xref: /openbmc/linux/drivers/base/core.c (revision 32c2e6dd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/sysfs.h>
31 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
32 
33 #include "base.h"
34 #include "power/power.h"
35 
36 #ifdef CONFIG_SYSFS_DEPRECATED
37 #ifdef CONFIG_SYSFS_DEPRECATED_V2
38 long sysfs_deprecated = 1;
39 #else
40 long sysfs_deprecated = 0;
41 #endif
42 static int __init sysfs_deprecated_setup(char *arg)
43 {
44 	return kstrtol(arg, 10, &sysfs_deprecated);
45 }
46 early_param("sysfs.deprecated", sysfs_deprecated_setup);
47 #endif
48 
49 /* Device links support. */
50 static LIST_HEAD(deferred_sync);
51 static unsigned int defer_sync_state_count = 1;
52 static DEFINE_MUTEX(fwnode_link_lock);
53 static bool fw_devlink_is_permissive(void);
54 
55 /**
56  * fwnode_link_add - Create a link between two fwnode_handles.
57  * @con: Consumer end of the link.
58  * @sup: Supplier end of the link.
59  *
60  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
61  * represents the detail that the firmware lists @sup fwnode as supplying a
62  * resource to @con.
63  *
64  * The driver core will use the fwnode link to create a device link between the
65  * two device objects corresponding to @con and @sup when they are created. The
66  * driver core will automatically delete the fwnode link between @con and @sup
67  * after doing that.
68  *
69  * Attempts to create duplicate links between the same pair of fwnode handles
70  * are ignored and there is no reference counting.
71  */
72 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
73 {
74 	struct fwnode_link *link;
75 	int ret = 0;
76 
77 	mutex_lock(&fwnode_link_lock);
78 
79 	list_for_each_entry(link, &sup->consumers, s_hook)
80 		if (link->consumer == con)
81 			goto out;
82 
83 	link = kzalloc(sizeof(*link), GFP_KERNEL);
84 	if (!link) {
85 		ret = -ENOMEM;
86 		goto out;
87 	}
88 
89 	link->supplier = sup;
90 	INIT_LIST_HEAD(&link->s_hook);
91 	link->consumer = con;
92 	INIT_LIST_HEAD(&link->c_hook);
93 
94 	list_add(&link->s_hook, &sup->consumers);
95 	list_add(&link->c_hook, &con->suppliers);
96 out:
97 	mutex_unlock(&fwnode_link_lock);
98 
99 	return ret;
100 }
101 
102 /**
103  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
104  * @fwnode: fwnode whose supplier links need to be deleted
105  *
106  * Deletes all supplier links connecting directly to @fwnode.
107  */
108 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
109 {
110 	struct fwnode_link *link, *tmp;
111 
112 	mutex_lock(&fwnode_link_lock);
113 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
114 		list_del(&link->s_hook);
115 		list_del(&link->c_hook);
116 		kfree(link);
117 	}
118 	mutex_unlock(&fwnode_link_lock);
119 }
120 
121 /**
122  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
123  * @fwnode: fwnode whose consumer links need to be deleted
124  *
125  * Deletes all consumer links connecting directly to @fwnode.
126  */
127 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
128 {
129 	struct fwnode_link *link, *tmp;
130 
131 	mutex_lock(&fwnode_link_lock);
132 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
133 		list_del(&link->s_hook);
134 		list_del(&link->c_hook);
135 		kfree(link);
136 	}
137 	mutex_unlock(&fwnode_link_lock);
138 }
139 
140 /**
141  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
142  * @fwnode: fwnode whose links needs to be deleted
143  *
144  * Deletes all links connecting directly to a fwnode.
145  */
146 void fwnode_links_purge(struct fwnode_handle *fwnode)
147 {
148 	fwnode_links_purge_suppliers(fwnode);
149 	fwnode_links_purge_consumers(fwnode);
150 }
151 
152 static void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
153 {
154 	struct fwnode_handle *child;
155 
156 	/* Don't purge consumer links of an added child */
157 	if (fwnode->dev)
158 		return;
159 
160 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
161 	fwnode_links_purge_consumers(fwnode);
162 
163 	fwnode_for_each_available_child_node(fwnode, child)
164 		fw_devlink_purge_absent_suppliers(child);
165 }
166 
167 #ifdef CONFIG_SRCU
168 static DEFINE_MUTEX(device_links_lock);
169 DEFINE_STATIC_SRCU(device_links_srcu);
170 
171 static inline void device_links_write_lock(void)
172 {
173 	mutex_lock(&device_links_lock);
174 }
175 
176 static inline void device_links_write_unlock(void)
177 {
178 	mutex_unlock(&device_links_lock);
179 }
180 
181 int device_links_read_lock(void) __acquires(&device_links_srcu)
182 {
183 	return srcu_read_lock(&device_links_srcu);
184 }
185 
186 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
187 {
188 	srcu_read_unlock(&device_links_srcu, idx);
189 }
190 
191 int device_links_read_lock_held(void)
192 {
193 	return srcu_read_lock_held(&device_links_srcu);
194 }
195 #else /* !CONFIG_SRCU */
196 static DECLARE_RWSEM(device_links_lock);
197 
198 static inline void device_links_write_lock(void)
199 {
200 	down_write(&device_links_lock);
201 }
202 
203 static inline void device_links_write_unlock(void)
204 {
205 	up_write(&device_links_lock);
206 }
207 
208 int device_links_read_lock(void)
209 {
210 	down_read(&device_links_lock);
211 	return 0;
212 }
213 
214 void device_links_read_unlock(int not_used)
215 {
216 	up_read(&device_links_lock);
217 }
218 
219 #ifdef CONFIG_DEBUG_LOCK_ALLOC
220 int device_links_read_lock_held(void)
221 {
222 	return lockdep_is_held(&device_links_lock);
223 }
224 #endif
225 #endif /* !CONFIG_SRCU */
226 
227 static bool device_is_ancestor(struct device *dev, struct device *target)
228 {
229 	while (target->parent) {
230 		target = target->parent;
231 		if (dev == target)
232 			return true;
233 	}
234 	return false;
235 }
236 
237 /**
238  * device_is_dependent - Check if one device depends on another one
239  * @dev: Device to check dependencies for.
240  * @target: Device to check against.
241  *
242  * Check if @target depends on @dev or any device dependent on it (its child or
243  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
244  */
245 int device_is_dependent(struct device *dev, void *target)
246 {
247 	struct device_link *link;
248 	int ret;
249 
250 	/*
251 	 * The "ancestors" check is needed to catch the case when the target
252 	 * device has not been completely initialized yet and it is still
253 	 * missing from the list of children of its parent device.
254 	 */
255 	if (dev == target || device_is_ancestor(dev, target))
256 		return 1;
257 
258 	ret = device_for_each_child(dev, target, device_is_dependent);
259 	if (ret)
260 		return ret;
261 
262 	list_for_each_entry(link, &dev->links.consumers, s_node) {
263 		if ((link->flags & ~DL_FLAG_INFERRED) ==
264 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
265 			continue;
266 
267 		if (link->consumer == target)
268 			return 1;
269 
270 		ret = device_is_dependent(link->consumer, target);
271 		if (ret)
272 			break;
273 	}
274 	return ret;
275 }
276 
277 static void device_link_init_status(struct device_link *link,
278 				    struct device *consumer,
279 				    struct device *supplier)
280 {
281 	switch (supplier->links.status) {
282 	case DL_DEV_PROBING:
283 		switch (consumer->links.status) {
284 		case DL_DEV_PROBING:
285 			/*
286 			 * A consumer driver can create a link to a supplier
287 			 * that has not completed its probing yet as long as it
288 			 * knows that the supplier is already functional (for
289 			 * example, it has just acquired some resources from the
290 			 * supplier).
291 			 */
292 			link->status = DL_STATE_CONSUMER_PROBE;
293 			break;
294 		default:
295 			link->status = DL_STATE_DORMANT;
296 			break;
297 		}
298 		break;
299 	case DL_DEV_DRIVER_BOUND:
300 		switch (consumer->links.status) {
301 		case DL_DEV_PROBING:
302 			link->status = DL_STATE_CONSUMER_PROBE;
303 			break;
304 		case DL_DEV_DRIVER_BOUND:
305 			link->status = DL_STATE_ACTIVE;
306 			break;
307 		default:
308 			link->status = DL_STATE_AVAILABLE;
309 			break;
310 		}
311 		break;
312 	case DL_DEV_UNBINDING:
313 		link->status = DL_STATE_SUPPLIER_UNBIND;
314 		break;
315 	default:
316 		link->status = DL_STATE_DORMANT;
317 		break;
318 	}
319 }
320 
321 static int device_reorder_to_tail(struct device *dev, void *not_used)
322 {
323 	struct device_link *link;
324 
325 	/*
326 	 * Devices that have not been registered yet will be put to the ends
327 	 * of the lists during the registration, so skip them here.
328 	 */
329 	if (device_is_registered(dev))
330 		devices_kset_move_last(dev);
331 
332 	if (device_pm_initialized(dev))
333 		device_pm_move_last(dev);
334 
335 	device_for_each_child(dev, NULL, device_reorder_to_tail);
336 	list_for_each_entry(link, &dev->links.consumers, s_node) {
337 		if ((link->flags & ~DL_FLAG_INFERRED) ==
338 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
339 			continue;
340 		device_reorder_to_tail(link->consumer, NULL);
341 	}
342 
343 	return 0;
344 }
345 
346 /**
347  * device_pm_move_to_tail - Move set of devices to the end of device lists
348  * @dev: Device to move
349  *
350  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
351  *
352  * It moves the @dev along with all of its children and all of its consumers
353  * to the ends of the device_kset and dpm_list, recursively.
354  */
355 void device_pm_move_to_tail(struct device *dev)
356 {
357 	int idx;
358 
359 	idx = device_links_read_lock();
360 	device_pm_lock();
361 	device_reorder_to_tail(dev, NULL);
362 	device_pm_unlock();
363 	device_links_read_unlock(idx);
364 }
365 
366 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
367 
368 static ssize_t status_show(struct device *dev,
369 			   struct device_attribute *attr, char *buf)
370 {
371 	const char *output;
372 
373 	switch (to_devlink(dev)->status) {
374 	case DL_STATE_NONE:
375 		output = "not tracked";
376 		break;
377 	case DL_STATE_DORMANT:
378 		output = "dormant";
379 		break;
380 	case DL_STATE_AVAILABLE:
381 		output = "available";
382 		break;
383 	case DL_STATE_CONSUMER_PROBE:
384 		output = "consumer probing";
385 		break;
386 	case DL_STATE_ACTIVE:
387 		output = "active";
388 		break;
389 	case DL_STATE_SUPPLIER_UNBIND:
390 		output = "supplier unbinding";
391 		break;
392 	default:
393 		output = "unknown";
394 		break;
395 	}
396 
397 	return sysfs_emit(buf, "%s\n", output);
398 }
399 static DEVICE_ATTR_RO(status);
400 
401 static ssize_t auto_remove_on_show(struct device *dev,
402 				   struct device_attribute *attr, char *buf)
403 {
404 	struct device_link *link = to_devlink(dev);
405 	const char *output;
406 
407 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
408 		output = "supplier unbind";
409 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
410 		output = "consumer unbind";
411 	else
412 		output = "never";
413 
414 	return sysfs_emit(buf, "%s\n", output);
415 }
416 static DEVICE_ATTR_RO(auto_remove_on);
417 
418 static ssize_t runtime_pm_show(struct device *dev,
419 			       struct device_attribute *attr, char *buf)
420 {
421 	struct device_link *link = to_devlink(dev);
422 
423 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
424 }
425 static DEVICE_ATTR_RO(runtime_pm);
426 
427 static ssize_t sync_state_only_show(struct device *dev,
428 				    struct device_attribute *attr, char *buf)
429 {
430 	struct device_link *link = to_devlink(dev);
431 
432 	return sysfs_emit(buf, "%d\n",
433 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
434 }
435 static DEVICE_ATTR_RO(sync_state_only);
436 
437 static struct attribute *devlink_attrs[] = {
438 	&dev_attr_status.attr,
439 	&dev_attr_auto_remove_on.attr,
440 	&dev_attr_runtime_pm.attr,
441 	&dev_attr_sync_state_only.attr,
442 	NULL,
443 };
444 ATTRIBUTE_GROUPS(devlink);
445 
446 static void device_link_free(struct device_link *link)
447 {
448 	while (refcount_dec_not_one(&link->rpm_active))
449 		pm_runtime_put(link->supplier);
450 
451 	put_device(link->consumer);
452 	put_device(link->supplier);
453 	kfree(link);
454 }
455 
456 #ifdef CONFIG_SRCU
457 static void __device_link_free_srcu(struct rcu_head *rhead)
458 {
459 	device_link_free(container_of(rhead, struct device_link, rcu_head));
460 }
461 
462 static void devlink_dev_release(struct device *dev)
463 {
464 	struct device_link *link = to_devlink(dev);
465 
466 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
467 }
468 #else
469 static void devlink_dev_release(struct device *dev)
470 {
471 	device_link_free(to_devlink(dev));
472 }
473 #endif
474 
475 static struct class devlink_class = {
476 	.name = "devlink",
477 	.owner = THIS_MODULE,
478 	.dev_groups = devlink_groups,
479 	.dev_release = devlink_dev_release,
480 };
481 
482 static int devlink_add_symlinks(struct device *dev,
483 				struct class_interface *class_intf)
484 {
485 	int ret;
486 	size_t len;
487 	struct device_link *link = to_devlink(dev);
488 	struct device *sup = link->supplier;
489 	struct device *con = link->consumer;
490 	char *buf;
491 
492 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
493 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
494 	len += strlen(":");
495 	len += strlen("supplier:") + 1;
496 	buf = kzalloc(len, GFP_KERNEL);
497 	if (!buf)
498 		return -ENOMEM;
499 
500 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
501 	if (ret)
502 		goto out;
503 
504 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
505 	if (ret)
506 		goto err_con;
507 
508 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
509 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
510 	if (ret)
511 		goto err_con_dev;
512 
513 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
514 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
515 	if (ret)
516 		goto err_sup_dev;
517 
518 	goto out;
519 
520 err_sup_dev:
521 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
522 	sysfs_remove_link(&sup->kobj, buf);
523 err_con_dev:
524 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
525 err_con:
526 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
527 out:
528 	kfree(buf);
529 	return ret;
530 }
531 
532 static void devlink_remove_symlinks(struct device *dev,
533 				   struct class_interface *class_intf)
534 {
535 	struct device_link *link = to_devlink(dev);
536 	size_t len;
537 	struct device *sup = link->supplier;
538 	struct device *con = link->consumer;
539 	char *buf;
540 
541 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
542 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
543 
544 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
545 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
546 	len += strlen(":");
547 	len += strlen("supplier:") + 1;
548 	buf = kzalloc(len, GFP_KERNEL);
549 	if (!buf) {
550 		WARN(1, "Unable to properly free device link symlinks!\n");
551 		return;
552 	}
553 
554 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
555 	sysfs_remove_link(&con->kobj, buf);
556 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
557 	sysfs_remove_link(&sup->kobj, buf);
558 	kfree(buf);
559 }
560 
561 static struct class_interface devlink_class_intf = {
562 	.class = &devlink_class,
563 	.add_dev = devlink_add_symlinks,
564 	.remove_dev = devlink_remove_symlinks,
565 };
566 
567 static int __init devlink_class_init(void)
568 {
569 	int ret;
570 
571 	ret = class_register(&devlink_class);
572 	if (ret)
573 		return ret;
574 
575 	ret = class_interface_register(&devlink_class_intf);
576 	if (ret)
577 		class_unregister(&devlink_class);
578 
579 	return ret;
580 }
581 postcore_initcall(devlink_class_init);
582 
583 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
584 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
585 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
586 			       DL_FLAG_SYNC_STATE_ONLY | \
587 			       DL_FLAG_INFERRED)
588 
589 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
590 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
591 
592 /**
593  * device_link_add - Create a link between two devices.
594  * @consumer: Consumer end of the link.
595  * @supplier: Supplier end of the link.
596  * @flags: Link flags.
597  *
598  * The caller is responsible for the proper synchronization of the link creation
599  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
600  * runtime PM framework to take the link into account.  Second, if the
601  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
602  * be forced into the active meta state and reference-counted upon the creation
603  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
604  * ignored.
605  *
606  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
607  * expected to release the link returned by it directly with the help of either
608  * device_link_del() or device_link_remove().
609  *
610  * If that flag is not set, however, the caller of this function is handing the
611  * management of the link over to the driver core entirely and its return value
612  * can only be used to check whether or not the link is present.  In that case,
613  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
614  * flags can be used to indicate to the driver core when the link can be safely
615  * deleted.  Namely, setting one of them in @flags indicates to the driver core
616  * that the link is not going to be used (by the given caller of this function)
617  * after unbinding the consumer or supplier driver, respectively, from its
618  * device, so the link can be deleted at that point.  If none of them is set,
619  * the link will be maintained until one of the devices pointed to by it (either
620  * the consumer or the supplier) is unregistered.
621  *
622  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
623  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
624  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
625  * be used to request the driver core to automatically probe for a consumer
626  * driver after successfully binding a driver to the supplier device.
627  *
628  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
629  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
630  * the same time is invalid and will cause NULL to be returned upfront.
631  * However, if a device link between the given @consumer and @supplier pair
632  * exists already when this function is called for them, the existing link will
633  * be returned regardless of its current type and status (the link's flags may
634  * be modified then).  The caller of this function is then expected to treat
635  * the link as though it has just been created, so (in particular) if
636  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
637  * explicitly when not needed any more (as stated above).
638  *
639  * A side effect of the link creation is re-ordering of dpm_list and the
640  * devices_kset list by moving the consumer device and all devices depending
641  * on it to the ends of these lists (that does not happen to devices that have
642  * not been registered when this function is called).
643  *
644  * The supplier device is required to be registered when this function is called
645  * and NULL will be returned if that is not the case.  The consumer device need
646  * not be registered, however.
