xref: /openbmc/linux/drivers/base/core.c (revision 273aaa24369cb8d0f246bb16f7122b91a1ef5188)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/blkdev.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sched/mm.h>
30 #include <linux/swiotlb.h>
31 #include <linux/sysfs.h>
32 #include <linux/dma-map-ops.h> /* for dma_default_coherent */
33 
34 #include "base.h"
35 #include "physical_location.h"
36 #include "power/power.h"
37 
38 #ifdef CONFIG_SYSFS_DEPRECATED
39 #ifdef CONFIG_SYSFS_DEPRECATED_V2
40 long sysfs_deprecated = 1;
41 #else
42 long sysfs_deprecated = 0;
43 #endif
44 static int __init sysfs_deprecated_setup(char *arg)
45 {
46 	return kstrtol(arg, 10, &sysfs_deprecated);
47 }
48 early_param("sysfs.deprecated", sysfs_deprecated_setup);
49 #endif
50 
51 /* Device links support. */
52 static LIST_HEAD(deferred_sync);
53 static unsigned int defer_sync_state_count = 1;
54 static DEFINE_MUTEX(fwnode_link_lock);
55 static bool fw_devlink_is_permissive(void);
56 static bool fw_devlink_drv_reg_done;
57 static bool fw_devlink_best_effort;
58 
59 /**
60  * fwnode_link_add - Create a link between two fwnode_handles.
61  * @con: Consumer end of the link.
62  * @sup: Supplier end of the link.
63  *
64  * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
65  * represents the detail that the firmware lists @sup fwnode as supplying a
66  * resource to @con.
67  *
68  * The driver core will use the fwnode link to create a device link between the
69  * two device objects corresponding to @con and @sup when they are created. The
70  * driver core will automatically delete the fwnode link between @con and @sup
71  * after doing that.
72  *
73  * Attempts to create duplicate links between the same pair of fwnode handles
74  * are ignored and there is no reference counting.
75  */
76 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
77 {
78 	struct fwnode_link *link;
79 	int ret = 0;
80 
81 	mutex_lock(&fwnode_link_lock);
82 
83 	list_for_each_entry(link, &sup->consumers, s_hook)
84 		if (link->consumer == con)
85 			goto out;
86 
87 	link = kzalloc(sizeof(*link), GFP_KERNEL);
88 	if (!link) {
89 		ret = -ENOMEM;
90 		goto out;
91 	}
92 
93 	link->supplier = sup;
94 	INIT_LIST_HEAD(&link->s_hook);
95 	link->consumer = con;
96 	INIT_LIST_HEAD(&link->c_hook);
97 
98 	list_add(&link->s_hook, &sup->consumers);
99 	list_add(&link->c_hook, &con->suppliers);
100 	pr_debug("%pfwP Linked as a fwnode consumer to %pfwP\n",
101 		 con, sup);
102 out:
103 	mutex_unlock(&fwnode_link_lock);
104 
105 	return ret;
106 }
107 
108 /**
109  * __fwnode_link_del - Delete a link between two fwnode_handles.
110  * @link: the fwnode_link to be deleted
111  *
112  * The fwnode_link_lock needs to be held when this function is called.
113  */
114 static void __fwnode_link_del(struct fwnode_link *link)
115 {
116 	pr_debug("%pfwP Dropping the fwnode link to %pfwP\n",
117 		 link->consumer, link->supplier);
118 	list_del(&link->s_hook);
119 	list_del(&link->c_hook);
120 	kfree(link);
121 }
122 
123 /**
124  * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
125  * @fwnode: fwnode whose supplier links need to be deleted
126  *
127  * Deletes all supplier links connecting directly to @fwnode.
128  */
129 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
130 {
131 	struct fwnode_link *link, *tmp;
132 
133 	mutex_lock(&fwnode_link_lock);
134 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
135 		__fwnode_link_del(link);
136 	mutex_unlock(&fwnode_link_lock);
137 }
138 
139 /**
140  * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
141  * @fwnode: fwnode whose consumer links need to be deleted
142  *
143  * Deletes all consumer links connecting directly to @fwnode.
144  */
145 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
146 {
147 	struct fwnode_link *link, *tmp;
148 
149 	mutex_lock(&fwnode_link_lock);
150 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
151 		__fwnode_link_del(link);
152 	mutex_unlock(&fwnode_link_lock);
153 }
154 
155 /**
156  * fwnode_links_purge - Delete all links connected to a fwnode_handle.
157  * @fwnode: fwnode whose links needs to be deleted
158  *
159  * Deletes all links connecting directly to a fwnode.
160  */
161 void fwnode_links_purge(struct fwnode_handle *fwnode)
162 {
163 	fwnode_links_purge_suppliers(fwnode);
164 	fwnode_links_purge_consumers(fwnode);
165 }
166 
167 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
168 {
169 	struct fwnode_handle *child;
170 
171 	/* Don't purge consumer links of an added child */
172 	if (fwnode->dev)
173 		return;
174 
175 	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
176 	fwnode_links_purge_consumers(fwnode);
177 
178 	fwnode_for_each_available_child_node(fwnode, child)
179 		fw_devlink_purge_absent_suppliers(child);
180 }
181 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
182 
183 #ifdef CONFIG_SRCU
184 static DEFINE_MUTEX(device_links_lock);
185 DEFINE_STATIC_SRCU(device_links_srcu);
186 
187 static inline void device_links_write_lock(void)
188 {
189 	mutex_lock(&device_links_lock);
190 }
191 
192 static inline void device_links_write_unlock(void)
193 {
194 	mutex_unlock(&device_links_lock);
195 }
196 
197 int device_links_read_lock(void) __acquires(&device_links_srcu)
198 {
199 	return srcu_read_lock(&device_links_srcu);
200 }
201 
202 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
203 {
204 	srcu_read_unlock(&device_links_srcu, idx);
205 }
206 
207 int device_links_read_lock_held(void)
208 {
209 	return srcu_read_lock_held(&device_links_srcu);
210 }
211 
212 static void device_link_synchronize_removal(void)
213 {
214 	synchronize_srcu(&device_links_srcu);
215 }
216 
217 static void device_link_remove_from_lists(struct device_link *link)
218 {
219 	list_del_rcu(&link->s_node);
220 	list_del_rcu(&link->c_node);
221 }
222 #else /* !CONFIG_SRCU */
223 static DECLARE_RWSEM(device_links_lock);
224 
225 static inline void device_links_write_lock(void)
226 {
227 	down_write(&device_links_lock);
228 }
229 
230 static inline void device_links_write_unlock(void)
231 {
232 	up_write(&device_links_lock);
233 }
234 
235 int device_links_read_lock(void)
236 {
237 	down_read(&device_links_lock);
238 	return 0;
239 }
240 
241 void device_links_read_unlock(int not_used)
242 {
243 	up_read(&device_links_lock);
244 }
245 
246 #ifdef CONFIG_DEBUG_LOCK_ALLOC
247 int device_links_read_lock_held(void)
248 {
249 	return lockdep_is_held(&device_links_lock);
250 }
251 #endif
252 
253 static inline void device_link_synchronize_removal(void)
254 {
255 }
256 
257 static void device_link_remove_from_lists(struct device_link *link)
258 {
259 	list_del(&link->s_node);
260 	list_del(&link->c_node);
261 }
262 #endif /* !CONFIG_SRCU */
263 
264 static bool device_is_ancestor(struct device *dev, struct device *target)
265 {
266 	while (target->parent) {
267 		target = target->parent;
268 		if (dev == target)
269 			return true;
270 	}
271 	return false;
272 }
273 
274 /**
275  * device_is_dependent - Check if one device depends on another one
276  * @dev: Device to check dependencies for.
277  * @target: Device to check against.
278  *
279  * Check if @target depends on @dev or any device dependent on it (its child or
280  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
281  */
282 int device_is_dependent(struct device *dev, void *target)
283 {
284 	struct device_link *link;
285 	int ret;
286 
287 	/*
288 	 * The "ancestors" check is needed to catch the case when the target
289 	 * device has not been completely initialized yet and it is still
290 	 * missing from the list of children of its parent device.
291 	 */
292 	if (dev == target || device_is_ancestor(dev, target))
293 		return 1;
294 
295 	ret = device_for_each_child(dev, target, device_is_dependent);
296 	if (ret)
297 		return ret;
298 
299 	list_for_each_entry(link, &dev->links.consumers, s_node) {
300 		if ((link->flags & ~DL_FLAG_INFERRED) ==
301 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
302 			continue;
303 
304 		if (link->consumer == target)
305 			return 1;
306 
307 		ret = device_is_dependent(link->consumer, target);
308 		if (ret)
309 			break;
310 	}
311 	return ret;
312 }
313 
314 static void device_link_init_status(struct device_link *link,
315 				    struct device *consumer,
316 				    struct device *supplier)
317 {
318 	switch (supplier->links.status) {
319 	case DL_DEV_PROBING:
320 		switch (consumer->links.status) {
321 		case DL_DEV_PROBING:
322 			/*
323 			 * A consumer driver can create a link to a supplier
324 			 * that has not completed its probing yet as long as it
325 			 * knows that the supplier is already functional (for
326 			 * example, it has just acquired some resources from the
327 			 * supplier).
328 			 */
329 			link->status = DL_STATE_CONSUMER_PROBE;
330 			break;
331 		default:
332 			link->status = DL_STATE_DORMANT;
333 			break;
334 		}
335 		break;
336 	case DL_DEV_DRIVER_BOUND:
337 		switch (consumer->links.status) {
338 		case DL_DEV_PROBING:
339 			link->status = DL_STATE_CONSUMER_PROBE;
340 			break;
341 		case DL_DEV_DRIVER_BOUND:
342 			link->status = DL_STATE_ACTIVE;
343 			break;
344 		default:
345 			link->status = DL_STATE_AVAILABLE;
346 			break;
347 		}
348 		break;
349 	case DL_DEV_UNBINDING:
350 		link->status = DL_STATE_SUPPLIER_UNBIND;
351 		break;
352 	default:
353 		link->status = DL_STATE_DORMANT;
354 		break;
355 	}
356 }
357 
358 static int device_reorder_to_tail(struct device *dev, void *not_used)
359 {
360 	struct device_link *link;
361 
362 	/*
363 	 * Devices that have not been registered yet will be put to the ends
364 	 * of the lists during the registration, so skip them here.
365 	 */
366 	if (device_is_registered(dev))
367 		devices_kset_move_last(dev);
368 
369 	if (device_pm_initialized(dev))
370 		device_pm_move_last(dev);
371 
372 	device_for_each_child(dev, NULL, device_reorder_to_tail);
373 	list_for_each_entry(link, &dev->links.consumers, s_node) {
374 		if ((link->flags & ~DL_FLAG_INFERRED) ==
375 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
376 			continue;
377 		device_reorder_to_tail(link->consumer, NULL);
378 	}
379 
380 	return 0;
381 }
382 
383 /**
384  * device_pm_move_to_tail - Move set of devices to the end of device lists
385  * @dev: Device to move
386  *
387  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
388  *
389  * It moves the @dev along with all of its children and all of its consumers
390  * to the ends of the device_kset and dpm_list, recursively.
391  */
392 void device_pm_move_to_tail(struct device *dev)
393 {
394 	int idx;
395 
396 	idx = device_links_read_lock();
397 	device_pm_lock();
398 	device_reorder_to_tail(dev, NULL);
399 	device_pm_unlock();
400 	device_links_read_unlock(idx);
401 }
402 
403 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
404 
405 static ssize_t status_show(struct device *dev,
406 			   struct device_attribute *attr, char *buf)
407 {
408 	const char *output;
409 
410 	switch (to_devlink(dev)->status) {
411 	case DL_STATE_NONE:
412 		output = "not tracked";
413 		break;
414 	case DL_STATE_DORMANT:
415 		output = "dormant";
416 		break;
417 	case DL_STATE_AVAILABLE:
418 		output = "available";
419 		break;
420 	case DL_STATE_CONSUMER_PROBE:
421 		output = "consumer probing";
422 		break;
423 	case DL_STATE_ACTIVE:
424 		output = "active";
425 		break;
426 	case DL_STATE_SUPPLIER_UNBIND:
427 		output = "supplier unbinding";
428 		break;
429 	default:
430 		output = "unknown";
431 		break;
432 	}
433 
434 	return sysfs_emit(buf, "%s\n", output);
435 }
436 static DEVICE_ATTR_RO(status);
437 
438 static ssize_t auto_remove_on_show(struct device *dev,
439 				   struct device_attribute *attr, char *buf)
440 {
441 	struct device_link *link = to_devlink(dev);
442 	const char *output;
443 
444 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
445 		output = "supplier unbind";
446 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
447 		output = "consumer unbind";
448 	else
449 		output = "never";
450 
451 	return sysfs_emit(buf, "%s\n", output);
452 }
453 static DEVICE_ATTR_RO(auto_remove_on);
454 
455 static ssize_t runtime_pm_show(struct device *dev,
456 			       struct device_attribute *attr, char *buf)
457 {
458 	struct device_link *link = to_devlink(dev);
459 
460 	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
461 }
462 static DEVICE_ATTR_RO(runtime_pm);
463 
464 static ssize_t sync_state_only_show(struct device *dev,
465 				    struct device_attribute *attr, char *buf)
466 {
467 	struct device_link *link = to_devlink(dev);
468 
469 	return sysfs_emit(buf, "%d\n",
470 			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
471 }
472 static DEVICE_ATTR_RO(sync_state_only);
473 
474 static struct attribute *devlink_attrs[] = {
475 	&dev_attr_status.attr,
476 	&dev_attr_auto_remove_on.attr,
477 	&dev_attr_runtime_pm.attr,
478 	&dev_attr_sync_state_only.attr,
479 	NULL,
480 };
481 ATTRIBUTE_GROUPS(devlink);
482 
483 static void device_link_release_fn(struct work_struct *work)
484 {
485 	struct device_link *link = container_of(work, struct device_link, rm_work);
486 
487 	/* Ensure that all references to the link object have been dropped. */
488 	device_link_synchronize_removal();
489 
490 	pm_runtime_release_supplier(link, true);
491 
492 	put_device(link->consumer);
493 	put_device(link->supplier);
494 	kfree(link);
495 }
496 
497 static void devlink_dev_release(struct device *dev)
498 {
499 	struct device_link *link = to_devlink(dev);
500 
501 	INIT_WORK(&link->rm_work, device_link_release_fn);
502 	/*
503 	 * It may take a while to complete this work because of the SRCU
504 	 * synchronization in device_link_release_fn() and if the consumer or
505 	 * supplier devices get deleted when it runs, so put it into the "long"
506 	 * workqueue.
507 	 */
508 	queue_work(system_long_wq, &link->rm_work);
509 }
510 
511 static struct class devlink_class = {
512 	.name = "devlink",
513 	.owner = THIS_MODULE,
514 	.dev_groups = devlink_groups,
515 	.dev_release = devlink_dev_release,
516 };
517 
518 static int devlink_add_symlinks(struct device *dev,
519 				struct class_interface *class_intf)
520 {
521 	int ret;
522 	size_t len;
523 	struct device_link *link = to_devlink(dev);
524 	struct device *sup = link->supplier;
525 	struct device *con = link->consumer;
526 	char *buf;
527 
528 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
529 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
530 	len += strlen(":");
531 	len += strlen("supplier:") + 1;
532 	buf = kzalloc(len, GFP_KERNEL);
533 	if (!buf)
534 		return -ENOMEM;
535 
536 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
537 	if (ret)
538 		goto out;
539 
540 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
541 	if (ret)
542 		goto err_con;
543 
544 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
545 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
546 	if (ret)
547 		goto err_con_dev;
548 
549 	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
550 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
551 	if (ret)
552 		goto err_sup_dev;
553 
554 	goto out;
555 
556 err_sup_dev:
557 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
558 	sysfs_remove_link(&sup->kobj, buf);
559 err_con_dev:
560 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
561 err_con:
562 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
563 out:
564 	kfree(buf);
565 	return ret;
566 }
567 
568 static void devlink_remove_symlinks(struct device *dev,
569 				   struct class_interface *class_intf)
570 {
571 	struct device_link *link = to_devlink(dev);
572 	size_t len;
573 	struct device *sup = link->supplier;
574 	struct device *con = link->consumer;
575 	char *buf;
576 
577 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
578 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
579 
580 	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
581 		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
582 	len += strlen(":");
583 	len += strlen("supplier:") + 1;
584 	buf = kzalloc(len, GFP_KERNEL);
585 	if (!buf) {
586 		WARN(1, "Unable to properly free device link symlinks!\n");
587 		return;
588 	}
589 
590 	if (device_is_registered(con)) {
591 		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
592 		sysfs_remove_link(&con->kobj, buf);
593 	}
594 	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
595 	sysfs_remove_link(&sup->kobj, buf);
596 	kfree(buf);
597 }
598 
599 static struct class_interface devlink_class_intf = {
600 	.class = &devlink_class,
601 	.add_dev = devlink_add_symlinks,
602 	.remove_dev = devlink_remove_symlinks,
603 };
604 
605 static int __init devlink_class_init(void)
606 {
607 	int ret;
608 
609 	ret = class_register(&devlink_class);
610 	if (ret)
611 		return ret;
612 
613 	ret = class_interface_register(&devlink_class_intf);
614 	if (ret)
615 		class_unregister(&devlink_class);
616 
617 	return ret;
618 }
619 postcore_initcall(devlink_class_init);
620 
621 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
622 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
623 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
624 			       DL_FLAG_SYNC_STATE_ONLY | \
625 			       DL_FLAG_INFERRED)
626 
627 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
628 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
629 
630 /**
631  * device_link_add - Create a link between two devices.
632  * @consumer: Consumer end of the link.
633  * @supplier: Supplier end of the link.
634  * @flags: Link flags.
635  *
636  * The caller is responsible for the proper synchronization of the link creation
637  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
638  * runtime PM framework to take the link into account.  Second, if the
639  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
640  * be forced into the active meta state and reference-counted upon the creation
641  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
642  * ignored.
643  *
644  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
645  * expected to release the link returned by it directly with the help of either
646  * device_link_del() or device_link_remove().
647  *
648  * If that flag is not set, however, the caller of this function is handing the
649  * management of the link over to the driver core entirely and its return value
650  * can only be used to check whether or not the link is present.  In that case,
651  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
652  * flags can be used to indicate to the driver core when the link can be safely
653  * deleted.  Namely, setting one of them in @flags indicates to the driver core
654  * that the link is not going to be used (by the given caller of this function)
655  * after unbinding the consumer or supplier driver, respectively, from its
656  * device, so the link can be deleted at that point.  If none of them is set,
657  * the link will be maintained until one of the devices pointed to by it (either
658  * the consumer or the supplier) is unregistered.
659  *
660  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
661  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
662  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
663  * be used to request the driver core to automatically probe for a consumer
664  * driver after successfully binding a driver to the supplier device.
665  *
666  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
667  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
668  * the same time is invalid and will cause NULL to be returned upfront.
669  * However, if a device link between the given @consumer and @supplier pair
670  * exists already when this function is called for them, the existing link will
671  * be returned regardless of its current type and status (the link's flags may
672  * be modified then).  The caller of this function is then expected to treat
673  * the link as though it has just been created, so (in particular) if
674  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
675  * explicitly when not needed any more (as stated above).
676  *
677  * A side effect of the link creation is re-ordering of dpm_list and the
678  * devices_kset list by moving the consumer device and all devices depending
679  * on it to the ends of these lists (that does not happen to devices that have
680  * not been registered when this function is called).
681  *
682  * The supplier device is required to be registered when this function is called
683  * and NULL will be returned if that is not the case.  The consumer device need
684  * not be registered, however.
