xref: /openbmc/linux/drivers/base/core.c (revision 2d972b6a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/fwnode.h>
14 #include <linux/init.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/string.h>
18 #include <linux/kdev_t.h>
19 #include <linux/notifier.h>
20 #include <linux/of.h>
21 #include <linux/of_device.h>
22 #include <linux/genhd.h>
23 #include <linux/mutex.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/netdevice.h>
26 #include <linux/sched/signal.h>
27 #include <linux/sysfs.h>
28 
29 #include "base.h"
30 #include "power/power.h"
31 
32 #ifdef CONFIG_SYSFS_DEPRECATED
33 #ifdef CONFIG_SYSFS_DEPRECATED_V2
34 long sysfs_deprecated = 1;
35 #else
36 long sysfs_deprecated = 0;
37 #endif
38 static int __init sysfs_deprecated_setup(char *arg)
39 {
40 	return kstrtol(arg, 10, &sysfs_deprecated);
41 }
42 early_param("sysfs.deprecated", sysfs_deprecated_setup);
43 #endif
44 
45 /* Device links support. */
46 
47 #ifdef CONFIG_SRCU
48 static DEFINE_MUTEX(device_links_lock);
49 DEFINE_STATIC_SRCU(device_links_srcu);
50 
51 static inline void device_links_write_lock(void)
52 {
53 	mutex_lock(&device_links_lock);
54 }
55 
56 static inline void device_links_write_unlock(void)
57 {
58 	mutex_unlock(&device_links_lock);
59 }
60 
61 int device_links_read_lock(void)
62 {
63 	return srcu_read_lock(&device_links_srcu);
64 }
65 
66 void device_links_read_unlock(int idx)
67 {
68 	srcu_read_unlock(&device_links_srcu, idx);
69 }
70 #else /* !CONFIG_SRCU */
71 static DECLARE_RWSEM(device_links_lock);
72 
73 static inline void device_links_write_lock(void)
74 {
75 	down_write(&device_links_lock);
76 }
77 
78 static inline void device_links_write_unlock(void)
79 {
80 	up_write(&device_links_lock);
81 }
82 
83 int device_links_read_lock(void)
84 {
85 	down_read(&device_links_lock);
86 	return 0;
87 }
88 
89 void device_links_read_unlock(int not_used)
90 {
91 	up_read(&device_links_lock);
92 }
93 #endif /* !CONFIG_SRCU */
94 
95 /**
96  * device_is_dependent - Check if one device depends on another one
97  * @dev: Device to check dependencies for.
98  * @target: Device to check against.
99  *
100  * Check if @target depends on @dev or any device dependent on it (its child or
101  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
102  */
103 static int device_is_dependent(struct device *dev, void *target)
104 {
105 	struct device_link *link;
106 	int ret;
107 
108 	if (WARN_ON(dev == target))
109 		return 1;
110 
111 	ret = device_for_each_child(dev, target, device_is_dependent);
112 	if (ret)
113 		return ret;
114 
115 	list_for_each_entry(link, &dev->links.consumers, s_node) {
116 		if (WARN_ON(link->consumer == target))
117 			return 1;
118 
119 		ret = device_is_dependent(link->consumer, target);
120 		if (ret)
121 			break;
122 	}
123 	return ret;
124 }
125 
126 static int device_reorder_to_tail(struct device *dev, void *not_used)
127 {
128 	struct device_link *link;
129 
130 	/*
131 	 * Devices that have not been registered yet will be put to the ends
132 	 * of the lists during the registration, so skip them here.
133 	 */
134 	if (device_is_registered(dev))
135 		devices_kset_move_last(dev);
136 
137 	if (device_pm_initialized(dev))
138 		device_pm_move_last(dev);
139 
140 	device_for_each_child(dev, NULL, device_reorder_to_tail);
141 	list_for_each_entry(link, &dev->links.consumers, s_node)
142 		device_reorder_to_tail(link->consumer, NULL);
143 
144 	return 0;
145 }
146 
147 /**
148  * device_link_add - Create a link between two devices.
149  * @consumer: Consumer end of the link.
150  * @supplier: Supplier end of the link.
151  * @flags: Link flags.
152  *
153  * The caller is responsible for the proper synchronization of the link creation
154  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
155  * runtime PM framework to take the link into account.  Second, if the
156  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
157  * be forced into the active metastate and reference-counted upon the creation
158  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
159  * ignored.
160  *
161  * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically
162  * when the consumer device driver unbinds from it.  The combination of both
163  * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL
164  * to be returned.
165  *
166  * A side effect of the link creation is re-ordering of dpm_list and the
167  * devices_kset list by moving the consumer device and all devices depending
168  * on it to the ends of these lists (that does not happen to devices that have
169  * not been registered when this function is called).
170  *
171  * The supplier device is required to be registered when this function is called
172  * and NULL will be returned if that is not the case.  The consumer device need
173  * not be registered, however.
174  */
175 struct device_link *device_link_add(struct device *consumer,
176 				    struct device *supplier, u32 flags)
177 {
178 	struct device_link *link;
179 
180 	if (!consumer || !supplier ||
181 	    ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE)))
182 		return NULL;
183 
184 	device_links_write_lock();
185 	device_pm_lock();
186 
187 	/*
188 	 * If the supplier has not been fully registered yet or there is a
189 	 * reverse dependency between the consumer and the supplier already in
190 	 * the graph, return NULL.
191 	 */
192 	if (!device_pm_initialized(supplier)
193 	    || device_is_dependent(consumer, supplier)) {
194 		link = NULL;
195 		goto out;
196 	}
197 
198 	list_for_each_entry(link, &supplier->links.consumers, s_node)
199 		if (link->consumer == consumer) {
200 			kref_get(&link->kref);
201 			goto out;
202 		}
203 
204 	link = kzalloc(sizeof(*link), GFP_KERNEL);
205 	if (!link)
206 		goto out;
207 
208 	if (flags & DL_FLAG_PM_RUNTIME) {
209 		if (flags & DL_FLAG_RPM_ACTIVE) {
210 			if (pm_runtime_get_sync(supplier) < 0) {
211 				pm_runtime_put_noidle(supplier);
212 				kfree(link);
213 				link = NULL;
214 				goto out;
215 			}
216 			link->rpm_active = true;
217 		}
218 		pm_runtime_new_link(consumer);
219 	}
220 	get_device(supplier);
221 	link->supplier = supplier;
222 	INIT_LIST_HEAD(&link->s_node);
223 	get_device(consumer);
224 	link->consumer = consumer;
225 	INIT_LIST_HEAD(&link->c_node);
226 	link->flags = flags;
227 	kref_init(&link->kref);
228 
229 	/* Determine the initial link state. */
230 	if (flags & DL_FLAG_STATELESS) {
231 		link->status = DL_STATE_NONE;
232 	} else {
233 		switch (supplier->links.status) {
234 		case DL_DEV_DRIVER_BOUND:
235 			switch (consumer->links.status) {
236 			case DL_DEV_PROBING:
237 				/*
238 				 * Balance the decrementation of the supplier's
239 				 * runtime PM usage counter after consumer probe
240 				 * in driver_probe_device().
241 				 */
242 				if (flags & DL_FLAG_PM_RUNTIME)
243 					pm_runtime_get_sync(supplier);
244 
245 				link->status = DL_STATE_CONSUMER_PROBE;
246 				break;
247 			case DL_DEV_DRIVER_BOUND:
248 				link->status = DL_STATE_ACTIVE;
249 				break;
250 			default:
251 				link->status = DL_STATE_AVAILABLE;
252 				break;
253 			}
254 			break;
255 		case DL_DEV_UNBINDING:
256 			link->status = DL_STATE_SUPPLIER_UNBIND;
257 			break;
258 		default:
259 			link->status = DL_STATE_DORMANT;
260 			break;
261 		}
262 	}
263 
264 	/*
265 	 * Move the consumer and all of the devices depending on it to the end
266 	 * of dpm_list and the devices_kset list.
267 	 *
268 	 * It is necessary to hold dpm_list locked throughout all that or else
269 	 * we may end up suspending with a wrong ordering of it.
270 	 */
271 	device_reorder_to_tail(consumer, NULL);
272 
273 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
274 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
275 
276 	dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
277 
278  out:
279 	device_pm_unlock();
280 	device_links_write_unlock();
281 	return link;
282 }
283 EXPORT_SYMBOL_GPL(device_link_add);
284 
285 static void device_link_free(struct device_link *link)
286 {
287 	put_device(link->consumer);
288 	put_device(link->supplier);
289 	kfree(link);
290 }
291 
292 #ifdef CONFIG_SRCU
293 static void __device_link_free_srcu(struct rcu_head *rhead)
294 {
295 	device_link_free(container_of(rhead, struct device_link, rcu_head));
296 }
297 
298 static void __device_link_del(struct kref *kref)
299 {
300 	struct device_link *link = container_of(kref, struct device_link, kref);
301 
302 	dev_info(link->consumer, "Dropping the link to %s\n",
303 		 dev_name(link->supplier));
304 
305 	if (link->flags & DL_FLAG_PM_RUNTIME)
306 		pm_runtime_drop_link(link->consumer);
307 
308 	list_del_rcu(&link->s_node);
309 	list_del_rcu(&link->c_node);
310 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
311 }
312 #else /* !CONFIG_SRCU */
313 static void __device_link_del(struct kref *kref)
314 {
315 	struct device_link *link = container_of(kref, struct device_link, kref);
316 
317 	dev_info(link->consumer, "Dropping the link to %s\n",
318 		 dev_name(link->supplier));
319 
320 	if (link->flags & DL_FLAG_PM_RUNTIME)
321 		pm_runtime_drop_link(link->consumer);
322 
323 	list_del(&link->s_node);
324 	list_del(&link->c_node);
325 	device_link_free(link);
326 }
327 #endif /* !CONFIG_SRCU */
328 
329 /**
330  * device_link_del - Delete a link between two devices.
331  * @link: Device link to delete.
332  *
333  * The caller must ensure proper synchronization of this function with runtime
334  * PM.  If the link was added multiple times, it needs to be deleted as often.
335  * Care is required for hotplugged devices:  Their links are purged on removal
336  * and calling device_link_del() is then no longer allowed.
337  */
338 void device_link_del(struct device_link *link)
339 {
340 	device_links_write_lock();
341 	device_pm_lock();
342 	kref_put(&link->kref, __device_link_del);
343 	device_pm_unlock();
344 	device_links_write_unlock();
345 }
346 EXPORT_SYMBOL_GPL(device_link_del);
347 
348 static void device_links_missing_supplier(struct device *dev)
349 {
350 	struct device_link *link;
351 
352 	list_for_each_entry(link, &dev->links.suppliers, c_node)
353 		if (link->status == DL_STATE_CONSUMER_PROBE)
354 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
355 }
356 
357 /**
358  * device_links_check_suppliers - Check presence of supplier drivers.
359  * @dev: Consumer device.
360  *
361  * Check links from this device to any suppliers.  Walk the list of the device's
362  * links to suppliers and see if all of them are available.  If not, simply
363  * return -EPROBE_DEFER.
364  *
365  * We need to guarantee that the supplier will not go away after the check has
366  * been positive here.  It only can go away in __device_release_driver() and
367  * that function  checks the device's links to consumers.  This means we need to
368  * mark the link as "consumer probe in progress" to make the supplier removal
369  * wait for us to complete (or bad things may happen).
370  *
371  * Links with the DL_FLAG_STATELESS flag set are ignored.
372  */
373 int device_links_check_suppliers(struct device *dev)
374 {
375 	struct device_link *link;
376 	int ret = 0;
377 
378 	device_links_write_lock();
379 
380 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
381 		if (link->flags & DL_FLAG_STATELESS)
382 			continue;
383 
384 		if (link->status != DL_STATE_AVAILABLE) {
385 			device_links_missing_supplier(dev);
386 			ret = -EPROBE_DEFER;
387 			break;
388 		}
389 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
390 	}
391 	dev->links.status = DL_DEV_PROBING;
392 
393 	device_links_write_unlock();
394 	return ret;
395 }
396 
397 /**
398  * device_links_driver_bound - Update device links after probing its driver.
399  * @dev: Device to update the links for.