647  */
648 struct device_link *device_link_add(struct device *consumer,
649 				    struct device *supplier, u32 flags)
650 {
651 	struct device_link *link;
652 
653 	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
654 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
655 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
656 	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
657 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
658 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
659 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
660 		return NULL;
661 
662 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
663 		if (pm_runtime_get_sync(supplier) < 0) {
664 			pm_runtime_put_noidle(supplier);
665 			return NULL;
666 		}
667 	}
668 
669 	if (!(flags & DL_FLAG_STATELESS))
670 		flags |= DL_FLAG_MANAGED;
671 
672 	device_links_write_lock();
673 	device_pm_lock();
674 
675 	/*
676 	 * If the supplier has not been fully registered yet or there is a
677 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
678 	 * the supplier already in the graph, return NULL. If the link is a
679 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
680 	 * because it only affects sync_state() callbacks.
681 	 */
682 	if (!device_pm_initialized(supplier)
683 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
684 		  device_is_dependent(consumer, supplier))) {
685 		link = NULL;
686 		goto out;
687 	}
688 
689 	/*
690 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
691 	 * So, only create it if the consumer hasn't probed yet.
692 	 */
693 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
694 	    consumer->links.status != DL_DEV_NO_DRIVER &&
695 	    consumer->links.status != DL_DEV_PROBING) {
696 		link = NULL;
697 		goto out;
698 	}
699 
700 	/*
701 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
702 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
703 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
704 	 */
705 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
706 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
707 
708 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
709 		if (link->consumer != consumer)
710 			continue;
711 
712 		if (link->flags & DL_FLAG_INFERRED &&
713 		    !(flags & DL_FLAG_INFERRED))
714 			link->flags &= ~DL_FLAG_INFERRED;
715 
716 		if (flags & DL_FLAG_PM_RUNTIME) {
717 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
718 				pm_runtime_new_link(consumer);
719 				link->flags |= DL_FLAG_PM_RUNTIME;
720 			}
721 			if (flags & DL_FLAG_RPM_ACTIVE)
722 				refcount_inc(&link->rpm_active);
723 		}
724 
725 		if (flags & DL_FLAG_STATELESS) {
726 			kref_get(&link->kref);
727 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
728 			    !(link->flags & DL_FLAG_STATELESS)) {
729 				link->flags |= DL_FLAG_STATELESS;
730 				goto reorder;
731 			} else {
732 				link->flags |= DL_FLAG_STATELESS;
733 				goto out;
734 			}
735 		}
736 
737 		/*
738 		 * If the life time of the link following from the new flags is
739 		 * longer than indicated by the flags of the existing link,
740 		 * update the existing link to stay around longer.
741 		 */
742 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
743 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
744 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
745 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
746 			}
747 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
748 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
749 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
750 		}
751 		if (!(link->flags & DL_FLAG_MANAGED)) {
752 			kref_get(&link->kref);
753 			link->flags |= DL_FLAG_MANAGED;
754 			device_link_init_status(link, consumer, supplier);
755 		}
756 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
757 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
758 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
759 			goto reorder;
760 		}
761 
762 		goto out;
763 	}
764 
765 	link = kzalloc(sizeof(*link), GFP_KERNEL);
766 	if (!link)
767 		goto out;
768 
769 	refcount_set(&link->rpm_active, 1);
770 
771 	get_device(supplier);
772 	link->supplier = supplier;
773 	INIT_LIST_HEAD(&link->s_node);
774 	get_device(consumer);
775 	link->consumer = consumer;
776 	INIT_LIST_HEAD(&link->c_node);
777 	link->flags = flags;
778 	kref_init(&link->kref);
779 
780 	link->link_dev.class = &devlink_class;
781 	device_set_pm_not_required(&link->link_dev);
782 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
783 		     dev_bus_name(supplier), dev_name(supplier),
784 		     dev_bus_name(consumer), dev_name(consumer));
785 	if (device_register(&link->link_dev)) {
786 		put_device(consumer);
787 		put_device(supplier);
788 		kfree(link);
789 		link = NULL;
790 		goto out;
791 	}
792 
793 	if (flags & DL_FLAG_PM_RUNTIME) {
794 		if (flags & DL_FLAG_RPM_ACTIVE)
795 			refcount_inc(&link->rpm_active);
796 
797 		pm_runtime_new_link(consumer);
798 	}
799 
800 	/* Determine the initial link state. */
801 	if (flags & DL_FLAG_STATELESS)
802 		link->status = DL_STATE_NONE;
803 	else
804 		device_link_init_status(link, consumer, supplier);
805 
806 	/*
807 	 * Some callers expect the link creation during consumer driver probe to
808 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
809 	 */
810 	if (link->status == DL_STATE_CONSUMER_PROBE &&
811 	    flags & DL_FLAG_PM_RUNTIME)
812 		pm_runtime_resume(supplier);
813 
814 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
815 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
816 
817 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
818 		dev_dbg(consumer,
819 			"Linked as a sync state only consumer to %s\n",
820 			dev_name(supplier));
821 		goto out;
822 	}
823 
824 reorder:
825 	/*
826 	 * Move the consumer and all of the devices depending on it to the end
827 	 * of dpm_list and the devices_kset list.
828 	 *
829 	 * It is necessary to hold dpm_list locked throughout all that or else
830 	 * we may end up suspending with a wrong ordering of it.
831 	 */
832 	device_reorder_to_tail(consumer, NULL);
833 
834 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
835 
836 out:
837 	device_pm_unlock();
838 	device_links_write_unlock();
839 
840 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
841 		pm_runtime_put(supplier);
842 
843 	return link;
844 }
845 EXPORT_SYMBOL_GPL(device_link_add);
846 
847 #ifdef CONFIG_SRCU
848 static void __device_link_del(struct kref *kref)
849 {
850 	struct device_link *link = container_of(kref, struct device_link, kref);
851 
852 	dev_dbg(link->consumer, "Dropping the link to %s\n",
853 		dev_name(link->supplier));
854 
855 	pm_runtime_drop_link(link);
856 
857 	list_del_rcu(&link->s_node);
858 	list_del_rcu(&link->c_node);
859 	device_unregister(&link->link_dev);
860 }
861 #else /* !CONFIG_SRCU */
862 static void __device_link_del(struct kref *kref)
863 {
864 	struct device_link *link = container_of(kref, struct device_link, kref);
865 
866 	dev_info(link->consumer, "Dropping the link to %s\n",
867 		 dev_name(link->supplier));
868 
869 	pm_runtime_drop_link(link);
870 
871 	list_del(&link->s_node);
872 	list_del(&link->c_node);
873 	device_unregister(&link->link_dev);
874 }
875 #endif /* !CONFIG_SRCU */
876 
877 static void device_link_put_kref(struct device_link *link)
878 {
879 	if (link->flags & DL_FLAG_STATELESS)
880 		kref_put(&link->kref, __device_link_del);
881 	else
882 		WARN(1, "Unable to drop a managed device link reference\n");
883 }
884 
885 /**
886  * device_link_del - Delete a stateless link between two devices.
887  * @link: Device link to delete.
888  *
889  * The caller must ensure proper synchronization of this function with runtime
890  * PM.  If the link was added multiple times, it needs to be deleted as often.
891  * Care is required for hotplugged devices:  Their links are purged on removal
892  * and calling device_link_del() is then no longer allowed.
893  */
894 void device_link_del(struct device_link *link)
895 {
896 	device_links_write_lock();
897 	device_link_put_kref(link);
898 	device_links_write_unlock();
899 }
900 EXPORT_SYMBOL_GPL(device_link_del);
901 
902 /**
903  * device_link_remove - Delete a stateless link between two devices.
904  * @consumer: Consumer end of the link.
905  * @supplier: Supplier end of the link.
906  *
907  * The caller must ensure proper synchronization of this function with runtime
908  * PM.
909  */
910 void device_link_remove(void *consumer, struct device *supplier)
911 {
912 	struct device_link *link;
913 
914 	if (WARN_ON(consumer == supplier))
915 		return;
916 
917 	device_links_write_lock();
918 
919 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
920 		if (link->consumer == consumer) {
921 			device_link_put_kref(link);
922 			break;
923 		}
924 	}
925 
926 	device_links_write_unlock();
927 }
928 EXPORT_SYMBOL_GPL(device_link_remove);
929 
930 static void device_links_missing_supplier(struct device *dev)
931 {
932 	struct device_link *link;
933 
934 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
935 		if (link->status != DL_STATE_CONSUMER_PROBE)
936 			continue;
937 
938 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
939 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
940 		} else {
941 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
942 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
943 		}
944 	}
945 }
946 
947 /**
948  * device_links_check_suppliers - Check presence of supplier drivers.
949  * @dev: Consumer device.
950  *
951  * Check links from this device to any suppliers.  Walk the list of the device's
952  * links to suppliers and see if all of them are available.  If not, simply
953  * return -EPROBE_DEFER.
954  *
955  * We need to guarantee that the supplier will not go away after the check has
956  * been positive here.  It only can go away in __device_release_driver() and
957  * that function  checks the device's links to consumers.  This means we need to
958  * mark the link as "consumer probe in progress" to make the supplier removal
959  * wait for us to complete (or bad things may happen).
960  *
961  * Links without the DL_FLAG_MANAGED flag set are ignored.
962  */
963 int device_links_check_suppliers(struct device *dev)
964 {
965 	struct device_link *link;
966 	int ret = 0;
967 
968 	/*
969 	 * Device waiting for supplier to become available is not allowed to
970 	 * probe.
971 	 */
972 	mutex_lock(&fwnode_link_lock);
973 	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
974 	    !fw_devlink_is_permissive()) {
975 		dev_dbg(dev, "probe deferral - wait for supplier %pfwP\n",
976 			list_first_entry(&dev->fwnode->suppliers,
977 			struct fwnode_link,
978 			c_hook)->supplier);
979 		mutex_unlock(&fwnode_link_lock);
980 		return -EPROBE_DEFER;
981 	}
982 	mutex_unlock(&fwnode_link_lock);
983 
984 	device_links_write_lock();
985 
986 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
987 		if (!(link->flags & DL_FLAG_MANAGED))
988 			continue;
989 
990 		if (link->status != DL_STATE_AVAILABLE &&
991 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
992 			device_links_missing_supplier(dev);
993 			dev_dbg(dev, "probe deferral - supplier %s not ready\n",
994 				dev_name(link->supplier));
995 			ret = -EPROBE_DEFER;
996 			break;
997 		}
998 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
999 	}
1000 	dev->links.status = DL_DEV_PROBING;
1001 
1002 	device_links_write_unlock();
1003 	return ret;
1004 }
1005 
1006 /**
1007  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1008  * @dev: Device to call sync_state() on
1009  * @list: List head to queue the @dev on
1010  *
1011  * Queues a device for a sync_state() callback when the device links write lock
1012  * isn't held. This allows the sync_state() execution flow to use device links
1013  * APIs.  The caller must ensure this function is called with
1014  * device_links_write_lock() held.
1015  *
1016  * This function does a get_device() to make sure the device is not freed while
1017  * on this list.
1018  *
1019  * So the caller must also ensure that device_links_flush_sync_list() is called
1020  * as soon as the caller releases device_links_write_lock().  This is necessary
1021  * to make sure the sync_state() is called in a timely fashion and the
1022  * put_device() is called on this device.
1023  */
1024 static void __device_links_queue_sync_state(struct device *dev,
1025 					    struct list_head *list)
1026 {
1027 	struct device_link *link;
1028 
1029 	if (!dev_has_sync_state(dev))
1030 		return;
1031 	if (dev->state_synced)
1032 		return;
1033 
1034 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1035 		if (!(link->flags & DL_FLAG_MANAGED))
1036 			continue;
1037 		if (link->status != DL_STATE_ACTIVE)
1038 			return;
1039 	}
1040 
1041 	/*
1042 	 * Set the flag here to avoid adding the same device to a list more
1043 	 * than once. This can happen if new consumers get added to the device
1044 	 * and probed before the list is flushed.
1045 	 */
1046 	dev->state_synced = true;
1047 
1048 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1049 		return;
1050 
1051 	get_device(dev);
1052 	list_add_tail(&dev->links.defer_sync, list);
1053 }
1054 
1055 /**
1056  * device_links_flush_sync_list - Call sync_state() on a list of devices
1057  * @list: List of devices to call sync_state() on
1058  * @dont_lock_dev: Device for which lock is already held by the caller
1059  *
1060  * Calls sync_state() on all the devices that have been queued for it. This
1061  * function is used in conjunction with __device_links_queue_sync_state(). The
1062  * @dont_lock_dev parameter is useful when this function is called from a
1063  * context where a device lock is already held.
1064  */
1065 static void device_links_flush_sync_list(struct list_head *list,
1066 					 struct device *dont_lock_dev)
1067 {
1068 	struct device *dev, *tmp;
1069 
1070 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1071 		list_del_init(&dev->links.defer_sync);
1072 
1073 		if (dev != dont_lock_dev)
1074 			device_lock(dev);
1075 
1076 		if (dev->bus->sync_state)
1077 			dev->bus->sync_state(dev);
1078 		else if (dev->driver && dev->driver->sync_state)
1079 			dev->driver->sync_state(dev);
1080 
1081 		if (dev != dont_lock_dev)
1082 			device_unlock(dev);
1083 
1084 		put_device(dev);
1085 	}
1086 }
1087 
1088 void device_links_supplier_sync_state_pause(void)
1089 {
1090 	device_links_write_lock();
1091 	defer_sync_state_count++;
1092 	device_links_write_unlock();
1093 }
1094 
1095 void device_links_supplier_sync_state_resume(void)
1096 {
1097 	struct device *dev, *tmp;
1098 	LIST_HEAD(sync_list);
1099 
1100 	device_links_write_lock();
1101 	if (!defer_sync_state_count) {
1102 		WARN(true, "Unmatched sync_state pause/resume!");
1103 		goto out;
1104 	}
1105 	defer_sync_state_count--;
1106 	if (defer_sync_state_count)
1107 		goto out;
1108 
1109 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1110 		/*
1111 		 * Delete from deferred_sync list before queuing it to
1112 		 * sync_list because defer_sync is used for both lists.
1113 		 */
1114 		list_del_init(&dev->links.defer_sync);
1115 		__device_links_queue_sync_state(dev, &sync_list);
1116 	}
1117 out:
1118 	device_links_write_unlock();
1119 
1120 	device_links_flush_sync_list(&sync_list, NULL);
1121 }
1122 
1123 static int sync_state_resume_initcall(void)
1124 {
1125 	device_links_supplier_sync_state_resume();
1126 	return 0;
1127 }
1128 late_initcall(sync_state_resume_initcall);
1129 
1130 static void __device_links_supplier_defer_sync(struct device *sup)
1131 {
1132 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1133 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1134 }
1135 
1136 static void device_link_drop_managed(struct device_link *link)
1137 {
1138 	link->flags &= ~DL_FLAG_MANAGED;
1139 	WRITE_ONCE(link->status, DL_STATE_NONE);
1140 	kref_put(&link->kref, __device_link_del);
1141 }
1142 
1143 static ssize_t waiting_for_supplier_show(struct device *dev,
1144 					 struct device_attribute *attr,
1145 					 char *buf)
1146 {
1147 	bool val;
1148 
1149 	device_lock(dev);
1150 	val = !list_empty(&dev->fwnode->suppliers);
1151 	device_unlock(dev);
1152 	return sysfs_emit(buf, "%u\n", val);
1153 }
1154 static DEVICE_ATTR_RO(waiting_for_supplier);
1155 
1156 /**
1157  * device_links_driver_bound - Update device links after probing its driver.
1158  * @dev: Device to update the links for.
1159  *
1160  * The probe has been successful, so update links from this device to any
1161  * consumers by changing their status to "available".
1162  *
1163  * Also change the status of @dev's links to suppliers to "active".
1164  *
1165  * Links without the DL_FLAG_MANAGED flag set are ignored.
1166  */
1167 void device_links_driver_bound(struct device *dev)
1168 {
1169 	struct device_link *link, *ln;
1170 	LIST_HEAD(sync_list);
1171 
1172 	/*
1173 	 * If a device binds successfully, it's expected to have created all
1174 	 * the device links it needs to or make new device links as it needs
1175 	 * them. So, fw_devlink no longer needs to create device links to any
1176 	 * of the device's suppliers.
1177 	 *
1178 	 * Also, if a child firmware node of this bound device is not added as
1179 	 * a device by now, assume it is never going to be added and make sure
1180 	 * other devices don't defer probe indefinitely by waiting for such a
1181 	 * child device.
1182 	 */
1183 	if (dev->fwnode && dev->fwnode->dev == dev) {
1184 		struct fwnode_handle *child;
1185 		fwnode_links_purge_suppliers(dev->fwnode);
1186 		fwnode_for_each_available_child_node(dev->fwnode, child)
1187 			fw_devlink_purge_absent_suppliers(child);
1188 	}
1189 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1190 
1191 	device_links_write_lock();
1192 
1193 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1194 		if (!(link->flags & DL_FLAG_MANAGED))
1195 			continue;
1196 
1197 		/*
1198 		 * Links created during consumer probe may be in the "consumer
1199 		 * probe" state to start with if the supplier is still probing
1200 		 * when they are created and they may become "active" if the
1201 		 * consumer probe returns first.  Skip them here.
1202 		 */
1203 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1204 		    link->status == DL_STATE_ACTIVE)
1205 			continue;
1206 
1207 		WARN_ON(link->status != DL_STATE_DORMANT);
1208 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1209 
1210 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1211 			driver_deferred_probe_add(link->consumer);
1212 	}
1213 
1214 	if (defer_sync_state_count)
1215 		__device_links_supplier_defer_sync(dev);
1216 	else
1217 		__device_links_queue_sync_state(dev, &sync_list);
1218 
1219 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1220 		struct device *supplier;
1221 
1222 		if (!(link->flags & DL_FLAG_MANAGED))
1223 			continue;
1224 
1225 		supplier = link->supplier;
1226 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1227 			/*
1228 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1229 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1230 			 * save to drop the managed link completely.
1231 			 */
1232 			device_link_drop_managed(link);
1233 		} else {
1234 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1235 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1236 		}
1237 
1238 		/*
1239 		 * This needs to be done even for the deleted
1240 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1241 		 * device link that was preventing the supplier from getting a
1242 		 * sync_state() call.
