1 /* 2 * drivers/base/core.c - core driver model code (device registration, etc) 3 * 4 * Copyright (c) 2002-3 Patrick Mochel 5 * Copyright (c) 2002-3 Open Source Development Labs 6 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 7 * Copyright (c) 2006 Novell, Inc. 8 * 9 * This file is released under the GPLv2 10 * 11 */ 12 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/kallsyms.h> 26 #include <linux/mutex.h> 27 #include <linux/pm_runtime.h> 28 #include <linux/netdevice.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sysfs.h> 31 32 #include "base.h" 33 #include "power/power.h" 34 35 #ifdef CONFIG_SYSFS_DEPRECATED 36 #ifdef CONFIG_SYSFS_DEPRECATED_V2 37 long sysfs_deprecated = 1; 38 #else 39 long sysfs_deprecated = 0; 40 #endif 41 static int __init sysfs_deprecated_setup(char *arg) 42 { 43 return kstrtol(arg, 10, &sysfs_deprecated); 44 } 45 early_param("sysfs.deprecated", sysfs_deprecated_setup); 46 #endif 47 48 /* Device links support. */ 49 50 #ifdef CONFIG_SRCU 51 static DEFINE_MUTEX(device_links_lock); 52 DEFINE_STATIC_SRCU(device_links_srcu); 53 54 static inline void device_links_write_lock(void) 55 { 56 mutex_lock(&device_links_lock); 57 } 58 59 static inline void device_links_write_unlock(void) 60 { 61 mutex_unlock(&device_links_lock); 62 } 63 64 int device_links_read_lock(void) 65 { 66 return srcu_read_lock(&device_links_srcu); 67 } 68 69 void device_links_read_unlock(int idx) 70 { 71 srcu_read_unlock(&device_links_srcu, idx); 72 } 73 #else /* !CONFIG_SRCU */ 74 static DECLARE_RWSEM(device_links_lock); 75 76 static inline void device_links_write_lock(void) 77 { 78 down_write(&device_links_lock); 79 } 80 81 static inline void device_links_write_unlock(void) 82 { 83 up_write(&device_links_lock); 84 } 85 86 int device_links_read_lock(void) 87 { 88 down_read(&device_links_lock); 89 return 0; 90 } 91 92 void device_links_read_unlock(int not_used) 93 { 94 up_read(&device_links_lock); 95 } 96 #endif /* !CONFIG_SRCU */ 97 98 /** 99 * device_is_dependent - Check if one device depends on another one 100 * @dev: Device to check dependencies for. 101 * @target: Device to check against. 102 * 103 * Check if @target depends on @dev or any device dependent on it (its child or 104 * its consumer etc). Return 1 if that is the case or 0 otherwise. 105 */ 106 static int device_is_dependent(struct device *dev, void *target) 107 { 108 struct device_link *link; 109 int ret; 110 111 if (WARN_ON(dev == target)) 112 return 1; 113 114 ret = device_for_each_child(dev, target, device_is_dependent); 115 if (ret) 116 return ret; 117 118 list_for_each_entry(link, &dev->links.consumers, s_node) { 119 if (WARN_ON(link->consumer == target)) 120 return 1; 121 122 ret = device_is_dependent(link->consumer, target); 123 if (ret) 124 break; 125 } 126 return ret; 127 } 128 129 static int device_reorder_to_tail(struct device *dev, void *not_used) 130 { 131 struct device_link *link; 132 133 /* 134 * Devices that have not been registered yet will be put to the ends 135 * of the lists during the registration, so skip them here. 136 */ 137 if (device_is_registered(dev)) 138 devices_kset_move_last(dev); 139 140 if (device_pm_initialized(dev)) 141 device_pm_move_last(dev); 142 143 device_for_each_child(dev, NULL, device_reorder_to_tail); 144 list_for_each_entry(link, &dev->links.consumers, s_node) 145 device_reorder_to_tail(link->consumer, NULL); 146 147 return 0; 148 } 149 150 /** 151 * device_link_add - Create a link between two devices. 152 * @consumer: Consumer end of the link. 153 * @supplier: Supplier end of the link. 154 * @flags: Link flags. 155 * 156 * The caller is responsible for the proper synchronization of the link creation 157 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 158 * runtime PM framework to take the link into account. Second, if the 159 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 160 * be forced into the active metastate and reference-counted upon the creation 161 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 162 * ignored. 163 * 164 * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically 165 * when the consumer device driver unbinds from it. The combination of both 166 * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL 167 * to be returned. 168 * 169 * A side effect of the link creation is re-ordering of dpm_list and the 170 * devices_kset list by moving the consumer device and all devices depending 171 * on it to the ends of these lists (that does not happen to devices that have 172 * not been registered when this function is called). 173 * 174 * The supplier device is required to be registered when this function is called 175 * and NULL will be returned if that is not the case. The consumer device need 176 * not be registered, however. 177 */ 178 struct device_link *device_link_add(struct device *consumer, 179 struct device *supplier, u32 flags) 180 { 181 struct device_link *link; 182 183 if (!consumer || !supplier || 184 ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE))) 185 return NULL; 186 187 device_links_write_lock(); 188 device_pm_lock(); 189 190 /* 191 * If the supplier has not been fully registered yet or there is a 192 * reverse dependency between the consumer and the supplier already in 193 * the graph, return NULL. 194 */ 195 if (!device_pm_initialized(supplier) 196 || device_is_dependent(consumer, supplier)) { 197 link = NULL; 198 goto out; 199 } 200 201 list_for_each_entry(link, &supplier->links.consumers, s_node) 202 if (link->consumer == consumer) 203 goto out; 204 205 link = kzalloc(sizeof(*link), GFP_KERNEL); 206 if (!link) 207 goto out; 208 209 if (flags & DL_FLAG_PM_RUNTIME) { 210 if (flags & DL_FLAG_RPM_ACTIVE) { 211 if (pm_runtime_get_sync(supplier) < 0) { 212 pm_runtime_put_noidle(supplier); 213 kfree(link); 214 link = NULL; 215 goto out; 216 } 217 link->rpm_active = true; 218 } 219 pm_runtime_new_link(consumer); 220 } 221 get_device(supplier); 222 link->supplier = supplier; 223 INIT_LIST_HEAD(&link->s_node); 224 get_device(consumer); 225 link->consumer = consumer; 226 INIT_LIST_HEAD(&link->c_node); 227 link->flags = flags; 228 229 /* Determine the initial link state. */ 230 if (flags & DL_FLAG_STATELESS) { 231 link->status = DL_STATE_NONE; 232 } else { 233 switch (supplier->links.status) { 234 case DL_DEV_DRIVER_BOUND: 235 switch (consumer->links.status) { 236 case DL_DEV_PROBING: 237 /* 238 * Balance the decrementation of the supplier's 239 * runtime PM usage counter after consumer probe 240 * in driver_probe_device(). 241 */ 242 if (flags & DL_FLAG_PM_RUNTIME) 243 pm_runtime_get_sync(supplier); 244 245 link->status = DL_STATE_CONSUMER_PROBE; 246 break; 247 case DL_DEV_DRIVER_BOUND: 248 link->status = DL_STATE_ACTIVE; 249 break; 250 default: 251 link->status = DL_STATE_AVAILABLE; 252 break; 253 } 254 break; 255 case DL_DEV_UNBINDING: 256 link->status = DL_STATE_SUPPLIER_UNBIND; 257 break; 258 default: 259 link->status = DL_STATE_DORMANT; 260 break; 261 } 262 } 263 264 /* 265 * Move the consumer and all of the devices depending on it to the end 266 * of dpm_list and the devices_kset list. 267 * 268 * It is necessary to hold dpm_list locked throughout all that or else 269 * we may end up suspending with a wrong ordering of it. 270 */ 271 device_reorder_to_tail(consumer, NULL); 272 273 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 274 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 275 276 dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 277 278 out: 279 device_pm_unlock(); 280 device_links_write_unlock(); 281 return link; 282 } 283 EXPORT_SYMBOL_GPL(device_link_add); 284 285 static void device_link_free(struct device_link *link) 286 { 287 put_device(link->consumer); 288 put_device(link->supplier); 289 kfree(link); 290 } 291 292 #ifdef CONFIG_SRCU 293 static void __device_link_free_srcu(struct rcu_head *rhead) 294 { 295 device_link_free(container_of(rhead, struct device_link, rcu_head)); 296 } 297 298 static void __device_link_del(struct device_link *link) 299 { 300 dev_info(link->consumer, "Dropping the link to %s\n", 301 dev_name(link->supplier)); 302 303 if (link->flags & DL_FLAG_PM_RUNTIME) 304 pm_runtime_drop_link(link->consumer); 305 306 list_del_rcu(&link->s_node); 307 list_del_rcu(&link->c_node); 308 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu); 309 } 310 #else /* !CONFIG_SRCU */ 311 static void __device_link_del(struct device_link *link) 312 { 313 dev_info(link->consumer, "Dropping the link to %s\n", 314 dev_name(link->supplier)); 315 316 list_del(&link->s_node); 317 list_del(&link->c_node); 318 device_link_free(link); 319 } 320 #endif /* !CONFIG_SRCU */ 321 322 /** 323 * device_link_del - Delete a link between two devices. 324 * @link: Device link to delete. 325 * 326 * The caller must ensure proper synchronization of this function with runtime 327 * PM. 328 */ 329 void device_link_del(struct device_link *link) 330 { 331 device_links_write_lock(); 332 device_pm_lock(); 333 __device_link_del(link); 334 device_pm_unlock(); 335 device_links_write_unlock(); 336 } 337 EXPORT_SYMBOL_GPL(device_link_del); 338 339 static void device_links_missing_supplier(struct device *dev) 340 { 341 struct device_link *link; 342 343 list_for_each_entry(link, &dev->links.suppliers, c_node) 344 if (link->status == DL_STATE_CONSUMER_PROBE) 345 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 346 } 347 348 /** 349 * device_links_check_suppliers - Check presence of supplier drivers. 350 * @dev: Consumer device. 351 * 352 * Check links from this device to any suppliers. Walk the list of the device's 353 * links to suppliers and see if all of them are available. If not, simply 354 * return -EPROBE_DEFER. 355 * 356 * We need to guarantee that the supplier will not go away after the check has 357 * been positive here. It only can go away in __device_release_driver() and 358 * that function checks the device's links to consumers. This means we need to 359 * mark the link as "consumer probe in progress" to make the supplier removal 360 * wait for us to complete (or bad things may happen). 361 * 362 * Links with the DL_FLAG_STATELESS flag set are ignored. 363 */ 364 int device_links_check_suppliers(struct device *dev) 365 { 366 struct device_link *link; 367 int ret = 0; 368 369 device_links_write_lock(); 370 371 list_for_each_entry(link, &dev->links.suppliers, c_node) { 372 if (link->flags & DL_FLAG_STATELESS) 373 continue; 374 375 if (link->status != DL_STATE_AVAILABLE) { 376 device_links_missing_supplier(dev); 377 ret = -EPROBE_DEFER; 378 break; 379 } 380 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 381 } 382 dev->links.status = DL_DEV_PROBING; 383 384 device_links_write_unlock(); 385 return ret; 386 } 387 388 /** 389 * device_links_driver_bound - Update device links after probing its driver. 