xref: /openbmc/linux/drivers/base/core.c (revision 2169e6da)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/device.h>
13 #include <linux/err.h>
14 #include <linux/fwnode.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/string.h>
19 #include <linux/kdev_t.h>
20 #include <linux/notifier.h>
21 #include <linux/of.h>
22 #include <linux/of_device.h>
23 #include <linux/genhd.h>
24 #include <linux/mutex.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/netdevice.h>
27 #include <linux/sched/signal.h>
28 #include <linux/sysfs.h>
29 
30 #include "base.h"
31 #include "power/power.h"
32 
33 #ifdef CONFIG_SYSFS_DEPRECATED
34 #ifdef CONFIG_SYSFS_DEPRECATED_V2
35 long sysfs_deprecated = 1;
36 #else
37 long sysfs_deprecated = 0;
38 #endif
39 static int __init sysfs_deprecated_setup(char *arg)
40 {
41 	return kstrtol(arg, 10, &sysfs_deprecated);
42 }
43 early_param("sysfs.deprecated", sysfs_deprecated_setup);
44 #endif
45 
46 /* Device links support. */
47 
48 #ifdef CONFIG_SRCU
49 static DEFINE_MUTEX(device_links_lock);
50 DEFINE_STATIC_SRCU(device_links_srcu);
51 
52 static inline void device_links_write_lock(void)
53 {
54 	mutex_lock(&device_links_lock);
55 }
56 
57 static inline void device_links_write_unlock(void)
58 {
59 	mutex_unlock(&device_links_lock);
60 }
61 
62 int device_links_read_lock(void)
63 {
64 	return srcu_read_lock(&device_links_srcu);
65 }
66 
67 void device_links_read_unlock(int idx)
68 {
69 	srcu_read_unlock(&device_links_srcu, idx);
70 }
71 #else /* !CONFIG_SRCU */
72 static DECLARE_RWSEM(device_links_lock);
73 
74 static inline void device_links_write_lock(void)
75 {
76 	down_write(&device_links_lock);
77 }
78 
79 static inline void device_links_write_unlock(void)
80 {
81 	up_write(&device_links_lock);
82 }
83 
84 int device_links_read_lock(void)
85 {
86 	down_read(&device_links_lock);
87 	return 0;
88 }
89 
90 void device_links_read_unlock(int not_used)
91 {
92 	up_read(&device_links_lock);
93 }
94 #endif /* !CONFIG_SRCU */
95 
96 /**
97  * device_is_dependent - Check if one device depends on another one
98  * @dev: Device to check dependencies for.
99  * @target: Device to check against.
100  *
101  * Check if @target depends on @dev or any device dependent on it (its child or
102  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
103  */
104 static int device_is_dependent(struct device *dev, void *target)
105 {
106 	struct device_link *link;
107 	int ret;
108 
109 	if (dev == target)
110 		return 1;
111 
112 	ret = device_for_each_child(dev, target, device_is_dependent);
113 	if (ret)
114 		return ret;
115 
116 	list_for_each_entry(link, &dev->links.consumers, s_node) {
117 		if (link->consumer == target)
118 			return 1;
119 
120 		ret = device_is_dependent(link->consumer, target);
121 		if (ret)
122 			break;
123 	}
124 	return ret;
125 }
126 
127 static int device_reorder_to_tail(struct device *dev, void *not_used)
128 {
129 	struct device_link *link;
130 
131 	/*
132 	 * Devices that have not been registered yet will be put to the ends
133 	 * of the lists during the registration, so skip them here.
134 	 */
135 	if (device_is_registered(dev))
136 		devices_kset_move_last(dev);
137 
138 	if (device_pm_initialized(dev))
139 		device_pm_move_last(dev);
140 
141 	device_for_each_child(dev, NULL, device_reorder_to_tail);
142 	list_for_each_entry(link, &dev->links.consumers, s_node)
143 		device_reorder_to_tail(link->consumer, NULL);
144 
145 	return 0;
146 }
147 
148 /**
149  * device_pm_move_to_tail - Move set of devices to the end of device lists
150  * @dev: Device to move
151  *
152  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
153  *
154  * It moves the @dev along with all of its children and all of its consumers
155  * to the ends of the device_kset and dpm_list, recursively.
156  */
157 void device_pm_move_to_tail(struct device *dev)
158 {
159 	int idx;
160 
161 	idx = device_links_read_lock();
162 	device_pm_lock();
163 	device_reorder_to_tail(dev, NULL);
164 	device_pm_unlock();
165 	device_links_read_unlock(idx);
166 }
167 
168 /**
169  * device_link_add - Create a link between two devices.
170  * @consumer: Consumer end of the link.
171  * @supplier: Supplier end of the link.
172  * @flags: Link flags.
173  *
174  * The caller is responsible for the proper synchronization of the link creation
175  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
176  * runtime PM framework to take the link into account.  Second, if the
177  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
178  * be forced into the active metastate and reference-counted upon the creation
179  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
180  * ignored.
181  *
182  * If DL_FLAG_STATELESS is set in @flags, the link is not going to be managed by
183  * the driver core and, in particular, the caller of this function is expected
184  * to drop the reference to the link acquired by it directly.
185  *
186  * If that flag is not set, however, the caller of this function is handing the
187  * management of the link over to the driver core entirely and its return value
188  * can only be used to check whether or not the link is present.  In that case,
189  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
190  * flags can be used to indicate to the driver core when the link can be safely
191  * deleted.  Namely, setting one of them in @flags indicates to the driver core
192  * that the link is not going to be used (by the given caller of this function)
193  * after unbinding the consumer or supplier driver, respectively, from its
194  * device, so the link can be deleted at that point.  If none of them is set,
195  * the link will be maintained until one of the devices pointed to by it (either
196  * the consumer or the supplier) is unregistered.
197  *
198  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
199  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
200  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
201  * be used to request the driver core to automaticall probe for a consmer
202  * driver after successfully binding a driver to the supplier device.
203  *
204  * The combination of DL_FLAG_STATELESS and either DL_FLAG_AUTOREMOVE_CONSUMER
205  * or DL_FLAG_AUTOREMOVE_SUPPLIER set in @flags at the same time is invalid and
206  * will cause NULL to be returned upfront.
207  *
208  * A side effect of the link creation is re-ordering of dpm_list and the
209  * devices_kset list by moving the consumer device and all devices depending
210  * on it to the ends of these lists (that does not happen to devices that have
211  * not been registered when this function is called).
212  *
213  * The supplier device is required to be registered when this function is called
214  * and NULL will be returned if that is not the case.  The consumer device need
215  * not be registered, however.
216  */
217 struct device_link *device_link_add(struct device *consumer,
218 				    struct device *supplier, u32 flags)
219 {
220 	struct device_link *link;
221 
222 	if (!consumer || !supplier ||
223 	    (flags & DL_FLAG_STATELESS &&
224 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
225 		      DL_FLAG_AUTOREMOVE_SUPPLIER |
226 		      DL_FLAG_AUTOPROBE_CONSUMER)) ||
227 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
228 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
229 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
230 		return NULL;
231 
232 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
233 		if (pm_runtime_get_sync(supplier) < 0) {
234 			pm_runtime_put_noidle(supplier);
235 			return NULL;
236 		}
237 	}
238 
239 	device_links_write_lock();
240 	device_pm_lock();
241 
242 	/*
243 	 * If the supplier has not been fully registered yet or there is a
244 	 * reverse dependency between the consumer and the supplier already in
245 	 * the graph, return NULL.
246 	 */
247 	if (!device_pm_initialized(supplier)
248 	    || device_is_dependent(consumer, supplier)) {
249 		link = NULL;
250 		goto out;
251 	}
252 
253 	/*
254 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
255 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
256 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
257 	 */
258 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
259 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
260 
261 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
262 		if (link->consumer != consumer)
263 			continue;
264 
265 		/*
266 		 * Don't return a stateless link if the caller wants a stateful
267 		 * one and vice versa.
268 		 */
269 		if (WARN_ON((flags & DL_FLAG_STATELESS) != (link->flags & DL_FLAG_STATELESS))) {
270 			link = NULL;
271 			goto out;
272 		}
273 
274 		if (flags & DL_FLAG_PM_RUNTIME) {
275 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
276 				pm_runtime_new_link(consumer);
277 				link->flags |= DL_FLAG_PM_RUNTIME;
278 			}
279 			if (flags & DL_FLAG_RPM_ACTIVE)
280 				refcount_inc(&link->rpm_active);
281 		}
282 
283 		if (flags & DL_FLAG_STATELESS) {
284 			kref_get(&link->kref);
285 			goto out;
286 		}
287 
288 		/*
289 		 * If the life time of the link following from the new flags is
290 		 * longer than indicated by the flags of the existing link,
291 		 * update the existing link to stay around longer.
292 		 */
293 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
294 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
295 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
296 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
297 			}
298 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
299 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
300 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
301 		}
302 		goto out;
303 	}
304 
305 	link = kzalloc(sizeof(*link), GFP_KERNEL);
306 	if (!link)
307 		goto out;
308 
309 	refcount_set(&link->rpm_active, 1);
310 
311 	if (flags & DL_FLAG_PM_RUNTIME) {
312 		if (flags & DL_FLAG_RPM_ACTIVE)
313 			refcount_inc(&link->rpm_active);
314 
315 		pm_runtime_new_link(consumer);
316 	}
317 
318 	get_device(supplier);
319 	link->supplier = supplier;
320 	INIT_LIST_HEAD(&link->s_node);
321 	get_device(consumer);
322 	link->consumer = consumer;
323 	INIT_LIST_HEAD(&link->c_node);
324 	link->flags = flags;
325 	kref_init(&link->kref);
326 
327 	/* Determine the initial link state. */
328 	if (flags & DL_FLAG_STATELESS) {
329 		link->status = DL_STATE_NONE;
330 	} else {
331 		switch (supplier->links.status) {
332 		case DL_DEV_PROBING:
333 			switch (consumer->links.status) {
334 			case DL_DEV_PROBING:
335 				/*
336 				 * A consumer driver can create a link to a
337 				 * supplier that has not completed its probing
338 				 * yet as long as it knows that the supplier is
339 				 * already functional (for example, it has just
340 				 * acquired some resources from the supplier).
341 				 */
342 				link->status = DL_STATE_CONSUMER_PROBE;
343 				break;
344 			default:
345 				link->status = DL_STATE_DORMANT;
346 				break;
347 			}
348 			break;
349 		case DL_DEV_DRIVER_BOUND:
350 			switch (consumer->links.status) {
351 			case DL_DEV_PROBING:
352 				link->status = DL_STATE_CONSUMER_PROBE;
353 				break;
354 			case DL_DEV_DRIVER_BOUND:
355 				link->status = DL_STATE_ACTIVE;
356 				break;
357 			default:
358 				link->status = DL_STATE_AVAILABLE;
359 				break;
360 			}
361 			break;
362 		case DL_DEV_UNBINDING:
363 			link->status = DL_STATE_SUPPLIER_UNBIND;
364 			break;
365 		default:
366 			link->status = DL_STATE_DORMANT;
367 			break;
368 		}
369 	}
370 
371 	/*
372 	 * Some callers expect the link creation during consumer driver probe to
373 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
374 	 */
375 	if (link->status == DL_STATE_CONSUMER_PROBE &&
376 	    flags & DL_FLAG_PM_RUNTIME)
377 		pm_runtime_resume(supplier);
378 
379 	/*
380 	 * Move the consumer and all of the devices depending on it to the end
381 	 * of dpm_list and the devices_kset list.
382 	 *
383 	 * It is necessary to hold dpm_list locked throughout all that or else
384 	 * we may end up suspending with a wrong ordering of it.
385 	 */
386 	device_reorder_to_tail(consumer, NULL);
387 
388 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
389 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
390 
391 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
392 
393  out:
394 	device_pm_unlock();
395 	device_links_write_unlock();
396 
397 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
398 		pm_runtime_put(supplier);
399 
400 	return link;
401 }
402 EXPORT_SYMBOL_GPL(device_link_add);
403 
404 static void device_link_free(struct device_link *link)
405 {
406 	while (refcount_dec_not_one(&link->rpm_active))
407 		pm_runtime_put(link->supplier);
408 
409 	put_device(link->consumer);
410 	put_device(link->supplier);
411 	kfree(link);
412 }
413 
414 #ifdef CONFIG_SRCU
415 static void __device_link_free_srcu(struct rcu_head *rhead)
416 {
417 	device_link_free(container_of(rhead, struct device_link, rcu_head));
418 }
419 
420 static void __device_link_del(struct kref *kref)
421 {
422 	struct device_link *link = container_of(kref, struct device_link, kref);
423 
424 	dev_dbg(link->consumer, "Dropping the link to %s\n",
425 		dev_name(link->supplier));
426 
427 	if (link->flags & DL_FLAG_PM_RUNTIME)
428 		pm_runtime_drop_link(link->consumer);
429 
430 	list_del_rcu(&link->s_node);
431 	list_del_rcu(&link->c_node);
432 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
433 }
434 #else /* !CONFIG_SRCU */
435 static void __device_link_del(struct kref *kref)
436 {
437 	struct device_link *link = container_of(kref, struct device_link, kref);
438 
439 	dev_info(link->consumer, "Dropping the link to %s\n",
440 		 dev_name(link->supplier));
441 
442 	if (link->flags & DL_FLAG_PM_RUNTIME)
443 		pm_runtime_drop_link(link->consumer);
444 
445 	list_del(&link->s_node);
446 	list_del(&link->c_node);
447 	device_link_free(link);
448 }
449 #endif /* !CONFIG_SRCU */
450 
451 static void device_link_put_kref(struct device_link *link)
452 {
453 	if (link->flags & DL_FLAG_STATELESS)
454 		kref_put(&link->kref, __device_link_del);
455 	else
456 		WARN(1, "Unable to drop a managed device link reference\n");
457 }
458 
459 /**
460  * device_link_del - Delete a stateless link between two devices.