1243 		 */
1244 		if (defer_sync_state_count)
1245 			__device_links_supplier_defer_sync(supplier);
1246 		else
1247 			__device_links_queue_sync_state(supplier, &sync_list);
1248 	}
1249 
1250 	dev->links.status = DL_DEV_DRIVER_BOUND;
1251 
1252 	device_links_write_unlock();
1253 
1254 	device_links_flush_sync_list(&sync_list, dev);
1255 }
1256 
1257 /**
1258  * __device_links_no_driver - Update links of a device without a driver.
1259  * @dev: Device without a drvier.
1260  *
1261  * Delete all non-persistent links from this device to any suppliers.
1262  *
1263  * Persistent links stay around, but their status is changed to "available",
1264  * unless they already are in the "supplier unbind in progress" state in which
1265  * case they need not be updated.
1266  *
1267  * Links without the DL_FLAG_MANAGED flag set are ignored.
1268  */
1269 static void __device_links_no_driver(struct device *dev)
1270 {
1271 	struct device_link *link, *ln;
1272 
1273 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1274 		if (!(link->flags & DL_FLAG_MANAGED))
1275 			continue;
1276 
1277 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1278 			device_link_drop_managed(link);
1279 			continue;
1280 		}
1281 
1282 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1283 		    link->status != DL_STATE_ACTIVE)
1284 			continue;
1285 
1286 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1287 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1288 		} else {
1289 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1290 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1291 		}
1292 	}
1293 
1294 	dev->links.status = DL_DEV_NO_DRIVER;
1295 }
1296 
1297 /**
1298  * device_links_no_driver - Update links after failing driver probe.
1299  * @dev: Device whose driver has just failed to probe.
1300  *
1301  * Clean up leftover links to consumers for @dev and invoke
1302  * %__device_links_no_driver() to update links to suppliers for it as
1303  * appropriate.
1304  *
1305  * Links without the DL_FLAG_MANAGED flag set are ignored.
1306  */
1307 void device_links_no_driver(struct device *dev)
1308 {
1309 	struct device_link *link;
1310 
1311 	device_links_write_lock();
1312 
1313 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1314 		if (!(link->flags & DL_FLAG_MANAGED))
1315 			continue;
1316 
1317 		/*
1318 		 * The probe has failed, so if the status of the link is
1319 		 * "consumer probe" or "active", it must have been added by
1320 		 * a probing consumer while this device was still probing.
1321 		 * Change its state to "dormant", as it represents a valid
1322 		 * relationship, but it is not functionally meaningful.
1323 		 */
1324 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1325 		    link->status == DL_STATE_ACTIVE)
1326 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1327 	}
1328 
1329 	__device_links_no_driver(dev);
1330 
1331 	device_links_write_unlock();
1332 }
1333 
1334 /**
1335  * device_links_driver_cleanup - Update links after driver removal.
1336  * @dev: Device whose driver has just gone away.
1337  *
1338  * Update links to consumers for @dev by changing their status to "dormant" and
1339  * invoke %__device_links_no_driver() to update links to suppliers for it as
1340  * appropriate.
1341  *
1342  * Links without the DL_FLAG_MANAGED flag set are ignored.
1343  */
1344 void device_links_driver_cleanup(struct device *dev)
1345 {
1346 	struct device_link *link, *ln;
1347 
1348 	device_links_write_lock();
1349 
1350 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1351 		if (!(link->flags & DL_FLAG_MANAGED))
1352 			continue;
1353 
1354 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1355 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1356 
1357 		/*
1358 		 * autoremove the links between this @dev and its consumer
1359 		 * devices that are not active, i.e. where the link state
1360 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1361 		 */
1362 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1363 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1364 			device_link_drop_managed(link);
1365 
1366 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1367 	}
1368 
1369 	list_del_init(&dev->links.defer_sync);
1370 	__device_links_no_driver(dev);
1371 
1372 	device_links_write_unlock();
1373 }
1374 
1375 /**
1376  * device_links_busy - Check if there are any busy links to consumers.
1377  * @dev: Device to check.
1378  *
1379  * Check each consumer of the device and return 'true' if its link's status
1380  * is one of "consumer probe" or "active" (meaning that the given consumer is
1381  * probing right now or its driver is present).  Otherwise, change the link
1382  * state to "supplier unbind" to prevent the consumer from being probed
1383  * successfully going forward.
1384  *
1385  * Return 'false' if there are no probing or active consumers.
1386  *
1387  * Links without the DL_FLAG_MANAGED flag set are ignored.
1388  */
1389 bool device_links_busy(struct device *dev)
1390 {
1391 	struct device_link *link;
1392 	bool ret = false;
1393 
1394 	device_links_write_lock();
1395 
1396 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1397 		if (!(link->flags & DL_FLAG_MANAGED))
1398 			continue;
1399 
1400 		if (link->status == DL_STATE_CONSUMER_PROBE
1401 		    || link->status == DL_STATE_ACTIVE) {
1402 			ret = true;
1403 			break;
1404 		}
1405 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1406 	}
1407 
1408 	dev->links.status = DL_DEV_UNBINDING;
1409 
1410 	device_links_write_unlock();
1411 	return ret;
1412 }
1413 
1414 /**
1415  * device_links_unbind_consumers - Force unbind consumers of the given device.
1416  * @dev: Device to unbind the consumers of.
1417  *
1418  * Walk the list of links to consumers for @dev and if any of them is in the
1419  * "consumer probe" state, wait for all device probes in progress to complete
1420  * and start over.
1421  *
1422  * If that's not the case, change the status of the link to "supplier unbind"
1423  * and check if the link was in the "active" state.  If so, force the consumer
1424  * driver to unbind and start over (the consumer will not re-probe as we have
1425  * changed the state of the link already).
1426  *
1427  * Links without the DL_FLAG_MANAGED flag set are ignored.
1428  */
1429 void device_links_unbind_consumers(struct device *dev)
1430 {
1431 	struct device_link *link;
1432 
1433  start:
1434 	device_links_write_lock();
1435 
1436 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1437 		enum device_link_state status;
1438 
1439 		if (!(link->flags & DL_FLAG_MANAGED) ||
1440 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1441 			continue;
1442 
1443 		status = link->status;
1444 		if (status == DL_STATE_CONSUMER_PROBE) {
1445 			device_links_write_unlock();
1446 
1447 			wait_for_device_probe();
1448 			goto start;
1449 		}
1450 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1451 		if (status == DL_STATE_ACTIVE) {
1452 			struct device *consumer = link->consumer;
1453 
1454 			get_device(consumer);
1455 
1456 			device_links_write_unlock();
1457 
1458 			device_release_driver_internal(consumer, NULL,
1459 						       consumer->parent);
1460 			put_device(consumer);
1461 			goto start;
1462 		}
1463 	}
1464 
1465 	device_links_write_unlock();
1466 }
1467 
1468 /**
1469  * device_links_purge - Delete existing links to other devices.
1470  * @dev: Target device.
1471  */
1472 static void device_links_purge(struct device *dev)
1473 {
1474 	struct device_link *link, *ln;
1475 
1476 	if (dev->class == &devlink_class)
1477 		return;
1478 
1479 	/*
1480 	 * Delete all of the remaining links from this device to any other
1481 	 * devices (either consumers or suppliers).
1482 	 */
1483 	device_links_write_lock();
1484 
1485 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1486 		WARN_ON(link->status == DL_STATE_ACTIVE);
1487 		__device_link_del(&link->kref);
1488 	}
1489 
1490 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1491 		WARN_ON(link->status != DL_STATE_DORMANT &&
1492 			link->status != DL_STATE_NONE);
1493 		__device_link_del(&link->kref);
1494 	}
1495 
1496 	device_links_write_unlock();
1497 }
1498 
1499 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1500 					 DL_FLAG_SYNC_STATE_ONLY)
1501 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1502 					 DL_FLAG_AUTOPROBE_CONSUMER)
1503 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1504 					 DL_FLAG_PM_RUNTIME)
1505 
1506 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1507 static int __init fw_devlink_setup(char *arg)
1508 {
1509 	if (!arg)
1510 		return -EINVAL;
1511 
1512 	if (strcmp(arg, "off") == 0) {
1513 		fw_devlink_flags = 0;
1514 	} else if (strcmp(arg, "permissive") == 0) {
1515 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1516 	} else if (strcmp(arg, "on") == 0) {
1517 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1518 	} else if (strcmp(arg, "rpm") == 0) {
1519 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1520 	}
1521 	return 0;
1522 }
1523 early_param("fw_devlink", fw_devlink_setup);
1524 
1525 static bool fw_devlink_strict;
1526 static int __init fw_devlink_strict_setup(char *arg)
1527 {
1528 	return strtobool(arg, &fw_devlink_strict);
1529 }
1530 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1531 
1532 u32 fw_devlink_get_flags(void)
1533 {
1534 	return fw_devlink_flags;
1535 }
1536 
1537 static bool fw_devlink_is_permissive(void)
1538 {
1539 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1540 }
1541 
1542 bool fw_devlink_is_strict(void)
1543 {
1544 	return fw_devlink_strict && !fw_devlink_is_permissive();
1545 }
1546 
1547 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1548 {
1549 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1550 		return;
1551 
1552 	fwnode_call_int_op(fwnode, add_links);
1553 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1554 }
1555 
1556 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1557 {
1558 	struct fwnode_handle *child = NULL;
1559 
1560 	fw_devlink_parse_fwnode(fwnode);
1561 
1562 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1563 		fw_devlink_parse_fwtree(child);
1564 }
1565 
1566 /**
1567  * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1568  * @con: Device to check dependencies for.
1569  * @sup: Device to check against.
1570  *
1571  * Check if @sup depends on @con or any device dependent on it (its child or
1572  * its consumer etc).  When such a cyclic dependency is found, convert all
1573  * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1574  * This is the equivalent of doing fw_devlink=permissive just between the
1575  * devices in the cycle. We need to do this because, at this point, fw_devlink
1576  * can't tell which of these dependencies is not a real dependency.
1577  *
1578  * Return 1 if a cycle is found. Otherwise, return 0.
1579  */
1580 static int fw_devlink_relax_cycle(struct device *con, void *sup)
1581 {
1582 	struct device_link *link;
1583 	int ret;
1584 
1585 	if (con == sup)
1586 		return 1;
1587 
1588 	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1589 	if (ret)
1590 		return ret;
1591 
1592 	list_for_each_entry(link, &con->links.consumers, s_node) {
1593 		if ((link->flags & ~DL_FLAG_INFERRED) ==
1594 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1595 			continue;
1596 
1597 		if (!fw_devlink_relax_cycle(link->consumer, sup))
1598 			continue;
1599 
1600 		ret = 1;
1601 
1602 		if (!(link->flags & DL_FLAG_INFERRED))
1603 			continue;
1604 
1605 		pm_runtime_drop_link(link);
1606 		link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1607 		dev_dbg(link->consumer, "Relaxing link with %s\n",
1608 			dev_name(link->supplier));
1609 	}
1610 	return ret;
1611 }
1612 
1613 /**
1614  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1615  * @con - Consumer device for the device link
1616  * @sup_handle - fwnode handle of supplier
1617  *
1618  * This function will try to create a device link between the consumer device
1619  * @con and the supplier device represented by @sup_handle.
1620  *
1621  * The supplier has to be provided as a fwnode because incorrect cycles in
1622  * fwnode links can sometimes cause the supplier device to never be created.
1623  * This function detects such cases and returns an error if it cannot create a
1624  * device link from the consumer to a missing supplier.
1625  *
1626  * Returns,
1627  * 0 on successfully creating a device link
1628  * -EINVAL if the device link cannot be created as expected
1629  * -EAGAIN if the device link cannot be created right now, but it may be
1630  *  possible to do that in the future
1631  */
1632 static int fw_devlink_create_devlink(struct device *con,
1633 				     struct fwnode_handle *sup_handle, u32 flags)
1634 {
1635 	struct device *sup_dev;
1636 	int ret = 0;
1637 
1638 	sup_dev = get_dev_from_fwnode(sup_handle);
1639 	if (sup_dev) {
1640 		/*
1641 		 * If it's one of those drivers that don't actually bind to
1642 		 * their device using driver core, then don't wait on this
1643 		 * supplier device indefinitely.
1644 		 */
1645 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1646 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1647 			ret = -EINVAL;
1648 			goto out;
1649 		}
1650 
1651 		/*
1652 		 * If this fails, it is due to cycles in device links.  Just
1653 		 * give up on this link and treat it as invalid.
1654 		 */
1655 		if (!device_link_add(con, sup_dev, flags) &&
1656 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1657 			dev_info(con, "Fixing up cyclic dependency with %s\n",
1658 				 dev_name(sup_dev));
1659 			device_links_write_lock();
1660 			fw_devlink_relax_cycle(con, sup_dev);
1661 			device_links_write_unlock();
1662 			device_link_add(con, sup_dev,
1663 					FW_DEVLINK_FLAGS_PERMISSIVE);
1664 			ret = -EINVAL;
1665 		}
1666 
1667 		goto out;
1668 	}
1669 
1670 	/* Supplier that's already initialized without a struct device. */
1671 	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1672 		return -EINVAL;
1673 
1674 	/*
1675 	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1676 	 * cycles. So cycle detection isn't necessary and shouldn't be
1677 	 * done.
1678 	 */
1679 	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1680 		return -EAGAIN;
1681 
1682 	/*
1683 	 * If we can't find the supplier device from its fwnode, it might be
1684 	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1685 	 * be broken by applying logic. Check for these types of cycles and
1686 	 * break them so that devices in the cycle probe properly.
1687 	 *
1688 	 * If the supplier's parent is dependent on the consumer, then
1689 	 * the consumer-supplier dependency is a false dependency. So,
1690 	 * treat it as an invalid link.
1691 	 */
1692 	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1693 	if (sup_dev && device_is_dependent(con, sup_dev)) {
1694 		dev_dbg(con, "Not linking to %pfwP - False link\n",
1695 			sup_handle);
1696 		ret = -EINVAL;
1697 	} else {
1698 		/*
1699 		 * Can't check for cycles or no cycles. So let's try
1700 		 * again later.
1701 		 */
1702 		ret = -EAGAIN;
1703 	}
1704 
1705 out:
1706 	put_device(sup_dev);
1707 	return ret;
1708 }
1709 
1710 /**
1711  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1712  * @dev - Device that needs to be linked to its consumers
1713  *
1714  * This function looks at all the consumer fwnodes of @dev and creates device
1715  * links between the consumer device and @dev (supplier).
1716  *
1717  * If the consumer device has not been added yet, then this function creates a
1718  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1719  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1720  * sync_state() callback before the real consumer device gets to be added and
1721  * then probed.
1722  *
1723  * Once device links are created from the real consumer to @dev (supplier), the
1724  * fwnode links are deleted.
1725  */
1726 static void __fw_devlink_link_to_consumers(struct device *dev)
1727 {
1728 	struct fwnode_handle *fwnode = dev->fwnode;
1729 	struct fwnode_link *link, *tmp;
1730 
1731 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1732 		u32 dl_flags = fw_devlink_get_flags();
1733 		struct device *con_dev;
1734 		bool own_link = true;
1735 		int ret;
1736 
1737 		con_dev = get_dev_from_fwnode(link->consumer);
1738 		/*
1739 		 * If consumer device is not available yet, make a "proxy"
1740 		 * SYNC_STATE_ONLY link from the consumer's parent device to
1741 		 * the supplier device. This is necessary to make sure the
1742 		 * supplier doesn't get a sync_state() callback before the real
1743 		 * consumer can create a device link to the supplier.
1744 		 *
1745 		 * This proxy link step is needed to handle the case where the
1746 		 * consumer's parent device is added before the supplier.
1747 		 */
1748 		if (!con_dev) {
1749 			con_dev = fwnode_get_next_parent_dev(link->consumer);
1750 			/*
1751 			 * However, if the consumer's parent device is also the
1752 			 * parent of the supplier, don't create a
1753 			 * consumer-supplier link from the parent to its child
1754 			 * device. Such a dependency is impossible.
1755 			 */
1756 			if (con_dev &&
1757 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1758 				put_device(con_dev);
1759 				con_dev = NULL;
1760 			} else {
1761 				own_link = false;
1762 				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1763 			}
1764 		}
1765 
1766 		if (!con_dev)
1767 			continue;
1768 
1769 		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1770 		put_device(con_dev);
1771 		if (!own_link || ret == -EAGAIN)
1772 			continue;
1773 
1774 		list_del(&link->s_hook);
1775 		list_del(&link->c_hook);
1776 		kfree(link);
1777 	}
1778 }
1779 
1780 /**
1781  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1782  * @dev - The consumer device that needs to be linked to its suppliers
1783  * @fwnode - Root of the fwnode tree that is used to create device links
1784  *
1785  * This function looks at all the supplier fwnodes of fwnode tree rooted at
1786  * @fwnode and creates device links between @dev (consumer) and all the
1787  * supplier devices of the entire fwnode tree at @fwnode.
1788  *
1789  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
1790  * and the real suppliers of @dev. Once these device links are created, the
1791  * fwnode links are deleted. When such device links are successfully created,
1792  * this function is called recursively on those supplier devices. This is
1793  * needed to detect and break some invalid cycles in fwnode links.  See
1794  * fw_devlink_create_devlink() for more details.
1795  *
1796  * In addition, it also looks at all the suppliers of the entire fwnode tree
1797  * because some of the child devices of @dev that have not been added yet
1798  * (because @dev hasn't probed) might already have their suppliers added to
1799  * driver core. So, this function creates SYNC_STATE_ONLY device links between
1800  * @dev (consumer) and these suppliers to make sure they don't execute their
1801  * sync_state() callbacks before these child devices have a chance to create
1802  * their device links. The fwnode links that correspond to the child devices
1803  * aren't delete because they are needed later to create the device links
1804  * between the real consumer and supplier devices.
1805  */
1806 static void __fw_devlink_link_to_suppliers(struct device *dev,
1807 					   struct fwnode_handle *fwnode)
1808 {
1809 	bool own_link = (dev->fwnode == fwnode);
1810 	struct fwnode_link *link, *tmp;
1811 	struct fwnode_handle *child = NULL;
1812 	u32 dl_flags;
1813 
1814 	if (own_link)
1815 		dl_flags = fw_devlink_get_flags();
1816 	else
1817 		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1818 
1819 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
1820 		int ret;
1821 		struct device *sup_dev;
1822 		struct fwnode_handle *sup = link->supplier;
1823 
1824 		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
1825 		if (!own_link || ret == -EAGAIN)
1826 			continue;
1827 
1828 		list_del(&link->s_hook);
1829 		list_del(&link->c_hook);
1830 		kfree(link);
1831 
1832 		/* If no device link was created, nothing more to do. */
1833 		if (ret)
1834 			continue;
1835 
1836 		/*
1837 		 * If a device link was successfully created to a supplier, we
1838 		 * now need to try and link the supplier to all its suppliers.