400  *
401  * The probe has been successful, so update links from this device to any
402  * consumers by changing their status to "available".
403  *
404  * Also change the status of @dev's links to suppliers to "active".
405  *
406  * Links with the DL_FLAG_STATELESS flag set are ignored.
407  */
408 void device_links_driver_bound(struct device *dev)
409 {
410 	struct device_link *link;
411 
412 	device_links_write_lock();
413 
414 	list_for_each_entry(link, &dev->links.consumers, s_node) {
415 		if (link->flags & DL_FLAG_STATELESS)
416 			continue;
417 
418 		WARN_ON(link->status != DL_STATE_DORMANT);
419 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
420 	}
421 
422 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
423 		if (link->flags & DL_FLAG_STATELESS)
424 			continue;
425 
426 		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
427 		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
428 	}
429 
430 	dev->links.status = DL_DEV_DRIVER_BOUND;
431 
432 	device_links_write_unlock();
433 }
434 
435 /**
436  * __device_links_no_driver - Update links of a device without a driver.
437  * @dev: Device without a drvier.
438  *
439  * Delete all non-persistent links from this device to any suppliers.
440  *
441  * Persistent links stay around, but their status is changed to "available",
442  * unless they already are in the "supplier unbind in progress" state in which
443  * case they need not be updated.
444  *
445  * Links with the DL_FLAG_STATELESS flag set are ignored.
446  */
447 static void __device_links_no_driver(struct device *dev)
448 {
449 	struct device_link *link, *ln;
450 
451 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
452 		if (link->flags & DL_FLAG_STATELESS)
453 			continue;
454 
455 		if (link->flags & DL_FLAG_AUTOREMOVE)
456 			kref_put(&link->kref, __device_link_del);
457 		else if (link->status != DL_STATE_SUPPLIER_UNBIND)
458 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
459 	}
460 
461 	dev->links.status = DL_DEV_NO_DRIVER;
462 }
463 
464 void device_links_no_driver(struct device *dev)
465 {
466 	device_links_write_lock();
467 	__device_links_no_driver(dev);
468 	device_links_write_unlock();
469 }
470 
471 /**
472  * device_links_driver_cleanup - Update links after driver removal.
473  * @dev: Device whose driver has just gone away.
474  *
475  * Update links to consumers for @dev by changing their status to "dormant" and
476  * invoke %__device_links_no_driver() to update links to suppliers for it as
477  * appropriate.
478  *
479  * Links with the DL_FLAG_STATELESS flag set are ignored.
480  */
481 void device_links_driver_cleanup(struct device *dev)
482 {
483 	struct device_link *link;
484 
485 	device_links_write_lock();
486 
487 	list_for_each_entry(link, &dev->links.consumers, s_node) {
488 		if (link->flags & DL_FLAG_STATELESS)
489 			continue;
490 
491 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE);
492 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
493 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
494 	}
495 
496 	__device_links_no_driver(dev);
497 
498 	device_links_write_unlock();
499 }
500 
501 /**
502  * device_links_busy - Check if there are any busy links to consumers.
503  * @dev: Device to check.
504  *
505  * Check each consumer of the device and return 'true' if its link's status
506  * is one of "consumer probe" or "active" (meaning that the given consumer is
507  * probing right now or its driver is present).  Otherwise, change the link
508  * state to "supplier unbind" to prevent the consumer from being probed
509  * successfully going forward.
510  *
511  * Return 'false' if there are no probing or active consumers.
512  *
513  * Links with the DL_FLAG_STATELESS flag set are ignored.
514  */
515 bool device_links_busy(struct device *dev)
516 {
517 	struct device_link *link;
518 	bool ret = false;
519 
520 	device_links_write_lock();
521 
522 	list_for_each_entry(link, &dev->links.consumers, s_node) {
523 		if (link->flags & DL_FLAG_STATELESS)
524 			continue;
525 
526 		if (link->status == DL_STATE_CONSUMER_PROBE
527 		    || link->status == DL_STATE_ACTIVE) {
528 			ret = true;
529 			break;
530 		}
531 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
532 	}
533 
534 	dev->links.status = DL_DEV_UNBINDING;
535 
536 	device_links_write_unlock();
537 	return ret;
538 }
539 
540 /**
541  * device_links_unbind_consumers - Force unbind consumers of the given device.
542  * @dev: Device to unbind the consumers of.
543  *
544  * Walk the list of links to consumers for @dev and if any of them is in the
545  * "consumer probe" state, wait for all device probes in progress to complete
546  * and start over.
547  *
548  * If that's not the case, change the status of the link to "supplier unbind"
549  * and check if the link was in the "active" state.  If so, force the consumer
550  * driver to unbind and start over (the consumer will not re-probe as we have
551  * changed the state of the link already).
552  *
553  * Links with the DL_FLAG_STATELESS flag set are ignored.
554  */
555 void device_links_unbind_consumers(struct device *dev)
556 {
557 	struct device_link *link;
558 
559  start:
560 	device_links_write_lock();
561 
562 	list_for_each_entry(link, &dev->links.consumers, s_node) {
563 		enum device_link_state status;
564 
565 		if (link->flags & DL_FLAG_STATELESS)
566 			continue;
567 
568 		status = link->status;
569 		if (status == DL_STATE_CONSUMER_PROBE) {
570 			device_links_write_unlock();
571 
572 			wait_for_device_probe();
573 			goto start;
574 		}
575 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
576 		if (status == DL_STATE_ACTIVE) {
577 			struct device *consumer = link->consumer;
578 
579 			get_device(consumer);
580 
581 			device_links_write_unlock();
582 
583 			device_release_driver_internal(consumer, NULL,
584 						       consumer->parent);
585 			put_device(consumer);
586 			goto start;
587 		}
588 	}
589 
590 	device_links_write_unlock();
591 }
592 
593 /**
594  * device_links_purge - Delete existing links to other devices.
595  * @dev: Target device.
596  */
597 static void device_links_purge(struct device *dev)
598 {
599 	struct device_link *link, *ln;
600 
601 	/*
602 	 * Delete all of the remaining links from this device to any other
603 	 * devices (either consumers or suppliers).
604 	 */
605 	device_links_write_lock();
606 
607 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
608 		WARN_ON(link->status == DL_STATE_ACTIVE);
609 		__device_link_del(&link->kref);
610 	}
611 
612 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
613 		WARN_ON(link->status != DL_STATE_DORMANT &&
614 			link->status != DL_STATE_NONE);
615 		__device_link_del(&link->kref);
616 	}
617 
618 	device_links_write_unlock();
619 }
620 
621 /* Device links support end. */
622 
623 int (*platform_notify)(struct device *dev) = NULL;
624 int (*platform_notify_remove)(struct device *dev) = NULL;
625 static struct kobject *dev_kobj;
626 struct kobject *sysfs_dev_char_kobj;
627 struct kobject *sysfs_dev_block_kobj;
628 
629 static DEFINE_MUTEX(device_hotplug_lock);
630 
631 void lock_device_hotplug(void)
632 {
633 	mutex_lock(&device_hotplug_lock);
634 }
635 
636 void unlock_device_hotplug(void)
637 {
638 	mutex_unlock(&device_hotplug_lock);
639 }
640 
641 int lock_device_hotplug_sysfs(void)
642 {
643 	if (mutex_trylock(&device_hotplug_lock))
644 		return 0;
645 
646 	/* Avoid busy looping (5 ms of sleep should do). */
647 	msleep(5);
648 	return restart_syscall();
649 }
650 
651 #ifdef CONFIG_BLOCK
652 static inline int device_is_not_partition(struct device *dev)
653 {
654 	return !(dev->type == &part_type);
655 }
656 #else
657 static inline int device_is_not_partition(struct device *dev)
658 {
659 	return 1;
660 }
661 #endif
662 
663 /**
664  * dev_driver_string - Return a device's driver name, if at all possible
665  * @dev: struct device to get the name of
666  *
667  * Will return the device's driver's name if it is bound to a device.  If
668  * the device is not bound to a driver, it will return the name of the bus
669  * it is attached to.  If it is not attached to a bus either, an empty
670  * string will be returned.
671  */
672 const char *dev_driver_string(const struct device *dev)
673 {
674 	struct device_driver *drv;
675 
676 	/* dev->driver can change to NULL underneath us because of unbinding,
677 	 * so be careful about accessing it.  dev->bus and dev->class should
678 	 * never change once they are set, so they don't need special care.
679 	 */
680 	drv = READ_ONCE(dev->driver);
681 	return drv ? drv->name :
682 			(dev->bus ? dev->bus->name :
683 			(dev->class ? dev->class->name : ""));
684 }
685 EXPORT_SYMBOL(dev_driver_string);
686 
687 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
688 
689 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
690 			     char *buf)
691 {
692 	struct device_attribute *dev_attr = to_dev_attr(attr);
693 	struct device *dev = kobj_to_dev(kobj);
694 	ssize_t ret = -EIO;
695 
696 	if (dev_attr->show)
697 		ret = dev_attr->show(dev, dev_attr, buf);
698 	if (ret >= (ssize_t)PAGE_SIZE) {
699 		printk("dev_attr_show: %pS returned bad count\n",
700 				dev_attr->show);
701 	}
702 	return ret;
703 }
704 
705 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
706 			      const char *buf, size_t count)
707 {
708 	struct device_attribute *dev_attr = to_dev_attr(attr);
709 	struct device *dev = kobj_to_dev(kobj);
710 	ssize_t ret = -EIO;
711 
712 	if (dev_attr->store)
713 		ret = dev_attr->store(dev, dev_attr, buf, count);
714 	return ret;
715 }
716 
717 static const struct sysfs_ops dev_sysfs_ops = {
718 	.show	= dev_attr_show,
719 	.store	= dev_attr_store,
720 };
721 
722 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
723 
724 ssize_t device_store_ulong(struct device *dev,
725 			   struct device_attribute *attr,
726 			   const char *buf, size_t size)
727 {
728 	struct dev_ext_attribute *ea = to_ext_attr(attr);
729 	char *end;
730 	unsigned long new = simple_strtoul(buf, &end, 0);
731 	if (end == buf)
732 		return -EINVAL;
733 	*(unsigned long *)(ea->var) = new;
734 	/* Always return full write size even if we didn't consume all */
735 	return size;
736 }
737 EXPORT_SYMBOL_GPL(device_store_ulong);
738 
739 ssize_t device_show_ulong(struct device *dev,
740 			  struct device_attribute *attr,
741 			  char *buf)
742 {
743 	struct dev_ext_attribute *ea = to_ext_attr(attr);
744 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
745 }
746 EXPORT_SYMBOL_GPL(device_show_ulong);
747 
748 ssize_t device_store_int(struct device *dev,
749 			 struct device_attribute *attr,
750 			 const char *buf, size_t size)
751 {
752 	struct dev_ext_attribute *ea = to_ext_attr(attr);
753 	char *end;
754 	long new = simple_strtol(buf, &end, 0);
755 	if (end == buf || new > INT_MAX || new < INT_MIN)
756 		return -EINVAL;
757 	*(int *)(ea->var) = new;
758 	/* Always return full write size even if we didn't consume all */
759 	return size;
760 }
761 EXPORT_SYMBOL_GPL(device_store_int);
762 
763 ssize_t device_show_int(struct device *dev,
764 			struct device_attribute *attr,
765 			char *buf)
766 {
767 	struct dev_ext_attribute *ea = to_ext_attr(attr);
768 
769 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
770 }
771 EXPORT_SYMBOL_GPL(device_show_int);
772 
773 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
774 			  const char *buf, size_t size)
775 {
776 	struct dev_ext_attribute *ea = to_ext_attr(attr);
777 
778 	if (strtobool(buf, ea->var) < 0)
779 		return -EINVAL;
780 
781 	return size;
782 }
783 EXPORT_SYMBOL_GPL(device_store_bool);
784 
785 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
786 			 char *buf)
787 {
788 	struct dev_ext_attribute *ea = to_ext_attr(attr);
789 
790 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
791 }
792 EXPORT_SYMBOL_GPL(device_show_bool);
793 
794 /**
795  * device_release - free device structure.
796  * @kobj: device's kobject.