685  */
686 struct device_link *device_link_add(struct device *consumer,
687 				    struct device *supplier, u32 flags)
688 {
689 	struct device_link *link;
690 
691 	if (!consumer || !supplier || consumer == supplier ||
692 	    flags & ~DL_ADD_VALID_FLAGS ||
693 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
694 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
695 	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
696 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
697 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
698 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
699 		return NULL;
700 
701 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
702 		if (pm_runtime_get_sync(supplier) < 0) {
703 			pm_runtime_put_noidle(supplier);
704 			return NULL;
705 		}
706 	}
707 
708 	if (!(flags & DL_FLAG_STATELESS))
709 		flags |= DL_FLAG_MANAGED;
710 
711 	device_links_write_lock();
712 	device_pm_lock();
713 
714 	/*
715 	 * If the supplier has not been fully registered yet or there is a
716 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
717 	 * the supplier already in the graph, return NULL. If the link is a
718 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
719 	 * because it only affects sync_state() callbacks.
720 	 */
721 	if (!device_pm_initialized(supplier)
722 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
723 		  device_is_dependent(consumer, supplier))) {
724 		link = NULL;
725 		goto out;
726 	}
727 
728 	/*
729 	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
730 	 * So, only create it if the consumer hasn't probed yet.
731 	 */
732 	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
733 	    consumer->links.status != DL_DEV_NO_DRIVER &&
734 	    consumer->links.status != DL_DEV_PROBING) {
735 		link = NULL;
736 		goto out;
737 	}
738 
739 	/*
740 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
741 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
742 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
743 	 */
744 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
745 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
746 
747 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
748 		if (link->consumer != consumer)
749 			continue;
750 
751 		if (link->flags & DL_FLAG_INFERRED &&
752 		    !(flags & DL_FLAG_INFERRED))
753 			link->flags &= ~DL_FLAG_INFERRED;
754 
755 		if (flags & DL_FLAG_PM_RUNTIME) {
756 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
757 				pm_runtime_new_link(consumer);
758 				link->flags |= DL_FLAG_PM_RUNTIME;
759 			}
760 			if (flags & DL_FLAG_RPM_ACTIVE)
761 				refcount_inc(&link->rpm_active);
762 		}
763 
764 		if (flags & DL_FLAG_STATELESS) {
765 			kref_get(&link->kref);
766 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
767 			    !(link->flags & DL_FLAG_STATELESS)) {
768 				link->flags |= DL_FLAG_STATELESS;
769 				goto reorder;
770 			} else {
771 				link->flags |= DL_FLAG_STATELESS;
772 				goto out;
773 			}
774 		}
775 
776 		/*
777 		 * If the life time of the link following from the new flags is
778 		 * longer than indicated by the flags of the existing link,
779 		 * update the existing link to stay around longer.
780 		 */
781 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
782 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
783 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
784 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
785 			}
786 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
787 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
788 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
789 		}
790 		if (!(link->flags & DL_FLAG_MANAGED)) {
791 			kref_get(&link->kref);
792 			link->flags |= DL_FLAG_MANAGED;
793 			device_link_init_status(link, consumer, supplier);
794 		}
795 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
796 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
797 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
798 			goto reorder;
799 		}
800 
801 		goto out;
802 	}
803 
804 	link = kzalloc(sizeof(*link), GFP_KERNEL);
805 	if (!link)
806 		goto out;
807 
808 	refcount_set(&link->rpm_active, 1);
809 
810 	get_device(supplier);
811 	link->supplier = supplier;
812 	INIT_LIST_HEAD(&link->s_node);
813 	get_device(consumer);
814 	link->consumer = consumer;
815 	INIT_LIST_HEAD(&link->c_node);
816 	link->flags = flags;
817 	kref_init(&link->kref);
818 
819 	link->link_dev.class = &devlink_class;
820 	device_set_pm_not_required(&link->link_dev);
821 	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
822 		     dev_bus_name(supplier), dev_name(supplier),
823 		     dev_bus_name(consumer), dev_name(consumer));
824 	if (device_register(&link->link_dev)) {
825 		put_device(&link->link_dev);
826 		link = NULL;
827 		goto out;
828 	}
829 
830 	if (flags & DL_FLAG_PM_RUNTIME) {
831 		if (flags & DL_FLAG_RPM_ACTIVE)
832 			refcount_inc(&link->rpm_active);
833 
834 		pm_runtime_new_link(consumer);
835 	}
836 
837 	/* Determine the initial link state. */
838 	if (flags & DL_FLAG_STATELESS)
839 		link->status = DL_STATE_NONE;
840 	else
841 		device_link_init_status(link, consumer, supplier);
842 
843 	/*
844 	 * Some callers expect the link creation during consumer driver probe to
845 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
846 	 */
847 	if (link->status == DL_STATE_CONSUMER_PROBE &&
848 	    flags & DL_FLAG_PM_RUNTIME)
849 		pm_runtime_resume(supplier);
850 
851 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
852 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
853 
854 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
855 		dev_dbg(consumer,
856 			"Linked as a sync state only consumer to %s\n",
857 			dev_name(supplier));
858 		goto out;
859 	}
860 
861 reorder:
862 	/*
863 	 * Move the consumer and all of the devices depending on it to the end
864 	 * of dpm_list and the devices_kset list.
865 	 *
866 	 * It is necessary to hold dpm_list locked throughout all that or else
867 	 * we may end up suspending with a wrong ordering of it.
868 	 */
869 	device_reorder_to_tail(consumer, NULL);
870 
871 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
872 
873 out:
874 	device_pm_unlock();
875 	device_links_write_unlock();
876 
877 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
878 		pm_runtime_put(supplier);
879 
880 	return link;
881 }
882 EXPORT_SYMBOL_GPL(device_link_add);
883 
884 static void __device_link_del(struct kref *kref)
885 {
886 	struct device_link *link = container_of(kref, struct device_link, kref);
887 
888 	dev_dbg(link->consumer, "Dropping the link to %s\n",
889 		dev_name(link->supplier));
890 
891 	pm_runtime_drop_link(link);
892 
893 	device_link_remove_from_lists(link);
894 	device_unregister(&link->link_dev);
895 }
896 
897 static void device_link_put_kref(struct device_link *link)
898 {
899 	if (link->flags & DL_FLAG_STATELESS)
900 		kref_put(&link->kref, __device_link_del);
901 	else if (!device_is_registered(link->consumer))
902 		__device_link_del(&link->kref);
903 	else
904 		WARN(1, "Unable to drop a managed device link reference\n");
905 }
906 
907 /**
908  * device_link_del - Delete a stateless link between two devices.
909  * @link: Device link to delete.
910  *
911  * The caller must ensure proper synchronization of this function with runtime
912  * PM.  If the link was added multiple times, it needs to be deleted as often.
913  * Care is required for hotplugged devices:  Their links are purged on removal
914  * and calling device_link_del() is then no longer allowed.
915  */
916 void device_link_del(struct device_link *link)
917 {
918 	device_links_write_lock();
919 	device_link_put_kref(link);
920 	device_links_write_unlock();
921 }
922 EXPORT_SYMBOL_GPL(device_link_del);
923 
924 /**
925  * device_link_remove - Delete a stateless link between two devices.
926  * @consumer: Consumer end of the link.
927  * @supplier: Supplier end of the link.
928  *
929  * The caller must ensure proper synchronization of this function with runtime
930  * PM.
931  */
932 void device_link_remove(void *consumer, struct device *supplier)
933 {
934 	struct device_link *link;
935 
936 	if (WARN_ON(consumer == supplier))
937 		return;
938 
939 	device_links_write_lock();
940 
941 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
942 		if (link->consumer == consumer) {
943 			device_link_put_kref(link);
944 			break;
945 		}
946 	}
947 
948 	device_links_write_unlock();
949 }
950 EXPORT_SYMBOL_GPL(device_link_remove);
951 
952 static void device_links_missing_supplier(struct device *dev)
953 {
954 	struct device_link *link;
955 
956 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
957 		if (link->status != DL_STATE_CONSUMER_PROBE)
958 			continue;
959 
960 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
961 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
962 		} else {
963 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
964 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
965 		}
966 	}
967 }
968 
969 static bool dev_is_best_effort(struct device *dev)
970 {
971 	return (fw_devlink_best_effort && dev->can_match) ||
972 		(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
973 }
974 
975 /**
976  * device_links_check_suppliers - Check presence of supplier drivers.
977  * @dev: Consumer device.
978  *
979  * Check links from this device to any suppliers.  Walk the list of the device's
980  * links to suppliers and see if all of them are available.  If not, simply
981  * return -EPROBE_DEFER.
982  *
983  * We need to guarantee that the supplier will not go away after the check has
984  * been positive here.  It only can go away in __device_release_driver() and
985  * that function  checks the device's links to consumers.  This means we need to
986  * mark the link as "consumer probe in progress" to make the supplier removal
987  * wait for us to complete (or bad things may happen).
988  *
989  * Links without the DL_FLAG_MANAGED flag set are ignored.
990  */
991 int device_links_check_suppliers(struct device *dev)
992 {
993 	struct device_link *link;
994 	int ret = 0, fwnode_ret = 0;
995 	struct fwnode_handle *sup_fw;
996 
997 	/*
998 	 * Device waiting for supplier to become available is not allowed to
999 	 * probe.
1000 	 */
1001 	mutex_lock(&fwnode_link_lock);
1002 	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
1003 	    !fw_devlink_is_permissive()) {
1004 		sup_fw = list_first_entry(&dev->fwnode->suppliers,
1005 					  struct fwnode_link,
1006 					  c_hook)->supplier;
1007 		if (!dev_is_best_effort(dev)) {
1008 			fwnode_ret = -EPROBE_DEFER;
1009 			dev_err_probe(dev, -EPROBE_DEFER,
1010 				    "wait for supplier %pfwP\n", sup_fw);
1011 		} else {
1012 			fwnode_ret = -EAGAIN;
1013 		}
1014 	}
1015 	mutex_unlock(&fwnode_link_lock);
1016 	if (fwnode_ret == -EPROBE_DEFER)
1017 		return fwnode_ret;
1018 
1019 	device_links_write_lock();
1020 
1021 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1022 		if (!(link->flags & DL_FLAG_MANAGED))
1023 			continue;
1024 
1025 		if (link->status != DL_STATE_AVAILABLE &&
1026 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1027 
1028 			if (dev_is_best_effort(dev) &&
1029 			    link->flags & DL_FLAG_INFERRED &&
1030 			    !link->supplier->can_match) {
1031 				ret = -EAGAIN;
1032 				continue;
1033 			}
1034 
1035 			device_links_missing_supplier(dev);
1036 			dev_err_probe(dev, -EPROBE_DEFER,
1037 				      "supplier %s not ready\n",
1038 				      dev_name(link->supplier));
1039 			ret = -EPROBE_DEFER;
1040 			break;
1041 		}
1042 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1043 	}
1044 	dev->links.status = DL_DEV_PROBING;
1045 
1046 	device_links_write_unlock();
1047 
1048 	return ret ? ret : fwnode_ret;
1049 }
1050 
1051 /**
1052  * __device_links_queue_sync_state - Queue a device for sync_state() callback
1053  * @dev: Device to call sync_state() on
1054  * @list: List head to queue the @dev on
1055  *
1056  * Queues a device for a sync_state() callback when the device links write lock
1057  * isn't held. This allows the sync_state() execution flow to use device links
1058  * APIs.  The caller must ensure this function is called with
1059  * device_links_write_lock() held.
1060  *
1061  * This function does a get_device() to make sure the device is not freed while
1062  * on this list.
1063  *
1064  * So the caller must also ensure that device_links_flush_sync_list() is called
1065  * as soon as the caller releases device_links_write_lock().  This is necessary
1066  * to make sure the sync_state() is called in a timely fashion and the
1067  * put_device() is called on this device.
1068  */
1069 static void __device_links_queue_sync_state(struct device *dev,
1070 					    struct list_head *list)
1071 {
1072 	struct device_link *link;
1073 
1074 	if (!dev_has_sync_state(dev))
1075 		return;
1076 	if (dev->state_synced)
1077 		return;
1078 
1079 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1080 		if (!(link->flags & DL_FLAG_MANAGED))
1081 			continue;
1082 		if (link->status != DL_STATE_ACTIVE)
1083 			return;
1084 	}
1085 
1086 	/*
1087 	 * Set the flag here to avoid adding the same device to a list more
1088 	 * than once. This can happen if new consumers get added to the device
1089 	 * and probed before the list is flushed.
1090 	 */
1091 	dev->state_synced = true;
1092 
1093 	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1094 		return;
1095 
1096 	get_device(dev);
1097 	list_add_tail(&dev->links.defer_sync, list);
1098 }
1099 
1100 /**
1101  * device_links_flush_sync_list - Call sync_state() on a list of devices
1102  * @list: List of devices to call sync_state() on
1103  * @dont_lock_dev: Device for which lock is already held by the caller
1104  *
1105  * Calls sync_state() on all the devices that have been queued for it. This
1106  * function is used in conjunction with __device_links_queue_sync_state(). The
1107  * @dont_lock_dev parameter is useful when this function is called from a
1108  * context where a device lock is already held.
1109  */
1110 static void device_links_flush_sync_list(struct list_head *list,
1111 					 struct device *dont_lock_dev)
1112 {
1113 	struct device *dev, *tmp;
1114 
1115 	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1116 		list_del_init(&dev->links.defer_sync);
1117 
1118 		if (dev != dont_lock_dev)
1119 			device_lock(dev);
1120 
1121 		if (dev->bus->sync_state)
1122 			dev->bus->sync_state(dev);
1123 		else if (dev->driver && dev->driver->sync_state)
1124 			dev->driver->sync_state(dev);
1125 
1126 		if (dev != dont_lock_dev)
1127 			device_unlock(dev);
1128 
1129 		put_device(dev);
1130 	}
1131 }
1132 
1133 void device_links_supplier_sync_state_pause(void)
1134 {
1135 	device_links_write_lock();
1136 	defer_sync_state_count++;
1137 	device_links_write_unlock();
1138 }
1139 
1140 void device_links_supplier_sync_state_resume(void)
1141 {
1142 	struct device *dev, *tmp;
1143 	LIST_HEAD(sync_list);
1144 
1145 	device_links_write_lock();
1146 	if (!defer_sync_state_count) {
1147 		WARN(true, "Unmatched sync_state pause/resume!");
1148 		goto out;
1149 	}
1150 	defer_sync_state_count--;
1151 	if (defer_sync_state_count)
1152 		goto out;
1153 
1154 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1155 		/*
1156 		 * Delete from deferred_sync list before queuing it to
1157 		 * sync_list because defer_sync is used for both lists.
1158 		 */
1159 		list_del_init(&dev->links.defer_sync);
1160 		__device_links_queue_sync_state(dev, &sync_list);
1161 	}
1162 out:
1163 	device_links_write_unlock();
1164 
1165 	device_links_flush_sync_list(&sync_list, NULL);
1166 }
1167 
1168 static int sync_state_resume_initcall(void)
1169 {
1170 	device_links_supplier_sync_state_resume();
1171 	return 0;
1172 }
1173 late_initcall(sync_state_resume_initcall);
1174 
1175 static void __device_links_supplier_defer_sync(struct device *sup)
1176 {
1177 	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1178 		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1179 }
1180 
1181 static void device_link_drop_managed(struct device_link *link)
1182 {
1183 	link->flags &= ~DL_FLAG_MANAGED;
1184 	WRITE_ONCE(link->status, DL_STATE_NONE);
1185 	kref_put(&link->kref, __device_link_del);
1186 }
1187 
1188 static ssize_t waiting_for_supplier_show(struct device *dev,
1189 					 struct device_attribute *attr,
1190 					 char *buf)
1191 {
1192 	bool val;
1193 
1194 	device_lock(dev);
1195 	val = !list_empty(&dev->fwnode->suppliers);
1196 	device_unlock(dev);
1197 	return sysfs_emit(buf, "%u\n", val);
1198 }
1199 static DEVICE_ATTR_RO(waiting_for_supplier);
1200 
1201 /**
1202  * device_links_force_bind - Prepares device to be force bound
1203  * @dev: Consumer device.
1204  *
1205  * device_bind_driver() force binds a device to a driver without calling any
1206  * driver probe functions. So the consumer really isn't going to wait for any
1207  * supplier before it's bound to the driver. We still want the device link
1208  * states to be sensible when this happens.
1209  *
1210  * In preparation for device_bind_driver(), this function goes through each
1211  * supplier device links and checks if the supplier is bound. If it is, then
1212  * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1213  * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1214  */
1215 void device_links_force_bind(struct device *dev)
1216 {
1217 	struct device_link *link, *ln;
1218 
1219 	device_links_write_lock();
1220 
1221 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1222 		if (!(link->flags & DL_FLAG_MANAGED))
1223 			continue;
1224 
1225 		if (link->status != DL_STATE_AVAILABLE) {
1226 			device_link_drop_managed(link);
1227 			continue;
1228 		}
1229 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1230 	}
1231 	dev->links.status = DL_DEV_PROBING;
1232 
1233 	device_links_write_unlock();
1234 }
1235 
1236 /**
1237  * device_links_driver_bound - Update device links after probing its driver.
1238  * @dev: Device to update the links for.
1239  *
1240  * The probe has been successful, so update links from this device to any
1241  * consumers by changing their status to "available".
1242  *
1243  * Also change the status of @dev's links to suppliers to "active".
1244  *
1245  * Links without the DL_FLAG_MANAGED flag set are ignored.
1246  */
1247 void device_links_driver_bound(struct device *dev)
1248 {
1249 	struct device_link *link, *ln;
1250 	LIST_HEAD(sync_list);
1251 
1252 	/*
1253 	 * If a device binds successfully, it's expected to have created all
1254 	 * the device links it needs to or make new device links as it needs
1255 	 * them. So, fw_devlink no longer needs to create device links to any
1256 	 * of the device's suppliers.
1257 	 *
1258 	 * Also, if a child firmware node of this bound device is not added as
1259 	 * a device by now, assume it is never going to be added and make sure
1260 	 * other devices don't defer probe indefinitely by waiting for such a
1261 	 * child device.
1262 	 */
1263 	if (dev->fwnode && dev->fwnode->dev == dev) {
1264 		struct fwnode_handle *child;
1265 		fwnode_links_purge_suppliers(dev->fwnode);
1266 		fwnode_for_each_available_child_node(dev->fwnode, child)
1267 			fw_devlink_purge_absent_suppliers(child);
1268 	}
1269 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1270 
1271 	device_links_write_lock();
1272 
1273 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1274 		if (!(link->flags & DL_FLAG_MANAGED))
1275 			continue;
1276 
1277 		/*
1278 		 * Links created during consumer probe may be in the "consumer
1279 		 * probe" state to start with if the supplier is still probing
1280 		 * when they are created and they may become "active" if the
1281 		 * consumer probe returns first.  Skip them here.
1282 		 */
1283 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1284 		    link->status == DL_STATE_ACTIVE)
1285 			continue;
1286 
1287 		WARN_ON(link->status != DL_STATE_DORMANT);
1288 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1289 
1290 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1291 			driver_deferred_probe_add(link->consumer);
1292 	}
1293 
1294 	if (defer_sync_state_count)
1295 		__device_links_supplier_defer_sync(dev);
1296 	else
1297 		__device_links_queue_sync_state(dev, &sync_list);
1298 
1299 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1300 		struct device *supplier;
1301 
1302 		if (!(link->flags & DL_FLAG_MANAGED))
1303 			continue;
1304 
1305 		supplier = link->supplier;
1306 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1307 			/*
1308 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1309 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1310 			 * save to drop the managed link completely.