1839 		 *
1840 		 * This is needed to detect and delete false dependencies in
1841 		 * fwnode links that haven't been converted to a device link
1842 		 * yet. See comments in fw_devlink_create_devlink() for more
1843 		 * details on the false dependency.
1844 		 *
1845 		 * Without deleting these false dependencies, some devices will
1846 		 * never probe because they'll keep waiting for their false
1847 		 * dependency fwnode links to be converted to device links.
1848 		 */
1849 		sup_dev = get_dev_from_fwnode(sup);
1850 		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
1851 		put_device(sup_dev);
1852 	}
1853 
1854 	/*
1855 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
1856 	 * all the descendants. This proxy link step is needed to handle the
1857 	 * case where the supplier is added before the consumer's parent device
1858 	 * (@dev).
1859 	 */
1860 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1861 		__fw_devlink_link_to_suppliers(dev, child);
1862 }
1863 
1864 static void fw_devlink_link_device(struct device *dev)
1865 {
1866 	struct fwnode_handle *fwnode = dev->fwnode;
1867 
1868 	if (!fw_devlink_flags)
1869 		return;
1870 
1871 	fw_devlink_parse_fwtree(fwnode);
1872 
1873 	mutex_lock(&fwnode_link_lock);
1874 	__fw_devlink_link_to_consumers(dev);
1875 	__fw_devlink_link_to_suppliers(dev, fwnode);
1876 	mutex_unlock(&fwnode_link_lock);
1877 }
1878 
1879 /* Device links support end. */
1880 
1881 int (*platform_notify)(struct device *dev) = NULL;
1882 int (*platform_notify_remove)(struct device *dev) = NULL;
1883 static struct kobject *dev_kobj;
1884 struct kobject *sysfs_dev_char_kobj;
1885 struct kobject *sysfs_dev_block_kobj;
1886 
1887 static DEFINE_MUTEX(device_hotplug_lock);
1888 
1889 void lock_device_hotplug(void)
1890 {
1891 	mutex_lock(&device_hotplug_lock);
1892 }
1893 
1894 void unlock_device_hotplug(void)
1895 {
1896 	mutex_unlock(&device_hotplug_lock);
1897 }
1898 
1899 int lock_device_hotplug_sysfs(void)
1900 {
1901 	if (mutex_trylock(&device_hotplug_lock))
1902 		return 0;
1903 
1904 	/* Avoid busy looping (5 ms of sleep should do). */
1905 	msleep(5);
1906 	return restart_syscall();
1907 }
1908 
1909 #ifdef CONFIG_BLOCK
1910 static inline int device_is_not_partition(struct device *dev)
1911 {
1912 	return !(dev->type == &part_type);
1913 }
1914 #else
1915 static inline int device_is_not_partition(struct device *dev)
1916 {
1917 	return 1;
1918 }
1919 #endif
1920 
1921 static int
1922 device_platform_notify(struct device *dev, enum kobject_action action)
1923 {
1924 	int ret;
1925 
1926 	ret = acpi_platform_notify(dev, action);
1927 	if (ret)
1928 		return ret;
1929 
1930 	ret = software_node_notify(dev, action);
1931 	if (ret)
1932 		return ret;
1933 
1934 	if (platform_notify && action == KOBJ_ADD)
1935 		platform_notify(dev);
1936 	else if (platform_notify_remove && action == KOBJ_REMOVE)
1937 		platform_notify_remove(dev);
1938 	return 0;
1939 }
1940 
1941 /**
1942  * dev_driver_string - Return a device's driver name, if at all possible
1943  * @dev: struct device to get the name of
1944  *
1945  * Will return the device's driver's name if it is bound to a device.  If
1946  * the device is not bound to a driver, it will return the name of the bus
1947  * it is attached to.  If it is not attached to a bus either, an empty
1948  * string will be returned.
1949  */
1950 const char *dev_driver_string(const struct device *dev)
1951 {
1952 	struct device_driver *drv;
1953 
1954 	/* dev->driver can change to NULL underneath us because of unbinding,
1955 	 * so be careful about accessing it.  dev->bus and dev->class should
1956 	 * never change once they are set, so they don't need special care.
1957 	 */
1958 	drv = READ_ONCE(dev->driver);
1959 	return drv ? drv->name : dev_bus_name(dev);
1960 }
1961 EXPORT_SYMBOL(dev_driver_string);
1962 
1963 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1964 
1965 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1966 			     char *buf)
1967 {
1968 	struct device_attribute *dev_attr = to_dev_attr(attr);
1969 	struct device *dev = kobj_to_dev(kobj);
1970 	ssize_t ret = -EIO;
1971 
1972 	if (dev_attr->show)
1973 		ret = dev_attr->show(dev, dev_attr, buf);
1974 	if (ret >= (ssize_t)PAGE_SIZE) {
1975 		printk("dev_attr_show: %pS returned bad count\n",
1976 				dev_attr->show);
1977 	}
1978 	return ret;
1979 }
1980 
1981 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1982 			      const char *buf, size_t count)
1983 {
1984 	struct device_attribute *dev_attr = to_dev_attr(attr);
1985 	struct device *dev = kobj_to_dev(kobj);
1986 	ssize_t ret = -EIO;
1987 
1988 	if (dev_attr->store)
1989 		ret = dev_attr->store(dev, dev_attr, buf, count);
1990 	return ret;
1991 }
1992 
1993 static const struct sysfs_ops dev_sysfs_ops = {
1994 	.show	= dev_attr_show,
1995 	.store	= dev_attr_store,
1996 };
1997 
1998 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1999 
2000 ssize_t device_store_ulong(struct device *dev,
2001 			   struct device_attribute *attr,
2002 			   const char *buf, size_t size)
2003 {
2004 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2005 	int ret;
2006 	unsigned long new;
2007 
2008 	ret = kstrtoul(buf, 0, &new);
2009 	if (ret)
2010 		return ret;
2011 	*(unsigned long *)(ea->var) = new;
2012 	/* Always return full write size even if we didn't consume all */
2013 	return size;
2014 }
2015 EXPORT_SYMBOL_GPL(device_store_ulong);
2016 
2017 ssize_t device_show_ulong(struct device *dev,
2018 			  struct device_attribute *attr,
2019 			  char *buf)
2020 {
2021 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2022 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2023 }
2024 EXPORT_SYMBOL_GPL(device_show_ulong);
2025 
2026 ssize_t device_store_int(struct device *dev,
2027 			 struct device_attribute *attr,
2028 			 const char *buf, size_t size)
2029 {
2030 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2031 	int ret;
2032 	long new;
2033 
2034 	ret = kstrtol(buf, 0, &new);
2035 	if (ret)
2036 		return ret;
2037 
2038 	if (new > INT_MAX || new < INT_MIN)
2039 		return -EINVAL;
2040 	*(int *)(ea->var) = new;
2041 	/* Always return full write size even if we didn't consume all */
2042 	return size;
2043 }
2044 EXPORT_SYMBOL_GPL(device_store_int);
2045 
2046 ssize_t device_show_int(struct device *dev,
2047 			struct device_attribute *attr,
2048 			char *buf)
2049 {
2050 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2051 
2052 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2053 }
2054 EXPORT_SYMBOL_GPL(device_show_int);
2055 
2056 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2057 			  const char *buf, size_t size)
2058 {
2059 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2060 
2061 	if (strtobool(buf, ea->var) < 0)
2062 		return -EINVAL;
2063 
2064 	return size;
2065 }
2066 EXPORT_SYMBOL_GPL(device_store_bool);
2067 
2068 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2069 			 char *buf)
2070 {
2071 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2072 
2073 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2074 }
2075 EXPORT_SYMBOL_GPL(device_show_bool);
2076 
2077 /**
2078  * device_release - free device structure.
2079  * @kobj: device's kobject.
2080  *
2081  * This is called once the reference count for the object
2082  * reaches 0. We forward the call to the device's release
2083  * method, which should handle actually freeing the structure.
2084  */
2085 static void device_release(struct kobject *kobj)
2086 {
2087 	struct device *dev = kobj_to_dev(kobj);
2088 	struct device_private *p = dev->p;
2089 
2090 	/*
2091 	 * Some platform devices are driven without driver attached
2092 	 * and managed resources may have been acquired.  Make sure
2093 	 * all resources are released.
2094 	 *
2095 	 * Drivers still can add resources into device after device
2096 	 * is deleted but alive, so release devres here to avoid
2097 	 * possible memory leak.
2098 	 */
2099 	devres_release_all(dev);
2100 
2101 	kfree(dev->dma_range_map);
2102 
2103 	if (dev->release)
2104 		dev->release(dev);
2105 	else if (dev->type && dev->type->release)
2106 		dev->type->release(dev);
2107 	else if (dev->class && dev->class->dev_release)
2108 		dev->class->dev_release(dev);
2109 	else
2110 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2111 			dev_name(dev));
2112 	kfree(p);
2113 }
2114 
2115 static const void *device_namespace(struct kobject *kobj)
2116 {
2117 	struct device *dev = kobj_to_dev(kobj);
2118 	const void *ns = NULL;
2119 
2120 	if (dev->class && dev->class->ns_type)
2121 		ns = dev->class->namespace(dev);
2122 
2123 	return ns;
2124 }
2125 
2126 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2127 {
2128 	struct device *dev = kobj_to_dev(kobj);
2129 
2130 	if (dev->class && dev->class->get_ownership)
2131 		dev->class->get_ownership(dev, uid, gid);
2132 }
2133 
2134 static struct kobj_type device_ktype = {
2135 	.release	= device_release,
2136 	.sysfs_ops	= &dev_sysfs_ops,
2137 	.namespace	= device_namespace,
2138 	.get_ownership	= device_get_ownership,
2139 };
2140 
2141 
2142 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
2143 {
2144 	struct kobj_type *ktype = get_ktype(kobj);
2145 
2146 	if (ktype == &device_ktype) {
2147 		struct device *dev = kobj_to_dev(kobj);
2148 		if (dev->bus)
2149 			return 1;
2150 		if (dev->class)
2151 			return 1;
2152 	}
2153 	return 0;
2154 }
2155 
2156 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
2157 {
2158 	struct device *dev = kobj_to_dev(kobj);
2159 
2160 	if (dev->bus)
2161 		return dev->bus->name;
2162 	if (dev->class)
2163 		return dev->class->name;
2164 	return NULL;
2165 }
2166 
2167 static int dev_uevent(struct kset *kset, struct kobject *kobj,
2168 		      struct kobj_uevent_env *env)
2169 {
2170 	struct device *dev = kobj_to_dev(kobj);
2171 	int retval = 0;
2172 
2173 	/* add device node properties if present */
2174 	if (MAJOR(dev->devt)) {
2175 		const char *tmp;
2176 		const char *name;
2177 		umode_t mode = 0;
2178 		kuid_t uid = GLOBAL_ROOT_UID;
2179 		kgid_t gid = GLOBAL_ROOT_GID;
2180 
2181 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2182 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2183 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2184 		if (name) {
2185 			add_uevent_var(env, "DEVNAME=%s", name);
2186 			if (mode)
2187 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2188 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2189 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2190 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2191 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2192 			kfree(tmp);
2193 		}
2194 	}
2195 
2196 	if (dev->type && dev->type->name)
2197 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2198 
2199 	if (dev->driver)
2200 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2201 
2202 	/* Add common DT information about the device */
2203 	of_device_uevent(dev, env);
2204 
2205 	/* have the bus specific function add its stuff */
2206 	if (dev->bus && dev->bus->uevent) {
2207 		retval = dev->bus->uevent(dev, env);
2208 		if (retval)
2209 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2210 				 dev_name(dev), __func__, retval);
2211 	}
2212 
2213 	/* have the class specific function add its stuff */
2214 	if (dev->class && dev->class->dev_uevent) {
2215 		retval = dev->class->dev_uevent(dev, env);
2216 		if (retval)
2217 			pr_debug("device: '%s': %s: class uevent() "
2218 				 "returned %d\n", dev_name(dev),
2219 				 __func__, retval);
2220 	}
2221 
2222 	/* have the device type specific function add its stuff */
2223 	if (dev->type && dev->type->uevent) {
2224 		retval = dev->type->uevent(dev, env);
2225 		if (retval)
2226 			pr_debug("device: '%s': %s: dev_type uevent() "
2227 				 "returned %d\n", dev_name(dev),
2228 				 __func__, retval);
2229 	}
2230 
2231 	return retval;
2232 }
2233 
2234 static const struct kset_uevent_ops device_uevent_ops = {
2235 	.filter =	dev_uevent_filter,
2236 	.name =		dev_uevent_name,
2237 	.uevent =	dev_uevent,
2238 };
2239 
2240 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2241 			   char *buf)
2242 {
2243 	struct kobject *top_kobj;
2244 	struct kset *kset;
2245 	struct kobj_uevent_env *env = NULL;
2246 	int i;
2247 	int len = 0;
2248 	int retval;
2249 
2250 	/* search the kset, the device belongs to */
2251 	top_kobj = &dev->kobj;
2252 	while (!top_kobj->kset && top_kobj->parent)
2253 		top_kobj = top_kobj->parent;
2254 	if (!top_kobj->kset)
2255 		goto out;
2256 
2257 	kset = top_kobj->kset;
2258 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2259 		goto out;
2260 
2261 	/* respect filter */
2262 	if (kset->uevent_ops && kset->uevent_ops->filter)
2263 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
2264 			goto out;
2265 
2266 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2267 	if (!env)
2268 		return -ENOMEM;
2269 
2270 	/* let the kset specific function add its keys */
2271 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
2272 	if (retval)
2273 		goto out;
2274 
2275 	/* copy keys to file */
2276 	for (i = 0; i < env->envp_idx; i++)
2277 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2278 out:
2279 	kfree(env);
2280 	return len;
2281 }
2282 
2283 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2284 			    const char *buf, size_t count)
2285 {
2286 	int rc;
2287 
2288 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2289 
2290 	if (rc) {
2291 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
2292 		return rc;
2293 	}
2294 
2295 	return count;
2296 }
2297 static DEVICE_ATTR_RW(uevent);
2298 
2299 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2300 			   char *buf)
2301 {
2302 	bool val;
2303 
2304 	device_lock(dev);
2305 	val = !dev->offline;
2306 	device_unlock(dev);
2307 	return sysfs_emit(buf, "%u\n", val);
2308 }
2309 
2310 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2311 			    const char *buf, size_t count)
2312 {
2313 	bool val;
2314 	int ret;
2315 
2316 	ret = strtobool(buf, &val);
2317 	if (ret < 0)
2318 		return ret;
2319 
2320 	ret = lock_device_hotplug_sysfs();
2321 	if (ret)
2322 		return ret;
2323 
2324 	ret = val ? device_online(dev) : device_offline(dev);
2325 	unlock_device_hotplug();
2326 	return ret < 0 ? ret : count;
2327 }
2328 static DEVICE_ATTR_RW(online);
2329 
2330 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2331 {
2332 	return sysfs_create_groups(&dev->kobj, groups);
2333 }
2334 EXPORT_SYMBOL_GPL(device_add_groups);
2335 
2336 void device_remove_groups(struct device *dev,
2337 			  const struct attribute_group **groups)
2338 {
2339 	sysfs_remove_groups(&dev->kobj, groups);
2340 }
2341 EXPORT_SYMBOL_GPL(device_remove_groups);
2342 
2343 union device_attr_group_devres {
2344 	const struct attribute_group *group;
2345 	const struct attribute_group **groups;
2346 };
2347 
2348 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2349 {
2350 	return ((union device_attr_group_devres *)res)->group == data;
2351 }
2352 
2353 static void devm_attr_group_remove(struct device *dev, void *res)
2354 {
2355 	union device_attr_group_devres *devres = res;
2356 	const struct attribute_group *group = devres->group;
2357 
2358 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2359 	sysfs_remove_group(&dev->kobj, group);
2360 }
2361 
2362 static void devm_attr_groups_remove(struct device *dev, void *res)
2363 {
2364 	union device_attr_group_devres *devres = res;
2365 	const struct attribute_group **groups = devres->groups;
2366 
2367 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2368 	sysfs_remove_groups(&dev->kobj, groups);
2369 }
2370 
2371 /**
2372  * devm_device_add_group - given a device, create a managed attribute group
2373  * @dev:	The device to create the group for
2374  * @grp:	The attribute group to create
2375  *
2376  * This function creates a group for the first time.  It will explicitly
2377  * warn and error if any of the attribute files being created already exist.
2378  *
2379  * Returns 0 on success or error code on failure.
2380  */
2381 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2382 {
2383 	union device_attr_group_devres *devres;
2384 	int error;
2385 
2386 	devres = devres_alloc(devm_attr_group_remove,
2387 			      sizeof(*devres), GFP_KERNEL);
2388 	if (!devres)
2389 		return -ENOMEM;
2390 
2391 	error = sysfs_create_group(&dev->kobj, grp);
2392 	if (error) {
2393 		devres_free(devres);
2394 		return error;
2395 	}
2396 
2397 	devres->group = grp;
2398 	devres_add(dev, devres);
2399 	return 0;
2400 }
2401 EXPORT_SYMBOL_GPL(devm_device_add_group);
2402 
2403 /**
2404  * devm_device_remove_group: remove a managed group from a device
2405  * @dev:	device to remove the group from
2406  * @grp:	group to remove
2407  *
2408  * This function removes a group of attributes from a device. The attributes
2409  * previously have to have been created for this group, otherwise it will fail.
