xref: /openbmc/linux/drivers/base/core.c (revision 1e1129b65ef3f72dbccf24de56b700a181b45227)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * drivers/base/core.c - core driver model code (device registration, etc)
4  *
5  * Copyright (c) 2002-3 Patrick Mochel
6  * Copyright (c) 2002-3 Open Source Development Labs
7  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8  * Copyright (c) 2006 Novell, Inc.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sysfs.h>
30 
31 #include "base.h"
32 #include "power/power.h"
33 
34 #ifdef CONFIG_SYSFS_DEPRECATED
35 #ifdef CONFIG_SYSFS_DEPRECATED_V2
36 long sysfs_deprecated = 1;
37 #else
38 long sysfs_deprecated = 0;
39 #endif
40 static int __init sysfs_deprecated_setup(char *arg)
41 {
42 	return kstrtol(arg, 10, &sysfs_deprecated);
43 }
44 early_param("sysfs.deprecated", sysfs_deprecated_setup);
45 #endif
46 
47 /* Device links support. */
48 static LIST_HEAD(wait_for_suppliers);
49 static DEFINE_MUTEX(wfs_lock);
50 static LIST_HEAD(deferred_sync);
51 static unsigned int defer_sync_state_count = 1;
52 static unsigned int defer_fw_devlink_count;
53 static LIST_HEAD(deferred_fw_devlink);
54 static DEFINE_MUTEX(defer_fw_devlink_lock);
55 static bool fw_devlink_is_permissive(void);
56 
57 #ifdef CONFIG_SRCU
58 static DEFINE_MUTEX(device_links_lock);
59 DEFINE_STATIC_SRCU(device_links_srcu);
60 
61 static inline void device_links_write_lock(void)
62 {
63 	mutex_lock(&device_links_lock);
64 }
65 
66 static inline void device_links_write_unlock(void)
67 {
68 	mutex_unlock(&device_links_lock);
69 }
70 
71 int device_links_read_lock(void) __acquires(&device_links_srcu)
72 {
73 	return srcu_read_lock(&device_links_srcu);
74 }
75 
76 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
77 {
78 	srcu_read_unlock(&device_links_srcu, idx);
79 }
80 
81 int device_links_read_lock_held(void)
82 {
83 	return srcu_read_lock_held(&device_links_srcu);
84 }
85 #else /* !CONFIG_SRCU */
86 static DECLARE_RWSEM(device_links_lock);
87 
88 static inline void device_links_write_lock(void)
89 {
90 	down_write(&device_links_lock);
91 }
92 
93 static inline void device_links_write_unlock(void)
94 {
95 	up_write(&device_links_lock);
96 }
97 
98 int device_links_read_lock(void)
99 {
100 	down_read(&device_links_lock);
101 	return 0;
102 }
103 
104 void device_links_read_unlock(int not_used)
105 {
106 	up_read(&device_links_lock);
107 }
108 
109 #ifdef CONFIG_DEBUG_LOCK_ALLOC
110 int device_links_read_lock_held(void)
111 {
112 	return lockdep_is_held(&device_links_lock);
113 }
114 #endif
115 #endif /* !CONFIG_SRCU */
116 
117 /**
118  * device_is_dependent - Check if one device depends on another one
119  * @dev: Device to check dependencies for.
120  * @target: Device to check against.
121  *
122  * Check if @target depends on @dev or any device dependent on it (its child or
123  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
124  */
125 int device_is_dependent(struct device *dev, void *target)
126 {
127 	struct device_link *link;
128 	int ret;
129 
130 	if (dev == target)
131 		return 1;
132 
133 	ret = device_for_each_child(dev, target, device_is_dependent);
134 	if (ret)
135 		return ret;
136 
137 	list_for_each_entry(link, &dev->links.consumers, s_node) {
138 		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
139 			continue;
140 
141 		if (link->consumer == target)
142 			return 1;
143 
144 		ret = device_is_dependent(link->consumer, target);
145 		if (ret)
146 			break;
147 	}
148 	return ret;
149 }
150 
151 static void device_link_init_status(struct device_link *link,
152 				    struct device *consumer,
153 				    struct device *supplier)
154 {
155 	switch (supplier->links.status) {
156 	case DL_DEV_PROBING:
157 		switch (consumer->links.status) {
158 		case DL_DEV_PROBING:
159 			/*
160 			 * A consumer driver can create a link to a supplier
161 			 * that has not completed its probing yet as long as it
162 			 * knows that the supplier is already functional (for
163 			 * example, it has just acquired some resources from the
164 			 * supplier).
165 			 */
166 			link->status = DL_STATE_CONSUMER_PROBE;
167 			break;
168 		default:
169 			link->status = DL_STATE_DORMANT;
170 			break;
171 		}
172 		break;
173 	case DL_DEV_DRIVER_BOUND:
174 		switch (consumer->links.status) {
175 		case DL_DEV_PROBING:
176 			link->status = DL_STATE_CONSUMER_PROBE;
177 			break;
178 		case DL_DEV_DRIVER_BOUND:
179 			link->status = DL_STATE_ACTIVE;
180 			break;
181 		default:
182 			link->status = DL_STATE_AVAILABLE;
183 			break;
184 		}
185 		break;
186 	case DL_DEV_UNBINDING:
187 		link->status = DL_STATE_SUPPLIER_UNBIND;
188 		break;
189 	default:
190 		link->status = DL_STATE_DORMANT;
191 		break;
192 	}
193 }
194 
195 static int device_reorder_to_tail(struct device *dev, void *not_used)
196 {
197 	struct device_link *link;
198 
199 	/*
200 	 * Devices that have not been registered yet will be put to the ends
201 	 * of the lists during the registration, so skip them here.
202 	 */
203 	if (device_is_registered(dev))
204 		devices_kset_move_last(dev);
205 
206 	if (device_pm_initialized(dev))
207 		device_pm_move_last(dev);
208 
209 	device_for_each_child(dev, NULL, device_reorder_to_tail);
210 	list_for_each_entry(link, &dev->links.consumers, s_node) {
211 		if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
212 			continue;
213 		device_reorder_to_tail(link->consumer, NULL);
214 	}
215 
216 	return 0;
217 }
218 
219 /**
220  * device_pm_move_to_tail - Move set of devices to the end of device lists
221  * @dev: Device to move
222  *
223  * This is a device_reorder_to_tail() wrapper taking the requisite locks.
224  *
225  * It moves the @dev along with all of its children and all of its consumers
226  * to the ends of the device_kset and dpm_list, recursively.
227  */
228 void device_pm_move_to_tail(struct device *dev)
229 {
230 	int idx;
231 
232 	idx = device_links_read_lock();
233 	device_pm_lock();
234 	device_reorder_to_tail(dev, NULL);
235 	device_pm_unlock();
236 	device_links_read_unlock(idx);
237 }
238 
239 #define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
240 
241 static ssize_t status_show(struct device *dev,
242 			  struct device_attribute *attr, char *buf)
243 {
244 	char *status;
245 
246 	switch (to_devlink(dev)->status) {
247 	case DL_STATE_NONE:
248 		status = "not tracked"; break;
249 	case DL_STATE_DORMANT:
250 		status = "dormant"; break;
251 	case DL_STATE_AVAILABLE:
252 		status = "available"; break;
253 	case DL_STATE_CONSUMER_PROBE:
254 		status = "consumer probing"; break;
255 	case DL_STATE_ACTIVE:
256 		status = "active"; break;
257 	case DL_STATE_SUPPLIER_UNBIND:
258 		status = "supplier unbinding"; break;
259 	default:
260 		status = "unknown"; break;
261 	}
262 	return sprintf(buf, "%s\n", status);
263 }
264 static DEVICE_ATTR_RO(status);
265 
266 static ssize_t auto_remove_on_show(struct device *dev,
267 				   struct device_attribute *attr, char *buf)
268 {
269 	struct device_link *link = to_devlink(dev);
270 	char *str;
271 
272 	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
273 		str = "supplier unbind";
274 	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
275 		str = "consumer unbind";
276 	else
277 		str = "never";
278 
279 	return sprintf(buf, "%s\n", str);
280 }
281 static DEVICE_ATTR_RO(auto_remove_on);
282 
283 static ssize_t runtime_pm_show(struct device *dev,
284 			       struct device_attribute *attr, char *buf)
285 {
286 	struct device_link *link = to_devlink(dev);
287 
288 	return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
289 }
290 static DEVICE_ATTR_RO(runtime_pm);
291 
292 static ssize_t sync_state_only_show(struct device *dev,
293 				    struct device_attribute *attr, char *buf)
294 {
295 	struct device_link *link = to_devlink(dev);
296 
297 	return sprintf(buf, "%d\n", !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
298 }
299 static DEVICE_ATTR_RO(sync_state_only);
300 
301 static struct attribute *devlink_attrs[] = {
302 	&dev_attr_status.attr,
303 	&dev_attr_auto_remove_on.attr,
304 	&dev_attr_runtime_pm.attr,
305 	&dev_attr_sync_state_only.attr,
306 	NULL,
307 };
308 ATTRIBUTE_GROUPS(devlink);
309 
310 static void device_link_free(struct device_link *link)
311 {
312 	while (refcount_dec_not_one(&link->rpm_active))
313 		pm_runtime_put(link->supplier);
314 
315 	put_device(link->consumer);
316 	put_device(link->supplier);
317 	kfree(link);
318 }
319 
320 #ifdef CONFIG_SRCU
321 static void __device_link_free_srcu(struct rcu_head *rhead)
322 {
323 	device_link_free(container_of(rhead, struct device_link, rcu_head));
324 }
325 
326 static void devlink_dev_release(struct device *dev)
327 {
328 	struct device_link *link = to_devlink(dev);
329 
330 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
331 }
332 #else
333 static void devlink_dev_release(struct device *dev)
334 {
335 	device_link_free(to_devlink(dev));
336 }
337 #endif
338 
339 static struct class devlink_class = {
340 	.name = "devlink",
341 	.owner = THIS_MODULE,
342 	.dev_groups = devlink_groups,
343 	.dev_release = devlink_dev_release,
344 };
345 
346 static int devlink_add_symlinks(struct device *dev,
347 				struct class_interface *class_intf)
348 {
349 	int ret;
350 	size_t len;
351 	struct device_link *link = to_devlink(dev);
352 	struct device *sup = link->supplier;
353 	struct device *con = link->consumer;
354 	char *buf;
355 
356 	len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
357 	len += strlen("supplier:") + 1;
358 	buf = kzalloc(len, GFP_KERNEL);
359 	if (!buf)
360 		return -ENOMEM;
361 
362 	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
363 	if (ret)
364 		goto out;
365 
366 	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
367 	if (ret)
368 		goto err_con;
369 
370 	snprintf(buf, len, "consumer:%s", dev_name(con));
371 	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
372 	if (ret)
373 		goto err_con_dev;
374 
375 	snprintf(buf, len, "supplier:%s", dev_name(sup));
376 	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
377 	if (ret)
378 		goto err_sup_dev;
379 
380 	goto out;
381 
382 err_sup_dev:
383 	snprintf(buf, len, "consumer:%s", dev_name(con));
384 	sysfs_remove_link(&sup->kobj, buf);
385 err_con_dev:
386 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
387 err_con:
388 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
389 out:
390 	kfree(buf);
391 	return ret;
392 }
393 
394 static void devlink_remove_symlinks(struct device *dev,
395 				   struct class_interface *class_intf)
396 {
397 	struct device_link *link = to_devlink(dev);
398 	size_t len;
399 	struct device *sup = link->supplier;
400 	struct device *con = link->consumer;
401 	char *buf;
402 
403 	sysfs_remove_link(&link->link_dev.kobj, "consumer");
404 	sysfs_remove_link(&link->link_dev.kobj, "supplier");
405 
406 	len = max(strlen(dev_name(sup)), strlen(dev_name(con)));
407 	len += strlen("supplier:") + 1;
408 	buf = kzalloc(len, GFP_KERNEL);
409 	if (!buf) {
410 		WARN(1, "Unable to properly free device link symlinks!\n");
411 		return;
412 	}
413 
414 	snprintf(buf, len, "supplier:%s", dev_name(sup));
415 	sysfs_remove_link(&con->kobj, buf);
416 	snprintf(buf, len, "consumer:%s", dev_name(con));
417 	sysfs_remove_link(&sup->kobj, buf);
418 	kfree(buf);
419 }
420 
421 static struct class_interface devlink_class_intf = {
422 	.class = &devlink_class,
423 	.add_dev = devlink_add_symlinks,
424 	.remove_dev = devlink_remove_symlinks,
425 };
426 
427 static int __init devlink_class_init(void)
428 {
429 	int ret;
430 
431 	ret = class_register(&devlink_class);
432 	if (ret)
433 		return ret;
434 
435 	ret = class_interface_register(&devlink_class_intf);
436 	if (ret)
437 		class_unregister(&devlink_class);
438 
439 	return ret;
440 }
441 postcore_initcall(devlink_class_init);
442 
443 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
444 			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
445 			       DL_FLAG_AUTOPROBE_CONSUMER  | \
446 			       DL_FLAG_SYNC_STATE_ONLY)
447 
448 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
449 			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
450 
451 /**
452  * device_link_add - Create a link between two devices.