390 * @dev: Device to update the links for. 391 * 392 * The probe has been successful, so update links from this device to any 393 * consumers by changing their status to "available". 394 * 395 * Also change the status of @dev's links to suppliers to "active". 396 * 397 * Links with the DL_FLAG_STATELESS flag set are ignored. 398 */ 399 void device_links_driver_bound(struct device *dev) 400 { 401 struct device_link *link; 402 403 device_links_write_lock(); 404 405 list_for_each_entry(link, &dev->links.consumers, s_node) { 406 if (link->flags & DL_FLAG_STATELESS) 407 continue; 408 409 WARN_ON(link->status != DL_STATE_DORMANT); 410 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 411 } 412 413 list_for_each_entry(link, &dev->links.suppliers, c_node) { 414 if (link->flags & DL_FLAG_STATELESS) 415 continue; 416 417 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 418 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 419 } 420 421 dev->links.status = DL_DEV_DRIVER_BOUND; 422 423 device_links_write_unlock(); 424 } 425 426 /** 427 * __device_links_no_driver - Update links of a device without a driver. 428 * @dev: Device without a drvier. 429 * 430 * Delete all non-persistent links from this device to any suppliers. 431 * 432 * Persistent links stay around, but their status is changed to "available", 433 * unless they already are in the "supplier unbind in progress" state in which 434 * case they need not be updated. 435 * 436 * Links with the DL_FLAG_STATELESS flag set are ignored. 437 */ 438 static void __device_links_no_driver(struct device *dev) 439 { 440 struct device_link *link, *ln; 441 442 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 443 if (link->flags & DL_FLAG_STATELESS) 444 continue; 445 446 if (link->flags & DL_FLAG_AUTOREMOVE) 447 __device_link_del(link); 448 else if (link->status != DL_STATE_SUPPLIER_UNBIND) 449 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 450 } 451 452 dev->links.status = DL_DEV_NO_DRIVER; 453 } 454 455 void device_links_no_driver(struct device *dev) 456 { 457 device_links_write_lock(); 458 __device_links_no_driver(dev); 459 device_links_write_unlock(); 460 } 461 462 /** 463 * device_links_driver_cleanup - Update links after driver removal. 464 * @dev: Device whose driver has just gone away. 465 * 466 * Update links to consumers for @dev by changing their status to "dormant" and 467 * invoke %__device_links_no_driver() to update links to suppliers for it as 468 * appropriate. 469 * 470 * Links with the DL_FLAG_STATELESS flag set are ignored. 471 */ 472 void device_links_driver_cleanup(struct device *dev) 473 { 474 struct device_link *link; 475 476 device_links_write_lock(); 477 478 list_for_each_entry(link, &dev->links.consumers, s_node) { 479 if (link->flags & DL_FLAG_STATELESS) 480 continue; 481 482 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE); 483 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 484 WRITE_ONCE(link->status, DL_STATE_DORMANT); 485 } 486 487 __device_links_no_driver(dev); 488 489 device_links_write_unlock(); 490 } 491 492 /** 493 * device_links_busy - Check if there are any busy links to consumers. 494 * @dev: Device to check. 495 * 496 * Check each consumer of the device and return 'true' if its link's status 497 * is one of "consumer probe" or "active" (meaning that the given consumer is 498 * probing right now or its driver is present). Otherwise, change the link 499 * state to "supplier unbind" to prevent the consumer from being probed 500 * successfully going forward. 501 * 502 * Return 'false' if there are no probing or active consumers. 503 * 504 * Links with the DL_FLAG_STATELESS flag set are ignored. 505 */ 506 bool device_links_busy(struct device *dev) 507 { 508 struct device_link *link; 509 bool ret = false; 510 511 device_links_write_lock(); 512 513 list_for_each_entry(link, &dev->links.consumers, s_node) { 514 if (link->flags & DL_FLAG_STATELESS) 515 continue; 516 517 if (link->status == DL_STATE_CONSUMER_PROBE 518 || link->status == DL_STATE_ACTIVE) { 519 ret = true; 520 break; 521 } 522 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 523 } 524 525 dev->links.status = DL_DEV_UNBINDING; 526 527 device_links_write_unlock(); 528 return ret; 529 } 530 531 /** 532 * device_links_unbind_consumers - Force unbind consumers of the given device. 533 * @dev: Device to unbind the consumers of. 534 * 535 * Walk the list of links to consumers for @dev and if any of them is in the 536 * "consumer probe" state, wait for all device probes in progress to complete 537 * and start over. 538 * 539 * If that's not the case, change the status of the link to "supplier unbind" 540 * and check if the link was in the "active" state. If so, force the consumer 541 * driver to unbind and start over (the consumer will not re-probe as we have 542 * changed the state of the link already). 543 * 544 * Links with the DL_FLAG_STATELESS flag set are ignored. 545 */ 546 void device_links_unbind_consumers(struct device *dev) 547 { 548 struct device_link *link; 549 550 start: 551 device_links_write_lock(); 552 553 list_for_each_entry(link, &dev->links.consumers, s_node) { 554 enum device_link_state status; 555 556 if (link->flags & DL_FLAG_STATELESS) 557 continue; 558 559 status = link->status; 560 if (status == DL_STATE_CONSUMER_PROBE) { 561 device_links_write_unlock(); 562 563 wait_for_device_probe(); 564 goto start; 565 } 566 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 567 if (status == DL_STATE_ACTIVE) { 568 struct device *consumer = link->consumer; 569 570 get_device(consumer); 571 572 device_links_write_unlock(); 573 574 device_release_driver_internal(consumer, NULL, 575 consumer->parent); 576 put_device(consumer); 577 goto start; 578 } 579 } 580 581 device_links_write_unlock(); 582 } 583 584 /** 585 * device_links_purge - Delete existing links to other devices. 586 * @dev: Target device. 587 */ 588 static void device_links_purge(struct device *dev) 589 { 590 struct device_link *link, *ln; 591 592 /* 593 * Delete all of the remaining links from this device to any other 594 * devices (either consumers or suppliers). 595 */ 596 device_links_write_lock(); 597 598 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 599 WARN_ON(link->status == DL_STATE_ACTIVE); 600 __device_link_del(link); 601 } 602 603 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 604 WARN_ON(link->status != DL_STATE_DORMANT && 605 link->status != DL_STATE_NONE); 606 __device_link_del(link); 607 } 608 609 device_links_write_unlock(); 610 } 611 612 /* Device links support end. */ 613 614 int (*platform_notify)(struct device *dev) = NULL; 615 int (*platform_notify_remove)(struct device *dev) = NULL; 616 static struct kobject *dev_kobj; 617 struct kobject *sysfs_dev_char_kobj; 618 struct kobject *sysfs_dev_block_kobj; 619 620 static DEFINE_MUTEX(device_hotplug_lock); 621 622 void lock_device_hotplug(void) 623 { 624 mutex_lock(&device_hotplug_lock); 625 } 626 627 void unlock_device_hotplug(void) 628 { 629 mutex_unlock(&device_hotplug_lock); 630 } 631 632 int lock_device_hotplug_sysfs(void) 633 { 634 if (mutex_trylock(&device_hotplug_lock)) 635 return 0; 636 637 /* Avoid busy looping (5 ms of sleep should do). */ 638 msleep(5); 639 return restart_syscall(); 640 } 641 642 #ifdef CONFIG_BLOCK 643 static inline int device_is_not_partition(struct device *dev) 644 { 645 return !(dev->type == &part_type); 646 } 647 #else 648 static inline int device_is_not_partition(struct device *dev) 649 { 650 return 1; 651 } 652 #endif 653 654 /** 655 * dev_driver_string - Return a device's driver name, if at all possible 656 * @dev: struct device to get the name of 657 * 658 * Will return the device's driver's name if it is bound to a device. If 659 * the device is not bound to a driver, it will return the name of the bus 660 * it is attached to. If it is not attached to a bus either, an empty 661 * string will be returned. 662 */ 663 const char *dev_driver_string(const struct device *dev) 664 { 665 struct device_driver *drv; 666 667 /* dev->driver can change to NULL underneath us because of unbinding, 668 * so be careful about accessing it. dev->bus and dev->class should 669 * never change once they are set, so they don't need special care. 670 */ 671 drv = ACCESS_ONCE(dev->driver); 672 return drv ? drv->name : 673 (dev->bus ? dev->bus->name : 674 (dev->class ? dev->class->name : "")); 675 } 676 EXPORT_SYMBOL(dev_driver_string); 677 678 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 679 680 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 681 char *buf) 682 { 683 struct device_attribute *dev_attr = to_dev_attr(attr); 684 struct device *dev = kobj_to_dev(kobj); 685 ssize_t ret = -EIO; 686 687 if (dev_attr->show) 688 ret = dev_attr->show(dev, dev_attr, buf); 689 if (ret >= (ssize_t)PAGE_SIZE) { 690 print_symbol("dev_attr_show: %s returned bad count\n", 691 (unsigned long)dev_attr->show); 692 } 693 return ret; 694 } 695 696 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 697 const char *buf, size_t count) 698 { 699 struct device_attribute *dev_attr = to_dev_attr(attr); 700 struct device *dev = kobj_to_dev(kobj); 701 ssize_t ret = -EIO; 702 703 if (dev_attr->store) 704 ret = dev_attr->store(dev, dev_attr, buf, count); 705 return ret; 706 } 707 708 static const struct sysfs_ops dev_sysfs_ops = { 709 .show = dev_attr_show, 710 .store = dev_attr_store, 711 }; 712 713 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 714 715 ssize_t device_store_ulong(struct device *dev, 716 struct device_attribute *attr, 717 const char *buf, size_t size) 718 { 719 struct dev_ext_attribute *ea = to_ext_attr(attr); 720 char *end; 721 unsigned long new = simple_strtoul(buf, &end, 0); 722 if (end == buf) 723 return -EINVAL; 724 *(unsigned long *)(ea->var) = new; 725 /* Always return full write size even if we didn't consume all */ 726 return size; 727 } 728 EXPORT_SYMBOL_GPL(device_store_ulong); 729 730 ssize_t device_show_ulong(struct device *dev, 731 struct device_attribute *attr, 732 char *buf) 733 { 734 struct dev_ext_attribute *ea = to_ext_attr(attr); 735 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var)); 736 } 737 EXPORT_SYMBOL_GPL(device_show_ulong); 738 739 ssize_t device_store_int(struct device *dev, 740 struct device_attribute *attr, 741 const char *buf, size_t size) 742 { 743 struct dev_ext_attribute *ea = to_ext_attr(attr); 744 char *end; 745 long new = simple_strtol(buf, &end, 0); 746 if (end == buf || new > INT_MAX || new < INT_MIN) 747 return -EINVAL; 748 *(int *)(ea->var) = new; 749 /* Always return full write size even if we didn't consume all */ 750 return size; 751 } 752 EXPORT_SYMBOL_GPL(device_store_int); 753 754 ssize_t device_show_int(struct device *dev, 755 struct device_attribute *attr, 756 char *buf) 757 { 758 struct dev_ext_attribute *ea = to_ext_attr(attr); 759 760 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var)); 761 } 762 EXPORT_SYMBOL_GPL(device_show_int); 763 764 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 765 const char *buf, size_t size) 766 { 767 struct dev_ext_attribute *ea = to_ext_attr(attr); 768 769 if (strtobool(buf, ea->var) < 0) 770 return -EINVAL; 771 772 return size; 773 } 774 EXPORT_SYMBOL_GPL(device_store_bool); 775 776 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 777 char *buf) 778 { 779 struct dev_ext_attribute *ea = to_ext_attr(attr); 780 781 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var)); 782 } 783 EXPORT_SYMBOL_GPL(device_show_bool); 784 785 /** 786 * device_release - free device structure. 