461  * @link: Device link to delete.
462  *
463  * The caller must ensure proper synchronization of this function with runtime
464  * PM.  If the link was added multiple times, it needs to be deleted as often.
465  * Care is required for hotplugged devices:  Their links are purged on removal
466  * and calling device_link_del() is then no longer allowed.
467  */
468 void device_link_del(struct device_link *link)
469 {
470 	device_links_write_lock();
471 	device_pm_lock();
472 	device_link_put_kref(link);
473 	device_pm_unlock();
474 	device_links_write_unlock();
475 }
476 EXPORT_SYMBOL_GPL(device_link_del);
477 
478 /**
479  * device_link_remove - Delete a stateless link between two devices.
480  * @consumer: Consumer end of the link.
481  * @supplier: Supplier end of the link.
482  *
483  * The caller must ensure proper synchronization of this function with runtime
484  * PM.
485  */
486 void device_link_remove(void *consumer, struct device *supplier)
487 {
488 	struct device_link *link;
489 
490 	if (WARN_ON(consumer == supplier))
491 		return;
492 
493 	device_links_write_lock();
494 	device_pm_lock();
495 
496 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
497 		if (link->consumer == consumer) {
498 			device_link_put_kref(link);
499 			break;
500 		}
501 	}
502 
503 	device_pm_unlock();
504 	device_links_write_unlock();
505 }
506 EXPORT_SYMBOL_GPL(device_link_remove);
507 
508 static void device_links_missing_supplier(struct device *dev)
509 {
510 	struct device_link *link;
511 
512 	list_for_each_entry(link, &dev->links.suppliers, c_node)
513 		if (link->status == DL_STATE_CONSUMER_PROBE)
514 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
515 }
516 
517 /**
518  * device_links_check_suppliers - Check presence of supplier drivers.
519  * @dev: Consumer device.
520  *
521  * Check links from this device to any suppliers.  Walk the list of the device's
522  * links to suppliers and see if all of them are available.  If not, simply
523  * return -EPROBE_DEFER.
524  *
525  * We need to guarantee that the supplier will not go away after the check has
526  * been positive here.  It only can go away in __device_release_driver() and
527  * that function  checks the device's links to consumers.  This means we need to
528  * mark the link as "consumer probe in progress" to make the supplier removal
529  * wait for us to complete (or bad things may happen).
530  *
531  * Links with the DL_FLAG_STATELESS flag set are ignored.
532  */
533 int device_links_check_suppliers(struct device *dev)
534 {
535 	struct device_link *link;
536 	int ret = 0;
537 
538 	device_links_write_lock();
539 
540 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
541 		if (link->flags & DL_FLAG_STATELESS)
542 			continue;
543 
544 		if (link->status != DL_STATE_AVAILABLE) {
545 			device_links_missing_supplier(dev);
546 			ret = -EPROBE_DEFER;
547 			break;
548 		}
549 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
550 	}
551 	dev->links.status = DL_DEV_PROBING;
552 
553 	device_links_write_unlock();
554 	return ret;
555 }
556 
557 /**
558  * device_links_driver_bound - Update device links after probing its driver.
559  * @dev: Device to update the links for.
560  *
561  * The probe has been successful, so update links from this device to any
562  * consumers by changing their status to "available".
563  *
564  * Also change the status of @dev's links to suppliers to "active".
565  *
566  * Links with the DL_FLAG_STATELESS flag set are ignored.
567  */
568 void device_links_driver_bound(struct device *dev)
569 {
570 	struct device_link *link;
571 
572 	device_links_write_lock();
573 
574 	list_for_each_entry(link, &dev->links.consumers, s_node) {
575 		if (link->flags & DL_FLAG_STATELESS)
576 			continue;
577 
578 		/*
579 		 * Links created during consumer probe may be in the "consumer
580 		 * probe" state to start with if the supplier is still probing
581 		 * when they are created and they may become "active" if the
582 		 * consumer probe returns first.  Skip them here.
583 		 */
584 		if (link->status == DL_STATE_CONSUMER_PROBE ||
585 		    link->status == DL_STATE_ACTIVE)
586 			continue;
587 
588 		WARN_ON(link->status != DL_STATE_DORMANT);
589 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
590 
591 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
592 			driver_deferred_probe_add(link->consumer);
593 	}
594 
595 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
596 		if (link->flags & DL_FLAG_STATELESS)
597 			continue;
598 
599 		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
600 		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
601 	}
602 
603 	dev->links.status = DL_DEV_DRIVER_BOUND;
604 
605 	device_links_write_unlock();
606 }
607 
608 /**
609  * __device_links_no_driver - Update links of a device without a driver.
610  * @dev: Device without a drvier.
611  *
612  * Delete all non-persistent links from this device to any suppliers.
613  *
614  * Persistent links stay around, but their status is changed to "available",
615  * unless they already are in the "supplier unbind in progress" state in which
616  * case they need not be updated.
617  *
618  * Links with the DL_FLAG_STATELESS flag set are ignored.
619  */
620 static void __device_links_no_driver(struct device *dev)
621 {
622 	struct device_link *link, *ln;
623 
624 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
625 		if (link->flags & DL_FLAG_STATELESS)
626 			continue;
627 
628 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
629 			__device_link_del(&link->kref);
630 		else if (link->status == DL_STATE_CONSUMER_PROBE ||
631 			 link->status == DL_STATE_ACTIVE)
632 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
633 	}
634 
635 	dev->links.status = DL_DEV_NO_DRIVER;
636 }
637 
638 /**
639  * device_links_no_driver - Update links after failing driver probe.
640  * @dev: Device whose driver has just failed to probe.
641  *
642  * Clean up leftover links to consumers for @dev and invoke
643  * %__device_links_no_driver() to update links to suppliers for it as
644  * appropriate.
645  *
646  * Links with the DL_FLAG_STATELESS flag set are ignored.
647  */
648 void device_links_no_driver(struct device *dev)
649 {
650 	struct device_link *link;
651 
652 	device_links_write_lock();
653 
654 	list_for_each_entry(link, &dev->links.consumers, s_node) {
655 		if (link->flags & DL_FLAG_STATELESS)
656 			continue;
657 
658 		/*
659 		 * The probe has failed, so if the status of the link is
660 		 * "consumer probe" or "active", it must have been added by
661 		 * a probing consumer while this device was still probing.
662 		 * Change its state to "dormant", as it represents a valid
663 		 * relationship, but it is not functionally meaningful.
664 		 */
665 		if (link->status == DL_STATE_CONSUMER_PROBE ||
666 		    link->status == DL_STATE_ACTIVE)
667 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
668 	}
669 
670 	__device_links_no_driver(dev);
671 
672 	device_links_write_unlock();
673 }
674 
675 /**
676  * device_links_driver_cleanup - Update links after driver removal.
677  * @dev: Device whose driver has just gone away.
678  *
679  * Update links to consumers for @dev by changing their status to "dormant" and
680  * invoke %__device_links_no_driver() to update links to suppliers for it as
681  * appropriate.
682  *
683  * Links with the DL_FLAG_STATELESS flag set are ignored.
684  */
685 void device_links_driver_cleanup(struct device *dev)
686 {
687 	struct device_link *link, *ln;
688 
689 	device_links_write_lock();
690 
691 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
692 		if (link->flags & DL_FLAG_STATELESS)
693 			continue;
694 
695 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
696 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
697 
698 		/*
699 		 * autoremove the links between this @dev and its consumer
700 		 * devices that are not active, i.e. where the link state
701 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
702 		 */
703 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
704 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
705 			__device_link_del(&link->kref);
706 
707 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
708 	}
709 
710 	__device_links_no_driver(dev);
711 
712 	device_links_write_unlock();
713 }
714 
715 /**
716  * device_links_busy - Check if there are any busy links to consumers.
717  * @dev: Device to check.
718  *
719  * Check each consumer of the device and return 'true' if its link's status
720  * is one of "consumer probe" or "active" (meaning that the given consumer is
721  * probing right now or its driver is present).  Otherwise, change the link
722  * state to "supplier unbind" to prevent the consumer from being probed
723  * successfully going forward.
724  *
725  * Return 'false' if there are no probing or active consumers.
726  *
727  * Links with the DL_FLAG_STATELESS flag set are ignored.
728  */
729 bool device_links_busy(struct device *dev)
730 {
731 	struct device_link *link;
732 	bool ret = false;
733 
734 	device_links_write_lock();
735 
736 	list_for_each_entry(link, &dev->links.consumers, s_node) {
737 		if (link->flags & DL_FLAG_STATELESS)
738 			continue;
739 
740 		if (link->status == DL_STATE_CONSUMER_PROBE
741 		    || link->status == DL_STATE_ACTIVE) {
742 			ret = true;
743 			break;
744 		}
745 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
746 	}
747 
748 	dev->links.status = DL_DEV_UNBINDING;
749 
750 	device_links_write_unlock();
751 	return ret;
752 }
753 
754 /**
755  * device_links_unbind_consumers - Force unbind consumers of the given device.
756  * @dev: Device to unbind the consumers of.
757  *
758  * Walk the list of links to consumers for @dev and if any of them is in the
759  * "consumer probe" state, wait for all device probes in progress to complete
760  * and start over.
761  *
762  * If that's not the case, change the status of the link to "supplier unbind"
763  * and check if the link was in the "active" state.  If so, force the consumer
764  * driver to unbind and start over (the consumer will not re-probe as we have
765  * changed the state of the link already).
766  *
767  * Links with the DL_FLAG_STATELESS flag set are ignored.
768  */
769 void device_links_unbind_consumers(struct device *dev)
770 {
771 	struct device_link *link;
772 
773  start:
774 	device_links_write_lock();
775 
776 	list_for_each_entry(link, &dev->links.consumers, s_node) {
777 		enum device_link_state status;
778 
779 		if (link->flags & DL_FLAG_STATELESS)
780 			continue;
781 
782 		status = link->status;
783 		if (status == DL_STATE_CONSUMER_PROBE) {
784 			device_links_write_unlock();
785 
786 			wait_for_device_probe();
787 			goto start;
788 		}
789 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
790 		if (status == DL_STATE_ACTIVE) {
791 			struct device *consumer = link->consumer;
792 
793 			get_device(consumer);
794 
795 			device_links_write_unlock();
796 
797 			device_release_driver_internal(consumer, NULL,
798 						       consumer->parent);
799 			put_device(consumer);
800 			goto start;
801 		}
802 	}
803 
804 	device_links_write_unlock();
805 }
806 
807 /**
808  * device_links_purge - Delete existing links to other devices.
809  * @dev: Target device.
810  */
811 static void device_links_purge(struct device *dev)
812 {
813 	struct device_link *link, *ln;
814 
815 	/*
816 	 * Delete all of the remaining links from this device to any other
817 	 * devices (either consumers or suppliers).
818 	 */
819 	device_links_write_lock();
820 
821 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
822 		WARN_ON(link->status == DL_STATE_ACTIVE);
823 		__device_link_del(&link->kref);
824 	}
825 
826 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
827 		WARN_ON(link->status != DL_STATE_DORMANT &&
828 			link->status != DL_STATE_NONE);
829 		__device_link_del(&link->kref);
830 	}
831 
832 	device_links_write_unlock();
833 }
834 
835 /* Device links support end. */
836 
837 int (*platform_notify)(struct device *dev) = NULL;
838 int (*platform_notify_remove)(struct device *dev) = NULL;
839 static struct kobject *dev_kobj;
840 struct kobject *sysfs_dev_char_kobj;
841 struct kobject *sysfs_dev_block_kobj;
842 
843 static DEFINE_MUTEX(device_hotplug_lock);
844 
845 void lock_device_hotplug(void)
846 {
847 	mutex_lock(&device_hotplug_lock);
848 }
849 
850 void unlock_device_hotplug(void)
851 {
852 	mutex_unlock(&device_hotplug_lock);
853 }
854 
855 int lock_device_hotplug_sysfs(void)
856 {
857 	if (mutex_trylock(&device_hotplug_lock))
858 		return 0;
859 
860 	/* Avoid busy looping (5 ms of sleep should do). */
861 	msleep(5);
862 	return restart_syscall();
863 }
864 
865 #ifdef CONFIG_BLOCK
866 static inline int device_is_not_partition(struct device *dev)
867 {
868 	return !(dev->type == &part_type);
869 }
870 #else
871 static inline int device_is_not_partition(struct device *dev)
872 {
873 	return 1;
874 }
875 #endif
876 
877 static int
878 device_platform_notify(struct device *dev, enum kobject_action action)
879 {
880 	int ret;
881 
882 	ret = acpi_platform_notify(dev, action);
883 	if (ret)
884 		return ret;
885 
886 	ret = software_node_notify(dev, action);
887 	if (ret)
888 		return ret;
889 
890 	if (platform_notify && action == KOBJ_ADD)
891 		platform_notify(dev);
892 	else if (platform_notify_remove && action == KOBJ_REMOVE)
893 		platform_notify_remove(dev);
894 	return 0;
895 }
896 
897 /**
898  * dev_driver_string - Return a device's driver name, if at all possible
899  * @dev: struct device to get the name of
900  *
901  * Will return the device's driver's name if it is bound to a device.  If
902  * the device is not bound to a driver, it will return the name of the bus
903  * it is attached to.  If it is not attached to a bus either, an empty
904  * string will be returned.
