mutex_lock(&gdp_mutex); 2142 /** 2143 * There is a race condition between removing glue directory 2144 * and adding a new device under the glue directory. 2145 * 2146 * CPU1: CPU2: 2147 * 2148 * device_add() 2149 * get_device_parent() 2150 * class_dir_create_and_add() 2151 * kobject_add_internal() 2152 * create_dir() // create glue_dir 2153 * 2154 * device_add() 2155 * get_device_parent() 2156 * kobject_get() // get glue_dir 2157 * 2158 * device_del() 2159 * cleanup_glue_dir() 2160 * kobject_del(glue_dir) 2161 * 2162 * kobject_add() 2163 * kobject_add_internal() 2164 * create_dir() // in glue_dir 2165 * sysfs_create_dir_ns() 2166 * kernfs_create_dir_ns(sd) 2167 * 2168 * sysfs_remove_dir() // glue_dir->sd=NULL 2169 * sysfs_put() // free glue_dir->sd 2170 * 2171 * // sd is freed 2172 * kernfs_new_node(sd) 2173 * kernfs_get(glue_dir) 2174 * kernfs_add_one() 2175 * kernfs_put() 2176 * 2177 * Before CPU1 remove last child device under glue dir, if CPU2 add 2178 * a new device under glue dir, the glue_dir kobject reference count 2179 * will be increase to 2 in kobject_get(k). And CPU2 has been called 2180 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 2181 * and sysfs_put(). This result in glue_dir->sd is freed. 2182 * 2183 * Then the CPU2 will see a stale "empty" but still potentially used 2184 * glue dir around in kernfs_new_node(). 2185 * 2186 * In order to avoid this happening, we also should make sure that 2187 * kernfs_node for glue_dir is released in CPU1 only when refcount 2188 * for glue_dir kobj is 1. 2189 */ 2190 ref = kref_read(&glue_dir->kref); 2191 if (!kobject_has_children(glue_dir) && !--ref) 2192 kobject_del(glue_dir); 2193 kobject_put(glue_dir); 2194 mutex_unlock(&gdp_mutex); 2195 } 2196 2197 static int device_add_class_symlinks(struct device *dev) 2198 { 2199 struct device_node *of_node = dev_of_node(dev); 2200 int error; 2201 2202 if (of_node) { 2203 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 2204 if (error) 2205 dev_warn(dev, "Error %d creating of_node link\n",error); 2206 /* An error here doesn't warrant bringing down the device */ 2207 } 2208 2209 if (!dev->class) 2210 return 0; 2211 2212 error = sysfs_create_link(&dev->kobj, 2213 &dev->class->p->subsys.kobj, 2214 "subsystem"); 2215 if (error) 2216 goto out_devnode; 2217 2218 if (dev->parent && device_is_not_partition(dev)) { 2219 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 2220 "device"); 2221 if (error) 2222 goto out_subsys; 2223 } 2224 2225 #ifdef CONFIG_BLOCK 2226 /* /sys/block has directories and does not need symlinks */ 2227 if (sysfs_deprecated && dev->class == &block_class) 2228 return 0; 2229 #endif 2230 2231 /* link in the class directory pointing to the device */ 2232 error = sysfs_create_link(&dev->class->p->subsys.kobj, 2233 &dev->kobj, dev_name(dev)); 2234 if (error) 2235 goto out_device; 2236 2237 return 0; 2238 2239 out_device: 2240 sysfs_remove_link(&dev->kobj, "device"); 2241 2242 out_subsys: 2243 sysfs_remove_link(&dev->kobj, "subsystem"); 2244 out_devnode: 2245 sysfs_remove_link(&dev->kobj, "of_node"); 2246 return error; 2247 } 2248 2249 static void device_remove_class_symlinks(struct device *dev) 2250 { 2251 if (dev_of_node(dev)) 2252 sysfs_remove_link(&dev->kobj, "of_node"); 2253 2254 if (!dev->class) 2255 return; 2256 2257 if (dev->parent && device_is_not_partition(dev)) 2258 sysfs_remove_link(&dev->kobj, "device"); 2259 sysfs_remove_link(&dev->kobj, "subsystem"); 2260 #ifdef CONFIG_BLOCK 2261 if (sysfs_deprecated && dev->class == &block_class) 2262 return; 2263 #endif 2264 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 2265 } 2266 2267 /** 2268 * dev_set_name - set a device name 2269 * @dev: device 2270 * @fmt: format string for the device's name 2271 */ 2272 int dev_set_name(struct device *dev, const char *fmt, ...) 2273 { 2274 va_list vargs; 2275 int err; 2276 2277 va_start(vargs, fmt); 2278 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 2279 va_end(vargs); 2280 return err; 2281 } 2282 EXPORT_SYMBOL_GPL(dev_set_name); 2283 2284 /** 2285 * device_to_dev_kobj - select a /sys/dev/ directory for the device 2286 * @dev: device 2287 * 2288 * By default we select char/ for new entries. Setting class->dev_obj 2289 * to NULL prevents an entry from being created. class->dev_kobj must 2290 * be set (or cleared) before any devices are registered to the class 2291 * otherwise device_create_sys_dev_entry() and 2292 * device_remove_sys_dev_entry() will disagree about the presence of 2293 * the link. 2294 */ 2295 static struct kobject *device_to_dev_kobj(struct device *dev) 2296 { 2297 struct kobject *kobj; 2298 2299 if (dev->class) 2300 kobj = dev->class->dev_kobj; 2301 else 2302 kobj = sysfs_dev_char_kobj; 2303 2304 return kobj; 2305 } 2306 2307 static int device_create_sys_dev_entry(struct device *dev) 2308 { 2309 struct kobject *kobj = device_to_dev_kobj(dev); 2310 int error = 0; 2311 char devt_str[15]; 2312 2313 if (kobj) { 2314 format_dev_t(devt_str, dev->devt); 2315 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 2316 } 2317 2318 return error; 2319 } 2320 2321 static void device_remove_sys_dev_entry(struct device *dev) 2322 { 2323 struct kobject *kobj = device_to_dev_kobj(dev); 2324 char devt_str[15]; 2325 2326 if (kobj) { 2327 format_dev_t(devt_str, dev->devt); 2328 sysfs_remove_link(kobj, devt_str); 2329 } 2330 } 2331 2332 static int device_private_init(struct device *dev) 2333 { 2334 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 2335 if (!dev->p) 2336 return -ENOMEM; 2337 dev->p->device = dev; 2338 klist_init(&dev->p->klist_children, klist_children_get, 2339 klist_children_put); 2340 INIT_LIST_HEAD(&dev->p->deferred_probe); 2341 return 0; 2342 } 2343 2344 /** 2345 * device_add - add device to device hierarchy. 2346 * @dev: device. 2347 * 2348 * This is part 2 of device_register(), though may be called 2349 * separately _iff_ device_initialize() has been called separately. 2350 * 2351 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 2352 * to the global and sibling lists for the device, then 2353 * adds it to the other relevant subsystems of the driver model. 