787 * @kobj: device's kobject. 788 * 789 * This is called once the reference count for the object 790 * reaches 0. We forward the call to the device's release 791 * method, which should handle actually freeing the structure. 792 */ 793 static void device_release(struct kobject *kobj) 794 { 795 struct device *dev = kobj_to_dev(kobj); 796 struct device_private *p = dev->p; 797 798 /* 799 * Some platform devices are driven without driver attached 800 * and managed resources may have been acquired. Make sure 801 * all resources are released. 802 * 803 * Drivers still can add resources into device after device 804 * is deleted but alive, so release devres here to avoid 805 * possible memory leak. 806 */ 807 devres_release_all(dev); 808 809 if (dev->release) 810 dev->release(dev); 811 else if (dev->type && dev->type->release) 812 dev->type->release(dev); 813 else if (dev->class && dev->class->dev_release) 814 dev->class->dev_release(dev); 815 else 816 WARN(1, KERN_ERR "Device '%s' does not have a release() " 817 "function, it is broken and must be fixed.\n", 818 dev_name(dev)); 819 kfree(p); 820 } 821 822 static const void *device_namespace(struct kobject *kobj) 823 { 824 struct device *dev = kobj_to_dev(kobj); 825 const void *ns = NULL; 826 827 if (dev->class && dev->class->ns_type) 828 ns = dev->class->namespace(dev); 829 830 return ns; 831 } 832 833 static struct kobj_type device_ktype = { 834 .release = device_release, 835 .sysfs_ops = &dev_sysfs_ops, 836 .namespace = device_namespace, 837 }; 838 839 840 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 841 { 842 struct kobj_type *ktype = get_ktype(kobj); 843 844 if (ktype == &device_ktype) { 845 struct device *dev = kobj_to_dev(kobj); 846 if (dev->bus) 847 return 1; 848 if (dev->class) 849 return 1; 850 } 851 return 0; 852 } 853 854 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 855 { 856 struct device *dev = kobj_to_dev(kobj); 857 858 if (dev->bus) 859 return dev->bus->name; 860 if (dev->class) 861 return dev->class->name; 862 return NULL; 863 } 864 865 static int dev_uevent(struct kset *kset, struct kobject *kobj, 866 struct kobj_uevent_env *env) 867 { 868 struct device *dev = kobj_to_dev(kobj); 869 int retval = 0; 870 871 /* add device node properties if present */ 872 if (MAJOR(dev->devt)) { 873 const char *tmp; 874 const char *name; 875 umode_t mode = 0; 876 kuid_t uid = GLOBAL_ROOT_UID; 877 kgid_t gid = GLOBAL_ROOT_GID; 878 879 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 880 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 881 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 882 if (name) { 883 add_uevent_var(env, "DEVNAME=%s", name); 884 if (mode) 885 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 886 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 887 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 888 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 889 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 890 kfree(tmp); 891 } 892 } 893 894 if (dev->type && dev->type->name) 895 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 896 897 if (dev->driver) 898 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 899 900 /* Add common DT information about the device */ 901 of_device_uevent(dev, env); 902 903 /* have the bus specific function add its stuff */ 904 if (dev->bus && dev->bus->uevent) { 905 retval = dev->bus->uevent(dev, env); 906 if (retval) 907 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 908 dev_name(dev), __func__, retval); 909 } 910 911 /* have the class specific function add its stuff */ 912 if (dev->class && dev->class->dev_uevent) { 913 retval = dev->class->dev_uevent(dev, env); 914 if (retval) 915 pr_debug("device: '%s': %s: class uevent() " 916 "returned %d\n", dev_name(dev), 917 __func__, retval); 918 } 919 920 /* have the device type specific function add its stuff */ 921 if (dev->type && dev->type->uevent) { 922 retval = dev->type->uevent(dev, env); 923 if (retval) 924 pr_debug("device: '%s': %s: dev_type uevent() " 925 "returned %d\n", dev_name(dev), 926 __func__, retval); 927 } 928 929 return retval; 930 } 931 932 static const struct kset_uevent_ops device_uevent_ops = { 933 .filter = dev_uevent_filter, 934 .name = dev_uevent_name, 935 .uevent = dev_uevent, 936 }; 937 938 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 939 char *buf) 940 { 941 struct kobject *top_kobj; 942 struct kset *kset; 943 struct kobj_uevent_env *env = NULL; 944 int i; 945 size_t count = 0; 946 int retval; 947 948 /* search the kset, the device belongs to */ 949 top_kobj = &dev->kobj; 950 while (!top_kobj->kset && top_kobj->parent) 951 top_kobj = top_kobj->parent; 952 if (!top_kobj->kset) 953 goto out; 954 955 kset = top_kobj->kset; 956 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 957 goto out; 958 959 /* respect filter */ 960 if (kset->uevent_ops && kset->uevent_ops->filter) 961 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 962 goto out; 963 964 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 965 if (!env) 966 return -ENOMEM; 967 968 /* let the kset specific function add its keys */ 969 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 970 if (retval) 971 goto out; 972 973 /* copy keys to file */ 974 for (i = 0; i < env->envp_idx; i++) 975 count += sprintf(&buf[count], "%s\n", env->envp[i]); 976 out: 977 kfree(env); 978 return count; 979 } 980 981 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 982 const char *buf, size_t count) 983 { 984 enum kobject_action action; 985 986 if (kobject_action_type(buf, count, &action) == 0) 987 kobject_uevent(&dev->kobj, action); 988 else 989 dev_err(dev, "uevent: unknown action-string\n"); 990 return count; 991 } 992 static DEVICE_ATTR_RW(uevent); 993 994 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 995 char *buf) 996 { 997 bool val; 998 999 device_lock(dev); 1000 val = !dev->offline; 1001 device_unlock(dev); 1002 return sprintf(buf, "%u\n", val); 1003 } 1004 1005 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 1006 const char *buf, size_t count) 1007 { 1008 bool val; 1009 int ret; 1010 1011 ret = strtobool(buf, &val); 1012 if (ret < 0) 1013 return ret; 1014 1015 ret = lock_device_hotplug_sysfs(); 1016 if (ret) 1017 return ret; 1018 1019 ret = val ? device_online(dev) : device_offline(dev); 1020 unlock_device_hotplug(); 1021 return ret < 0 ? ret : count; 1022 } 1023 static DEVICE_ATTR_RW(online); 1024 1025 int device_add_groups(struct device *dev, const struct attribute_group **groups) 1026 { 1027 return sysfs_create_groups(&dev->kobj, groups); 1028 } 1029 1030 void device_remove_groups(struct device *dev, 1031 const struct attribute_group **groups) 1032 { 1033 sysfs_remove_groups(&dev->kobj, groups); 1034 } 1035 1036 static int device_add_attrs(struct device *dev) 1037 { 1038 struct class *class = dev->class; 1039 const struct device_type *type = dev->type; 1040 int error; 1041 1042 if (class) { 1043 error = device_add_groups(dev, class->dev_groups); 1044 if (error) 1045 return error; 1046 } 1047 1048 if (type) { 1049 error = device_add_groups(dev, type->groups); 1050 if (error) 1051 goto err_remove_class_groups; 1052 } 1053 1054 error = device_add_groups(dev, dev->groups); 1055 if (error) 1056 goto err_remove_type_groups; 1057 1058 if (device_supports_offline(dev) && !dev->offline_disabled) { 1059 error = device_create_file(dev, &dev_attr_online); 1060 if (error) 1061 goto err_remove_dev_groups; 1062 } 1063 1064 return 0; 1065 1066 err_remove_dev_groups: 1067 device_remove_groups(dev, dev->groups); 1068 err_remove_type_groups: 1069 if (type) 1070 device_remove_groups(dev, type->groups); 1071 err_remove_class_groups: 1072 if (class) 1073 device_remove_groups(dev, class->dev_groups); 1074 1075 return error; 1076 } 1077 1078 static void device_remove_attrs(struct device *dev) 1079 { 1080 struct class *class = dev->class; 1081 const struct device_type *type = dev->type; 1082 1083 device_remove_file(dev, &dev_attr_online); 1084 device_remove_groups(dev, dev->groups); 1085 1086 if (type) 1087 device_remove_groups(dev, type->groups); 1088 1089 if (class) 1090 device_remove_groups(dev, class->dev_groups); 1091 } 1092 1093 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 1094 char *buf) 1095 { 1096 return print_dev_t(buf, dev->devt); 1097 } 1098 static DEVICE_ATTR_RO(dev); 1099 1100 /* /sys/devices/ */ 1101 struct kset *devices_kset; 1102 1103 /** 1104 * devices_kset_move_before - Move device in the devices_kset's list. 1105 * @deva: Device to move. 1106 * @devb: Device @deva should come before. 1107 */ 1108 static void devices_kset_move_before(struct device *deva, struct device *devb) 1109 { 1110 if (!devices_kset) 1111 return; 1112 pr_debug("devices_kset: Moving %s before %s\n", 1113 dev_name(deva), dev_name(devb)); 1114 spin_lock(&devices_kset->list_lock); 1115 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 1116 spin_unlock(&devices_kset->list_lock); 1117 } 1118 1119 /** 1120 * devices_kset_move_after - Move device in the devices_kset's list. 1121 * @deva: Device to move 1122 * @devb: Device @deva should come after. 