905  */
906 const char *dev_driver_string(const struct device *dev)
907 {
908 	struct device_driver *drv;
909 
910 	/* dev->driver can change to NULL underneath us because of unbinding,
911 	 * so be careful about accessing it.  dev->bus and dev->class should
912 	 * never change once they are set, so they don't need special care.
913 	 */
914 	drv = READ_ONCE(dev->driver);
915 	return drv ? drv->name :
916 			(dev->bus ? dev->bus->name :
917 			(dev->class ? dev->class->name : ""));
918 }
919 EXPORT_SYMBOL(dev_driver_string);
920 
921 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
922 
923 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
924 			     char *buf)
925 {
926 	struct device_attribute *dev_attr = to_dev_attr(attr);
927 	struct device *dev = kobj_to_dev(kobj);
928 	ssize_t ret = -EIO;
929 
930 	if (dev_attr->show)
931 		ret = dev_attr->show(dev, dev_attr, buf);
932 	if (ret >= (ssize_t)PAGE_SIZE) {
933 		printk("dev_attr_show: %pS returned bad count\n",
934 				dev_attr->show);
935 	}
936 	return ret;
937 }
938 
939 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
940 			      const char *buf, size_t count)
941 {
942 	struct device_attribute *dev_attr = to_dev_attr(attr);
943 	struct device *dev = kobj_to_dev(kobj);
944 	ssize_t ret = -EIO;
945 
946 	if (dev_attr->store)
947 		ret = dev_attr->store(dev, dev_attr, buf, count);
948 	return ret;
949 }
950 
951 static const struct sysfs_ops dev_sysfs_ops = {
952 	.show	= dev_attr_show,
953 	.store	= dev_attr_store,
954 };
955 
956 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
957 
958 ssize_t device_store_ulong(struct device *dev,
959 			   struct device_attribute *attr,
960 			   const char *buf, size_t size)
961 {
962 	struct dev_ext_attribute *ea = to_ext_attr(attr);
963 	int ret;
964 	unsigned long new;
965 
966 	ret = kstrtoul(buf, 0, &new);
967 	if (ret)
968 		return ret;
969 	*(unsigned long *)(ea->var) = new;
970 	/* Always return full write size even if we didn't consume all */
971 	return size;
972 }
973 EXPORT_SYMBOL_GPL(device_store_ulong);
974 
975 ssize_t device_show_ulong(struct device *dev,
976 			  struct device_attribute *attr,
977 			  char *buf)
978 {
979 	struct dev_ext_attribute *ea = to_ext_attr(attr);
980 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
981 }
982 EXPORT_SYMBOL_GPL(device_show_ulong);
983 
984 ssize_t device_store_int(struct device *dev,
985 			 struct device_attribute *attr,
986 			 const char *buf, size_t size)
987 {
988 	struct dev_ext_attribute *ea = to_ext_attr(attr);
989 	int ret;
990 	long new;
991 
992 	ret = kstrtol(buf, 0, &new);
993 	if (ret)
994 		return ret;
995 
996 	if (new > INT_MAX || new < INT_MIN)
997 		return -EINVAL;
998 	*(int *)(ea->var) = new;
999 	/* Always return full write size even if we didn't consume all */
1000 	return size;
1001 }
1002 EXPORT_SYMBOL_GPL(device_store_int);
1003 
1004 ssize_t device_show_int(struct device *dev,
1005 			struct device_attribute *attr,
1006 			char *buf)
1007 {
1008 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1009 
1010 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1011 }
1012 EXPORT_SYMBOL_GPL(device_show_int);
1013 
1014 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1015 			  const char *buf, size_t size)
1016 {
1017 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1018 
1019 	if (strtobool(buf, ea->var) < 0)
1020 		return -EINVAL;
1021 
1022 	return size;
1023 }
1024 EXPORT_SYMBOL_GPL(device_store_bool);
1025 
1026 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1027 			 char *buf)
1028 {
1029 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1030 
1031 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1032 }
1033 EXPORT_SYMBOL_GPL(device_show_bool);
1034 
1035 /**
1036  * device_release - free device structure.
1037  * @kobj: device's kobject.
1038  *
1039  * This is called once the reference count for the object
1040  * reaches 0. We forward the call to the device's release
1041  * method, which should handle actually freeing the structure.
1042  */
1043 static void device_release(struct kobject *kobj)
1044 {
1045 	struct device *dev = kobj_to_dev(kobj);
1046 	struct device_private *p = dev->p;
1047 
1048 	/*
1049 	 * Some platform devices are driven without driver attached
1050 	 * and managed resources may have been acquired.  Make sure
1051 	 * all resources are released.
1052 	 *
1053 	 * Drivers still can add resources into device after device
1054 	 * is deleted but alive, so release devres here to avoid
1055 	 * possible memory leak.
1056 	 */
1057 	devres_release_all(dev);
1058 
1059 	if (dev->release)
1060 		dev->release(dev);
1061 	else if (dev->type && dev->type->release)
1062 		dev->type->release(dev);
1063 	else if (dev->class && dev->class->dev_release)
1064 		dev->class->dev_release(dev);
1065 	else
1066 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt.\n",
1067 			dev_name(dev));
1068 	kfree(p);
1069 }
1070 
1071 static const void *device_namespace(struct kobject *kobj)
1072 {
1073 	struct device *dev = kobj_to_dev(kobj);
1074 	const void *ns = NULL;
1075 
1076 	if (dev->class && dev->class->ns_type)
1077 		ns = dev->class->namespace(dev);
1078 
1079 	return ns;
1080 }
1081 
1082 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1083 {
1084 	struct device *dev = kobj_to_dev(kobj);
1085 
1086 	if (dev->class && dev->class->get_ownership)
1087 		dev->class->get_ownership(dev, uid, gid);
1088 }
1089 
1090 static struct kobj_type device_ktype = {
1091 	.release	= device_release,
1092 	.sysfs_ops	= &dev_sysfs_ops,
1093 	.namespace	= device_namespace,
1094 	.get_ownership	= device_get_ownership,
1095 };
1096 
1097 
1098 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1099 {
1100 	struct kobj_type *ktype = get_ktype(kobj);
1101 
1102 	if (ktype == &device_ktype) {
1103 		struct device *dev = kobj_to_dev(kobj);
1104 		if (dev->bus)
1105 			return 1;
1106 		if (dev->class)
1107 			return 1;
1108 	}
1109 	return 0;
1110 }
1111 
1112 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1113 {
1114 	struct device *dev = kobj_to_dev(kobj);
1115 
1116 	if (dev->bus)
1117 		return dev->bus->name;
1118 	if (dev->class)
1119 		return dev->class->name;
1120 	return NULL;
1121 }
1122 
1123 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1124 		      struct kobj_uevent_env *env)
1125 {
1126 	struct device *dev = kobj_to_dev(kobj);
1127 	int retval = 0;
1128 
1129 	/* add device node properties if present */
1130 	if (MAJOR(dev->devt)) {
1131 		const char *tmp;
1132 		const char *name;
1133 		umode_t mode = 0;
1134 		kuid_t uid = GLOBAL_ROOT_UID;
1135 		kgid_t gid = GLOBAL_ROOT_GID;
1136 
1137 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1138 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1139 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1140 		if (name) {
1141 			add_uevent_var(env, "DEVNAME=%s", name);
1142 			if (mode)
1143 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1144 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1145 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1146 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1147 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1148 			kfree(tmp);
1149 		}
1150 	}
1151 
1152 	if (dev->type && dev->type->name)
1153 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1154 
1155 	if (dev->driver)
1156 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1157 
1158 	/* Add common DT information about the device */
1159 	of_device_uevent(dev, env);
1160 
1161 	/* have the bus specific function add its stuff */
1162 	if (dev->bus && dev->bus->uevent) {
1163 		retval = dev->bus->uevent(dev, env);
1164 		if (retval)
1165 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1166 				 dev_name(dev), __func__, retval);
1167 	}
1168 
1169 	/* have the class specific function add its stuff */
1170 	if (dev->class && dev->class->dev_uevent) {
1171 		retval = dev->class->dev_uevent(dev, env);
1172 		if (retval)
1173 			pr_debug("device: '%s': %s: class uevent() "
1174 				 "returned %d\n", dev_name(dev),
1175 				 __func__, retval);
1176 	}
1177 
1178 	/* have the device type specific function add its stuff */
1179 	if (dev->type && dev->type->uevent) {
1180 		retval = dev->type->uevent(dev, env);
1181 		if (retval)
1182 			pr_debug("device: '%s': %s: dev_type uevent() "
1183 				 "returned %d\n", dev_name(dev),
1184 				 __func__, retval);
1185 	}
1186 
1187 	return retval;
1188 }
1189 
1190 static const struct kset_uevent_ops device_uevent_ops = {
1191 	.filter =	dev_uevent_filter,
1192 	.name =		dev_uevent_name,
1193 	.uevent =	dev_uevent,
1194 };
1195 
1196 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1197 			   char *buf)
1198 {
1199 	struct kobject *top_kobj;
1200 	struct kset *kset;
1201 	struct kobj_uevent_env *env = NULL;
1202 	int i;
1203 	size_t count = 0;
1204 	int retval;
1205 
1206 	/* search the kset, the device belongs to */
1207 	top_kobj = &dev->kobj;
1208 	while (!top_kobj->kset && top_kobj->parent)
1209 		top_kobj = top_kobj->parent;
1210 	if (!top_kobj->kset)
1211 		goto out;
1212 
1213 	kset = top_kobj->kset;
1214 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1215 		goto out;
1216 
1217 	/* respect filter */
1218 	if (kset->uevent_ops && kset->uevent_ops->filter)
1219 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1220 			goto out;
1221 
1222 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1223 	if (!env)
1224 		return -ENOMEM;
1225 
1226 	/* let the kset specific function add its keys */
1227 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1228 	if (retval)
1229 		goto out;
1230 
1231 	/* copy keys to file */
1232 	for (i = 0; i < env->envp_idx; i++)
1233 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1234 out:
1235 	kfree(env);
1236 	return count;
1237 }
1238 
1239 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1240 			    const char *buf, size_t count)
1241 {
1242 	int rc;
1243 
1244 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
1245 
1246 	if (rc) {
1247 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1248 		return rc;
1249 	}
1250 
1251 	return count;
1252 }
1253 static DEVICE_ATTR_RW(uevent);
1254 
1255 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1256 			   char *buf)
1257 {
1258 	bool val;
1259 
1260 	device_lock(dev);
1261 	val = !dev->offline;
1262 	device_unlock(dev);
1263 	return sprintf(buf, "%u\n", val);
1264 }
1265 
1266 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1267 			    const char *buf, size_t count)
1268 {
1269 	bool val;
1270 	int ret;
1271 
1272 	ret = strtobool(buf, &val);
1273 	if (ret < 0)
1274 		return ret;
1275 
1276 	ret = lock_device_hotplug_sysfs();
1277 	if (ret)
1278 		return ret;
1279 
1280 	ret = val ? device_online(dev) : device_offline(dev);
1281 	unlock_device_hotplug();
1282 	return ret < 0 ? ret : count;
1283 }
1284 static DEVICE_ATTR_RW(online);
1285 
1286 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1287 {
1288 	return sysfs_create_groups(&dev->kobj, groups);
1289 }
1290 EXPORT_SYMBOL_GPL(device_add_groups);
1291 
1292 void device_remove_groups(struct device *dev,
1293 			  const struct attribute_group **groups)
1294 {
1295 	sysfs_remove_groups(&dev->kobj, groups);
1296 }
1297 EXPORT_SYMBOL_GPL(device_remove_groups);
1298 
1299 union device_attr_group_devres {
1300 	const struct attribute_group *group;
1301 	const struct attribute_group **groups;
1302 };
1303 
1304 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1305 {
1306 	return ((union device_attr_group_devres *)res)->group == data;
1307 }
1308 
1309 static void devm_attr_group_remove(struct device *dev, void *res)
1310 {
1311 	union device_attr_group_devres *devres = res;
1312 	const struct attribute_group *group = devres->group;
1313 
1314 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1315 	sysfs_remove_group(&dev->kobj, group);
1316 }
1317 
1318 static void devm_attr_groups_remove(struct device *dev, void *res)
1319 {
1320 	union device_attr_group_devres *devres = res;
1321 	const struct attribute_group **groups = devres->groups;
1322 
1323 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1324 	sysfs_remove_groups(&dev->kobj, groups);
1325 }
1326 
1327 /**
1328  * devm_device_add_group - given a device, create a managed attribute group
1329  * @dev:	The device to create the group for
1330  * @grp:	The attribute group to create
1331  *
1332  * This function creates a group for the first time.  It will explicitly
1333  * warn and error if any of the attribute files being created already exist.
1334  *
1335  * Returns 0 on success or error code on failure.