797  *
798  * This is called once the reference count for the object
799  * reaches 0. We forward the call to the device's release
800  * method, which should handle actually freeing the structure.
801  */
802 static void device_release(struct kobject *kobj)
803 {
804 	struct device *dev = kobj_to_dev(kobj);
805 	struct device_private *p = dev->p;
806 
807 	/*
808 	 * Some platform devices are driven without driver attached
809 	 * and managed resources may have been acquired.  Make sure
810 	 * all resources are released.
811 	 *
812 	 * Drivers still can add resources into device after device
813 	 * is deleted but alive, so release devres here to avoid
814 	 * possible memory leak.
815 	 */
816 	devres_release_all(dev);
817 
818 	if (dev->release)
819 		dev->release(dev);
820 	else if (dev->type && dev->type->release)
821 		dev->type->release(dev);
822 	else if (dev->class && dev->class->dev_release)
823 		dev->class->dev_release(dev);
824 	else
825 		WARN(1, KERN_ERR "Device '%s' does not have a release() "
826 			"function, it is broken and must be fixed.\n",
827 			dev_name(dev));
828 	kfree(p);
829 }
830 
831 static const void *device_namespace(struct kobject *kobj)
832 {
833 	struct device *dev = kobj_to_dev(kobj);
834 	const void *ns = NULL;
835 
836 	if (dev->class && dev->class->ns_type)
837 		ns = dev->class->namespace(dev);
838 
839 	return ns;
840 }
841 
842 static struct kobj_type device_ktype = {
843 	.release	= device_release,
844 	.sysfs_ops	= &dev_sysfs_ops,
845 	.namespace	= device_namespace,
846 };
847 
848 
849 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
850 {
851 	struct kobj_type *ktype = get_ktype(kobj);
852 
853 	if (ktype == &device_ktype) {
854 		struct device *dev = kobj_to_dev(kobj);
855 		if (dev->bus)
856 			return 1;
857 		if (dev->class)
858 			return 1;
859 	}
860 	return 0;
861 }
862 
863 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
864 {
865 	struct device *dev = kobj_to_dev(kobj);
866 
867 	if (dev->bus)
868 		return dev->bus->name;
869 	if (dev->class)
870 		return dev->class->name;
871 	return NULL;
872 }
873 
874 static int dev_uevent(struct kset *kset, struct kobject *kobj,
875 		      struct kobj_uevent_env *env)
876 {
877 	struct device *dev = kobj_to_dev(kobj);
878 	int retval = 0;
879 
880 	/* add device node properties if present */
881 	if (MAJOR(dev->devt)) {
882 		const char *tmp;
883 		const char *name;
884 		umode_t mode = 0;
885 		kuid_t uid = GLOBAL_ROOT_UID;
886 		kgid_t gid = GLOBAL_ROOT_GID;
887 
888 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
889 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
890 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
891 		if (name) {
892 			add_uevent_var(env, "DEVNAME=%s", name);
893 			if (mode)
894 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
895 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
896 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
897 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
898 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
899 			kfree(tmp);
900 		}
901 	}
902 
903 	if (dev->type && dev->type->name)
904 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
905 
906 	if (dev->driver)
907 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
908 
909 	/* Add common DT information about the device */
910 	of_device_uevent(dev, env);
911 
912 	/* have the bus specific function add its stuff */
913 	if (dev->bus && dev->bus->uevent) {
914 		retval = dev->bus->uevent(dev, env);
915 		if (retval)
916 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
917 				 dev_name(dev), __func__, retval);
918 	}
919 
920 	/* have the class specific function add its stuff */
921 	if (dev->class && dev->class->dev_uevent) {
922 		retval = dev->class->dev_uevent(dev, env);
923 		if (retval)
924 			pr_debug("device: '%s': %s: class uevent() "
925 				 "returned %d\n", dev_name(dev),
926 				 __func__, retval);
927 	}
928 
929 	/* have the device type specific function add its stuff */
930 	if (dev->type && dev->type->uevent) {
931 		retval = dev->type->uevent(dev, env);
932 		if (retval)
933 			pr_debug("device: '%s': %s: dev_type uevent() "
934 				 "returned %d\n", dev_name(dev),
935 				 __func__, retval);
936 	}
937 
938 	return retval;
939 }
940 
941 static const struct kset_uevent_ops device_uevent_ops = {
942 	.filter =	dev_uevent_filter,
943 	.name =		dev_uevent_name,
944 	.uevent =	dev_uevent,
945 };
946 
947 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
948 			   char *buf)
949 {
950 	struct kobject *top_kobj;
951 	struct kset *kset;
952 	struct kobj_uevent_env *env = NULL;
953 	int i;
954 	size_t count = 0;
955 	int retval;
956 
957 	/* search the kset, the device belongs to */
958 	top_kobj = &dev->kobj;
959 	while (!top_kobj->kset && top_kobj->parent)
960 		top_kobj = top_kobj->parent;
961 	if (!top_kobj->kset)
962 		goto out;
963 
964 	kset = top_kobj->kset;
965 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
966 		goto out;
967 
968 	/* respect filter */
969 	if (kset->uevent_ops && kset->uevent_ops->filter)
970 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
971 			goto out;
972 
973 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
974 	if (!env)
975 		return -ENOMEM;
976 
977 	/* let the kset specific function add its keys */
978 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
979 	if (retval)
980 		goto out;
981 
982 	/* copy keys to file */
983 	for (i = 0; i < env->envp_idx; i++)
984 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
985 out:
986 	kfree(env);
987 	return count;
988 }
989 
990 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
991 			    const char *buf, size_t count)
992 {
993 	if (kobject_synth_uevent(&dev->kobj, buf, count))
994 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
995 
996 	return count;
997 }
998 static DEVICE_ATTR_RW(uevent);
999 
1000 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1001 			   char *buf)
1002 {
1003 	bool val;
1004 
1005 	device_lock(dev);
1006 	val = !dev->offline;
1007 	device_unlock(dev);
1008 	return sprintf(buf, "%u\n", val);
1009 }
1010 
1011 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1012 			    const char *buf, size_t count)
1013 {
1014 	bool val;
1015 	int ret;
1016 
1017 	ret = strtobool(buf, &val);
1018 	if (ret < 0)
1019 		return ret;
1020 
1021 	ret = lock_device_hotplug_sysfs();
1022 	if (ret)
1023 		return ret;
1024 
1025 	ret = val ? device_online(dev) : device_offline(dev);
1026 	unlock_device_hotplug();
1027 	return ret < 0 ? ret : count;
1028 }
1029 static DEVICE_ATTR_RW(online);
1030 
1031 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1032 {
1033 	return sysfs_create_groups(&dev->kobj, groups);
1034 }
1035 EXPORT_SYMBOL_GPL(device_add_groups);
1036 
1037 void device_remove_groups(struct device *dev,
1038 			  const struct attribute_group **groups)
1039 {
1040 	sysfs_remove_groups(&dev->kobj, groups);
1041 }
1042 EXPORT_SYMBOL_GPL(device_remove_groups);
1043 
1044 union device_attr_group_devres {
1045 	const struct attribute_group *group;
1046 	const struct attribute_group **groups;
1047 };
1048 
1049 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1050 {
1051 	return ((union device_attr_group_devres *)res)->group == data;
1052 }
1053 
1054 static void devm_attr_group_remove(struct device *dev, void *res)
1055 {
1056 	union device_attr_group_devres *devres = res;
1057 	const struct attribute_group *group = devres->group;
1058 
1059 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1060 	sysfs_remove_group(&dev->kobj, group);
1061 }
1062 
1063 static void devm_attr_groups_remove(struct device *dev, void *res)
1064 {
1065 	union device_attr_group_devres *devres = res;
1066 	const struct attribute_group **groups = devres->groups;
1067 
1068 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1069 	sysfs_remove_groups(&dev->kobj, groups);
1070 }
1071 
1072 /**
1073  * devm_device_add_group - given a device, create a managed attribute group
1074  * @dev:	The device to create the group for
1075  * @grp:	The attribute group to create
1076  *
1077  * This function creates a group for the first time.  It will explicitly
1078  * warn and error if any of the attribute files being created already exist.
1079  *
1080  * Returns 0 on success or error code on failure.
1081  */
1082 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1083 {
1084 	union device_attr_group_devres *devres;
1085 	int error;
1086 
1087 	devres = devres_alloc(devm_attr_group_remove,
1088 			      sizeof(*devres), GFP_KERNEL);
1089 	if (!devres)
1090 		return -ENOMEM;
1091 
1092 	error = sysfs_create_group(&dev->kobj, grp);
1093 	if (error) {
1094 		devres_free(devres);
1095 		return error;
1096 	}
1097 
1098 	devres->group = grp;
1099 	devres_add(dev, devres);
1100 	return 0;
1101 }
1102 EXPORT_SYMBOL_GPL(devm_device_add_group);
1103 
1104 /**
1105  * devm_device_remove_group: remove a managed group from a device
1106  * @dev:	device to remove the group from
1107  * @grp:	group to remove
1108  *
1109  * This function removes a group of attributes from a device. The attributes
1110  * previously have to have been created for this group, otherwise it will fail.
1111  */
1112 void devm_device_remove_group(struct device *dev,
1113 			      const struct attribute_group *grp)
1114 {
1115 	WARN_ON(devres_release(dev, devm_attr_group_remove,
1116 			       devm_attr_group_match,
1117 			       /* cast away const */ (void *)grp));
1118 }
1119 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1120 
1121 /**
1122  * devm_device_add_groups - create a bunch of managed attribute groups
1123  * @dev:	The device to create the group for
1124  * @groups:	The attribute groups to create, NULL terminated
1125  *
1126  * This function creates a bunch of managed attribute groups.  If an error
1127  * occurs when creating a group, all previously created groups will be
1128  * removed, unwinding everything back to the original state when this
1129  * function was called.  It will explicitly warn and error if any of the
1130  * attribute files being created already exist.
1131  *
1132  * Returns 0 on success or error code from sysfs_create_group on failure.
1133  */
1134 int devm_device_add_groups(struct device *dev,
1135 			   const struct attribute_group **groups)
1136 {
1137 	union device_attr_group_devres *devres;
1138 	int error;
1139 
1140 	devres = devres_alloc(devm_attr_groups_remove,
1141 			      sizeof(*devres), GFP_KERNEL);
1142 	if (!devres)
1143 		return -ENOMEM;
1144 
1145 	error = sysfs_create_groups(&dev->kobj, groups);
1146 	if (error) {
1147 		devres_free(devres);
1148 		return error;
1149 	}
1150 
1151 	devres->groups = groups;
1152 	devres_add(dev, devres);
1153 	return 0;
1154 }
1155 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1156 
1157 /**
1158  * devm_device_remove_groups - remove a list of managed groups
1159  *
1160  * @dev:	The device for the groups to be removed from
1161  * @groups:	NULL terminated list of groups to be removed
1162  *
1163  * If groups is not NULL, remove the specified groups from the device.
1164  */
1165 void devm_device_remove_groups(struct device *dev,
1166 			       const struct attribute_group **groups)
1167 {
1168 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1169 			       devm_attr_group_match,
1170 			       /* cast away const */ (void *)groups));
1171 }
1172 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1173 
1174 static int device_add_attrs(struct device *dev)
1175 {
1176 	struct class *class = dev->class;
1177 	const struct device_type *type = dev->type;
1178 	int error;
1179 
1180 	if (class) {
1181 		error = device_add_groups(dev, class->dev_groups);
1182 		if (error)
1183 			return error;
1184 	}
1185 
1186 	if (type) {
1187 		error = device_add_groups(dev, type->groups);
1188 		if (error)
1189 			goto err_remove_class_groups;
1190 	}
1191 
1192 	error = device_add_groups(dev, dev->groups);
1193 	if (error)
1194 		goto err_remove_type_groups;
1195 
1196 	if (device_supports_offline(dev) && !dev->offline_disabled) {
1197 		error = device_create_file(dev, &dev_attr_online);
1198 		if (error)
1199 			goto err_remove_dev_groups;
1200 	}
1201 
1202 	return 0;
1203 
1204  err_remove_dev_groups:
1205 	device_remove_groups(dev, dev->groups);
1206  err_remove_type_groups:
1207 	if (type)
1208 		device_remove_groups(dev, type->groups);
1209  err_remove_class_groups:
1210 	if (class)
1211 		device_remove_groups(dev, class->dev_groups);
1212 
1213 	return error;
1214 }
1215 
1216 static void device_remove_attrs(struct device *dev)
1217 {
1218 	struct class *class = dev->class;
1219 	const struct device_type *type = dev->type;
1220 
1221 	device_remove_file(dev, &dev_attr_online);
1222 	device_remove_groups(dev, dev->groups);
1223 
1224 	if (type)
1225 		device_remove_groups(dev, type->groups);
1226 
1227 	if (class)
1228 		device_remove_groups(dev, class->dev_groups);
1229 }
1230 
1231 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1232 			char *buf)
1233 {
1234 	return print_dev_t(buf, dev->devt);
1235 }
1236 static DEVICE_ATTR_RO(dev);
1237 
1238 /* /sys/devices/ */
1239 struct kset *devices_kset;
1240 
1241 /**
1242  * devices_kset_move_before - Move device in the devices_kset's list.