2354 * 2355 * Do not call this routine or device_register() more than once for 2356 * any device structure. The driver model core is not designed to work 2357 * with devices that get unregistered and then spring back to life. 2358 * (Among other things, it's very hard to guarantee that all references 2359 * to the previous incarnation of @dev have been dropped.) Allocate 2360 * and register a fresh new struct device instead. 2361 * 2362 * NOTE: _Never_ directly free @dev after calling this function, even 2363 * if it returned an error! Always use put_device() to give up your 2364 * reference instead. 2365 * 2366 * Rule of thumb is: if device_add() succeeds, you should call 2367 * device_del() when you want to get rid of it. If device_add() has 2368 * *not* succeeded, use *only* put_device() to drop the reference 2369 * count. 2370 */ 2371 int device_add(struct device *dev) 2372 { 2373 struct device *parent; 2374 struct kobject *kobj; 2375 struct class_interface *class_intf; 2376 int error = -EINVAL, fw_ret; 2377 struct kobject *glue_dir = NULL; 2378 2379 dev = get_device(dev); 2380 if (!dev) 2381 goto done; 2382 2383 if (!dev->p) { 2384 error = device_private_init(dev); 2385 if (error) 2386 goto done; 2387 } 2388 2389 /* 2390 * for statically allocated devices, which should all be converted 2391 * some day, we need to initialize the name. We prevent reading back 2392 * the name, and force the use of dev_name() 2393 */ 2394 if (dev->init_name) { 2395 dev_set_name(dev, "%s", dev->init_name); 2396 dev->init_name = NULL; 2397 } 2398 2399 /* subsystems can specify simple device enumeration */ 2400 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 2401 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 2402 2403 if (!dev_name(dev)) { 2404 error = -EINVAL; 2405 goto name_error; 2406 } 2407 2408 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2409 2410 parent = get_device(dev->parent); 2411 kobj = get_device_parent(dev, parent); 2412 if (IS_ERR(kobj)) { 2413 error = PTR_ERR(kobj); 2414 goto parent_error; 2415 } 2416 if (kobj) 2417 dev->kobj.parent = kobj; 2418 2419 /* use parent numa_node */ 2420 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 2421 set_dev_node(dev, dev_to_node(parent)); 2422 2423 /* first, register with generic layer. */ 2424 /* we require the name to be set before, and pass NULL */ 2425 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 2426 if (error) { 2427 glue_dir = get_glue_dir(dev); 2428 goto Error; 2429 } 2430 2431 /* notify platform of device entry */ 2432 error = device_platform_notify(dev, KOBJ_ADD); 2433 if (error) 2434 goto platform_error; 2435 2436 error = device_create_file(dev, &dev_attr_uevent); 2437 if (error) 2438 goto attrError; 2439 2440 error = device_add_class_symlinks(dev); 2441 if (error) 2442 goto SymlinkError; 2443 error = device_add_attrs(dev); 2444 if (error) 2445 goto AttrsError; 2446 error = bus_add_device(dev); 2447 if (error) 2448 goto BusError; 2449 error = dpm_sysfs_add(dev); 2450 if (error) 2451 goto DPMError; 2452 device_pm_add(dev); 2453 2454 if (MAJOR(dev->devt)) { 2455 error = device_create_file(dev, &dev_attr_dev); 2456 if (error) 2457 goto DevAttrError; 2458 2459 error = device_create_sys_dev_entry(dev); 2460 if (error) 2461 goto SysEntryError; 2462 2463 devtmpfs_create_node(dev); 2464 } 2465 2466 /* Notify clients of device addition. This call must come 2467 * after dpm_sysfs_add() and before kobject_uevent(). 2468 */ 2469 if (dev->bus) 2470 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2471 BUS_NOTIFY_ADD_DEVICE, dev); 2472 2473 kobject_uevent(&dev->kobj, KOBJ_ADD); 2474 2475 if (dev->fwnode && !dev->fwnode->dev) 2476 dev->fwnode->dev = dev; 2477 2478 /* 2479 * Check if any of the other devices (consumers) have been waiting for 2480 * this device (supplier) to be added so that they can create a device 2481 * link to it. 2482 * 2483 * This needs to happen after device_pm_add() because device_link_add() 2484 * requires the supplier be registered before it's called. 2485 * 2486 * But this also needs to happe before bus_probe_device() to make sure 2487 * waiting consumers can link to it before the driver is bound to the 2488 * device and the driver sync_state callback is called for this device. 2489 */ 2490 device_link_add_missing_supplier_links(); 2491 2492 if (fwnode_has_op(dev->fwnode, add_links)) { 2493 fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev); 2494 if (fw_ret == -ENODEV) 2495 device_link_wait_for_mandatory_supplier(dev); 2496 else if (fw_ret) 2497 device_link_wait_for_optional_supplier(dev); 2498 } 2499 2500 bus_probe_device(dev); 2501 if (parent) 2502 klist_add_tail(&dev->p->knode_parent, 2503 &parent->p->klist_children); 2504 2505 if (dev->class) { 2506 mutex_lock(&dev->class->p->mutex); 2507 /* tie the class to the device */ 2508 klist_add_tail(&dev->p->knode_class, 2509 &dev->class->p->klist_devices); 2510 2511 /* notify any interfaces that the device is here */ 2512 list_for_each_entry(class_intf, 2513 &dev->class->p->interfaces, node) 2514 if (class_intf->add_dev) 2515 class_intf->add_dev(dev, class_intf); 2516 mutex_unlock(&dev->class->p->mutex); 2517 } 2518 done: 2519 put_device(dev); 2520 return error; 2521 SysEntryError: 2522 if (MAJOR(dev->devt)) 2523 device_remove_file(dev, &dev_attr_dev); 2524 DevAttrError: 2525 device_pm_remove(dev); 2526 dpm_sysfs_remove(dev); 2527 DPMError: 2528 bus_remove_device(dev); 2529 BusError: 2530 device_remove_attrs(dev); 2531 AttrsError: 2532 device_remove_class_symlinks(dev); 2533 SymlinkError: 2534 device_remove_file(dev, &dev_attr_uevent); 2535 attrError: 2536 device_platform_notify(dev, KOBJ_REMOVE); 2537 platform_error: 2538 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 2539 glue_dir = get_glue_dir(dev); 2540 kobject_del(&dev->kobj); 2541 Error: 2542 cleanup_glue_dir(dev, glue_dir); 2543 parent_error: 2544 put_device(parent); 2545 name_error: 2546 kfree(dev->p); 2547 dev->p = NULL; 2548 goto done; 2549 } 2550 EXPORT_SYMBOL_GPL(device_add); 2551 2552 /** 2553 * device_register - register a device with the system. 2554 * @dev: pointer to the device structure 2555 * 2556 * This happens in two clean steps - initialize the device 2557 * and add it to the system. The two steps can be called 2558 * separately, but this is the easiest and most common. 