2410  */
2411 void devm_device_remove_group(struct device *dev,
2412 			      const struct attribute_group *grp)
2413 {
2414 	WARN_ON(devres_release(dev, devm_attr_group_remove,
2415 			       devm_attr_group_match,
2416 			       /* cast away const */ (void *)grp));
2417 }
2418 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2419 
2420 /**
2421  * devm_device_add_groups - create a bunch of managed attribute groups
2422  * @dev:	The device to create the group for
2423  * @groups:	The attribute groups to create, NULL terminated
2424  *
2425  * This function creates a bunch of managed attribute groups.  If an error
2426  * occurs when creating a group, all previously created groups will be
2427  * removed, unwinding everything back to the original state when this
2428  * function was called.  It will explicitly warn and error if any of the
2429  * attribute files being created already exist.
2430  *
2431  * Returns 0 on success or error code from sysfs_create_group on failure.
2432  */
2433 int devm_device_add_groups(struct device *dev,
2434 			   const struct attribute_group **groups)
2435 {
2436 	union device_attr_group_devres *devres;
2437 	int error;
2438 
2439 	devres = devres_alloc(devm_attr_groups_remove,
2440 			      sizeof(*devres), GFP_KERNEL);
2441 	if (!devres)
2442 		return -ENOMEM;
2443 
2444 	error = sysfs_create_groups(&dev->kobj, groups);
2445 	if (error) {
2446 		devres_free(devres);
2447 		return error;
2448 	}
2449 
2450 	devres->groups = groups;
2451 	devres_add(dev, devres);
2452 	return 0;
2453 }
2454 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2455 
2456 /**
2457  * devm_device_remove_groups - remove a list of managed groups
2458  *
2459  * @dev:	The device for the groups to be removed from
2460  * @groups:	NULL terminated list of groups to be removed
2461  *
2462  * If groups is not NULL, remove the specified groups from the device.
2463  */
2464 void devm_device_remove_groups(struct device *dev,
2465 			       const struct attribute_group **groups)
2466 {
2467 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2468 			       devm_attr_group_match,
2469 			       /* cast away const */ (void *)groups));
2470 }
2471 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2472 
2473 static int device_add_attrs(struct device *dev)
2474 {
2475 	struct class *class = dev->class;
2476 	const struct device_type *type = dev->type;
2477 	int error;
2478 
2479 	if (class) {
2480 		error = device_add_groups(dev, class->dev_groups);
2481 		if (error)
2482 			return error;
2483 	}
2484 
2485 	if (type) {
2486 		error = device_add_groups(dev, type->groups);
2487 		if (error)
2488 			goto err_remove_class_groups;
2489 	}
2490 
2491 	error = device_add_groups(dev, dev->groups);
2492 	if (error)
2493 		goto err_remove_type_groups;
2494 
2495 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2496 		error = device_create_file(dev, &dev_attr_online);
2497 		if (error)
2498 			goto err_remove_dev_groups;
2499 	}
2500 
2501 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2502 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2503 		if (error)
2504 			goto err_remove_dev_online;
2505 	}
2506 
2507 	return 0;
2508 
2509  err_remove_dev_online:
2510 	device_remove_file(dev, &dev_attr_online);
2511  err_remove_dev_groups:
2512 	device_remove_groups(dev, dev->groups);
2513  err_remove_type_groups:
2514 	if (type)
2515 		device_remove_groups(dev, type->groups);
2516  err_remove_class_groups:
2517 	if (class)
2518 		device_remove_groups(dev, class->dev_groups);
2519 
2520 	return error;
2521 }
2522 
2523 static void device_remove_attrs(struct device *dev)
2524 {
2525 	struct class *class = dev->class;
2526 	const struct device_type *type = dev->type;
2527 
2528 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2529 	device_remove_file(dev, &dev_attr_online);
2530 	device_remove_groups(dev, dev->groups);
2531 
2532 	if (type)
2533 		device_remove_groups(dev, type->groups);
2534 
2535 	if (class)
2536 		device_remove_groups(dev, class->dev_groups);
2537 }
2538 
2539 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2540 			char *buf)
2541 {
2542 	return print_dev_t(buf, dev->devt);
2543 }
2544 static DEVICE_ATTR_RO(dev);
2545 
2546 /* /sys/devices/ */
2547 struct kset *devices_kset;
2548 
2549 /**
2550  * devices_kset_move_before - Move device in the devices_kset's list.
2551  * @deva: Device to move.
2552  * @devb: Device @deva should come before.
2553  */
2554 static void devices_kset_move_before(struct device *deva, struct device *devb)
2555 {
2556 	if (!devices_kset)
2557 		return;
2558 	pr_debug("devices_kset: Moving %s before %s\n",
2559 		 dev_name(deva), dev_name(devb));
2560 	spin_lock(&devices_kset->list_lock);
2561 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2562 	spin_unlock(&devices_kset->list_lock);
2563 }
2564 
2565 /**
2566  * devices_kset_move_after - Move device in the devices_kset's list.
2567  * @deva: Device to move
2568  * @devb: Device @deva should come after.
2569  */
2570 static void devices_kset_move_after(struct device *deva, struct device *devb)
2571 {
2572 	if (!devices_kset)
2573 		return;
2574 	pr_debug("devices_kset: Moving %s after %s\n",
2575 		 dev_name(deva), dev_name(devb));
2576 	spin_lock(&devices_kset->list_lock);
2577 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2578 	spin_unlock(&devices_kset->list_lock);
2579 }
2580 
2581 /**
2582  * devices_kset_move_last - move the device to the end of devices_kset's list.
2583  * @dev: device to move
2584  */
2585 void devices_kset_move_last(struct device *dev)
2586 {
2587 	if (!devices_kset)
2588 		return;
2589 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2590 	spin_lock(&devices_kset->list_lock);
2591 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2592 	spin_unlock(&devices_kset->list_lock);
2593 }
2594 
2595 /**
2596  * device_create_file - create sysfs attribute file for device.
2597  * @dev: device.
2598  * @attr: device attribute descriptor.
2599  */
2600 int device_create_file(struct device *dev,
2601 		       const struct device_attribute *attr)
2602 {
2603 	int error = 0;
2604 
2605 	if (dev) {
2606 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2607 			"Attribute %s: write permission without 'store'\n",
2608 			attr->attr.name);
2609 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2610 			"Attribute %s: read permission without 'show'\n",
2611 			attr->attr.name);
2612 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2613 	}
2614 
2615 	return error;
2616 }
2617 EXPORT_SYMBOL_GPL(device_create_file);
2618 
2619 /**
2620  * device_remove_file - remove sysfs attribute file.
2621  * @dev: device.
2622  * @attr: device attribute descriptor.
2623  */
2624 void device_remove_file(struct device *dev,
2625 			const struct device_attribute *attr)
2626 {
2627 	if (dev)
2628 		sysfs_remove_file(&dev->kobj, &attr->attr);
2629 }
2630 EXPORT_SYMBOL_GPL(device_remove_file);
2631 
2632 /**
2633  * device_remove_file_self - remove sysfs attribute file from its own method.
2634  * @dev: device.
2635  * @attr: device attribute descriptor.
2636  *
2637  * See kernfs_remove_self() for details.
2638  */
2639 bool device_remove_file_self(struct device *dev,
2640 			     const struct device_attribute *attr)
2641 {
2642 	if (dev)
2643 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2644 	else
2645 		return false;
2646 }
2647 EXPORT_SYMBOL_GPL(device_remove_file_self);
2648 
2649 /**
2650  * device_create_bin_file - create sysfs binary attribute file for device.
2651  * @dev: device.
2652  * @attr: device binary attribute descriptor.
2653  */
2654 int device_create_bin_file(struct device *dev,
2655 			   const struct bin_attribute *attr)
2656 {
2657 	int error = -EINVAL;
2658 	if (dev)
2659 		error = sysfs_create_bin_file(&dev->kobj, attr);
2660 	return error;
2661 }
2662 EXPORT_SYMBOL_GPL(device_create_bin_file);
2663 
2664 /**
2665  * device_remove_bin_file - remove sysfs binary attribute file
2666  * @dev: device.
2667  * @attr: device binary attribute descriptor.
2668  */
2669 void device_remove_bin_file(struct device *dev,
2670 			    const struct bin_attribute *attr)
2671 {
2672 	if (dev)
2673 		sysfs_remove_bin_file(&dev->kobj, attr);
2674 }
2675 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2676 
2677 static void klist_children_get(struct klist_node *n)
2678 {
2679 	struct device_private *p = to_device_private_parent(n);
2680 	struct device *dev = p->device;
2681 
2682 	get_device(dev);
2683 }
2684 
2685 static void klist_children_put(struct klist_node *n)
2686 {
2687 	struct device_private *p = to_device_private_parent(n);
2688 	struct device *dev = p->device;
2689 
2690 	put_device(dev);
2691 }
2692 
2693 /**
2694  * device_initialize - init device structure.
2695  * @dev: device.
2696  *
2697  * This prepares the device for use by other layers by initializing
2698  * its fields.
2699  * It is the first half of device_register(), if called by
2700  * that function, though it can also be called separately, so one
2701  * may use @dev's fields. In particular, get_device()/put_device()
2702  * may be used for reference counting of @dev after calling this
2703  * function.
2704  *
2705  * All fields in @dev must be initialized by the caller to 0, except
2706  * for those explicitly set to some other value.  The simplest
2707  * approach is to use kzalloc() to allocate the structure containing
2708  * @dev.
2709  *
2710  * NOTE: Use put_device() to give up your reference instead of freeing
2711  * @dev directly once you have called this function.
2712  */
2713 void device_initialize(struct device *dev)
2714 {
2715 	dev->kobj.kset = devices_kset;
2716 	kobject_init(&dev->kobj, &device_ktype);
2717 	INIT_LIST_HEAD(&dev->dma_pools);
2718 	mutex_init(&dev->mutex);
2719 #ifdef CONFIG_PROVE_LOCKING
2720 	mutex_init(&dev->lockdep_mutex);
2721 #endif
2722 	lockdep_set_novalidate_class(&dev->mutex);
2723 	spin_lock_init(&dev->devres_lock);
2724 	INIT_LIST_HEAD(&dev->devres_head);
2725 	device_pm_init(dev);
2726 	set_dev_node(dev, -1);
2727 #ifdef CONFIG_GENERIC_MSI_IRQ
2728 	INIT_LIST_HEAD(&dev->msi_list);
2729 #endif
2730 	INIT_LIST_HEAD(&dev->links.consumers);
2731 	INIT_LIST_HEAD(&dev->links.suppliers);
2732 	INIT_LIST_HEAD(&dev->links.defer_sync);
2733 	dev->links.status = DL_DEV_NO_DRIVER;
2734 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2735     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2736     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2737 	dev->dma_coherent = dma_default_coherent;
2738 #endif
2739 }
2740 EXPORT_SYMBOL_GPL(device_initialize);
2741 
2742 struct kobject *virtual_device_parent(struct device *dev)
2743 {
2744 	static struct kobject *virtual_dir = NULL;
2745 
2746 	if (!virtual_dir)
2747 		virtual_dir = kobject_create_and_add("virtual",
2748 						     &devices_kset->kobj);
2749 
2750 	return virtual_dir;
2751 }
2752 
2753 struct class_dir {
2754 	struct kobject kobj;
2755 	struct class *class;
2756 };
2757 
2758 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2759 
2760 static void class_dir_release(struct kobject *kobj)
2761 {
2762 	struct class_dir *dir = to_class_dir(kobj);
2763 	kfree(dir);
2764 }
2765 
2766 static const
2767 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2768 {
2769 	struct class_dir *dir = to_class_dir(kobj);
2770 	return dir->class->ns_type;
2771 }
2772 
2773 static struct kobj_type class_dir_ktype = {
2774 	.release	= class_dir_release,
2775 	.sysfs_ops	= &kobj_sysfs_ops,
2776 	.child_ns_type	= class_dir_child_ns_type
2777 };
2778 
2779 static struct kobject *
2780 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2781 {
2782 	struct class_dir *dir;
2783 	int retval;
2784 
2785 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2786 	if (!dir)
2787 		return ERR_PTR(-ENOMEM);
2788 
2789 	dir->class = class;
2790 	kobject_init(&dir->kobj, &class_dir_ktype);
2791 
2792 	dir->kobj.kset = &class->p->glue_dirs;
2793 
2794 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2795 	if (retval < 0) {
2796 		kobject_put(&dir->kobj);
2797 		return ERR_PTR(retval);
2798 	}
2799 	return &dir->kobj;
2800 }
2801 
2802 static DEFINE_MUTEX(gdp_mutex);
2803 
2804 static struct kobject *get_device_parent(struct device *dev,
2805 					 struct device *parent)
2806 {
2807 	if (dev->class) {
2808 		struct kobject *kobj = NULL;
2809 		struct kobject *parent_kobj;
2810 		struct kobject *k;
2811 
2812 #ifdef CONFIG_BLOCK
2813 		/* block disks show up in /sys/block */
2814 		if (sysfs_deprecated && dev->class == &block_class) {
2815 			if (parent && parent->class == &block_class)
2816 				return &parent->kobj;
2817 			return &block_class.p->subsys.kobj;
2818 		}
2819 #endif
2820 
2821 		/*
2822 		 * If we have no parent, we live in "virtual".
2823 		 * Class-devices with a non class-device as parent, live
2824 		 * in a "glue" directory to prevent namespace collisions.
2825 		 */
2826 		if (parent == NULL)
2827 			parent_kobj = virtual_device_parent(dev);
2828 		else if (parent->class && !dev->class->ns_type)
2829 			return &parent->kobj;
2830 		else
2831 			parent_kobj = &parent->kobj;
2832 
2833 		mutex_lock(&gdp_mutex);
2834 
2835 		/* find our class-directory at the parent and reference it */
2836 		spin_lock(&dev->class->p->glue_dirs.list_lock);
2837 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2838 			if (k->parent == parent_kobj) {
2839 				kobj = kobject_get(k);
2840 				break;
2841 			}
2842 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2843 		if (kobj) {
2844 			mutex_unlock(&gdp_mutex);
2845 			return kobj;
2846 		}
2847 
2848 		/* or create a new class-directory at the parent device */
2849 		k = class_dir_create_and_add(dev->class, parent_kobj);
2850 		/* do not emit an uevent for this simple "glue" directory */
2851 		mutex_unlock(&gdp_mutex);
2852 		return k;
2853 	}
2854 
2855 	/* subsystems can specify a default root directory for their devices */
2856 	if (!parent && dev->bus && dev->bus->dev_root)
2857 		return &dev->bus->dev_root->kobj;
2858 
2859 	if (parent)
2860 		return &parent->kobj;
2861 	return NULL;
2862 }
2863 
2864 static inline bool live_in_glue_dir(struct kobject *kobj,
2865 				    struct device *dev)
2866 {
2867 	if (!kobj || !dev->class ||
2868 	    kobj->kset != &dev->class->p->glue_dirs)
2869 		return false;
2870 	return true;
2871 }
2872 
2873 static inline struct kobject *get_glue_dir(struct device *dev)
2874 {
2875 	return dev->kobj.parent;
2876 }
2877 
2878 /*
2879  * make sure cleaning up dir as the last step, we need to make
2880  * sure .release handler of kobject is run with holding the
2881  * global lock
2882  */
2883 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2884 {
2885 	unsigned int ref;
2886 
2887 	/* see if we live in a "glue" directory */
2888 	if (!live_in_glue_dir(glue_dir, dev))
2889 		return;
2890 
2891 	mutex_lock(&gdp_mutex);
2892 	/**
2893 	 * There is a race condition between removing glue directory
2894 	 * and adding a new device under the glue directory.
2895 	 *
2896 	 * CPU1:                                         CPU2:
2897 	 *
2898 	 * device_add()
2899 	 *   get_device_parent()
2900 	 *     class_dir_create_and_add()
2901 	 *       kobject_add_internal()
2902 	 *         create_dir()    // create glue_dir
2903 	 *
2904 	 *                                               device_add()
2905 	 *                                                 get_device_parent()
2906 	 *                                                   kobject_get() // get glue_dir
2907 	 *
2908 	 * device_del()
2909 	 *   cleanup_glue_dir()
2910 	 *     kobject_del(glue_dir)
2911 	 *
2912 	 *                                               kobject_add()
2913 	 *                                                 kobject_add_internal()
2914 	 *                                                   create_dir() // in glue_dir
2915 	 *                                                     sysfs_create_dir_ns()
2916 	 *                                                       kernfs_create_dir_ns(sd)
2917 	 *
2918 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
2919 	 *       sysfs_put()        // free glue_dir->sd
2920 	 *
2921 	 *                                                         // sd is freed
2922 	 *                                                         kernfs_new_node(sd)
2923 	 *                                                           kernfs_get(glue_dir)
2924 	 *                                                           kernfs_add_one()
2925 	 *                                                           kernfs_put()
2926 	 *
2927 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
2928 	 * a new device under glue dir, the glue_dir kobject reference count
2929 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2930 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2931 	 * and sysfs_put(). This result in glue_dir->sd is freed.
2932 	 *
2933 	 * Then the CPU2 will see a stale "empty" but still potentially used
2934 	 * glue dir around in kernfs_new_node().
2935 	 *
2936 	 * In order to avoid this happening, we also should make sure that
2937 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
2938 	 * for glue_dir kobj is 1.