1336  */
1337 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1338 {
1339 	union device_attr_group_devres *devres;
1340 	int error;
1341 
1342 	devres = devres_alloc(devm_attr_group_remove,
1343 			      sizeof(*devres), GFP_KERNEL);
1344 	if (!devres)
1345 		return -ENOMEM;
1346 
1347 	error = sysfs_create_group(&dev->kobj, grp);
1348 	if (error) {
1349 		devres_free(devres);
1350 		return error;
1351 	}
1352 
1353 	devres->group = grp;
1354 	devres_add(dev, devres);
1355 	return 0;
1356 }
1357 EXPORT_SYMBOL_GPL(devm_device_add_group);
1358 
1359 /**
1360  * devm_device_remove_group: remove a managed group from a device
1361  * @dev:	device to remove the group from
1362  * @grp:	group to remove
1363  *
1364  * This function removes a group of attributes from a device. The attributes
1365  * previously have to have been created for this group, otherwise it will fail.
1366  */
1367 void devm_device_remove_group(struct device *dev,
1368 			      const struct attribute_group *grp)
1369 {
1370 	WARN_ON(devres_release(dev, devm_attr_group_remove,
1371 			       devm_attr_group_match,
1372 			       /* cast away const */ (void *)grp));
1373 }
1374 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1375 
1376 /**
1377  * devm_device_add_groups - create a bunch of managed attribute groups
1378  * @dev:	The device to create the group for
1379  * @groups:	The attribute groups to create, NULL terminated
1380  *
1381  * This function creates a bunch of managed attribute groups.  If an error
1382  * occurs when creating a group, all previously created groups will be
1383  * removed, unwinding everything back to the original state when this
1384  * function was called.  It will explicitly warn and error if any of the
1385  * attribute files being created already exist.
1386  *
1387  * Returns 0 on success or error code from sysfs_create_group on failure.
1388  */
1389 int devm_device_add_groups(struct device *dev,
1390 			   const struct attribute_group **groups)
1391 {
1392 	union device_attr_group_devres *devres;
1393 	int error;
1394 
1395 	devres = devres_alloc(devm_attr_groups_remove,
1396 			      sizeof(*devres), GFP_KERNEL);
1397 	if (!devres)
1398 		return -ENOMEM;
1399 
1400 	error = sysfs_create_groups(&dev->kobj, groups);
1401 	if (error) {
1402 		devres_free(devres);
1403 		return error;
1404 	}
1405 
1406 	devres->groups = groups;
1407 	devres_add(dev, devres);
1408 	return 0;
1409 }
1410 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1411 
1412 /**
1413  * devm_device_remove_groups - remove a list of managed groups
1414  *
1415  * @dev:	The device for the groups to be removed from
1416  * @groups:	NULL terminated list of groups to be removed
1417  *
1418  * If groups is not NULL, remove the specified groups from the device.
1419  */
1420 void devm_device_remove_groups(struct device *dev,
1421 			       const struct attribute_group **groups)
1422 {
1423 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1424 			       devm_attr_group_match,
1425 			       /* cast away const */ (void *)groups));
1426 }
1427 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1428 
1429 static int device_add_attrs(struct device *dev)
1430 {
1431 	struct class *class = dev->class;
1432 	const struct device_type *type = dev->type;
1433 	int error;
1434 
1435 	if (class) {
1436 		error = device_add_groups(dev, class->dev_groups);
1437 		if (error)
1438 			return error;
1439 	}
1440 
1441 	if (type) {
1442 		error = device_add_groups(dev, type->groups);
1443 		if (error)
1444 			goto err_remove_class_groups;
1445 	}
1446 
1447 	error = device_add_groups(dev, dev->groups);
1448 	if (error)
1449 		goto err_remove_type_groups;
1450 
1451 	if (device_supports_offline(dev) && !dev->offline_disabled) {
1452 		error = device_create_file(dev, &dev_attr_online);
1453 		if (error)
1454 			goto err_remove_dev_groups;
1455 	}
1456 
1457 	return 0;
1458 
1459  err_remove_dev_groups:
1460 	device_remove_groups(dev, dev->groups);
1461  err_remove_type_groups:
1462 	if (type)
1463 		device_remove_groups(dev, type->groups);
1464  err_remove_class_groups:
1465 	if (class)
1466 		device_remove_groups(dev, class->dev_groups);
1467 
1468 	return error;
1469 }
1470 
1471 static void device_remove_attrs(struct device *dev)
1472 {
1473 	struct class *class = dev->class;
1474 	const struct device_type *type = dev->type;
1475 
1476 	device_remove_file(dev, &dev_attr_online);
1477 	device_remove_groups(dev, dev->groups);
1478 
1479 	if (type)
1480 		device_remove_groups(dev, type->groups);
1481 
1482 	if (class)
1483 		device_remove_groups(dev, class->dev_groups);
1484 }
1485 
1486 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1487 			char *buf)
1488 {
1489 	return print_dev_t(buf, dev->devt);
1490 }
1491 static DEVICE_ATTR_RO(dev);
1492 
1493 /* /sys/devices/ */
1494 struct kset *devices_kset;
1495 
1496 /**
1497  * devices_kset_move_before - Move device in the devices_kset's list.
1498  * @deva: Device to move.
1499  * @devb: Device @deva should come before.
1500  */
1501 static void devices_kset_move_before(struct device *deva, struct device *devb)
1502 {
1503 	if (!devices_kset)
1504 		return;
1505 	pr_debug("devices_kset: Moving %s before %s\n",
1506 		 dev_name(deva), dev_name(devb));
1507 	spin_lock(&devices_kset->list_lock);
1508 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1509 	spin_unlock(&devices_kset->list_lock);
1510 }
1511 
1512 /**
1513  * devices_kset_move_after - Move device in the devices_kset's list.
1514  * @deva: Device to move
1515  * @devb: Device @deva should come after.
1516  */
1517 static void devices_kset_move_after(struct device *deva, struct device *devb)
1518 {
1519 	if (!devices_kset)
1520 		return;
1521 	pr_debug("devices_kset: Moving %s after %s\n",
1522 		 dev_name(deva), dev_name(devb));
1523 	spin_lock(&devices_kset->list_lock);
1524 	list_move(&deva->kobj.entry, &devb->kobj.entry);
1525 	spin_unlock(&devices_kset->list_lock);
1526 }
1527 
1528 /**
1529  * devices_kset_move_last - move the device to the end of devices_kset's list.
1530  * @dev: device to move
1531  */
1532 void devices_kset_move_last(struct device *dev)
1533 {
1534 	if (!devices_kset)
1535 		return;
1536 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1537 	spin_lock(&devices_kset->list_lock);
1538 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1539 	spin_unlock(&devices_kset->list_lock);
1540 }
1541 
1542 /**
1543  * device_create_file - create sysfs attribute file for device.
1544  * @dev: device.
1545  * @attr: device attribute descriptor.
1546  */
1547 int device_create_file(struct device *dev,
1548 		       const struct device_attribute *attr)
1549 {
1550 	int error = 0;
1551 
1552 	if (dev) {
1553 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1554 			"Attribute %s: write permission without 'store'\n",
1555 			attr->attr.name);
1556 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1557 			"Attribute %s: read permission without 'show'\n",
1558 			attr->attr.name);
1559 		error = sysfs_create_file(&dev->kobj, &attr->attr);
1560 	}
1561 
1562 	return error;
1563 }
1564 EXPORT_SYMBOL_GPL(device_create_file);
1565 
1566 /**
1567  * device_remove_file - remove sysfs attribute file.
1568  * @dev: device.
1569  * @attr: device attribute descriptor.
1570  */
1571 void device_remove_file(struct device *dev,
1572 			const struct device_attribute *attr)
1573 {
1574 	if (dev)
1575 		sysfs_remove_file(&dev->kobj, &attr->attr);
1576 }
1577 EXPORT_SYMBOL_GPL(device_remove_file);
1578 
1579 /**
1580  * device_remove_file_self - remove sysfs attribute file from its own method.
1581  * @dev: device.
1582  * @attr: device attribute descriptor.
1583  *
1584  * See kernfs_remove_self() for details.
1585  */
1586 bool device_remove_file_self(struct device *dev,
1587 			     const struct device_attribute *attr)
1588 {
1589 	if (dev)
1590 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1591 	else
1592 		return false;
1593 }
1594 EXPORT_SYMBOL_GPL(device_remove_file_self);
1595 
1596 /**
1597  * device_create_bin_file - create sysfs binary attribute file for device.
1598  * @dev: device.
1599  * @attr: device binary attribute descriptor.
1600  */
1601 int device_create_bin_file(struct device *dev,
1602 			   const struct bin_attribute *attr)
1603 {
1604 	int error = -EINVAL;
1605 	if (dev)
1606 		error = sysfs_create_bin_file(&dev->kobj, attr);
1607 	return error;
1608 }
1609 EXPORT_SYMBOL_GPL(device_create_bin_file);
1610 
1611 /**
1612  * device_remove_bin_file - remove sysfs binary attribute file
1613  * @dev: device.
1614  * @attr: device binary attribute descriptor.
1615  */
1616 void device_remove_bin_file(struct device *dev,
1617 			    const struct bin_attribute *attr)
1618 {
1619 	if (dev)
1620 		sysfs_remove_bin_file(&dev->kobj, attr);
1621 }
1622 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1623 
1624 static void klist_children_get(struct klist_node *n)
1625 {
1626 	struct device_private *p = to_device_private_parent(n);
1627 	struct device *dev = p->device;
1628 
1629 	get_device(dev);
1630 }
1631 
1632 static void klist_children_put(struct klist_node *n)
1633 {
1634 	struct device_private *p = to_device_private_parent(n);
1635 	struct device *dev = p->device;
1636 
1637 	put_device(dev);
1638 }
1639 
1640 /**
1641  * device_initialize - init device structure.
1642  * @dev: device.
1643  *
1644  * This prepares the device for use by other layers by initializing
1645  * its fields.
1646  * It is the first half of device_register(), if called by
1647  * that function, though it can also be called separately, so one
1648  * may use @dev's fields. In particular, get_device()/put_device()
1649  * may be used for reference counting of @dev after calling this
1650  * function.
1651  *
1652  * All fields in @dev must be initialized by the caller to 0, except
1653  * for those explicitly set to some other value.  The simplest
1654  * approach is to use kzalloc() to allocate the structure containing
1655  * @dev.
1656  *
1657  * NOTE: Use put_device() to give up your reference instead of freeing
1658  * @dev directly once you have called this function.
1659  */
1660 void device_initialize(struct device *dev)
1661 {
1662 	dev->kobj.kset = devices_kset;
1663 	kobject_init(&dev->kobj, &device_ktype);
1664 	INIT_LIST_HEAD(&dev->dma_pools);
1665 	mutex_init(&dev->mutex);
1666 	lockdep_set_novalidate_class(&dev->mutex);
1667 	spin_lock_init(&dev->devres_lock);
1668 	INIT_LIST_HEAD(&dev->devres_head);
1669 	device_pm_init(dev);
1670 	set_dev_node(dev, -1);
1671 #ifdef CONFIG_GENERIC_MSI_IRQ
1672 	INIT_LIST_HEAD(&dev->msi_list);
1673 #endif
1674 	INIT_LIST_HEAD(&dev->links.consumers);
1675 	INIT_LIST_HEAD(&dev->links.suppliers);
1676 	dev->links.status = DL_DEV_NO_DRIVER;
1677 }
1678 EXPORT_SYMBOL_GPL(device_initialize);
1679 
1680 struct kobject *virtual_device_parent(struct device *dev)
1681 {
1682 	static struct kobject *virtual_dir = NULL;
1683 
1684 	if (!virtual_dir)
1685 		virtual_dir = kobject_create_and_add("virtual",
1686 						     &devices_kset->kobj);
1687 
1688 	return virtual_dir;
1689 }
1690 
1691 struct class_dir {
1692 	struct kobject kobj;
1693 	struct class *class;
1694 };
1695 
1696 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1697 
1698 static void class_dir_release(struct kobject *kobj)
1699 {
1700 	struct class_dir *dir = to_class_dir(kobj);
1701 	kfree(dir);
1702 }
1703 
1704 static const
1705 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1706 {
1707 	struct class_dir *dir = to_class_dir(kobj);
1708 	return dir->class->ns_type;
1709 }
1710 
1711 static struct kobj_type class_dir_ktype = {
1712 	.release	= class_dir_release,
1713 	.sysfs_ops	= &kobj_sysfs_ops,
1714 	.child_ns_type	= class_dir_child_ns_type
1715 };
1716 
1717 static struct kobject *
1718 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1719 {
1720 	struct class_dir *dir;
1721 	int retval;
1722 
1723 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1724 	if (!dir)
1725 		return ERR_PTR(-ENOMEM);
1726 
1727 	dir->class = class;
1728 	kobject_init(&dir->kobj, &class_dir_ktype);
1729 
1730 	dir->kobj.kset = &class->p->glue_dirs;
1731 
1732 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1733 	if (retval < 0) {
1734 		kobject_put(&dir->kobj);
1735 		return ERR_PTR(retval);
1736 	}
1737 	return &dir->kobj;
1738 }
1739 
1740 static DEFINE_MUTEX(gdp_mutex);
1741 
1742 static struct kobject *get_device_parent(struct device *dev,
1743 					 struct device *parent)
1744 {
1745 	if (dev->class) {
1746 		struct kobject *kobj = NULL;
1747 		struct kobject *parent_kobj;
1748 		struct kobject *k;
1749 
1750 #ifdef CONFIG_BLOCK
1751 		/* block disks show up in /sys/block */
1752 		if (sysfs_deprecated && dev->class == &block_class) {
1753 			if (parent && parent->class == &block_class)
1754 				return &parent->kobj;
1755 			return &block_class.p->subsys.kobj;
1756 		}
1757 #endif
1758 
1759 		/*
1760 		 * If we have no parent, we live in "virtual".