2559 * I.e. you should only call the two helpers separately if 2560 * have a clearly defined need to use and refcount the device 2561 * before it is added to the hierarchy. 2562 * 2563 * For more information, see the kerneldoc for device_initialize() 2564 * and device_add(). 2565 * 2566 * NOTE: _Never_ directly free @dev after calling this function, even 2567 * if it returned an error! Always use put_device() to give up the 2568 * reference initialized in this function instead. 2569 */ 2570 int device_register(struct device *dev) 2571 { 2572 device_initialize(dev); 2573 return device_add(dev); 2574 } 2575 EXPORT_SYMBOL_GPL(device_register); 2576 2577 /** 2578 * get_device - increment reference count for device. 2579 * @dev: device. 2580 * 2581 * This simply forwards the call to kobject_get(), though 2582 * we do take care to provide for the case that we get a NULL 2583 * pointer passed in. 2584 */ 2585 struct device *get_device(struct device *dev) 2586 { 2587 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 2588 } 2589 EXPORT_SYMBOL_GPL(get_device); 2590 2591 /** 2592 * put_device - decrement reference count. 2593 * @dev: device in question. 2594 */ 2595 void put_device(struct device *dev) 2596 { 2597 /* might_sleep(); */ 2598 if (dev) 2599 kobject_put(&dev->kobj); 2600 } 2601 EXPORT_SYMBOL_GPL(put_device); 2602 2603 bool kill_device(struct device *dev) 2604 { 2605 /* 2606 * Require the device lock and set the "dead" flag to guarantee that 2607 * the update behavior is consistent with the other bitfields near 2608 * it and that we cannot have an asynchronous probe routine trying 2609 * to run while we are tearing out the bus/class/sysfs from 2610 * underneath the device. 2611 */ 2612 lockdep_assert_held(&dev->mutex); 2613 2614 if (dev->p->dead) 2615 return false; 2616 dev->p->dead = true; 2617 return true; 2618 } 2619 EXPORT_SYMBOL_GPL(kill_device); 2620 2621 /** 2622 * device_del - delete device from system. 2623 * @dev: device. 2624 * 2625 * This is the first part of the device unregistration 2626 * sequence. This removes the device from the lists we control 2627 * from here, has it removed from the other driver model 2628 * subsystems it was added to in device_add(), and removes it 2629 * from the kobject hierarchy. 2630 * 2631 * NOTE: this should be called manually _iff_ device_add() was 2632 * also called manually. 2633 */ 2634 void device_del(struct device *dev) 2635 { 2636 struct device *parent = dev->parent; 2637 struct kobject *glue_dir = NULL; 2638 struct class_interface *class_intf; 2639 2640 device_lock(dev); 2641 kill_device(dev); 2642 device_unlock(dev); 2643 2644 if (dev->fwnode && dev->fwnode->dev == dev) 2645 dev->fwnode->dev = NULL; 2646 2647 /* Notify clients of device removal. This call must come 2648 * before dpm_sysfs_remove(). 2649 */ 2650 if (dev->bus) 2651 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2652 BUS_NOTIFY_DEL_DEVICE, dev); 2653 2654 dpm_sysfs_remove(dev); 2655 if (parent) 2656 klist_del(&dev->p->knode_parent); 2657 if (MAJOR(dev->devt)) { 2658 devtmpfs_delete_node(dev); 2659 device_remove_sys_dev_entry(dev); 2660 device_remove_file(dev, &dev_attr_dev); 2661 } 2662 if (dev->class) { 2663 device_remove_class_symlinks(dev); 2664 2665 mutex_lock(&dev->class->p->mutex); 2666 /* notify any interfaces that the device is now gone */ 2667 list_for_each_entry(class_intf, 2668 &dev->class->p->interfaces, node) 2669 if (class_intf->remove_dev) 2670 class_intf->remove_dev(dev, class_intf); 2671 /* remove the device from the class list */ 2672 klist_del(&dev->p->knode_class); 2673 mutex_unlock(&dev->class->p->mutex); 2674 } 2675 device_remove_file(dev, &dev_attr_uevent); 2676 device_remove_attrs(dev); 2677 bus_remove_device(dev); 2678 device_pm_remove(dev); 2679 driver_deferred_probe_del(dev); 2680 device_platform_notify(dev, KOBJ_REMOVE); 2681 device_remove_properties(dev); 2682 device_links_purge(dev); 2683 2684 if (dev->bus) 2685 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2686 BUS_NOTIFY_REMOVED_DEVICE, dev); 2687 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 2688 glue_dir = get_glue_dir(dev); 2689 kobject_del(&dev->kobj); 2690 cleanup_glue_dir(dev, glue_dir); 2691 put_device(parent); 2692 } 2693 EXPORT_SYMBOL_GPL(device_del); 2694 2695 /** 2696 * device_unregister - unregister device from system. 2697 * @dev: device going away. 2698 * 2699 * We do this in two parts, like we do device_register(). First, 2700 * we remove it from all the subsystems with device_del(), then 2701 * we decrement the reference count via put_device(). If that 2702 * is the final reference count, the device will be cleaned up 2703 * via device_release() above. Otherwise, the structure will 2704 * stick around until the final reference to the device is dropped. 2705 */ 2706 void device_unregister(struct device *dev) 2707 { 2708 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2709 device_del(dev); 2710 put_device(dev); 2711 } 2712 EXPORT_SYMBOL_GPL(device_unregister); 2713 2714 static struct device *prev_device(struct klist_iter *i) 2715 { 2716 struct klist_node *n = klist_prev(i); 2717 struct device *dev = NULL; 2718 struct device_private *p; 2719 2720 if (n) { 2721 p = to_device_private_parent(n); 2722 dev = p->device; 2723 } 2724 return dev; 2725 } 2726 2727 static struct device *next_device(struct klist_iter *i) 2728 { 2729 struct klist_node *n = klist_next(i); 2730 struct device *dev = NULL; 2731 struct device_private *p; 2732 2733 if (n) { 2734 p = to_device_private_parent(n); 2735 dev = p->device; 2736 } 2737 return dev; 2738 } 2739 2740 /** 2741 * device_get_devnode - path of device node file 2742 * @dev: device 2743 * @mode: returned file access mode 2744 * @uid: returned file owner 2745 * @gid: returned file group 2746 * @tmp: possibly allocated string 2747 * 2748 * Return the relative path of a possible device node. 2749 * Non-default names may need to allocate a memory to compose 2750 * a name. This memory is returned in tmp and needs to be 2751 * freed by the caller. 