1243  * @deva: Device to move.
1244  * @devb: Device @deva should come before.
1245  */
1246 static void devices_kset_move_before(struct device *deva, struct device *devb)
1247 {
1248 	if (!devices_kset)
1249 		return;
1250 	pr_debug("devices_kset: Moving %s before %s\n",
1251 		 dev_name(deva), dev_name(devb));
1252 	spin_lock(&devices_kset->list_lock);
1253 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1254 	spin_unlock(&devices_kset->list_lock);
1255 }
1256 
1257 /**
1258  * devices_kset_move_after - Move device in the devices_kset's list.
1259  * @deva: Device to move
1260  * @devb: Device @deva should come after.
1261  */
1262 static void devices_kset_move_after(struct device *deva, struct device *devb)
1263 {
1264 	if (!devices_kset)
1265 		return;
1266 	pr_debug("devices_kset: Moving %s after %s\n",
1267 		 dev_name(deva), dev_name(devb));
1268 	spin_lock(&devices_kset->list_lock);
1269 	list_move(&deva->kobj.entry, &devb->kobj.entry);
1270 	spin_unlock(&devices_kset->list_lock);
1271 }
1272 
1273 /**
1274  * devices_kset_move_last - move the device to the end of devices_kset's list.
1275  * @dev: device to move
1276  */
1277 void devices_kset_move_last(struct device *dev)
1278 {
1279 	if (!devices_kset)
1280 		return;
1281 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1282 	spin_lock(&devices_kset->list_lock);
1283 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1284 	spin_unlock(&devices_kset->list_lock);
1285 }
1286 
1287 /**
1288  * device_create_file - create sysfs attribute file for device.
1289  * @dev: device.
1290  * @attr: device attribute descriptor.
1291  */
1292 int device_create_file(struct device *dev,
1293 		       const struct device_attribute *attr)
1294 {
1295 	int error = 0;
1296 
1297 	if (dev) {
1298 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1299 			"Attribute %s: write permission without 'store'\n",
1300 			attr->attr.name);
1301 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1302 			"Attribute %s: read permission without 'show'\n",
1303 			attr->attr.name);
1304 		error = sysfs_create_file(&dev->kobj, &attr->attr);
1305 	}
1306 
1307 	return error;
1308 }
1309 EXPORT_SYMBOL_GPL(device_create_file);
1310 
1311 /**
1312  * device_remove_file - remove sysfs attribute file.
1313  * @dev: device.
1314  * @attr: device attribute descriptor.
1315  */
1316 void device_remove_file(struct device *dev,
1317 			const struct device_attribute *attr)
1318 {
1319 	if (dev)
1320 		sysfs_remove_file(&dev->kobj, &attr->attr);
1321 }
1322 EXPORT_SYMBOL_GPL(device_remove_file);
1323 
1324 /**
1325  * device_remove_file_self - remove sysfs attribute file from its own method.
1326  * @dev: device.
1327  * @attr: device attribute descriptor.
1328  *
1329  * See kernfs_remove_self() for details.
1330  */
1331 bool device_remove_file_self(struct device *dev,
1332 			     const struct device_attribute *attr)
1333 {
1334 	if (dev)
1335 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1336 	else
1337 		return false;
1338 }
1339 EXPORT_SYMBOL_GPL(device_remove_file_self);
1340 
1341 /**
1342  * device_create_bin_file - create sysfs binary attribute file for device.
1343  * @dev: device.
1344  * @attr: device binary attribute descriptor.
1345  */
1346 int device_create_bin_file(struct device *dev,
1347 			   const struct bin_attribute *attr)
1348 {
1349 	int error = -EINVAL;
1350 	if (dev)
1351 		error = sysfs_create_bin_file(&dev->kobj, attr);
1352 	return error;
1353 }
1354 EXPORT_SYMBOL_GPL(device_create_bin_file);
1355 
1356 /**
1357  * device_remove_bin_file - remove sysfs binary attribute file
1358  * @dev: device.
1359  * @attr: device binary attribute descriptor.
1360  */
1361 void device_remove_bin_file(struct device *dev,
1362 			    const struct bin_attribute *attr)
1363 {
1364 	if (dev)
1365 		sysfs_remove_bin_file(&dev->kobj, attr);
1366 }
1367 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1368 
1369 static void klist_children_get(struct klist_node *n)
1370 {
1371 	struct device_private *p = to_device_private_parent(n);
1372 	struct device *dev = p->device;
1373 
1374 	get_device(dev);
1375 }
1376 
1377 static void klist_children_put(struct klist_node *n)
1378 {
1379 	struct device_private *p = to_device_private_parent(n);
1380 	struct device *dev = p->device;
1381 
1382 	put_device(dev);
1383 }
1384 
1385 /**
1386  * device_initialize - init device structure.
1387  * @dev: device.
1388  *
1389  * This prepares the device for use by other layers by initializing
1390  * its fields.
1391  * It is the first half of device_register(), if called by
1392  * that function, though it can also be called separately, so one
1393  * may use @dev's fields. In particular, get_device()/put_device()
1394  * may be used for reference counting of @dev after calling this
1395  * function.
1396  *
1397  * All fields in @dev must be initialized by the caller to 0, except
1398  * for those explicitly set to some other value.  The simplest
1399  * approach is to use kzalloc() to allocate the structure containing
1400  * @dev.
1401  *
1402  * NOTE: Use put_device() to give up your reference instead of freeing
1403  * @dev directly once you have called this function.
1404  */
1405 void device_initialize(struct device *dev)
1406 {
1407 	dev->kobj.kset = devices_kset;
1408 	kobject_init(&dev->kobj, &device_ktype);
1409 	INIT_LIST_HEAD(&dev->dma_pools);
1410 	mutex_init(&dev->mutex);
1411 	lockdep_set_novalidate_class(&dev->mutex);
1412 	spin_lock_init(&dev->devres_lock);
1413 	INIT_LIST_HEAD(&dev->devres_head);
1414 	device_pm_init(dev);
1415 	set_dev_node(dev, -1);
1416 #ifdef CONFIG_GENERIC_MSI_IRQ
1417 	INIT_LIST_HEAD(&dev->msi_list);
1418 #endif
1419 	INIT_LIST_HEAD(&dev->links.consumers);
1420 	INIT_LIST_HEAD(&dev->links.suppliers);
1421 	dev->links.status = DL_DEV_NO_DRIVER;
1422 }
1423 EXPORT_SYMBOL_GPL(device_initialize);
1424 
1425 struct kobject *virtual_device_parent(struct device *dev)
1426 {
1427 	static struct kobject *virtual_dir = NULL;
1428 
1429 	if (!virtual_dir)
1430 		virtual_dir = kobject_create_and_add("virtual",
1431 						     &devices_kset->kobj);
1432 
1433 	return virtual_dir;
1434 }
1435 
1436 struct class_dir {
1437 	struct kobject kobj;
1438 	struct class *class;
1439 };
1440 
1441 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1442 
1443 static void class_dir_release(struct kobject *kobj)
1444 {
1445 	struct class_dir *dir = to_class_dir(kobj);
1446 	kfree(dir);
1447 }
1448 
1449 static const
1450 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1451 {
1452 	struct class_dir *dir = to_class_dir(kobj);
1453 	return dir->class->ns_type;
1454 }
1455 
1456 static struct kobj_type class_dir_ktype = {
1457 	.release	= class_dir_release,
1458 	.sysfs_ops	= &kobj_sysfs_ops,
1459 	.child_ns_type	= class_dir_child_ns_type
1460 };
1461 
1462 static struct kobject *
1463 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1464 {
1465 	struct class_dir *dir;
1466 	int retval;
1467 
1468 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1469 	if (!dir)
1470 		return NULL;
1471 
1472 	dir->class = class;
1473 	kobject_init(&dir->kobj, &class_dir_ktype);
1474 
1475 	dir->kobj.kset = &class->p->glue_dirs;
1476 
1477 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1478 	if (retval < 0) {
1479 		kobject_put(&dir->kobj);
1480 		return NULL;
1481 	}
1482 	return &dir->kobj;
1483 }
1484 
1485 static DEFINE_MUTEX(gdp_mutex);
1486 
1487 static struct kobject *get_device_parent(struct device *dev,
1488 					 struct device *parent)
1489 {
1490 	if (dev->class) {
1491 		struct kobject *kobj = NULL;
1492 		struct kobject *parent_kobj;
1493 		struct kobject *k;
1494 
1495 #ifdef CONFIG_BLOCK
1496 		/* block disks show up in /sys/block */
1497 		if (sysfs_deprecated && dev->class == &block_class) {
1498 			if (parent && parent->class == &block_class)
1499 				return &parent->kobj;
1500 			return &block_class.p->subsys.kobj;
1501 		}
1502 #endif
1503 
1504 		/*
1505 		 * If we have no parent, we live in "virtual".
1506 		 * Class-devices with a non class-device as parent, live
1507 		 * in a "glue" directory to prevent namespace collisions.