1311 			 */
1312 			device_link_drop_managed(link);
1313 		} else if (dev_is_best_effort(dev) &&
1314 			   link->flags & DL_FLAG_INFERRED &&
1315 			   link->status != DL_STATE_CONSUMER_PROBE &&
1316 			   !link->supplier->can_match) {
1317 			/*
1318 			 * When dev_is_best_effort() is true, we ignore device
1319 			 * links to suppliers that don't have a driver.  If the
1320 			 * consumer device still managed to probe, there's no
1321 			 * point in maintaining a device link in a weird state
1322 			 * (consumer probed before supplier). So delete it.
1323 			 */
1324 			device_link_drop_managed(link);
1325 		} else {
1326 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1327 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1328 		}
1329 
1330 		/*
1331 		 * This needs to be done even for the deleted
1332 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1333 		 * device link that was preventing the supplier from getting a
1334 		 * sync_state() call.
1335 		 */
1336 		if (defer_sync_state_count)
1337 			__device_links_supplier_defer_sync(supplier);
1338 		else
1339 			__device_links_queue_sync_state(supplier, &sync_list);
1340 	}
1341 
1342 	dev->links.status = DL_DEV_DRIVER_BOUND;
1343 
1344 	device_links_write_unlock();
1345 
1346 	device_links_flush_sync_list(&sync_list, dev);
1347 }
1348 
1349 /**
1350  * __device_links_no_driver - Update links of a device without a driver.
1351  * @dev: Device without a drvier.
1352  *
1353  * Delete all non-persistent links from this device to any suppliers.
1354  *
1355  * Persistent links stay around, but their status is changed to "available",
1356  * unless they already are in the "supplier unbind in progress" state in which
1357  * case they need not be updated.
1358  *
1359  * Links without the DL_FLAG_MANAGED flag set are ignored.
1360  */
1361 static void __device_links_no_driver(struct device *dev)
1362 {
1363 	struct device_link *link, *ln;
1364 
1365 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1366 		if (!(link->flags & DL_FLAG_MANAGED))
1367 			continue;
1368 
1369 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1370 			device_link_drop_managed(link);
1371 			continue;
1372 		}
1373 
1374 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1375 		    link->status != DL_STATE_ACTIVE)
1376 			continue;
1377 
1378 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1379 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1380 		} else {
1381 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1382 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1383 		}
1384 	}
1385 
1386 	dev->links.status = DL_DEV_NO_DRIVER;
1387 }
1388 
1389 /**
1390  * device_links_no_driver - Update links after failing driver probe.
1391  * @dev: Device whose driver has just failed to probe.
1392  *
1393  * Clean up leftover links to consumers for @dev and invoke
1394  * %__device_links_no_driver() to update links to suppliers for it as
1395  * appropriate.
1396  *
1397  * Links without the DL_FLAG_MANAGED flag set are ignored.
1398  */
1399 void device_links_no_driver(struct device *dev)
1400 {
1401 	struct device_link *link;
1402 
1403 	device_links_write_lock();
1404 
1405 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1406 		if (!(link->flags & DL_FLAG_MANAGED))
1407 			continue;
1408 
1409 		/*
1410 		 * The probe has failed, so if the status of the link is
1411 		 * "consumer probe" or "active", it must have been added by
1412 		 * a probing consumer while this device was still probing.
1413 		 * Change its state to "dormant", as it represents a valid
1414 		 * relationship, but it is not functionally meaningful.
1415 		 */
1416 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1417 		    link->status == DL_STATE_ACTIVE)
1418 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1419 	}
1420 
1421 	__device_links_no_driver(dev);
1422 
1423 	device_links_write_unlock();
1424 }
1425 
1426 /**
1427  * device_links_driver_cleanup - Update links after driver removal.
1428  * @dev: Device whose driver has just gone away.
1429  *
1430  * Update links to consumers for @dev by changing their status to "dormant" and
1431  * invoke %__device_links_no_driver() to update links to suppliers for it as
1432  * appropriate.
1433  *
1434  * Links without the DL_FLAG_MANAGED flag set are ignored.
1435  */
1436 void device_links_driver_cleanup(struct device *dev)
1437 {
1438 	struct device_link *link, *ln;
1439 
1440 	device_links_write_lock();
1441 
1442 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1443 		if (!(link->flags & DL_FLAG_MANAGED))
1444 			continue;
1445 
1446 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1447 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1448 
1449 		/*
1450 		 * autoremove the links between this @dev and its consumer
1451 		 * devices that are not active, i.e. where the link state
1452 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1453 		 */
1454 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1455 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1456 			device_link_drop_managed(link);
1457 
1458 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1459 	}
1460 
1461 	list_del_init(&dev->links.defer_sync);
1462 	__device_links_no_driver(dev);
1463 
1464 	device_links_write_unlock();
1465 }
1466 
1467 /**
1468  * device_links_busy - Check if there are any busy links to consumers.
1469  * @dev: Device to check.
1470  *
1471  * Check each consumer of the device and return 'true' if its link's status
1472  * is one of "consumer probe" or "active" (meaning that the given consumer is
1473  * probing right now or its driver is present).  Otherwise, change the link
1474  * state to "supplier unbind" to prevent the consumer from being probed
1475  * successfully going forward.
1476  *
1477  * Return 'false' if there are no probing or active consumers.
1478  *
1479  * Links without the DL_FLAG_MANAGED flag set are ignored.
1480  */
1481 bool device_links_busy(struct device *dev)
1482 {
1483 	struct device_link *link;
1484 	bool ret = false;
1485 
1486 	device_links_write_lock();
1487 
1488 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1489 		if (!(link->flags & DL_FLAG_MANAGED))
1490 			continue;
1491 
1492 		if (link->status == DL_STATE_CONSUMER_PROBE
1493 		    || link->status == DL_STATE_ACTIVE) {
1494 			ret = true;
1495 			break;
1496 		}
1497 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1498 	}
1499 
1500 	dev->links.status = DL_DEV_UNBINDING;
1501 
1502 	device_links_write_unlock();
1503 	return ret;
1504 }
1505 
1506 /**
1507  * device_links_unbind_consumers - Force unbind consumers of the given device.
1508  * @dev: Device to unbind the consumers of.
1509  *
1510  * Walk the list of links to consumers for @dev and if any of them is in the
1511  * "consumer probe" state, wait for all device probes in progress to complete
1512  * and start over.
1513  *
1514  * If that's not the case, change the status of the link to "supplier unbind"
1515  * and check if the link was in the "active" state.  If so, force the consumer
1516  * driver to unbind and start over (the consumer will not re-probe as we have
1517  * changed the state of the link already).
1518  *
1519  * Links without the DL_FLAG_MANAGED flag set are ignored.
1520  */
1521 void device_links_unbind_consumers(struct device *dev)
1522 {
1523 	struct device_link *link;
1524 
1525  start:
1526 	device_links_write_lock();
1527 
1528 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1529 		enum device_link_state status;
1530 
1531 		if (!(link->flags & DL_FLAG_MANAGED) ||
1532 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1533 			continue;
1534 
1535 		status = link->status;
1536 		if (status == DL_STATE_CONSUMER_PROBE) {
1537 			device_links_write_unlock();
1538 
1539 			wait_for_device_probe();
1540 			goto start;
1541 		}
1542 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1543 		if (status == DL_STATE_ACTIVE) {
1544 			struct device *consumer = link->consumer;
1545 
1546 			get_device(consumer);
1547 
1548 			device_links_write_unlock();
1549 
1550 			device_release_driver_internal(consumer, NULL,
1551 						       consumer->parent);
1552 			put_device(consumer);
1553 			goto start;
1554 		}
1555 	}
1556 
1557 	device_links_write_unlock();
1558 }
1559 
1560 /**
1561  * device_links_purge - Delete existing links to other devices.
1562  * @dev: Target device.
1563  */
1564 static void device_links_purge(struct device *dev)
1565 {
1566 	struct device_link *link, *ln;
1567 
1568 	if (dev->class == &devlink_class)
1569 		return;
1570 
1571 	/*
1572 	 * Delete all of the remaining links from this device to any other
1573 	 * devices (either consumers or suppliers).
1574 	 */
1575 	device_links_write_lock();
1576 
1577 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1578 		WARN_ON(link->status == DL_STATE_ACTIVE);
1579 		__device_link_del(&link->kref);
1580 	}
1581 
1582 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1583 		WARN_ON(link->status != DL_STATE_DORMANT &&
1584 			link->status != DL_STATE_NONE);
1585 		__device_link_del(&link->kref);
1586 	}
1587 
1588 	device_links_write_unlock();
1589 }
1590 
1591 #define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1592 					 DL_FLAG_SYNC_STATE_ONLY)
1593 #define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1594 					 DL_FLAG_AUTOPROBE_CONSUMER)
1595 #define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1596 					 DL_FLAG_PM_RUNTIME)
1597 
1598 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1599 static int __init fw_devlink_setup(char *arg)
1600 {
1601 	if (!arg)
1602 		return -EINVAL;
1603 
1604 	if (strcmp(arg, "off") == 0) {
1605 		fw_devlink_flags = 0;
1606 	} else if (strcmp(arg, "permissive") == 0) {
1607 		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1608 	} else if (strcmp(arg, "on") == 0) {
1609 		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1610 	} else if (strcmp(arg, "rpm") == 0) {
1611 		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1612 	}
1613 	return 0;
1614 }
1615 early_param("fw_devlink", fw_devlink_setup);
1616 
1617 static bool fw_devlink_strict = true;
1618 static int __init fw_devlink_strict_setup(char *arg)
1619 {
1620 	return strtobool(arg, &fw_devlink_strict);
1621 }
1622 early_param("fw_devlink.strict", fw_devlink_strict_setup);
1623 
1624 u32 fw_devlink_get_flags(void)
1625 {
1626 	return fw_devlink_flags;
1627 }
1628 
1629 static bool fw_devlink_is_permissive(void)
1630 {
1631 	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1632 }
1633 
1634 bool fw_devlink_is_strict(void)
1635 {
1636 	return fw_devlink_strict && !fw_devlink_is_permissive();
1637 }
1638 
1639 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1640 {
1641 	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1642 		return;
1643 
1644 	fwnode_call_int_op(fwnode, add_links);
1645 	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1646 }
1647 
1648 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1649 {
1650 	struct fwnode_handle *child = NULL;
1651 
1652 	fw_devlink_parse_fwnode(fwnode);
1653 
1654 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1655 		fw_devlink_parse_fwtree(child);
1656 }
1657 
1658 static void fw_devlink_relax_link(struct device_link *link)
1659 {
1660 	if (!(link->flags & DL_FLAG_INFERRED))
1661 		return;
1662 
1663 	if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1664 		return;
1665 
1666 	pm_runtime_drop_link(link);
1667 	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1668 	dev_dbg(link->consumer, "Relaxing link with %s\n",
1669 		dev_name(link->supplier));
1670 }
1671 
1672 static int fw_devlink_no_driver(struct device *dev, void *data)
1673 {
1674 	struct device_link *link = to_devlink(dev);
1675 
1676 	if (!link->supplier->can_match)
1677 		fw_devlink_relax_link(link);
1678 
1679 	return 0;
1680 }
1681 
1682 void fw_devlink_drivers_done(void)
1683 {
1684 	fw_devlink_drv_reg_done = true;
1685 	device_links_write_lock();
1686 	class_for_each_device(&devlink_class, NULL, NULL,
1687 			      fw_devlink_no_driver);
1688 	device_links_write_unlock();
1689 }
1690 
1691 /**
1692  * wait_for_init_devices_probe - Try to probe any device needed for init
1693  *
1694  * Some devices might need to be probed and bound successfully before the kernel
1695  * boot sequence can finish and move on to init/userspace. For example, a
1696  * network interface might need to be bound to be able to mount a NFS rootfs.
1697  *
1698  * With fw_devlink=on by default, some of these devices might be blocked from
1699  * probing because they are waiting on a optional supplier that doesn't have a
1700  * driver. While fw_devlink will eventually identify such devices and unblock
1701  * the probing automatically, it might be too late by the time it unblocks the
1702  * probing of devices. For example, the IP4 autoconfig might timeout before
1703  * fw_devlink unblocks probing of the network interface.
1704  *
1705  * This function is available to temporarily try and probe all devices that have
1706  * a driver even if some of their suppliers haven't been added or don't have
1707  * drivers.
1708  *
1709  * The drivers can then decide which of the suppliers are optional vs mandatory
1710  * and probe the device if possible. By the time this function returns, all such
1711  * "best effort" probes are guaranteed to be completed. If a device successfully
1712  * probes in this mode, we delete all fw_devlink discovered dependencies of that
1713  * device where the supplier hasn't yet probed successfully because they have to
1714  * be optional dependencies.
1715  *
1716  * Any devices that didn't successfully probe go back to being treated as if
1717  * this function was never called.
1718  *
1719  * This also means that some devices that aren't needed for init and could have
1720  * waited for their optional supplier to probe (when the supplier's module is
1721  * loaded later on) would end up probing prematurely with limited functionality.
1722  * So call this function only when boot would fail without it.
1723  */
1724 void __init wait_for_init_devices_probe(void)
1725 {
1726 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1727 		return;
1728 
1729 	/*
1730 	 * Wait for all ongoing probes to finish so that the "best effort" is
1731 	 * only applied to devices that can't probe otherwise.
1732 	 */
1733 	wait_for_device_probe();
1734 
1735 	pr_info("Trying to probe devices needed for running init ...\n");
1736 	fw_devlink_best_effort = true;
1737 	driver_deferred_probe_trigger();
1738 
1739 	/*
1740 	 * Wait for all "best effort" probes to finish before going back to
1741 	 * normal enforcement.
1742 	 */
1743 	wait_for_device_probe();
1744 	fw_devlink_best_effort = false;
1745 }
1746 
1747 static void fw_devlink_unblock_consumers(struct device *dev)
1748 {
1749 	struct device_link *link;
1750 
1751 	if (!fw_devlink_flags || fw_devlink_is_permissive())
1752 		return;
1753 
1754 	device_links_write_lock();
1755 	list_for_each_entry(link, &dev->links.consumers, s_node)
1756 		fw_devlink_relax_link(link);
1757 	device_links_write_unlock();
1758 }
1759 
1760 /**
1761  * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1762  * @con: Device to check dependencies for.
1763  * @sup: Device to check against.
1764  *
1765  * Check if @sup depends on @con or any device dependent on it (its child or
1766  * its consumer etc).  When such a cyclic dependency is found, convert all
1767  * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1768  * This is the equivalent of doing fw_devlink=permissive just between the
1769  * devices in the cycle. We need to do this because, at this point, fw_devlink
1770  * can't tell which of these dependencies is not a real dependency.
1771  *
1772  * Return 1 if a cycle is found. Otherwise, return 0.
1773  */
1774 static int fw_devlink_relax_cycle(struct device *con, void *sup)
1775 {
1776 	struct device_link *link;
1777 	int ret;
1778 
1779 	if (con == sup)
1780 		return 1;
1781 
1782 	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1783 	if (ret)
1784 		return ret;
1785 
1786 	list_for_each_entry(link, &con->links.consumers, s_node) {
1787 		if ((link->flags & ~DL_FLAG_INFERRED) ==
1788 		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1789 			continue;
1790 
1791 		if (!fw_devlink_relax_cycle(link->consumer, sup))
1792 			continue;
1793 
1794 		ret = 1;
1795 
1796 		fw_devlink_relax_link(link);
1797 	}
1798 	return ret;
1799 }
1800 
1801 /**
1802  * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1803  * @con: consumer device for the device link
1804  * @sup_handle: fwnode handle of supplier
1805  * @flags: devlink flags
1806  *
1807  * This function will try to create a device link between the consumer device
1808  * @con and the supplier device represented by @sup_handle.
1809  *
1810  * The supplier has to be provided as a fwnode because incorrect cycles in
1811  * fwnode links can sometimes cause the supplier device to never be created.
1812  * This function detects such cases and returns an error if it cannot create a
1813  * device link from the consumer to a missing supplier.
1814  *
1815  * Returns,
1816  * 0 on successfully creating a device link
1817  * -EINVAL if the device link cannot be created as expected
1818  * -EAGAIN if the device link cannot be created right now, but it may be
1819  *  possible to do that in the future
1820  */
1821 static int fw_devlink_create_devlink(struct device *con,
1822 				     struct fwnode_handle *sup_handle, u32 flags)
1823 {
1824 	struct device *sup_dev;
1825 	int ret = 0;
1826 
1827 	/*
1828 	 * In some cases, a device P might also be a supplier to its child node
1829 	 * C. However, this would defer the probe of C until the probe of P
1830 	 * completes successfully. This is perfectly fine in the device driver
1831 	 * model. device_add() doesn't guarantee probe completion of the device
1832 	 * by the time it returns.
1833 	 *
1834 	 * However, there are a few drivers that assume C will finish probing
1835 	 * as soon as it's added and before P finishes probing. So, we provide
1836 	 * a flag to let fw_devlink know not to delay the probe of C until the
1837 	 * probe of P completes successfully.
1838 	 *
1839 	 * When such a flag is set, we can't create device links where P is the
1840 	 * supplier of C as that would delay the probe of C.
1841 	 */
1842 	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
1843 	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
1844 		return -EINVAL;
1845 
1846 	sup_dev = get_dev_from_fwnode(sup_handle);
1847 	if (sup_dev) {
1848 		/*
1849 		 * If it's one of those drivers that don't actually bind to
1850 		 * their device using driver core, then don't wait on this
1851 		 * supplier device indefinitely.
1852 		 */
1853 		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1854 		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1855 			ret = -EINVAL;
1856 			goto out;
1857 		}
1858 
1859 		/*
1860 		 * If this fails, it is due to cycles in device links.  Just
1861 		 * give up on this link and treat it as invalid.
1862 		 */
1863 		if (!device_link_add(con, sup_dev, flags) &&
1864 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1865 			dev_info(con, "Fixing up cyclic dependency with %s\n",
1866 				 dev_name(sup_dev));
1867 			device_links_write_lock();
1868 			fw_devlink_relax_cycle(con, sup_dev);
1869 			device_links_write_unlock();
1870 			device_link_add(con, sup_dev,
1871 					FW_DEVLINK_FLAGS_PERMISSIVE);
1872 			ret = -EINVAL;
1873 		}
1874 
1875 		goto out;
1876 	}
1877 
1878 	/* Supplier that's already initialized without a struct device. */
1879 	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1880 		return -EINVAL;
1881 
1882 	/*
1883 	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1884 	 * cycles. So cycle detection isn't necessary and shouldn't be
1885 	 * done.
1886 	 */
1887 	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1888 		return -EAGAIN;
1889 
1890 	/*
1891 	 * If we can't find the supplier device from its fwnode, it might be
1892 	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1893 	 * be broken by applying logic. Check for these types of cycles and
1894 	 * break them so that devices in the cycle probe properly.
1895 	 *
1896 	 * If the supplier's parent is dependent on the consumer, then the
1897 	 * consumer and supplier have a cyclic dependency. Since fw_devlink
1898 	 * can't tell which of the inferred dependencies are incorrect, don't
1899 	 * enforce probe ordering between any of the devices in this cyclic
1900 	 * dependency. Do this by relaxing all the fw_devlink device links in
1901 	 * this cycle and by treating the fwnode link between the consumer and
1902 	 * the supplier as an invalid dependency.
1903 	 */
1904 	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1905 	if (sup_dev && device_is_dependent(con, sup_dev)) {
1906 		dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n",
1907 			 sup_handle, dev_name(sup_dev));
1908 		device_links_write_lock();
1909 		fw_devlink_relax_cycle(con, sup_dev);
1910 		device_links_write_unlock();
1911 		ret = -EINVAL;
1912 	} else {
1913 		/*
1914 		 * Can't check for cycles or no cycles. So let's try
1915 		 * again later.
1916 		 */
1917 		ret = -EAGAIN;
1918 	}
1919 
1920 out:
1921 	put_device(sup_dev);
1922 	return ret;
1923 }
1924 
1925 /**
1926  * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1927  * @dev: Device that needs to be linked to its consumers
1928  *
1929  * This function looks at all the consumer fwnodes of @dev and creates device
1930  * links between the consumer device and @dev (supplier).