453  * @consumer: Consumer end of the link.
454  * @supplier: Supplier end of the link.
455  * @flags: Link flags.
456  *
457  * The caller is responsible for the proper synchronization of the link creation
458  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
459  * runtime PM framework to take the link into account.  Second, if the
460  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
461  * be forced into the active metastate and reference-counted upon the creation
462  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
463  * ignored.
464  *
465  * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
466  * expected to release the link returned by it directly with the help of either
467  * device_link_del() or device_link_remove().
468  *
469  * If that flag is not set, however, the caller of this function is handing the
470  * management of the link over to the driver core entirely and its return value
471  * can only be used to check whether or not the link is present.  In that case,
472  * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
473  * flags can be used to indicate to the driver core when the link can be safely
474  * deleted.  Namely, setting one of them in @flags indicates to the driver core
475  * that the link is not going to be used (by the given caller of this function)
476  * after unbinding the consumer or supplier driver, respectively, from its
477  * device, so the link can be deleted at that point.  If none of them is set,
478  * the link will be maintained until one of the devices pointed to by it (either
479  * the consumer or the supplier) is unregistered.
480  *
481  * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
482  * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
483  * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
484  * be used to request the driver core to automaticall probe for a consmer
485  * driver after successfully binding a driver to the supplier device.
486  *
487  * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
488  * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
489  * the same time is invalid and will cause NULL to be returned upfront.
490  * However, if a device link between the given @consumer and @supplier pair
491  * exists already when this function is called for them, the existing link will
492  * be returned regardless of its current type and status (the link's flags may
493  * be modified then).  The caller of this function is then expected to treat
494  * the link as though it has just been created, so (in particular) if
495  * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
496  * explicitly when not needed any more (as stated above).
497  *
498  * A side effect of the link creation is re-ordering of dpm_list and the
499  * devices_kset list by moving the consumer device and all devices depending
500  * on it to the ends of these lists (that does not happen to devices that have
501  * not been registered when this function is called).
502  *
503  * The supplier device is required to be registered when this function is called
504  * and NULL will be returned if that is not the case.  The consumer device need
505  * not be registered, however.
506  */
507 struct device_link *device_link_add(struct device *consumer,
508 				    struct device *supplier, u32 flags)
509 {
510 	struct device_link *link;
511 
512 	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
513 	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
514 	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
515 	     flags != DL_FLAG_SYNC_STATE_ONLY) ||
516 	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
517 	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
518 		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
519 		return NULL;
520 
521 	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
522 		if (pm_runtime_get_sync(supplier) < 0) {
523 			pm_runtime_put_noidle(supplier);
524 			return NULL;
525 		}
526 	}
527 
528 	if (!(flags & DL_FLAG_STATELESS))
529 		flags |= DL_FLAG_MANAGED;
530 
531 	device_links_write_lock();
532 	device_pm_lock();
533 
534 	/*
535 	 * If the supplier has not been fully registered yet or there is a
536 	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
537 	 * the supplier already in the graph, return NULL. If the link is a
538 	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
539 	 * because it only affects sync_state() callbacks.
540 	 */
541 	if (!device_pm_initialized(supplier)
542 	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
543 		  device_is_dependent(consumer, supplier))) {
544 		link = NULL;
545 		goto out;
546 	}
547 
548 	/*
549 	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
550 	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
551 	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
552 	 */
553 	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
554 		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
555 
556 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
557 		if (link->consumer != consumer)
558 			continue;
559 
560 		if (flags & DL_FLAG_PM_RUNTIME) {
561 			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
562 				pm_runtime_new_link(consumer);
563 				link->flags |= DL_FLAG_PM_RUNTIME;
564 			}
565 			if (flags & DL_FLAG_RPM_ACTIVE)
566 				refcount_inc(&link->rpm_active);
567 		}
568 
569 		if (flags & DL_FLAG_STATELESS) {
570 			kref_get(&link->kref);
571 			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
572 			    !(link->flags & DL_FLAG_STATELESS)) {
573 				link->flags |= DL_FLAG_STATELESS;
574 				goto reorder;
575 			} else {
576 				link->flags |= DL_FLAG_STATELESS;
577 				goto out;
578 			}
579 		}
580 
581 		/*
582 		 * If the life time of the link following from the new flags is
583 		 * longer than indicated by the flags of the existing link,
584 		 * update the existing link to stay around longer.
585 		 */
586 		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
587 			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
588 				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
589 				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
590 			}
591 		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
592 			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
593 					 DL_FLAG_AUTOREMOVE_SUPPLIER);
594 		}
595 		if (!(link->flags & DL_FLAG_MANAGED)) {
596 			kref_get(&link->kref);
597 			link->flags |= DL_FLAG_MANAGED;
598 			device_link_init_status(link, consumer, supplier);
599 		}
600 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
601 		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
602 			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
603 			goto reorder;
604 		}
605 
606 		goto out;
607 	}
608 
609 	link = kzalloc(sizeof(*link), GFP_KERNEL);
610 	if (!link)
611 		goto out;
612 
613 	refcount_set(&link->rpm_active, 1);
614 
615 	get_device(supplier);
616 	link->supplier = supplier;
617 	INIT_LIST_HEAD(&link->s_node);
618 	get_device(consumer);
619 	link->consumer = consumer;
620 	INIT_LIST_HEAD(&link->c_node);
621 	link->flags = flags;
622 	kref_init(&link->kref);
623 
624 	link->link_dev.class = &devlink_class;
625 	device_set_pm_not_required(&link->link_dev);
626 	dev_set_name(&link->link_dev, "%s--%s",
627 		     dev_name(supplier), dev_name(consumer));
628 	if (device_register(&link->link_dev)) {
629 		put_device(consumer);
630 		put_device(supplier);
631 		kfree(link);
632 		link = NULL;
633 		goto out;
634 	}
635 
636 	if (flags & DL_FLAG_PM_RUNTIME) {
637 		if (flags & DL_FLAG_RPM_ACTIVE)
638 			refcount_inc(&link->rpm_active);
639 
640 		pm_runtime_new_link(consumer);
641 	}
642 
643 	/* Determine the initial link state. */
644 	if (flags & DL_FLAG_STATELESS)
645 		link->status = DL_STATE_NONE;
646 	else
647 		device_link_init_status(link, consumer, supplier);
648 
649 	/*
650 	 * Some callers expect the link creation during consumer driver probe to
651 	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
652 	 */
653 	if (link->status == DL_STATE_CONSUMER_PROBE &&
654 	    flags & DL_FLAG_PM_RUNTIME)
655 		pm_runtime_resume(supplier);
656 
657 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
658 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
659 
660 	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
661 		dev_dbg(consumer,
662 			"Linked as a sync state only consumer to %s\n",
663 			dev_name(supplier));
664 		goto out;
665 	}
666 
667 reorder:
668 	/*
669 	 * Move the consumer and all of the devices depending on it to the end
670 	 * of dpm_list and the devices_kset list.
671 	 *
672 	 * It is necessary to hold dpm_list locked throughout all that or else
673 	 * we may end up suspending with a wrong ordering of it.
674 	 */
675 	device_reorder_to_tail(consumer, NULL);
676 
677 	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
678 
679 out:
680 	device_pm_unlock();
681 	device_links_write_unlock();
682 
683 	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
684 		pm_runtime_put(supplier);
685 
686 	return link;
687 }
688 EXPORT_SYMBOL_GPL(device_link_add);
689 
690 /**
691  * device_link_wait_for_supplier - Add device to wait_for_suppliers list
692  * @consumer: Consumer device
693  *
694  * Marks the @consumer device as waiting for suppliers to become available by
695  * adding it to the wait_for_suppliers list. The consumer device will never be
696  * probed until it's removed from the wait_for_suppliers list.
697  *
698  * The caller is responsible for adding the links to the supplier devices once
699  * they are available and removing the @consumer device from the
700  * wait_for_suppliers list once links to all the suppliers have been created.
701  *
702  * This function is NOT meant to be called from the probe function of the
703  * consumer but rather from code that creates/adds the consumer device.
704  */
705 static void device_link_wait_for_supplier(struct device *consumer,
706 					  bool need_for_probe)
707 {
708 	mutex_lock(&wfs_lock);
709 	list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
710 	consumer->links.need_for_probe = need_for_probe;
711 	mutex_unlock(&wfs_lock);
712 }
713 
714 static void device_link_wait_for_mandatory_supplier(struct device *consumer)
715 {
716 	device_link_wait_for_supplier(consumer, true);
717 }
718 
719 static void device_link_wait_for_optional_supplier(struct device *consumer)
720 {
721 	device_link_wait_for_supplier(consumer, false);
722 }
723 
724 /**
725  * device_link_add_missing_supplier_links - Add links from consumer devices to
726  *					    supplier devices, leaving any
727  *					    consumer with inactive suppliers on
728  *					    the wait_for_suppliers list
729  *
730  * Loops through all consumers waiting on suppliers and tries to add all their
731  * supplier links. If that succeeds, the consumer device is removed from
732  * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
733  * list.  Devices left on the wait_for_suppliers list will not be probed.
734  *
735  * The fwnode add_links callback is expected to return 0 if it has found and
736  * added all the supplier links for the consumer device. It should return an
737  * error if it isn't able to do so.
738  *
739  * The caller of device_link_wait_for_supplier() is expected to call this once
740  * it's aware of potential suppliers becoming available.
741  */
742 static void device_link_add_missing_supplier_links(void)
743 {
744 	struct device *dev, *tmp;
745 
746 	mutex_lock(&wfs_lock);
747 	list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
748 				 links.needs_suppliers) {
749 		int ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
750 		if (!ret)
751 			list_del_init(&dev->links.needs_suppliers);
752 		else if (ret != -ENODEV || fw_devlink_is_permissive())
753 			dev->links.need_for_probe = false;
754 	}
755 	mutex_unlock(&wfs_lock);
756 }
757 
758 #ifdef CONFIG_SRCU
759 static void __device_link_del(struct kref *kref)
760 {
761 	struct device_link *link = container_of(kref, struct device_link, kref);
762 
763 	dev_dbg(link->consumer, "Dropping the link to %s\n",
764 		dev_name(link->supplier));
765 
766 	if (link->flags & DL_FLAG_PM_RUNTIME)
767 		pm_runtime_drop_link(link->consumer);
768 
769 	list_del_rcu(&link->s_node);
770 	list_del_rcu(&link->c_node);
771 	device_unregister(&link->link_dev);
772 }
773 #else /* !CONFIG_SRCU */
774 static void __device_link_del(struct kref *kref)
775 {
776 	struct device_link *link = container_of(kref, struct device_link, kref);
777 
778 	dev_info(link->consumer, "Dropping the link to %s\n",
779 		 dev_name(link->supplier));
780 
781 	if (link->flags & DL_FLAG_PM_RUNTIME)
782 		pm_runtime_drop_link(link->consumer);
783 
784 	list_del(&link->s_node);
785 	list_del(&link->c_node);
786 	device_unregister(&link->link_dev);
787 }
788 #endif /* !CONFIG_SRCU */
789 
790 static void device_link_put_kref(struct device_link *link)
791 {
792 	if (link->flags & DL_FLAG_STATELESS)
793 		kref_put(&link->kref, __device_link_del);
794 	else
795 		WARN(1, "Unable to drop a managed device link reference\n");
796 }
797 
798 /**
799  * device_link_del - Delete a stateless link between two devices.