1123 */ 1124 static void devices_kset_move_after(struct device *deva, struct device *devb) 1125 { 1126 if (!devices_kset) 1127 return; 1128 pr_debug("devices_kset: Moving %s after %s\n", 1129 dev_name(deva), dev_name(devb)); 1130 spin_lock(&devices_kset->list_lock); 1131 list_move(&deva->kobj.entry, &devb->kobj.entry); 1132 spin_unlock(&devices_kset->list_lock); 1133 } 1134 1135 /** 1136 * devices_kset_move_last - move the device to the end of devices_kset's list. 1137 * @dev: device to move 1138 */ 1139 void devices_kset_move_last(struct device *dev) 1140 { 1141 if (!devices_kset) 1142 return; 1143 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 1144 spin_lock(&devices_kset->list_lock); 1145 list_move_tail(&dev->kobj.entry, &devices_kset->list); 1146 spin_unlock(&devices_kset->list_lock); 1147 } 1148 1149 /** 1150 * device_create_file - create sysfs attribute file for device. 1151 * @dev: device. 1152 * @attr: device attribute descriptor. 1153 */ 1154 int device_create_file(struct device *dev, 1155 const struct device_attribute *attr) 1156 { 1157 int error = 0; 1158 1159 if (dev) { 1160 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 1161 "Attribute %s: write permission without 'store'\n", 1162 attr->attr.name); 1163 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 1164 "Attribute %s: read permission without 'show'\n", 1165 attr->attr.name); 1166 error = sysfs_create_file(&dev->kobj, &attr->attr); 1167 } 1168 1169 return error; 1170 } 1171 EXPORT_SYMBOL_GPL(device_create_file); 1172 1173 /** 1174 * device_remove_file - remove sysfs attribute file. 1175 * @dev: device. 1176 * @attr: device attribute descriptor. 1177 */ 1178 void device_remove_file(struct device *dev, 1179 const struct device_attribute *attr) 1180 { 1181 if (dev) 1182 sysfs_remove_file(&dev->kobj, &attr->attr); 1183 } 1184 EXPORT_SYMBOL_GPL(device_remove_file); 1185 1186 /** 1187 * device_remove_file_self - remove sysfs attribute file from its own method. 1188 * @dev: device. 1189 * @attr: device attribute descriptor. 1190 * 1191 * See kernfs_remove_self() for details. 1192 */ 1193 bool device_remove_file_self(struct device *dev, 1194 const struct device_attribute *attr) 1195 { 1196 if (dev) 1197 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 1198 else 1199 return false; 1200 } 1201 EXPORT_SYMBOL_GPL(device_remove_file_self); 1202 1203 /** 1204 * device_create_bin_file - create sysfs binary attribute file for device. 1205 * @dev: device. 1206 * @attr: device binary attribute descriptor. 1207 */ 1208 int device_create_bin_file(struct device *dev, 1209 const struct bin_attribute *attr) 1210 { 1211 int error = -EINVAL; 1212 if (dev) 1213 error = sysfs_create_bin_file(&dev->kobj, attr); 1214 return error; 1215 } 1216 EXPORT_SYMBOL_GPL(device_create_bin_file); 1217 1218 /** 1219 * device_remove_bin_file - remove sysfs binary attribute file 1220 * @dev: device. 1221 * @attr: device binary attribute descriptor. 1222 */ 1223 void device_remove_bin_file(struct device *dev, 1224 const struct bin_attribute *attr) 1225 { 1226 if (dev) 1227 sysfs_remove_bin_file(&dev->kobj, attr); 1228 } 1229 EXPORT_SYMBOL_GPL(device_remove_bin_file); 1230 1231 static void klist_children_get(struct klist_node *n) 1232 { 1233 struct device_private *p = to_device_private_parent(n); 1234 struct device *dev = p->device; 1235 1236 get_device(dev); 1237 } 1238 1239 static void klist_children_put(struct klist_node *n) 1240 { 1241 struct device_private *p = to_device_private_parent(n); 1242 struct device *dev = p->device; 1243 1244 put_device(dev); 1245 } 1246 1247 /** 1248 * device_initialize - init device structure. 1249 * @dev: device. 1250 * 1251 * This prepares the device for use by other layers by initializing 1252 * its fields. 1253 * It is the first half of device_register(), if called by 1254 * that function, though it can also be called separately, so one 1255 * may use @dev's fields. In particular, get_device()/put_device() 1256 * may be used for reference counting of @dev after calling this 1257 * function. 1258 * 1259 * All fields in @dev must be initialized by the caller to 0, except 1260 * for those explicitly set to some other value. The simplest 1261 * approach is to use kzalloc() to allocate the structure containing 1262 * @dev. 1263 * 1264 * NOTE: Use put_device() to give up your reference instead of freeing 1265 * @dev directly once you have called this function. 1266 */ 1267 void device_initialize(struct device *dev) 1268 { 1269 dev->kobj.kset = devices_kset; 1270 kobject_init(&dev->kobj, &device_ktype); 1271 INIT_LIST_HEAD(&dev->dma_pools); 1272 mutex_init(&dev->mutex); 1273 lockdep_set_novalidate_class(&dev->mutex); 1274 spin_lock_init(&dev->devres_lock); 1275 INIT_LIST_HEAD(&dev->devres_head); 1276 device_pm_init(dev); 1277 set_dev_node(dev, -1); 1278 #ifdef CONFIG_GENERIC_MSI_IRQ 1279 INIT_LIST_HEAD(&dev->msi_list); 1280 #endif 1281 INIT_LIST_HEAD(&dev->links.consumers); 1282 INIT_LIST_HEAD(&dev->links.suppliers); 1283 dev->links.status = DL_DEV_NO_DRIVER; 1284 } 1285 EXPORT_SYMBOL_GPL(device_initialize); 1286 1287 struct kobject *virtual_device_parent(struct device *dev) 1288 { 1289 static struct kobject *virtual_dir = NULL; 1290 1291 if (!virtual_dir) 1292 virtual_dir = kobject_create_and_add("virtual", 1293 &devices_kset->kobj); 1294 1295 return virtual_dir; 1296 } 1297 1298 struct class_dir { 1299 struct kobject kobj; 1300 struct class *class; 1301 }; 1302 1303 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 1304 1305 static void class_dir_release(struct kobject *kobj) 1306 { 1307 struct class_dir *dir = to_class_dir(kobj); 1308 kfree(dir); 1309 } 1310 1311 static const 1312 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 1313 { 1314 struct class_dir *dir = to_class_dir(kobj); 1315 return dir->class->ns_type; 1316 } 1317 1318 static struct kobj_type class_dir_ktype = { 1319 .release = class_dir_release, 1320 .sysfs_ops = &kobj_sysfs_ops, 1321 .child_ns_type = class_dir_child_ns_type 1322 }; 1323 1324 static struct kobject * 1325 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 1326 { 1327 struct class_dir *dir; 1328 int retval; 1329 1330 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 1331 if (!dir) 1332 return NULL; 1333 1334 dir->class = class; 1335 kobject_init(&dir->kobj, &class_dir_ktype); 1336 1337 dir->kobj.kset = &class->p->glue_dirs; 1338 1339 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 1340 if (retval < 0) { 1341 kobject_put(&dir->kobj); 1342 return NULL; 1343 } 1344 return &dir->kobj; 1345 } 1346 1347 static DEFINE_MUTEX(gdp_mutex); 1348 1349 static struct kobject *get_device_parent(struct device *dev, 1350 struct device *parent) 1351 { 1352 if (dev->class) { 1353 struct kobject *kobj = NULL; 1354 struct kobject *parent_kobj; 1355 struct kobject *k; 1356 1357 #ifdef CONFIG_BLOCK 1358 /* block disks show up in /sys/block */ 1359 if (sysfs_deprecated && dev->class == &block_class) { 1360 if (parent && parent->class == &block_class) 1361 return &parent->kobj; 1362 return &block_class.p->subsys.kobj; 1363 } 1364 #endif 1365 1366 /* 1367 * If we have no parent, we live in "virtual". 1368 * Class-devices with a non class-device as parent, live 1369 * in a "glue" directory to prevent namespace collisions. 1370 */ 1371 if (parent == NULL) 1372 parent_kobj = virtual_device_parent(dev); 1373 else if (parent->class && !dev->class->ns_type) 1374 return &parent->kobj; 1375 else 1376 parent_kobj = &parent->kobj; 1377 1378 mutex_lock(&gdp_mutex); 1379 1380 /* find our class-directory at the parent and reference it */ 1381 spin_lock(&dev->class->p->glue_dirs.list_lock); 1382 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 1383 if (k->parent == parent_kobj) { 1384 kobj = kobject_get(k); 1385 break; 1386 } 1387 spin_unlock(&dev->class->p->glue_dirs.list_lock); 1388 if (kobj) { 1389 mutex_unlock(&gdp_mutex); 1390 return kobj; 1391 } 1392 1393 /* or create a new class-directory at the parent device */ 1394 k = class_dir_create_and_add(dev->class, parent_kobj); 1395 /* do not emit an uevent for this simple "glue" directory */ 1396 mutex_unlock(&gdp_mutex); 1397 return k; 1398 } 1399 1400 /* subsystems can specify a default root directory for their devices */ 1401 if (!parent && dev->bus && dev->bus->dev_root) 1402 return &dev->bus->dev_root->kobj; 1403 1404 if (parent) 1405 return &parent->kobj; 1406 return NULL; 1407 } 1408 1409 static inline bool live_in_glue_dir(struct kobject *kobj, 1410 struct device *dev) 1411 { 1412 if (!kobj || !dev->class || 1413 kobj->kset != &dev->class->p->glue_dirs) 1414 return false; 1415 return true; 1416 } 1417 1418 static inline struct kobject *get_glue_dir(struct device *dev) 1419 { 1420 return dev->kobj.parent; 1421 } 1422 1423 /* 1424 * make sure cleaning up dir as the last step, we need to make 1425 * sure .release handler of kobject is run with holding the 1426 * global lock 1427 */ 1428 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 1429 { 1430 /* see if we live in a "glue" directory */ 1431 if (!live_in_glue_dir(glue_dir, dev)) 1432 return; 1433 1434 mutex_lock(&gdp_mutex); 1435 kobject_put(glue_dir); 1436 mutex_unlock(&gdp_mutex); 1437 } 1438 1439 static int device_add_class_symlinks(struct device *dev) 1440 { 1441 struct device_node *of_node = dev_of_node(dev); 1442 int error; 1443 1444 if (of_node) { 1445 error = sysfs_create_link(&dev->kobj, &of_node->kobj,"of_node"); 1446 if (error) 1447 dev_warn(dev, "Error %d creating of_node link\n",error); 1448 /* An error here doesn't warrant bringing down the device */ 1449 } 1450 1451 if (!dev->class) 1452 return 0; 1453 1454 error = sysfs_create_link(&dev->kobj, 1455 &dev->class->p->subsys.kobj, 1456 "subsystem"); 1457 if (error) 1458 goto out_devnode; 1459 1460 if (dev->parent && device_is_not_partition(dev)) { 1461 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 1462 "device"); 1463 if (error) 1464 goto out_subsys; 1465 } 1466 1467 #ifdef CONFIG_BLOCK 1468 /* /sys/block has directories and does not need symlinks */ 1469 if (sysfs_deprecated && dev->class == &block_class) 1470 return 0; 1471 #endif 1472 1473 /* link in the class directory pointing to the device */ 1474 error = sysfs_create_link(&dev->class->p->subsys.kobj, 1475 &dev->kobj, dev_name(dev)); 1476 if (error) 1477 goto out_device; 1478 1479 return 0; 1480 1481 out_device: 1482 sysfs_remove_link(&dev->kobj, "device"); 1483 1484 out_subsys: 1485 sysfs_remove_link(&dev->kobj, "subsystem"); 1486 out_devnode: 1487 sysfs_remove_link(&dev->kobj, "of_node"); 1488 return error; 1489 } 1490 1491 static void device_remove_class_symlinks(struct device *dev) 1492 { 1493 if (dev_of_node(dev)) 1494 sysfs_remove_link(&dev->kobj, "of_node"); 1495 1496 if (!dev->class) 1497 return; 1498 1499 if (dev->parent && device_is_not_partition(dev)) 1500 sysfs_remove_link(&dev->kobj, "device"); 1501 sysfs_remove_link(&dev->kobj, "subsystem"); 1502 #ifdef CONFIG_BLOCK 1503 if (sysfs_deprecated && dev->class == &block_class) 1504 return; 1505 #endif 1506 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 1507 } 1508 1509 /** 1510 * dev_set_name - set a device name 1511 * @dev: device 1512 * @fmt: format string for the device's name 1513 */ 1514 int dev_set_name(struct device *dev, const char *fmt, ...) 