1931  *
1932  * If the consumer device has not been added yet, then this function creates a
1933  * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1934  * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1935  * sync_state() callback before the real consumer device gets to be added and
1936  * then probed.
1937  *
1938  * Once device links are created from the real consumer to @dev (supplier), the
1939  * fwnode links are deleted.
1940  */
1941 static void __fw_devlink_link_to_consumers(struct device *dev)
1942 {
1943 	struct fwnode_handle *fwnode = dev->fwnode;
1944 	struct fwnode_link *link, *tmp;
1945 
1946 	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1947 		u32 dl_flags = fw_devlink_get_flags();
1948 		struct device *con_dev;
1949 		bool own_link = true;
1950 		int ret;
1951 
1952 		con_dev = get_dev_from_fwnode(link->consumer);
1953 		/*
1954 		 * If consumer device is not available yet, make a "proxy"
1955 		 * SYNC_STATE_ONLY link from the consumer's parent device to
1956 		 * the supplier device. This is necessary to make sure the
1957 		 * supplier doesn't get a sync_state() callback before the real
1958 		 * consumer can create a device link to the supplier.
1959 		 *
1960 		 * This proxy link step is needed to handle the case where the
1961 		 * consumer's parent device is added before the supplier.
1962 		 */
1963 		if (!con_dev) {
1964 			con_dev = fwnode_get_next_parent_dev(link->consumer);
1965 			/*
1966 			 * However, if the consumer's parent device is also the
1967 			 * parent of the supplier, don't create a
1968 			 * consumer-supplier link from the parent to its child
1969 			 * device. Such a dependency is impossible.
1970 			 */
1971 			if (con_dev &&
1972 			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1973 				put_device(con_dev);
1974 				con_dev = NULL;
1975 			} else {
1976 				own_link = false;
1977 				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1978 			}
1979 		}
1980 
1981 		if (!con_dev)
1982 			continue;
1983 
1984 		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1985 		put_device(con_dev);
1986 		if (!own_link || ret == -EAGAIN)
1987 			continue;
1988 
1989 		__fwnode_link_del(link);
1990 	}
1991 }
1992 
1993 /**
1994  * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
1995  * @dev: The consumer device that needs to be linked to its suppliers
1996  * @fwnode: Root of the fwnode tree that is used to create device links
1997  *
1998  * This function looks at all the supplier fwnodes of fwnode tree rooted at
1999  * @fwnode and creates device links between @dev (consumer) and all the
2000  * supplier devices of the entire fwnode tree at @fwnode.
2001  *
2002  * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2003  * and the real suppliers of @dev. Once these device links are created, the
2004  * fwnode links are deleted. When such device links are successfully created,
2005  * this function is called recursively on those supplier devices. This is
2006  * needed to detect and break some invalid cycles in fwnode links.  See
2007  * fw_devlink_create_devlink() for more details.
2008  *
2009  * In addition, it also looks at all the suppliers of the entire fwnode tree
2010  * because some of the child devices of @dev that have not been added yet
2011  * (because @dev hasn't probed) might already have their suppliers added to
2012  * driver core. So, this function creates SYNC_STATE_ONLY device links between
2013  * @dev (consumer) and these suppliers to make sure they don't execute their
2014  * sync_state() callbacks before these child devices have a chance to create
2015  * their device links. The fwnode links that correspond to the child devices
2016  * aren't delete because they are needed later to create the device links
2017  * between the real consumer and supplier devices.
2018  */
2019 static void __fw_devlink_link_to_suppliers(struct device *dev,
2020 					   struct fwnode_handle *fwnode)
2021 {
2022 	bool own_link = (dev->fwnode == fwnode);
2023 	struct fwnode_link *link, *tmp;
2024 	struct fwnode_handle *child = NULL;
2025 	u32 dl_flags;
2026 
2027 	if (own_link)
2028 		dl_flags = fw_devlink_get_flags();
2029 	else
2030 		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2031 
2032 	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2033 		int ret;
2034 		struct device *sup_dev;
2035 		struct fwnode_handle *sup = link->supplier;
2036 
2037 		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
2038 		if (!own_link || ret == -EAGAIN)
2039 			continue;
2040 
2041 		__fwnode_link_del(link);
2042 
2043 		/* If no device link was created, nothing more to do. */
2044 		if (ret)
2045 			continue;
2046 
2047 		/*
2048 		 * If a device link was successfully created to a supplier, we
2049 		 * now need to try and link the supplier to all its suppliers.
2050 		 *
2051 		 * This is needed to detect and delete false dependencies in
2052 		 * fwnode links that haven't been converted to a device link
2053 		 * yet. See comments in fw_devlink_create_devlink() for more
2054 		 * details on the false dependency.
2055 		 *
2056 		 * Without deleting these false dependencies, some devices will
2057 		 * never probe because they'll keep waiting for their false
2058 		 * dependency fwnode links to be converted to device links.
2059 		 */
2060 		sup_dev = get_dev_from_fwnode(sup);
2061 		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
2062 		put_device(sup_dev);
2063 	}
2064 
2065 	/*
2066 	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2067 	 * all the descendants. This proxy link step is needed to handle the
2068 	 * case where the supplier is added before the consumer's parent device
2069 	 * (@dev).
2070 	 */
2071 	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2072 		__fw_devlink_link_to_suppliers(dev, child);
2073 }
2074 
2075 static void fw_devlink_link_device(struct device *dev)
2076 {
2077 	struct fwnode_handle *fwnode = dev->fwnode;
2078 
2079 	if (!fw_devlink_flags)
2080 		return;
2081 
2082 	fw_devlink_parse_fwtree(fwnode);
2083 
2084 	mutex_lock(&fwnode_link_lock);
2085 	__fw_devlink_link_to_consumers(dev);
2086 	__fw_devlink_link_to_suppliers(dev, fwnode);
2087 	mutex_unlock(&fwnode_link_lock);
2088 }
2089 
2090 /* Device links support end. */
2091 
2092 int (*platform_notify)(struct device *dev) = NULL;
2093 int (*platform_notify_remove)(struct device *dev) = NULL;
2094 static struct kobject *dev_kobj;
2095 struct kobject *sysfs_dev_char_kobj;
2096 struct kobject *sysfs_dev_block_kobj;
2097 
2098 static DEFINE_MUTEX(device_hotplug_lock);
2099 
2100 void lock_device_hotplug(void)
2101 {
2102 	mutex_lock(&device_hotplug_lock);
2103 }
2104 
2105 void unlock_device_hotplug(void)
2106 {
2107 	mutex_unlock(&device_hotplug_lock);
2108 }
2109 
2110 int lock_device_hotplug_sysfs(void)
2111 {
2112 	if (mutex_trylock(&device_hotplug_lock))
2113 		return 0;
2114 
2115 	/* Avoid busy looping (5 ms of sleep should do). */
2116 	msleep(5);
2117 	return restart_syscall();
2118 }
2119 
2120 #ifdef CONFIG_BLOCK
2121 static inline int device_is_not_partition(struct device *dev)
2122 {
2123 	return !(dev->type == &part_type);
2124 }
2125 #else
2126 static inline int device_is_not_partition(struct device *dev)
2127 {
2128 	return 1;
2129 }
2130 #endif
2131 
2132 static void device_platform_notify(struct device *dev)
2133 {
2134 	acpi_device_notify(dev);
2135 
2136 	software_node_notify(dev);
2137 
2138 	if (platform_notify)
2139 		platform_notify(dev);
2140 }
2141 
2142 static void device_platform_notify_remove(struct device *dev)
2143 {
2144 	acpi_device_notify_remove(dev);
2145 
2146 	software_node_notify_remove(dev);
2147 
2148 	if (platform_notify_remove)
2149 		platform_notify_remove(dev);
2150 }
2151 
2152 /**
2153  * dev_driver_string - Return a device's driver name, if at all possible
2154  * @dev: struct device to get the name of
2155  *
2156  * Will return the device's driver's name if it is bound to a device.  If
2157  * the device is not bound to a driver, it will return the name of the bus
2158  * it is attached to.  If it is not attached to a bus either, an empty
2159  * string will be returned.
2160  */
2161 const char *dev_driver_string(const struct device *dev)
2162 {
2163 	struct device_driver *drv;
2164 
2165 	/* dev->driver can change to NULL underneath us because of unbinding,
2166 	 * so be careful about accessing it.  dev->bus and dev->class should
2167 	 * never change once they are set, so they don't need special care.
2168 	 */
2169 	drv = READ_ONCE(dev->driver);
2170 	return drv ? drv->name : dev_bus_name(dev);
2171 }
2172 EXPORT_SYMBOL(dev_driver_string);
2173 
2174 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2175 
2176 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2177 			     char *buf)
2178 {
2179 	struct device_attribute *dev_attr = to_dev_attr(attr);
2180 	struct device *dev = kobj_to_dev(kobj);
2181 	ssize_t ret = -EIO;
2182 
2183 	if (dev_attr->show)
2184 		ret = dev_attr->show(dev, dev_attr, buf);
2185 	if (ret >= (ssize_t)PAGE_SIZE) {
2186 		printk("dev_attr_show: %pS returned bad count\n",
2187 				dev_attr->show);
2188 	}
2189 	return ret;
2190 }
2191 
2192 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2193 			      const char *buf, size_t count)
2194 {
2195 	struct device_attribute *dev_attr = to_dev_attr(attr);
2196 	struct device *dev = kobj_to_dev(kobj);
2197 	ssize_t ret = -EIO;
2198 
2199 	if (dev_attr->store)
2200 		ret = dev_attr->store(dev, dev_attr, buf, count);
2201 	return ret;
2202 }
2203 
2204 static const struct sysfs_ops dev_sysfs_ops = {
2205 	.show	= dev_attr_show,
2206 	.store	= dev_attr_store,
2207 };
2208 
2209 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2210 
2211 ssize_t device_store_ulong(struct device *dev,
2212 			   struct device_attribute *attr,
2213 			   const char *buf, size_t size)
2214 {
2215 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2216 	int ret;
2217 	unsigned long new;
2218 
2219 	ret = kstrtoul(buf, 0, &new);
2220 	if (ret)
2221 		return ret;
2222 	*(unsigned long *)(ea->var) = new;
2223 	/* Always return full write size even if we didn't consume all */
2224 	return size;
2225 }
2226 EXPORT_SYMBOL_GPL(device_store_ulong);
2227 
2228 ssize_t device_show_ulong(struct device *dev,
2229 			  struct device_attribute *attr,
2230 			  char *buf)
2231 {
2232 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2233 	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2234 }
2235 EXPORT_SYMBOL_GPL(device_show_ulong);
2236 
2237 ssize_t device_store_int(struct device *dev,
2238 			 struct device_attribute *attr,
2239 			 const char *buf, size_t size)
2240 {
2241 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2242 	int ret;
2243 	long new;
2244 
2245 	ret = kstrtol(buf, 0, &new);
2246 	if (ret)
2247 		return ret;
2248 
2249 	if (new > INT_MAX || new < INT_MIN)
2250 		return -EINVAL;
2251 	*(int *)(ea->var) = new;
2252 	/* Always return full write size even if we didn't consume all */
2253 	return size;
2254 }
2255 EXPORT_SYMBOL_GPL(device_store_int);
2256 
2257 ssize_t device_show_int(struct device *dev,
2258 			struct device_attribute *attr,
2259 			char *buf)
2260 {
2261 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2262 
2263 	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2264 }
2265 EXPORT_SYMBOL_GPL(device_show_int);
2266 
2267 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2268 			  const char *buf, size_t size)
2269 {
2270 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2271 
2272 	if (strtobool(buf, ea->var) < 0)
2273 		return -EINVAL;
2274 
2275 	return size;
2276 }
2277 EXPORT_SYMBOL_GPL(device_store_bool);
2278 
2279 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2280 			 char *buf)
2281 {
2282 	struct dev_ext_attribute *ea = to_ext_attr(attr);
2283 
2284 	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2285 }
2286 EXPORT_SYMBOL_GPL(device_show_bool);
2287 
2288 /**
2289  * device_release - free device structure.
2290  * @kobj: device's kobject.
2291  *
2292  * This is called once the reference count for the object
2293  * reaches 0. We forward the call to the device's release
2294  * method, which should handle actually freeing the structure.
2295  */
2296 static void device_release(struct kobject *kobj)
2297 {
2298 	struct device *dev = kobj_to_dev(kobj);
2299 	struct device_private *p = dev->p;
2300 
2301 	/*
2302 	 * Some platform devices are driven without driver attached
2303 	 * and managed resources may have been acquired.  Make sure
2304 	 * all resources are released.
2305 	 *
2306 	 * Drivers still can add resources into device after device
2307 	 * is deleted but alive, so release devres here to avoid
2308 	 * possible memory leak.
2309 	 */
2310 	devres_release_all(dev);
2311 
2312 	kfree(dev->dma_range_map);
2313 
2314 	if (dev->release)
2315 		dev->release(dev);
2316 	else if (dev->type && dev->type->release)
2317 		dev->type->release(dev);
2318 	else if (dev->class && dev->class->dev_release)
2319 		dev->class->dev_release(dev);
2320 	else
2321 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
2322 			dev_name(dev));
2323 	kfree(p);
2324 }
2325 
2326 static const void *device_namespace(struct kobject *kobj)
2327 {
2328 	struct device *dev = kobj_to_dev(kobj);
2329 	const void *ns = NULL;
2330 
2331 	if (dev->class && dev->class->ns_type)
2332 		ns = dev->class->namespace(dev);
2333 
2334 	return ns;
2335 }
2336 
2337 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2338 {
2339 	struct device *dev = kobj_to_dev(kobj);
2340 
2341 	if (dev->class && dev->class->get_ownership)
2342 		dev->class->get_ownership(dev, uid, gid);
2343 }
2344 
2345 static struct kobj_type device_ktype = {
2346 	.release	= device_release,
2347 	.sysfs_ops	= &dev_sysfs_ops,
2348 	.namespace	= device_namespace,
2349 	.get_ownership	= device_get_ownership,
2350 };
2351 
2352 
2353 static int dev_uevent_filter(struct kobject *kobj)
2354 {
2355 	const struct kobj_type *ktype = get_ktype(kobj);
2356 
2357 	if (ktype == &device_ktype) {
2358 		struct device *dev = kobj_to_dev(kobj);
2359 		if (dev->bus)
2360 			return 1;
2361 		if (dev->class)
2362 			return 1;
2363 	}
2364 	return 0;
2365 }
2366 
2367 static const char *dev_uevent_name(struct kobject *kobj)
2368 {
2369 	struct device *dev = kobj_to_dev(kobj);
2370 
2371 	if (dev->bus)
2372 		return dev->bus->name;
2373 	if (dev->class)
2374 		return dev->class->name;
2375 	return NULL;
2376 }
2377 
2378 static int dev_uevent(struct kobject *kobj, struct kobj_uevent_env *env)
2379 {
2380 	struct device *dev = kobj_to_dev(kobj);
2381 	int retval = 0;
2382 
2383 	/* add device node properties if present */
2384 	if (MAJOR(dev->devt)) {
2385 		const char *tmp;
2386 		const char *name;
2387 		umode_t mode = 0;
2388 		kuid_t uid = GLOBAL_ROOT_UID;
2389 		kgid_t gid = GLOBAL_ROOT_GID;
2390 
2391 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2392 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2393 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2394 		if (name) {
2395 			add_uevent_var(env, "DEVNAME=%s", name);
2396 			if (mode)
2397 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2398 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2399 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2400 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2401 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2402 			kfree(tmp);
2403 		}
2404 	}
2405 
2406 	if (dev->type && dev->type->name)
2407 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2408 
2409 	if (dev->driver)
2410 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2411 
2412 	/* Add common DT information about the device */
2413 	of_device_uevent(dev, env);
2414 
2415 	/* have the bus specific function add its stuff */
2416 	if (dev->bus && dev->bus->uevent) {
2417 		retval = dev->bus->uevent(dev, env);
2418 		if (retval)
2419 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2420 				 dev_name(dev), __func__, retval);
2421 	}
2422 
2423 	/* have the class specific function add its stuff */
2424 	if (dev->class && dev->class->dev_uevent) {
2425 		retval = dev->class->dev_uevent(dev, env);
2426 		if (retval)
2427 			pr_debug("device: '%s': %s: class uevent() "
2428 				 "returned %d\n", dev_name(dev),
2429 				 __func__, retval);
2430 	}
2431 
2432 	/* have the device type specific function add its stuff */
2433 	if (dev->type && dev->type->uevent) {
2434 		retval = dev->type->uevent(dev, env);
2435 		if (retval)
2436 			pr_debug("device: '%s': %s: dev_type uevent() "
2437 				 "returned %d\n", dev_name(dev),
2438 				 __func__, retval);
2439 	}
2440 
2441 	return retval;
2442 }
2443 
2444 static const struct kset_uevent_ops device_uevent_ops = {
2445 	.filter =	dev_uevent_filter,
2446 	.name =		dev_uevent_name,
2447 	.uevent =	dev_uevent,
2448 };
2449 
2450 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2451 			   char *buf)
2452 {
2453 	struct kobject *top_kobj;
2454 	struct kset *kset;
2455 	struct kobj_uevent_env *env = NULL;
2456 	int i;
2457 	int len = 0;
2458 	int retval;
2459 
2460 	/* search the kset, the device belongs to */
2461 	top_kobj = &dev->kobj;
2462 	while (!top_kobj->kset && top_kobj->parent)
2463 		top_kobj = top_kobj->parent;
2464 	if (!top_kobj->kset)
2465 		goto out;
2466 
2467 	kset = top_kobj->kset;
2468 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2469 		goto out;
2470 
2471 	/* respect filter */
2472 	if (kset->uevent_ops && kset->uevent_ops->filter)
2473 		if (!kset->uevent_ops->filter(&dev->kobj))
2474 			goto out;
2475 
2476 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2477 	if (!env)
2478 		return -ENOMEM;
2479 
2480 	/* let the kset specific function add its keys */
2481 	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2482 	if (retval)
2483 		goto out;
2484 
2485 	/* copy keys to file */
2486 	for (i = 0; i < env->envp_idx; i++)
2487 		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2488 out:
2489 	kfree(env);
2490 	return len;
2491 }
2492 
2493 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2494 			    const char *buf, size_t count)
2495 {
2496 	int rc;
2497 
2498 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2499 
2500 	if (rc) {
2501 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
2502 		return rc;
2503 	}
2504 
2505 	return count;
2506 }
2507 static DEVICE_ATTR_RW(uevent);
2508 
2509 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2510 			   char *buf)
2511 {
2512 	bool val;
2513 
2514 	device_lock(dev);
2515 	val = !dev->offline;
2516 	device_unlock(dev);
2517 	return sysfs_emit(buf, "%u\n", val);
2518 }
2519 
2520 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2521 			    const char *buf, size_t count)
2522 {
2523 	bool val;
2524 	int ret;
2525 
2526 	ret = strtobool(buf, &val);
2527 	if (ret < 0)
2528 		return ret;
2529 
2530 	ret = lock_device_hotplug_sysfs();
2531 	if (ret)
2532 		return ret;
2533 
2534 	ret = val ? device_online(dev) : device_offline(dev);
2535 	unlock_device_hotplug();
2536 	return ret < 0 ? ret : count;
2537 }
2538 static DEVICE_ATTR_RW(online);
2539 
2540 static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2541 			      char *buf)
2542 {
2543 	const char *loc;
2544 
2545 	switch (dev->removable) {
2546 	case DEVICE_REMOVABLE:
2547 		loc = "removable";
2548 		break;
2549 	case DEVICE_FIXED:
2550 		loc = "fixed";
2551 		break;
2552 	default:
2553 		loc = "unknown";
2554 	}
2555 	return sysfs_emit(buf, "%s\n", loc);
2556 }
2557 static DEVICE_ATTR_RO(removable);
2558 
2559 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2560 {
2561 	return sysfs_create_groups(&dev->kobj, groups);
2562 }
2563 EXPORT_SYMBOL_GPL(device_add_groups);
2564 
2565 void device_remove_groups(struct device *dev,
2566 			  const struct attribute_group **groups)
2567 {
2568 	sysfs_remove_groups(&dev->kobj, groups);
2569 }
2570 EXPORT_SYMBOL_GPL(device_remove_groups);
2571 
2572 union device_attr_group_devres {
2573 	const struct attribute_group *group;
2574 	const struct attribute_group **groups;
2575 };
2576 
2577 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2578 {
2579 	return ((union device_attr_group_devres *)res)->group == data;
2580 }
2581 
2582 static void devm_attr_group_remove(struct device *dev, void *res)
2583 {
2584 	union device_attr_group_devres *devres = res;
2585 	const struct attribute_group *group = devres->group;
2586 
2587 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2588 	sysfs_remove_group(&dev->kobj, group);
2589 }
2590 
2591 static void devm_attr_groups_remove(struct device *dev, void *res)
2592 {
2593 	union device_attr_group_devres *devres = res;
2594 	const struct attribute_group **groups = devres->groups;
2595 
2596 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2597 	sysfs_remove_groups(&dev->kobj, groups);
2598 }
2599 
2600 /**
2601  * devm_device_add_group - given a device, create a managed attribute group
2602  * @dev:	The device to create the group for
2603  * @grp:	The attribute group to create
2604  *
2605  * This function creates a group for the first time.  It will explicitly
2606  * warn and error if any of the attribute files being created already exist.