800  * @link: Device link to delete.
801  *
802  * The caller must ensure proper synchronization of this function with runtime
803  * PM.  If the link was added multiple times, it needs to be deleted as often.
804  * Care is required for hotplugged devices:  Their links are purged on removal
805  * and calling device_link_del() is then no longer allowed.
806  */
807 void device_link_del(struct device_link *link)
808 {
809 	device_links_write_lock();
810 	device_pm_lock();
811 	device_link_put_kref(link);
812 	device_pm_unlock();
813 	device_links_write_unlock();
814 }
815 EXPORT_SYMBOL_GPL(device_link_del);
816 
817 /**
818  * device_link_remove - Delete a stateless link between two devices.
819  * @consumer: Consumer end of the link.
820  * @supplier: Supplier end of the link.
821  *
822  * The caller must ensure proper synchronization of this function with runtime
823  * PM.
824  */
825 void device_link_remove(void *consumer, struct device *supplier)
826 {
827 	struct device_link *link;
828 
829 	if (WARN_ON(consumer == supplier))
830 		return;
831 
832 	device_links_write_lock();
833 	device_pm_lock();
834 
835 	list_for_each_entry(link, &supplier->links.consumers, s_node) {
836 		if (link->consumer == consumer) {
837 			device_link_put_kref(link);
838 			break;
839 		}
840 	}
841 
842 	device_pm_unlock();
843 	device_links_write_unlock();
844 }
845 EXPORT_SYMBOL_GPL(device_link_remove);
846 
847 static void device_links_missing_supplier(struct device *dev)
848 {
849 	struct device_link *link;
850 
851 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
852 		if (link->status != DL_STATE_CONSUMER_PROBE)
853 			continue;
854 
855 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
856 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
857 		} else {
858 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
859 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
860 		}
861 	}
862 }
863 
864 /**
865  * device_links_check_suppliers - Check presence of supplier drivers.
866  * @dev: Consumer device.
867  *
868  * Check links from this device to any suppliers.  Walk the list of the device's
869  * links to suppliers and see if all of them are available.  If not, simply
870  * return -EPROBE_DEFER.
871  *
872  * We need to guarantee that the supplier will not go away after the check has
873  * been positive here.  It only can go away in __device_release_driver() and
874  * that function  checks the device's links to consumers.  This means we need to
875  * mark the link as "consumer probe in progress" to make the supplier removal
876  * wait for us to complete (or bad things may happen).
877  *
878  * Links without the DL_FLAG_MANAGED flag set are ignored.
879  */
880 int device_links_check_suppliers(struct device *dev)
881 {
882 	struct device_link *link;
883 	int ret = 0;
884 
885 	/*
886 	 * Device waiting for supplier to become available is not allowed to
887 	 * probe.
888 	 */
889 	mutex_lock(&wfs_lock);
890 	if (!list_empty(&dev->links.needs_suppliers) &&
891 	    dev->links.need_for_probe) {
892 		mutex_unlock(&wfs_lock);
893 		return -EPROBE_DEFER;
894 	}
895 	mutex_unlock(&wfs_lock);
896 
897 	device_links_write_lock();
898 
899 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
900 		if (!(link->flags & DL_FLAG_MANAGED))
901 			continue;
902 
903 		if (link->status != DL_STATE_AVAILABLE &&
904 		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
905 			device_links_missing_supplier(dev);
906 			ret = -EPROBE_DEFER;
907 			break;
908 		}
909 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
910 	}
911 	dev->links.status = DL_DEV_PROBING;
912 
913 	device_links_write_unlock();
914 	return ret;
915 }
916 
917 /**
918  * __device_links_queue_sync_state - Queue a device for sync_state() callback
919  * @dev: Device to call sync_state() on
920  * @list: List head to queue the @dev on
921  *
922  * Queues a device for a sync_state() callback when the device links write lock
923  * isn't held. This allows the sync_state() execution flow to use device links
924  * APIs.  The caller must ensure this function is called with
925  * device_links_write_lock() held.
926  *
927  * This function does a get_device() to make sure the device is not freed while
928  * on this list.
929  *
930  * So the caller must also ensure that device_links_flush_sync_list() is called
931  * as soon as the caller releases device_links_write_lock().  This is necessary
932  * to make sure the sync_state() is called in a timely fashion and the
933  * put_device() is called on this device.
934  */
935 static void __device_links_queue_sync_state(struct device *dev,
936 					    struct list_head *list)
937 {
938 	struct device_link *link;
939 
940 	if (!dev_has_sync_state(dev))
941 		return;
942 	if (dev->state_synced)
943 		return;
944 
945 	list_for_each_entry(link, &dev->links.consumers, s_node) {
946 		if (!(link->flags & DL_FLAG_MANAGED))
947 			continue;
948 		if (link->status != DL_STATE_ACTIVE)
949 			return;
950 	}
951 
952 	/*
953 	 * Set the flag here to avoid adding the same device to a list more
954 	 * than once. This can happen if new consumers get added to the device
955 	 * and probed before the list is flushed.
956 	 */
957 	dev->state_synced = true;
958 
959 	if (WARN_ON(!list_empty(&dev->links.defer_hook)))
960 		return;
961 
962 	get_device(dev);
963 	list_add_tail(&dev->links.defer_hook, list);
964 }
965 
966 /**
967  * device_links_flush_sync_list - Call sync_state() on a list of devices
968  * @list: List of devices to call sync_state() on
969  * @dont_lock_dev: Device for which lock is already held by the caller
970  *
971  * Calls sync_state() on all the devices that have been queued for it. This
972  * function is used in conjunction with __device_links_queue_sync_state(). The
973  * @dont_lock_dev parameter is useful when this function is called from a
974  * context where a device lock is already held.
975  */
976 static void device_links_flush_sync_list(struct list_head *list,
977 					 struct device *dont_lock_dev)
978 {
979 	struct device *dev, *tmp;
980 
981 	list_for_each_entry_safe(dev, tmp, list, links.defer_hook) {
982 		list_del_init(&dev->links.defer_hook);
983 
984 		if (dev != dont_lock_dev)
985 			device_lock(dev);
986 
987 		if (dev->bus->sync_state)
988 			dev->bus->sync_state(dev);
989 		else if (dev->driver && dev->driver->sync_state)
990 			dev->driver->sync_state(dev);
991 
992 		if (dev != dont_lock_dev)
993 			device_unlock(dev);
994 
995 		put_device(dev);
996 	}
997 }
998 
999 void device_links_supplier_sync_state_pause(void)
1000 {
1001 	device_links_write_lock();
1002 	defer_sync_state_count++;
1003 	device_links_write_unlock();
1004 }
1005 
1006 void device_links_supplier_sync_state_resume(void)
1007 {
1008 	struct device *dev, *tmp;
1009 	LIST_HEAD(sync_list);
1010 
1011 	device_links_write_lock();
1012 	if (!defer_sync_state_count) {
1013 		WARN(true, "Unmatched sync_state pause/resume!");
1014 		goto out;
1015 	}
1016 	defer_sync_state_count--;
1017 	if (defer_sync_state_count)
1018 		goto out;
1019 
1020 	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_hook) {
1021 		/*
1022 		 * Delete from deferred_sync list before queuing it to
1023 		 * sync_list because defer_hook is used for both lists.
1024 		 */
1025 		list_del_init(&dev->links.defer_hook);
1026 		__device_links_queue_sync_state(dev, &sync_list);
1027 	}
1028 out:
1029 	device_links_write_unlock();
1030 
1031 	device_links_flush_sync_list(&sync_list, NULL);
1032 }
1033 
1034 static int sync_state_resume_initcall(void)
1035 {
1036 	device_links_supplier_sync_state_resume();
1037 	return 0;
1038 }
1039 late_initcall(sync_state_resume_initcall);
1040 
1041 static void __device_links_supplier_defer_sync(struct device *sup)
1042 {
1043 	if (list_empty(&sup->links.defer_hook) && dev_has_sync_state(sup))
1044 		list_add_tail(&sup->links.defer_hook, &deferred_sync);
1045 }
1046 
1047 static void device_link_drop_managed(struct device_link *link)
1048 {
1049 	link->flags &= ~DL_FLAG_MANAGED;
1050 	WRITE_ONCE(link->status, DL_STATE_NONE);
1051 	kref_put(&link->kref, __device_link_del);
1052 }
1053 
1054 static ssize_t waiting_for_supplier_show(struct device *dev,
1055 					 struct device_attribute *attr,
1056 					 char *buf)
1057 {
1058 	bool val;
1059 
1060 	device_lock(dev);
1061 	mutex_lock(&wfs_lock);
1062 	val = !list_empty(&dev->links.needs_suppliers)
1063 	      && dev->links.need_for_probe;
1064 	mutex_unlock(&wfs_lock);
1065 	device_unlock(dev);
1066 	return sprintf(buf, "%u\n", val);
1067 }
1068 static DEVICE_ATTR_RO(waiting_for_supplier);
1069 
1070 /**
1071  * device_links_driver_bound - Update device links after probing its driver.
1072  * @dev: Device to update the links for.
1073  *
1074  * The probe has been successful, so update links from this device to any
1075  * consumers by changing their status to "available".
1076  *
1077  * Also change the status of @dev's links to suppliers to "active".
1078  *
1079  * Links without the DL_FLAG_MANAGED flag set are ignored.
1080  */
1081 void device_links_driver_bound(struct device *dev)
1082 {
1083 	struct device_link *link, *ln;
1084 	LIST_HEAD(sync_list);
1085 
1086 	/*
1087 	 * If a device probes successfully, it's expected to have created all
1088 	 * the device links it needs to or make new device links as it needs
1089 	 * them. So, it no longer needs to wait on any suppliers.
1090 	 */
1091 	mutex_lock(&wfs_lock);
1092 	list_del_init(&dev->links.needs_suppliers);
1093 	mutex_unlock(&wfs_lock);
1094 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1095 
1096 	device_links_write_lock();
1097 
1098 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1099 		if (!(link->flags & DL_FLAG_MANAGED))
1100 			continue;
1101 
1102 		/*
1103 		 * Links created during consumer probe may be in the "consumer
1104 		 * probe" state to start with if the supplier is still probing
1105 		 * when they are created and they may become "active" if the
1106 		 * consumer probe returns first.  Skip them here.
1107 		 */
1108 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1109 		    link->status == DL_STATE_ACTIVE)
1110 			continue;
1111 
1112 		WARN_ON(link->status != DL_STATE_DORMANT);
1113 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1114 
1115 		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1116 			driver_deferred_probe_add(link->consumer);
1117 	}
1118 
1119 	if (defer_sync_state_count)
1120 		__device_links_supplier_defer_sync(dev);
1121 	else
1122 		__device_links_queue_sync_state(dev, &sync_list);
1123 
1124 	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1125 		struct device *supplier;
1126 
1127 		if (!(link->flags & DL_FLAG_MANAGED))
1128 			continue;
1129 
1130 		supplier = link->supplier;
1131 		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1132 			/*
1133 			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1134 			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1135 			 * save to drop the managed link completely.
1136 			 */
1137 			device_link_drop_managed(link);
1138 		} else {
1139 			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1140 			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1141 		}
1142 
1143 		/*
1144 		 * This needs to be done even for the deleted
1145 		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1146 		 * device link that was preventing the supplier from getting a
1147 		 * sync_state() call.
1148 		 */
1149 		if (defer_sync_state_count)
1150 			__device_links_supplier_defer_sync(supplier);
1151 		else
1152 			__device_links_queue_sync_state(supplier, &sync_list);
1153 	}
1154 
1155 	dev->links.status = DL_DEV_DRIVER_BOUND;
1156 
1157 	device_links_write_unlock();
1158 
1159 	device_links_flush_sync_list(&sync_list, dev);
1160 }
1161 
1162 /**
1163  * __device_links_no_driver - Update links of a device without a driver.