2939 	 */
2940 	ref = kref_read(&glue_dir->kref);
2941 	if (!kobject_has_children(glue_dir) && !--ref)
2942 		kobject_del(glue_dir);
2943 	kobject_put(glue_dir);
2944 	mutex_unlock(&gdp_mutex);
2945 }
2946 
2947 static int device_add_class_symlinks(struct device *dev)
2948 {
2949 	struct device_node *of_node = dev_of_node(dev);
2950 	int error;
2951 
2952 	if (of_node) {
2953 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2954 		if (error)
2955 			dev_warn(dev, "Error %d creating of_node link\n",error);
2956 		/* An error here doesn't warrant bringing down the device */
2957 	}
2958 
2959 	if (!dev->class)
2960 		return 0;
2961 
2962 	error = sysfs_create_link(&dev->kobj,
2963 				  &dev->class->p->subsys.kobj,
2964 				  "subsystem");
2965 	if (error)
2966 		goto out_devnode;
2967 
2968 	if (dev->parent && device_is_not_partition(dev)) {
2969 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2970 					  "device");
2971 		if (error)
2972 			goto out_subsys;
2973 	}
2974 
2975 #ifdef CONFIG_BLOCK
2976 	/* /sys/block has directories and does not need symlinks */
2977 	if (sysfs_deprecated && dev->class == &block_class)
2978 		return 0;
2979 #endif
2980 
2981 	/* link in the class directory pointing to the device */
2982 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
2983 				  &dev->kobj, dev_name(dev));
2984 	if (error)
2985 		goto out_device;
2986 
2987 	return 0;
2988 
2989 out_device:
2990 	sysfs_remove_link(&dev->kobj, "device");
2991 
2992 out_subsys:
2993 	sysfs_remove_link(&dev->kobj, "subsystem");
2994 out_devnode:
2995 	sysfs_remove_link(&dev->kobj, "of_node");
2996 	return error;
2997 }
2998 
2999 static void device_remove_class_symlinks(struct device *dev)
3000 {
3001 	if (dev_of_node(dev))
3002 		sysfs_remove_link(&dev->kobj, "of_node");
3003 
3004 	if (!dev->class)
3005 		return;
3006 
3007 	if (dev->parent && device_is_not_partition(dev))
3008 		sysfs_remove_link(&dev->kobj, "device");
3009 	sysfs_remove_link(&dev->kobj, "subsystem");
3010 #ifdef CONFIG_BLOCK
3011 	if (sysfs_deprecated && dev->class == &block_class)
3012 		return;
3013 #endif
3014 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3015 }
3016 
3017 /**
3018  * dev_set_name - set a device name
3019  * @dev: device
3020  * @fmt: format string for the device's name
3021  */
3022 int dev_set_name(struct device *dev, const char *fmt, ...)
3023 {
3024 	va_list vargs;
3025 	int err;
3026 
3027 	va_start(vargs, fmt);
3028 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3029 	va_end(vargs);
3030 	return err;
3031 }
3032 EXPORT_SYMBOL_GPL(dev_set_name);
3033 
3034 /**
3035  * device_to_dev_kobj - select a /sys/dev/ directory for the device
3036  * @dev: device
3037  *
3038  * By default we select char/ for new entries.  Setting class->dev_obj
3039  * to NULL prevents an entry from being created.  class->dev_kobj must
3040  * be set (or cleared) before any devices are registered to the class
3041  * otherwise device_create_sys_dev_entry() and
3042  * device_remove_sys_dev_entry() will disagree about the presence of
3043  * the link.
3044  */
3045 static struct kobject *device_to_dev_kobj(struct device *dev)
3046 {
3047 	struct kobject *kobj;
3048 
3049 	if (dev->class)
3050 		kobj = dev->class->dev_kobj;
3051 	else
3052 		kobj = sysfs_dev_char_kobj;
3053 
3054 	return kobj;
3055 }
3056 
3057 static int device_create_sys_dev_entry(struct device *dev)
3058 {
3059 	struct kobject *kobj = device_to_dev_kobj(dev);
3060 	int error = 0;
3061 	char devt_str[15];
3062 
3063 	if (kobj) {
3064 		format_dev_t(devt_str, dev->devt);
3065 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3066 	}
3067 
3068 	return error;
3069 }
3070 
3071 static void device_remove_sys_dev_entry(struct device *dev)
3072 {
3073 	struct kobject *kobj = device_to_dev_kobj(dev);
3074 	char devt_str[15];
3075 
3076 	if (kobj) {
3077 		format_dev_t(devt_str, dev->devt);
3078 		sysfs_remove_link(kobj, devt_str);
3079 	}
3080 }
3081 
3082 static int device_private_init(struct device *dev)
3083 {
3084 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3085 	if (!dev->p)
3086 		return -ENOMEM;
3087 	dev->p->device = dev;
3088 	klist_init(&dev->p->klist_children, klist_children_get,
3089 		   klist_children_put);
3090 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3091 	return 0;
3092 }
3093 
3094 /**
3095  * device_add - add device to device hierarchy.
3096  * @dev: device.
3097  *
3098  * This is part 2 of device_register(), though may be called
3099  * separately _iff_ device_initialize() has been called separately.
3100  *
3101  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3102  * to the global and sibling lists for the device, then
3103  * adds it to the other relevant subsystems of the driver model.
3104  *
3105  * Do not call this routine or device_register() more than once for
3106  * any device structure.  The driver model core is not designed to work
3107  * with devices that get unregistered and then spring back to life.
3108  * (Among other things, it's very hard to guarantee that all references
3109  * to the previous incarnation of @dev have been dropped.)  Allocate
3110  * and register a fresh new struct device instead.
3111  *
3112  * NOTE: _Never_ directly free @dev after calling this function, even
3113  * if it returned an error! Always use put_device() to give up your
3114  * reference instead.
3115  *
3116  * Rule of thumb is: if device_add() succeeds, you should call
3117  * device_del() when you want to get rid of it. If device_add() has
3118  * *not* succeeded, use *only* put_device() to drop the reference
3119  * count.
3120  */
3121 int device_add(struct device *dev)
3122 {
3123 	struct device *parent;
3124 	struct kobject *kobj;
3125 	struct class_interface *class_intf;
3126 	int error = -EINVAL;
3127 	struct kobject *glue_dir = NULL;
3128 
3129 	dev = get_device(dev);
3130 	if (!dev)
3131 		goto done;
3132 
3133 	if (!dev->p) {
3134 		error = device_private_init(dev);
3135 		if (error)
3136 			goto done;
3137 	}
3138 
3139 	/*
3140 	 * for statically allocated devices, which should all be converted
3141 	 * some day, we need to initialize the name. We prevent reading back
3142 	 * the name, and force the use of dev_name()
3143 	 */
3144 	if (dev->init_name) {
3145 		dev_set_name(dev, "%s", dev->init_name);
3146 		dev->init_name = NULL;
3147 	}
3148 
3149 	/* subsystems can specify simple device enumeration */
3150 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3151 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3152 
3153 	if (!dev_name(dev)) {
3154 		error = -EINVAL;
3155 		goto name_error;
3156 	}
3157 
3158 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3159 
3160 	parent = get_device(dev->parent);
3161 	kobj = get_device_parent(dev, parent);
3162 	if (IS_ERR(kobj)) {
3163 		error = PTR_ERR(kobj);
3164 		goto parent_error;
3165 	}
3166 	if (kobj)
3167 		dev->kobj.parent = kobj;
3168 
3169 	/* use parent numa_node */
3170 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3171 		set_dev_node(dev, dev_to_node(parent));
3172 
3173 	/* first, register with generic layer. */
3174 	/* we require the name to be set before, and pass NULL */
3175 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3176 	if (error) {
3177 		glue_dir = get_glue_dir(dev);
3178 		goto Error;
3179 	}
3180 
3181 	/* notify platform of device entry */
3182 	error = device_platform_notify(dev, KOBJ_ADD);
3183 	if (error)
3184 		goto platform_error;
3185 
3186 	error = device_create_file(dev, &dev_attr_uevent);
3187 	if (error)
3188 		goto attrError;
3189 
3190 	error = device_add_class_symlinks(dev);
3191 	if (error)
3192 		goto SymlinkError;
3193 	error = device_add_attrs(dev);
3194 	if (error)
3195 		goto AttrsError;
3196 	error = bus_add_device(dev);
3197 	if (error)
3198 		goto BusError;
3199 	error = dpm_sysfs_add(dev);
3200 	if (error)
3201 		goto DPMError;
3202 	device_pm_add(dev);
3203 
3204 	if (MAJOR(dev->devt)) {
3205 		error = device_create_file(dev, &dev_attr_dev);
3206 		if (error)
3207 			goto DevAttrError;
3208 
3209 		error = device_create_sys_dev_entry(dev);
3210 		if (error)
3211 			goto SysEntryError;
3212 
3213 		devtmpfs_create_node(dev);
3214 	}
3215 
3216 	/* Notify clients of device addition.  This call must come
3217 	 * after dpm_sysfs_add() and before kobject_uevent().
3218 	 */
3219 	if (dev->bus)
3220 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3221 					     BUS_NOTIFY_ADD_DEVICE, dev);
3222 
3223 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3224 
3225 	/*
3226 	 * Check if any of the other devices (consumers) have been waiting for
3227 	 * this device (supplier) to be added so that they can create a device
3228 	 * link to it.
3229 	 *
3230 	 * This needs to happen after device_pm_add() because device_link_add()
3231 	 * requires the supplier be registered before it's called.
3232 	 *
3233 	 * But this also needs to happen before bus_probe_device() to make sure
3234 	 * waiting consumers can link to it before the driver is bound to the
3235 	 * device and the driver sync_state callback is called for this device.
3236 	 */
3237 	if (dev->fwnode && !dev->fwnode->dev) {
3238 		dev->fwnode->dev = dev;
3239 		fw_devlink_link_device(dev);
3240 	}
3241 
3242 	bus_probe_device(dev);
3243 	if (parent)
3244 		klist_add_tail(&dev->p->knode_parent,
3245 			       &parent->p->klist_children);
3246 
3247 	if (dev->class) {
3248 		mutex_lock(&dev->class->p->mutex);
3249 		/* tie the class to the device */
3250 		klist_add_tail(&dev->p->knode_class,
3251 			       &dev->class->p->klist_devices);
3252 
3253 		/* notify any interfaces that the device is here */
3254 		list_for_each_entry(class_intf,
3255 				    &dev->class->p->interfaces, node)
3256 			if (class_intf->add_dev)
3257 				class_intf->add_dev(dev, class_intf);
3258 		mutex_unlock(&dev->class->p->mutex);
3259 	}
3260 done:
3261 	put_device(dev);
3262 	return error;
3263  SysEntryError:
3264 	if (MAJOR(dev->devt))
3265 		device_remove_file(dev, &dev_attr_dev);
3266  DevAttrError:
3267 	device_pm_remove(dev);
3268 	dpm_sysfs_remove(dev);
3269  DPMError:
3270 	bus_remove_device(dev);
3271  BusError:
3272 	device_remove_attrs(dev);
3273  AttrsError:
3274 	device_remove_class_symlinks(dev);
3275  SymlinkError:
3276 	device_remove_file(dev, &dev_attr_uevent);
3277  attrError:
3278 	device_platform_notify(dev, KOBJ_REMOVE);
3279 platform_error:
3280 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3281 	glue_dir = get_glue_dir(dev);
3282 	kobject_del(&dev->kobj);
3283  Error:
3284 	cleanup_glue_dir(dev, glue_dir);
3285 parent_error:
3286 	put_device(parent);
3287 name_error:
3288 	kfree(dev->p);
3289 	dev->p = NULL;
3290 	goto done;
3291 }
3292 EXPORT_SYMBOL_GPL(device_add);
3293 
3294 /**
3295  * device_register - register a device with the system.
3296  * @dev: pointer to the device structure
3297  *
3298  * This happens in two clean steps - initialize the device
3299  * and add it to the system. The two steps can be called
3300  * separately, but this is the easiest and most common.
3301  * I.e. you should only call the two helpers separately if
3302  * have a clearly defined need to use and refcount the device
3303  * before it is added to the hierarchy.
3304  *
3305  * For more information, see the kerneldoc for device_initialize()
3306  * and device_add().
3307  *
3308  * NOTE: _Never_ directly free @dev after calling this function, even
3309  * if it returned an error! Always use put_device() to give up the
3310  * reference initialized in this function instead.
3311  */
3312 int device_register(struct device *dev)
3313 {
3314 	device_initialize(dev);
3315 	return device_add(dev);
3316 }
3317 EXPORT_SYMBOL_GPL(device_register);
3318 
3319 /**
3320  * get_device - increment reference count for device.
3321  * @dev: device.
3322  *
3323  * This simply forwards the call to kobject_get(), though
3324  * we do take care to provide for the case that we get a NULL
3325  * pointer passed in.
3326  */
3327 struct device *get_device(struct device *dev)
3328 {
3329 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3330 }
3331 EXPORT_SYMBOL_GPL(get_device);
3332 
3333 /**
3334  * put_device - decrement reference count.
3335  * @dev: device in question.
3336  */
3337 void put_device(struct device *dev)
3338 {
3339 	/* might_sleep(); */
3340 	if (dev)
3341 		kobject_put(&dev->kobj);
3342 }
3343 EXPORT_SYMBOL_GPL(put_device);
3344 
3345 bool kill_device(struct device *dev)
3346 {
3347 	/*
3348 	 * Require the device lock and set the "dead" flag to guarantee that
3349 	 * the update behavior is consistent with the other bitfields near
3350 	 * it and that we cannot have an asynchronous probe routine trying
3351 	 * to run while we are tearing out the bus/class/sysfs from
3352 	 * underneath the device.
3353 	 */
3354 	lockdep_assert_held(&dev->mutex);
3355 
3356 	if (dev->p->dead)
3357 		return false;
3358 	dev->p->dead = true;
3359 	return true;
3360 }
3361 EXPORT_SYMBOL_GPL(kill_device);
3362 
3363 /**
3364  * device_del - delete device from system.
3365  * @dev: device.
3366  *
3367  * This is the first part of the device unregistration
3368  * sequence. This removes the device from the lists we control
3369  * from here, has it removed from the other driver model
3370  * subsystems it was added to in device_add(), and removes it
3371  * from the kobject hierarchy.
3372  *
3373  * NOTE: this should be called manually _iff_ device_add() was
3374  * also called manually.
3375  */
3376 void device_del(struct device *dev)
3377 {
3378 	struct device *parent = dev->parent;
3379 	struct kobject *glue_dir = NULL;
3380 	struct class_interface *class_intf;
3381 	unsigned int noio_flag;
3382 
3383 	device_lock(dev);
3384 	kill_device(dev);
3385 	device_unlock(dev);
3386 
3387 	if (dev->fwnode && dev->fwnode->dev == dev)
3388 		dev->fwnode->dev = NULL;
3389 
3390 	/* Notify clients of device removal.  This call must come
3391 	 * before dpm_sysfs_remove().
3392 	 */
3393 	noio_flag = memalloc_noio_save();
3394 	if (dev->bus)
3395 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3396 					     BUS_NOTIFY_DEL_DEVICE, dev);
3397 
3398 	dpm_sysfs_remove(dev);
3399 	if (parent)
3400 		klist_del(&dev->p->knode_parent);
3401 	if (MAJOR(dev->devt)) {
3402 		devtmpfs_delete_node(dev);
3403 		device_remove_sys_dev_entry(dev);
3404 		device_remove_file(dev, &dev_attr_dev);
3405 	}
3406 	if (dev->class) {
3407 		device_remove_class_symlinks(dev);
3408 
3409 		mutex_lock(&dev->class->p->mutex);
3410 		/* notify any interfaces that the device is now gone */
3411 		list_for_each_entry(class_intf,
3412 				    &dev->class->p->interfaces, node)
3413 			if (class_intf->remove_dev)
3414 				class_intf->remove_dev(dev, class_intf);
3415 		/* remove the device from the class list */
3416 		klist_del(&dev->p->knode_class);
3417 		mutex_unlock(&dev->class->p->mutex);
3418 	}
3419 	device_remove_file(dev, &dev_attr_uevent);
3420 	device_remove_attrs(dev);
3421 	bus_remove_device(dev);
3422 	device_pm_remove(dev);
3423 	driver_deferred_probe_del(dev);
3424 	device_platform_notify(dev, KOBJ_REMOVE);
3425 	device_remove_properties(dev);
3426 	device_links_purge(dev);
3427 
3428 	if (dev->bus)
3429 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3430 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3431 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3432 	glue_dir = get_glue_dir(dev);
3433 	kobject_del(&dev->kobj);
3434 	cleanup_glue_dir(dev, glue_dir);
3435 	memalloc_noio_restore(noio_flag);
3436 	put_device(parent);
3437 }
3438 EXPORT_SYMBOL_GPL(device_del);
3439 
3440 /**
3441  * device_unregister - unregister device from system.
3442  * @dev: device going away.
3443  *
3444  * We do this in two parts, like we do device_register(). First,
3445  * we remove it from all the subsystems with device_del(), then
3446  * we decrement the reference count via put_device(). If that
3447  * is the final reference count, the device will be cleaned up
3448  * via device_release() above. Otherwise, the structure will
3449  * stick around until the final reference to the device is dropped.
3450  */
3451 void device_unregister(struct device *dev)
3452 {
3453 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3454 	device_del(dev);
3455 	put_device(dev);
3456 }
3457 EXPORT_SYMBOL_GPL(device_unregister);
3458 
3459 static struct device *prev_device(struct klist_iter *i)
3460 {
3461 	struct klist_node *n = klist_prev(i);
3462 	struct device *dev = NULL;
3463 	struct device_private *p;
3464 
3465 	if (n) {
3466 		p = to_device_private_parent(n);
3467 		dev = p->device;
3468 	}
3469 	return dev;
3470 }
3471 
3472 static struct device *next_device(struct klist_iter *i)
3473 {
3474 	struct klist_node *n = klist_next(i);
3475 	struct device *dev = NULL;
3476 	struct device_private *p;
3477 
3478 	if (n) {
3479 		p = to_device_private_parent(n);
3480 		dev = p->device;
3481 	}
3482 	return dev;
3483 }
3484 
3485 /**
3486  * device_get_devnode - path of device node file
3487  * @dev: device
3488  * @mode: returned file access mode
3489  * @uid: returned file owner
3490  * @gid: returned file group
3491  * @tmp: possibly allocated string
3492  *
3493  * Return the relative path of a possible device node.
3494  * Non-default names may need to allocate a memory to compose
3495  * a name. This memory is returned in tmp and needs to be
3496  * freed by the caller.
3497  */
3498 const char *device_get_devnode(struct device *dev,
3499 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3500 			       const char **tmp)
3501 {
3502 	char *s;
3503 
3504 	*tmp = NULL;
3505 
3506 	/* the device type may provide a specific name */
3507 	if (dev->type && dev->type->devnode)
3508 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3509 	if (*tmp)
3510 		return *tmp;
3511 
3512 	/* the class may provide a specific name */
3513 	if (dev->class && dev->class->devnode)
3514 		*tmp = dev->class->devnode(dev, mode);
3515 	if (*tmp)
3516 		return *tmp;
3517 
3518 	/* return name without allocation, tmp == NULL */
3519 	if (strchr(dev_name(dev), '!') == NULL)
3520 		return dev_name(dev);
3521 
3522 	/* replace '!' in the name with '/' */
3523 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3524 	if (!s)
3525 		return NULL;
3526 	strreplace(s, '!', '/');
3527 	return *tmp = s;
3528 }
3529 
3530 /**
3531  * device_for_each_child - device child iterator.