1515 { 1516 va_list vargs; 1517 int err; 1518 1519 va_start(vargs, fmt); 1520 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 1521 va_end(vargs); 1522 return err; 1523 } 1524 EXPORT_SYMBOL_GPL(dev_set_name); 1525 1526 /** 1527 * device_to_dev_kobj - select a /sys/dev/ directory for the device 1528 * @dev: device 1529 * 1530 * By default we select char/ for new entries. Setting class->dev_obj 1531 * to NULL prevents an entry from being created. class->dev_kobj must 1532 * be set (or cleared) before any devices are registered to the class 1533 * otherwise device_create_sys_dev_entry() and 1534 * device_remove_sys_dev_entry() will disagree about the presence of 1535 * the link. 1536 */ 1537 static struct kobject *device_to_dev_kobj(struct device *dev) 1538 { 1539 struct kobject *kobj; 1540 1541 if (dev->class) 1542 kobj = dev->class->dev_kobj; 1543 else 1544 kobj = sysfs_dev_char_kobj; 1545 1546 return kobj; 1547 } 1548 1549 static int device_create_sys_dev_entry(struct device *dev) 1550 { 1551 struct kobject *kobj = device_to_dev_kobj(dev); 1552 int error = 0; 1553 char devt_str[15]; 1554 1555 if (kobj) { 1556 format_dev_t(devt_str, dev->devt); 1557 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 1558 } 1559 1560 return error; 1561 } 1562 1563 static void device_remove_sys_dev_entry(struct device *dev) 1564 { 1565 struct kobject *kobj = device_to_dev_kobj(dev); 1566 char devt_str[15]; 1567 1568 if (kobj) { 1569 format_dev_t(devt_str, dev->devt); 1570 sysfs_remove_link(kobj, devt_str); 1571 } 1572 } 1573 1574 int device_private_init(struct device *dev) 1575 { 1576 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 1577 if (!dev->p) 1578 return -ENOMEM; 1579 dev->p->device = dev; 1580 klist_init(&dev->p->klist_children, klist_children_get, 1581 klist_children_put); 1582 INIT_LIST_HEAD(&dev->p->deferred_probe); 1583 return 0; 1584 } 1585 1586 /** 1587 * device_add - add device to device hierarchy. 1588 * @dev: device. 1589 * 1590 * This is part 2 of device_register(), though may be called 1591 * separately _iff_ device_initialize() has been called separately. 1592 * 1593 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 1594 * to the global and sibling lists for the device, then 1595 * adds it to the other relevant subsystems of the driver model. 1596 * 1597 * Do not call this routine or device_register() more than once for 1598 * any device structure. The driver model core is not designed to work 1599 * with devices that get unregistered and then spring back to life. 1600 * (Among other things, it's very hard to guarantee that all references 1601 * to the previous incarnation of @dev have been dropped.) Allocate 1602 * and register a fresh new struct device instead. 1603 * 1604 * NOTE: _Never_ directly free @dev after calling this function, even 1605 * if it returned an error! Always use put_device() to give up your 1606 * reference instead. 1607 */ 1608 int device_add(struct device *dev) 1609 { 1610 struct device *parent = NULL; 1611 struct kobject *kobj; 1612 struct class_interface *class_intf; 1613 int error = -EINVAL; 1614 struct kobject *glue_dir = NULL; 1615 1616 dev = get_device(dev); 1617 if (!dev) 1618 goto done; 1619 1620 if (!dev->p) { 1621 error = device_private_init(dev); 1622 if (error) 1623 goto done; 1624 } 1625 1626 /* 1627 * for statically allocated devices, which should all be converted 1628 * some day, we need to initialize the name. We prevent reading back 1629 * the name, and force the use of dev_name() 1630 */ 1631 if (dev->init_name) { 1632 dev_set_name(dev, "%s", dev->init_name); 1633 dev->init_name = NULL; 1634 } 1635 1636 /* subsystems can specify simple device enumeration */ 1637 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 1638 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 1639 1640 if (!dev_name(dev)) { 1641 error = -EINVAL; 1642 goto name_error; 1643 } 1644 1645 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 1646 1647 parent = get_device(dev->parent); 1648 kobj = get_device_parent(dev, parent); 1649 if (kobj) 1650 dev->kobj.parent = kobj; 1651 1652 /* use parent numa_node */ 1653 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 1654 set_dev_node(dev, dev_to_node(parent)); 1655 1656 /* first, register with generic layer. */ 1657 /* we require the name to be set before, and pass NULL */ 1658 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 1659 if (error) { 1660 glue_dir = get_glue_dir(dev); 1661 goto Error; 1662 } 1663 1664 /* notify platform of device entry */ 1665 if (platform_notify) 1666 platform_notify(dev); 1667 1668 error = device_create_file(dev, &dev_attr_uevent); 1669 if (error) 1670 goto attrError; 1671 1672 error = device_add_class_symlinks(dev); 1673 if (error) 1674 goto SymlinkError; 1675 error = device_add_attrs(dev); 1676 if (error) 1677 goto AttrsError; 1678 error = bus_add_device(dev); 1679 if (error) 1680 goto BusError; 1681 error = dpm_sysfs_add(dev); 1682 if (error) 1683 goto DPMError; 1684 device_pm_add(dev); 1685 1686 if (MAJOR(dev->devt)) { 1687 error = device_create_file(dev, &dev_attr_dev); 1688 if (error) 1689 goto DevAttrError; 1690 1691 error = device_create_sys_dev_entry(dev); 1692 if (error) 1693 goto SysEntryError; 1694 1695 devtmpfs_create_node(dev); 1696 } 1697 1698 /* Notify clients of device addition. This call must come 1699 * after dpm_sysfs_add() and before kobject_uevent(). 1700 */ 1701 if (dev->bus) 1702 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1703 BUS_NOTIFY_ADD_DEVICE, dev); 1704 1705 kobject_uevent(&dev->kobj, KOBJ_ADD); 1706 bus_probe_device(dev); 1707 if (parent) 1708 klist_add_tail(&dev->p->knode_parent, 1709 &parent->p->klist_children); 1710 1711 if (dev->class) { 1712 mutex_lock(&dev->class->p->mutex); 1713 /* tie the class to the device */ 1714 klist_add_tail(&dev->knode_class, 1715 &dev->class->p->klist_devices); 1716 1717 /* notify any interfaces that the device is here */ 1718 list_for_each_entry(class_intf, 1719 &dev->class->p->interfaces, node) 1720 if (class_intf->add_dev) 1721 class_intf->add_dev(dev, class_intf); 1722 mutex_unlock(&dev->class->p->mutex); 1723 } 1724 done: 1725 put_device(dev); 1726 return error; 1727 SysEntryError: 1728 if (MAJOR(dev->devt)) 1729 device_remove_file(dev, &dev_attr_dev); 1730 DevAttrError: 1731 device_pm_remove(dev); 1732 dpm_sysfs_remove(dev); 1733 DPMError: 1734 bus_remove_device(dev); 1735 BusError: 1736 device_remove_attrs(dev); 1737 AttrsError: 1738 device_remove_class_symlinks(dev); 1739 SymlinkError: 1740 device_remove_file(dev, &dev_attr_uevent); 1741 attrError: 1742 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 1743 glue_dir = get_glue_dir(dev); 1744 kobject_del(&dev->kobj); 1745 Error: 1746 cleanup_glue_dir(dev, glue_dir); 1747 put_device(parent); 1748 name_error: 1749 kfree(dev->p); 1750 dev->p = NULL; 1751 goto done; 1752 } 1753 EXPORT_SYMBOL_GPL(device_add); 1754 1755 /** 1756 * device_register - register a device with the system. 1757 * @dev: pointer to the device structure 1758 * 1759 * This happens in two clean steps - initialize the device 1760 * and add it to the system. The two steps can be called 1761 * separately, but this is the easiest and most common. 1762 * I.e. you should only call the two helpers separately if 1763 * have a clearly defined need to use and refcount the device 1764 * before it is added to the hierarchy. 1765 * 1766 * For more information, see the kerneldoc for device_initialize() 1767 * and device_add(). 1768 * 1769 * NOTE: _Never_ directly free @dev after calling this function, even 1770 * if it returned an error! Always use put_device() to give up the 1771 * reference initialized in this function instead. 1772 */ 1773 int device_register(struct device *dev) 1774 { 1775 device_initialize(dev); 1776 return device_add(dev); 1777 } 1778 EXPORT_SYMBOL_GPL(device_register); 1779 1780 /** 1781 * get_device - increment reference count for device. 1782 * @dev: device. 1783 * 1784 * This simply forwards the call to kobject_get(), though 1785 * we do take care to provide for the case that we get a NULL 1786 * pointer passed in. 1787 */ 1788 struct device *get_device(struct device *dev) 1789 { 1790 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 1791 } 1792 EXPORT_SYMBOL_GPL(get_device); 1793 1794 /** 1795 * put_device - decrement reference count. 1796 * @dev: device in question. 1797 */ 1798 void put_device(struct device *dev) 1799 { 1800 /* might_sleep(); */ 1801 if (dev) 1802 kobject_put(&dev->kobj); 1803 } 1804 EXPORT_SYMBOL_GPL(put_device); 1805 1806 /** 1807 * device_del - delete device from system. 1808 * @dev: device. 1809 * 1810 * This is the first part of the device unregistration 1811 * sequence. This removes the device from the lists we control 1812 * from here, has it removed from the other driver model 1813 * subsystems it was added to in device_add(), and removes it 1814 * from the kobject hierarchy. 1815 * 1816 * NOTE: this should be called manually _iff_ device_add() was 1817 * also called manually. 1818 */ 1819 void device_del(struct device *dev) 1820 { 1821 struct device *parent = dev->parent; 1822 struct kobject *glue_dir = NULL; 1823 struct class_interface *class_intf; 1824 1825 /* Notify clients of device removal. This call must come 1826 * before dpm_sysfs_remove(). 1827 */ 1828 if (dev->bus) 1829 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1830 BUS_NOTIFY_DEL_DEVICE, dev); 1831 1832 device_links_purge(dev); 1833 dpm_sysfs_remove(dev); 1834 if (parent) 1835 klist_del(&dev->p->knode_parent); 1836 if (MAJOR(dev->devt)) { 1837 devtmpfs_delete_node(dev); 1838 device_remove_sys_dev_entry(dev); 1839 device_remove_file(dev, &dev_attr_dev); 1840 } 1841 if (dev->class) { 1842 device_remove_class_symlinks(dev); 1843 1844 mutex_lock(&dev->class->p->mutex); 1845 /* notify any interfaces that the device is now gone */ 1846 list_for_each_entry(class_intf, 1847 &dev->class->p->interfaces, node) 1848 if (class_intf->remove_dev) 1849 class_intf->remove_dev(dev, class_intf); 1850 /* remove the device from the class list */ 1851 klist_del(&dev->knode_class); 1852 mutex_unlock(&dev->class->p->mutex); 1853 } 1854 device_remove_file(dev, &dev_attr_uevent); 1855 device_remove_attrs(dev); 1856 bus_remove_device(dev); 1857 device_pm_remove(dev); 1858 driver_deferred_probe_del(dev); 1859 device_remove_properties(dev); 1860 1861 /* Notify the platform of the removal, in case they 1862 * need to do anything... 