1164  * @dev: Device without a drvier.
1165  *
1166  * Delete all non-persistent links from this device to any suppliers.
1167  *
1168  * Persistent links stay around, but their status is changed to "available",
1169  * unless they already are in the "supplier unbind in progress" state in which
1170  * case they need not be updated.
1171  *
1172  * Links without the DL_FLAG_MANAGED flag set are ignored.
1173  */
1174 static void __device_links_no_driver(struct device *dev)
1175 {
1176 	struct device_link *link, *ln;
1177 
1178 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1179 		if (!(link->flags & DL_FLAG_MANAGED))
1180 			continue;
1181 
1182 		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1183 			device_link_drop_managed(link);
1184 			continue;
1185 		}
1186 
1187 		if (link->status != DL_STATE_CONSUMER_PROBE &&
1188 		    link->status != DL_STATE_ACTIVE)
1189 			continue;
1190 
1191 		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
1192 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1193 		} else {
1194 			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1195 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1196 		}
1197 	}
1198 
1199 	dev->links.status = DL_DEV_NO_DRIVER;
1200 }
1201 
1202 /**
1203  * device_links_no_driver - Update links after failing driver probe.
1204  * @dev: Device whose driver has just failed to probe.
1205  *
1206  * Clean up leftover links to consumers for @dev and invoke
1207  * %__device_links_no_driver() to update links to suppliers for it as
1208  * appropriate.
1209  *
1210  * Links without the DL_FLAG_MANAGED flag set are ignored.
1211  */
1212 void device_links_no_driver(struct device *dev)
1213 {
1214 	struct device_link *link;
1215 
1216 	device_links_write_lock();
1217 
1218 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1219 		if (!(link->flags & DL_FLAG_MANAGED))
1220 			continue;
1221 
1222 		/*
1223 		 * The probe has failed, so if the status of the link is
1224 		 * "consumer probe" or "active", it must have been added by
1225 		 * a probing consumer while this device was still probing.
1226 		 * Change its state to "dormant", as it represents a valid
1227 		 * relationship, but it is not functionally meaningful.
1228 		 */
1229 		if (link->status == DL_STATE_CONSUMER_PROBE ||
1230 		    link->status == DL_STATE_ACTIVE)
1231 			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1232 	}
1233 
1234 	__device_links_no_driver(dev);
1235 
1236 	device_links_write_unlock();
1237 }
1238 
1239 /**
1240  * device_links_driver_cleanup - Update links after driver removal.
1241  * @dev: Device whose driver has just gone away.
1242  *
1243  * Update links to consumers for @dev by changing their status to "dormant" and
1244  * invoke %__device_links_no_driver() to update links to suppliers for it as
1245  * appropriate.
1246  *
1247  * Links without the DL_FLAG_MANAGED flag set are ignored.
1248  */
1249 void device_links_driver_cleanup(struct device *dev)
1250 {
1251 	struct device_link *link, *ln;
1252 
1253 	device_links_write_lock();
1254 
1255 	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1256 		if (!(link->flags & DL_FLAG_MANAGED))
1257 			continue;
1258 
1259 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1260 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1261 
1262 		/*
1263 		 * autoremove the links between this @dev and its consumer
1264 		 * devices that are not active, i.e. where the link state
1265 		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1266 		 */
1267 		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1268 		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1269 			device_link_drop_managed(link);
1270 
1271 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1272 	}
1273 
1274 	list_del_init(&dev->links.defer_hook);
1275 	__device_links_no_driver(dev);
1276 
1277 	device_links_write_unlock();
1278 }
1279 
1280 /**
1281  * device_links_busy - Check if there are any busy links to consumers.
1282  * @dev: Device to check.
1283  *
1284  * Check each consumer of the device and return 'true' if its link's status
1285  * is one of "consumer probe" or "active" (meaning that the given consumer is
1286  * probing right now or its driver is present).  Otherwise, change the link
1287  * state to "supplier unbind" to prevent the consumer from being probed
1288  * successfully going forward.
1289  *
1290  * Return 'false' if there are no probing or active consumers.
1291  *
1292  * Links without the DL_FLAG_MANAGED flag set are ignored.
1293  */
1294 bool device_links_busy(struct device *dev)
1295 {
1296 	struct device_link *link;
1297 	bool ret = false;
1298 
1299 	device_links_write_lock();
1300 
1301 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1302 		if (!(link->flags & DL_FLAG_MANAGED))
1303 			continue;
1304 
1305 		if (link->status == DL_STATE_CONSUMER_PROBE
1306 		    || link->status == DL_STATE_ACTIVE) {
1307 			ret = true;
1308 			break;
1309 		}
1310 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1311 	}
1312 
1313 	dev->links.status = DL_DEV_UNBINDING;
1314 
1315 	device_links_write_unlock();
1316 	return ret;
1317 }
1318 
1319 /**
1320  * device_links_unbind_consumers - Force unbind consumers of the given device.
1321  * @dev: Device to unbind the consumers of.
1322  *
1323  * Walk the list of links to consumers for @dev and if any of them is in the
1324  * "consumer probe" state, wait for all device probes in progress to complete
1325  * and start over.
1326  *
1327  * If that's not the case, change the status of the link to "supplier unbind"
1328  * and check if the link was in the "active" state.  If so, force the consumer
1329  * driver to unbind and start over (the consumer will not re-probe as we have
1330  * changed the state of the link already).
1331  *
1332  * Links without the DL_FLAG_MANAGED flag set are ignored.
1333  */
1334 void device_links_unbind_consumers(struct device *dev)
1335 {
1336 	struct device_link *link;
1337 
1338  start:
1339 	device_links_write_lock();
1340 
1341 	list_for_each_entry(link, &dev->links.consumers, s_node) {
1342 		enum device_link_state status;
1343 
1344 		if (!(link->flags & DL_FLAG_MANAGED) ||
1345 		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1346 			continue;
1347 
1348 		status = link->status;
1349 		if (status == DL_STATE_CONSUMER_PROBE) {
1350 			device_links_write_unlock();
1351 
1352 			wait_for_device_probe();
1353 			goto start;
1354 		}
1355 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1356 		if (status == DL_STATE_ACTIVE) {
1357 			struct device *consumer = link->consumer;
1358 
1359 			get_device(consumer);
1360 
1361 			device_links_write_unlock();
1362 
1363 			device_release_driver_internal(consumer, NULL,
1364 						       consumer->parent);
1365 			put_device(consumer);
1366 			goto start;
1367 		}
1368 	}
1369 
1370 	device_links_write_unlock();
1371 }
1372 
1373 /**
1374  * device_links_purge - Delete existing links to other devices.
1375  * @dev: Target device.
1376  */
1377 static void device_links_purge(struct device *dev)
1378 {
1379 	struct device_link *link, *ln;
1380 
1381 	if (dev->class == &devlink_class)
1382 		return;
1383 
1384 	mutex_lock(&wfs_lock);
1385 	list_del(&dev->links.needs_suppliers);
1386 	mutex_unlock(&wfs_lock);
1387 
1388 	/*
1389 	 * Delete all of the remaining links from this device to any other
1390 	 * devices (either consumers or suppliers).
1391 	 */
1392 	device_links_write_lock();
1393 
1394 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1395 		WARN_ON(link->status == DL_STATE_ACTIVE);
1396 		__device_link_del(&link->kref);
1397 	}
1398 
1399 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1400 		WARN_ON(link->status != DL_STATE_DORMANT &&
1401 			link->status != DL_STATE_NONE);
1402 		__device_link_del(&link->kref);
1403 	}
1404 
1405 	device_links_write_unlock();
1406 }
1407 
1408 static u32 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1409 static int __init fw_devlink_setup(char *arg)
1410 {
1411 	if (!arg)
1412 		return -EINVAL;
1413 
1414 	if (strcmp(arg, "off") == 0) {
1415 		fw_devlink_flags = 0;
1416 	} else if (strcmp(arg, "permissive") == 0) {
1417 		fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
1418 	} else if (strcmp(arg, "on") == 0) {
1419 		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
1420 	} else if (strcmp(arg, "rpm") == 0) {
1421 		fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
1422 				   DL_FLAG_PM_RUNTIME;
1423 	}
1424 	return 0;
1425 }
1426 early_param("fw_devlink", fw_devlink_setup);
1427 
1428 u32 fw_devlink_get_flags(void)
1429 {
1430 	return fw_devlink_flags;
1431 }
1432 
1433 static bool fw_devlink_is_permissive(void)
1434 {
1435 	return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
1436 }
1437 
1438 static void fw_devlink_link_device(struct device *dev)
1439 {
1440 	int fw_ret;
1441 
1442 	if (!fw_devlink_flags)
1443 		return;
1444 
1445 	mutex_lock(&defer_fw_devlink_lock);
1446 	if (!defer_fw_devlink_count)
1447 		device_link_add_missing_supplier_links();
1448 
1449 	/*
1450 	 * The device's fwnode not having add_links() doesn't affect if other
1451 	 * consumers can find this device as a supplier.  So, this check is
1452 	 * intentionally placed after device_link_add_missing_supplier_links().
1453 	 */
1454 	if (!fwnode_has_op(dev->fwnode, add_links))
1455 		goto out;
1456 
1457 	/*
1458 	 * If fw_devlink is being deferred, assume all devices have mandatory
1459 	 * suppliers they need to link to later. Then, when the fw_devlink is
1460 	 * resumed, all these devices will get a chance to try and link to any
1461 	 * suppliers they have.
1462 	 */
1463 	if (!defer_fw_devlink_count) {
1464 		fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
1465 		if (fw_ret == -ENODEV && fw_devlink_is_permissive())
1466 			fw_ret = -EAGAIN;
1467 	} else {
1468 		fw_ret = -ENODEV;
1469 		/*
1470 		 * defer_hook is not used to add device to deferred_sync list
1471 		 * until device is bound. Since deferred fw devlink also blocks
1472 		 * probing, same list hook can be used for deferred_fw_devlink.
1473 		 */
1474 		list_add_tail(&dev->links.defer_hook, &deferred_fw_devlink);
1475 	}
1476 
1477 	if (fw_ret == -ENODEV)
1478 		device_link_wait_for_mandatory_supplier(dev);
1479 	else if (fw_ret)
1480 		device_link_wait_for_optional_supplier(dev);
1481 
1482 out:
1483 	mutex_unlock(&defer_fw_devlink_lock);
1484 }
1485 
1486 /**
1487  * fw_devlink_pause - Pause parsing of fwnode to create device links
1488  *
1489  * Calling this function defers any fwnode parsing to create device links until
1490  * fw_devlink_resume() is called. Both these functions are ref counted and the
1491  * caller needs to match the calls.
1492  *
1493  * While fw_devlink is paused:
1494  * - Any device that is added won't have its fwnode parsed to create device
1495  *   links.
1496  * - The probe of the device will also be deferred during this period.
1497  * - Any devices that were already added, but waiting for suppliers won't be
1498  *   able to link to newly added devices.
1499  *
1500  * Once fw_devlink_resume():
1501  * - All the fwnodes that was not parsed will be parsed.
1502  * - All the devices that were deferred probing will be reattempted if they
1503  *   aren't waiting for any more suppliers.
1504  *
1505  * This pair of functions, is mainly meant to optimize the parsing of fwnodes
1506  * when a lot of devices that need to link to each other are added in a short
1507  * interval of time. For example, adding all the top level devices in a system.
1508  *
1509  * For example, if N devices are added and:
1510  * - All the consumers are added before their suppliers
1511  * - All the suppliers of the N devices are part of the N devices
1512  *
1513  * Then:
1514  *
1515  * - With the use of fw_devlink_pause() and fw_devlink_resume(), each device
1516  *   will only need one parsing of its fwnode because it is guaranteed to find
1517  *   all the supplier devices already registered and ready to link to. It won't
1518  *   have to do another pass later to find one or more suppliers it couldn't
1519  *   find in the first parse of the fwnode. So, we'll only need O(N) fwnode
1520  *   parses.