1508 		 */
1509 		if (parent == NULL)
1510 			parent_kobj = virtual_device_parent(dev);
1511 		else if (parent->class && !dev->class->ns_type)
1512 			return &parent->kobj;
1513 		else
1514 			parent_kobj = &parent->kobj;
1515 
1516 		mutex_lock(&gdp_mutex);
1517 
1518 		/* find our class-directory at the parent and reference it */
1519 		spin_lock(&dev->class->p->glue_dirs.list_lock);
1520 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1521 			if (k->parent == parent_kobj) {
1522 				kobj = kobject_get(k);
1523 				break;
1524 			}
1525 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1526 		if (kobj) {
1527 			mutex_unlock(&gdp_mutex);
1528 			return kobj;
1529 		}
1530 
1531 		/* or create a new class-directory at the parent device */
1532 		k = class_dir_create_and_add(dev->class, parent_kobj);
1533 		/* do not emit an uevent for this simple "glue" directory */
1534 		mutex_unlock(&gdp_mutex);
1535 		return k;
1536 	}
1537 
1538 	/* subsystems can specify a default root directory for their devices */
1539 	if (!parent && dev->bus && dev->bus->dev_root)
1540 		return &dev->bus->dev_root->kobj;
1541 
1542 	if (parent)
1543 		return &parent->kobj;
1544 	return NULL;
1545 }
1546 
1547 static inline bool live_in_glue_dir(struct kobject *kobj,
1548 				    struct device *dev)
1549 {
1550 	if (!kobj || !dev->class ||
1551 	    kobj->kset != &dev->class->p->glue_dirs)
1552 		return false;
1553 	return true;
1554 }
1555 
1556 static inline struct kobject *get_glue_dir(struct device *dev)
1557 {
1558 	return dev->kobj.parent;
1559 }
1560 
1561 /*
1562  * make sure cleaning up dir as the last step, we need to make
1563  * sure .release handler of kobject is run with holding the
1564  * global lock
1565  */
1566 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1567 {
1568 	/* see if we live in a "glue" directory */
1569 	if (!live_in_glue_dir(glue_dir, dev))
1570 		return;
1571 
1572 	mutex_lock(&gdp_mutex);
1573 	kobject_put(glue_dir);
1574 	mutex_unlock(&gdp_mutex);
1575 }
1576 
1577 static int device_add_class_symlinks(struct device *dev)
1578 {
1579 	struct device_node *of_node = dev_of_node(dev);
1580 	int error;
1581 
1582 	if (of_node) {
1583 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1584 		if (error)
1585 			dev_warn(dev, "Error %d creating of_node link\n",error);
1586 		/* An error here doesn't warrant bringing down the device */
1587 	}
1588 
1589 	if (!dev->class)
1590 		return 0;
1591 
1592 	error = sysfs_create_link(&dev->kobj,
1593 				  &dev->class->p->subsys.kobj,
1594 				  "subsystem");
1595 	if (error)
1596 		goto out_devnode;
1597 
1598 	if (dev->parent && device_is_not_partition(dev)) {
1599 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1600 					  "device");
1601 		if (error)
1602 			goto out_subsys;
1603 	}
1604 
1605 #ifdef CONFIG_BLOCK
1606 	/* /sys/block has directories and does not need symlinks */
1607 	if (sysfs_deprecated && dev->class == &block_class)
1608 		return 0;
1609 #endif
1610 
1611 	/* link in the class directory pointing to the device */
1612 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1613 				  &dev->kobj, dev_name(dev));
1614 	if (error)
1615 		goto out_device;
1616 
1617 	return 0;
1618 
1619 out_device:
1620 	sysfs_remove_link(&dev->kobj, "device");
1621 
1622 out_subsys:
1623 	sysfs_remove_link(&dev->kobj, "subsystem");
1624 out_devnode:
1625 	sysfs_remove_link(&dev->kobj, "of_node");
1626 	return error;
1627 }
1628 
1629 static void device_remove_class_symlinks(struct device *dev)
1630 {
1631 	if (dev_of_node(dev))
1632 		sysfs_remove_link(&dev->kobj, "of_node");
1633 
1634 	if (!dev->class)
1635 		return;
1636 
1637 	if (dev->parent && device_is_not_partition(dev))
1638 		sysfs_remove_link(&dev->kobj, "device");
1639 	sysfs_remove_link(&dev->kobj, "subsystem");
1640 #ifdef CONFIG_BLOCK
1641 	if (sysfs_deprecated && dev->class == &block_class)
1642 		return;
1643 #endif
1644 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1645 }
1646 
1647 /**
1648  * dev_set_name - set a device name
1649  * @dev: device
1650  * @fmt: format string for the device's name
1651  */
1652 int dev_set_name(struct device *dev, const char *fmt, ...)
1653 {
1654 	va_list vargs;
1655 	int err;
1656 
1657 	va_start(vargs, fmt);
1658 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1659 	va_end(vargs);
1660 	return err;
1661 }
1662 EXPORT_SYMBOL_GPL(dev_set_name);
1663 
1664 /**
1665  * device_to_dev_kobj - select a /sys/dev/ directory for the device
1666  * @dev: device
1667  *
1668  * By default we select char/ for new entries.  Setting class->dev_obj
1669  * to NULL prevents an entry from being created.  class->dev_kobj must
1670  * be set (or cleared) before any devices are registered to the class
1671  * otherwise device_create_sys_dev_entry() and
1672  * device_remove_sys_dev_entry() will disagree about the presence of
1673  * the link.
1674  */
1675 static struct kobject *device_to_dev_kobj(struct device *dev)
1676 {
1677 	struct kobject *kobj;
1678 
1679 	if (dev->class)
1680 		kobj = dev->class->dev_kobj;
1681 	else
1682 		kobj = sysfs_dev_char_kobj;
1683 
1684 	return kobj;
1685 }
1686 
1687 static int device_create_sys_dev_entry(struct device *dev)
1688 {
1689 	struct kobject *kobj = device_to_dev_kobj(dev);
1690 	int error = 0;
1691 	char devt_str[15];
1692 
1693 	if (kobj) {
1694 		format_dev_t(devt_str, dev->devt);
1695 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1696 	}
1697 
1698 	return error;
1699 }
1700 
1701 static void device_remove_sys_dev_entry(struct device *dev)
1702 {
1703 	struct kobject *kobj = device_to_dev_kobj(dev);
1704 	char devt_str[15];
1705 
1706 	if (kobj) {
1707 		format_dev_t(devt_str, dev->devt);
1708 		sysfs_remove_link(kobj, devt_str);
1709 	}
1710 }
1711 
1712 int device_private_init(struct device *dev)
1713 {
1714 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1715 	if (!dev->p)
1716 		return -ENOMEM;
1717 	dev->p->device = dev;
1718 	klist_init(&dev->p->klist_children, klist_children_get,
1719 		   klist_children_put);
1720 	INIT_LIST_HEAD(&dev->p->deferred_probe);
1721 	return 0;
1722 }
1723 
1724 /**
1725  * device_add - add device to device hierarchy.
1726  * @dev: device.
1727  *
1728  * This is part 2 of device_register(), though may be called
1729  * separately _iff_ device_initialize() has been called separately.
1730  *
1731  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1732  * to the global and sibling lists for the device, then
1733  * adds it to the other relevant subsystems of the driver model.
1734  *
1735  * Do not call this routine or device_register() more than once for
1736  * any device structure.  The driver model core is not designed to work
1737  * with devices that get unregistered and then spring back to life.
1738  * (Among other things, it's very hard to guarantee that all references
1739  * to the previous incarnation of @dev have been dropped.)  Allocate
1740  * and register a fresh new struct device instead.
1741  *
1742  * NOTE: _Never_ directly free @dev after calling this function, even
1743  * if it returned an error! Always use put_device() to give up your
1744  * reference instead.
1745  */
1746 int device_add(struct device *dev)
1747 {
1748 	struct device *parent;
1749 	struct kobject *kobj;
1750 	struct class_interface *class_intf;
1751 	int error = -EINVAL;
1752 	struct kobject *glue_dir = NULL;
1753 
1754 	dev = get_device(dev);
1755 	if (!dev)
1756 		goto done;
1757 
1758 	if (!dev->p) {
1759 		error = device_private_init(dev);
1760 		if (error)
1761 			goto done;
1762 	}
1763 
1764 	/*
1765 	 * for statically allocated devices, which should all be converted
1766 	 * some day, we need to initialize the name. We prevent reading back
1767 	 * the name, and force the use of dev_name()
1768 	 */
1769 	if (dev->init_name) {
1770 		dev_set_name(dev, "%s", dev->init_name);
1771 		dev->init_name = NULL;
1772 	}
1773 
1774 	/* subsystems can specify simple device enumeration */
1775 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1776 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1777 
1778 	if (!dev_name(dev)) {
1779 		error = -EINVAL;
1780 		goto name_error;
1781 	}
1782 
1783 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1784 
1785 	parent = get_device(dev->parent);
1786 	kobj = get_device_parent(dev, parent);
1787 	if (kobj)
1788 		dev->kobj.parent = kobj;
1789 
1790 	/* use parent numa_node */
1791 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1792 		set_dev_node(dev, dev_to_node(parent));
1793 
1794 	/* first, register with generic layer. */
1795 	/* we require the name to be set before, and pass NULL */
1796 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1797 	if (error) {
1798 		glue_dir = get_glue_dir(dev);
1799 		goto Error;
1800 	}
1801 
1802 	/* notify platform of device entry */
1803 	if (platform_notify)
1804 		platform_notify(dev);
1805 
1806 	error = device_create_file(dev, &dev_attr_uevent);
1807 	if (error)
1808 		goto attrError;
1809 
1810 	error = device_add_class_symlinks(dev);
1811 	if (error)
1812 		goto SymlinkError;
1813 	error = device_add_attrs(dev);
1814 	if (error)
1815 		goto AttrsError;
1816 	error = bus_add_device(dev);
1817 	if (error)
1818 		goto BusError;
1819 	error = dpm_sysfs_add(dev);
1820 	if (error)
1821 		goto DPMError;
1822 	device_pm_add(dev);
1823 
1824 	if (MAJOR(dev->devt)) {
1825 		error = device_create_file(dev, &dev_attr_dev);
1826 		if (error)
1827 			goto DevAttrError;
1828 
1829 		error = device_create_sys_dev_entry(dev);
1830 		if (error)
1831 			goto SysEntryError;
1832 
1833 		devtmpfs_create_node(dev);
1834 	}
1835 
1836 	/* Notify clients of device addition.  This call must come
1837 	 * after dpm_sysfs_add() and before kobject_uevent().
1838 	 */
1839 	if (dev->bus)
1840 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1841 					     BUS_NOTIFY_ADD_DEVICE, dev);
1842 
1843 	kobject_uevent(&dev->kobj, KOBJ_ADD);
1844 	bus_probe_device(dev);
1845 	if (parent)
1846 		klist_add_tail(&dev->p->knode_parent,
1847 			       &parent->p->klist_children);
1848 
1849 	if (dev->class) {
1850 		mutex_lock(&dev->class->p->mutex);
1851 		/* tie the class to the device */
1852 		klist_add_tail(&dev->knode_class,
1853 			       &dev->class->p->klist_devices);
1854 
1855 		/* notify any interfaces that the device is here */
1856 		list_for_each_entry(class_intf,
1857 				    &dev->class->p->interfaces, node)
1858 			if (class_intf->add_dev)
1859 				class_intf->add_dev(dev, class_intf);
1860 		mutex_unlock(&dev->class->p->mutex);
1861 	}
1862 done:
1863 	put_device(dev);
1864 	return error;
1865  SysEntryError:
1866 	if (MAJOR(dev->devt))
1867 		device_remove_file(dev, &dev_attr_dev);
1868  DevAttrError:
1869 	device_pm_remove(dev);
1870 	dpm_sysfs_remove(dev);
1871  DPMError:
1872 	bus_remove_device(dev);
1873  BusError:
1874 	device_remove_attrs(dev);
1875  AttrsError:
1876 	device_remove_class_symlinks(dev);
1877  SymlinkError:
1878 	device_remove_file(dev, &dev_attr_uevent);
1879  attrError:
1880 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1881 	glue_dir = get_glue_dir(dev);
1882 	kobject_del(&dev->kobj);
1883  Error:
1884 	cleanup_glue_dir(dev, glue_dir);
1885 	put_device(parent);
1886 name_error:
1887 	kfree(dev->p);
1888 	dev->p = NULL;
1889 	goto done;
1890 }
1891 EXPORT_SYMBOL_GPL(device_add);
1892 
1893 /**
1894  * device_register - register a device with the system.
1895  * @dev: pointer to the device structure
1896  *
1897  * This happens in two clean steps - initialize the device
1898  * and add it to the system. The two steps can be called
1899  * separately, but this is the easiest and most common.
1900  * I.e. you should only call the two helpers separately if
1901  * have a clearly defined need to use and refcount the device
1902  * before it is added to the hierarchy.
1903  *
1904  * For more information, see the kerneldoc for device_initialize()
1905  * and device_add().
1906  *
1907  * NOTE: _Never_ directly free @dev after calling this function, even
1908  * if it returned an error! Always use put_device() to give up the
1909  * reference initialized in this function instead.
1910  */
1911 int device_register(struct device *dev)
1912 {
1913 	device_initialize(dev);
1914 	return device_add(dev);
1915 }
1916 EXPORT_SYMBOL_GPL(device_register);
1917 
1918 /**
1919  * get_device - increment reference count for device.
1920  * @dev: device.
1921  *
1922  * This simply forwards the call to kobject_get(), though
1923  * we do take care to provide for the case that we get a NULL
1924  * pointer passed in.
1925  */
1926 struct device *get_device(struct device *dev)
1927 {
1928 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1929 }
1930 EXPORT_SYMBOL_GPL(get_device);
1931 
1932 /**
1933  * put_device - decrement reference count.
1934  * @dev: device in question.
1935  */
1936 void put_device(struct device *dev)
1937 {
1938 	/* might_sleep(); */
1939 	if (dev)
1940 		kobject_put(&dev->kobj);
1941 }
1942 EXPORT_SYMBOL_GPL(put_device);
1943 
1944 /**
1945  * device_del - delete device from system.
1946  * @dev: device.
1947  *
1948  * This is the first part of the device unregistration
1949  * sequence. This removes the device from the lists we control
1950  * from here, has it removed from the other driver model
1951  * subsystems it was added to in device_add(), and removes it
1952  * from the kobject hierarchy.