1863 */ 1864 if (platform_notify_remove) 1865 platform_notify_remove(dev); 1866 if (dev->bus) 1867 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 1868 BUS_NOTIFY_REMOVED_DEVICE, dev); 1869 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 1870 glue_dir = get_glue_dir(dev); 1871 kobject_del(&dev->kobj); 1872 cleanup_glue_dir(dev, glue_dir); 1873 put_device(parent); 1874 } 1875 EXPORT_SYMBOL_GPL(device_del); 1876 1877 /** 1878 * device_unregister - unregister device from system. 1879 * @dev: device going away. 1880 * 1881 * We do this in two parts, like we do device_register(). First, 1882 * we remove it from all the subsystems with device_del(), then 1883 * we decrement the reference count via put_device(). If that 1884 * is the final reference count, the device will be cleaned up 1885 * via device_release() above. Otherwise, the structure will 1886 * stick around until the final reference to the device is dropped. 1887 */ 1888 void device_unregister(struct device *dev) 1889 { 1890 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 1891 device_del(dev); 1892 put_device(dev); 1893 } 1894 EXPORT_SYMBOL_GPL(device_unregister); 1895 1896 static struct device *prev_device(struct klist_iter *i) 1897 { 1898 struct klist_node *n = klist_prev(i); 1899 struct device *dev = NULL; 1900 struct device_private *p; 1901 1902 if (n) { 1903 p = to_device_private_parent(n); 1904 dev = p->device; 1905 } 1906 return dev; 1907 } 1908 1909 static struct device *next_device(struct klist_iter *i) 1910 { 1911 struct klist_node *n = klist_next(i); 1912 struct device *dev = NULL; 1913 struct device_private *p; 1914 1915 if (n) { 1916 p = to_device_private_parent(n); 1917 dev = p->device; 1918 } 1919 return dev; 1920 } 1921 1922 /** 1923 * device_get_devnode - path of device node file 1924 * @dev: device 1925 * @mode: returned file access mode 1926 * @uid: returned file owner 1927 * @gid: returned file group 1928 * @tmp: possibly allocated string 1929 * 1930 * Return the relative path of a possible device node. 1931 * Non-default names may need to allocate a memory to compose 1932 * a name. This memory is returned in tmp and needs to be 1933 * freed by the caller. 1934 */ 1935 const char *device_get_devnode(struct device *dev, 1936 umode_t *mode, kuid_t *uid, kgid_t *gid, 1937 const char **tmp) 1938 { 1939 char *s; 1940 1941 *tmp = NULL; 1942 1943 /* the device type may provide a specific name */ 1944 if (dev->type && dev->type->devnode) 1945 *tmp = dev->type->devnode(dev, mode, uid, gid); 1946 if (*tmp) 1947 return *tmp; 1948 1949 /* the class may provide a specific name */ 1950 if (dev->class && dev->class->devnode) 1951 *tmp = dev->class->devnode(dev, mode); 1952 if (*tmp) 1953 return *tmp; 1954 1955 /* return name without allocation, tmp == NULL */ 1956 if (strchr(dev_name(dev), '!') == NULL) 1957 return dev_name(dev); 1958 1959 /* replace '!' in the name with '/' */ 1960 s = kstrdup(dev_name(dev), GFP_KERNEL); 1961 if (!s) 1962 return NULL; 1963 strreplace(s, '!', '/'); 1964 return *tmp = s; 1965 } 1966 1967 /** 1968 * device_for_each_child - device child iterator. 1969 * @parent: parent struct device. 1970 * @fn: function to be called for each device. 1971 * @data: data for the callback. 1972 * 1973 * Iterate over @parent's child devices, and call @fn for each, 1974 * passing it @data. 1975 * 1976 * We check the return of @fn each time. If it returns anything 1977 * other than 0, we break out and return that value. 1978 */ 1979 int device_for_each_child(struct device *parent, void *data, 1980 int (*fn)(struct device *dev, void *data)) 1981 { 1982 struct klist_iter i; 1983 struct device *child; 1984 int error = 0; 1985 1986 if (!parent->p) 1987 return 0; 1988 1989 klist_iter_init(&parent->p->klist_children, &i); 1990 while ((child = next_device(&i)) && !error) 1991 error = fn(child, data); 1992 klist_iter_exit(&i); 1993 return error; 1994 } 1995 EXPORT_SYMBOL_GPL(device_for_each_child); 1996 1997 /** 1998 * device_for_each_child_reverse - device child iterator in reversed order. 1999 * @parent: parent struct device. 2000 * @fn: function to be called for each device. 2001 * @data: data for the callback. 2002 * 2003 * Iterate over @parent's child devices, and call @fn for each, 2004 * passing it @data. 2005 * 2006 * We check the return of @fn each time. If it returns anything 2007 * other than 0, we break out and return that value. 2008 */ 2009 int device_for_each_child_reverse(struct device *parent, void *data, 2010 int (*fn)(struct device *dev, void *data)) 2011 { 2012 struct klist_iter i; 2013 struct device *child; 2014 int error = 0; 2015 2016 if (!parent->p) 2017 return 0; 2018 2019 klist_iter_init(&parent->p->klist_children, &i); 2020 while ((child = prev_device(&i)) && !error) 2021 error = fn(child, data); 2022 klist_iter_exit(&i); 2023 return error; 2024 } 2025 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 2026 2027 /** 2028 * device_find_child - device iterator for locating a particular device. 2029 * @parent: parent struct device 2030 * @match: Callback function to check device 2031 * @data: Data to pass to match function 2032 * 2033 * This is similar to the device_for_each_child() function above, but it 2034 * returns a reference to a device that is 'found' for later use, as 2035 * determined by the @match callback. 2036 * 2037 * The callback should return 0 if the device doesn't match and non-zero 2038 * if it does. If the callback returns non-zero and a reference to the 2039 * current device can be obtained, this function will return to the caller 2040 * and not iterate over any more devices. 2041 * 2042 * NOTE: you will need to drop the reference with put_device() after use. 2043 */ 2044 struct device *device_find_child(struct device *parent, void *data, 2045 int (*match)(struct device *dev, void *data)) 2046 { 2047 struct klist_iter i; 2048 struct device *child; 2049 2050 if (!parent) 2051 return NULL; 2052 2053 klist_iter_init(&parent->p->klist_children, &i); 2054 while ((child = next_device(&i))) 2055 if (match(child, data) && get_device(child)) 2056 break; 2057 klist_iter_exit(&i); 2058 return child; 2059 } 2060 EXPORT_SYMBOL_GPL(device_find_child); 2061 2062 int __init devices_init(void) 2063 { 2064 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 2065 if (!devices_kset) 2066 return -ENOMEM; 2067 dev_kobj = kobject_create_and_add("dev", NULL); 2068 if (!dev_kobj) 2069 goto dev_kobj_err; 2070 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 2071 if (!sysfs_dev_block_kobj) 2072 goto block_kobj_err; 2073 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 2074 if (!sysfs_dev_char_kobj) 2075 goto char_kobj_err; 2076 2077 return 0; 2078 2079 char_kobj_err: 2080 kobject_put(sysfs_dev_block_kobj); 2081 block_kobj_err: 2082 kobject_put(dev_kobj); 2083 dev_kobj_err: 2084 kset_unregister(devices_kset); 2085 return -ENOMEM; 2086 } 2087 2088 static int device_check_offline(struct device *dev, void *not_used) 2089 { 2090 int ret; 2091 2092 ret = device_for_each_child(dev, NULL, device_check_offline); 2093 if (ret) 2094 return ret; 2095 2096 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 2097 } 2098 2099 /** 2100 * device_offline - Prepare the device for hot-removal. 2101 * @dev: Device to be put offline. 2102 * 2103 * Execute the device bus type's .offline() callback, if present, to prepare 2104 * the device for a subsequent hot-removal. If that succeeds, the device must 2105 * not be used until either it is removed or its bus type's .online() callback 2106 * is executed. 2107 * 2108 * Call under device_hotplug_lock. 2109 */ 2110 int device_offline(struct device *dev) 2111 { 2112 int ret; 2113 2114 if (dev->offline_disabled) 2115 return -EPERM; 2116 2117 ret = device_for_each_child(dev, NULL, device_check_offline); 2118 if (ret) 2119 return ret; 2120 2121 device_lock(dev); 2122 if (device_supports_offline(dev)) { 2123 if (dev->offline) { 2124 ret = 1; 2125 } else { 2126 ret = dev->bus->offline(dev); 2127 if (!ret) { 2128 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 2129 dev->offline = true; 2130 } 2131 } 2132 } 2133 device_unlock(dev); 2134 2135 return ret; 2136 } 2137 2138 /** 2139 * device_online - Put the device back online after successful device_offline(). 2140 * @dev: Device to be put back online. 2141 * 2142 * If device_offline() has been successfully executed for @dev, but the device 2143 * has not been removed subsequently, execute its bus type's .online() callback 2144 * to indicate that the device can be used again. 2145 * 2146 * Call under device_hotplug_lock. 2147 */ 2148 int device_online(struct device *dev) 2149 { 2150 int ret = 0; 2151 2152 device_lock(dev); 2153 if (device_supports_offline(dev)) { 2154 if (dev->offline) { 2155 ret = dev->bus->online(dev); 2156 if (!ret) { 2157 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 2158 dev->offline = false; 2159 } 2160 } else { 2161 ret = 1; 2162 } 2163 } 2164 device_unlock(dev); 2165 2166 return ret; 2167 } 2168 2169 struct root_device { 2170 struct device dev; 2171 struct module *owner; 2172 }; 2173 2174 static inline struct root_device *to_root_device(struct device *d) 2175 { 2176 return container_of(d, struct root_device, dev); 2177 } 2178 2179 static void root_device_release(struct device *dev) 2180 { 2181 kfree(to_root_device(dev)); 2182 } 2183 2184 /** 2185 * __root_device_register - allocate and register a root device 2186 * @name: root device name 2187 * @owner: owner module of the root device, usually THIS_MODULE 2188 * 2189 * This function allocates a root device and registers it 2190 * using device_register(). In order to free the returned 2191 * device, use root_device_unregister(). 2192 * 2193 * Root devices are dummy devices which allow other devices 2194 * to be grouped under /sys/devices. Use this function to 2195 * allocate a root device and then use it as the parent of 2196 * any device which should appear under /sys/devices/{name} 2197 * 2198 * The /sys/devices/{name} directory will also contain a 2199 * 'module' symlink which points to the @owner directory 2200 * in sysfs. 