1521  *
1522  * - Without the use of fw_devlink_pause() and fw_devlink_resume(), we would
1523  *   end up doing O(N^2) parses of fwnodes because every device that's added is
1524  *   guaranteed to trigger a parse of the fwnode of every device added before
1525  *   it. This O(N^2) parse is made worse by the fact that when a fwnode of a
1526  *   device is parsed, all it descendant devices might need to have their
1527  *   fwnodes parsed too (even if the devices themselves aren't added).
1528  */
1529 void fw_devlink_pause(void)
1530 {
1531 	mutex_lock(&defer_fw_devlink_lock);
1532 	defer_fw_devlink_count++;
1533 	mutex_unlock(&defer_fw_devlink_lock);
1534 }
1535 
1536 /** fw_devlink_resume - Resume parsing of fwnode to create device links
1537  *
1538  * This function is used in conjunction with fw_devlink_pause() and is ref
1539  * counted. See documentation for fw_devlink_pause() for more details.
1540  */
1541 void fw_devlink_resume(void)
1542 {
1543 	struct device *dev, *tmp;
1544 	LIST_HEAD(probe_list);
1545 
1546 	mutex_lock(&defer_fw_devlink_lock);
1547 	if (!defer_fw_devlink_count) {
1548 		WARN(true, "Unmatched fw_devlink pause/resume!");
1549 		goto out;
1550 	}
1551 
1552 	defer_fw_devlink_count--;
1553 	if (defer_fw_devlink_count)
1554 		goto out;
1555 
1556 	device_link_add_missing_supplier_links();
1557 	list_splice_tail_init(&deferred_fw_devlink, &probe_list);
1558 out:
1559 	mutex_unlock(&defer_fw_devlink_lock);
1560 
1561 	/*
1562 	 * bus_probe_device() can cause new devices to get added and they'll
1563 	 * try to grab defer_fw_devlink_lock. So, this needs to be done outside
1564 	 * the defer_fw_devlink_lock.
1565 	 */
1566 	list_for_each_entry_safe(dev, tmp, &probe_list, links.defer_hook) {
1567 		list_del_init(&dev->links.defer_hook);
1568 		bus_probe_device(dev);
1569 	}
1570 }
1571 /* Device links support end. */
1572 
1573 int (*platform_notify)(struct device *dev) = NULL;
1574 int (*platform_notify_remove)(struct device *dev) = NULL;
1575 static struct kobject *dev_kobj;
1576 struct kobject *sysfs_dev_char_kobj;
1577 struct kobject *sysfs_dev_block_kobj;
1578 
1579 static DEFINE_MUTEX(device_hotplug_lock);
1580 
1581 void lock_device_hotplug(void)
1582 {
1583 	mutex_lock(&device_hotplug_lock);
1584 }
1585 
1586 void unlock_device_hotplug(void)
1587 {
1588 	mutex_unlock(&device_hotplug_lock);
1589 }
1590 
1591 int lock_device_hotplug_sysfs(void)
1592 {
1593 	if (mutex_trylock(&device_hotplug_lock))
1594 		return 0;
1595 
1596 	/* Avoid busy looping (5 ms of sleep should do). */
1597 	msleep(5);
1598 	return restart_syscall();
1599 }
1600 
1601 #ifdef CONFIG_BLOCK
1602 static inline int device_is_not_partition(struct device *dev)
1603 {
1604 	return !(dev->type == &part_type);
1605 }
1606 #else
1607 static inline int device_is_not_partition(struct device *dev)
1608 {
1609 	return 1;
1610 }
1611 #endif
1612 
1613 static int
1614 device_platform_notify(struct device *dev, enum kobject_action action)
1615 {
1616 	int ret;
1617 
1618 	ret = acpi_platform_notify(dev, action);
1619 	if (ret)
1620 		return ret;
1621 
1622 	ret = software_node_notify(dev, action);
1623 	if (ret)
1624 		return ret;
1625 
1626 	if (platform_notify && action == KOBJ_ADD)
1627 		platform_notify(dev);
1628 	else if (platform_notify_remove && action == KOBJ_REMOVE)
1629 		platform_notify_remove(dev);
1630 	return 0;
1631 }
1632 
1633 /**
1634  * dev_driver_string - Return a device's driver name, if at all possible
1635  * @dev: struct device to get the name of
1636  *
1637  * Will return the device's driver's name if it is bound to a device.  If
1638  * the device is not bound to a driver, it will return the name of the bus
1639  * it is attached to.  If it is not attached to a bus either, an empty
1640  * string will be returned.
1641  */
1642 const char *dev_driver_string(const struct device *dev)
1643 {
1644 	struct device_driver *drv;
1645 
1646 	/* dev->driver can change to NULL underneath us because of unbinding,
1647 	 * so be careful about accessing it.  dev->bus and dev->class should
1648 	 * never change once they are set, so they don't need special care.
1649 	 */
1650 	drv = READ_ONCE(dev->driver);
1651 	return drv ? drv->name :
1652 			(dev->bus ? dev->bus->name :
1653 			(dev->class ? dev->class->name : ""));
1654 }
1655 EXPORT_SYMBOL(dev_driver_string);
1656 
1657 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1658 
1659 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1660 			     char *buf)
1661 {
1662 	struct device_attribute *dev_attr = to_dev_attr(attr);
1663 	struct device *dev = kobj_to_dev(kobj);
1664 	ssize_t ret = -EIO;
1665 
1666 	if (dev_attr->show)
1667 		ret = dev_attr->show(dev, dev_attr, buf);
1668 	if (ret >= (ssize_t)PAGE_SIZE) {
1669 		printk("dev_attr_show: %pS returned bad count\n",
1670 				dev_attr->show);
1671 	}
1672 	return ret;
1673 }
1674 
1675 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1676 			      const char *buf, size_t count)
1677 {
1678 	struct device_attribute *dev_attr = to_dev_attr(attr);
1679 	struct device *dev = kobj_to_dev(kobj);
1680 	ssize_t ret = -EIO;
1681 
1682 	if (dev_attr->store)
1683 		ret = dev_attr->store(dev, dev_attr, buf, count);
1684 	return ret;
1685 }
1686 
1687 static const struct sysfs_ops dev_sysfs_ops = {
1688 	.show	= dev_attr_show,
1689 	.store	= dev_attr_store,
1690 };
1691 
1692 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1693 
1694 ssize_t device_store_ulong(struct device *dev,
1695 			   struct device_attribute *attr,
1696 			   const char *buf, size_t size)
1697 {
1698 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1699 	int ret;
1700 	unsigned long new;
1701 
1702 	ret = kstrtoul(buf, 0, &new);
1703 	if (ret)
1704 		return ret;
1705 	*(unsigned long *)(ea->var) = new;
1706 	/* Always return full write size even if we didn't consume all */
1707 	return size;
1708 }
1709 EXPORT_SYMBOL_GPL(device_store_ulong);
1710 
1711 ssize_t device_show_ulong(struct device *dev,
1712 			  struct device_attribute *attr,
1713 			  char *buf)
1714 {
1715 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1716 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1717 }
1718 EXPORT_SYMBOL_GPL(device_show_ulong);
1719 
1720 ssize_t device_store_int(struct device *dev,
1721 			 struct device_attribute *attr,
1722 			 const char *buf, size_t size)
1723 {
1724 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1725 	int ret;
1726 	long new;
1727 
1728 	ret = kstrtol(buf, 0, &new);
1729 	if (ret)
1730 		return ret;
1731 
1732 	if (new > INT_MAX || new < INT_MIN)
1733 		return -EINVAL;
1734 	*(int *)(ea->var) = new;
1735 	/* Always return full write size even if we didn't consume all */
1736 	return size;
1737 }
1738 EXPORT_SYMBOL_GPL(device_store_int);
1739 
1740 ssize_t device_show_int(struct device *dev,
1741 			struct device_attribute *attr,
1742 			char *buf)
1743 {
1744 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1745 
1746 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1747 }
1748 EXPORT_SYMBOL_GPL(device_show_int);
1749 
1750 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1751 			  const char *buf, size_t size)
1752 {
1753 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1754 
1755 	if (strtobool(buf, ea->var) < 0)
1756 		return -EINVAL;
1757 
1758 	return size;
1759 }
1760 EXPORT_SYMBOL_GPL(device_store_bool);
1761 
1762 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1763 			 char *buf)
1764 {
1765 	struct dev_ext_attribute *ea = to_ext_attr(attr);
1766 
1767 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1768 }
1769 EXPORT_SYMBOL_GPL(device_show_bool);
1770 
1771 /**
1772  * device_release - free device structure.
1773  * @kobj: device's kobject.
1774  *
1775  * This is called once the reference count for the object
1776  * reaches 0. We forward the call to the device's release
1777  * method, which should handle actually freeing the structure.
1778  */
1779 static void device_release(struct kobject *kobj)
1780 {
1781 	struct device *dev = kobj_to_dev(kobj);
1782 	struct device_private *p = dev->p;
1783 
1784 	/*
1785 	 * Some platform devices are driven without driver attached
1786 	 * and managed resources may have been acquired.  Make sure
1787 	 * all resources are released.
1788 	 *
1789 	 * Drivers still can add resources into device after device
1790 	 * is deleted but alive, so release devres here to avoid
1791 	 * possible memory leak.