2607  *
2608  * Returns 0 on success or error code on failure.
2609  */
2610 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2611 {
2612 	union device_attr_group_devres *devres;
2613 	int error;
2614 
2615 	devres = devres_alloc(devm_attr_group_remove,
2616 			      sizeof(*devres), GFP_KERNEL);
2617 	if (!devres)
2618 		return -ENOMEM;
2619 
2620 	error = sysfs_create_group(&dev->kobj, grp);
2621 	if (error) {
2622 		devres_free(devres);
2623 		return error;
2624 	}
2625 
2626 	devres->group = grp;
2627 	devres_add(dev, devres);
2628 	return 0;
2629 }
2630 EXPORT_SYMBOL_GPL(devm_device_add_group);
2631 
2632 /**
2633  * devm_device_remove_group: remove a managed group from a device
2634  * @dev:	device to remove the group from
2635  * @grp:	group to remove
2636  *
2637  * This function removes a group of attributes from a device. The attributes
2638  * previously have to have been created for this group, otherwise it will fail.
2639  */
2640 void devm_device_remove_group(struct device *dev,
2641 			      const struct attribute_group *grp)
2642 {
2643 	WARN_ON(devres_release(dev, devm_attr_group_remove,
2644 			       devm_attr_group_match,
2645 			       /* cast away const */ (void *)grp));
2646 }
2647 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2648 
2649 /**
2650  * devm_device_add_groups - create a bunch of managed attribute groups
2651  * @dev:	The device to create the group for
2652  * @groups:	The attribute groups to create, NULL terminated
2653  *
2654  * This function creates a bunch of managed attribute groups.  If an error
2655  * occurs when creating a group, all previously created groups will be
2656  * removed, unwinding everything back to the original state when this
2657  * function was called.  It will explicitly warn and error if any of the
2658  * attribute files being created already exist.
2659  *
2660  * Returns 0 on success or error code from sysfs_create_group on failure.
2661  */
2662 int devm_device_add_groups(struct device *dev,
2663 			   const struct attribute_group **groups)
2664 {
2665 	union device_attr_group_devres *devres;
2666 	int error;
2667 
2668 	devres = devres_alloc(devm_attr_groups_remove,
2669 			      sizeof(*devres), GFP_KERNEL);
2670 	if (!devres)
2671 		return -ENOMEM;
2672 
2673 	error = sysfs_create_groups(&dev->kobj, groups);
2674 	if (error) {
2675 		devres_free(devres);
2676 		return error;
2677 	}
2678 
2679 	devres->groups = groups;
2680 	devres_add(dev, devres);
2681 	return 0;
2682 }
2683 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2684 
2685 /**
2686  * devm_device_remove_groups - remove a list of managed groups
2687  *
2688  * @dev:	The device for the groups to be removed from
2689  * @groups:	NULL terminated list of groups to be removed
2690  *
2691  * If groups is not NULL, remove the specified groups from the device.
2692  */
2693 void devm_device_remove_groups(struct device *dev,
2694 			       const struct attribute_group **groups)
2695 {
2696 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2697 			       devm_attr_group_match,
2698 			       /* cast away const */ (void *)groups));
2699 }
2700 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2701 
2702 static int device_add_attrs(struct device *dev)
2703 {
2704 	struct class *class = dev->class;
2705 	const struct device_type *type = dev->type;
2706 	int error;
2707 
2708 	if (class) {
2709 		error = device_add_groups(dev, class->dev_groups);
2710 		if (error)
2711 			return error;
2712 	}
2713 
2714 	if (type) {
2715 		error = device_add_groups(dev, type->groups);
2716 		if (error)
2717 			goto err_remove_class_groups;
2718 	}
2719 
2720 	error = device_add_groups(dev, dev->groups);
2721 	if (error)
2722 		goto err_remove_type_groups;
2723 
2724 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2725 		error = device_create_file(dev, &dev_attr_online);
2726 		if (error)
2727 			goto err_remove_dev_groups;
2728 	}
2729 
2730 	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2731 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2732 		if (error)
2733 			goto err_remove_dev_online;
2734 	}
2735 
2736 	if (dev_removable_is_valid(dev)) {
2737 		error = device_create_file(dev, &dev_attr_removable);
2738 		if (error)
2739 			goto err_remove_dev_waiting_for_supplier;
2740 	}
2741 
2742 	if (dev_add_physical_location(dev)) {
2743 		error = device_add_group(dev,
2744 			&dev_attr_physical_location_group);
2745 		if (error)
2746 			goto err_remove_dev_removable;
2747 	}
2748 
2749 	return 0;
2750 
2751  err_remove_dev_removable:
2752 	device_remove_file(dev, &dev_attr_removable);
2753  err_remove_dev_waiting_for_supplier:
2754 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2755  err_remove_dev_online:
2756 	device_remove_file(dev, &dev_attr_online);
2757  err_remove_dev_groups:
2758 	device_remove_groups(dev, dev->groups);
2759  err_remove_type_groups:
2760 	if (type)
2761 		device_remove_groups(dev, type->groups);
2762  err_remove_class_groups:
2763 	if (class)
2764 		device_remove_groups(dev, class->dev_groups);
2765 
2766 	return error;
2767 }
2768 
2769 static void device_remove_attrs(struct device *dev)
2770 {
2771 	struct class *class = dev->class;
2772 	const struct device_type *type = dev->type;
2773 
2774 	if (dev->physical_location) {
2775 		device_remove_group(dev, &dev_attr_physical_location_group);
2776 		kfree(dev->physical_location);
2777 	}
2778 
2779 	device_remove_file(dev, &dev_attr_removable);
2780 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2781 	device_remove_file(dev, &dev_attr_online);
2782 	device_remove_groups(dev, dev->groups);
2783 
2784 	if (type)
2785 		device_remove_groups(dev, type->groups);
2786 
2787 	if (class)
2788 		device_remove_groups(dev, class->dev_groups);
2789 }
2790 
2791 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2792 			char *buf)
2793 {
2794 	return print_dev_t(buf, dev->devt);
2795 }
2796 static DEVICE_ATTR_RO(dev);
2797 
2798 /* /sys/devices/ */
2799 struct kset *devices_kset;
2800 
2801 /**
2802  * devices_kset_move_before - Move device in the devices_kset's list.
2803  * @deva: Device to move.
2804  * @devb: Device @deva should come before.
2805  */
2806 static void devices_kset_move_before(struct device *deva, struct device *devb)
2807 {
2808 	if (!devices_kset)
2809 		return;
2810 	pr_debug("devices_kset: Moving %s before %s\n",
2811 		 dev_name(deva), dev_name(devb));
2812 	spin_lock(&devices_kset->list_lock);
2813 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2814 	spin_unlock(&devices_kset->list_lock);
2815 }
2816 
2817 /**
2818  * devices_kset_move_after - Move device in the devices_kset's list.
2819  * @deva: Device to move
2820  * @devb: Device @deva should come after.
2821  */
2822 static void devices_kset_move_after(struct device *deva, struct device *devb)
2823 {
2824 	if (!devices_kset)
2825 		return;
2826 	pr_debug("devices_kset: Moving %s after %s\n",
2827 		 dev_name(deva), dev_name(devb));
2828 	spin_lock(&devices_kset->list_lock);
2829 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2830 	spin_unlock(&devices_kset->list_lock);
2831 }
2832 
2833 /**
2834  * devices_kset_move_last - move the device to the end of devices_kset's list.
2835  * @dev: device to move
2836  */
2837 void devices_kset_move_last(struct device *dev)
2838 {
2839 	if (!devices_kset)
2840 		return;
2841 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2842 	spin_lock(&devices_kset->list_lock);
2843 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2844 	spin_unlock(&devices_kset->list_lock);
2845 }
2846 
2847 /**
2848  * device_create_file - create sysfs attribute file for device.
2849  * @dev: device.
2850  * @attr: device attribute descriptor.
2851  */
2852 int device_create_file(struct device *dev,
2853 		       const struct device_attribute *attr)
2854 {
2855 	int error = 0;
2856 
2857 	if (dev) {
2858 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2859 			"Attribute %s: write permission without 'store'\n",
2860 			attr->attr.name);
2861 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2862 			"Attribute %s: read permission without 'show'\n",
2863 			attr->attr.name);
2864 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2865 	}
2866 
2867 	return error;
2868 }
2869 EXPORT_SYMBOL_GPL(device_create_file);
2870 
2871 /**
2872  * device_remove_file - remove sysfs attribute file.
2873  * @dev: device.
2874  * @attr: device attribute descriptor.
2875  */
2876 void device_remove_file(struct device *dev,
2877 			const struct device_attribute *attr)
2878 {
2879 	if (dev)
2880 		sysfs_remove_file(&dev->kobj, &attr->attr);
2881 }
2882 EXPORT_SYMBOL_GPL(device_remove_file);
2883 
2884 /**
2885  * device_remove_file_self - remove sysfs attribute file from its own method.
2886  * @dev: device.
2887  * @attr: device attribute descriptor.
2888  *
2889  * See kernfs_remove_self() for details.
2890  */
2891 bool device_remove_file_self(struct device *dev,
2892 			     const struct device_attribute *attr)
2893 {
2894 	if (dev)
2895 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2896 	else
2897 		return false;
2898 }
2899 EXPORT_SYMBOL_GPL(device_remove_file_self);
2900 
2901 /**
2902  * device_create_bin_file - create sysfs binary attribute file for device.
2903  * @dev: device.
2904  * @attr: device binary attribute descriptor.
2905  */
2906 int device_create_bin_file(struct device *dev,
2907 			   const struct bin_attribute *attr)
2908 {
2909 	int error = -EINVAL;
2910 	if (dev)
2911 		error = sysfs_create_bin_file(&dev->kobj, attr);
2912 	return error;
2913 }
2914 EXPORT_SYMBOL_GPL(device_create_bin_file);
2915 
2916 /**
2917  * device_remove_bin_file - remove sysfs binary attribute file
2918  * @dev: device.
2919  * @attr: device binary attribute descriptor.
2920  */
2921 void device_remove_bin_file(struct device *dev,
2922 			    const struct bin_attribute *attr)
2923 {
2924 	if (dev)
2925 		sysfs_remove_bin_file(&dev->kobj, attr);
2926 }
2927 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2928 
2929 static void klist_children_get(struct klist_node *n)
2930 {
2931 	struct device_private *p = to_device_private_parent(n);
2932 	struct device *dev = p->device;
2933 
2934 	get_device(dev);
2935 }
2936 
2937 static void klist_children_put(struct klist_node *n)
2938 {
2939 	struct device_private *p = to_device_private_parent(n);
2940 	struct device *dev = p->device;
2941 
2942 	put_device(dev);
2943 }
2944 
2945 /**
2946  * device_initialize - init device structure.
2947  * @dev: device.
2948  *
2949  * This prepares the device for use by other layers by initializing
2950  * its fields.
2951  * It is the first half of device_register(), if called by
2952  * that function, though it can also be called separately, so one
2953  * may use @dev's fields. In particular, get_device()/put_device()
2954  * may be used for reference counting of @dev after calling this
2955  * function.
2956  *
2957  * All fields in @dev must be initialized by the caller to 0, except
2958  * for those explicitly set to some other value.  The simplest
2959  * approach is to use kzalloc() to allocate the structure containing
2960  * @dev.
2961  *
2962  * NOTE: Use put_device() to give up your reference instead of freeing
2963  * @dev directly once you have called this function.
2964  */
2965 void device_initialize(struct device *dev)
2966 {
2967 	dev->kobj.kset = devices_kset;
2968 	kobject_init(&dev->kobj, &device_ktype);
2969 	INIT_LIST_HEAD(&dev->dma_pools);
2970 	mutex_init(&dev->mutex);
2971 	lockdep_set_novalidate_class(&dev->mutex);
2972 	spin_lock_init(&dev->devres_lock);
2973 	INIT_LIST_HEAD(&dev->devres_head);
2974 	device_pm_init(dev);
2975 	set_dev_node(dev, NUMA_NO_NODE);
2976 	INIT_LIST_HEAD(&dev->links.consumers);
2977 	INIT_LIST_HEAD(&dev->links.suppliers);
2978 	INIT_LIST_HEAD(&dev->links.defer_sync);
2979 	dev->links.status = DL_DEV_NO_DRIVER;
2980 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2981     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2982     defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2983 	dev->dma_coherent = dma_default_coherent;
2984 #endif
2985 #ifdef CONFIG_SWIOTLB
2986 	dev->dma_io_tlb_mem = &io_tlb_default_mem;
2987 #endif
2988 }
2989 EXPORT_SYMBOL_GPL(device_initialize);
2990 
2991 struct kobject *virtual_device_parent(struct device *dev)
2992 {
2993 	static struct kobject *virtual_dir = NULL;
2994 
2995 	if (!virtual_dir)
2996 		virtual_dir = kobject_create_and_add("virtual",
2997 						     &devices_kset->kobj);
2998 
2999 	return virtual_dir;
3000 }
3001 
3002 struct class_dir {
3003 	struct kobject kobj;
3004 	struct class *class;
3005 };
3006 
3007 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
3008 
3009 static void class_dir_release(struct kobject *kobj)
3010 {
3011 	struct class_dir *dir = to_class_dir(kobj);
3012 	kfree(dir);
3013 }
3014 
3015 static const
3016 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
3017 {
3018 	struct class_dir *dir = to_class_dir(kobj);
3019 	return dir->class->ns_type;
3020 }
3021 
3022 static struct kobj_type class_dir_ktype = {
3023 	.release	= class_dir_release,
3024 	.sysfs_ops	= &kobj_sysfs_ops,
3025 	.child_ns_type	= class_dir_child_ns_type
3026 };
3027 
3028 static struct kobject *
3029 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
3030 {
3031 	struct class_dir *dir;
3032 	int retval;
3033 
3034 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3035 	if (!dir)
3036 		return ERR_PTR(-ENOMEM);
3037 
3038 	dir->class = class;
3039 	kobject_init(&dir->kobj, &class_dir_ktype);
3040 
3041 	dir->kobj.kset = &class->p->glue_dirs;
3042 
3043 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
3044 	if (retval < 0) {
3045 		kobject_put(&dir->kobj);
3046 		return ERR_PTR(retval);
3047 	}
3048 	return &dir->kobj;
3049 }
3050 
3051 static DEFINE_MUTEX(gdp_mutex);
3052 
3053 static struct kobject *get_device_parent(struct device *dev,
3054 					 struct device *parent)
3055 {
3056 	if (dev->class) {
3057 		struct kobject *kobj = NULL;
3058 		struct kobject *parent_kobj;
3059 		struct kobject *k;
3060 
3061 #ifdef CONFIG_BLOCK
3062 		/* block disks show up in /sys/block */
3063 		if (sysfs_deprecated && dev->class == &block_class) {
3064 			if (parent && parent->class == &block_class)
3065 				return &parent->kobj;
3066 			return &block_class.p->subsys.kobj;
3067 		}
3068 #endif
3069 
3070 		/*
3071 		 * If we have no parent, we live in "virtual".
3072 		 * Class-devices with a non class-device as parent, live
3073 		 * in a "glue" directory to prevent namespace collisions.
3074 		 */
3075 		if (parent == NULL)
3076 			parent_kobj = virtual_device_parent(dev);
3077 		else if (parent->class && !dev->class->ns_type)
3078 			return &parent->kobj;
3079 		else
3080 			parent_kobj = &parent->kobj;
3081 
3082 		mutex_lock(&gdp_mutex);
3083 
3084 		/* find our class-directory at the parent and reference it */
3085 		spin_lock(&dev->class->p->glue_dirs.list_lock);
3086 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
3087 			if (k->parent == parent_kobj) {
3088 				kobj = kobject_get(k);
3089 				break;
3090 			}
3091 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
3092 		if (kobj) {
3093 			mutex_unlock(&gdp_mutex);
3094 			return kobj;
3095 		}
3096 
3097 		/* or create a new class-directory at the parent device */
3098 		k = class_dir_create_and_add(dev->class, parent_kobj);
3099 		/* do not emit an uevent for this simple "glue" directory */
3100 		mutex_unlock(&gdp_mutex);
3101 		return k;
3102 	}
3103 
3104 	/* subsystems can specify a default root directory for their devices */
3105 	if (!parent && dev->bus && dev->bus->dev_root)
3106 		return &dev->bus->dev_root->kobj;
3107 
3108 	if (parent)
3109 		return &parent->kobj;
3110 	return NULL;
3111 }
3112 
3113 static inline bool live_in_glue_dir(struct kobject *kobj,
3114 				    struct device *dev)
3115 {
3116 	if (!kobj || !dev->class ||
3117 	    kobj->kset != &dev->class->p->glue_dirs)
3118 		return false;
3119 	return true;
3120 }
3121 
3122 static inline struct kobject *get_glue_dir(struct device *dev)
3123 {
3124 	return dev->kobj.parent;
3125 }
3126 
3127 /**
3128  * kobject_has_children - Returns whether a kobject has children.
3129  * @kobj: the object to test
3130  *
3131  * This will return whether a kobject has other kobjects as children.
3132  *
3133  * It does NOT account for the presence of attribute files, only sub
3134  * directories. It also assumes there is no concurrent addition or
3135  * removal of such children, and thus relies on external locking.
3136  */
3137 static inline bool kobject_has_children(struct kobject *kobj)
3138 {
3139 	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3140 
3141 	return kobj->sd && kobj->sd->dir.subdirs;
3142 }
3143 
3144 /*
3145  * make sure cleaning up dir as the last step, we need to make
3146  * sure .release handler of kobject is run with holding the
3147  * global lock
3148  */
3149 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3150 {
3151 	unsigned int ref;
3152 
3153 	/* see if we live in a "glue" directory */
3154 	if (!live_in_glue_dir(glue_dir, dev))
3155 		return;
3156 
3157 	mutex_lock(&gdp_mutex);
3158 	/**
3159 	 * There is a race condition between removing glue directory
3160 	 * and adding a new device under the glue directory.