2752 */ 2753 const char *device_get_devnode(struct device *dev, 2754 umode_t *mode, kuid_t *uid, kgid_t *gid, 2755 const char **tmp) 2756 { 2757 char *s; 2758 2759 *tmp = NULL; 2760 2761 /* the device type may provide a specific name */ 2762 if (dev->type && dev->type->devnode) 2763 *tmp = dev->type->devnode(dev, mode, uid, gid); 2764 if (*tmp) 2765 return *tmp; 2766 2767 /* the class may provide a specific name */ 2768 if (dev->class && dev->class->devnode) 2769 *tmp = dev->class->devnode(dev, mode); 2770 if (*tmp) 2771 return *tmp; 2772 2773 /* return name without allocation, tmp == NULL */ 2774 if (strchr(dev_name(dev), '!') == NULL) 2775 return dev_name(dev); 2776 2777 /* replace '!' in the name with '/' */ 2778 s = kstrdup(dev_name(dev), GFP_KERNEL); 2779 if (!s) 2780 return NULL; 2781 strreplace(s, '!', '/'); 2782 return *tmp = s; 2783 } 2784 2785 /** 2786 * device_for_each_child - device child iterator. 2787 * @parent: parent struct device. 2788 * @fn: function to be called for each device. 2789 * @data: data for the callback. 2790 * 2791 * Iterate over @parent's child devices, and call @fn for each, 2792 * passing it @data. 2793 * 2794 * We check the return of @fn each time. If it returns anything 2795 * other than 0, we break out and return that value. 2796 */ 2797 int device_for_each_child(struct device *parent, void *data, 2798 int (*fn)(struct device *dev, void *data)) 2799 { 2800 struct klist_iter i; 2801 struct device *child; 2802 int error = 0; 2803 2804 if (!parent->p) 2805 return 0; 2806 2807 klist_iter_init(&parent->p->klist_children, &i); 2808 while (!error && (child = next_device(&i))) 2809 error = fn(child, data); 2810 klist_iter_exit(&i); 2811 return error; 2812 } 2813 EXPORT_SYMBOL_GPL(device_for_each_child); 2814 2815 /** 2816 * device_for_each_child_reverse - device child iterator in reversed order. 2817 * @parent: parent struct device. 2818 * @fn: function to be called for each device. 2819 * @data: data for the callback. 2820 * 2821 * Iterate over @parent's child devices, and call @fn for each, 2822 * passing it @data. 2823 * 2824 * We check the return of @fn each time. If it returns anything 2825 * other than 0, we break out and return that value. 2826 */ 2827 int device_for_each_child_reverse(struct device *parent, void *data, 2828 int (*fn)(struct device *dev, void *data)) 2829 { 2830 struct klist_iter i; 2831 struct device *child; 2832 int error = 0; 2833 2834 if (!parent->p) 2835 return 0; 2836 2837 klist_iter_init(&parent->p->klist_children, &i); 2838 while ((child = prev_device(&i)) && !error) 2839 error = fn(child, data); 2840 klist_iter_exit(&i); 2841 return error; 2842 } 2843 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 2844 2845 /** 2846 * device_find_child - device iterator for locating a particular device. 2847 * @parent: parent struct device 2848 * @match: Callback function to check device 2849 * @data: Data to pass to match function 2850 * 2851 * This is similar to the device_for_each_child() function above, but it 2852 * returns a reference to a device that is 'found' for later use, as 2853 * determined by the @match callback. 2854 * 2855 * The callback should return 0 if the device doesn't match and non-zero 2856 * if it does. If the callback returns non-zero and a reference to the 2857 * current device can be obtained, this function will return to the caller 2858 * and not iterate over any more devices. 2859 * 2860 * NOTE: you will need to drop the reference with put_device() after use. 2861 */ 2862 struct device *device_find_child(struct device *parent, void *data, 2863 int (*match)(struct device *dev, void *data)) 2864 { 2865 struct klist_iter i; 2866 struct device *child; 2867 2868 if (!parent) 2869 return NULL; 2870 2871 klist_iter_init(&parent->p->klist_children, &i); 2872 while ((child = next_device(&i))) 2873 if (match(child, data) && get_device(child)) 2874 break; 2875 klist_iter_exit(&i); 2876 return child; 2877 } 2878 EXPORT_SYMBOL_GPL(device_find_child); 2879 2880 /** 2881 * device_find_child_by_name - device iterator for locating a child device. 2882 * @parent: parent struct device 2883 * @name: name of the child device 2884 * 2885 * This is similar to the device_find_child() function above, but it 2886 * returns a reference to a device that has the name @name. 2887 * 2888 * NOTE: you will need to drop the reference with put_device() after use. 2889 */ 2890 struct device *device_find_child_by_name(struct device *parent, 2891 const char *name) 2892 { 2893 struct klist_iter i; 2894 struct device *child; 2895 2896 if (!parent) 2897 return NULL; 2898 2899 klist_iter_init(&parent->p->klist_children, &i); 2900 while ((child = next_device(&i))) 2901 if (!strcmp(dev_name(child), name) && get_device(child)) 2902 break; 2903 klist_iter_exit(&i); 2904 return child; 2905 } 2906 EXPORT_SYMBOL_GPL(device_find_child_by_name); 2907 2908 int __init devices_init(void) 2909 { 2910 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 2911 if (!devices_kset) 2912 return -ENOMEM; 2913 dev_kobj = kobject_create_and_add("dev", NULL); 2914 if (!dev_kobj) 2915 goto dev_kobj_err; 2916 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 2917 if (!sysfs_dev_block_kobj) 2918 goto block_kobj_err; 2919 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 2920 if (!sysfs_dev_char_kobj) 2921 goto char_kobj_err; 2922 2923 return 0; 2924 2925 char_kobj_err: 2926 kobject_put(sysfs_dev_block_kobj); 2927 block_kobj_err: 2928 kobject_put(dev_kobj); 2929 dev_kobj_err: 2930 kset_unregister(devices_kset); 2931 return -ENOMEM; 2932 } 2933 2934 static int device_check_offline(struct device *dev, void *not_used) 2935 { 2936 int ret; 2937 2938 ret = device_for_each_child(dev, NULL, device_check_offline); 2939 if (ret) 2940 return ret; 2941 2942 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 2943 } 2944 2945 /** 2946 * device_offline - Prepare the device for hot-removal. 2947 * @dev: Device to be put offline. 2948 * 2949 * Execute the device bus type's .offline() callback, if present, to prepare 2950 * the device for a subsequent hot-removal. If that succeeds, the device must 2951 * not be used until either it is removed or its bus type's .online() callback 2952 * is executed. 2953 * 2954 * Call under device_hotplug_lock. 2955 */ 2956 int device_offline(struct device *dev) 2957 { 2958 int ret; 2959 2960 if (dev->offline_disabled) 2961 return -EPERM; 2962 2963 ret = device_for_each_child(dev, NULL, device_check_offline); 2964 if (ret) 2965 return ret; 2966 2967 device_lock(dev); 2968 if (device_supports_offline(dev)) { 2969 if (dev->offline) { 2970 ret = 1; 2971 } else { 2972 ret = dev->bus->offline(dev); 2973 if (!ret) { 2974 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2975 dev->offline = true; 2976 } 2977 } 2978 } 2979 device_unlock(dev); 2980 2981 return ret; 2982 } 2983 2984 /** 2985 * device_online - Put the device back online after successful device_offline(). 