1792 	 */
1793 	devres_release_all(dev);
1794 
1795 	if (dev->release)
1796 		dev->release(dev);
1797 	else if (dev->type && dev->type->release)
1798 		dev->type->release(dev);
1799 	else if (dev->class && dev->class->dev_release)
1800 		dev->class->dev_release(dev);
1801 	else
1802 		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
1803 			dev_name(dev));
1804 	kfree(p);
1805 }
1806 
1807 static const void *device_namespace(struct kobject *kobj)
1808 {
1809 	struct device *dev = kobj_to_dev(kobj);
1810 	const void *ns = NULL;
1811 
1812 	if (dev->class && dev->class->ns_type)
1813 		ns = dev->class->namespace(dev);
1814 
1815 	return ns;
1816 }
1817 
1818 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1819 {
1820 	struct device *dev = kobj_to_dev(kobj);
1821 
1822 	if (dev->class && dev->class->get_ownership)
1823 		dev->class->get_ownership(dev, uid, gid);
1824 }
1825 
1826 static struct kobj_type device_ktype = {
1827 	.release	= device_release,
1828 	.sysfs_ops	= &dev_sysfs_ops,
1829 	.namespace	= device_namespace,
1830 	.get_ownership	= device_get_ownership,
1831 };
1832 
1833 
1834 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1835 {
1836 	struct kobj_type *ktype = get_ktype(kobj);
1837 
1838 	if (ktype == &device_ktype) {
1839 		struct device *dev = kobj_to_dev(kobj);
1840 		if (dev->bus)
1841 			return 1;
1842 		if (dev->class)
1843 			return 1;
1844 	}
1845 	return 0;
1846 }
1847 
1848 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1849 {
1850 	struct device *dev = kobj_to_dev(kobj);
1851 
1852 	if (dev->bus)
1853 		return dev->bus->name;
1854 	if (dev->class)
1855 		return dev->class->name;
1856 	return NULL;
1857 }
1858 
1859 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1860 		      struct kobj_uevent_env *env)
1861 {
1862 	struct device *dev = kobj_to_dev(kobj);
1863 	int retval = 0;
1864 
1865 	/* add device node properties if present */
1866 	if (MAJOR(dev->devt)) {
1867 		const char *tmp;
1868 		const char *name;
1869 		umode_t mode = 0;
1870 		kuid_t uid = GLOBAL_ROOT_UID;
1871 		kgid_t gid = GLOBAL_ROOT_GID;
1872 
1873 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1874 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1875 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1876 		if (name) {
1877 			add_uevent_var(env, "DEVNAME=%s", name);
1878 			if (mode)
1879 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1880 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1881 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1882 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1883 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1884 			kfree(tmp);
1885 		}
1886 	}
1887 
1888 	if (dev->type && dev->type->name)
1889 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1890 
1891 	if (dev->driver)
1892 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1893 
1894 	/* Add common DT information about the device */
1895 	of_device_uevent(dev, env);
1896 
1897 	/* have the bus specific function add its stuff */
1898 	if (dev->bus && dev->bus->uevent) {
1899 		retval = dev->bus->uevent(dev, env);
1900 		if (retval)
1901 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1902 				 dev_name(dev), __func__, retval);
1903 	}
1904 
1905 	/* have the class specific function add its stuff */
1906 	if (dev->class && dev->class->dev_uevent) {
1907 		retval = dev->class->dev_uevent(dev, env);
1908 		if (retval)
1909 			pr_debug("device: '%s': %s: class uevent() "
1910 				 "returned %d\n", dev_name(dev),
1911 				 __func__, retval);
1912 	}
1913 
1914 	/* have the device type specific function add its stuff */
1915 	if (dev->type && dev->type->uevent) {
1916 		retval = dev->type->uevent(dev, env);
1917 		if (retval)
1918 			pr_debug("device: '%s': %s: dev_type uevent() "
1919 				 "returned %d\n", dev_name(dev),
1920 				 __func__, retval);
1921 	}
1922 
1923 	return retval;
1924 }
1925 
1926 static const struct kset_uevent_ops device_uevent_ops = {
1927 	.filter =	dev_uevent_filter,
1928 	.name =		dev_uevent_name,
1929 	.uevent =	dev_uevent,
1930 };
1931 
1932 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1933 			   char *buf)
1934 {
1935 	struct kobject *top_kobj;
1936 	struct kset *kset;
1937 	struct kobj_uevent_env *env = NULL;
1938 	int i;
1939 	size_t count = 0;
1940 	int retval;
1941 
1942 	/* search the kset, the device belongs to */
1943 	top_kobj = &dev->kobj;
1944 	while (!top_kobj->kset && top_kobj->parent)
1945 		top_kobj = top_kobj->parent;
1946 	if (!top_kobj->kset)
1947 		goto out;
1948 
1949 	kset = top_kobj->kset;
1950 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1951 		goto out;
1952 
1953 	/* respect filter */
1954 	if (kset->uevent_ops && kset->uevent_ops->filter)
1955 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1956 			goto out;
1957 
1958 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1959 	if (!env)
1960 		return -ENOMEM;
1961 
1962 	/* let the kset specific function add its keys */
1963 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1964 	if (retval)
1965 		goto out;
1966 
1967 	/* copy keys to file */
1968 	for (i = 0; i < env->envp_idx; i++)
1969 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1970 out:
1971 	kfree(env);
1972 	return count;
1973 }
1974 
1975 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1976 			    const char *buf, size_t count)
1977 {
1978 	int rc;
1979 
1980 	rc = kobject_synth_uevent(&dev->kobj, buf, count);
1981 
1982 	if (rc) {
1983 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1984 		return rc;
1985 	}
1986 
1987 	return count;
1988 }
1989 static DEVICE_ATTR_RW(uevent);
1990 
1991 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1992 			   char *buf)
1993 {
1994 	bool val;
1995 
1996 	device_lock(dev);
1997 	val = !dev->offline;
1998 	device_unlock(dev);
1999 	return sprintf(buf, "%u\n", val);
2000 }
2001 
2002 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2003 			    const char *buf, size_t count)
2004 {
2005 	bool val;
2006 	int ret;
2007 
2008 	ret = strtobool(buf, &val);
2009 	if (ret < 0)
2010 		return ret;
2011 
2012 	ret = lock_device_hotplug_sysfs();
2013 	if (ret)
2014 		return ret;
2015 
2016 	ret = val ? device_online(dev) : device_offline(dev);
2017 	unlock_device_hotplug();
2018 	return ret < 0 ? ret : count;
2019 }
2020 static DEVICE_ATTR_RW(online);
2021 
2022 int device_add_groups(struct device *dev, const struct attribute_group **groups)
2023 {
2024 	return sysfs_create_groups(&dev->kobj, groups);
2025 }
2026 EXPORT_SYMBOL_GPL(device_add_groups);
2027 
2028 void device_remove_groups(struct device *dev,
2029 			  const struct attribute_group **groups)
2030 {
2031 	sysfs_remove_groups(&dev->kobj, groups);
2032 }
2033 EXPORT_SYMBOL_GPL(device_remove_groups);
2034 
2035 union device_attr_group_devres {
2036 	const struct attribute_group *group;
2037 	const struct attribute_group **groups;
2038 };
2039 
2040 static int devm_attr_group_match(struct device *dev, void *res, void *data)
2041 {
2042 	return ((union device_attr_group_devres *)res)->group == data;
2043 }
2044 
2045 static void devm_attr_group_remove(struct device *dev, void *res)
2046 {
2047 	union device_attr_group_devres *devres = res;
2048 	const struct attribute_group *group = devres->group;
2049 
2050 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2051 	sysfs_remove_group(&dev->kobj, group);
2052 }
2053 
2054 static void devm_attr_groups_remove(struct device *dev, void *res)
2055 {
2056 	union device_attr_group_devres *devres = res;
2057 	const struct attribute_group **groups = devres->groups;
2058 
2059 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2060 	sysfs_remove_groups(&dev->kobj, groups);
2061 }
2062 
2063 /**
2064  * devm_device_add_group - given a device, create a managed attribute group
2065  * @dev:	The device to create the group for
2066  * @grp:	The attribute group to create
2067  *
2068  * This function creates a group for the first time.  It will explicitly
2069  * warn and error if any of the attribute files being created already exist.
2070  *
2071  * Returns 0 on success or error code on failure.
2072  */
2073 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2074 {
2075 	union device_attr_group_devres *devres;
2076 	int error;
2077 
2078 	devres = devres_alloc(devm_attr_group_remove,
2079 			      sizeof(*devres), GFP_KERNEL);
2080 	if (!devres)
2081 		return -ENOMEM;
2082 
2083 	error = sysfs_create_group(&dev->kobj, grp);
2084 	if (error) {
2085 		devres_free(devres);
2086 		return error;
2087 	}
2088 
2089 	devres->group = grp;
2090 	devres_add(dev, devres);
2091 	return 0;
2092 }
2093 EXPORT_SYMBOL_GPL(devm_device_add_group);
2094 
2095 /**
2096  * devm_device_remove_group: remove a managed group from a device
2097  * @dev:	device to remove the group from
2098  * @grp:	group to remove
2099  *
2100  * This function removes a group of attributes from a device. The attributes
2101  * previously have to have been created for this group, otherwise it will fail.
2102  */
2103 void devm_device_remove_group(struct device *dev,
2104 			      const struct attribute_group *grp)
2105 {
2106 	WARN_ON(devres_release(dev, devm_attr_group_remove,
2107 			       devm_attr_group_match,
2108 			       /* cast away const */ (void *)grp));
2109 }
2110 EXPORT_SYMBOL_GPL(devm_device_remove_group);
2111 
2112 /**
2113  * devm_device_add_groups - create a bunch of managed attribute groups
2114  * @dev:	The device to create the group for
2115  * @groups:	The attribute groups to create, NULL terminated
2116  *
2117  * This function creates a bunch of managed attribute groups.  If an error
2118  * occurs when creating a group, all previously created groups will be
2119  * removed, unwinding everything back to the original state when this
2120  * function was called.  It will explicitly warn and error if any of the
2121  * attribute files being created already exist.
2122  *
2123  * Returns 0 on success or error code from sysfs_create_group on failure.
2124  */
2125 int devm_device_add_groups(struct device *dev,
2126 			   const struct attribute_group **groups)
2127 {
2128 	union device_attr_group_devres *devres;
2129 	int error;
2130 
2131 	devres = devres_alloc(devm_attr_groups_remove,
2132 			      sizeof(*devres), GFP_KERNEL);
2133 	if (!devres)
2134 		return -ENOMEM;
2135 
2136 	error = sysfs_create_groups(&dev->kobj, groups);
2137 	if (error) {
2138 		devres_free(devres);
2139 		return error;
2140 	}
2141 
2142 	devres->groups = groups;
2143 	devres_add(dev, devres);
2144 	return 0;
2145 }
2146 EXPORT_SYMBOL_GPL(devm_device_add_groups);
2147 
2148 /**
2149  * devm_device_remove_groups - remove a list of managed groups
2150  *
2151  * @dev:	The device for the groups to be removed from
2152  * @groups:	NULL terminated list of groups to be removed
2153  *
2154  * If groups is not NULL, remove the specified groups from the device.
2155  */
2156 void devm_device_remove_groups(struct device *dev,
2157 			       const struct attribute_group **groups)
2158 {
2159 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
2160 			       devm_attr_group_match,
2161 			       /* cast away const */ (void *)groups));
2162 }
2163 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
2164 
2165 static int device_add_attrs(struct device *dev)
2166 {
2167 	struct class *class = dev->class;
2168 	const struct device_type *type = dev->type;
2169 	int error;
2170 
2171 	if (class) {
2172 		error = device_add_groups(dev, class->dev_groups);
2173 		if (error)
2174 			return error;
2175 	}
2176 
2177 	if (type) {
2178 		error = device_add_groups(dev, type->groups);
2179 		if (error)
2180 			goto err_remove_class_groups;
2181 	}
2182 
2183 	error = device_add_groups(dev, dev->groups);
2184 	if (error)
2185 		goto err_remove_type_groups;
2186 
2187 	if (device_supports_offline(dev) && !dev->offline_disabled) {
2188 		error = device_create_file(dev, &dev_attr_online);
2189 		if (error)
2190 			goto err_remove_dev_groups;
2191 	}
2192 
2193 	if (fw_devlink_flags && !fw_devlink_is_permissive()) {
2194 		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2195 		if (error)
2196 			goto err_remove_dev_online;
2197 	}
2198 
2199 	return 0;
2200 
2201  err_remove_dev_online:
2202 	device_remove_file(dev, &dev_attr_online);
2203  err_remove_dev_groups:
2204 	device_remove_groups(dev, dev->groups);
2205  err_remove_type_groups:
2206 	if (type)
2207 		device_remove_groups(dev, type->groups);
2208  err_remove_class_groups:
2209 	if (class)
2210 		device_remove_groups(dev, class->dev_groups);
2211 
2212 	return error;
2213 }
2214 
2215 static void device_remove_attrs(struct device *dev)
2216 {
2217 	struct class *class = dev->class;
2218 	const struct device_type *type = dev->type;
2219 
2220 	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2221 	device_remove_file(dev, &dev_attr_online);
2222 	device_remove_groups(dev, dev->groups);
2223 
2224 	if (type)
2225 		device_remove_groups(dev, type->groups);
2226 
2227 	if (class)
2228 		device_remove_groups(dev, class->dev_groups);
2229 }
2230 
2231 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2232 			char *buf)
2233 {
2234 	return print_dev_t(buf, dev->devt);
2235 }
2236 static DEVICE_ATTR_RO(dev);
2237 
2238 /* /sys/devices/ */
2239 struct kset *devices_kset;
2240 
2241 /**
2242  * devices_kset_move_before - Move device in the devices_kset's list.
2243  * @deva: Device to move.
2244  * @devb: Device @deva should come before.
2245  */
2246 static void devices_kset_move_before(struct device *deva, struct device *devb)
2247 {
2248 	if (!devices_kset)
2249 		return;
2250 	pr_debug("devices_kset: Moving %s before %s\n",
2251 		 dev_name(deva), dev_name(devb));
2252 	spin_lock(&devices_kset->list_lock);
2253 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2254 	spin_unlock(&devices_kset->list_lock);
2255 }
2256 
2257 /**
2258  * devices_kset_move_after - Move device in the devices_kset's list.
2259  * @deva: Device to move
2260  * @devb: Device @deva should come after.
2261  */
2262 static void devices_kset_move_after(struct device *deva, struct device *devb)
2263 {
2264 	if (!devices_kset)
2265 		return;
2266 	pr_debug("devices_kset: Moving %s after %s\n",
2267 		 dev_name(deva), dev_name(devb));
2268 	spin_lock(&devices_kset->list_lock);
2269 	list_move(&deva->kobj.entry, &devb->kobj.entry);
2270 	spin_unlock(&devices_kset->list_lock);
2271 }
2272 
2273 /**
2274  * devices_kset_move_last - move the device to the end of devices_kset's list.
2275  * @dev: device to move
2276  */
2277 void devices_kset_move_last(struct device *dev)
2278 {
2279 	if (!devices_kset)
2280 		return;
2281 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2282 	spin_lock(&devices_kset->list_lock);
2283 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2284 	spin_unlock(&devices_kset->list_lock);
2285 }
2286 
2287 /**
2288  * device_create_file - create sysfs attribute file for device.