1761 		 * Class-devices with a non class-device as parent, live
1762 		 * in a "glue" directory to prevent namespace collisions.
1763 		 */
1764 		if (parent == NULL)
1765 			parent_kobj = virtual_device_parent(dev);
1766 		else if (parent->class && !dev->class->ns_type)
1767 			return &parent->kobj;
1768 		else
1769 			parent_kobj = &parent->kobj;
1770 
1771 		mutex_lock(&gdp_mutex);
1772 
1773 		/* find our class-directory at the parent and reference it */
1774 		spin_lock(&dev->class->p->glue_dirs.list_lock);
1775 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1776 			if (k->parent == parent_kobj) {
1777 				kobj = kobject_get(k);
1778 				break;
1779 			}
1780 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1781 		if (kobj) {
1782 			mutex_unlock(&gdp_mutex);
1783 			return kobj;
1784 		}
1785 
1786 		/* or create a new class-directory at the parent device */
1787 		k = class_dir_create_and_add(dev->class, parent_kobj);
1788 		/* do not emit an uevent for this simple "glue" directory */
1789 		mutex_unlock(&gdp_mutex);
1790 		return k;
1791 	}
1792 
1793 	/* subsystems can specify a default root directory for their devices */
1794 	if (!parent && dev->bus && dev->bus->dev_root)
1795 		return &dev->bus->dev_root->kobj;
1796 
1797 	if (parent)
1798 		return &parent->kobj;
1799 	return NULL;
1800 }
1801 
1802 static inline bool live_in_glue_dir(struct kobject *kobj,
1803 				    struct device *dev)
1804 {
1805 	if (!kobj || !dev->class ||
1806 	    kobj->kset != &dev->class->p->glue_dirs)
1807 		return false;
1808 	return true;
1809 }
1810 
1811 static inline struct kobject *get_glue_dir(struct device *dev)
1812 {
1813 	return dev->kobj.parent;
1814 }
1815 
1816 /*
1817  * make sure cleaning up dir as the last step, we need to make
1818  * sure .release handler of kobject is run with holding the
1819  * global lock
1820  */
1821 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1822 {
1823 	/* see if we live in a "glue" directory */
1824 	if (!live_in_glue_dir(glue_dir, dev))
1825 		return;
1826 
1827 	mutex_lock(&gdp_mutex);
1828 	if (!kobject_has_children(glue_dir))
1829 		kobject_del(glue_dir);
1830 	kobject_put(glue_dir);
1831 	mutex_unlock(&gdp_mutex);
1832 }
1833 
1834 static int device_add_class_symlinks(struct device *dev)
1835 {
1836 	struct device_node *of_node = dev_of_node(dev);
1837 	int error;
1838 
1839 	if (of_node) {
1840 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1841 		if (error)
1842 			dev_warn(dev, "Error %d creating of_node link\n",error);
1843 		/* An error here doesn't warrant bringing down the device */
1844 	}
1845 
1846 	if (!dev->class)
1847 		return 0;
1848 
1849 	error = sysfs_create_link(&dev->kobj,
1850 				  &dev->class->p->subsys.kobj,
1851 				  "subsystem");
1852 	if (error)
1853 		goto out_devnode;
1854 
1855 	if (dev->parent && device_is_not_partition(dev)) {
1856 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1857 					  "device");
1858 		if (error)
1859 			goto out_subsys;
1860 	}
1861 
1862 #ifdef CONFIG_BLOCK
1863 	/* /sys/block has directories and does not need symlinks */
1864 	if (sysfs_deprecated && dev->class == &block_class)
1865 		return 0;
1866 #endif
1867 
1868 	/* link in the class directory pointing to the device */
1869 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1870 				  &dev->kobj, dev_name(dev));
1871 	if (error)
1872 		goto out_device;
1873 
1874 	return 0;
1875 
1876 out_device:
1877 	sysfs_remove_link(&dev->kobj, "device");
1878 
1879 out_subsys:
1880 	sysfs_remove_link(&dev->kobj, "subsystem");
1881 out_devnode:
1882 	sysfs_remove_link(&dev->kobj, "of_node");
1883 	return error;
1884 }
1885 
1886 static void device_remove_class_symlinks(struct device *dev)
1887 {
1888 	if (dev_of_node(dev))
1889 		sysfs_remove_link(&dev->kobj, "of_node");
1890 
1891 	if (!dev->class)
1892 		return;
1893 
1894 	if (dev->parent && device_is_not_partition(dev))
1895 		sysfs_remove_link(&dev->kobj, "device");
1896 	sysfs_remove_link(&dev->kobj, "subsystem");
1897 #ifdef CONFIG_BLOCK
1898 	if (sysfs_deprecated && dev->class == &block_class)
1899 		return;
1900 #endif
1901 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1902 }
1903 
1904 /**
1905  * dev_set_name - set a device name
1906  * @dev: device
1907  * @fmt: format string for the device's name
1908  */
1909 int dev_set_name(struct device *dev, const char *fmt, ...)
1910 {
1911 	va_list vargs;
1912 	int err;
1913 
1914 	va_start(vargs, fmt);
1915 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1916 	va_end(vargs);
1917 	return err;
1918 }
1919 EXPORT_SYMBOL_GPL(dev_set_name);
1920 
1921 /**
1922  * device_to_dev_kobj - select a /sys/dev/ directory for the device
1923  * @dev: device
1924  *
1925  * By default we select char/ for new entries.  Setting class->dev_obj
1926  * to NULL prevents an entry from being created.  class->dev_kobj must
1927  * be set (or cleared) before any devices are registered to the class
1928  * otherwise device_create_sys_dev_entry() and
1929  * device_remove_sys_dev_entry() will disagree about the presence of
1930  * the link.
1931  */
1932 static struct kobject *device_to_dev_kobj(struct device *dev)
1933 {
1934 	struct kobject *kobj;
1935 
1936 	if (dev->class)
1937 		kobj = dev->class->dev_kobj;
1938 	else
1939 		kobj = sysfs_dev_char_kobj;
1940 
1941 	return kobj;
1942 }
1943 
1944 static int device_create_sys_dev_entry(struct device *dev)
1945 {
1946 	struct kobject *kobj = device_to_dev_kobj(dev);
1947 	int error = 0;
1948 	char devt_str[15];
1949 
1950 	if (kobj) {
1951 		format_dev_t(devt_str, dev->devt);
1952 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1953 	}
1954 
1955 	return error;
1956 }
1957 
1958 static void device_remove_sys_dev_entry(struct device *dev)
1959 {
1960 	struct kobject *kobj = device_to_dev_kobj(dev);
1961 	char devt_str[15];
1962 
1963 	if (kobj) {
1964 		format_dev_t(devt_str, dev->devt);
1965 		sysfs_remove_link(kobj, devt_str);
1966 	}
1967 }
1968 
1969 static int device_private_init(struct device *dev)
1970 {
1971 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1972 	if (!dev->p)
1973 		return -ENOMEM;
1974 	dev->p->device = dev;
1975 	klist_init(&dev->p->klist_children, klist_children_get,
1976 		   klist_children_put);
1977 	INIT_LIST_HEAD(&dev->p->deferred_probe);
1978 	return 0;
1979 }
1980 
1981 /**
1982  * device_add - add device to device hierarchy.
1983  * @dev: device.
1984  *
1985  * This is part 2 of device_register(), though may be called
1986  * separately _iff_ device_initialize() has been called separately.
1987  *
1988  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1989  * to the global and sibling lists for the device, then
1990  * adds it to the other relevant subsystems of the driver model.
1991  *
1992  * Do not call this routine or device_register() more than once for
1993  * any device structure.  The driver model core is not designed to work
1994  * with devices that get unregistered and then spring back to life.
1995  * (Among other things, it's very hard to guarantee that all references
1996  * to the previous incarnation of @dev have been dropped.)  Allocate
1997  * and register a fresh new struct device instead.
1998  *
1999  * NOTE: _Never_ directly free @dev after calling this function, even
2000  * if it returned an error! Always use put_device() to give up your
2001  * reference instead.
2002  *
2003  * Rule of thumb is: if device_add() succeeds, you should call
2004  * device_del() when you want to get rid of it. If device_add() has
2005  * *not* succeeded, use *only* put_device() to drop the reference
2006  * count.
2007  */
2008 int device_add(struct device *dev)
2009 {
2010 	struct device *parent;
2011 	struct kobject *kobj;
2012 	struct class_interface *class_intf;
2013 	int error = -EINVAL;
2014 	struct kobject *glue_dir = NULL;
2015 
2016 	dev = get_device(dev);
2017 	if (!dev)
2018 		goto done;
2019 
2020 	if (!dev->p) {
2021 		error = device_private_init(dev);
2022 		if (error)
2023 			goto done;
2024 	}
2025 
2026 	/*
2027 	 * for statically allocated devices, which should all be converted
2028 	 * some day, we need to initialize the name. We prevent reading back
2029 	 * the name, and force the use of dev_name()
2030 	 */
2031 	if (dev->init_name) {
2032 		dev_set_name(dev, "%s", dev->init_name);
2033 		dev->init_name = NULL;
2034 	}
2035 
2036 	/* subsystems can specify simple device enumeration */
2037 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2038 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2039 
2040 	if (!dev_name(dev)) {
2041 		error = -EINVAL;
2042 		goto name_error;
2043 	}
2044 
2045 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2046 
2047 	parent = get_device(dev->parent);
2048 	kobj = get_device_parent(dev, parent);
2049 	if (IS_ERR(kobj)) {
2050 		error = PTR_ERR(kobj);
2051 		goto parent_error;
2052 	}
2053 	if (kobj)
2054 		dev->kobj.parent = kobj;
2055 
2056 	/* use parent numa_node */
2057 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2058 		set_dev_node(dev, dev_to_node(parent));
2059 
2060 	/* first, register with generic layer. */
2061 	/* we require the name to be set before, and pass NULL */
2062 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2063 	if (error) {
2064 		glue_dir = get_glue_dir(dev);
2065 		goto Error;
2066 	}
2067 
2068 	/* notify platform of device entry */
2069 	error = device_platform_notify(dev, KOBJ_ADD);
2070 	if (error)
2071 		goto platform_error;
2072 
2073 	error = device_create_file(dev, &dev_attr_uevent);
2074 	if (error)
2075 		goto attrError;
2076 
2077 	error = device_add_class_symlinks(dev);
2078 	if (error)
2079 		goto SymlinkError;
2080 	error = device_add_attrs(dev);
2081 	if (error)
2082 		goto AttrsError;
2083 	error = bus_add_device(dev);
2084 	if (error)
2085 		goto BusError;
2086 	error = dpm_sysfs_add(dev);
2087 	if (error)
2088 		goto DPMError;
2089 	device_pm_add(dev);
2090 
2091 	if (MAJOR(dev->devt)) {
2092 		error = device_create_file(dev, &dev_attr_dev);
2093 		if (error)
2094 			goto DevAttrError;
2095 
2096 		error = device_create_sys_dev_entry(dev);
2097 		if (error)
2098 			goto SysEntryError;
2099 
2100 		devtmpfs_create_node(dev);
2101 	}
2102 
2103 	/* Notify clients of device addition.  This call must come
2104 	 * after dpm_sysfs_add() and before kobject_uevent().
2105 	 */
2106 	if (dev->bus)
2107 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2108 					     BUS_NOTIFY_ADD_DEVICE, dev);
2109 
2110 	kobject_uevent(&dev->kobj, KOBJ_ADD);
2111 	bus_probe_device(dev);
2112 	if (parent)
2113 		klist_add_tail(&dev->p->knode_parent,
2114 			       &parent->p->klist_children);
2115 
2116 	if (dev->class) {
2117 		mutex_lock(&dev->class->p->mutex);
2118 		/* tie the class to the device */
2119 		klist_add_tail(&dev->p->knode_class,
2120 			       &dev->class->p->klist_devices);
2121 
2122 		/* notify any interfaces that the device is here */
2123 		list_for_each_entry(class_intf,
2124 				    &dev->class->p->interfaces, node)
2125 			if (class_intf->add_dev)
2126 				class_intf->add_dev(dev, class_intf);
2127 		mutex_unlock(&dev->class->p->mutex);
2128 	}
2129 done:
2130 	put_device(dev);
2131 	return error;
2132  SysEntryError:
2133 	if (MAJOR(dev->devt))
2134 		device_remove_file(dev, &dev_attr_dev);
2135  DevAttrError:
2136 	device_pm_remove(dev);
2137 	dpm_sysfs_remove(dev);
2138  DPMError:
2139 	bus_remove_device(dev);
2140  BusError:
2141 	device_remove_attrs(dev);
2142  AttrsError:
2143 	device_remove_class_symlinks(dev);
2144  SymlinkError:
2145 	device_remove_file(dev, &dev_attr_uevent);
2146  attrError:
2147 	device_platform_notify(dev, KOBJ_REMOVE);
2148 platform_error:
2149 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2150 	glue_dir = get_glue_dir(dev);
2151 	kobject_del(&dev->kobj);
2152  Error:
2153 	cleanup_glue_dir(dev, glue_dir);
2154 parent_error:
2155 	put_device(parent);
2156 name_error:
2157 	kfree(dev->p);
2158 	dev->p = NULL;
2159 	goto done;
2160 }
2161 EXPORT_SYMBOL_GPL(device_add);
2162 
2163 /**
2164  * device_register - register a device with the system.