1953  *
1954  * NOTE: this should be called manually _iff_ device_add() was
1955  * also called manually.
1956  */
1957 void device_del(struct device *dev)
1958 {
1959 	struct device *parent = dev->parent;
1960 	struct kobject *glue_dir = NULL;
1961 	struct class_interface *class_intf;
1962 
1963 	/* Notify clients of device removal.  This call must come
1964 	 * before dpm_sysfs_remove().
1965 	 */
1966 	if (dev->bus)
1967 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1968 					     BUS_NOTIFY_DEL_DEVICE, dev);
1969 
1970 	dpm_sysfs_remove(dev);
1971 	if (parent)
1972 		klist_del(&dev->p->knode_parent);
1973 	if (MAJOR(dev->devt)) {
1974 		devtmpfs_delete_node(dev);
1975 		device_remove_sys_dev_entry(dev);
1976 		device_remove_file(dev, &dev_attr_dev);
1977 	}
1978 	if (dev->class) {
1979 		device_remove_class_symlinks(dev);
1980 
1981 		mutex_lock(&dev->class->p->mutex);
1982 		/* notify any interfaces that the device is now gone */
1983 		list_for_each_entry(class_intf,
1984 				    &dev->class->p->interfaces, node)
1985 			if (class_intf->remove_dev)
1986 				class_intf->remove_dev(dev, class_intf);
1987 		/* remove the device from the class list */
1988 		klist_del(&dev->knode_class);
1989 		mutex_unlock(&dev->class->p->mutex);
1990 	}
1991 	device_remove_file(dev, &dev_attr_uevent);
1992 	device_remove_attrs(dev);
1993 	bus_remove_device(dev);
1994 	device_pm_remove(dev);
1995 	driver_deferred_probe_del(dev);
1996 	device_remove_properties(dev);
1997 	device_links_purge(dev);
1998 
1999 	/* Notify the platform of the removal, in case they
2000 	 * need to do anything...
2001 	 */
2002 	if (platform_notify_remove)
2003 		platform_notify_remove(dev);
2004 	if (dev->bus)
2005 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2006 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
2007 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2008 	glue_dir = get_glue_dir(dev);
2009 	kobject_del(&dev->kobj);
2010 	cleanup_glue_dir(dev, glue_dir);
2011 	put_device(parent);
2012 }
2013 EXPORT_SYMBOL_GPL(device_del);
2014 
2015 /**
2016  * device_unregister - unregister device from system.
2017  * @dev: device going away.
2018  *
2019  * We do this in two parts, like we do device_register(). First,
2020  * we remove it from all the subsystems with device_del(), then
2021  * we decrement the reference count via put_device(). If that
2022  * is the final reference count, the device will be cleaned up
2023  * via device_release() above. Otherwise, the structure will
2024  * stick around until the final reference to the device is dropped.
2025  */
2026 void device_unregister(struct device *dev)
2027 {
2028 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2029 	device_del(dev);
2030 	put_device(dev);
2031 }
2032 EXPORT_SYMBOL_GPL(device_unregister);
2033 
2034 static struct device *prev_device(struct klist_iter *i)
2035 {
2036 	struct klist_node *n = klist_prev(i);
2037 	struct device *dev = NULL;
2038 	struct device_private *p;
2039 
2040 	if (n) {
2041 		p = to_device_private_parent(n);
2042 		dev = p->device;
2043 	}
2044 	return dev;
2045 }
2046 
2047 static struct device *next_device(struct klist_iter *i)
2048 {
2049 	struct klist_node *n = klist_next(i);
2050 	struct device *dev = NULL;
2051 	struct device_private *p;
2052 
2053 	if (n) {
2054 		p = to_device_private_parent(n);
2055 		dev = p->device;
2056 	}
2057 	return dev;
2058 }
2059 
2060 /**
2061  * device_get_devnode - path of device node file
2062  * @dev: device
2063  * @mode: returned file access mode
2064  * @uid: returned file owner
2065  * @gid: returned file group
2066  * @tmp: possibly allocated string
2067  *
2068  * Return the relative path of a possible device node.
2069  * Non-default names may need to allocate a memory to compose
2070  * a name. This memory is returned in tmp and needs to be
2071  * freed by the caller.
2072  */
2073 const char *device_get_devnode(struct device *dev,
2074 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2075 			       const char **tmp)
2076 {
2077 	char *s;
2078 
2079 	*tmp = NULL;
2080 
2081 	/* the device type may provide a specific name */
2082 	if (dev->type && dev->type->devnode)
2083 		*tmp = dev->type->devnode(dev, mode, uid, gid);
2084 	if (*tmp)
2085 		return *tmp;
2086 
2087 	/* the class may provide a specific name */
2088 	if (dev->class && dev->class->devnode)
2089 		*tmp = dev->class->devnode(dev, mode);
2090 	if (*tmp)
2091 		return *tmp;
2092 
2093 	/* return name without allocation, tmp == NULL */
2094 	if (strchr(dev_name(dev), '!') == NULL)
2095 		return dev_name(dev);
2096 
2097 	/* replace '!' in the name with '/' */
2098 	s = kstrdup(dev_name(dev), GFP_KERNEL);
2099 	if (!s)
2100 		return NULL;
2101 	strreplace(s, '!', '/');
2102 	return *tmp = s;
2103 }
2104 
2105 /**
2106  * device_for_each_child - device child iterator.
2107  * @parent: parent struct device.
2108  * @fn: function to be called for each device.
2109  * @data: data for the callback.
2110  *
2111  * Iterate over @parent's child devices, and call @fn for each,
2112  * passing it @data.
2113  *
2114  * We check the return of @fn each time. If it returns anything
2115  * other than 0, we break out and return that value.
2116  */
2117 int device_for_each_child(struct device *parent, void *data,
2118 			  int (*fn)(struct device *dev, void *data))
2119 {
2120 	struct klist_iter i;
2121 	struct device *child;
2122 	int error = 0;
2123 
2124 	if (!parent->p)
2125 		return 0;
2126 
2127 	klist_iter_init(&parent->p->klist_children, &i);
2128 	while (!error && (child = next_device(&i)))
2129 		error = fn(child, data);
2130 	klist_iter_exit(&i);
2131 	return error;
2132 }
2133 EXPORT_SYMBOL_GPL(device_for_each_child);
2134 
2135 /**
2136  * device_for_each_child_reverse - device child iterator in reversed order.
2137  * @parent: parent struct device.
2138  * @fn: function to be called for each device.
2139  * @data: data for the callback.
2140  *
2141  * Iterate over @parent's child devices, and call @fn for each,
2142  * passing it @data.
2143  *
2144  * We check the return of @fn each time. If it returns anything
2145  * other than 0, we break out and return that value.
2146  */
2147 int device_for_each_child_reverse(struct device *parent, void *data,
2148 				  int (*fn)(struct device *dev, void *data))
2149 {
2150 	struct klist_iter i;
2151 	struct device *child;
2152 	int error = 0;
2153 
2154 	if (!parent->p)
2155 		return 0;
2156 
2157 	klist_iter_init(&parent->p->klist_children, &i);
2158 	while ((child = prev_device(&i)) && !error)
2159 		error = fn(child, data);
2160 	klist_iter_exit(&i);
2161 	return error;
2162 }
2163 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2164 
2165 /**
2166  * device_find_child - device iterator for locating a particular device.
2167  * @parent: parent struct device
2168  * @match: Callback function to check device
2169  * @data: Data to pass to match function
2170  *
2171  * This is similar to the device_for_each_child() function above, but it
2172  * returns a reference to a device that is 'found' for later use, as
2173  * determined by the @match callback.
2174  *
2175  * The callback should return 0 if the device doesn't match and non-zero
2176  * if it does.  If the callback returns non-zero and a reference to the
2177  * current device can be obtained, this function will return to the caller
2178  * and not iterate over any more devices.
2179  *
2180  * NOTE: you will need to drop the reference with put_device() after use.
2181  */
2182 struct device *device_find_child(struct device *parent, void *data,
2183 				 int (*match)(struct device *dev, void *data))
2184 {
2185 	struct klist_iter i;
2186 	struct device *child;
2187 
2188 	if (!parent)
2189 		return NULL;
2190 
2191 	klist_iter_init(&parent->p->klist_children, &i);
2192 	while ((child = next_device(&i)))
2193 		if (match(child, data) && get_device(child))
2194 			break;
2195 	klist_iter_exit(&i);
2196 	return child;
2197 }
2198 EXPORT_SYMBOL_GPL(device_find_child);
2199 
2200 int __init devices_init(void)
2201 {
2202 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2203 	if (!devices_kset)
2204 		return -ENOMEM;
2205 	dev_kobj = kobject_create_and_add("dev", NULL);
2206 	if (!dev_kobj)
2207 		goto dev_kobj_err;
2208 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2209 	if (!sysfs_dev_block_kobj)
2210 		goto block_kobj_err;
2211 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2212 	if (!sysfs_dev_char_kobj)
2213 		goto char_kobj_err;
2214 
2215 	return 0;
2216 
2217  char_kobj_err:
2218 	kobject_put(sysfs_dev_block_kobj);
2219  block_kobj_err:
2220 	kobject_put(dev_kobj);
2221  dev_kobj_err:
2222 	kset_unregister(devices_kset);
2223 	return -ENOMEM;
2224 }
2225 
2226 static int device_check_offline(struct device *dev, void *not_used)
2227 {
2228 	int ret;
2229 
2230 	ret = device_for_each_child(dev, NULL, device_check_offline);
2231 	if (ret)
2232 		return ret;
2233 
2234 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2235 }
2236 
2237 /**
2238  * device_offline - Prepare the device for hot-removal.
2239  * @dev: Device to be put offline.
2240  *
2241  * Execute the device bus type's .offline() callback, if present, to prepare
2242  * the device for a subsequent hot-removal.  If that succeeds, the device must
2243  * not be used until either it is removed or its bus type's .online() callback
2244  * is executed.
2245  *
2246  * Call under device_hotplug_lock.
2247  */
2248 int device_offline(struct device *dev)
2249 {
2250 	int ret;
2251 
2252 	if (dev->offline_disabled)
2253 		return -EPERM;
2254 
2255 	ret = device_for_each_child(dev, NULL, device_check_offline);
2256 	if (ret)
2257 		return ret;
2258 
2259 	device_lock(dev);
2260 	if (device_supports_offline(dev)) {
2261 		if (dev->offline) {
2262 			ret = 1;
2263 		} else {
2264 			ret = dev->bus->offline(dev);
2265 			if (!ret) {
2266 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2267 				dev->offline = true;
2268 			}
2269 		}
2270 	}
2271 	device_unlock(dev);
2272 
2273 	return ret;
2274 }
2275 
2276 /**
2277  * device_online - Put the device back online after successful device_offline().
2278  * @dev: Device to be put back online.
2279  *
2280  * If device_offline() has been successfully executed for @dev, but the device
2281  * has not been removed subsequently, execute its bus type's .online() callback
2282  * to indicate that the device can be used again.
2283  *
2284  * Call under device_hotplug_lock.
2285  */
2286 int device_online(struct device *dev)
2287 {
2288 	int ret = 0;
2289 
2290 	device_lock(dev);
2291 	if (device_supports_offline(dev)) {
2292 		if (dev->offline) {
2293 			ret = dev->bus->online(dev);
2294 			if (!ret) {
2295 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2296 				dev->offline = false;
2297 			}
2298 		} else {
2299 			ret = 1;
2300 		}
2301 	}
2302 	device_unlock(dev);
2303 
2304 	return ret;
2305 }
2306 
2307 struct root_device {
2308 	struct device dev;
2309 	struct module *owner;
2310 };
2311 
2312 static inline struct root_device *to_root_device(struct device *d)
2313 {
2314 	return container_of(d, struct root_device, dev);
2315 }
2316 
2317 static void root_device_release(struct device *dev)
2318 {
2319 	kfree(to_root_device(dev));
2320 }
2321 
2322 /**
2323  * __root_device_register - allocate and register a root device
2324  * @name: root device name
2325  * @owner: owner module of the root device, usually THIS_MODULE
2326  *
2327  * This function allocates a root device and registers it
2328  * using device_register(). In order to free the returned
2329  * device, use root_device_unregister().