2289  * @dev: device.
2290  * @attr: device attribute descriptor.
2291  */
2292 int device_create_file(struct device *dev,
2293 		       const struct device_attribute *attr)
2294 {
2295 	int error = 0;
2296 
2297 	if (dev) {
2298 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2299 			"Attribute %s: write permission without 'store'\n",
2300 			attr->attr.name);
2301 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2302 			"Attribute %s: read permission without 'show'\n",
2303 			attr->attr.name);
2304 		error = sysfs_create_file(&dev->kobj, &attr->attr);
2305 	}
2306 
2307 	return error;
2308 }
2309 EXPORT_SYMBOL_GPL(device_create_file);
2310 
2311 /**
2312  * device_remove_file - remove sysfs attribute file.
2313  * @dev: device.
2314  * @attr: device attribute descriptor.
2315  */
2316 void device_remove_file(struct device *dev,
2317 			const struct device_attribute *attr)
2318 {
2319 	if (dev)
2320 		sysfs_remove_file(&dev->kobj, &attr->attr);
2321 }
2322 EXPORT_SYMBOL_GPL(device_remove_file);
2323 
2324 /**
2325  * device_remove_file_self - remove sysfs attribute file from its own method.
2326  * @dev: device.
2327  * @attr: device attribute descriptor.
2328  *
2329  * See kernfs_remove_self() for details.
2330  */
2331 bool device_remove_file_self(struct device *dev,
2332 			     const struct device_attribute *attr)
2333 {
2334 	if (dev)
2335 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2336 	else
2337 		return false;
2338 }
2339 EXPORT_SYMBOL_GPL(device_remove_file_self);
2340 
2341 /**
2342  * device_create_bin_file - create sysfs binary attribute file for device.
2343  * @dev: device.
2344  * @attr: device binary attribute descriptor.
2345  */
2346 int device_create_bin_file(struct device *dev,
2347 			   const struct bin_attribute *attr)
2348 {
2349 	int error = -EINVAL;
2350 	if (dev)
2351 		error = sysfs_create_bin_file(&dev->kobj, attr);
2352 	return error;
2353 }
2354 EXPORT_SYMBOL_GPL(device_create_bin_file);
2355 
2356 /**
2357  * device_remove_bin_file - remove sysfs binary attribute file
2358  * @dev: device.
2359  * @attr: device binary attribute descriptor.
2360  */
2361 void device_remove_bin_file(struct device *dev,
2362 			    const struct bin_attribute *attr)
2363 {
2364 	if (dev)
2365 		sysfs_remove_bin_file(&dev->kobj, attr);
2366 }
2367 EXPORT_SYMBOL_GPL(device_remove_bin_file);
2368 
2369 static void klist_children_get(struct klist_node *n)
2370 {
2371 	struct device_private *p = to_device_private_parent(n);
2372 	struct device *dev = p->device;
2373 
2374 	get_device(dev);
2375 }
2376 
2377 static void klist_children_put(struct klist_node *n)
2378 {
2379 	struct device_private *p = to_device_private_parent(n);
2380 	struct device *dev = p->device;
2381 
2382 	put_device(dev);
2383 }
2384 
2385 /**
2386  * device_initialize - init device structure.
2387  * @dev: device.
2388  *
2389  * This prepares the device for use by other layers by initializing
2390  * its fields.
2391  * It is the first half of device_register(), if called by
2392  * that function, though it can also be called separately, so one
2393  * may use @dev's fields. In particular, get_device()/put_device()
2394  * may be used for reference counting of @dev after calling this
2395  * function.
2396  *
2397  * All fields in @dev must be initialized by the caller to 0, except
2398  * for those explicitly set to some other value.  The simplest
2399  * approach is to use kzalloc() to allocate the structure containing
2400  * @dev.
2401  *
2402  * NOTE: Use put_device() to give up your reference instead of freeing
2403  * @dev directly once you have called this function.
2404  */
2405 void device_initialize(struct device *dev)
2406 {
2407 	dev->kobj.kset = devices_kset;
2408 	kobject_init(&dev->kobj, &device_ktype);
2409 	INIT_LIST_HEAD(&dev->dma_pools);
2410 	mutex_init(&dev->mutex);
2411 #ifdef CONFIG_PROVE_LOCKING
2412 	mutex_init(&dev->lockdep_mutex);
2413 #endif
2414 	lockdep_set_novalidate_class(&dev->mutex);
2415 	spin_lock_init(&dev->devres_lock);
2416 	INIT_LIST_HEAD(&dev->devres_head);
2417 	device_pm_init(dev);
2418 	set_dev_node(dev, -1);
2419 #ifdef CONFIG_GENERIC_MSI_IRQ
2420 	INIT_LIST_HEAD(&dev->msi_list);
2421 #endif
2422 	INIT_LIST_HEAD(&dev->links.consumers);
2423 	INIT_LIST_HEAD(&dev->links.suppliers);
2424 	INIT_LIST_HEAD(&dev->links.needs_suppliers);
2425 	INIT_LIST_HEAD(&dev->links.defer_hook);
2426 	dev->links.status = DL_DEV_NO_DRIVER;
2427 }
2428 EXPORT_SYMBOL_GPL(device_initialize);
2429 
2430 struct kobject *virtual_device_parent(struct device *dev)
2431 {
2432 	static struct kobject *virtual_dir = NULL;
2433 
2434 	if (!virtual_dir)
2435 		virtual_dir = kobject_create_and_add("virtual",
2436 						     &devices_kset->kobj);
2437 
2438 	return virtual_dir;
2439 }
2440 
2441 struct class_dir {
2442 	struct kobject kobj;
2443 	struct class *class;
2444 };
2445 
2446 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2447 
2448 static void class_dir_release(struct kobject *kobj)
2449 {
2450 	struct class_dir *dir = to_class_dir(kobj);
2451 	kfree(dir);
2452 }
2453 
2454 static const
2455 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2456 {
2457 	struct class_dir *dir = to_class_dir(kobj);
2458 	return dir->class->ns_type;
2459 }
2460 
2461 static struct kobj_type class_dir_ktype = {
2462 	.release	= class_dir_release,
2463 	.sysfs_ops	= &kobj_sysfs_ops,
2464 	.child_ns_type	= class_dir_child_ns_type
2465 };
2466 
2467 static struct kobject *
2468 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2469 {
2470 	struct class_dir *dir;
2471 	int retval;
2472 
2473 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2474 	if (!dir)
2475 		return ERR_PTR(-ENOMEM);
2476 
2477 	dir->class = class;
2478 	kobject_init(&dir->kobj, &class_dir_ktype);
2479 
2480 	dir->kobj.kset = &class->p->glue_dirs;
2481 
2482 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2483 	if (retval < 0) {
2484 		kobject_put(&dir->kobj);
2485 		return ERR_PTR(retval);
2486 	}
2487 	return &dir->kobj;
2488 }
2489 
2490 static DEFINE_MUTEX(gdp_mutex);
2491 
2492 static struct kobject *get_device_parent(struct device *dev,
2493 					 struct device *parent)
2494 {
2495 	if (dev->class) {
2496 		struct kobject *kobj = NULL;
2497 		struct kobject *parent_kobj;
2498 		struct kobject *k;
2499 
2500 #ifdef CONFIG_BLOCK
2501 		/* block disks show up in /sys/block */
2502 		if (sysfs_deprecated && dev->class == &block_class) {
2503 			if (parent && parent->class == &block_class)
2504 				return &parent->kobj;
2505 			return &block_class.p->subsys.kobj;
2506 		}
2507 #endif
2508 
2509 		/*
2510 		 * If we have no parent, we live in "virtual".
2511 		 * Class-devices with a non class-device as parent, live
2512 		 * in a "glue" directory to prevent namespace collisions.
2513 		 */
2514 		if (parent == NULL)
2515 			parent_kobj = virtual_device_parent(dev);
2516 		else if (parent->class && !dev->class->ns_type)
2517 			return &parent->kobj;
2518 		else
2519 			parent_kobj = &parent->kobj;
2520 
2521 		mutex_lock(&gdp_mutex);
2522 
2523 		/* find our class-directory at the parent and reference it */
2524 		spin_lock(&dev->class->p->glue_dirs.list_lock);
2525 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2526 			if (k->parent == parent_kobj) {
2527 				kobj = kobject_get(k);
2528 				break;
2529 			}
2530 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
2531 		if (kobj) {
2532 			mutex_unlock(&gdp_mutex);
2533 			return kobj;
2534 		}
2535 
2536 		/* or create a new class-directory at the parent device */
2537 		k = class_dir_create_and_add(dev->class, parent_kobj);
2538 		/* do not emit an uevent for this simple "glue" directory */
2539 		mutex_unlock(&gdp_mutex);
2540 		return k;
2541 	}
2542 
2543 	/* subsystems can specify a default root directory for their devices */
2544 	if (!parent && dev->bus && dev->bus->dev_root)
2545 		return &dev->bus->dev_root->kobj;
2546 
2547 	if (parent)
2548 		return &parent->kobj;
2549 	return NULL;
2550 }
2551 
2552 static inline bool live_in_glue_dir(struct kobject *kobj,
2553 				    struct device *dev)
2554 {
2555 	if (!kobj || !dev->class ||
2556 	    kobj->kset != &dev->class->p->glue_dirs)
2557 		return false;
2558 	return true;
2559 }
2560 
2561 static inline struct kobject *get_glue_dir(struct device *dev)
2562 {
2563 	return dev->kobj.parent;
2564 }
2565 
2566 /*
2567  * make sure cleaning up dir as the last step, we need to make
2568  * sure .release handler of kobject is run with holding the
2569  * global lock
2570  */
2571 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2572 {
2573 	unsigned int ref;
2574 
2575 	/* see if we live in a "glue" directory */
2576 	if (!live_in_glue_dir(glue_dir, dev))
2577 		return;
2578 
2579 	mutex_lock(&gdp_mutex);
2580 	/**
2581 	 * There is a race condition between removing glue directory
2582 	 * and adding a new device under the glue directory.
2583 	 *
2584 	 * CPU1:                                         CPU2:
2585 	 *
2586 	 * device_add()
2587 	 *   get_device_parent()
2588 	 *     class_dir_create_and_add()
2589 	 *       kobject_add_internal()
2590 	 *         create_dir()    // create glue_dir
2591 	 *
2592 	 *                                               device_add()
2593 	 *                                                 get_device_parent()
2594 	 *                                                   kobject_get() // get glue_dir
2595 	 *
2596 	 * device_del()
2597 	 *   cleanup_glue_dir()
2598 	 *     kobject_del(glue_dir)
2599 	 *
2600 	 *                                               kobject_add()
2601 	 *                                                 kobject_add_internal()
2602 	 *                                                   create_dir() // in glue_dir
2603 	 *                                                     sysfs_create_dir_ns()
2604 	 *                                                       kernfs_create_dir_ns(sd)
2605 	 *
2606 	 *       sysfs_remove_dir() // glue_dir->sd=NULL
2607 	 *       sysfs_put()        // free glue_dir->sd
2608 	 *
2609 	 *                                                         // sd is freed
2610 	 *                                                         kernfs_new_node(sd)
2611 	 *                                                           kernfs_get(glue_dir)
2612 	 *                                                           kernfs_add_one()
2613 	 *                                                           kernfs_put()
2614 	 *
2615 	 * Before CPU1 remove last child device under glue dir, if CPU2 add
2616 	 * a new device under glue dir, the glue_dir kobject reference count
2617 	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2618 	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2619 	 * and sysfs_put(). This result in glue_dir->sd is freed.
2620 	 *
2621 	 * Then the CPU2 will see a stale "empty" but still potentially used
2622 	 * glue dir around in kernfs_new_node().
2623 	 *
2624 	 * In order to avoid this happening, we also should make sure that
2625 	 * kernfs_node for glue_dir is released in CPU1 only when refcount
2626 	 * for glue_dir kobj is 1.