2986 * @dev: Device to be put back online. 2987 * 2988 * If device_offline() has been successfully executed for @dev, but the device 2989 * has not been removed subsequently, execute its bus type's .online() callback 2990 * to indicate that the device can be used again. 2991 * 2992 * Call under device_hotplug_lock. 2993 */ 2994 int device_online(struct device *dev) 2995 { 2996 int ret = 0; 2997 2998 device_lock(dev); 2999 if (device_supports_offline(dev)) { 3000 if (dev->offline) { 3001 ret = dev->bus->online(dev); 3002 if (!ret) { 3003 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 3004 dev->offline = false; 3005 } 3006 } else { 3007 ret = 1; 3008 } 3009 } 3010 device_unlock(dev); 3011 3012 return ret; 3013 } 3014 3015 struct root_device { 3016 struct device dev; 3017 struct module *owner; 3018 }; 3019 3020 static inline struct root_device *to_root_device(struct device *d) 3021 { 3022 return container_of(d, struct root_device, dev); 3023 } 3024 3025 static void root_device_release(struct device *dev) 3026 { 3027 kfree(to_root_device(dev)); 3028 } 3029 3030 /** 3031 * __root_device_register - allocate and register a root device 3032 * @name: root device name 3033 * @owner: owner module of the root device, usually THIS_MODULE 3034 * 3035 * This function allocates a root device and registers it 3036 * using device_register(). In order to free the returned 3037 * device, use root_device_unregister(). 3038 * 3039 * Root devices are dummy devices which allow other devices 3040 * to be grouped under /sys/devices. Use this function to 3041 * allocate a root device and then use it as the parent of 3042 * any device which should appear under /sys/devices/{name} 3043 * 3044 * The /sys/devices/{name} directory will also contain a 3045 * 'module' symlink which points to the @owner directory 3046 * in sysfs. 3047 * 3048 * Returns &struct device pointer on success, or ERR_PTR() on error. 3049 * 3050 * Note: You probably want to use root_device_register(). 3051 */ 3052 struct device *__root_device_register(const char *name, struct module *owner) 3053 { 3054 struct root_device *root; 3055 int err = -ENOMEM; 3056 3057 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 3058 if (!root) 3059 return ERR_PTR(err); 3060 3061 err = dev_set_name(&root->dev, "%s", name); 3062 if (err) { 3063 kfree(root); 3064 return ERR_PTR(err); 3065 } 3066 3067 root->dev.release = root_device_release; 3068 3069 err = device_register(&root->dev); 3070 if (err) { 3071 put_device(&root->dev); 3072 return ERR_PTR(err); 3073 } 3074 3075 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 3076 if (owner) { 3077 struct module_kobject *mk = &owner->mkobj; 3078 3079 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 3080 if (err) { 3081 device_unregister(&root->dev); 3082 return ERR_PTR(err); 3083 } 3084 root->owner = owner; 3085 } 3086 #endif 3087 3088 return &root->dev; 3089 } 3090 EXPORT_SYMBOL_GPL(__root_device_register); 3091 3092 /** 3093 * root_device_unregister - unregister and free a root device 3094 * @dev: device going away 3095 * 3096 * This function unregisters and cleans up a device that was created by 3097 * root_device_register(). 3098 */ 3099 void root_device_unregister(struct device *dev) 3100 { 3101 struct root_device *root = to_root_device(dev); 3102 3103 if (root->owner) 3104 sysfs_remove_link(&root->dev.kobj, "module"); 3105 3106 device_unregister(dev); 3107 } 3108 EXPORT_SYMBOL_GPL(root_device_unregister); 3109 3110 3111 static void device_create_release(struct device *dev) 3112 { 3113 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3114 kfree(dev); 3115 } 3116 3117 static __printf(6, 0) struct device * 3118 device_create_groups_vargs(struct class *class, struct device *parent, 3119 dev_t devt, void *drvdata, 3120 const struct attribute_group **groups, 3121 const char *fmt, va_list args) 3122 { 3123 struct device *dev = NULL; 3124 int retval = -ENODEV; 3125 3126 if (class == NULL || IS_ERR(class)) 3127 goto error; 3128 3129 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3130 if (!dev) { 3131 retval = -ENOMEM; 3132 goto error; 3133 } 3134 3135 device_initialize(dev); 3136 dev->devt = devt; 3137 dev->class = class; 3138 dev->parent = parent; 3139 dev->groups = groups; 3140 dev->release = device_create_release; 3141 dev_set_drvdata(dev, drvdata); 3142 3143 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 3144 if (retval) 3145 goto error; 3146 3147 retval = device_add(dev); 3148 if (retval) 3149 goto error; 3150 3151 return dev; 3152 3153 error: 3154 put_device(dev); 3155 return ERR_PTR(retval); 3156 } 3157 3158 /** 3159 * device_create_vargs - creates a device and registers it with sysfs 3160 * @class: pointer to the struct class that this device should be registered to 3161 * @parent: pointer to the parent struct device of this new device, if any 3162 * @devt: the dev_t for the char device to be added 3163 * @drvdata: the data to be added to the device for callbacks 3164 * @fmt: string for the device's name 3165 * @args: va_list for the device's name 3166 * 3167 * This function can be used by char device classes. A struct device 3168 * will be created in sysfs, registered to the specified class. 3169 * 3170 * A "dev" file will be created, showing the dev_t for the device, if 3171 * the dev_t is not 0,0. 3172 * If a pointer to a parent struct device is passed in, the newly created 3173 * struct device will be a child of that device in sysfs. 3174 * The pointer to the struct device will be returned from the call. 3175 * Any further sysfs files that might be required can be created using this 3176 * pointer. 3177 * 3178 * Returns &struct device pointer on success, or ERR_PTR() on error. 3179 * 3180 * Note: the struct class passed to this function must have previously 3181 * been created with a call to class_create(). 