2201 * 2202 * Returns &struct device pointer on success, or ERR_PTR() on error. 2203 * 2204 * Note: You probably want to use root_device_register(). 2205 */ 2206 struct device *__root_device_register(const char *name, struct module *owner) 2207 { 2208 struct root_device *root; 2209 int err = -ENOMEM; 2210 2211 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 2212 if (!root) 2213 return ERR_PTR(err); 2214 2215 err = dev_set_name(&root->dev, "%s", name); 2216 if (err) { 2217 kfree(root); 2218 return ERR_PTR(err); 2219 } 2220 2221 root->dev.release = root_device_release; 2222 2223 err = device_register(&root->dev); 2224 if (err) { 2225 put_device(&root->dev); 2226 return ERR_PTR(err); 2227 } 2228 2229 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 2230 if (owner) { 2231 struct module_kobject *mk = &owner->mkobj; 2232 2233 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 2234 if (err) { 2235 device_unregister(&root->dev); 2236 return ERR_PTR(err); 2237 } 2238 root->owner = owner; 2239 } 2240 #endif 2241 2242 return &root->dev; 2243 } 2244 EXPORT_SYMBOL_GPL(__root_device_register); 2245 2246 /** 2247 * root_device_unregister - unregister and free a root device 2248 * @dev: device going away 2249 * 2250 * This function unregisters and cleans up a device that was created by 2251 * root_device_register(). 2252 */ 2253 void root_device_unregister(struct device *dev) 2254 { 2255 struct root_device *root = to_root_device(dev); 2256 2257 if (root->owner) 2258 sysfs_remove_link(&root->dev.kobj, "module"); 2259 2260 device_unregister(dev); 2261 } 2262 EXPORT_SYMBOL_GPL(root_device_unregister); 2263 2264 2265 static void device_create_release(struct device *dev) 2266 { 2267 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2268 kfree(dev); 2269 } 2270 2271 static struct device * 2272 device_create_groups_vargs(struct class *class, struct device *parent, 2273 dev_t devt, void *drvdata, 2274 const struct attribute_group **groups, 2275 const char *fmt, va_list args) 2276 { 2277 struct device *dev = NULL; 2278 int retval = -ENODEV; 2279 2280 if (class == NULL || IS_ERR(class)) 2281 goto error; 2282 2283 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 2284 if (!dev) { 2285 retval = -ENOMEM; 2286 goto error; 2287 } 2288 2289 device_initialize(dev); 2290 dev->devt = devt; 2291 dev->class = class; 2292 dev->parent = parent; 2293 dev->groups = groups; 2294 dev->release = device_create_release; 2295 dev_set_drvdata(dev, drvdata); 2296 2297 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 2298 if (retval) 2299 goto error; 2300 2301 retval = device_add(dev); 2302 if (retval) 2303 goto error; 2304 2305 return dev; 2306 2307 error: 2308 put_device(dev); 2309 return ERR_PTR(retval); 2310 } 2311 2312 /** 2313 * device_create_vargs - creates a device and registers it with sysfs 2314 * @class: pointer to the struct class that this device should be registered to 2315 * @parent: pointer to the parent struct device of this new device, if any 2316 * @devt: the dev_t for the char device to be added 2317 * @drvdata: the data to be added to the device for callbacks 2318 * @fmt: string for the device's name 2319 * @args: va_list for the device's name 2320 * 2321 * This function can be used by char device classes. A struct device 2322 * will be created in sysfs, registered to the specified class. 2323 * 2324 * A "dev" file will be created, showing the dev_t for the device, if 2325 * the dev_t is not 0,0. 2326 * If a pointer to a parent struct device is passed in, the newly created 2327 * struct device will be a child of that device in sysfs. 2328 * The pointer to the struct device will be returned from the call. 2329 * Any further sysfs files that might be required can be created using this 2330 * pointer. 2331 * 2332 * Returns &struct device pointer on success, or ERR_PTR() on error. 2333 * 2334 * Note: the struct class passed to this function must have previously 2335 * been created with a call to class_create(). 2336 */ 2337 struct device *device_create_vargs(struct class *class, struct device *parent, 2338 dev_t devt, void *drvdata, const char *fmt, 2339 va_list args) 2340 { 2341 return device_create_groups_vargs(class, parent, devt, drvdata, NULL, 2342 fmt, args); 2343 } 2344 EXPORT_SYMBOL_GPL(device_create_vargs); 2345 2346 /** 2347 * device_create - creates a device and registers it with sysfs 2348 * @class: pointer to the struct class that this device should be registered to 2349 * @parent: pointer to the parent struct device of this new device, if any 2350 * @devt: the dev_t for the char device to be added 2351 * @drvdata: the data to be added to the device for callbacks 2352 * @fmt: string for the device's name 2353 * 2354 * This function can be used by char device classes. A struct device 2355 * will be created in sysfs, registered to the specified class. 2356 * 2357 * A "dev" file will be created, showing the dev_t for the device, if 2358 * the dev_t is not 0,0. 2359 * If a pointer to a parent struct device is passed in, the newly created 2360 * struct device will be a child of that device in sysfs. 2361 * The pointer to the struct device will be returned from the call. 2362 * Any further sysfs files that might be required can be created using this 2363 * pointer. 2364 * 2365 * Returns &struct device pointer on success, or ERR_PTR() on error. 2366 * 2367 * Note: the struct class passed to this function must have previously 2368 * been created with a call to class_create(). 2369 */ 2370 struct device *device_create(struct class *class, struct device *parent, 2371 dev_t devt, void *drvdata, const char *fmt, ...) 2372 { 2373 va_list vargs; 2374 struct device *dev; 2375 2376 va_start(vargs, fmt); 2377 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs); 2378 va_end(vargs); 2379 return dev; 2380 } 2381 EXPORT_SYMBOL_GPL(device_create); 2382 2383 /** 2384 * device_create_with_groups - creates a device and registers it with sysfs 2385 * @class: pointer to the struct class that this device should be registered to 2386 * @parent: pointer to the parent struct device of this new device, if any 2387 * @devt: the dev_t for the char device to be added 2388 * @drvdata: the data to be added to the device for callbacks 2389 * @groups: NULL-terminated list of attribute groups to be created 2390 * @fmt: string for the device's name 2391 * 2392 * This function can be used by char device classes. A struct device 2393 * will be created in sysfs, registered to the specified class. 2394 * Additional attributes specified in the groups parameter will also 2395 * be created automatically. 2396 * 2397 * A "dev" file will be created, showing the dev_t for the device, if 2398 * the dev_t is not 0,0. 2399 * If a pointer to a parent struct device is passed in, the newly created 2400 * struct device will be a child of that device in sysfs. 2401 * The pointer to the struct device will be returned from the call. 2402 * Any further sysfs files that might be required can be created using this 2403 * pointer. 2404 * 2405 * Returns &struct device pointer on success, or ERR_PTR() on error. 2406 * 2407 * Note: the struct class passed to this function must have previously 2408 * been created with a call to class_create(). 2409 */ 2410 struct device *device_create_with_groups(struct class *class, 2411 struct device *parent, dev_t devt, 2412 void *drvdata, 2413 const struct attribute_group **groups, 2414 const char *fmt, ...) 2415 { 2416 va_list vargs; 2417 struct device *dev; 2418 2419 va_start(vargs, fmt); 2420 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 2421 fmt, vargs); 2422 va_end(vargs); 2423 return dev; 2424 } 2425 EXPORT_SYMBOL_GPL(device_create_with_groups); 2426 2427 static int __match_devt(struct device *dev, const void *data) 2428 { 2429 const dev_t *devt = data; 2430 2431 return dev->devt == *devt; 2432 } 2433 2434 /** 2435 * device_destroy - removes a device that was created with device_create() 2436 * @class: pointer to the struct class that this device was registered with 2437 * @devt: the dev_t of the device that was previously registered 2438 * 2439 * This call unregisters and cleans up a device that was created with a 2440 * call to device_create(). 2441 */ 2442 void device_destroy(struct class *class, dev_t devt) 2443 { 2444 struct device *dev; 2445 2446 dev = class_find_device(class, NULL, &devt, __match_devt); 2447 if (dev) { 2448 put_device(dev); 2449 device_unregister(dev); 2450 } 2451 } 2452 EXPORT_SYMBOL_GPL(device_destroy); 2453 2454 /** 2455 * device_rename - renames a device 2456 * @dev: the pointer to the struct device to be renamed 2457 * @new_name: the new name of the device 2458 * 2459 * It is the responsibility of the caller to provide mutual 2460 * exclusion between two different calls of device_rename 2461 * on the same device to ensure that new_name is valid and 2462 * won't conflict with other devices. 2463 * 2464 * Note: Don't call this function. Currently, the networking layer calls this 2465 * function, but that will change. The following text from Kay Sievers offers 2466 * some insight: 2467 * 2468 * Renaming devices is racy at many levels, symlinks and other stuff are not 2469 * replaced atomically, and you get a "move" uevent, but it's not easy to 2470 * connect the event to the old and new device. Device nodes are not renamed at 2471 * all, there isn't even support for that in the kernel now. 2472 * 2473 * In the meantime, during renaming, your target name might be taken by another 2474 * driver, creating conflicts. Or the old name is taken directly after you 2475 * renamed it -- then you get events for the same DEVPATH, before you even see 2476 * the "move" event. It's just a mess, and nothing new should ever rely on 2477 * kernel device renaming. Besides that, it's not even implemented now for 2478 * other things than (driver-core wise very simple) network devices. 2479 * 2480 * We are currently about to change network renaming in udev to completely 2481 * disallow renaming of devices in the same namespace as the kernel uses, 2482 * because we can't solve the problems properly, that arise with swapping names 2483 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 2484 * be allowed to some other name than eth[0-9]*, for the aforementioned 2485 * reasons. 