2165  * @dev: pointer to the device structure
2166  *
2167  * This happens in two clean steps - initialize the device
2168  * and add it to the system. The two steps can be called
2169  * separately, but this is the easiest and most common.
2170  * I.e. you should only call the two helpers separately if
2171  * have a clearly defined need to use and refcount the device
2172  * before it is added to the hierarchy.
2173  *
2174  * For more information, see the kerneldoc for device_initialize()
2175  * and device_add().
2176  *
2177  * NOTE: _Never_ directly free @dev after calling this function, even
2178  * if it returned an error! Always use put_device() to give up the
2179  * reference initialized in this function instead.
2180  */
2181 int device_register(struct device *dev)
2182 {
2183 	device_initialize(dev);
2184 	return device_add(dev);
2185 }
2186 EXPORT_SYMBOL_GPL(device_register);
2187 
2188 /**
2189  * get_device - increment reference count for device.
2190  * @dev: device.
2191  *
2192  * This simply forwards the call to kobject_get(), though
2193  * we do take care to provide for the case that we get a NULL
2194  * pointer passed in.
2195  */
2196 struct device *get_device(struct device *dev)
2197 {
2198 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2199 }
2200 EXPORT_SYMBOL_GPL(get_device);
2201 
2202 /**
2203  * put_device - decrement reference count.
2204  * @dev: device in question.
2205  */
2206 void put_device(struct device *dev)
2207 {
2208 	/* might_sleep(); */
2209 	if (dev)
2210 		kobject_put(&dev->kobj);
2211 }
2212 EXPORT_SYMBOL_GPL(put_device);
2213 
2214 /**
2215  * device_del - delete device from system.
2216  * @dev: device.
2217  *
2218  * This is the first part of the device unregistration
2219  * sequence. This removes the device from the lists we control
2220  * from here, has it removed from the other driver model
2221  * subsystems it was added to in device_add(), and removes it
2222  * from the kobject hierarchy.
2223  *
2224  * NOTE: this should be called manually _iff_ device_add() was
2225  * also called manually.
2226  */
2227 void device_del(struct device *dev)
2228 {
2229 	struct device *parent = dev->parent;
2230 	struct kobject *glue_dir = NULL;
2231 	struct class_interface *class_intf;
2232 
2233 	/*
2234 	 * Hold the device lock and set the "dead" flag to guarantee that
2235 	 * the update behavior is consistent with the other bitfields near
2236 	 * it and that we cannot have an asynchronous probe routine trying
2237 	 * to run while we are tearing out the bus/class/sysfs from
2238 	 * underneath the device.
2239 	 */
2240 	device_lock(dev);
2241 	dev->p->dead = true;
2242 	device_unlock(dev);
2243 
2244 	/* Notify clients of device removal.  This call must come
2245 	 * before dpm_sysfs_remove().
2246 	 */
2247 	if (dev->bus)
2248 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2249 					     BUS_NOTIFY_DEL_DEVICE, dev);
2250 
2251 	dpm_sysfs_remove(dev);
2252 	if (parent)
2253 		klist_del(&dev->p->knode_parent);
2254 	if (MAJOR(dev->devt)) {
2255 		devtmpfs_delete_node(dev);
2256 		device_remove_sys_dev_entry(dev);
2257 		device_remove_file(dev, &dev_attr_dev);
2258 	}
2259 	if (dev->class) {
2260 		device_remove_class_symlinks(dev);
2261 
2262 		mutex_lock(&dev->class->p->mutex);
2263 		/* notify any interfaces that the device is now gone */
2264 		list_for_each_entry(class_intf,
2265 				    &dev->class->p->interfaces, node)
2266 			if (class_intf->remove_dev)
2267 				class_intf->remove_dev(dev, class_intf);
2268 		/* remove the device from the class list */
2269 		klist_del(&dev->p->knode_class);
2270 		mutex_unlock(&dev->class->p->mutex);
2271 	}
2272 	device_remove_file(dev, &dev_attr_uevent);
2273 	device_remove_attrs(dev);
2274 	bus_remove_device(dev);
2275 	device_pm_remove(dev);
2276 	driver_deferred_probe_del(dev);
2277 	device_platform_notify(dev, KOBJ_REMOVE);
2278 	device_remove_properties(dev);
2279 	device_links_purge(dev);
2280 
2281 	if (dev->bus)
2282 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2283 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
2284 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2285 	glue_dir = get_glue_dir(dev);
2286 	kobject_del(&dev->kobj);
2287 	cleanup_glue_dir(dev, glue_dir);
2288 	put_device(parent);
2289 }
2290 EXPORT_SYMBOL_GPL(device_del);
2291 
2292 /**
2293  * device_unregister - unregister device from system.
2294  * @dev: device going away.
2295  *
2296  * We do this in two parts, like we do device_register(). First,
2297  * we remove it from all the subsystems with device_del(), then
2298  * we decrement the reference count via put_device(). If that
2299  * is the final reference count, the device will be cleaned up
2300  * via device_release() above. Otherwise, the structure will
2301  * stick around until the final reference to the device is dropped.
2302  */
2303 void device_unregister(struct device *dev)
2304 {
2305 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2306 	device_del(dev);
2307 	put_device(dev);
2308 }
2309 EXPORT_SYMBOL_GPL(device_unregister);
2310 
2311 static struct device *prev_device(struct klist_iter *i)
2312 {
2313 	struct klist_node *n = klist_prev(i);
2314 	struct device *dev = NULL;
2315 	struct device_private *p;
2316 
2317 	if (n) {
2318 		p = to_device_private_parent(n);
2319 		dev = p->device;
2320 	}
2321 	return dev;
2322 }
2323 
2324 static struct device *next_device(struct klist_iter *i)
2325 {
2326 	struct klist_node *n = klist_next(i);
2327 	struct device *dev = NULL;
2328 	struct device_private *p;
2329 
2330 	if (n) {
2331 		p = to_device_private_parent(n);
2332 		dev = p->device;
2333 	}
2334 	return dev;
2335 }
2336 
2337 /**
2338  * device_get_devnode - path of device node file
2339  * @dev: device
2340  * @mode: returned file access mode
2341  * @uid: returned file owner
2342  * @gid: returned file group
2343  * @tmp: possibly allocated string
2344  *
2345  * Return the relative path of a possible device node.
2346  * Non-default names may need to allocate a memory to compose
2347  * a name. This memory is returned in tmp and needs to be
2348  * freed by the caller.
2349  */
2350 const char *device_get_devnode(struct device *dev,
2351 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2352 			       const char **tmp)
2353 {
2354 	char *s;
2355 
2356 	*tmp = NULL;
2357 
2358 	/* the device type may provide a specific name */
2359 	if (dev->type && dev->type->devnode)
2360 		*tmp = dev->type->devnode(dev, mode, uid, gid);
2361 	if (*tmp)
2362 		return *tmp;
2363 
2364 	/* the class may provide a specific name */
2365 	if (dev->class && dev->class->devnode)
2366 		*tmp = dev->class->devnode(dev, mode);
2367 	if (*tmp)
2368 		return *tmp;
2369 
2370 	/* return name without allocation, tmp == NULL */
2371 	if (strchr(dev_name(dev), '!') == NULL)
2372 		return dev_name(dev);
2373 
2374 	/* replace '!' in the name with '/' */
2375 	s = kstrdup(dev_name(dev), GFP_KERNEL);
2376 	if (!s)
2377 		return NULL;
2378 	strreplace(s, '!', '/');
2379 	return *tmp = s;
2380 }
2381 
2382 /**
2383  * device_for_each_child - device child iterator.
2384  * @parent: parent struct device.
2385  * @fn: function to be called for each device.
2386  * @data: data for the callback.
2387  *
2388  * Iterate over @parent's child devices, and call @fn for each,
2389  * passing it @data.
2390  *
2391  * We check the return of @fn each time. If it returns anything
2392  * other than 0, we break out and return that value.
2393  */
2394 int device_for_each_child(struct device *parent, void *data,
2395 			  int (*fn)(struct device *dev, void *data))
2396 {
2397 	struct klist_iter i;
2398 	struct device *child;
2399 	int error = 0;
2400 
2401 	if (!parent->p)
2402 		return 0;
2403 
2404 	klist_iter_init(&parent->p->klist_children, &i);
2405 	while (!error && (child = next_device(&i)))
2406 		error = fn(child, data);
2407 	klist_iter_exit(&i);
2408 	return error;
2409 }
2410 EXPORT_SYMBOL_GPL(device_for_each_child);
2411 
2412 /**
2413  * device_for_each_child_reverse - device child iterator in reversed order.
2414  * @parent: parent struct device.
2415  * @fn: function to be called for each device.
2416  * @data: data for the callback.
2417  *
2418  * Iterate over @parent's child devices, and call @fn for each,
2419  * passing it @data.
2420  *
2421  * We check the return of @fn each time. If it returns anything
2422  * other than 0, we break out and return that value.
2423  */
2424 int device_for_each_child_reverse(struct device *parent, void *data,
2425 				  int (*fn)(struct device *dev, void *data))
2426 {
2427 	struct klist_iter i;
2428 	struct device *child;
2429 	int error = 0;
2430 
2431 	if (!parent->p)
2432 		return 0;
2433 
2434 	klist_iter_init(&parent->p->klist_children, &i);
2435 	while ((child = prev_device(&i)) && !error)
2436 		error = fn(child, data);
2437 	klist_iter_exit(&i);
2438 	return error;
2439 }
2440 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2441 
2442 /**
2443  * device_find_child - device iterator for locating a particular device.
2444  * @parent: parent struct device
2445  * @match: Callback function to check device
2446  * @data: Data to pass to match function
2447  *
2448  * This is similar to the device_for_each_child() function above, but it
2449  * returns a reference to a device that is 'found' for later use, as
2450  * determined by the @match callback.
2451  *
2452  * The callback should return 0 if the device doesn't match and non-zero
2453  * if it does.  If the callback returns non-zero and a reference to the
2454  * current device can be obtained, this function will return to the caller
2455  * and not iterate over any more devices.
2456  *
2457  * NOTE: you will need to drop the reference with put_device() after use.
2458  */
2459 struct device *device_find_child(struct device *parent, void *data,
2460 				 int (*match)(struct device *dev, void *data))
2461 {
2462 	struct klist_iter i;
2463 	struct device *child;
2464 
2465 	if (!parent)
2466 		return NULL;
2467 
2468 	klist_iter_init(&parent->p->klist_children, &i);
2469 	while ((child = next_device(&i)))
2470 		if (match(child, data) && get_device(child))
2471 			break;
2472 	klist_iter_exit(&i);
2473 	return child;
2474 }
2475 EXPORT_SYMBOL_GPL(device_find_child);
2476 
2477 /**
2478  * device_find_child_by_name - device iterator for locating a child device.
2479  * @parent: parent struct device
2480  * @name: name of the child device
2481  *
2482  * This is similar to the device_find_child() function above, but it
2483  * returns a reference to a device that has the name @name.
2484  *
2485  * NOTE: you will need to drop the reference with put_device() after use.
2486  */
2487 struct device *device_find_child_by_name(struct device *parent,
2488 					 const char *name)
2489 {
2490 	struct klist_iter i;
2491 	struct device *child;
2492 
2493 	if (!parent)
2494 		return NULL;
2495 
2496 	klist_iter_init(&parent->p->klist_children, &i);
2497 	while ((child = next_device(&i)))
2498 		if (!strcmp(dev_name(child), name) && get_device(child))
2499 			break;
2500 	klist_iter_exit(&i);
2501 	return child;
2502 }
2503 EXPORT_SYMBOL_GPL(device_find_child_by_name);
2504 
2505 int __init devices_init(void)
2506 {
2507 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2508 	if (!devices_kset)
2509 		return -ENOMEM;
2510 	dev_kobj = kobject_create_and_add("dev", NULL);
2511 	if (!dev_kobj)
2512 		goto dev_kobj_err;
2513 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2514 	if (!sysfs_dev_block_kobj)
2515 		goto block_kobj_err;
2516 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2517 	if (!sysfs_dev_char_kobj)
2518 		goto char_kobj_err;
2519 
2520 	return 0;
2521 
2522  char_kobj_err:
2523 	kobject_put(sysfs_dev_block_kobj);
2524  block_kobj_err:
2525 	kobject_put(dev_kobj);
2526  dev_kobj_err:
2527 	kset_unregister(devices_kset);
2528 	return -ENOMEM;
2529 }
2530 
2531 static int device_check_offline(struct device *dev, void *not_used)
2532 {
2533 	int ret;
2534 
2535 	ret = device_for_each_child(dev, NULL, device_check_offline);
2536 	if (ret)
2537 		return ret;
2538 
2539 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2540 }
2541 
2542 /**
2543  * device_offline - Prepare the device for hot-removal.
2544  * @dev: Device to be put offline.
2545  *
2546  * Execute the device bus type's .offline() callback, if present, to prepare
2547  * the device for a subsequent hot-removal.  If that succeeds, the device must
2548  * not be used until either it is removed or its bus type's .online() callback
2549  * is executed.
2550  *
2551  * Call under device_hotplug_lock.