3161 	 *
3162 	 * CPU1:                                         CPU2:
3163 	 *
3164 	 * device_add()
3165 	 *   get_device_parent()
3166 	 *     class_dir_create_and_add()
3167 	 *       kobject_add_internal()
3168 	 *         create_dir()    // create glue_dir
3169 	 *
3170 	 *                                               device_add()
3171 	 *                                                 get_device_parent()
3172 	 *                                                   kobject_get() // get glue_dir
3173 	 *
3174 	 * device_del()
3175 	 *   cleanup_glue_dir()
3176 	 *     kobject_del(glue_dir)
3177 	 *
3178 	 *                                               kobject_add()
3179 	 *                                                 kobject_add_internal()
3180 	 *                                                   create_dir() // in glue_dir
3181 	 *                                                     sysfs_create_dir_ns()
3182 	 *                                                       kernfs_create_dir_ns(sd)
3183 	 *
3184 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3185 	 *       sysfs_put()        // free glue_dir->sd
3186 	 *
3187 	 *                                                         // sd is freed
3188 	 *                                                         kernfs_new_node(sd)
3189 	 *                                                           kernfs_get(glue_dir)
3190 	 *                                                           kernfs_add_one()
3191 	 *                                                           kernfs_put()
3192 	 *
3193 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3194 	 * a new device under glue dir, the glue_dir kobject reference count
3195 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3196 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3197 	 * and sysfs_put(). This result in glue_dir->sd is freed.
3198 	 *
3199 	 * Then the CPU2 will see a stale "empty" but still potentially used
3200 	 * glue dir around in kernfs_new_node().
3201 	 *
3202 	 * In order to avoid this happening, we also should make sure that
3203 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3204 	 * for glue_dir kobj is 1.
3205 	 */
3206 	ref = kref_read(&glue_dir->kref);
3207 	if (!kobject_has_children(glue_dir) && !--ref)
3208 		kobject_del(glue_dir);
3209 	kobject_put(glue_dir);
3210 	mutex_unlock(&gdp_mutex);
3211 }
3212 
3213 static int device_add_class_symlinks(struct device *dev)
3214 {
3215 	struct device_node *of_node = dev_of_node(dev);
3216 	int error;
3217 
3218 	if (of_node) {
3219 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3220 		if (error)
3221 			dev_warn(dev, "Error %d creating of_node link\n",error);
3222 		/* An error here doesn't warrant bringing down the device */
3223 	}
3224 
3225 	if (!dev->class)
3226 		return 0;
3227 
3228 	error = sysfs_create_link(&dev->kobj,
3229 				  &dev->class->p->subsys.kobj,
3230 				  "subsystem");
3231 	if (error)
3232 		goto out_devnode;
3233 
3234 	if (dev->parent && device_is_not_partition(dev)) {
3235 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3236 					  "device");
3237 		if (error)
3238 			goto out_subsys;
3239 	}
3240 
3241 #ifdef CONFIG_BLOCK
3242 	/* /sys/block has directories and does not need symlinks */
3243 	if (sysfs_deprecated && dev->class == &block_class)
3244 		return 0;
3245 #endif
3246 
3247 	/* link in the class directory pointing to the device */
3248 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3249 				  &dev->kobj, dev_name(dev));
3250 	if (error)
3251 		goto out_device;
3252 
3253 	return 0;
3254 
3255 out_device:
3256 	sysfs_remove_link(&dev->kobj, "device");
3257 
3258 out_subsys:
3259 	sysfs_remove_link(&dev->kobj, "subsystem");
3260 out_devnode:
3261 	sysfs_remove_link(&dev->kobj, "of_node");
3262 	return error;
3263 }
3264 
3265 static void device_remove_class_symlinks(struct device *dev)
3266 {
3267 	if (dev_of_node(dev))
3268 		sysfs_remove_link(&dev->kobj, "of_node");
3269 
3270 	if (!dev->class)
3271 		return;
3272 
3273 	if (dev->parent && device_is_not_partition(dev))
3274 		sysfs_remove_link(&dev->kobj, "device");
3275 	sysfs_remove_link(&dev->kobj, "subsystem");
3276 #ifdef CONFIG_BLOCK
3277 	if (sysfs_deprecated && dev->class == &block_class)
3278 		return;
3279 #endif
3280 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3281 }
3282 
3283 /**
3284  * dev_set_name - set a device name
3285  * @dev: device
3286  * @fmt: format string for the device's name
3287  */
3288 int dev_set_name(struct device *dev, const char *fmt, ...)
3289 {
3290 	va_list vargs;
3291 	int err;
3292 
3293 	va_start(vargs, fmt);
3294 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3295 	va_end(vargs);
3296 	return err;
3297 }
3298 EXPORT_SYMBOL_GPL(dev_set_name);
3299 
3300 /**
3301  * device_to_dev_kobj - select a /sys/dev/ directory for the device
3302  * @dev: device
3303  *
3304  * By default we select char/ for new entries.  Setting class->dev_obj
3305  * to NULL prevents an entry from being created.  class->dev_kobj must
3306  * be set (or cleared) before any devices are registered to the class
3307  * otherwise device_create_sys_dev_entry() and
3308  * device_remove_sys_dev_entry() will disagree about the presence of
3309  * the link.
3310  */
3311 static struct kobject *device_to_dev_kobj(struct device *dev)
3312 {
3313 	struct kobject *kobj;
3314 
3315 	if (dev->class)
3316 		kobj = dev->class->dev_kobj;
3317 	else
3318 		kobj = sysfs_dev_char_kobj;
3319 
3320 	return kobj;
3321 }
3322 
3323 static int device_create_sys_dev_entry(struct device *dev)
3324 {
3325 	struct kobject *kobj = device_to_dev_kobj(dev);
3326 	int error = 0;
3327 	char devt_str[15];
3328 
3329 	if (kobj) {
3330 		format_dev_t(devt_str, dev->devt);
3331 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3332 	}
3333 
3334 	return error;
3335 }
3336 
3337 static void device_remove_sys_dev_entry(struct device *dev)
3338 {
3339 	struct kobject *kobj = device_to_dev_kobj(dev);
3340 	char devt_str[15];
3341 
3342 	if (kobj) {
3343 		format_dev_t(devt_str, dev->devt);
3344 		sysfs_remove_link(kobj, devt_str);
3345 	}
3346 }
3347 
3348 static int device_private_init(struct device *dev)
3349 {
3350 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3351 	if (!dev->p)
3352 		return -ENOMEM;
3353 	dev->p->device = dev;
3354 	klist_init(&dev->p->klist_children, klist_children_get,
3355 		   klist_children_put);
3356 	INIT_LIST_HEAD(&dev->p->deferred_probe);
3357 	return 0;
3358 }
3359 
3360 /**
3361  * device_add - add device to device hierarchy.
3362  * @dev: device.
3363  *
3364  * This is part 2 of device_register(), though may be called
3365  * separately _iff_ device_initialize() has been called separately.
3366  *
3367  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3368  * to the global and sibling lists for the device, then
3369  * adds it to the other relevant subsystems of the driver model.
3370  *
3371  * Do not call this routine or device_register() more than once for
3372  * any device structure.  The driver model core is not designed to work
3373  * with devices that get unregistered and then spring back to life.
3374  * (Among other things, it's very hard to guarantee that all references
3375  * to the previous incarnation of @dev have been dropped.)  Allocate
3376  * and register a fresh new struct device instead.
3377  *
3378  * NOTE: _Never_ directly free @dev after calling this function, even
3379  * if it returned an error! Always use put_device() to give up your
3380  * reference instead.
3381  *
3382  * Rule of thumb is: if device_add() succeeds, you should call
3383  * device_del() when you want to get rid of it. If device_add() has
3384  * *not* succeeded, use *only* put_device() to drop the reference
3385  * count.
3386  */
3387 int device_add(struct device *dev)
3388 {
3389 	struct device *parent;
3390 	struct kobject *kobj;
3391 	struct class_interface *class_intf;
3392 	int error = -EINVAL;
3393 	struct kobject *glue_dir = NULL;
3394 
3395 	dev = get_device(dev);
3396 	if (!dev)
3397 		goto done;
3398 
3399 	if (!dev->p) {
3400 		error = device_private_init(dev);
3401 		if (error)
3402 			goto done;
3403 	}
3404 
3405 	/*
3406 	 * for statically allocated devices, which should all be converted
3407 	 * some day, we need to initialize the name. We prevent reading back
3408 	 * the name, and force the use of dev_name()
3409 	 */
3410 	if (dev->init_name) {
3411 		dev_set_name(dev, "%s", dev->init_name);
3412 		dev->init_name = NULL;
3413 	}
3414 
3415 	/* subsystems can specify simple device enumeration */
3416 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3417 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3418 
3419 	if (!dev_name(dev)) {
3420 		error = -EINVAL;
3421 		goto name_error;
3422 	}
3423 
3424 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3425 
3426 	parent = get_device(dev->parent);
3427 	kobj = get_device_parent(dev, parent);
3428 	if (IS_ERR(kobj)) {
3429 		error = PTR_ERR(kobj);
3430 		goto parent_error;
3431 	}
3432 	if (kobj)
3433 		dev->kobj.parent = kobj;
3434 
3435 	/* use parent numa_node */
3436 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3437 		set_dev_node(dev, dev_to_node(parent));
3438 
3439 	/* first, register with generic layer. */
3440 	/* we require the name to be set before, and pass NULL */
3441 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3442 	if (error) {
3443 		glue_dir = get_glue_dir(dev);
3444 		goto Error;
3445 	}
3446 
3447 	/* notify platform of device entry */
3448 	device_platform_notify(dev);
3449 
3450 	error = device_create_file(dev, &dev_attr_uevent);
3451 	if (error)
3452 		goto attrError;
3453 
3454 	error = device_add_class_symlinks(dev);
3455 	if (error)
3456 		goto SymlinkError;
3457 	error = device_add_attrs(dev);
3458 	if (error)
3459 		goto AttrsError;
3460 	error = bus_add_device(dev);
3461 	if (error)
3462 		goto BusError;
3463 	error = dpm_sysfs_add(dev);
3464 	if (error)
3465 		goto DPMError;
3466 	device_pm_add(dev);
3467 
3468 	if (MAJOR(dev->devt)) {
3469 		error = device_create_file(dev, &dev_attr_dev);
3470 		if (error)
3471 			goto DevAttrError;
3472 
3473 		error = device_create_sys_dev_entry(dev);
3474 		if (error)
3475 			goto SysEntryError;
3476 
3477 		devtmpfs_create_node(dev);
3478 	}
3479 
3480 	/* Notify clients of device addition.  This call must come
3481 	 * after dpm_sysfs_add() and before kobject_uevent().
3482 	 */
3483 	if (dev->bus)
3484 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3485 					     BUS_NOTIFY_ADD_DEVICE, dev);
3486 
3487 	kobject_uevent(&dev->kobj, KOBJ_ADD);
3488 
3489 	/*
3490 	 * Check if any of the other devices (consumers) have been waiting for
3491 	 * this device (supplier) to be added so that they can create a device
3492 	 * link to it.
3493 	 *
3494 	 * This needs to happen after device_pm_add() because device_link_add()
3495 	 * requires the supplier be registered before it's called.
3496 	 *
3497 	 * But this also needs to happen before bus_probe_device() to make sure
3498 	 * waiting consumers can link to it before the driver is bound to the
3499 	 * device and the driver sync_state callback is called for this device.
3500 	 */
3501 	if (dev->fwnode && !dev->fwnode->dev) {
3502 		dev->fwnode->dev = dev;
3503 		fw_devlink_link_device(dev);
3504 	}
3505 
3506 	bus_probe_device(dev);
3507 
3508 	/*
3509 	 * If all driver registration is done and a newly added device doesn't
3510 	 * match with any driver, don't block its consumers from probing in
3511 	 * case the consumer device is able to operate without this supplier.
3512 	 */
3513 	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3514 		fw_devlink_unblock_consumers(dev);
3515 
3516 	if (parent)
3517 		klist_add_tail(&dev->p->knode_parent,
3518 			       &parent->p->klist_children);
3519 
3520 	if (dev->class) {
3521 		mutex_lock(&dev->class->p->mutex);
3522 		/* tie the class to the device */
3523 		klist_add_tail(&dev->p->knode_class,
3524 			       &dev->class->p->klist_devices);
3525 
3526 		/* notify any interfaces that the device is here */
3527 		list_for_each_entry(class_intf,
3528 				    &dev->class->p->interfaces, node)
3529 			if (class_intf->add_dev)
3530 				class_intf->add_dev(dev, class_intf);
3531 		mutex_unlock(&dev->class->p->mutex);
3532 	}
3533 done:
3534 	put_device(dev);
3535 	return error;
3536  SysEntryError:
3537 	if (MAJOR(dev->devt))
3538 		device_remove_file(dev, &dev_attr_dev);
3539  DevAttrError:
3540 	device_pm_remove(dev);
3541 	dpm_sysfs_remove(dev);
3542  DPMError:
3543 	bus_remove_device(dev);
3544  BusError:
3545 	device_remove_attrs(dev);
3546  AttrsError:
3547 	device_remove_class_symlinks(dev);
3548  SymlinkError:
3549 	device_remove_file(dev, &dev_attr_uevent);
3550  attrError:
3551 	device_platform_notify_remove(dev);
3552 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3553 	glue_dir = get_glue_dir(dev);
3554 	kobject_del(&dev->kobj);
3555  Error:
3556 	cleanup_glue_dir(dev, glue_dir);
3557 parent_error:
3558 	put_device(parent);
3559 name_error:
3560 	kfree(dev->p);
3561 	dev->p = NULL;
3562 	goto done;
3563 }
3564 EXPORT_SYMBOL_GPL(device_add);
3565 
3566 /**
3567  * device_register - register a device with the system.
3568  * @dev: pointer to the device structure
3569  *
3570  * This happens in two clean steps - initialize the device
3571  * and add it to the system. The two steps can be called
3572  * separately, but this is the easiest and most common.
3573  * I.e. you should only call the two helpers separately if
3574  * have a clearly defined need to use and refcount the device
3575  * before it is added to the hierarchy.
3576  *
3577  * For more information, see the kerneldoc for device_initialize()
3578  * and device_add().
3579  *
3580  * NOTE: _Never_ directly free @dev after calling this function, even
3581  * if it returned an error! Always use put_device() to give up the
3582  * reference initialized in this function instead.
3583  */
3584 int device_register(struct device *dev)
3585 {
3586 	device_initialize(dev);
3587 	return device_add(dev);
3588 }
3589 EXPORT_SYMBOL_GPL(device_register);
3590 
3591 /**
3592  * get_device - increment reference count for device.
3593  * @dev: device.
3594  *
3595  * This simply forwards the call to kobject_get(), though
3596  * we do take care to provide for the case that we get a NULL
3597  * pointer passed in.
3598  */
3599 struct device *get_device(struct device *dev)
3600 {
3601 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3602 }
3603 EXPORT_SYMBOL_GPL(get_device);
3604 
3605 /**
3606  * put_device - decrement reference count.
3607  * @dev: device in question.
3608  */
3609 void put_device(struct device *dev)
3610 {
3611 	/* might_sleep(); */
3612 	if (dev)
3613 		kobject_put(&dev->kobj);
3614 }
3615 EXPORT_SYMBOL_GPL(put_device);
3616 
3617 bool kill_device(struct device *dev)
3618 {
3619 	/*
3620 	 * Require the device lock and set the "dead" flag to guarantee that
3621 	 * the update behavior is consistent with the other bitfields near
3622 	 * it and that we cannot have an asynchronous probe routine trying
3623 	 * to run while we are tearing out the bus/class/sysfs from
3624 	 * underneath the device.
3625 	 */
3626 	device_lock_assert(dev);
3627 
3628 	if (dev->p->dead)
3629 		return false;
3630 	dev->p->dead = true;
3631 	return true;
3632 }
3633 EXPORT_SYMBOL_GPL(kill_device);
3634 
3635 /**
3636  * device_del - delete device from system.
3637  * @dev: device.
3638  *
3639  * This is the first part of the device unregistration
3640  * sequence. This removes the device from the lists we control
3641  * from here, has it removed from the other driver model
3642  * subsystems it was added to in device_add(), and removes it
3643  * from the kobject hierarchy.
3644  *
3645  * NOTE: this should be called manually _iff_ device_add() was
3646  * also called manually.
3647  */
3648 void device_del(struct device *dev)
3649 {
3650 	struct device *parent = dev->parent;
3651 	struct kobject *glue_dir = NULL;
3652 	struct class_interface *class_intf;
3653 	unsigned int noio_flag;
3654 
3655 	device_lock(dev);
3656 	kill_device(dev);
3657 	device_unlock(dev);
3658 
3659 	if (dev->fwnode && dev->fwnode->dev == dev)
3660 		dev->fwnode->dev = NULL;
3661 
3662 	/* Notify clients of device removal.  This call must come
3663 	 * before dpm_sysfs_remove().
3664 	 */
3665 	noio_flag = memalloc_noio_save();
3666 	if (dev->bus)
3667 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3668 					     BUS_NOTIFY_DEL_DEVICE, dev);
3669 
3670 	dpm_sysfs_remove(dev);
3671 	if (parent)
3672 		klist_del(&dev->p->knode_parent);
3673 	if (MAJOR(dev->devt)) {
3674 		devtmpfs_delete_node(dev);
3675 		device_remove_sys_dev_entry(dev);
3676 		device_remove_file(dev, &dev_attr_dev);
3677 	}
3678 	if (dev->class) {
3679 		device_remove_class_symlinks(dev);
3680 
3681 		mutex_lock(&dev->class->p->mutex);
3682 		/* notify any interfaces that the device is now gone */
3683 		list_for_each_entry(class_intf,
3684 				    &dev->class->p->interfaces, node)
3685 			if (class_intf->remove_dev)
3686 				class_intf->remove_dev(dev, class_intf);
3687 		/* remove the device from the class list */
3688 		klist_del(&dev->p->knode_class);
3689 		mutex_unlock(&dev->class->p->mutex);
3690 	}
3691 	device_remove_file(dev, &dev_attr_uevent);
3692 	device_remove_attrs(dev);
3693 	bus_remove_device(dev);
3694 	device_pm_remove(dev);
3695 	driver_deferred_probe_del(dev);
3696 	device_platform_notify_remove(dev);
3697 	device_links_purge(dev);
3698 
3699 	if (dev->bus)
3700 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3701 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3702 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3703 	glue_dir = get_glue_dir(dev);
3704 	kobject_del(&dev->kobj);
3705 	cleanup_glue_dir(dev, glue_dir);
3706 	memalloc_noio_restore(noio_flag);
3707 	put_device(parent);
3708 }
3709 EXPORT_SYMBOL_GPL(device_del);
3710 
3711 /**
3712  * device_unregister - unregister device from system.
3713  * @dev: device going away.
3714  *
3715  * We do this in two parts, like we do device_register(). First,
3716  * we remove it from all the subsystems with device_del(), then
3717  * we decrement the reference count via put_device(). If that
3718  * is the final reference count, the device will be cleaned up
3719  * via device_release() above. Otherwise, the structure will
3720  * stick around until the final reference to the device is dropped.
3721  */
3722 void device_unregister(struct device *dev)
3723 {
3724 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3725 	device_del(dev);
3726 	put_device(dev);
3727 }
3728 EXPORT_SYMBOL_GPL(device_unregister);
3729 
3730 static struct device *prev_device(struct klist_iter *i)
3731 {
3732 	struct klist_node *n = klist_prev(i);
3733 	struct device *dev = NULL;
3734 	struct device_private *p;
3735 
3736 	if (n) {
3737 		p = to_device_private_parent(n);
3738 		dev = p->device;
3739 	}
3740 	return dev;
3741 }
3742 
3743 static struct device *next_device(struct klist_iter *i)
3744 {
3745 	struct klist_node *n = klist_next(i);
3746 	struct device *dev = NULL;
3747 	struct device_private *p;
3748 
3749 	if (n) {
3750 		p = to_device_private_parent(n);
3751 		dev = p->device;
3752 	}
3753 	return dev;
3754 }
3755 
3756 /**
3757  * device_get_devnode - path of device node file
3758  * @dev: device
3759  * @mode: returned file access mode
3760  * @uid: returned file owner
3761  * @gid: returned file group
3762  * @tmp: possibly allocated string
3763  *
3764  * Return the relative path of a possible device node.