2486 * 2487 * Make up a "real" name in the driver before you register anything, or add 2488 * some other attributes for userspace to find the device, or use udev to add 2489 * symlinks -- but never rename kernel devices later, it's a complete mess. We 2490 * don't even want to get into that and try to implement the missing pieces in 2491 * the core. We really have other pieces to fix in the driver core mess. :) 2492 */ 2493 int device_rename(struct device *dev, const char *new_name) 2494 { 2495 struct kobject *kobj = &dev->kobj; 2496 char *old_device_name = NULL; 2497 int error; 2498 2499 dev = get_device(dev); 2500 if (!dev) 2501 return -EINVAL; 2502 2503 dev_dbg(dev, "renaming to %s\n", new_name); 2504 2505 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 2506 if (!old_device_name) { 2507 error = -ENOMEM; 2508 goto out; 2509 } 2510 2511 if (dev->class) { 2512 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 2513 kobj, old_device_name, 2514 new_name, kobject_namespace(kobj)); 2515 if (error) 2516 goto out; 2517 } 2518 2519 error = kobject_rename(kobj, new_name); 2520 if (error) 2521 goto out; 2522 2523 out: 2524 put_device(dev); 2525 2526 kfree(old_device_name); 2527 2528 return error; 2529 } 2530 EXPORT_SYMBOL_GPL(device_rename); 2531 2532 static int device_move_class_links(struct device *dev, 2533 struct device *old_parent, 2534 struct device *new_parent) 2535 { 2536 int error = 0; 2537 2538 if (old_parent) 2539 sysfs_remove_link(&dev->kobj, "device"); 2540 if (new_parent) 2541 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 2542 "device"); 2543 return error; 2544 } 2545 2546 /** 2547 * device_move - moves a device to a new parent 2548 * @dev: the pointer to the struct device to be moved 2549 * @new_parent: the new parent of the device (can by NULL) 2550 * @dpm_order: how to reorder the dpm_list 2551 */ 2552 int device_move(struct device *dev, struct device *new_parent, 2553 enum dpm_order dpm_order) 2554 { 2555 int error; 2556 struct device *old_parent; 2557 struct kobject *new_parent_kobj; 2558 2559 dev = get_device(dev); 2560 if (!dev) 2561 return -EINVAL; 2562 2563 device_pm_lock(); 2564 new_parent = get_device(new_parent); 2565 new_parent_kobj = get_device_parent(dev, new_parent); 2566 2567 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 2568 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 2569 error = kobject_move(&dev->kobj, new_parent_kobj); 2570 if (error) { 2571 cleanup_glue_dir(dev, new_parent_kobj); 2572 put_device(new_parent); 2573 goto out; 2574 } 2575 old_parent = dev->parent; 2576 dev->parent = new_parent; 2577 if (old_parent) 2578 klist_remove(&dev->p->knode_parent); 2579 if (new_parent) { 2580 klist_add_tail(&dev->p->knode_parent, 2581 &new_parent->p->klist_children); 2582 set_dev_node(dev, dev_to_node(new_parent)); 2583 } 2584 2585 if (dev->class) { 2586 error = device_move_class_links(dev, old_parent, new_parent); 2587 if (error) { 2588 /* We ignore errors on cleanup since we're hosed anyway... */ 2589 device_move_class_links(dev, new_parent, old_parent); 2590 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 2591 if (new_parent) 2592 klist_remove(&dev->p->knode_parent); 2593 dev->parent = old_parent; 2594 if (old_parent) { 2595 klist_add_tail(&dev->p->knode_parent, 2596 &old_parent->p->klist_children); 2597 set_dev_node(dev, dev_to_node(old_parent)); 2598 } 2599 } 2600 cleanup_glue_dir(dev, new_parent_kobj); 2601 put_device(new_parent); 2602 goto out; 2603 } 2604 } 2605 switch (dpm_order) { 2606 case DPM_ORDER_NONE: 2607 break; 2608 case DPM_ORDER_DEV_AFTER_PARENT: 2609 device_pm_move_after(dev, new_parent); 2610 devices_kset_move_after(dev, new_parent); 2611 break; 2612 case DPM_ORDER_PARENT_BEFORE_DEV: 2613 device_pm_move_before(new_parent, dev); 2614 devices_kset_move_before(new_parent, dev); 2615 break; 2616 case DPM_ORDER_DEV_LAST: 2617 device_pm_move_last(dev); 2618 devices_kset_move_last(dev); 2619 break; 2620 } 2621 2622 put_device(old_parent); 2623 out: 2624 device_pm_unlock(); 2625 put_device(dev); 2626 return error; 2627 } 2628 EXPORT_SYMBOL_GPL(device_move); 2629 2630 /** 2631 * device_shutdown - call ->shutdown() on each device to shutdown. 2632 */ 2633 void device_shutdown(void) 2634 { 2635 struct device *dev, *parent; 2636 2637 spin_lock(&devices_kset->list_lock); 2638 /* 2639 * Walk the devices list backward, shutting down each in turn. 2640 * Beware that device unplug events may also start pulling 2641 * devices offline, even as the system is shutting down. 2642 */ 2643 while (!list_empty(&devices_kset->list)) { 2644 dev = list_entry(devices_kset->list.prev, struct device, 2645 kobj.entry); 2646 2647 /* 2648 * hold reference count of device's parent to 2649 * prevent it from being freed because parent's 2650 * lock is to be held 2651 */ 2652 parent = get_device(dev->parent); 2653 get_device(dev); 2654 /* 2655 * Make sure the device is off the kset list, in the 2656 * event that dev->*->shutdown() doesn't remove it. 2657 */ 2658 list_del_init(&dev->kobj.entry); 2659 spin_unlock(&devices_kset->list_lock); 2660 2661 /* hold lock to avoid race with probe/release */ 2662 if (parent) 2663 device_lock(parent); 2664 device_lock(dev); 2665 2666 /* Don't allow any more runtime suspends */ 2667 pm_runtime_get_noresume(dev); 2668 pm_runtime_barrier(dev); 2669 2670 if (dev->bus && dev->bus->shutdown) { 2671 if (initcall_debug) 2672 dev_info(dev, "shutdown\n"); 2673 dev->bus->shutdown(dev); 2674 } else if (dev->driver && dev->driver->shutdown) { 2675 if (initcall_debug) 2676 dev_info(dev, "shutdown\n"); 2677 dev->driver->shutdown(dev); 2678 } 2679 2680 device_unlock(dev); 2681 if (parent) 2682 device_unlock(parent); 2683 2684 put_device(dev); 2685 put_device(parent); 2686 2687 spin_lock(&devices_kset->list_lock); 2688 } 2689 spin_unlock(&devices_kset->list_lock); 2690 } 2691 2692 /* 2693 * Device logging functions 2694 */ 2695 2696 #ifdef CONFIG_PRINTK 2697 static int 2698 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen) 2699 { 2700 const char *subsys; 2701 size_t pos = 0; 2702 2703 if (dev->class) 2704 subsys = dev->class->name; 2705 else if (dev->bus) 2706 subsys = dev->bus->name; 2707 else 2708 return 0; 2709 2710 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys); 2711 if (pos >= hdrlen) 2712 goto overflow; 2713 2714 /* 2715 * Add device identifier DEVICE=: 2716 * b12:8 block dev_t 2717 * c127:3 char dev_t 2718 * n8 netdev ifindex 2719 * +sound:card0 subsystem:devname 2720 */ 2721 if (MAJOR(dev->devt)) { 2722 char c; 2723 2724 if (strcmp(subsys, "block") == 0) 2725 c = 'b'; 2726 else 2727 c = 'c'; 2728 pos++; 2729 pos += snprintf(hdr + pos, hdrlen - pos, 2730 "DEVICE=%c%u:%u", 2731 c, MAJOR(dev->devt), MINOR(dev->devt)); 2732 } else if (strcmp(subsys, "net") == 0) { 2733 struct net_device *net = to_net_dev(dev); 2734 2735 pos++; 2736 pos += snprintf(hdr + pos, hdrlen - pos, 2737 "DEVICE=n%u", net->ifindex); 2738 } else { 2739 pos++; 2740 pos += snprintf(hdr + pos, hdrlen - pos, 2741 "DEVICE=+%s:%s", subsys, dev_name(dev)); 2742 } 2743 2744 if (pos >= hdrlen) 2745 goto overflow; 2746 2747 return pos; 2748 2749 overflow: 2750 dev_WARN(dev, "device/subsystem name too long"); 2751 return 0; 2752 } 2753 2754 int dev_vprintk_emit(int level, const struct device *dev, 2755 const char *fmt, va_list args) 2756 { 2757 char hdr[128]; 2758 size_t hdrlen; 2759 2760 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr)); 2761 2762 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args); 2763 } 2764 EXPORT_SYMBOL(dev_vprintk_emit); 2765 2766 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 2767 { 2768 va_list args; 2769 int r; 2770 2771 va_start(args, fmt); 2772 2773 r = dev_vprintk_emit(level, dev, fmt, args); 2774 2775 va_end(args); 2776 2777 return r; 2778 } 2779 EXPORT_SYMBOL(dev_printk_emit); 2780 2781 static void __dev_printk(const char *level, const struct device *dev, 2782 struct va_format *vaf) 2783 { 2784 if (dev) 2785 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 2786 dev_driver_string(dev), dev_name(dev), vaf); 2787 else 2788 printk("%s(NULL device *): %pV", level, vaf); 2789 } 2790 2791 void dev_printk(const char *level, const struct device *dev, 2792 const char *fmt, ...) 2793 { 2794 struct va_format vaf; 2795 va_list args; 2796 2797 va_start(args, fmt); 2798 2799 vaf.fmt = fmt; 2800 vaf.va = &args; 2801 2802 __dev_printk(level, dev, &vaf); 2803 2804 va_end(args); 2805 } 2806 EXPORT_SYMBOL(dev_printk); 2807 2808 #define define_dev_printk_level(func, kern_level) \ 2809 void func(const struct device *dev, const char *fmt, ...) \ 2810 { \ 2811 struct va_format vaf; \ 2812 va_list args; \ 2813 \ 2814 va_start(args, fmt); \ 2815 \ 2816 vaf.fmt = fmt; \ 2817 vaf.va = &args; \ 2818 \ 2819 __dev_printk(kern_level, dev, &vaf); \ 2820 \ 2821 va_end(args); \ 2822 } \ 2823 EXPORT_SYMBOL(func); 2824 2825 define_dev_printk_level(dev_emerg, KERN_EMERG); 2826 define_dev_printk_level(dev_alert, KERN_ALERT); 2827 define_dev_printk_level(dev_crit, KERN_CRIT); 2828 define_dev_printk_level(dev_err, KERN_ERR); 2829 define_dev_printk_level(dev_warn, KERN_WARNING); 2830 define_dev_printk_level(dev_notice, KERN_NOTICE); 2831 define_dev_printk_level(_dev_info, KERN_INFO); 2832 2833 #endif 2834 2835 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 2836 { 2837 return fwnode && !IS_ERR(fwnode->secondary); 2838 } 2839 2840 /** 2841 * set_primary_fwnode - Change the primary firmware node of a given device. 2842 * @dev: Device to handle. 2843 * @fwnode: New primary firmware node of the device. 2844 * 2845 * Set the device's firmware node pointer to @fwnode, but if a secondary 2846 * firmware node of the device is present, preserve it. 2847 */ 2848 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 2849 { 2850 if (fwnode) { 2851 struct fwnode_handle *fn = dev->fwnode; 2852 2853 if (fwnode_is_primary(fn)) 2854 fn = fn->secondary; 2855 2856 if (fn) { 2857 WARN_ON(fwnode->secondary); 2858 fwnode->secondary = fn; 2859 } 2860 dev->fwnode = fwnode; 2861 } else { 2862 dev->fwnode = fwnode_is_primary(dev->fwnode) ? 2863 dev->fwnode->secondary : NULL; 2864 } 2865 } 2866 EXPORT_SYMBOL_GPL(set_primary_fwnode); 2867 2868 /** 2869 * set_secondary_fwnode - Change the secondary firmware node of a given device. 2870 * @dev: Device to handle. 2871 * @fwnode: New secondary firmware node of the device. 2872 * 2873 * If a primary firmware node of the device is present, set its secondary 2874 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 2875 * @fwnode. 2876 */ 2877 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 2878 { 2879 if (fwnode) 2880 fwnode->secondary = ERR_PTR(-ENODEV); 2881 2882 if (fwnode_is_primary(dev->fwnode)) 2883 dev->fwnode->secondary = fwnode; 2884 else 2885 dev->fwnode = fwnode; 2886 } 2887