3182 */ 3183 struct device *device_create_vargs(struct class *class, struct device *parent, 3184 dev_t devt, void *drvdata, const char *fmt, 3185 va_list args) 3186 { 3187 return device_create_groups_vargs(class, parent, devt, drvdata, NULL, 3188 fmt, args); 3189 } 3190 EXPORT_SYMBOL_GPL(device_create_vargs); 3191 3192 /** 3193 * device_create - creates a device and registers it with sysfs 3194 * @class: pointer to the struct class that this device should be registered to 3195 * @parent: pointer to the parent struct device of this new device, if any 3196 * @devt: the dev_t for the char device to be added 3197 * @drvdata: the data to be added to the device for callbacks 3198 * @fmt: string for the device's name 3199 * 3200 * This function can be used by char device classes. A struct device 3201 * will be created in sysfs, registered to the specified class. 3202 * 3203 * A "dev" file will be created, showing the dev_t for the device, if 3204 * the dev_t is not 0,0. 3205 * If a pointer to a parent struct device is passed in, the newly created 3206 * struct device will be a child of that device in sysfs. 3207 * The pointer to the struct device will be returned from the call. 3208 * Any further sysfs files that might be required can be created using this 3209 * pointer. 3210 * 3211 * Returns &struct device pointer on success, or ERR_PTR() on error. 3212 * 3213 * Note: the struct class passed to this function must have previously 3214 * been created with a call to class_create(). 3215 */ 3216 struct device *device_create(struct class *class, struct device *parent, 3217 dev_t devt, void *drvdata, const char *fmt, ...) 3218 { 3219 va_list vargs; 3220 struct device *dev; 3221 3222 va_start(vargs, fmt); 3223 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs); 3224 va_end(vargs); 3225 return dev; 3226 } 3227 EXPORT_SYMBOL_GPL(device_create); 3228 3229 /** 3230 * device_create_with_groups - creates a device and registers it with sysfs 3231 * @class: pointer to the struct class that this device should be registered to 3232 * @parent: pointer to the parent struct device of this new device, if any 3233 * @devt: the dev_t for the char device to be added 3234 * @drvdata: the data to be added to the device for callbacks 3235 * @groups: NULL-terminated list of attribute groups to be created 3236 * @fmt: string for the device's name 3237 * 3238 * This function can be used by char device classes. A struct device 3239 * will be created in sysfs, registered to the specified class. 3240 * Additional attributes specified in the groups parameter will also 3241 * be created automatically. 3242 * 3243 * A "dev" file will be created, showing the dev_t for the device, if 3244 * the dev_t is not 0,0. 3245 * If a pointer to a parent struct device is passed in, the newly created 3246 * struct device will be a child of that device in sysfs. 3247 * The pointer to the struct device will be returned from the call. 3248 * Any further sysfs files that might be required can be created using this 3249 * pointer. 3250 * 3251 * Returns &struct device pointer on success, or ERR_PTR() on error. 3252 * 3253 * Note: the struct class passed to this function must have previously 3254 * been created with a call to class_create(). 3255 */ 3256 struct device *device_create_with_groups(struct class *class, 3257 struct device *parent, dev_t devt, 3258 void *drvdata, 3259 const struct attribute_group **groups, 3260 const char *fmt, ...) 3261 { 3262 va_list vargs; 3263 struct device *dev; 3264 3265 va_start(vargs, fmt); 3266 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 3267 fmt, vargs); 3268 va_end(vargs); 3269 return dev; 3270 } 3271 EXPORT_SYMBOL_GPL(device_create_with_groups); 3272 3273 /** 3274 * device_destroy - removes a device that was created with device_create() 3275 * @class: pointer to the struct class that this device was registered with 3276 * @devt: the dev_t of the device that was previously registered 3277 * 3278 * This call unregisters and cleans up a device that was created with a 3279 * call to device_create(). 3280 */ 3281 void device_destroy(struct class *class, dev_t devt) 3282 { 3283 struct device *dev; 3284 3285 dev = class_find_device_by_devt(class, devt); 3286 if (dev) { 3287 put_device(dev); 3288 device_unregister(dev); 3289 } 3290 } 3291 EXPORT_SYMBOL_GPL(device_destroy); 3292 3293 /** 3294 * device_rename - renames a device 3295 * @dev: the pointer to the struct device to be renamed 3296 * @new_name: the new name of the device 3297 * 3298 * It is the responsibility of the caller to provide mutual 3299 * exclusion between two different calls of device_rename 3300 * on the same device to ensure that new_name is valid and 3301 * won't conflict with other devices. 3302 * 3303 * Note: Don't call this function. Currently, the networking layer calls this 3304 * function, but that will change. The following text from Kay Sievers offers 3305 * some insight: 3306 * 3307 * Renaming devices is racy at many levels, symlinks and other stuff are not 3308 * replaced atomically, and you get a "move" uevent, but it's not easy to 3309 * connect the event to the old and new device. Device nodes are not renamed at 3310 * all, there isn't even support for that in the kernel now. 3311 * 3312 * In the meantime, during renaming, your target name might be taken by another 3313 * driver, creating conflicts. Or the old name is taken directly after you 3314 * renamed it -- then you get events for the same DEVPATH, before you even see 3315 * the "move" event. It's just a mess, and nothing new should ever rely on 3316 * kernel device renaming. Besides that, it's not even implemented now for 3317 * other things than (driver-core wise very simple) network devices. 3318 * 3319 * We are currently about to change network renaming in udev to completely 3320 * disallow renaming of devices in the same namespace as the kernel uses, 3321 * because we can't solve the problems properly, that arise with swapping names 3322 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 3323 * be allowed to some other name than eth[0-9]*, for the aforementioned 3324 * reasons. 