3532  * @parent: parent struct device.
3533  * @fn: function to be called for each device.
3534  * @data: data for the callback.
3535  *
3536  * Iterate over @parent's child devices, and call @fn for each,
3537  * passing it @data.
3538  *
3539  * We check the return of @fn each time. If it returns anything
3540  * other than 0, we break out and return that value.
3541  */
3542 int device_for_each_child(struct device *parent, void *data,
3543 			  int (*fn)(struct device *dev, void *data))
3544 {
3545 	struct klist_iter i;
3546 	struct device *child;
3547 	int error = 0;
3548 
3549 	if (!parent->p)
3550 		return 0;
3551 
3552 	klist_iter_init(&parent->p->klist_children, &i);
3553 	while (!error && (child = next_device(&i)))
3554 		error = fn(child, data);
3555 	klist_iter_exit(&i);
3556 	return error;
3557 }
3558 EXPORT_SYMBOL_GPL(device_for_each_child);
3559 
3560 /**
3561  * device_for_each_child_reverse - device child iterator in reversed order.
3562  * @parent: parent struct device.
3563  * @fn: function to be called for each device.
3564  * @data: data for the callback.
3565  *
3566  * Iterate over @parent's child devices, and call @fn for each,
3567  * passing it @data.
3568  *
3569  * We check the return of @fn each time. If it returns anything
3570  * other than 0, we break out and return that value.
3571  */
3572 int device_for_each_child_reverse(struct device *parent, void *data,
3573 				  int (*fn)(struct device *dev, void *data))
3574 {
3575 	struct klist_iter i;
3576 	struct device *child;
3577 	int error = 0;
3578 
3579 	if (!parent->p)
3580 		return 0;
3581 
3582 	klist_iter_init(&parent->p->klist_children, &i);
3583 	while ((child = prev_device(&i)) && !error)
3584 		error = fn(child, data);
3585 	klist_iter_exit(&i);
3586 	return error;
3587 }
3588 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3589 
3590 /**
3591  * device_find_child - device iterator for locating a particular device.
3592  * @parent: parent struct device
3593  * @match: Callback function to check device
3594  * @data: Data to pass to match function
3595  *
3596  * This is similar to the device_for_each_child() function above, but it
3597  * returns a reference to a device that is 'found' for later use, as
3598  * determined by the @match callback.
3599  *
3600  * The callback should return 0 if the device doesn't match and non-zero
3601  * if it does.  If the callback returns non-zero and a reference to the
3602  * current device can be obtained, this function will return to the caller
3603  * and not iterate over any more devices.
3604  *
3605  * NOTE: you will need to drop the reference with put_device() after use.
3606  */
3607 struct device *device_find_child(struct device *parent, void *data,
3608 				 int (*match)(struct device *dev, void *data))
3609 {
3610 	struct klist_iter i;
3611 	struct device *child;
3612 
3613 	if (!parent)
3614 		return NULL;
3615 
3616 	klist_iter_init(&parent->p->klist_children, &i);
3617 	while ((child = next_device(&i)))
3618 		if (match(child, data) && get_device(child))
3619 			break;
3620 	klist_iter_exit(&i);
3621 	return child;
3622 }
3623 EXPORT_SYMBOL_GPL(device_find_child);
3624 
3625 /**
3626  * device_find_child_by_name - device iterator for locating a child device.
3627  * @parent: parent struct device
3628  * @name: name of the child device
3629  *
3630  * This is similar to the device_find_child() function above, but it
3631  * returns a reference to a device that has the name @name.
3632  *
3633  * NOTE: you will need to drop the reference with put_device() after use.
3634  */
3635 struct device *device_find_child_by_name(struct device *parent,
3636 					 const char *name)
3637 {
3638 	struct klist_iter i;
3639 	struct device *child;
3640 
3641 	if (!parent)
3642 		return NULL;
3643 
3644 	klist_iter_init(&parent->p->klist_children, &i);
3645 	while ((child = next_device(&i)))
3646 		if (sysfs_streq(dev_name(child), name) && get_device(child))
3647 			break;
3648 	klist_iter_exit(&i);
3649 	return child;
3650 }
3651 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3652 
3653 int __init devices_init(void)
3654 {
3655 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3656 	if (!devices_kset)
3657 		return -ENOMEM;
3658 	dev_kobj = kobject_create_and_add("dev", NULL);
3659 	if (!dev_kobj)
3660 		goto dev_kobj_err;
3661 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3662 	if (!sysfs_dev_block_kobj)
3663 		goto block_kobj_err;
3664 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3665 	if (!sysfs_dev_char_kobj)
3666 		goto char_kobj_err;
3667 
3668 	return 0;
3669 
3670  char_kobj_err:
3671 	kobject_put(sysfs_dev_block_kobj);
3672  block_kobj_err:
3673 	kobject_put(dev_kobj);
3674  dev_kobj_err:
3675 	kset_unregister(devices_kset);
3676 	return -ENOMEM;
3677 }
3678 
3679 static int device_check_offline(struct device *dev, void *not_used)
3680 {
3681 	int ret;
3682 
3683 	ret = device_for_each_child(dev, NULL, device_check_offline);
3684 	if (ret)
3685 		return ret;
3686 
3687 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3688 }
3689 
3690 /**
3691  * device_offline - Prepare the device for hot-removal.
3692  * @dev: Device to be put offline.
3693  *
3694  * Execute the device bus type's .offline() callback, if present, to prepare
3695  * the device for a subsequent hot-removal.  If that succeeds, the device must
3696  * not be used until either it is removed or its bus type's .online() callback
3697  * is executed.
3698  *
3699  * Call under device_hotplug_lock.
3700  */
3701 int device_offline(struct device *dev)
3702 {
3703 	int ret;
3704 
3705 	if (dev->offline_disabled)
3706 		return -EPERM;
3707 
3708 	ret = device_for_each_child(dev, NULL, device_check_offline);
3709 	if (ret)
3710 		return ret;
3711 
3712 	device_lock(dev);
3713 	if (device_supports_offline(dev)) {
3714 		if (dev->offline) {
3715 			ret = 1;
3716 		} else {
3717 			ret = dev->bus->offline(dev);
3718 			if (!ret) {
3719 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3720 				dev->offline = true;
3721 			}
3722 		}
3723 	}
3724 	device_unlock(dev);
3725 
3726 	return ret;
3727 }
3728 
3729 /**
3730  * device_online - Put the device back online after successful device_offline().
3731  * @dev: Device to be put back online.
3732  *
3733  * If device_offline() has been successfully executed for @dev, but the device
3734  * has not been removed subsequently, execute its bus type's .online() callback
3735  * to indicate that the device can be used again.
3736  *
3737  * Call under device_hotplug_lock.
3738  */
3739 int device_online(struct device *dev)
3740 {
3741 	int ret = 0;
3742 
3743 	device_lock(dev);
3744 	if (device_supports_offline(dev)) {
3745 		if (dev->offline) {
3746 			ret = dev->bus->online(dev);
3747 			if (!ret) {
3748 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3749 				dev->offline = false;
3750 			}
3751 		} else {
3752 			ret = 1;
3753 		}
3754 	}
3755 	device_unlock(dev);
3756 
3757 	return ret;
3758 }
3759 
3760 struct root_device {
3761 	struct device dev;
3762 	struct module *owner;
3763 };
3764 
3765 static inline struct root_device *to_root_device(struct device *d)
3766 {
3767 	return container_of(d, struct root_device, dev);
3768 }
3769 
3770 static void root_device_release(struct device *dev)
3771 {
3772 	kfree(to_root_device(dev));
3773 }
3774 
3775 /**
3776  * __root_device_register - allocate and register a root device
3777  * @name: root device name
3778  * @owner: owner module of the root device, usually THIS_MODULE
3779  *
3780  * This function allocates a root device and registers it
3781  * using device_register(). In order to free the returned
3782  * device, use root_device_unregister().
3783  *
3784  * Root devices are dummy devices which allow other devices
3785  * to be grouped under /sys/devices. Use this function to
3786  * allocate a root device and then use it as the parent of
3787  * any device which should appear under /sys/devices/{name}
3788  *
3789  * The /sys/devices/{name} directory will also contain a
3790  * 'module' symlink which points to the @owner directory
3791  * in sysfs.
3792  *
3793  * Returns &struct device pointer on success, or ERR_PTR() on error.
3794  *
3795  * Note: You probably want to use root_device_register().
3796  */
3797 struct device *__root_device_register(const char *name, struct module *owner)
3798 {
3799 	struct root_device *root;
3800 	int err = -ENOMEM;
3801 
3802 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3803 	if (!root)
3804 		return ERR_PTR(err);
3805 
3806 	err = dev_set_name(&root->dev, "%s", name);
3807 	if (err) {
3808 		kfree(root);
3809 		return ERR_PTR(err);
3810 	}
3811 
3812 	root->dev.release = root_device_release;
3813 
3814 	err = device_register(&root->dev);
3815 	if (err) {
3816 		put_device(&root->dev);
3817 		return ERR_PTR(err);
3818 	}
3819 
3820 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3821 	if (owner) {
3822 		struct module_kobject *mk = &owner->mkobj;
3823 
3824 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3825 		if (err) {
3826 			device_unregister(&root->dev);
3827 			return ERR_PTR(err);
3828 		}
3829 		root->owner = owner;
3830 	}
3831 #endif
3832 
3833 	return &root->dev;
3834 }
3835 EXPORT_SYMBOL_GPL(__root_device_register);
3836 
3837 /**
3838  * root_device_unregister - unregister and free a root device
3839  * @dev: device going away
3840  *
3841  * This function unregisters and cleans up a device that was created by
3842  * root_device_register().
3843  */
3844 void root_device_unregister(struct device *dev)
3845 {
3846 	struct root_device *root = to_root_device(dev);
3847 
3848 	if (root->owner)
3849 		sysfs_remove_link(&root->dev.kobj, "module");
3850 
3851 	device_unregister(dev);
3852 }
3853 EXPORT_SYMBOL_GPL(root_device_unregister);
3854 
3855 
3856 static void device_create_release(struct device *dev)
3857 {
3858 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3859 	kfree(dev);
3860 }
3861 
3862 static __printf(6, 0) struct device *
3863 device_create_groups_vargs(struct class *class, struct device *parent,
3864 			   dev_t devt, void *drvdata,
3865 			   const struct attribute_group **groups,
3866 			   const char *fmt, va_list args)
3867 {
3868 	struct device *dev = NULL;
3869 	int retval = -ENODEV;
3870 
3871 	if (class == NULL || IS_ERR(class))
3872 		goto error;
3873 
3874 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3875 	if (!dev) {
3876 		retval = -ENOMEM;
3877 		goto error;
3878 	}
3879 
3880 	device_initialize(dev);
3881 	dev->devt = devt;
3882 	dev->class = class;
3883 	dev->parent = parent;
3884 	dev->groups = groups;
3885 	dev->release = device_create_release;
3886 	dev_set_drvdata(dev, drvdata);
3887 
3888 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3889 	if (retval)
3890 		goto error;
3891 
3892 	retval = device_add(dev);
3893 	if (retval)
3894 		goto error;
3895 
3896 	return dev;
3897 
3898 error:
3899 	put_device(dev);
3900 	return ERR_PTR(retval);
3901 }
3902 
3903 /**
3904  * device_create - creates a device and registers it with sysfs
3905  * @class: pointer to the struct class that this device should be registered to
3906  * @parent: pointer to the parent struct device of this new device, if any
3907  * @devt: the dev_t for the char device to be added
3908  * @drvdata: the data to be added to the device for callbacks
3909  * @fmt: string for the device's name
3910  *
3911  * This function can be used by char device classes.  A struct device
3912  * will be created in sysfs, registered to the specified class.
3913  *
3914  * A "dev" file will be created, showing the dev_t for the device, if
3915  * the dev_t is not 0,0.
3916  * If a pointer to a parent struct device is passed in, the newly created
3917  * struct device will be a child of that device in sysfs.
3918  * The pointer to the struct device will be returned from the call.
3919  * Any further sysfs files that might be required can be created using this
3920  * pointer.
3921  *
3922  * Returns &struct device pointer on success, or ERR_PTR() on error.
3923  *
3924  * Note: the struct class passed to this function must have previously
3925  * been created with a call to class_create().
3926  */
3927 struct device *device_create(struct class *class, struct device *parent,
3928 			     dev_t devt, void *drvdata, const char *fmt, ...)
3929 {
3930 	va_list vargs;
3931 	struct device *dev;
3932 
3933 	va_start(vargs, fmt);
3934 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3935 					  fmt, vargs);
3936 	va_end(vargs);
3937 	return dev;
3938 }
3939 EXPORT_SYMBOL_GPL(device_create);
3940 
3941 /**
3942  * device_create_with_groups - creates a device and registers it with sysfs
3943  * @class: pointer to the struct class that this device should be registered to
3944  * @parent: pointer to the parent struct device of this new device, if any
3945  * @devt: the dev_t for the char device to be added
3946  * @drvdata: the data to be added to the device for callbacks
3947  * @groups: NULL-terminated list of attribute groups to be created
3948  * @fmt: string for the device's name
3949  *
3950  * This function can be used by char device classes.  A struct device
3951  * will be created in sysfs, registered to the specified class.
3952  * Additional attributes specified in the groups parameter will also
3953  * be created automatically.
3954  *
3955  * A "dev" file will be created, showing the dev_t for the device, if
3956  * the dev_t is not 0,0.
3957  * If a pointer to a parent struct device is passed in, the newly created
3958  * struct device will be a child of that device in sysfs.
3959  * The pointer to the struct device will be returned from the call.
3960  * Any further sysfs files that might be required can be created using this
3961  * pointer.
3962  *
3963  * Returns &struct device pointer on success, or ERR_PTR() on error.
3964  *
3965  * Note: the struct class passed to this function must have previously
3966  * been created with a call to class_create().
3967  */
3968 struct device *device_create_with_groups(struct class *class,
3969 					 struct device *parent, dev_t devt,
3970 					 void *drvdata,
3971 					 const struct attribute_group **groups,
3972 					 const char *fmt, ...)
3973 {
3974 	va_list vargs;
3975 	struct device *dev;
3976 
3977 	va_start(vargs, fmt);
3978 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3979 					 fmt, vargs);
3980 	va_end(vargs);
3981 	return dev;
3982 }
3983 EXPORT_SYMBOL_GPL(device_create_with_groups);
3984 
3985 /**
3986  * device_destroy - removes a device that was created with device_create()
3987  * @class: pointer to the struct class that this device was registered with
3988  * @devt: the dev_t of the device that was previously registered
3989  *
3990  * This call unregisters and cleans up a device that was created with a
3991  * call to device_create().
3992  */
3993 void device_destroy(struct class *class, dev_t devt)
3994 {
3995 	struct device *dev;
3996 
3997 	dev = class_find_device_by_devt(class, devt);
3998 	if (dev) {
3999 		put_device(dev);
4000 		device_unregister(dev);
4001 	}
4002 }
4003 EXPORT_SYMBOL_GPL(device_destroy);
4004 
4005 /**
4006  * device_rename - renames a device
4007  * @dev: the pointer to the struct device to be renamed
4008  * @new_name: the new name of the device
4009  *
4010  * It is the responsibility of the caller to provide mutual
4011  * exclusion between two different calls of device_rename
4012  * on the same device to ensure that new_name is valid and
4013  * won't conflict with other devices.
4014  *
4015  * Note: Don't call this function.  Currently, the networking layer calls this
4016  * function, but that will change.  The following text from Kay Sievers offers
4017  * some insight:
4018  *
4019  * Renaming devices is racy at many levels, symlinks and other stuff are not
4020  * replaced atomically, and you get a "move" uevent, but it's not easy to
4021  * connect the event to the old and new device. Device nodes are not renamed at
4022  * all, there isn't even support for that in the kernel now.
4023  *
4024  * In the meantime, during renaming, your target name might be taken by another
4025  * driver, creating conflicts. Or the old name is taken directly after you
4026  * renamed it -- then you get events for the same DEVPATH, before you even see
4027  * the "move" event. It's just a mess, and nothing new should ever rely on
4028  * kernel device renaming. Besides that, it's not even implemented now for
4029  * other things than (driver-core wise very simple) network devices.
4030  *
4031  * We are currently about to change network renaming in udev to completely
4032  * disallow renaming of devices in the same namespace as the kernel uses,
4033  * because we can't solve the problems properly, that arise with swapping names
4034  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4035  * be allowed to some other name than eth[0-9]*, for the aforementioned
4036  * reasons.