2330  *
2331  * Root devices are dummy devices which allow other devices
2332  * to be grouped under /sys/devices. Use this function to
2333  * allocate a root device and then use it as the parent of
2334  * any device which should appear under /sys/devices/{name}
2335  *
2336  * The /sys/devices/{name} directory will also contain a
2337  * 'module' symlink which points to the @owner directory
2338  * in sysfs.
2339  *
2340  * Returns &struct device pointer on success, or ERR_PTR() on error.
2341  *
2342  * Note: You probably want to use root_device_register().
2343  */
2344 struct device *__root_device_register(const char *name, struct module *owner)
2345 {
2346 	struct root_device *root;
2347 	int err = -ENOMEM;
2348 
2349 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2350 	if (!root)
2351 		return ERR_PTR(err);
2352 
2353 	err = dev_set_name(&root->dev, "%s", name);
2354 	if (err) {
2355 		kfree(root);
2356 		return ERR_PTR(err);
2357 	}
2358 
2359 	root->dev.release = root_device_release;
2360 
2361 	err = device_register(&root->dev);
2362 	if (err) {
2363 		put_device(&root->dev);
2364 		return ERR_PTR(err);
2365 	}
2366 
2367 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2368 	if (owner) {
2369 		struct module_kobject *mk = &owner->mkobj;
2370 
2371 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2372 		if (err) {
2373 			device_unregister(&root->dev);
2374 			return ERR_PTR(err);
2375 		}
2376 		root->owner = owner;
2377 	}
2378 #endif
2379 
2380 	return &root->dev;
2381 }
2382 EXPORT_SYMBOL_GPL(__root_device_register);
2383 
2384 /**
2385  * root_device_unregister - unregister and free a root device
2386  * @dev: device going away
2387  *
2388  * This function unregisters and cleans up a device that was created by
2389  * root_device_register().
2390  */
2391 void root_device_unregister(struct device *dev)
2392 {
2393 	struct root_device *root = to_root_device(dev);
2394 
2395 	if (root->owner)
2396 		sysfs_remove_link(&root->dev.kobj, "module");
2397 
2398 	device_unregister(dev);
2399 }
2400 EXPORT_SYMBOL_GPL(root_device_unregister);
2401 
2402 
2403 static void device_create_release(struct device *dev)
2404 {
2405 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2406 	kfree(dev);
2407 }
2408 
2409 static struct device *
2410 device_create_groups_vargs(struct class *class, struct device *parent,
2411 			   dev_t devt, void *drvdata,
2412 			   const struct attribute_group **groups,
2413 			   const char *fmt, va_list args)
2414 {
2415 	struct device *dev = NULL;
2416 	int retval = -ENODEV;
2417 
2418 	if (class == NULL || IS_ERR(class))
2419 		goto error;
2420 
2421 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2422 	if (!dev) {
2423 		retval = -ENOMEM;
2424 		goto error;
2425 	}
2426 
2427 	device_initialize(dev);
2428 	dev->devt = devt;
2429 	dev->class = class;
2430 	dev->parent = parent;
2431 	dev->groups = groups;
2432 	dev->release = device_create_release;
2433 	dev_set_drvdata(dev, drvdata);
2434 
2435 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2436 	if (retval)
2437 		goto error;
2438 
2439 	retval = device_add(dev);
2440 	if (retval)
2441 		goto error;
2442 
2443 	return dev;
2444 
2445 error:
2446 	put_device(dev);
2447 	return ERR_PTR(retval);
2448 }
2449 
2450 /**
2451  * device_create_vargs - creates a device and registers it with sysfs
2452  * @class: pointer to the struct class that this device should be registered to
2453  * @parent: pointer to the parent struct device of this new device, if any
2454  * @devt: the dev_t for the char device to be added
2455  * @drvdata: the data to be added to the device for callbacks
2456  * @fmt: string for the device's name
2457  * @args: va_list for the device's name
2458  *
2459  * This function can be used by char device classes.  A struct device
2460  * will be created in sysfs, registered to the specified class.
2461  *
2462  * A "dev" file will be created, showing the dev_t for the device, if
2463  * the dev_t is not 0,0.
2464  * If a pointer to a parent struct device is passed in, the newly created
2465  * struct device will be a child of that device in sysfs.
2466  * The pointer to the struct device will be returned from the call.
2467  * Any further sysfs files that might be required can be created using this
2468  * pointer.
2469  *
2470  * Returns &struct device pointer on success, or ERR_PTR() on error.
2471  *
2472  * Note: the struct class passed to this function must have previously
2473  * been created with a call to class_create().
2474  */
2475 struct device *device_create_vargs(struct class *class, struct device *parent,
2476 				   dev_t devt, void *drvdata, const char *fmt,
2477 				   va_list args)
2478 {
2479 	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2480 					  fmt, args);
2481 }
2482 EXPORT_SYMBOL_GPL(device_create_vargs);
2483 
2484 /**
2485  * device_create - creates a device and registers it with sysfs
2486  * @class: pointer to the struct class that this device should be registered to
2487  * @parent: pointer to the parent struct device of this new device, if any
2488  * @devt: the dev_t for the char device to be added
2489  * @drvdata: the data to be added to the device for callbacks
2490  * @fmt: string for the device's name
2491  *
2492  * This function can be used by char device classes.  A struct device
2493  * will be created in sysfs, registered to the specified class.
2494  *
2495  * A "dev" file will be created, showing the dev_t for the device, if
2496  * the dev_t is not 0,0.
2497  * If a pointer to a parent struct device is passed in, the newly created
2498  * struct device will be a child of that device in sysfs.
2499  * The pointer to the struct device will be returned from the call.
2500  * Any further sysfs files that might be required can be created using this
2501  * pointer.
2502  *
2503  * Returns &struct device pointer on success, or ERR_PTR() on error.
2504  *
2505  * Note: the struct class passed to this function must have previously
2506  * been created with a call to class_create().
2507  */
2508 struct device *device_create(struct class *class, struct device *parent,
2509 			     dev_t devt, void *drvdata, const char *fmt, ...)
2510 {
2511 	va_list vargs;
2512 	struct device *dev;
2513 
2514 	va_start(vargs, fmt);
2515 	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2516 	va_end(vargs);
2517 	return dev;
2518 }
2519 EXPORT_SYMBOL_GPL(device_create);
2520 
2521 /**
2522  * device_create_with_groups - creates a device and registers it with sysfs
2523  * @class: pointer to the struct class that this device should be registered to
2524  * @parent: pointer to the parent struct device of this new device, if any
2525  * @devt: the dev_t for the char device to be added
2526  * @drvdata: the data to be added to the device for callbacks
2527  * @groups: NULL-terminated list of attribute groups to be created
2528  * @fmt: string for the device's name
2529  *
2530  * This function can be used by char device classes.  A struct device
2531  * will be created in sysfs, registered to the specified class.
2532  * Additional attributes specified in the groups parameter will also
2533  * be created automatically.
2534  *
2535  * A "dev" file will be created, showing the dev_t for the device, if
2536  * the dev_t is not 0,0.
2537  * If a pointer to a parent struct device is passed in, the newly created
2538  * struct device will be a child of that device in sysfs.
2539  * The pointer to the struct device will be returned from the call.
2540  * Any further sysfs files that might be required can be created using this
2541  * pointer.
2542  *
2543  * Returns &struct device pointer on success, or ERR_PTR() on error.
2544  *
2545  * Note: the struct class passed to this function must have previously
2546  * been created with a call to class_create().
2547  */
2548 struct device *device_create_with_groups(struct class *class,
2549 					 struct device *parent, dev_t devt,
2550 					 void *drvdata,
2551 					 const struct attribute_group **groups,
2552 					 const char *fmt, ...)
2553 {
2554 	va_list vargs;
2555 	struct device *dev;
2556 
2557 	va_start(vargs, fmt);
2558 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2559 					 fmt, vargs);
2560 	va_end(vargs);
2561 	return dev;
2562 }
2563 EXPORT_SYMBOL_GPL(device_create_with_groups);
2564 
2565 static int __match_devt(struct device *dev, const void *data)
2566 {
2567 	const dev_t *devt = data;
2568 
2569 	return dev->devt == *devt;
2570 }
2571 
2572 /**
2573  * device_destroy - removes a device that was created with device_create()
2574  * @class: pointer to the struct class that this device was registered with
2575  * @devt: the dev_t of the device that was previously registered
2576  *
2577  * This call unregisters and cleans up a device that was created with a
2578  * call to device_create().
2579  */
2580 void device_destroy(struct class *class, dev_t devt)
2581 {
2582 	struct device *dev;
2583 
2584 	dev = class_find_device(class, NULL, &devt, __match_devt);
2585 	if (dev) {
2586 		put_device(dev);
2587 		device_unregister(dev);
2588 	}
2589 }
2590 EXPORT_SYMBOL_GPL(device_destroy);
2591 
2592 /**
2593  * device_rename - renames a device
2594  * @dev: the pointer to the struct device to be renamed
2595  * @new_name: the new name of the device
2596  *
2597  * It is the responsibility of the caller to provide mutual
2598  * exclusion between two different calls of device_rename
2599  * on the same device to ensure that new_name is valid and
2600  * won't conflict with other devices.
2601  *
2602  * Note: Don't call this function.  Currently, the networking layer calls this
2603  * function, but that will change.  The following text from Kay Sievers offers
2604  * some insight:
2605  *
2606  * Renaming devices is racy at many levels, symlinks and other stuff are not
2607  * replaced atomically, and you get a "move" uevent, but it's not easy to
2608  * connect the event to the old and new device. Device nodes are not renamed at
2609  * all, there isn't even support for that in the kernel now.
2610  *
2611  * In the meantime, during renaming, your target name might be taken by another
2612  * driver, creating conflicts. Or the old name is taken directly after you
2613  * renamed it -- then you get events for the same DEVPATH, before you even see
2614  * the "move" event. It's just a mess, and nothing new should ever rely on
2615  * kernel device renaming. Besides that, it's not even implemented now for
2616  * other things than (driver-core wise very simple) network devices.
2617  *
2618  * We are currently about to change network renaming in udev to completely
2619  * disallow renaming of devices in the same namespace as the kernel uses,
2620  * because we can't solve the problems properly, that arise with swapping names
2621  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2622  * be allowed to some other name than eth[0-9]*, for the aforementioned
2623  * reasons.