2552  */
2553 int device_offline(struct device *dev)
2554 {
2555 	int ret;
2556 
2557 	if (dev->offline_disabled)
2558 		return -EPERM;
2559 
2560 	ret = device_for_each_child(dev, NULL, device_check_offline);
2561 	if (ret)
2562 		return ret;
2563 
2564 	device_lock(dev);
2565 	if (device_supports_offline(dev)) {
2566 		if (dev->offline) {
2567 			ret = 1;
2568 		} else {
2569 			ret = dev->bus->offline(dev);
2570 			if (!ret) {
2571 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2572 				dev->offline = true;
2573 			}
2574 		}
2575 	}
2576 	device_unlock(dev);
2577 
2578 	return ret;
2579 }
2580 
2581 /**
2582  * device_online - Put the device back online after successful device_offline().
2583  * @dev: Device to be put back online.
2584  *
2585  * If device_offline() has been successfully executed for @dev, but the device
2586  * has not been removed subsequently, execute its bus type's .online() callback
2587  * to indicate that the device can be used again.
2588  *
2589  * Call under device_hotplug_lock.
2590  */
2591 int device_online(struct device *dev)
2592 {
2593 	int ret = 0;
2594 
2595 	device_lock(dev);
2596 	if (device_supports_offline(dev)) {
2597 		if (dev->offline) {
2598 			ret = dev->bus->online(dev);
2599 			if (!ret) {
2600 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2601 				dev->offline = false;
2602 			}
2603 		} else {
2604 			ret = 1;
2605 		}
2606 	}
2607 	device_unlock(dev);
2608 
2609 	return ret;
2610 }
2611 
2612 struct root_device {
2613 	struct device dev;
2614 	struct module *owner;
2615 };
2616 
2617 static inline struct root_device *to_root_device(struct device *d)
2618 {
2619 	return container_of(d, struct root_device, dev);
2620 }
2621 
2622 static void root_device_release(struct device *dev)
2623 {
2624 	kfree(to_root_device(dev));
2625 }
2626 
2627 /**
2628  * __root_device_register - allocate and register a root device
2629  * @name: root device name
2630  * @owner: owner module of the root device, usually THIS_MODULE
2631  *
2632  * This function allocates a root device and registers it
2633  * using device_register(). In order to free the returned
2634  * device, use root_device_unregister().
2635  *
2636  * Root devices are dummy devices which allow other devices
2637  * to be grouped under /sys/devices. Use this function to
2638  * allocate a root device and then use it as the parent of
2639  * any device which should appear under /sys/devices/{name}
2640  *
2641  * The /sys/devices/{name} directory will also contain a
2642  * 'module' symlink which points to the @owner directory
2643  * in sysfs.
2644  *
2645  * Returns &struct device pointer on success, or ERR_PTR() on error.
2646  *
2647  * Note: You probably want to use root_device_register().
2648  */
2649 struct device *__root_device_register(const char *name, struct module *owner)
2650 {
2651 	struct root_device *root;
2652 	int err = -ENOMEM;
2653 
2654 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2655 	if (!root)
2656 		return ERR_PTR(err);
2657 
2658 	err = dev_set_name(&root->dev, "%s", name);
2659 	if (err) {
2660 		kfree(root);
2661 		return ERR_PTR(err);
2662 	}
2663 
2664 	root->dev.release = root_device_release;
2665 
2666 	err = device_register(&root->dev);
2667 	if (err) {
2668 		put_device(&root->dev);
2669 		return ERR_PTR(err);
2670 	}
2671 
2672 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2673 	if (owner) {
2674 		struct module_kobject *mk = &owner->mkobj;
2675 
2676 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2677 		if (err) {
2678 			device_unregister(&root->dev);
2679 			return ERR_PTR(err);
2680 		}
2681 		root->owner = owner;
2682 	}
2683 #endif
2684 
2685 	return &root->dev;
2686 }
2687 EXPORT_SYMBOL_GPL(__root_device_register);
2688 
2689 /**
2690  * root_device_unregister - unregister and free a root device
2691  * @dev: device going away
2692  *
2693  * This function unregisters and cleans up a device that was created by
2694  * root_device_register().
2695  */
2696 void root_device_unregister(struct device *dev)
2697 {
2698 	struct root_device *root = to_root_device(dev);
2699 
2700 	if (root->owner)
2701 		sysfs_remove_link(&root->dev.kobj, "module");
2702 
2703 	device_unregister(dev);
2704 }
2705 EXPORT_SYMBOL_GPL(root_device_unregister);
2706 
2707 
2708 static void device_create_release(struct device *dev)
2709 {
2710 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2711 	kfree(dev);
2712 }
2713 
2714 static __printf(6, 0) struct device *
2715 device_create_groups_vargs(struct class *class, struct device *parent,
2716 			   dev_t devt, void *drvdata,
2717 			   const struct attribute_group **groups,
2718 			   const char *fmt, va_list args)
2719 {
2720 	struct device *dev = NULL;
2721 	int retval = -ENODEV;
2722 
2723 	if (class == NULL || IS_ERR(class))
2724 		goto error;
2725 
2726 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2727 	if (!dev) {
2728 		retval = -ENOMEM;
2729 		goto error;
2730 	}
2731 
2732 	device_initialize(dev);
2733 	dev->devt = devt;
2734 	dev->class = class;
2735 	dev->parent = parent;
2736 	dev->groups = groups;
2737 	dev->release = device_create_release;
2738 	dev_set_drvdata(dev, drvdata);
2739 
2740 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2741 	if (retval)
2742 		goto error;
2743 
2744 	retval = device_add(dev);
2745 	if (retval)
2746 		goto error;
2747 
2748 	return dev;
2749 
2750 error:
2751 	put_device(dev);
2752 	return ERR_PTR(retval);
2753 }
2754 
2755 /**
2756  * device_create_vargs - creates a device and registers it with sysfs
2757  * @class: pointer to the struct class that this device should be registered to
2758  * @parent: pointer to the parent struct device of this new device, if any
2759  * @devt: the dev_t for the char device to be added
2760  * @drvdata: the data to be added to the device for callbacks
2761  * @fmt: string for the device's name
2762  * @args: va_list for the device's name
2763  *
2764  * This function can be used by char device classes.  A struct device
2765  * will be created in sysfs, registered to the specified class.
2766  *
2767  * A "dev" file will be created, showing the dev_t for the device, if
2768  * the dev_t is not 0,0.
2769  * If a pointer to a parent struct device is passed in, the newly created
2770  * struct device will be a child of that device in sysfs.
2771  * The pointer to the struct device will be returned from the call.
2772  * Any further sysfs files that might be required can be created using this
2773  * pointer.
2774  *
2775  * Returns &struct device pointer on success, or ERR_PTR() on error.
2776  *
2777  * Note: the struct class passed to this function must have previously
2778  * been created with a call to class_create().
2779  */
2780 struct device *device_create_vargs(struct class *class, struct device *parent,
2781 				   dev_t devt, void *drvdata, const char *fmt,
2782 				   va_list args)
2783 {
2784 	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2785 					  fmt, args);
2786 }
2787 EXPORT_SYMBOL_GPL(device_create_vargs);
2788 
2789 /**
2790  * device_create - creates a device and registers it with sysfs
2791  * @class: pointer to the struct class that this device should be registered to
2792  * @parent: pointer to the parent struct device of this new device, if any
2793  * @devt: the dev_t for the char device to be added
2794  * @drvdata: the data to be added to the device for callbacks
2795  * @fmt: string for the device's name
2796  *
2797  * This function can be used by char device classes.  A struct device
2798  * will be created in sysfs, registered to the specified class.
2799  *
2800  * A "dev" file will be created, showing the dev_t for the device, if
2801  * the dev_t is not 0,0.
2802  * If a pointer to a parent struct device is passed in, the newly created
2803  * struct device will be a child of that device in sysfs.
2804  * The pointer to the struct device will be returned from the call.
2805  * Any further sysfs files that might be required can be created using this
2806  * pointer.
2807  *
2808  * Returns &struct device pointer on success, or ERR_PTR() on error.
2809  *
2810  * Note: the struct class passed to this function must have previously
2811  * been created with a call to class_create().
2812  */
2813 struct device *device_create(struct class *class, struct device *parent,
2814 			     dev_t devt, void *drvdata, const char *fmt, ...)
2815 {
2816 	va_list vargs;
2817 	struct device *dev;
2818 
2819 	va_start(vargs, fmt);
2820 	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2821 	va_end(vargs);
2822 	return dev;
2823 }
2824 EXPORT_SYMBOL_GPL(device_create);
2825 
2826 /**
2827  * device_create_with_groups - creates a device and registers it with sysfs
2828  * @class: pointer to the struct class that this device should be registered to
2829  * @parent: pointer to the parent struct device of this new device, if any
2830  * @devt: the dev_t for the char device to be added
2831  * @drvdata: the data to be added to the device for callbacks
2832  * @groups: NULL-terminated list of attribute groups to be created
2833  * @fmt: string for the device's name
2834  *
2835  * This function can be used by char device classes.  A struct device
2836  * will be created in sysfs, registered to the specified class.
2837  * Additional attributes specified in the groups parameter will also
2838  * be created automatically.
2839  *
2840  * A "dev" file will be created, showing the dev_t for the device, if
2841  * the dev_t is not 0,0.
2842  * If a pointer to a parent struct device is passed in, the newly created
2843  * struct device will be a child of that device in sysfs.
2844  * The pointer to the struct device will be returned from the call.
2845  * Any further sysfs files that might be required can be created using this
2846  * pointer.
2847  *
2848  * Returns &struct device pointer on success, or ERR_PTR() on error.
2849  *
2850  * Note: the struct class passed to this function must have previously
2851  * been created with a call to class_create().
2852  */
2853 struct device *device_create_with_groups(struct class *class,
2854 					 struct device *parent, dev_t devt,
2855 					 void *drvdata,
2856 					 const struct attribute_group **groups,
2857 					 const char *fmt, ...)
2858 {
2859 	va_list vargs;
2860 	struct device *dev;
2861 
2862 	va_start(vargs, fmt);
2863 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2864 					 fmt, vargs);
2865 	va_end(vargs);
2866 	return dev;
2867 }
2868 EXPORT_SYMBOL_GPL(device_create_with_groups);
2869 
2870 static int __match_devt(struct device *dev, const void *data)
2871 {
2872 	const dev_t *devt = data;
2873 
2874 	return dev->devt == *devt;
2875 }
2876 
2877 /**
2878  * device_destroy - removes a device that was created with device_create()
2879  * @class: pointer to the struct class that this device was registered with
2880  * @devt: the dev_t of the device that was previously registered
2881  *
2882  * This call unregisters and cleans up a device that was created with a
2883  * call to device_create().
2884  */
2885 void device_destroy(struct class *class, dev_t devt)
2886 {
2887 	struct device *dev;
2888 
2889 	dev = class_find_device(class, NULL, &devt, __match_devt);
2890 	if (dev) {
2891 		put_device(dev);
2892 		device_unregister(dev);
2893 	}
2894 }
2895 EXPORT_SYMBOL_GPL(device_destroy);
2896 
2897 /**
2898  * device_rename - renames a device
2899  * @dev: the pointer to the struct device to be renamed
2900  * @new_name: the new name of the device
2901  *
2902  * It is the responsibility of the caller to provide mutual
2903  * exclusion between two different calls of device_rename
2904  * on the same device to ensure that new_name is valid and
2905  * won't conflict with other devices.
2906  *
2907  * Note: Don't call this function.  Currently, the networking layer calls this
2908  * function, but that will change.  The following text from Kay Sievers offers
2909  * some insight:
2910  *
2911  * Renaming devices is racy at many levels, symlinks and other stuff are not
2912  * replaced atomically, and you get a "move" uevent, but it's not easy to
2913  * connect the event to the old and new device. Device nodes are not renamed at
2914  * all, there isn't even support for that in the kernel now.
2915  *
2916  * In the meantime, during renaming, your target name might be taken by another
2917  * driver, creating conflicts. Or the old name is taken directly after you
2918  * renamed it -- then you get events for the same DEVPATH, before you even see
2919  * the "move" event. It's just a mess, and nothing new should ever rely on
2920  * kernel device renaming. Besides that, it's not even implemented now for
2921  * other things than (driver-core wise very simple) network devices.
2922  *
2923  * We are currently about to change network renaming in udev to completely
2924  * disallow renaming of devices in the same namespace as the kernel uses,
2925  * because we can't solve the problems properly, that arise with swapping names
2926  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2927  * be allowed to some other name than eth[0-9]*, for the aforementioned
2928  * reasons.