3765  * Non-default names may need to allocate a memory to compose
3766  * a name. This memory is returned in tmp and needs to be
3767  * freed by the caller.
3768  */
3769 const char *device_get_devnode(struct device *dev,
3770 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3771 			       const char **tmp)
3772 {
3773 	char *s;
3774 
3775 	*tmp = NULL;
3776 
3777 	/* the device type may provide a specific name */
3778 	if (dev->type && dev->type->devnode)
3779 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3780 	if (*tmp)
3781 		return *tmp;
3782 
3783 	/* the class may provide a specific name */
3784 	if (dev->class && dev->class->devnode)
3785 		*tmp = dev->class->devnode(dev, mode);
3786 	if (*tmp)
3787 		return *tmp;
3788 
3789 	/* return name without allocation, tmp == NULL */
3790 	if (strchr(dev_name(dev), '!') == NULL)
3791 		return dev_name(dev);
3792 
3793 	/* replace '!' in the name with '/' */
3794 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3795 	if (!s)
3796 		return NULL;
3797 	strreplace(s, '!', '/');
3798 	return *tmp = s;
3799 }
3800 
3801 /**
3802  * device_for_each_child - device child iterator.
3803  * @parent: parent struct device.
3804  * @fn: function to be called for each device.
3805  * @data: data for the callback.
3806  *
3807  * Iterate over @parent's child devices, and call @fn for each,
3808  * passing it @data.
3809  *
3810  * We check the return of @fn each time. If it returns anything
3811  * other than 0, we break out and return that value.
3812  */
3813 int device_for_each_child(struct device *parent, void *data,
3814 			  int (*fn)(struct device *dev, void *data))
3815 {
3816 	struct klist_iter i;
3817 	struct device *child;
3818 	int error = 0;
3819 
3820 	if (!parent->p)
3821 		return 0;
3822 
3823 	klist_iter_init(&parent->p->klist_children, &i);
3824 	while (!error && (child = next_device(&i)))
3825 		error = fn(child, data);
3826 	klist_iter_exit(&i);
3827 	return error;
3828 }
3829 EXPORT_SYMBOL_GPL(device_for_each_child);
3830 
3831 /**
3832  * device_for_each_child_reverse - device child iterator in reversed order.
3833  * @parent: parent struct device.
3834  * @fn: function to be called for each device.
3835  * @data: data for the callback.
3836  *
3837  * Iterate over @parent's child devices, and call @fn for each,
3838  * passing it @data.
3839  *
3840  * We check the return of @fn each time. If it returns anything
3841  * other than 0, we break out and return that value.
3842  */
3843 int device_for_each_child_reverse(struct device *parent, void *data,
3844 				  int (*fn)(struct device *dev, void *data))
3845 {
3846 	struct klist_iter i;
3847 	struct device *child;
3848 	int error = 0;
3849 
3850 	if (!parent->p)
3851 		return 0;
3852 
3853 	klist_iter_init(&parent->p->klist_children, &i);
3854 	while ((child = prev_device(&i)) && !error)
3855 		error = fn(child, data);
3856 	klist_iter_exit(&i);
3857 	return error;
3858 }
3859 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3860 
3861 /**
3862  * device_find_child - device iterator for locating a particular device.
3863  * @parent: parent struct device
3864  * @match: Callback function to check device
3865  * @data: Data to pass to match function
3866  *
3867  * This is similar to the device_for_each_child() function above, but it
3868  * returns a reference to a device that is 'found' for later use, as
3869  * determined by the @match callback.
3870  *
3871  * The callback should return 0 if the device doesn't match and non-zero
3872  * if it does.  If the callback returns non-zero and a reference to the
3873  * current device can be obtained, this function will return to the caller
3874  * and not iterate over any more devices.
3875  *
3876  * NOTE: you will need to drop the reference with put_device() after use.
3877  */
3878 struct device *device_find_child(struct device *parent, void *data,
3879 				 int (*match)(struct device *dev, void *data))
3880 {
3881 	struct klist_iter i;
3882 	struct device *child;
3883 
3884 	if (!parent)
3885 		return NULL;
3886 
3887 	klist_iter_init(&parent->p->klist_children, &i);
3888 	while ((child = next_device(&i)))
3889 		if (match(child, data) && get_device(child))
3890 			break;
3891 	klist_iter_exit(&i);
3892 	return child;
3893 }
3894 EXPORT_SYMBOL_GPL(device_find_child);
3895 
3896 /**
3897  * device_find_child_by_name - device iterator for locating a child device.
3898  * @parent: parent struct device
3899  * @name: name of the child device
3900  *
3901  * This is similar to the device_find_child() function above, but it
3902  * returns a reference to a device that has the name @name.
3903  *
3904  * NOTE: you will need to drop the reference with put_device() after use.
3905  */
3906 struct device *device_find_child_by_name(struct device *parent,
3907 					 const char *name)
3908 {
3909 	struct klist_iter i;
3910 	struct device *child;
3911 
3912 	if (!parent)
3913 		return NULL;
3914 
3915 	klist_iter_init(&parent->p->klist_children, &i);
3916 	while ((child = next_device(&i)))
3917 		if (sysfs_streq(dev_name(child), name) && get_device(child))
3918 			break;
3919 	klist_iter_exit(&i);
3920 	return child;
3921 }
3922 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3923 
3924 static int match_any(struct device *dev, void *unused)
3925 {
3926 	return 1;
3927 }
3928 
3929 /**
3930  * device_find_any_child - device iterator for locating a child device, if any.
3931  * @parent: parent struct device
3932  *
3933  * This is similar to the device_find_child() function above, but it
3934  * returns a reference to a child device, if any.
3935  *
3936  * NOTE: you will need to drop the reference with put_device() after use.
3937  */
3938 struct device *device_find_any_child(struct device *parent)
3939 {
3940 	return device_find_child(parent, NULL, match_any);
3941 }
3942 EXPORT_SYMBOL_GPL(device_find_any_child);
3943 
3944 int __init devices_init(void)
3945 {
3946 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3947 	if (!devices_kset)
3948 		return -ENOMEM;
3949 	dev_kobj = kobject_create_and_add("dev", NULL);
3950 	if (!dev_kobj)
3951 		goto dev_kobj_err;
3952 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3953 	if (!sysfs_dev_block_kobj)
3954 		goto block_kobj_err;
3955 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3956 	if (!sysfs_dev_char_kobj)
3957 		goto char_kobj_err;
3958 
3959 	return 0;
3960 
3961  char_kobj_err:
3962 	kobject_put(sysfs_dev_block_kobj);
3963  block_kobj_err:
3964 	kobject_put(dev_kobj);
3965  dev_kobj_err:
3966 	kset_unregister(devices_kset);
3967 	return -ENOMEM;
3968 }
3969 
3970 static int device_check_offline(struct device *dev, void *not_used)
3971 {
3972 	int ret;
3973 
3974 	ret = device_for_each_child(dev, NULL, device_check_offline);
3975 	if (ret)
3976 		return ret;
3977 
3978 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3979 }
3980 
3981 /**
3982  * device_offline - Prepare the device for hot-removal.
3983  * @dev: Device to be put offline.
3984  *
3985  * Execute the device bus type's .offline() callback, if present, to prepare
3986  * the device for a subsequent hot-removal.  If that succeeds, the device must
3987  * not be used until either it is removed or its bus type's .online() callback
3988  * is executed.
3989  *
3990  * Call under device_hotplug_lock.
3991  */
3992 int device_offline(struct device *dev)
3993 {
3994 	int ret;
3995 
3996 	if (dev->offline_disabled)
3997 		return -EPERM;
3998 
3999 	ret = device_for_each_child(dev, NULL, device_check_offline);
4000 	if (ret)
4001 		return ret;
4002 
4003 	device_lock(dev);
4004 	if (device_supports_offline(dev)) {
4005 		if (dev->offline) {
4006 			ret = 1;
4007 		} else {
4008 			ret = dev->bus->offline(dev);
4009 			if (!ret) {
4010 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
4011 				dev->offline = true;
4012 			}
4013 		}
4014 	}
4015 	device_unlock(dev);
4016 
4017 	return ret;
4018 }
4019 
4020 /**
4021  * device_online - Put the device back online after successful device_offline().
4022  * @dev: Device to be put back online.
4023  *
4024  * If device_offline() has been successfully executed for @dev, but the device
4025  * has not been removed subsequently, execute its bus type's .online() callback
4026  * to indicate that the device can be used again.
4027  *
4028  * Call under device_hotplug_lock.
4029  */
4030 int device_online(struct device *dev)
4031 {
4032 	int ret = 0;
4033 
4034 	device_lock(dev);
4035 	if (device_supports_offline(dev)) {
4036 		if (dev->offline) {
4037 			ret = dev->bus->online(dev);
4038 			if (!ret) {
4039 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4040 				dev->offline = false;
4041 			}
4042 		} else {
4043 			ret = 1;
4044 		}
4045 	}
4046 	device_unlock(dev);
4047 
4048 	return ret;
4049 }
4050 
4051 struct root_device {
4052 	struct device dev;
4053 	struct module *owner;
4054 };
4055 
4056 static inline struct root_device *to_root_device(struct device *d)
4057 {
4058 	return container_of(d, struct root_device, dev);
4059 }
4060 
4061 static void root_device_release(struct device *dev)
4062 {
4063 	kfree(to_root_device(dev));
4064 }
4065 
4066 /**
4067  * __root_device_register - allocate and register a root device
4068  * @name: root device name
4069  * @owner: owner module of the root device, usually THIS_MODULE
4070  *
4071  * This function allocates a root device and registers it
4072  * using device_register(). In order to free the returned
4073  * device, use root_device_unregister().
4074  *
4075  * Root devices are dummy devices which allow other devices
4076  * to be grouped under /sys/devices. Use this function to
4077  * allocate a root device and then use it as the parent of
4078  * any device which should appear under /sys/devices/{name}
4079  *
4080  * The /sys/devices/{name} directory will also contain a
4081  * 'module' symlink which points to the @owner directory
4082  * in sysfs.
4083  *
4084  * Returns &struct device pointer on success, or ERR_PTR() on error.
4085  *
4086  * Note: You probably want to use root_device_register().
4087  */
4088 struct device *__root_device_register(const char *name, struct module *owner)
4089 {
4090 	struct root_device *root;
4091 	int err = -ENOMEM;
4092 
4093 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4094 	if (!root)
4095 		return ERR_PTR(err);
4096 
4097 	err = dev_set_name(&root->dev, "%s", name);
4098 	if (err) {
4099 		kfree(root);
4100 		return ERR_PTR(err);
4101 	}
4102 
4103 	root->dev.release = root_device_release;
4104 
4105 	err = device_register(&root->dev);
4106 	if (err) {
4107 		put_device(&root->dev);
4108 		return ERR_PTR(err);
4109 	}
4110 
4111 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4112 	if (owner) {
4113 		struct module_kobject *mk = &owner->mkobj;
4114 
4115 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4116 		if (err) {
4117 			device_unregister(&root->dev);
4118 			return ERR_PTR(err);
4119 		}
4120 		root->owner = owner;
4121 	}
4122 #endif
4123 
4124 	return &root->dev;
4125 }
4126 EXPORT_SYMBOL_GPL(__root_device_register);
4127 
4128 /**
4129  * root_device_unregister - unregister and free a root device
4130  * @dev: device going away
4131  *
4132  * This function unregisters and cleans up a device that was created by
4133  * root_device_register().
4134  */
4135 void root_device_unregister(struct device *dev)
4136 {
4137 	struct root_device *root = to_root_device(dev);
4138 
4139 	if (root->owner)
4140 		sysfs_remove_link(&root->dev.kobj, "module");
4141 
4142 	device_unregister(dev);
4143 }
4144 EXPORT_SYMBOL_GPL(root_device_unregister);
4145 
4146 
4147 static void device_create_release(struct device *dev)
4148 {
4149 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4150 	kfree(dev);
4151 }
4152 
4153 static __printf(6, 0) struct device *
4154 device_create_groups_vargs(struct class *class, struct device *parent,
4155 			   dev_t devt, void *drvdata,
4156 			   const struct attribute_group **groups,
4157 			   const char *fmt, va_list args)
4158 {
4159 	struct device *dev = NULL;
4160 	int retval = -ENODEV;
4161 
4162 	if (class == NULL || IS_ERR(class))
4163 		goto error;
4164 
4165 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4166 	if (!dev) {
4167 		retval = -ENOMEM;
4168 		goto error;
4169 	}
4170 
4171 	device_initialize(dev);
4172 	dev->devt = devt;
4173 	dev->class = class;
4174 	dev->parent = parent;
4175 	dev->groups = groups;
4176 	dev->release = device_create_release;
4177 	dev_set_drvdata(dev, drvdata);
4178 
4179 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4180 	if (retval)
4181 		goto error;
4182 
4183 	retval = device_add(dev);
4184 	if (retval)
4185 		goto error;
4186 
4187 	return dev;
4188 
4189 error:
4190 	put_device(dev);
4191 	return ERR_PTR(retval);
4192 }
4193 
4194 /**
4195  * device_create - creates a device and registers it with sysfs
4196  * @class: pointer to the struct class that this device should be registered to
4197  * @parent: pointer to the parent struct device of this new device, if any
4198  * @devt: the dev_t for the char device to be added
4199  * @drvdata: the data to be added to the device for callbacks
4200  * @fmt: string for the device's name
4201  *
4202  * This function can be used by char device classes.  A struct device
4203  * will be created in sysfs, registered to the specified class.
4204  *
4205  * A "dev" file will be created, showing the dev_t for the device, if
4206  * the dev_t is not 0,0.
4207  * If a pointer to a parent struct device is passed in, the newly created
4208  * struct device will be a child of that device in sysfs.
4209  * The pointer to the struct device will be returned from the call.
4210  * Any further sysfs files that might be required can be created using this
4211  * pointer.
4212  *
4213  * Returns &struct device pointer on success, or ERR_PTR() on error.
4214  *
4215  * Note: the struct class passed to this function must have previously
4216  * been created with a call to class_create().
4217  */
4218 struct device *device_create(struct class *class, struct device *parent,
4219 			     dev_t devt, void *drvdata, const char *fmt, ...)
4220 {
4221 	va_list vargs;
4222 	struct device *dev;
4223 
4224 	va_start(vargs, fmt);
4225 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4226 					  fmt, vargs);
4227 	va_end(vargs);
4228 	return dev;
4229 }
4230 EXPORT_SYMBOL_GPL(device_create);
4231 
4232 /**
4233  * device_create_with_groups - creates a device and registers it with sysfs
4234  * @class: pointer to the struct class that this device should be registered to
4235  * @parent: pointer to the parent struct device of this new device, if any
4236  * @devt: the dev_t for the char device to be added
4237  * @drvdata: the data to be added to the device for callbacks
4238  * @groups: NULL-terminated list of attribute groups to be created
4239  * @fmt: string for the device's name
4240  *
4241  * This function can be used by char device classes.  A struct device
4242  * will be created in sysfs, registered to the specified class.
4243  * Additional attributes specified in the groups parameter will also
4244  * be created automatically.
4245  *
4246  * A "dev" file will be created, showing the dev_t for the device, if
4247  * the dev_t is not 0,0.
4248  * If a pointer to a parent struct device is passed in, the newly created
4249  * struct device will be a child of that device in sysfs.
4250  * The pointer to the struct device will be returned from the call.
4251  * Any further sysfs files that might be required can be created using this
4252  * pointer.
4253  *
4254  * Returns &struct device pointer on success, or ERR_PTR() on error.
4255  *
4256  * Note: the struct class passed to this function must have previously
4257  * been created with a call to class_create().
4258  */
4259 struct device *device_create_with_groups(struct class *class,
4260 					 struct device *parent, dev_t devt,
4261 					 void *drvdata,
4262 					 const struct attribute_group **groups,
4263 					 const char *fmt, ...)
4264 {
4265 	va_list vargs;
4266 	struct device *dev;
4267 
4268 	va_start(vargs, fmt);
4269 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4270 					 fmt, vargs);
4271 	va_end(vargs);
4272 	return dev;
4273 }
4274 EXPORT_SYMBOL_GPL(device_create_with_groups);
4275 
4276 /**
4277  * device_destroy - removes a device that was created with device_create()
4278  * @class: pointer to the struct class that this device was registered with
4279  * @devt: the dev_t of the device that was previously registered
4280  *
4281  * This call unregisters and cleans up a device that was created with a
4282  * call to device_create().
4283  */
4284 void device_destroy(struct class *class, dev_t devt)
4285 {
4286 	struct device *dev;
4287 
4288 	dev = class_find_device_by_devt(class, devt);
4289 	if (dev) {
4290 		put_device(dev);
4291 		device_unregister(dev);
4292 	}
4293 }
4294 EXPORT_SYMBOL_GPL(device_destroy);
4295 
4296 /**
4297  * device_rename - renames a device
4298  * @dev: the pointer to the struct device to be renamed
4299  * @new_name: the new name of the device
4300  *
4301  * It is the responsibility of the caller to provide mutual
4302  * exclusion between two different calls of device_rename
4303  * on the same device to ensure that new_name is valid and
4304  * won't conflict with other devices.
4305  *
4306  * Note: Don't call this function.  Currently, the networking layer calls this
4307  * function, but that will change.  The following text from Kay Sievers offers
4308  * some insight:
4309  *
4310  * Renaming devices is racy at many levels, symlinks and other stuff are not
4311  * replaced atomically, and you get a "move" uevent, but it's not easy to
4312  * connect the event to the old and new device. Device nodes are not renamed at
4313  * all, there isn't even support for that in the kernel now.
4314  *
4315  * In the meantime, during renaming, your target name might be taken by another
4316  * driver, creating conflicts. Or the old name is taken directly after you
4317  * renamed it -- then you get events for the same DEVPATH, before you even see
4318  * the "move" event. It's just a mess, and nothing new should ever rely on
4319  * kernel device renaming. Besides that, it's not even implemented now for
4320  * other things than (driver-core wise very simple) network devices.
4321  *
4322  * We are currently about to change network renaming in udev to completely
4323  * disallow renaming of devices in the same namespace as the kernel uses,
4324  * because we can't solve the problems properly, that arise with swapping names
4325  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4326  * be allowed to some other name than eth[0-9]*, for the aforementioned
4327  * reasons.