4037  *
4038  * Make up a "real" name in the driver before you register anything, or add
4039  * some other attributes for userspace to find the device, or use udev to add
4040  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4041  * don't even want to get into that and try to implement the missing pieces in
4042  * the core. We really have other pieces to fix in the driver core mess. :)
4043  */
4044 int device_rename(struct device *dev, const char *new_name)
4045 {
4046 	struct kobject *kobj = &dev->kobj;
4047 	char *old_device_name = NULL;
4048 	int error;
4049 
4050 	dev = get_device(dev);
4051 	if (!dev)
4052 		return -EINVAL;
4053 
4054 	dev_dbg(dev, "renaming to %s\n", new_name);
4055 
4056 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4057 	if (!old_device_name) {
4058 		error = -ENOMEM;
4059 		goto out;
4060 	}
4061 
4062 	if (dev->class) {
4063 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4064 					     kobj, old_device_name,
4065 					     new_name, kobject_namespace(kobj));
4066 		if (error)
4067 			goto out;
4068 	}
4069 
4070 	error = kobject_rename(kobj, new_name);
4071 	if (error)
4072 		goto out;
4073 
4074 out:
4075 	put_device(dev);
4076 
4077 	kfree(old_device_name);
4078 
4079 	return error;
4080 }
4081 EXPORT_SYMBOL_GPL(device_rename);
4082 
4083 static int device_move_class_links(struct device *dev,
4084 				   struct device *old_parent,
4085 				   struct device *new_parent)
4086 {
4087 	int error = 0;
4088 
4089 	if (old_parent)
4090 		sysfs_remove_link(&dev->kobj, "device");
4091 	if (new_parent)
4092 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4093 					  "device");
4094 	return error;
4095 }
4096 
4097 /**
4098  * device_move - moves a device to a new parent
4099  * @dev: the pointer to the struct device to be moved
4100  * @new_parent: the new parent of the device (can be NULL)
4101  * @dpm_order: how to reorder the dpm_list
4102  */
4103 int device_move(struct device *dev, struct device *new_parent,
4104 		enum dpm_order dpm_order)
4105 {
4106 	int error;
4107 	struct device *old_parent;
4108 	struct kobject *new_parent_kobj;
4109 
4110 	dev = get_device(dev);
4111 	if (!dev)
4112 		return -EINVAL;
4113 
4114 	device_pm_lock();
4115 	new_parent = get_device(new_parent);
4116 	new_parent_kobj = get_device_parent(dev, new_parent);
4117 	if (IS_ERR(new_parent_kobj)) {
4118 		error = PTR_ERR(new_parent_kobj);
4119 		put_device(new_parent);
4120 		goto out;
4121 	}
4122 
4123 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4124 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4125 	error = kobject_move(&dev->kobj, new_parent_kobj);
4126 	if (error) {
4127 		cleanup_glue_dir(dev, new_parent_kobj);
4128 		put_device(new_parent);
4129 		goto out;
4130 	}
4131 	old_parent = dev->parent;
4132 	dev->parent = new_parent;
4133 	if (old_parent)
4134 		klist_remove(&dev->p->knode_parent);
4135 	if (new_parent) {
4136 		klist_add_tail(&dev->p->knode_parent,
4137 			       &new_parent->p->klist_children);
4138 		set_dev_node(dev, dev_to_node(new_parent));
4139 	}
4140 
4141 	if (dev->class) {
4142 		error = device_move_class_links(dev, old_parent, new_parent);
4143 		if (error) {
4144 			/* We ignore errors on cleanup since we're hosed anyway... */
4145 			device_move_class_links(dev, new_parent, old_parent);
4146 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4147 				if (new_parent)
4148 					klist_remove(&dev->p->knode_parent);
4149 				dev->parent = old_parent;
4150 				if (old_parent) {
4151 					klist_add_tail(&dev->p->knode_parent,
4152 						       &old_parent->p->klist_children);
4153 					set_dev_node(dev, dev_to_node(old_parent));
4154 				}
4155 			}
4156 			cleanup_glue_dir(dev, new_parent_kobj);
4157 			put_device(new_parent);
4158 			goto out;
4159 		}
4160 	}
4161 	switch (dpm_order) {
4162 	case DPM_ORDER_NONE:
4163 		break;
4164 	case DPM_ORDER_DEV_AFTER_PARENT:
4165 		device_pm_move_after(dev, new_parent);
4166 		devices_kset_move_after(dev, new_parent);
4167 		break;
4168 	case DPM_ORDER_PARENT_BEFORE_DEV:
4169 		device_pm_move_before(new_parent, dev);
4170 		devices_kset_move_before(new_parent, dev);
4171 		break;
4172 	case DPM_ORDER_DEV_LAST:
4173 		device_pm_move_last(dev);
4174 		devices_kset_move_last(dev);
4175 		break;
4176 	}
4177 
4178 	put_device(old_parent);
4179 out:
4180 	device_pm_unlock();
4181 	put_device(dev);
4182 	return error;
4183 }
4184 EXPORT_SYMBOL_GPL(device_move);
4185 
4186 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4187 				     kgid_t kgid)
4188 {
4189 	struct kobject *kobj = &dev->kobj;
4190 	struct class *class = dev->class;
4191 	const struct device_type *type = dev->type;
4192 	int error;
4193 
4194 	if (class) {
4195 		/*
4196 		 * Change the device groups of the device class for @dev to
4197 		 * @kuid/@kgid.
4198 		 */
4199 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4200 						  kgid);
4201 		if (error)
4202 			return error;
4203 	}
4204 
4205 	if (type) {
4206 		/*
4207 		 * Change the device groups of the device type for @dev to
4208 		 * @kuid/@kgid.
4209 		 */
4210 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4211 						  kgid);
4212 		if (error)
4213 			return error;
4214 	}
4215 
4216 	/* Change the device groups of @dev to @kuid/@kgid. */
4217 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4218 	if (error)
4219 		return error;
4220 
4221 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4222 		/* Change online device attributes of @dev to @kuid/@kgid. */
4223 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4224 						kuid, kgid);
4225 		if (error)
4226 			return error;
4227 	}
4228 
4229 	return 0;
4230 }
4231 
4232 /**
4233  * device_change_owner - change the owner of an existing device.
4234  * @dev: device.
4235  * @kuid: new owner's kuid
4236  * @kgid: new owner's kgid
4237  *
4238  * This changes the owner of @dev and its corresponding sysfs entries to
4239  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4240  * core.
4241  *
4242  * Returns 0 on success or error code on failure.
4243  */
4244 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4245 {
4246 	int error;
4247 	struct kobject *kobj = &dev->kobj;
4248 
4249 	dev = get_device(dev);
4250 	if (!dev)
4251 		return -EINVAL;
4252 
4253 	/*
4254 	 * Change the kobject and the default attributes and groups of the
4255 	 * ktype associated with it to @kuid/@kgid.
4256 	 */
4257 	error = sysfs_change_owner(kobj, kuid, kgid);
4258 	if (error)
4259 		goto out;
4260 
4261 	/*
4262 	 * Change the uevent file for @dev to the new owner. The uevent file
4263 	 * was created in a separate step when @dev got added and we mirror
4264 	 * that step here.
4265 	 */
4266 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4267 					kgid);
4268 	if (error)
4269 		goto out;
4270 
4271 	/*
4272 	 * Change the device groups, the device groups associated with the
4273 	 * device class, and the groups associated with the device type of @dev
4274 	 * to @kuid/@kgid.
4275 	 */
4276 	error = device_attrs_change_owner(dev, kuid, kgid);
4277 	if (error)
4278 		goto out;
4279 
4280 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4281 	if (error)
4282 		goto out;
4283 
4284 #ifdef CONFIG_BLOCK
4285 	if (sysfs_deprecated && dev->class == &block_class)
4286 		goto out;
4287 #endif
4288 
4289 	/*
4290 	 * Change the owner of the symlink located in the class directory of
4291 	 * the device class associated with @dev which points to the actual
4292 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4293 	 * symlink shows the same permissions as its target.
4294 	 */
4295 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4296 					dev_name(dev), kuid, kgid);
4297 	if (error)
4298 		goto out;
4299 
4300 out:
4301 	put_device(dev);
4302 	return error;
4303 }
4304 EXPORT_SYMBOL_GPL(device_change_owner);
4305 
4306 /**
4307  * device_shutdown - call ->shutdown() on each device to shutdown.
4308  */
4309 void device_shutdown(void)
4310 {
4311 	struct device *dev, *parent;
4312 
4313 	wait_for_device_probe();
4314 	device_block_probing();
4315 
4316 	cpufreq_suspend();
4317 
4318 	spin_lock(&devices_kset->list_lock);
4319 	/*
4320 	 * Walk the devices list backward, shutting down each in turn.
4321 	 * Beware that device unplug events may also start pulling
4322 	 * devices offline, even as the system is shutting down.
4323 	 */
4324 	while (!list_empty(&devices_kset->list)) {
4325 		dev = list_entry(devices_kset->list.prev, struct device,
4326 				kobj.entry);
4327 
4328 		/*
4329 		 * hold reference count of device's parent to
4330 		 * prevent it from being freed because parent's
4331 		 * lock is to be held
4332 		 */
4333 		parent = get_device(dev->parent);
4334 		get_device(dev);
4335 		/*
4336 		 * Make sure the device is off the kset list, in the
4337 		 * event that dev->*->shutdown() doesn't remove it.
4338 		 */
4339 		list_del_init(&dev->kobj.entry);
4340 		spin_unlock(&devices_kset->list_lock);
4341 
4342 		/* hold lock to avoid race with probe/release */
4343 		if (parent)
4344 			device_lock(parent);
4345 		device_lock(dev);
4346 
4347 		/* Don't allow any more runtime suspends */
4348 		pm_runtime_get_noresume(dev);
4349 		pm_runtime_barrier(dev);
4350 
4351 		if (dev->class && dev->class->shutdown_pre) {
4352 			if (initcall_debug)
4353 				dev_info(dev, "shutdown_pre\n");
4354 			dev->class->shutdown_pre(dev);
4355 		}
4356 		if (dev->bus && dev->bus->shutdown) {
4357 			if (initcall_debug)
4358 				dev_info(dev, "shutdown\n");
4359 			dev->bus->shutdown(dev);
4360 		} else if (dev->driver && dev->driver->shutdown) {
4361 			if (initcall_debug)
4362 				dev_info(dev, "shutdown\n");
4363 			dev->driver->shutdown(dev);
4364 		}
4365 
4366 		device_unlock(dev);
4367 		if (parent)
4368 			device_unlock(parent);
4369 
4370 		put_device(dev);
4371 		put_device(parent);
4372 
4373 		spin_lock(&devices_kset->list_lock);
4374 	}
4375 	spin_unlock(&devices_kset->list_lock);
4376 }
4377 
4378 /*
4379  * Device logging functions
4380  */
4381 
4382 #ifdef CONFIG_PRINTK
4383 static void
4384 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4385 {
4386 	const char *subsys;
4387 
4388 	memset(dev_info, 0, sizeof(*dev_info));
4389 
4390 	if (dev->class)
4391 		subsys = dev->class->name;
4392 	else if (dev->bus)
4393 		subsys = dev->bus->name;
4394 	else
4395 		return;
4396 
4397 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4398 
4399 	/*
4400 	 * Add device identifier DEVICE=:
4401 	 *   b12:8         block dev_t
4402 	 *   c127:3        char dev_t
4403 	 *   n8            netdev ifindex
4404 	 *   +sound:card0  subsystem:devname
4405 	 */
4406 	if (MAJOR(dev->devt)) {
4407 		char c;
4408 
4409 		if (strcmp(subsys, "block") == 0)
4410 			c = 'b';
4411 		else
4412 			c = 'c';
4413 
4414 		snprintf(dev_info->device, sizeof(dev_info->device),
4415 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4416 	} else if (strcmp(subsys, "net") == 0) {
4417 		struct net_device *net = to_net_dev(dev);
4418 
4419 		snprintf(dev_info->device, sizeof(dev_info->device),
4420 			 "n%u", net->ifindex);
4421 	} else {
4422 		snprintf(dev_info->device, sizeof(dev_info->device),
4423 			 "+%s:%s", subsys, dev_name(dev));
4424 	}
4425 }
4426 
4427 int dev_vprintk_emit(int level, const struct device *dev,
4428 		     const char *fmt, va_list args)
4429 {
4430 	struct dev_printk_info dev_info;
4431 
4432 	set_dev_info(dev, &dev_info);
4433 
4434 	return vprintk_emit(0, level, &dev_info, fmt, args);
4435 }
4436 EXPORT_SYMBOL(dev_vprintk_emit);
4437 
4438 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4439 {
4440 	va_list args;
4441 	int r;
4442 
4443 	va_start(args, fmt);
4444 
4445 	r = dev_vprintk_emit(level, dev, fmt, args);
4446 
4447 	va_end(args);
4448 
4449 	return r;
4450 }
4451 EXPORT_SYMBOL(dev_printk_emit);
4452 
4453 static void __dev_printk(const char *level, const struct device *dev,
4454 			struct va_format *vaf)
4455 {
4456 	if (dev)
4457 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4458 				dev_driver_string(dev), dev_name(dev), vaf);
4459 	else
4460 		printk("%s(NULL device *): %pV", level, vaf);
4461 }
4462 
4463 void dev_printk(const char *level, const struct device *dev,
4464 		const char *fmt, ...)
4465 {
4466 	struct va_format vaf;
4467 	va_list args;
4468 
4469 	va_start(args, fmt);
4470 
4471 	vaf.fmt = fmt;
4472 	vaf.va = &args;
4473 
4474 	__dev_printk(level, dev, &vaf);
4475 
4476 	va_end(args);
4477 }
4478 EXPORT_SYMBOL(dev_printk);
4479 
4480 #define define_dev_printk_level(func, kern_level)		\
4481 void func(const struct device *dev, const char *fmt, ...)	\
4482 {								\
4483 	struct va_format vaf;					\
4484 	va_list args;						\
4485 								\
4486 	va_start(args, fmt);					\
4487 								\
4488 	vaf.fmt = fmt;						\
4489 	vaf.va = &args;						\
4490 								\
4491 	__dev_printk(kern_level, dev, &vaf);			\
4492 								\
4493 	va_end(args);						\
4494 }								\
4495 EXPORT_SYMBOL(func);
4496 
4497 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4498 define_dev_printk_level(_dev_alert, KERN_ALERT);
4499 define_dev_printk_level(_dev_crit, KERN_CRIT);
4500 define_dev_printk_level(_dev_err, KERN_ERR);
4501 define_dev_printk_level(_dev_warn, KERN_WARNING);
4502 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4503 define_dev_printk_level(_dev_info, KERN_INFO);
4504 
4505 #endif
4506 
4507 /**
4508  * dev_err_probe - probe error check and log helper
4509  * @dev: the pointer to the struct device
4510  * @err: error value to test
4511  * @fmt: printf-style format string
4512  * @...: arguments as specified in the format string
4513  *
4514  * This helper implements common pattern present in probe functions for error
4515  * checking: print debug or error message depending if the error value is
4516  * -EPROBE_DEFER and propagate error upwards.
4517  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4518  * checked later by reading devices_deferred debugfs attribute.
4519  * It replaces code sequence::
4520  *
4521  * 	if (err != -EPROBE_DEFER)
4522  * 		dev_err(dev, ...);
4523  * 	else
4524  * 		dev_dbg(dev, ...);
4525  * 	return err;
4526  *
4527  * with::
4528  *
4529  * 	return dev_err_probe(dev, err, ...);
4530  *
4531  * Returns @err.
4532  *
4533  */
4534 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4535 {
4536 	struct va_format vaf;
4537 	va_list args;
4538 
4539 	va_start(args, fmt);
4540 	vaf.fmt = fmt;
4541 	vaf.va = &args;
4542 
4543 	if (err != -EPROBE_DEFER) {
4544 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4545 	} else {
4546 		device_set_deferred_probe_reason(dev, &vaf);
4547 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4548 	}
4549 
4550 	va_end(args);
4551 
4552 	return err;
4553 }
4554 EXPORT_SYMBOL_GPL(dev_err_probe);
4555 
4556 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4557 {
4558 	return fwnode && !IS_ERR(fwnode->secondary);
4559 }
4560 
4561 /**
4562  * set_primary_fwnode - Change the primary firmware node of a given device.
4563  * @dev: Device to handle.
4564  * @fwnode: New primary firmware node of the device.
4565  *
4566  * Set the device's firmware node pointer to @fwnode, but if a secondary
4567  * firmware node of the device is present, preserve it.
4568  *
4569  * Valid fwnode cases are:
4570  *  - primary --> secondary --> -ENODEV
4571  *  - primary --> NULL
4572  *  - secondary --> -ENODEV
4573  *  - NULL
4574  */
4575 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4576 {
4577 	struct device *parent = dev->parent;
4578 	struct fwnode_handle *fn = dev->fwnode;
4579 
4580 	if (fwnode) {
4581 		if (fwnode_is_primary(fn))
4582 			fn = fn->secondary;
4583 
4584 		if (fn) {
4585 			WARN_ON(fwnode->secondary);
4586 			fwnode->secondary = fn;
4587 		}
4588 		dev->fwnode = fwnode;
4589 	} else {
4590 		if (fwnode_is_primary(fn)) {
4591 			dev->fwnode = fn->secondary;
4592 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4593 			if (!(parent && fn == parent->fwnode))
4594 				fn->secondary = NULL;
4595 		} else {
4596 			dev->fwnode = NULL;
4597 		}
4598 	}
4599 }
4600 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4601 
4602 /**
4603  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4604  * @dev: Device to handle.
4605  * @fwnode: New secondary firmware node of the device.
4606  *
4607  * If a primary firmware node of the device is present, set its secondary
4608  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4609  * @fwnode.
4610  */
4611 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4612 {
4613 	if (fwnode)
4614 		fwnode->secondary = ERR_PTR(-ENODEV);
4615 
4616 	if (fwnode_is_primary(dev->fwnode))
4617 		dev->fwnode->secondary = fwnode;
4618 	else
4619 		dev->fwnode = fwnode;
4620 }
4621 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4622 
4623 /**
4624  * device_set_of_node_from_dev - reuse device-tree node of another device
4625  * @dev: device whose device-tree node is being set
4626  * @dev2: device whose device-tree node is being reused
4627  *
4628  * Takes another reference to the new device-tree node after first dropping
4629  * any reference held to the old node.
4630  */
4631 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4632 {
4633 	of_node_put(dev->of_node);
4634 	dev->of_node = of_node_get(dev2->of_node);
4635 	dev->of_node_reused = true;
4636 }
4637 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4638 
4639 int device_match_name(struct device *dev, const void *name)
4640 {
4641 	return sysfs_streq(dev_name(dev), name);
4642 }
4643 EXPORT_SYMBOL_GPL(device_match_name);
4644 
4645 int device_match_of_node(struct device *dev, const void *np)
4646 {
4647 	return dev->of_node == np;
4648 }
4649 EXPORT_SYMBOL_GPL(device_match_of_node);
4650 
4651 int device_match_fwnode(struct device *dev, const void *fwnode)
4652 {
4653 	return dev_fwnode(dev) == fwnode;
4654 }
4655 EXPORT_SYMBOL_GPL(device_match_fwnode);
4656 
4657 int device_match_devt(struct device *dev, const void *pdevt)
4658 {
4659 	return dev->devt == *(dev_t *)pdevt;
4660 }
4661 EXPORT_SYMBOL_GPL(device_match_devt);
4662 
4663 int device_match_acpi_dev(struct device *dev, const void *adev)
4664 {
4665 	return ACPI_COMPANION(dev) == adev;
4666 }
4667 EXPORT_SYMBOL(device_match_acpi_dev);
4668 
4669 int device_match_any(struct device *dev, const void *unused)
4670 {
4671 	return 1;
4672 }
4673 EXPORT_SYMBOL_GPL(device_match_any);
4674