3325 * 3326 * Make up a "real" name in the driver before you register anything, or add 3327 * some other attributes for userspace to find the device, or use udev to add 3328 * symlinks -- but never rename kernel devices later, it's a complete mess. We 3329 * don't even want to get into that and try to implement the missing pieces in 3330 * the core. We really have other pieces to fix in the driver core mess. :) 3331 */ 3332 int device_rename(struct device *dev, const char *new_name) 3333 { 3334 struct kobject *kobj = &dev->kobj; 3335 char *old_device_name = NULL; 3336 int error; 3337 3338 dev = get_device(dev); 3339 if (!dev) 3340 return -EINVAL; 3341 3342 dev_dbg(dev, "renaming to %s\n", new_name); 3343 3344 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 3345 if (!old_device_name) { 3346 error = -ENOMEM; 3347 goto out; 3348 } 3349 3350 if (dev->class) { 3351 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 3352 kobj, old_device_name, 3353 new_name, kobject_namespace(kobj)); 3354 if (error) 3355 goto out; 3356 } 3357 3358 error = kobject_rename(kobj, new_name); 3359 if (error) 3360 goto out; 3361 3362 out: 3363 put_device(dev); 3364 3365 kfree(old_device_name); 3366 3367 return error; 3368 } 3369 EXPORT_SYMBOL_GPL(device_rename); 3370 3371 static int device_move_class_links(struct device *dev, 3372 struct device *old_parent, 3373 struct device *new_parent) 3374 { 3375 int error = 0; 3376 3377 if (old_parent) 3378 sysfs_remove_link(&dev->kobj, "device"); 3379 if (new_parent) 3380 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 3381 "device"); 3382 return error; 3383 } 3384 3385 /** 3386 * device_move - moves a device to a new parent 3387 * @dev: the pointer to the struct device to be moved 3388 * @new_parent: the new parent of the device (can be NULL) 3389 * @dpm_order: how to reorder the dpm_list 3390 */ 3391 int device_move(struct device *dev, struct device *new_parent, 3392 enum dpm_order dpm_order) 3393 { 3394 int error; 3395 struct device *old_parent; 3396 struct kobject *new_parent_kobj; 3397 3398 dev = get_device(dev); 3399 if (!dev) 3400 return -EINVAL; 3401 3402 device_pm_lock(); 3403 new_parent = get_device(new_parent); 3404 new_parent_kobj = get_device_parent(dev, new_parent); 3405 if (IS_ERR(new_parent_kobj)) { 3406 error = PTR_ERR(new_parent_kobj); 3407 put_device(new_parent); 3408 goto out; 3409 } 3410 3411 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 3412 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 3413 error = kobject_move(&dev->kobj, new_parent_kobj); 3414 if (error) { 3415 cleanup_glue_dir(dev, new_parent_kobj); 3416 put_device(new_parent); 3417 goto out; 3418 } 3419 old_parent = dev->parent; 3420 dev->parent = new_parent; 3421 if (old_parent) 3422 klist_remove(&dev->p->knode_parent); 3423 if (new_parent) { 3424 klist_add_tail(&dev->p->knode_parent, 3425 &new_parent->p->klist_children); 3426 set_dev_node(dev, dev_to_node(new_parent)); 3427 } 3428 3429 if (dev->class) { 3430 error = device_move_class_links(dev, old_parent, new_parent); 3431 if (error) { 3432 /* We ignore errors on cleanup since we're hosed anyway... */ 3433 device_move_class_links(dev, new_parent, old_parent); 3434 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 3435 if (new_parent) 3436 klist_remove(&dev->p->knode_parent); 3437 dev->parent = old_parent; 3438 if (old_parent) { 3439 klist_add_tail(&dev->p->knode_parent, 3440 &old_parent->p->klist_children); 3441 set_dev_node(dev, dev_to_node(old_parent)); 3442 } 3443 } 3444 cleanup_glue_dir(dev, new_parent_kobj); 3445 put_device(new_parent); 3446 goto out; 3447 } 3448 } 3449 switch (dpm_order) { 3450 case DPM_ORDER_NONE: 3451 break; 3452 case DPM_ORDER_DEV_AFTER_PARENT: 3453 device_pm_move_after(dev, new_parent); 3454 devices_kset_move_after(dev, new_parent); 3455 break; 3456 case DPM_ORDER_PARENT_BEFORE_DEV: 3457 device_pm_move_before(new_parent, dev); 3458 devices_kset_move_before(new_parent, dev); 3459 break; 3460 case DPM_ORDER_DEV_LAST: 3461 device_pm_move_last(dev); 3462 devices_kset_move_last(dev); 3463 break; 3464 } 3465 3466 put_device(old_parent); 3467 out: 3468 device_pm_unlock(); 3469 put_device(dev); 3470 return error; 3471 } 3472 EXPORT_SYMBOL_GPL(device_move); 3473 3474 /** 3475 * device_shutdown - call ->shutdown() on each device to shutdown. 3476 */ 3477 void device_shutdown(void) 3478 { 3479 struct device *dev, *parent; 3480 3481 wait_for_device_probe(); 3482 device_block_probing(); 3483 3484 cpufreq_suspend(); 3485 3486 spin_lock(&devices_kset->list_lock); 3487 /* 3488 * Walk the devices list backward, shutting down each in turn. 3489 * Beware that device unplug events may also start pulling 3490 * devices offline, even as the system is shutting down. 3491 */ 3492 while (!list_empty(&devices_kset->list)) { 3493 dev = list_entry(devices_kset->list.prev, struct device, 3494 kobj.entry); 3495 3496 /* 3497 * hold reference count of device's parent to 3498 * prevent it from being freed because parent's 3499 * lock is to be held 3500 */ 3501 parent = get_device(dev->parent); 3502 get_device(dev); 3503 /* 3504 * Make sure the device is off the kset list, in the 3505 * event that dev->*->shutdown() doesn't remove it. 3506 */ 3507 list_del_init(&dev->kobj.entry); 3508 spin_unlock(&devices_kset->list_lock); 3509 3510 /* hold lock to avoid race with probe/release */ 3511 if (parent) 3512 device_lock(parent); 3513 device_lock(dev); 3514 3515 /* Don't allow any more runtime suspends */ 3516 pm_runtime_get_noresume(dev); 3517 pm_runtime_barrier(dev); 3518 3519 if (dev->class && dev->class->shutdown_pre) { 3520 if (initcall_debug) 3521 dev_info(dev, "shutdown_pre\n"); 3522 dev->class->shutdown_pre(dev); 3523 } 3524 if (dev->bus && dev->bus->shutdown) { 3525 if (initcall_debug) 3526 dev_info(dev, "shutdown\n"); 3527 dev->bus->shutdown(dev); 3528 } else if (dev->driver && dev->driver->shutdown) { 3529 if (initcall_debug) 3530 dev_info(dev, "shutdown\n"); 3531 dev->driver->shutdown(dev); 3532 } 3533 3534 device_unlock(dev); 3535 if (parent) 3536 device_unlock(parent); 3537 3538 put_device(dev); 3539 put_device(parent); 3540 3541 spin_lock(&devices_kset->list_lock); 3542 } 3543 spin_unlock(&devices_kset->list_lock); 3544 } 3545 3546 /* 3547 * Device logging functions 3548 */ 3549 3550 #ifdef CONFIG_PRINTK 3551 static int 3552 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen) 3553 { 3554 const char *subsys; 3555 size_t pos = 0; 3556 3557 if (dev->class) 3558 subsys = dev->class->name; 