4328  *
4329  * Make up a "real" name in the driver before you register anything, or add
4330  * some other attributes for userspace to find the device, or use udev to add
4331  * symlinks -- but never rename kernel devices later, it's a complete mess. We
4332  * don't even want to get into that and try to implement the missing pieces in
4333  * the core. We really have other pieces to fix in the driver core mess. :)
4334  */
4335 int device_rename(struct device *dev, const char *new_name)
4336 {
4337 	struct kobject *kobj = &dev->kobj;
4338 	char *old_device_name = NULL;
4339 	int error;
4340 
4341 	dev = get_device(dev);
4342 	if (!dev)
4343 		return -EINVAL;
4344 
4345 	dev_dbg(dev, "renaming to %s\n", new_name);
4346 
4347 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4348 	if (!old_device_name) {
4349 		error = -ENOMEM;
4350 		goto out;
4351 	}
4352 
4353 	if (dev->class) {
4354 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4355 					     kobj, old_device_name,
4356 					     new_name, kobject_namespace(kobj));
4357 		if (error)
4358 			goto out;
4359 	}
4360 
4361 	error = kobject_rename(kobj, new_name);
4362 	if (error)
4363 		goto out;
4364 
4365 out:
4366 	put_device(dev);
4367 
4368 	kfree(old_device_name);
4369 
4370 	return error;
4371 }
4372 EXPORT_SYMBOL_GPL(device_rename);
4373 
4374 static int device_move_class_links(struct device *dev,
4375 				   struct device *old_parent,
4376 				   struct device *new_parent)
4377 {
4378 	int error = 0;
4379 
4380 	if (old_parent)
4381 		sysfs_remove_link(&dev->kobj, "device");
4382 	if (new_parent)
4383 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4384 					  "device");
4385 	return error;
4386 }
4387 
4388 /**
4389  * device_move - moves a device to a new parent
4390  * @dev: the pointer to the struct device to be moved
4391  * @new_parent: the new parent of the device (can be NULL)
4392  * @dpm_order: how to reorder the dpm_list
4393  */
4394 int device_move(struct device *dev, struct device *new_parent,
4395 		enum dpm_order dpm_order)
4396 {
4397 	int error;
4398 	struct device *old_parent;
4399 	struct kobject *new_parent_kobj;
4400 
4401 	dev = get_device(dev);
4402 	if (!dev)
4403 		return -EINVAL;
4404 
4405 	device_pm_lock();
4406 	new_parent = get_device(new_parent);
4407 	new_parent_kobj = get_device_parent(dev, new_parent);
4408 	if (IS_ERR(new_parent_kobj)) {
4409 		error = PTR_ERR(new_parent_kobj);
4410 		put_device(new_parent);
4411 		goto out;
4412 	}
4413 
4414 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4415 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4416 	error = kobject_move(&dev->kobj, new_parent_kobj);
4417 	if (error) {
4418 		cleanup_glue_dir(dev, new_parent_kobj);
4419 		put_device(new_parent);
4420 		goto out;
4421 	}
4422 	old_parent = dev->parent;
4423 	dev->parent = new_parent;
4424 	if (old_parent)
4425 		klist_remove(&dev->p->knode_parent);
4426 	if (new_parent) {
4427 		klist_add_tail(&dev->p->knode_parent,
4428 			       &new_parent->p->klist_children);
4429 		set_dev_node(dev, dev_to_node(new_parent));
4430 	}
4431 
4432 	if (dev->class) {
4433 		error = device_move_class_links(dev, old_parent, new_parent);
4434 		if (error) {
4435 			/* We ignore errors on cleanup since we're hosed anyway... */
4436 			device_move_class_links(dev, new_parent, old_parent);
4437 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4438 				if (new_parent)
4439 					klist_remove(&dev->p->knode_parent);
4440 				dev->parent = old_parent;
4441 				if (old_parent) {
4442 					klist_add_tail(&dev->p->knode_parent,
4443 						       &old_parent->p->klist_children);
4444 					set_dev_node(dev, dev_to_node(old_parent));
4445 				}
4446 			}
4447 			cleanup_glue_dir(dev, new_parent_kobj);
4448 			put_device(new_parent);
4449 			goto out;
4450 		}
4451 	}
4452 	switch (dpm_order) {
4453 	case DPM_ORDER_NONE:
4454 		break;
4455 	case DPM_ORDER_DEV_AFTER_PARENT:
4456 		device_pm_move_after(dev, new_parent);
4457 		devices_kset_move_after(dev, new_parent);
4458 		break;
4459 	case DPM_ORDER_PARENT_BEFORE_DEV:
4460 		device_pm_move_before(new_parent, dev);
4461 		devices_kset_move_before(new_parent, dev);
4462 		break;
4463 	case DPM_ORDER_DEV_LAST:
4464 		device_pm_move_last(dev);
4465 		devices_kset_move_last(dev);
4466 		break;
4467 	}
4468 
4469 	put_device(old_parent);
4470 out:
4471 	device_pm_unlock();
4472 	put_device(dev);
4473 	return error;
4474 }
4475 EXPORT_SYMBOL_GPL(device_move);
4476 
4477 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4478 				     kgid_t kgid)
4479 {
4480 	struct kobject *kobj = &dev->kobj;
4481 	struct class *class = dev->class;
4482 	const struct device_type *type = dev->type;
4483 	int error;
4484 
4485 	if (class) {
4486 		/*
4487 		 * Change the device groups of the device class for @dev to
4488 		 * @kuid/@kgid.
4489 		 */
4490 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4491 						  kgid);
4492 		if (error)
4493 			return error;
4494 	}
4495 
4496 	if (type) {
4497 		/*
4498 		 * Change the device groups of the device type for @dev to
4499 		 * @kuid/@kgid.
4500 		 */
4501 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4502 						  kgid);
4503 		if (error)
4504 			return error;
4505 	}
4506 
4507 	/* Change the device groups of @dev to @kuid/@kgid. */
4508 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4509 	if (error)
4510 		return error;
4511 
4512 	if (device_supports_offline(dev) && !dev->offline_disabled) {
4513 		/* Change online device attributes of @dev to @kuid/@kgid. */
4514 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4515 						kuid, kgid);
4516 		if (error)
4517 			return error;
4518 	}
4519 
4520 	return 0;
4521 }
4522 
4523 /**
4524  * device_change_owner - change the owner of an existing device.
4525  * @dev: device.
4526  * @kuid: new owner's kuid
4527  * @kgid: new owner's kgid
4528  *
4529  * This changes the owner of @dev and its corresponding sysfs entries to
4530  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4531  * core.
4532  *
4533  * Returns 0 on success or error code on failure.
4534  */
4535 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4536 {
4537 	int error;
4538 	struct kobject *kobj = &dev->kobj;
4539 
4540 	dev = get_device(dev);
4541 	if (!dev)
4542 		return -EINVAL;
4543 
4544 	/*
4545 	 * Change the kobject and the default attributes and groups of the
4546 	 * ktype associated with it to @kuid/@kgid.
4547 	 */
4548 	error = sysfs_change_owner(kobj, kuid, kgid);
4549 	if (error)
4550 		goto out;
4551 
4552 	/*
4553 	 * Change the uevent file for @dev to the new owner. The uevent file
4554 	 * was created in a separate step when @dev got added and we mirror
4555 	 * that step here.
4556 	 */
4557 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4558 					kgid);
4559 	if (error)
4560 		goto out;
4561 
4562 	/*
4563 	 * Change the device groups, the device groups associated with the
4564 	 * device class, and the groups associated with the device type of @dev
4565 	 * to @kuid/@kgid.
4566 	 */
4567 	error = device_attrs_change_owner(dev, kuid, kgid);
4568 	if (error)
4569 		goto out;
4570 
4571 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4572 	if (error)
4573 		goto out;
4574 
4575 #ifdef CONFIG_BLOCK
4576 	if (sysfs_deprecated && dev->class == &block_class)
4577 		goto out;
4578 #endif
4579 
4580 	/*
4581 	 * Change the owner of the symlink located in the class directory of
4582 	 * the device class associated with @dev which points to the actual
4583 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4584 	 * symlink shows the same permissions as its target.
4585 	 */
4586 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4587 					dev_name(dev), kuid, kgid);
4588 	if (error)
4589 		goto out;
4590 
4591 out:
4592 	put_device(dev);
4593 	return error;
4594 }
4595 EXPORT_SYMBOL_GPL(device_change_owner);
4596 
4597 /**
4598  * device_shutdown - call ->shutdown() on each device to shutdown.
4599  */
4600 void device_shutdown(void)
4601 {
4602 	struct device *dev, *parent;
4603 
4604 	wait_for_device_probe();
4605 	device_block_probing();
4606 
4607 	cpufreq_suspend();
4608 
4609 	spin_lock(&devices_kset->list_lock);
4610 	/*
4611 	 * Walk the devices list backward, shutting down each in turn.
4612 	 * Beware that device unplug events may also start pulling
4613 	 * devices offline, even as the system is shutting down.
4614 	 */
4615 	while (!list_empty(&devices_kset->list)) {
4616 		dev = list_entry(devices_kset->list.prev, struct device,
4617 				kobj.entry);
4618 
4619 		/*
4620 		 * hold reference count of device's parent to
4621 		 * prevent it from being freed because parent's
4622 		 * lock is to be held
4623 		 */
4624 		parent = get_device(dev->parent);
4625 		get_device(dev);
4626 		/*
4627 		 * Make sure the device is off the kset list, in the
4628 		 * event that dev->*->shutdown() doesn't remove it.
4629 		 */
4630 		list_del_init(&dev->kobj.entry);
4631 		spin_unlock(&devices_kset->list_lock);
4632 
4633 		/* hold lock to avoid race with probe/release */
4634 		if (parent)
4635 			device_lock(parent);
4636 		device_lock(dev);
4637 
4638 		/* Don't allow any more runtime suspends */
4639 		pm_runtime_get_noresume(dev);
4640 		pm_runtime_barrier(dev);
4641 
4642 		if (dev->class && dev->class->shutdown_pre) {
4643 			if (initcall_debug)
4644 				dev_info(dev, "shutdown_pre\n");
4645 			dev->class->shutdown_pre(dev);
4646 		}
4647 		if (dev->bus && dev->bus->shutdown) {
4648 			if (initcall_debug)
4649 				dev_info(dev, "shutdown\n");
4650 			dev->bus->shutdown(dev);
4651 		} else if (dev->driver && dev->driver->shutdown) {
4652 			if (initcall_debug)
4653 				dev_info(dev, "shutdown\n");
4654 			dev->driver->shutdown(dev);
4655 		}
4656 
4657 		device_unlock(dev);
4658 		if (parent)
4659 			device_unlock(parent);
4660 
4661 		put_device(dev);
4662 		put_device(parent);
4663 
4664 		spin_lock(&devices_kset->list_lock);
4665 	}
4666 	spin_unlock(&devices_kset->list_lock);
4667 }
4668 
4669 /*
4670  * Device logging functions
4671  */
4672 
4673 #ifdef CONFIG_PRINTK
4674 static void
4675 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4676 {
4677 	const char *subsys;
4678 
4679 	memset(dev_info, 0, sizeof(*dev_info));
4680 
4681 	if (dev->class)
4682 		subsys = dev->class->name;
4683 	else if (dev->bus)
4684 		subsys = dev->bus->name;
4685 	else
4686 		return;
4687 
4688 	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
4689 
4690 	/*
4691 	 * Add device identifier DEVICE=:
4692 	 *   b12:8         block dev_t
4693 	 *   c127:3        char dev_t
4694 	 *   n8            netdev ifindex
4695 	 *   +sound:card0  subsystem:devname
4696 	 */
4697 	if (MAJOR(dev->devt)) {
4698 		char c;
4699 
4700 		if (strcmp(subsys, "block") == 0)
4701 			c = 'b';
4702 		else
4703 			c = 'c';
4704 
4705 		snprintf(dev_info->device, sizeof(dev_info->device),
4706 			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
4707 	} else if (strcmp(subsys, "net") == 0) {
4708 		struct net_device *net = to_net_dev(dev);
4709 
4710 		snprintf(dev_info->device, sizeof(dev_info->device),
4711 			 "n%u", net->ifindex);
4712 	} else {
4713 		snprintf(dev_info->device, sizeof(dev_info->device),
4714 			 "+%s:%s", subsys, dev_name(dev));
4715 	}
4716 }
4717 
4718 int dev_vprintk_emit(int level, const struct device *dev,
4719 		     const char *fmt, va_list args)
4720 {
4721 	struct dev_printk_info dev_info;
4722 
4723 	set_dev_info(dev, &dev_info);
4724 
4725 	return vprintk_emit(0, level, &dev_info, fmt, args);
4726 }
4727 EXPORT_SYMBOL(dev_vprintk_emit);
4728 
4729 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4730 {
4731 	va_list args;
4732 	int r;
4733 
4734 	va_start(args, fmt);
4735 
4736 	r = dev_vprintk_emit(level, dev, fmt, args);
4737 
4738 	va_end(args);
4739 
4740 	return r;
4741 }
4742 EXPORT_SYMBOL(dev_printk_emit);
4743 
4744 static void __dev_printk(const char *level, const struct device *dev,
4745 			struct va_format *vaf)
4746 {
4747 	if (dev)
4748 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4749 				dev_driver_string(dev), dev_name(dev), vaf);
4750 	else
4751 		printk("%s(NULL device *): %pV", level, vaf);
4752 }
4753 
4754 void _dev_printk(const char *level, const struct device *dev,
4755 		 const char *fmt, ...)
4756 {
4757 	struct va_format vaf;
4758 	va_list args;
4759 
4760 	va_start(args, fmt);
4761 
4762 	vaf.fmt = fmt;
4763 	vaf.va = &args;
4764 
4765 	__dev_printk(level, dev, &vaf);
4766 
4767 	va_end(args);
4768 }
4769 EXPORT_SYMBOL(_dev_printk);
4770 
4771 #define define_dev_printk_level(func, kern_level)		\
4772 void func(const struct device *dev, const char *fmt, ...)	\
4773 {								\
4774 	struct va_format vaf;					\
4775 	va_list args;						\
4776 								\
4777 	va_start(args, fmt);					\
4778 								\
4779 	vaf.fmt = fmt;						\
4780 	vaf.va = &args;						\
4781 								\
4782 	__dev_printk(kern_level, dev, &vaf);			\
4783 								\
4784 	va_end(args);						\
4785 }								\
4786 EXPORT_SYMBOL(func);
4787 
4788 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4789 define_dev_printk_level(_dev_alert, KERN_ALERT);
4790 define_dev_printk_level(_dev_crit, KERN_CRIT);
4791 define_dev_printk_level(_dev_err, KERN_ERR);
4792 define_dev_printk_level(_dev_warn, KERN_WARNING);
4793 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4794 define_dev_printk_level(_dev_info, KERN_INFO);
4795 
4796 #endif
4797 
4798 /**
4799  * dev_err_probe - probe error check and log helper
4800  * @dev: the pointer to the struct device
4801  * @err: error value to test
4802  * @fmt: printf-style format string
4803  * @...: arguments as specified in the format string
4804  *
4805  * This helper implements common pattern present in probe functions for error
4806  * checking: print debug or error message depending if the error value is
4807  * -EPROBE_DEFER and propagate error upwards.
4808  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4809  * checked later by reading devices_deferred debugfs attribute.
4810  * It replaces code sequence::
4811  *
4812  * 	if (err != -EPROBE_DEFER)
4813  * 		dev_err(dev, ...);
4814  * 	else
4815  * 		dev_dbg(dev, ...);
4816  * 	return err;
4817  *
4818  * with::
4819  *
4820  * 	return dev_err_probe(dev, err, ...);
4821  *
4822  * Note that it is deemed acceptable to use this function for error
4823  * prints during probe even if the @err is known to never be -EPROBE_DEFER.
4824  * The benefit compared to a normal dev_err() is the standardized format
4825  * of the error code and the fact that the error code is returned.
4826  *
4827  * Returns @err.
4828  *
4829  */
4830 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4831 {
4832 	struct va_format vaf;
4833 	va_list args;
4834 
4835 	va_start(args, fmt);
4836 	vaf.fmt = fmt;
4837 	vaf.va = &args;
4838 
4839 	if (err != -EPROBE_DEFER) {
4840 		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4841 	} else {
4842 		device_set_deferred_probe_reason(dev, &vaf);
4843 		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4844 	}
4845 
4846 	va_end(args);
4847 
4848 	return err;
4849 }
4850 EXPORT_SYMBOL_GPL(dev_err_probe);
4851 
4852 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4853 {
4854 	return fwnode && !IS_ERR(fwnode->secondary);
4855 }
4856 
4857 /**
4858  * set_primary_fwnode - Change the primary firmware node of a given device.
4859  * @dev: Device to handle.
4860  * @fwnode: New primary firmware node of the device.
4861  *
4862  * Set the device's firmware node pointer to @fwnode, but if a secondary
4863  * firmware node of the device is present, preserve it.
4864  *
4865  * Valid fwnode cases are:
4866  *  - primary --> secondary --> -ENODEV
4867  *  - primary --> NULL
4868  *  - secondary --> -ENODEV
4869  *  - NULL
4870  */
4871 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4872 {
4873 	struct device *parent = dev->parent;
4874 	struct fwnode_handle *fn = dev->fwnode;
4875 
4876 	if (fwnode) {
4877 		if (fwnode_is_primary(fn))
4878 			fn = fn->secondary;
4879 
4880 		if (fn) {
4881 			WARN_ON(fwnode->secondary);
4882 			fwnode->secondary = fn;
4883 		}
4884 		dev->fwnode = fwnode;
4885 	} else {
4886 		if (fwnode_is_primary(fn)) {
4887 			dev->fwnode = fn->secondary;
4888 			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4889 			if (!(parent && fn == parent->fwnode))
4890 				fn->secondary = NULL;
4891 		} else {
4892 			dev->fwnode = NULL;
4893 		}
4894 	}
4895 }
4896 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4897 
4898 /**
4899  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4900  * @dev: Device to handle.
4901  * @fwnode: New secondary firmware node of the device.
4902  *
4903  * If a primary firmware node of the device is present, set its secondary
4904  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4905  * @fwnode.
4906  */
4907 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4908 {
4909 	if (fwnode)
4910 		fwnode->secondary = ERR_PTR(-ENODEV);
4911 
4912 	if (fwnode_is_primary(dev->fwnode))
4913 		dev->fwnode->secondary = fwnode;
4914 	else
4915 		dev->fwnode = fwnode;
4916 }
4917 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4918 
4919 /**
4920  * device_set_of_node_from_dev - reuse device-tree node of another device
4921  * @dev: device whose device-tree node is being set
4922  * @dev2: device whose device-tree node is being reused
4923  *
4924  * Takes another reference to the new device-tree node after first dropping
4925  * any reference held to the old node.
4926  */
4927 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4928 {
4929 	of_node_put(dev->of_node);
4930 	dev->of_node = of_node_get(dev2->of_node);
4931 	dev->of_node_reused = true;
4932 }
4933 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4934 
4935 void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4936 {
4937 	dev->fwnode = fwnode;
4938 	dev->of_node = to_of_node(fwnode);
4939 }
4940 EXPORT_SYMBOL_GPL(device_set_node);
4941 
4942 int device_match_name(struct device *dev, const void *name)
4943 {
4944 	return sysfs_streq(dev_name(dev), name);
4945 }
4946 EXPORT_SYMBOL_GPL(device_match_name);
4947 
4948 int device_match_of_node(struct device *dev, const void *np)
4949 {
4950 	return dev->of_node == np;
4951 }
4952 EXPORT_SYMBOL_GPL(device_match_of_node);
4953 
4954 int device_match_fwnode(struct device *dev, const void *fwnode)
4955 {
4956 	return dev_fwnode(dev) == fwnode;
4957 }
4958 EXPORT_SYMBOL_GPL(device_match_fwnode);
4959 
4960 int device_match_devt(struct device *dev, const void *pdevt)
4961 {
4962 	return dev->devt == *(dev_t *)pdevt;
4963 }
4964 EXPORT_SYMBOL_GPL(device_match_devt);
4965 
4966 int device_match_acpi_dev(struct device *dev, const void *adev)
4967 {
4968 	return ACPI_COMPANION(dev) == adev;
4969 }
4970 EXPORT_SYMBOL(device_match_acpi_dev);
4971 
4972 int device_match_acpi_handle(struct device *dev, const void *handle)
4973 {
4974 	return ACPI_HANDLE(dev) == handle;
4975 }
4976 EXPORT_SYMBOL(device_match_acpi_handle);
4977 
4978 int device_match_any(struct device *dev, const void *unused)
4979 {
4980 	return 1;
4981 }
4982 EXPORT_SYMBOL_GPL(device_match_any);
4983