2929  *
2930  * Make up a "real" name in the driver before you register anything, or add
2931  * some other attributes for userspace to find the device, or use udev to add
2932  * symlinks -- but never rename kernel devices later, it's a complete mess. We
2933  * don't even want to get into that and try to implement the missing pieces in
2934  * the core. We really have other pieces to fix in the driver core mess. :)
2935  */
2936 int device_rename(struct device *dev, const char *new_name)
2937 {
2938 	struct kobject *kobj = &dev->kobj;
2939 	char *old_device_name = NULL;
2940 	int error;
2941 
2942 	dev = get_device(dev);
2943 	if (!dev)
2944 		return -EINVAL;
2945 
2946 	dev_dbg(dev, "renaming to %s\n", new_name);
2947 
2948 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2949 	if (!old_device_name) {
2950 		error = -ENOMEM;
2951 		goto out;
2952 	}
2953 
2954 	if (dev->class) {
2955 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2956 					     kobj, old_device_name,
2957 					     new_name, kobject_namespace(kobj));
2958 		if (error)
2959 			goto out;
2960 	}
2961 
2962 	error = kobject_rename(kobj, new_name);
2963 	if (error)
2964 		goto out;
2965 
2966 out:
2967 	put_device(dev);
2968 
2969 	kfree(old_device_name);
2970 
2971 	return error;
2972 }
2973 EXPORT_SYMBOL_GPL(device_rename);
2974 
2975 static int device_move_class_links(struct device *dev,
2976 				   struct device *old_parent,
2977 				   struct device *new_parent)
2978 {
2979 	int error = 0;
2980 
2981 	if (old_parent)
2982 		sysfs_remove_link(&dev->kobj, "device");
2983 	if (new_parent)
2984 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2985 					  "device");
2986 	return error;
2987 }
2988 
2989 /**
2990  * device_move - moves a device to a new parent
2991  * @dev: the pointer to the struct device to be moved
2992  * @new_parent: the new parent of the device (can be NULL)
2993  * @dpm_order: how to reorder the dpm_list
2994  */
2995 int device_move(struct device *dev, struct device *new_parent,
2996 		enum dpm_order dpm_order)
2997 {
2998 	int error;
2999 	struct device *old_parent;
3000 	struct kobject *new_parent_kobj;
3001 
3002 	dev = get_device(dev);
3003 	if (!dev)
3004 		return -EINVAL;
3005 
3006 	device_pm_lock();
3007 	new_parent = get_device(new_parent);
3008 	new_parent_kobj = get_device_parent(dev, new_parent);
3009 	if (IS_ERR(new_parent_kobj)) {
3010 		error = PTR_ERR(new_parent_kobj);
3011 		put_device(new_parent);
3012 		goto out;
3013 	}
3014 
3015 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3016 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3017 	error = kobject_move(&dev->kobj, new_parent_kobj);
3018 	if (error) {
3019 		cleanup_glue_dir(dev, new_parent_kobj);
3020 		put_device(new_parent);
3021 		goto out;
3022 	}
3023 	old_parent = dev->parent;
3024 	dev->parent = new_parent;
3025 	if (old_parent)
3026 		klist_remove(&dev->p->knode_parent);
3027 	if (new_parent) {
3028 		klist_add_tail(&dev->p->knode_parent,
3029 			       &new_parent->p->klist_children);
3030 		set_dev_node(dev, dev_to_node(new_parent));
3031 	}
3032 
3033 	if (dev->class) {
3034 		error = device_move_class_links(dev, old_parent, new_parent);
3035 		if (error) {
3036 			/* We ignore errors on cleanup since we're hosed anyway... */
3037 			device_move_class_links(dev, new_parent, old_parent);
3038 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3039 				if (new_parent)
3040 					klist_remove(&dev->p->knode_parent);
3041 				dev->parent = old_parent;
3042 				if (old_parent) {
3043 					klist_add_tail(&dev->p->knode_parent,
3044 						       &old_parent->p->klist_children);
3045 					set_dev_node(dev, dev_to_node(old_parent));
3046 				}
3047 			}
3048 			cleanup_glue_dir(dev, new_parent_kobj);
3049 			put_device(new_parent);
3050 			goto out;
3051 		}
3052 	}
3053 	switch (dpm_order) {
3054 	case DPM_ORDER_NONE:
3055 		break;
3056 	case DPM_ORDER_DEV_AFTER_PARENT:
3057 		device_pm_move_after(dev, new_parent);
3058 		devices_kset_move_after(dev, new_parent);
3059 		break;
3060 	case DPM_ORDER_PARENT_BEFORE_DEV:
3061 		device_pm_move_before(new_parent, dev);
3062 		devices_kset_move_before(new_parent, dev);
3063 		break;
3064 	case DPM_ORDER_DEV_LAST:
3065 		device_pm_move_last(dev);
3066 		devices_kset_move_last(dev);
3067 		break;
3068 	}
3069 
3070 	put_device(old_parent);
3071 out:
3072 	device_pm_unlock();
3073 	put_device(dev);
3074 	return error;
3075 }
3076 EXPORT_SYMBOL_GPL(device_move);
3077 
3078 /**
3079  * device_shutdown - call ->shutdown() on each device to shutdown.
3080  */
3081 void device_shutdown(void)
3082 {
3083 	struct device *dev, *parent;
3084 
3085 	wait_for_device_probe();
3086 	device_block_probing();
3087 
3088 	spin_lock(&devices_kset->list_lock);
3089 	/*
3090 	 * Walk the devices list backward, shutting down each in turn.
3091 	 * Beware that device unplug events may also start pulling
3092 	 * devices offline, even as the system is shutting down.
3093 	 */
3094 	while (!list_empty(&devices_kset->list)) {
3095 		dev = list_entry(devices_kset->list.prev, struct device,
3096 				kobj.entry);
3097 
3098 		/*
3099 		 * hold reference count of device's parent to
3100 		 * prevent it from being freed because parent's
3101 		 * lock is to be held
3102 		 */
3103 		parent = get_device(dev->parent);
3104 		get_device(dev);
3105 		/*
3106 		 * Make sure the device is off the kset list, in the
3107 		 * event that dev->*->shutdown() doesn't remove it.
3108 		 */
3109 		list_del_init(&dev->kobj.entry);
3110 		spin_unlock(&devices_kset->list_lock);
3111 
3112 		/* hold lock to avoid race with probe/release */
3113 		if (parent)
3114 			device_lock(parent);
3115 		device_lock(dev);
3116 
3117 		/* Don't allow any more runtime suspends */
3118 		pm_runtime_get_noresume(dev);
3119 		pm_runtime_barrier(dev);
3120 
3121 		if (dev->class && dev->class->shutdown_pre) {
3122 			if (initcall_debug)
3123 				dev_info(dev, "shutdown_pre\n");
3124 			dev->class->shutdown_pre(dev);
3125 		}
3126 		if (dev->bus && dev->bus->shutdown) {
3127 			if (initcall_debug)
3128 				dev_info(dev, "shutdown\n");
3129 			dev->bus->shutdown(dev);
3130 		} else if (dev->driver && dev->driver->shutdown) {
3131 			if (initcall_debug)
3132 				dev_info(dev, "shutdown\n");
3133 			dev->driver->shutdown(dev);
3134 		}
3135 
3136 		device_unlock(dev);
3137 		if (parent)
3138 			device_unlock(parent);
3139 
3140 		put_device(dev);
3141 		put_device(parent);
3142 
3143 		spin_lock(&devices_kset->list_lock);
3144 	}
3145 	spin_unlock(&devices_kset->list_lock);
3146 }
3147 
3148 /*
3149  * Device logging functions
3150  */
3151 
3152 #ifdef CONFIG_PRINTK
3153 static int
3154 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
3155 {
3156 	const char *subsys;
3157 	size_t pos = 0;
3158 
3159 	if (dev->class)
3160 		subsys = dev->class->name;
3161 	else if (dev->bus)
3162 		subsys = dev->bus->name;
3163 	else
3164 		return 0;
3165 
3166 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
3167 	if (pos >= hdrlen)
3168 		goto overflow;
3169 
3170 	/*
3171 	 * Add device identifier DEVICE=:
3172 	 *   b12:8         block dev_t
3173 	 *   c127:3        char dev_t
3174 	 *   n8            netdev ifindex
3175 	 *   +sound:card0  subsystem:devname
3176 	 */
3177 	if (MAJOR(dev->devt)) {
3178 		char c;
3179 
3180 		if (strcmp(subsys, "block") == 0)
3181 			c = 'b';
3182 		else
3183 			c = 'c';
3184 		pos++;
3185 		pos += snprintf(hdr + pos, hdrlen - pos,
3186 				"DEVICE=%c%u:%u",
3187 				c, MAJOR(dev->devt), MINOR(dev->devt));
3188 	} else if (strcmp(subsys, "net") == 0) {
3189 		struct net_device *net = to_net_dev(dev);
3190 
3191 		pos++;
3192 		pos += snprintf(hdr + pos, hdrlen - pos,
3193 				"DEVICE=n%u", net->ifindex);
3194 	} else {
3195 		pos++;
3196 		pos += snprintf(hdr + pos, hdrlen - pos,
3197 				"DEVICE=+%s:%s", subsys, dev_name(dev));
3198 	}
3199 
3200 	if (pos >= hdrlen)
3201 		goto overflow;
3202 
3203 	return pos;
3204 
3205 overflow:
3206 	dev_WARN(dev, "device/subsystem name too long");
3207 	return 0;
3208 }
3209 
3210 int dev_vprintk_emit(int level, const struct device *dev,
3211 		     const char *fmt, va_list args)
3212 {
3213 	char hdr[128];
3214 	size_t hdrlen;
3215 
3216 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
3217 
3218 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
3219 }
3220 EXPORT_SYMBOL(dev_vprintk_emit);
3221 
3222 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3223 {
3224 	va_list args;
3225 	int r;
3226 
3227 	va_start(args, fmt);
3228 
3229 	r = dev_vprintk_emit(level, dev, fmt, args);
3230 
3231 	va_end(args);
3232 
3233 	return r;
3234 }
3235 EXPORT_SYMBOL(dev_printk_emit);
3236 
3237 static void __dev_printk(const char *level, const struct device *dev,
3238 			struct va_format *vaf)
3239 {
3240 	if (dev)
3241 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3242 				dev_driver_string(dev), dev_name(dev), vaf);
3243 	else
3244 		printk("%s(NULL device *): %pV", level, vaf);
3245 }
3246 
3247 void dev_printk(const char *level, const struct device *dev,
3248 		const char *fmt, ...)
3249 {
3250 	struct va_format vaf;
3251 	va_list args;
3252 
3253 	va_start(args, fmt);
3254 
3255 	vaf.fmt = fmt;
3256 	vaf.va = &args;
3257 
3258 	__dev_printk(level, dev, &vaf);
3259 
3260 	va_end(args);
3261 }
3262 EXPORT_SYMBOL(dev_printk);
3263 
3264 #define define_dev_printk_level(func, kern_level)		\
3265 void func(const struct device *dev, const char *fmt, ...)	\
3266 {								\
3267 	struct va_format vaf;					\
3268 	va_list args;						\
3269 								\
3270 	va_start(args, fmt);					\
3271 								\
3272 	vaf.fmt = fmt;						\
3273 	vaf.va = &args;						\
3274 								\
3275 	__dev_printk(kern_level, dev, &vaf);			\
3276 								\
3277 	va_end(args);						\
3278 }								\
3279 EXPORT_SYMBOL(func);
3280 
3281 define_dev_printk_level(_dev_emerg, KERN_EMERG);
3282 define_dev_printk_level(_dev_alert, KERN_ALERT);
3283 define_dev_printk_level(_dev_crit, KERN_CRIT);
3284 define_dev_printk_level(_dev_err, KERN_ERR);
3285 define_dev_printk_level(_dev_warn, KERN_WARNING);
3286 define_dev_printk_level(_dev_notice, KERN_NOTICE);
3287 define_dev_printk_level(_dev_info, KERN_INFO);
3288 
3289 #endif
3290 
3291 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3292 {
3293 	return fwnode && !IS_ERR(fwnode->secondary);
3294 }
3295 
3296 /**
3297  * set_primary_fwnode - Change the primary firmware node of a given device.
3298  * @dev: Device to handle.
3299  * @fwnode: New primary firmware node of the device.
3300  *
3301  * Set the device's firmware node pointer to @fwnode, but if a secondary
3302  * firmware node of the device is present, preserve it.
3303  */
3304 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3305 {
3306 	if (fwnode) {
3307 		struct fwnode_handle *fn = dev->fwnode;
3308 
3309 		if (fwnode_is_primary(fn))
3310 			fn = fn->secondary;
3311 
3312 		if (fn) {
3313 			WARN_ON(fwnode->secondary);
3314 			fwnode->secondary = fn;
3315 		}
3316 		dev->fwnode = fwnode;
3317 	} else {
3318 		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3319 			dev->fwnode->secondary : NULL;
3320 	}
3321 }
3322 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3323 
3324 /**
3325  * set_secondary_fwnode - Change the secondary firmware node of a given device.
3326  * @dev: Device to handle.
3327  * @fwnode: New secondary firmware node of the device.
3328  *
3329  * If a primary firmware node of the device is present, set its secondary
3330  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3331  * @fwnode.
3332  */
3333 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3334 {
3335 	if (fwnode)
3336 		fwnode->secondary = ERR_PTR(-ENODEV);
3337 
3338 	if (fwnode_is_primary(dev->fwnode))
3339 		dev->fwnode->secondary = fwnode;
3340 	else
3341 		dev->fwnode = fwnode;
3342 }
3343 
3344 /**
3345  * device_set_of_node_from_dev - reuse device-tree node of another device
3346  * @dev: device whose device-tree node is being set
3347  * @dev2: device whose device-tree node is being reused
3348  *
3349  * Takes another reference to the new device-tree node after first dropping
3350  * any reference held to the old node.
3351  */
3352 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3353 {
3354 	of_node_put(dev->of_node);
3355 	dev->of_node = of_node_get(dev2->of_node);
3356 	dev->of_node_reused = true;
3357 }
3358 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3359 
3360 int device_match_of_node(struct device *dev, const void *np)
3361 {
3362 	return dev->of_node == np;
3363 }
3364 EXPORT_SYMBOL_GPL(device_match_of_node);
3365