2624  *
2625  * Make up a "real" name in the driver before you register anything, or add
2626  * some other attributes for userspace to find the device, or use udev to add
2627  * symlinks -- but never rename kernel devices later, it's a complete mess. We
2628  * don't even want to get into that and try to implement the missing pieces in
2629  * the core. We really have other pieces to fix in the driver core mess. :)
2630  */
2631 int device_rename(struct device *dev, const char *new_name)
2632 {
2633 	struct kobject *kobj = &dev->kobj;
2634 	char *old_device_name = NULL;
2635 	int error;
2636 
2637 	dev = get_device(dev);
2638 	if (!dev)
2639 		return -EINVAL;
2640 
2641 	dev_dbg(dev, "renaming to %s\n", new_name);
2642 
2643 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2644 	if (!old_device_name) {
2645 		error = -ENOMEM;
2646 		goto out;
2647 	}
2648 
2649 	if (dev->class) {
2650 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2651 					     kobj, old_device_name,
2652 					     new_name, kobject_namespace(kobj));
2653 		if (error)
2654 			goto out;
2655 	}
2656 
2657 	error = kobject_rename(kobj, new_name);
2658 	if (error)
2659 		goto out;
2660 
2661 out:
2662 	put_device(dev);
2663 
2664 	kfree(old_device_name);
2665 
2666 	return error;
2667 }
2668 EXPORT_SYMBOL_GPL(device_rename);
2669 
2670 static int device_move_class_links(struct device *dev,
2671 				   struct device *old_parent,
2672 				   struct device *new_parent)
2673 {
2674 	int error = 0;
2675 
2676 	if (old_parent)
2677 		sysfs_remove_link(&dev->kobj, "device");
2678 	if (new_parent)
2679 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2680 					  "device");
2681 	return error;
2682 }
2683 
2684 /**
2685  * device_move - moves a device to a new parent
2686  * @dev: the pointer to the struct device to be moved
2687  * @new_parent: the new parent of the device (can by NULL)
2688  * @dpm_order: how to reorder the dpm_list
2689  */
2690 int device_move(struct device *dev, struct device *new_parent,
2691 		enum dpm_order dpm_order)
2692 {
2693 	int error;
2694 	struct device *old_parent;
2695 	struct kobject *new_parent_kobj;
2696 
2697 	dev = get_device(dev);
2698 	if (!dev)
2699 		return -EINVAL;
2700 
2701 	device_pm_lock();
2702 	new_parent = get_device(new_parent);
2703 	new_parent_kobj = get_device_parent(dev, new_parent);
2704 
2705 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2706 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2707 	error = kobject_move(&dev->kobj, new_parent_kobj);
2708 	if (error) {
2709 		cleanup_glue_dir(dev, new_parent_kobj);
2710 		put_device(new_parent);
2711 		goto out;
2712 	}
2713 	old_parent = dev->parent;
2714 	dev->parent = new_parent;
2715 	if (old_parent)
2716 		klist_remove(&dev->p->knode_parent);
2717 	if (new_parent) {
2718 		klist_add_tail(&dev->p->knode_parent,
2719 			       &new_parent->p->klist_children);
2720 		set_dev_node(dev, dev_to_node(new_parent));
2721 	}
2722 
2723 	if (dev->class) {
2724 		error = device_move_class_links(dev, old_parent, new_parent);
2725 		if (error) {
2726 			/* We ignore errors on cleanup since we're hosed anyway... */
2727 			device_move_class_links(dev, new_parent, old_parent);
2728 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2729 				if (new_parent)
2730 					klist_remove(&dev->p->knode_parent);
2731 				dev->parent = old_parent;
2732 				if (old_parent) {
2733 					klist_add_tail(&dev->p->knode_parent,
2734 						       &old_parent->p->klist_children);
2735 					set_dev_node(dev, dev_to_node(old_parent));
2736 				}
2737 			}
2738 			cleanup_glue_dir(dev, new_parent_kobj);
2739 			put_device(new_parent);
2740 			goto out;
2741 		}
2742 	}
2743 	switch (dpm_order) {
2744 	case DPM_ORDER_NONE:
2745 		break;
2746 	case DPM_ORDER_DEV_AFTER_PARENT:
2747 		device_pm_move_after(dev, new_parent);
2748 		devices_kset_move_after(dev, new_parent);
2749 		break;
2750 	case DPM_ORDER_PARENT_BEFORE_DEV:
2751 		device_pm_move_before(new_parent, dev);
2752 		devices_kset_move_before(new_parent, dev);
2753 		break;
2754 	case DPM_ORDER_DEV_LAST:
2755 		device_pm_move_last(dev);
2756 		devices_kset_move_last(dev);
2757 		break;
2758 	}
2759 
2760 	put_device(old_parent);
2761 out:
2762 	device_pm_unlock();
2763 	put_device(dev);
2764 	return error;
2765 }
2766 EXPORT_SYMBOL_GPL(device_move);
2767 
2768 /**
2769  * device_shutdown - call ->shutdown() on each device to shutdown.
2770  */
2771 void device_shutdown(void)
2772 {
2773 	struct device *dev, *parent;
2774 
2775 	spin_lock(&devices_kset->list_lock);
2776 	/*
2777 	 * Walk the devices list backward, shutting down each in turn.
2778 	 * Beware that device unplug events may also start pulling
2779 	 * devices offline, even as the system is shutting down.
2780 	 */
2781 	while (!list_empty(&devices_kset->list)) {
2782 		dev = list_entry(devices_kset->list.prev, struct device,
2783 				kobj.entry);
2784 
2785 		/*
2786 		 * hold reference count of device's parent to
2787 		 * prevent it from being freed because parent's
2788 		 * lock is to be held
2789 		 */
2790 		parent = get_device(dev->parent);
2791 		get_device(dev);
2792 		/*
2793 		 * Make sure the device is off the kset list, in the
2794 		 * event that dev->*->shutdown() doesn't remove it.
2795 		 */
2796 		list_del_init(&dev->kobj.entry);
2797 		spin_unlock(&devices_kset->list_lock);
2798 
2799 		/* hold lock to avoid race with probe/release */
2800 		if (parent)
2801 			device_lock(parent);
2802 		device_lock(dev);
2803 
2804 		/* Don't allow any more runtime suspends */
2805 		pm_runtime_get_noresume(dev);
2806 		pm_runtime_barrier(dev);
2807 
2808 		if (dev->class && dev->class->shutdown_pre) {
2809 			if (initcall_debug)
2810 				dev_info(dev, "shutdown_pre\n");
2811 			dev->class->shutdown_pre(dev);
2812 		}
2813 		if (dev->bus && dev->bus->shutdown) {
2814 			if (initcall_debug)
2815 				dev_info(dev, "shutdown\n");
2816 			dev->bus->shutdown(dev);
2817 		} else if (dev->driver && dev->driver->shutdown) {
2818 			if (initcall_debug)
2819 				dev_info(dev, "shutdown\n");
2820 			dev->driver->shutdown(dev);
2821 		}
2822 
2823 		device_unlock(dev);
2824 		if (parent)
2825 			device_unlock(parent);
2826 
2827 		put_device(dev);
2828 		put_device(parent);
2829 
2830 		spin_lock(&devices_kset->list_lock);
2831 	}
2832 	spin_unlock(&devices_kset->list_lock);
2833 }
2834 
2835 /*
2836  * Device logging functions
2837  */
2838 
2839 #ifdef CONFIG_PRINTK
2840 static int
2841 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2842 {
2843 	const char *subsys;
2844 	size_t pos = 0;
2845 
2846 	if (dev->class)
2847 		subsys = dev->class->name;
2848 	else if (dev->bus)
2849 		subsys = dev->bus->name;
2850 	else
2851 		return 0;
2852 
2853 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2854 	if (pos >= hdrlen)
2855 		goto overflow;
2856 
2857 	/*
2858 	 * Add device identifier DEVICE=:
2859 	 *   b12:8         block dev_t
2860 	 *   c127:3        char dev_t
2861 	 *   n8            netdev ifindex
2862 	 *   +sound:card0  subsystem:devname
2863 	 */
2864 	if (MAJOR(dev->devt)) {
2865 		char c;
2866 
2867 		if (strcmp(subsys, "block") == 0)
2868 			c = 'b';
2869 		else
2870 			c = 'c';
2871 		pos++;
2872 		pos += snprintf(hdr + pos, hdrlen - pos,
2873 				"DEVICE=%c%u:%u",
2874 				c, MAJOR(dev->devt), MINOR(dev->devt));
2875 	} else if (strcmp(subsys, "net") == 0) {
2876 		struct net_device *net = to_net_dev(dev);
2877 
2878 		pos++;
2879 		pos += snprintf(hdr + pos, hdrlen - pos,
2880 				"DEVICE=n%u", net->ifindex);
2881 	} else {
2882 		pos++;
2883 		pos += snprintf(hdr + pos, hdrlen - pos,
2884 				"DEVICE=+%s:%s", subsys, dev_name(dev));
2885 	}
2886 
2887 	if (pos >= hdrlen)
2888 		goto overflow;
2889 
2890 	return pos;
2891 
2892 overflow:
2893 	dev_WARN(dev, "device/subsystem name too long");
2894 	return 0;
2895 }
2896 
2897 int dev_vprintk_emit(int level, const struct device *dev,
2898 		     const char *fmt, va_list args)
2899 {
2900 	char hdr[128];
2901 	size_t hdrlen;
2902 
2903 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2904 
2905 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2906 }
2907 EXPORT_SYMBOL(dev_vprintk_emit);
2908 
2909 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2910 {
2911 	va_list args;
2912 	int r;
2913 
2914 	va_start(args, fmt);
2915 
2916 	r = dev_vprintk_emit(level, dev, fmt, args);
2917 
2918 	va_end(args);
2919 
2920 	return r;
2921 }
2922 EXPORT_SYMBOL(dev_printk_emit);
2923 
2924 static void __dev_printk(const char *level, const struct device *dev,
2925 			struct va_format *vaf)
2926 {
2927 	if (dev)
2928 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2929 				dev_driver_string(dev), dev_name(dev), vaf);
2930 	else
2931 		printk("%s(NULL device *): %pV", level, vaf);
2932 }
2933 
2934 void dev_printk(const char *level, const struct device *dev,
2935 		const char *fmt, ...)
2936 {
2937 	struct va_format vaf;
2938 	va_list args;
2939 
2940 	va_start(args, fmt);
2941 
2942 	vaf.fmt = fmt;
2943 	vaf.va = &args;
2944 
2945 	__dev_printk(level, dev, &vaf);
2946 
2947 	va_end(args);
2948 }
2949 EXPORT_SYMBOL(dev_printk);
2950 
2951 #define define_dev_printk_level(func, kern_level)		\
2952 void func(const struct device *dev, const char *fmt, ...)	\
2953 {								\
2954 	struct va_format vaf;					\
2955 	va_list args;						\
2956 								\
2957 	va_start(args, fmt);					\
2958 								\
2959 	vaf.fmt = fmt;						\
2960 	vaf.va = &args;						\
2961 								\
2962 	__dev_printk(kern_level, dev, &vaf);			\
2963 								\
2964 	va_end(args);						\
2965 }								\
2966 EXPORT_SYMBOL(func);
2967 
2968 define_dev_printk_level(dev_emerg, KERN_EMERG);
2969 define_dev_printk_level(dev_alert, KERN_ALERT);
2970 define_dev_printk_level(dev_crit, KERN_CRIT);
2971 define_dev_printk_level(dev_err, KERN_ERR);
2972 define_dev_printk_level(dev_warn, KERN_WARNING);
2973 define_dev_printk_level(dev_notice, KERN_NOTICE);
2974 define_dev_printk_level(_dev_info, KERN_INFO);
2975 
2976 #endif
2977 
2978 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
2979 {
2980 	return fwnode && !IS_ERR(fwnode->secondary);
2981 }
2982 
2983 /**
2984  * set_primary_fwnode - Change the primary firmware node of a given device.
2985  * @dev: Device to handle.
2986  * @fwnode: New primary firmware node of the device.
2987  *
2988  * Set the device's firmware node pointer to @fwnode, but if a secondary
2989  * firmware node of the device is present, preserve it.
2990  */
2991 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2992 {
2993 	if (fwnode) {
2994 		struct fwnode_handle *fn = dev->fwnode;
2995 
2996 		if (fwnode_is_primary(fn))
2997 			fn = fn->secondary;
2998 
2999 		if (fn) {
3000 			WARN_ON(fwnode->secondary);
3001 			fwnode->secondary = fn;
3002 		}
3003 		dev->fwnode = fwnode;
3004 	} else {
3005 		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3006 			dev->fwnode->secondary : NULL;
3007 	}
3008 }
3009 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3010 
3011 /**
3012  * set_secondary_fwnode - Change the secondary firmware node of a given device.
3013  * @dev: Device to handle.
3014  * @fwnode: New secondary firmware node of the device.
3015  *
3016  * If a primary firmware node of the device is present, set its secondary
3017  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3018  * @fwnode.
3019  */
3020 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3021 {
3022 	if (fwnode)
3023 		fwnode->secondary = ERR_PTR(-ENODEV);
3024 
3025 	if (fwnode_is_primary(dev->fwnode))
3026 		dev->fwnode->secondary = fwnode;
3027 	else
3028 		dev->fwnode = fwnode;
3029 }
3030 
3031 /**
3032  * device_set_of_node_from_dev - reuse device-tree node of another device
3033  * @dev: device whose device-tree node is being set
3034  * @dev2: device whose device-tree node is being reused
3035  *
3036  * Takes another reference to the new device-tree node after first dropping
3037  * any reference held to the old node.
3038  */
3039 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3040 {
3041 	of_node_put(dev->of_node);
3042 	dev->of_node = of_node_get(dev2->of_node);
3043 	dev->of_node_reused = true;
3044 }
3045 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3046