3559 else if (dev->bus) 3560 subsys = dev->bus->name; 3561 else 3562 return 0; 3563 3564 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys); 3565 if (pos >= hdrlen) 3566 goto overflow; 3567 3568 /* 3569 * Add device identifier DEVICE=: 3570 * b12:8 block dev_t 3571 * c127:3 char dev_t 3572 * n8 netdev ifindex 3573 * +sound:card0 subsystem:devname 3574 */ 3575 if (MAJOR(dev->devt)) { 3576 char c; 3577 3578 if (strcmp(subsys, "block") == 0) 3579 c = 'b'; 3580 else 3581 c = 'c'; 3582 pos++; 3583 pos += snprintf(hdr + pos, hdrlen - pos, 3584 "DEVICE=%c%u:%u", 3585 c, MAJOR(dev->devt), MINOR(dev->devt)); 3586 } else if (strcmp(subsys, "net") == 0) { 3587 struct net_device *net = to_net_dev(dev); 3588 3589 pos++; 3590 pos += snprintf(hdr + pos, hdrlen - pos, 3591 "DEVICE=n%u", net->ifindex); 3592 } else { 3593 pos++; 3594 pos += snprintf(hdr + pos, hdrlen - pos, 3595 "DEVICE=+%s:%s", subsys, dev_name(dev)); 3596 } 3597 3598 if (pos >= hdrlen) 3599 goto overflow; 3600 3601 return pos; 3602 3603 overflow: 3604 dev_WARN(dev, "device/subsystem name too long"); 3605 return 0; 3606 } 3607 3608 int dev_vprintk_emit(int level, const struct device *dev, 3609 const char *fmt, va_list args) 3610 { 3611 char hdr[128]; 3612 size_t hdrlen; 3613 3614 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr)); 3615 3616 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args); 3617 } 3618 EXPORT_SYMBOL(dev_vprintk_emit); 3619 3620 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 3621 { 3622 va_list args; 3623 int r; 3624 3625 va_start(args, fmt); 3626 3627 r = dev_vprintk_emit(level, dev, fmt, args); 3628 3629 va_end(args); 3630 3631 return r; 3632 } 3633 EXPORT_SYMBOL(dev_printk_emit); 3634 3635 static void __dev_printk(const char *level, const struct device *dev, 3636 struct va_format *vaf) 3637 { 3638 if (dev) 3639 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 3640 dev_driver_string(dev), dev_name(dev), vaf); 3641 else 3642 printk("%s(NULL device *): %pV", level, vaf); 3643 } 3644 3645 void dev_printk(const char *level, const struct device *dev, 3646 const char *fmt, ...) 3647 { 3648 struct va_format vaf; 3649 va_list args; 3650 3651 va_start(args, fmt); 3652 3653 vaf.fmt = fmt; 3654 vaf.va = &args; 3655 3656 __dev_printk(level, dev, &vaf); 3657 3658 va_end(args); 3659 } 3660 EXPORT_SYMBOL(dev_printk); 3661 3662 #define define_dev_printk_level(func, kern_level) \ 3663 void func(const struct device *dev, const char *fmt, ...) \ 3664 { \ 3665 struct va_format vaf; \ 3666 va_list args; \ 3667 \ 3668 va_start(args, fmt); \ 3669 \ 3670 vaf.fmt = fmt; \ 3671 vaf.va = &args; \ 3672 \ 3673 __dev_printk(kern_level, dev, &vaf); \ 3674 \ 3675 va_end(args); \ 3676 } \ 3677 EXPORT_SYMBOL(func); 3678 3679 define_dev_printk_level(_dev_emerg, KERN_EMERG); 3680 define_dev_printk_level(_dev_alert, KERN_ALERT); 3681 define_dev_printk_level(_dev_crit, KERN_CRIT); 3682 define_dev_printk_level(_dev_err, KERN_ERR); 3683 define_dev_printk_level(_dev_warn, KERN_WARNING); 3684 define_dev_printk_level(_dev_notice, KERN_NOTICE); 3685 define_dev_printk_level(_dev_info, KERN_INFO); 3686 3687 #endif 3688 3689 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 3690 { 3691 return fwnode && !IS_ERR(fwnode->secondary); 3692 } 3693 3694 /** 3695 * set_primary_fwnode - Change the primary firmware node of a given device. 3696 * @dev: Device to handle. 3697 * @fwnode: New primary firmware node of the device. 3698 * 3699 * Set the device's firmware node pointer to @fwnode, but if a secondary 3700 * firmware node of the device is present, preserve it. 3701 */ 3702 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 3703 { 3704 if (fwnode) { 3705 struct fwnode_handle *fn = dev->fwnode; 3706 3707 if (fwnode_is_primary(fn)) 3708 fn = fn->secondary; 3709 3710 if (fn) { 3711 WARN_ON(fwnode->secondary); 3712 fwnode->secondary = fn; 3713 } 3714 dev->fwnode = fwnode; 3715 } else { 3716 dev->fwnode = fwnode_is_primary(dev->fwnode) ? 3717 dev->fwnode->secondary : NULL; 3718 } 3719 } 3720 EXPORT_SYMBOL_GPL(set_primary_fwnode); 3721 3722 /** 3723 * set_secondary_fwnode - Change the secondary firmware node of a given device. 3724 * @dev: Device to handle. 3725 * @fwnode: New secondary firmware node of the device. 3726 * 3727 * If a primary firmware node of the device is present, set its secondary 3728 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 3729 * @fwnode. 3730 */ 3731 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 3732 { 3733 if (fwnode) 3734 fwnode->secondary = ERR_PTR(-ENODEV); 3735 3736 if (fwnode_is_primary(dev->fwnode)) 3737 dev->fwnode->secondary = fwnode; 3738 else 3739 dev->fwnode = fwnode; 3740 } 3741 3742 /** 3743 * device_set_of_node_from_dev - reuse device-tree node of another device 3744 * @dev: device whose device-tree node is being set 3745 * @dev2: device whose device-tree node is being reused 3746 * 3747 * Takes another reference to the new device-tree node after first dropping 3748 * any reference held to the old node. 3749 */ 3750 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 3751 { 3752 of_node_put(dev->of_node); 3753 dev->of_node = of_node_get(dev2->of_node); 3754 dev->of_node_reused = true; 3755 } 3756 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 3757 3758 int device_match_name(struct device *dev, const void *name) 3759 { 3760 return sysfs_streq(dev_name(dev), name); 3761 } 3762 EXPORT_SYMBOL_GPL(device_match_name); 3763 3764 int device_match_of_node(struct device *dev, const void *np) 3765 { 3766 return dev->of_node == np; 3767 } 3768 EXPORT_SYMBOL_GPL(device_match_of_node); 3769 3770 int device_match_fwnode(struct device *dev, const void *fwnode) 3771 { 3772 return dev_fwnode(dev) == fwnode; 3773 } 3774 EXPORT_SYMBOL_GPL(device_match_fwnode); 3775 3776 int device_match_devt(struct device *dev, const void *pdevt) 3777 { 3778 return dev->devt == *(dev_t *)pdevt; 3779 } 3780 EXPORT_SYMBOL_GPL(device_match_devt); 3781 3782 int device_match_acpi_dev(struct device *dev, const void *adev) 3783 { 3784 return ACPI_COMPANION(dev) == adev; 3785 } 3786 EXPORT_SYMBOL(device_match_acpi_dev); 3787 3788 int device_match_any(struct device *dev, const void *unused) 3789 { 3790 return 1; 3791 } 3792 EXPORT_SYMBOL_GPL(device_match_any); 3793