2627 	 */
2628 	ref = kref_read(&glue_dir->kref);
2629 	if (!kobject_has_children(glue_dir) && !--ref)
2630 		kobject_del(glue_dir);
2631 	kobject_put(glue_dir);
2632 	mutex_unlock(&gdp_mutex);
2633 }
2634 
2635 static int device_add_class_symlinks(struct device *dev)
2636 {
2637 	struct device_node *of_node = dev_of_node(dev);
2638 	int error;
2639 
2640 	if (of_node) {
2641 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2642 		if (error)
2643 			dev_warn(dev, "Error %d creating of_node link\n",error);
2644 		/* An error here doesn't warrant bringing down the device */
2645 	}
2646 
2647 	if (!dev->class)
2648 		return 0;
2649 
2650 	error = sysfs_create_link(&dev->kobj,
2651 				  &dev->class->p->subsys.kobj,
2652 				  "subsystem");
2653 	if (error)
2654 		goto out_devnode;
2655 
2656 	if (dev->parent && device_is_not_partition(dev)) {
2657 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2658 					  "device");
2659 		if (error)
2660 			goto out_subsys;
2661 	}
2662 
2663 #ifdef CONFIG_BLOCK
2664 	/* /sys/block has directories and does not need symlinks */
2665 	if (sysfs_deprecated && dev->class == &block_class)
2666 		return 0;
2667 #endif
2668 
2669 	/* link in the class directory pointing to the device */
2670 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
2671 				  &dev->kobj, dev_name(dev));
2672 	if (error)
2673 		goto out_device;
2674 
2675 	return 0;
2676 
2677 out_device:
2678 	sysfs_remove_link(&dev->kobj, "device");
2679 
2680 out_subsys:
2681 	sysfs_remove_link(&dev->kobj, "subsystem");
2682 out_devnode:
2683 	sysfs_remove_link(&dev->kobj, "of_node");
2684 	return error;
2685 }
2686 
2687 static void device_remove_class_symlinks(struct device *dev)
2688 {
2689 	if (dev_of_node(dev))
2690 		sysfs_remove_link(&dev->kobj, "of_node");
2691 
2692 	if (!dev->class)
2693 		return;
2694 
2695 	if (dev->parent && device_is_not_partition(dev))
2696 		sysfs_remove_link(&dev->kobj, "device");
2697 	sysfs_remove_link(&dev->kobj, "subsystem");
2698 #ifdef CONFIG_BLOCK
2699 	if (sysfs_deprecated && dev->class == &block_class)
2700 		return;
2701 #endif
2702 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2703 }
2704 
2705 /**
2706  * dev_set_name - set a device name
2707  * @dev: device
2708  * @fmt: format string for the device's name
2709  */
2710 int dev_set_name(struct device *dev, const char *fmt, ...)
2711 {
2712 	va_list vargs;
2713 	int err;
2714 
2715 	va_start(vargs, fmt);
2716 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2717 	va_end(vargs);
2718 	return err;
2719 }
2720 EXPORT_SYMBOL_GPL(dev_set_name);
2721 
2722 /**
2723  * device_to_dev_kobj - select a /sys/dev/ directory for the device
2724  * @dev: device
2725  *
2726  * By default we select char/ for new entries.  Setting class->dev_obj
2727  * to NULL prevents an entry from being created.  class->dev_kobj must
2728  * be set (or cleared) before any devices are registered to the class
2729  * otherwise device_create_sys_dev_entry() and
2730  * device_remove_sys_dev_entry() will disagree about the presence of
2731  * the link.
2732  */
2733 static struct kobject *device_to_dev_kobj(struct device *dev)
2734 {
2735 	struct kobject *kobj;
2736 
2737 	if (dev->class)
2738 		kobj = dev->class->dev_kobj;
2739 	else
2740 		kobj = sysfs_dev_char_kobj;
2741 
2742 	return kobj;
2743 }
2744 
2745 static int device_create_sys_dev_entry(struct device *dev)
2746 {
2747 	struct kobject *kobj = device_to_dev_kobj(dev);
2748 	int error = 0;
2749 	char devt_str[15];
2750 
2751 	if (kobj) {
2752 		format_dev_t(devt_str, dev->devt);
2753 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2754 	}
2755 
2756 	return error;
2757 }
2758 
2759 static void device_remove_sys_dev_entry(struct device *dev)
2760 {
2761 	struct kobject *kobj = device_to_dev_kobj(dev);
2762 	char devt_str[15];
2763 
2764 	if (kobj) {
2765 		format_dev_t(devt_str, dev->devt);
2766 		sysfs_remove_link(kobj, devt_str);
2767 	}
2768 }
2769 
2770 static int device_private_init(struct device *dev)
2771 {
2772 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2773 	if (!dev->p)
2774 		return -ENOMEM;
2775 	dev->p->device = dev;
2776 	klist_init(&dev->p->klist_children, klist_children_get,
2777 		   klist_children_put);
2778 	INIT_LIST_HEAD(&dev->p->deferred_probe);
2779 	return 0;
2780 }
2781 
2782 /**
2783  * device_add - add device to device hierarchy.
2784  * @dev: device.
2785  *
2786  * This is part 2 of device_register(), though may be called
2787  * separately _iff_ device_initialize() has been called separately.
2788  *
2789  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2790  * to the global and sibling lists for the device, then
2791  * adds it to the other relevant subsystems of the driver model.
2792  *
2793  * Do not call this routine or device_register() more than once for
2794  * any device structure.  The driver model core is not designed to work
2795  * with devices that get unregistered and then spring back to life.
2796  * (Among other things, it's very hard to guarantee that all references
2797  * to the previous incarnation of @dev have been dropped.)  Allocate
2798  * and register a fresh new struct device instead.
2799  *
2800  * NOTE: _Never_ directly free @dev after calling this function, even
2801  * if it returned an error! Always use put_device() to give up your
2802  * reference instead.
2803  *
2804  * Rule of thumb is: if device_add() succeeds, you should call
2805  * device_del() when you want to get rid of it. If device_add() has
2806  * *not* succeeded, use *only* put_device() to drop the reference
2807  * count.
2808  */
2809 int device_add(struct device *dev)
2810 {
2811 	struct device *parent;
2812 	struct kobject *kobj;
2813 	struct class_interface *class_intf;
2814 	int error = -EINVAL;
2815 	struct kobject *glue_dir = NULL;
2816 
2817 	dev = get_device(dev);
2818 	if (!dev)
2819 		goto done;
2820 
2821 	if (!dev->p) {
2822 		error = device_private_init(dev);
2823 		if (error)
2824 			goto done;
2825 	}
2826 
2827 	/*
2828 	 * for statically allocated devices, which should all be converted
2829 	 * some day, we need to initialize the name. We prevent reading back
2830 	 * the name, and force the use of dev_name()
2831 	 */
2832 	if (dev->init_name) {
2833 		dev_set_name(dev, "%s", dev->init_name);
2834 		dev->init_name = NULL;
2835 	}
2836 
2837 	/* subsystems can specify simple device enumeration */
2838 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2839 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2840 
2841 	if (!dev_name(dev)) {
2842 		error = -EINVAL;
2843 		goto name_error;
2844 	}
2845 
2846 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2847 
2848 	parent = get_device(dev->parent);
2849 	kobj = get_device_parent(dev, parent);
2850 	if (IS_ERR(kobj)) {
2851 		error = PTR_ERR(kobj);
2852 		goto parent_error;
2853 	}
2854 	if (kobj)
2855 		dev->kobj.parent = kobj;
2856 
2857 	/* use parent numa_node */
2858 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2859 		set_dev_node(dev, dev_to_node(parent));
2860 
2861 	/* first, register with generic layer. */
2862 	/* we require the name to be set before, and pass NULL */
2863 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2864 	if (error) {
2865 		glue_dir = get_glue_dir(dev);
2866 		goto Error;
2867 	}
2868 
2869 	/* notify platform of device entry */
2870 	error = device_platform_notify(dev, KOBJ_ADD);
2871 	if (error)
2872 		goto platform_error;
2873 
2874 	error = device_create_file(dev, &dev_attr_uevent);
2875 	if (error)
2876 		goto attrError;
2877 
2878 	error = device_add_class_symlinks(dev);
2879 	if (error)
2880 		goto SymlinkError;
2881 	error = device_add_attrs(dev);
2882 	if (error)
2883 		goto AttrsError;
2884 	error = bus_add_device(dev);
2885 	if (error)
2886 		goto BusError;
2887 	error = dpm_sysfs_add(dev);
2888 	if (error)
2889 		goto DPMError;
2890 	device_pm_add(dev);
2891 
2892 	if (MAJOR(dev->devt)) {
2893 		error = device_create_file(dev, &dev_attr_dev);
2894 		if (error)
2895 			goto DevAttrError;
2896 
2897 		error = device_create_sys_dev_entry(dev);
2898 		if (error)
2899 			goto SysEntryError;
2900 
2901 		devtmpfs_create_node(dev);
2902 	}
2903 
2904 	/* Notify clients of device addition.  This call must come
2905 	 * after dpm_sysfs_add() and before kobject_uevent().
2906 	 */
2907 	if (dev->bus)
2908 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2909 					     BUS_NOTIFY_ADD_DEVICE, dev);
2910 
2911 	kobject_uevent(&dev->kobj, KOBJ_ADD);
2912 
2913 	/*
2914 	 * Check if any of the other devices (consumers) have been waiting for
2915 	 * this device (supplier) to be added so that they can create a device
2916 	 * link to it.
2917 	 *
2918 	 * This needs to happen after device_pm_add() because device_link_add()
2919 	 * requires the supplier be registered before it's called.
2920 	 *
2921 	 * But this also needs to happen before bus_probe_device() to make sure
2922 	 * waiting consumers can link to it before the driver is bound to the
2923 	 * device and the driver sync_state callback is called for this device.
2924 	 */
2925 	if (dev->fwnode && !dev->fwnode->dev) {
2926 		dev->fwnode->dev = dev;
2927 		fw_devlink_link_device(dev);
2928 	}
2929 
2930 	bus_probe_device(dev);
2931 	if (parent)
2932 		klist_add_tail(&dev->p->knode_parent,
2933 			       &parent->p->klist_children);
2934 
2935 	if (dev->class) {
2936 		mutex_lock(&dev->class->p->mutex);
2937 		/* tie the class to the device */
2938 		klist_add_tail(&dev->p->knode_class,
2939 			       &dev->class->p->klist_devices);
2940 
2941 		/* notify any interfaces that the device is here */
2942 		list_for_each_entry(class_intf,
2943 				    &dev->class->p->interfaces, node)
2944 			if (class_intf->add_dev)
2945 				class_intf->add_dev(dev, class_intf);
2946 		mutex_unlock(&dev->class->p->mutex);
2947 	}
2948 done:
2949 	put_device(dev);
2950 	return error;
2951  SysEntryError:
2952 	if (MAJOR(dev->devt))
2953 		device_remove_file(dev, &dev_attr_dev);
2954  DevAttrError:
2955 	device_pm_remove(dev);
2956 	dpm_sysfs_remove(dev);
2957  DPMError:
2958 	bus_remove_device(dev);
2959  BusError:
2960 	device_remove_attrs(dev);
2961  AttrsError:
2962 	device_remove_class_symlinks(dev);
2963  SymlinkError:
2964 	device_remove_file(dev, &dev_attr_uevent);
2965  attrError:
2966 	device_platform_notify(dev, KOBJ_REMOVE);
2967 platform_error:
2968 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2969 	glue_dir = get_glue_dir(dev);
2970 	kobject_del(&dev->kobj);
2971  Error:
2972 	cleanup_glue_dir(dev, glue_dir);
2973 parent_error:
2974 	put_device(parent);
2975 name_error:
2976 	kfree(dev->p);
2977 	dev->p = NULL;
2978 	goto done;
2979 }
2980 EXPORT_SYMBOL_GPL(device_add);
2981 
2982 /**
2983  * device_register - register a device with the system.
2984  * @dev: pointer to the device structure
2985  *
2986  * This happens in two clean steps - initialize the device
2987  * and add it to the system. The two steps can be called
2988  * separately, but this is the easiest and most common.
2989  * I.e. you should only call the two helpers separately if
2990  * have a clearly defined need to use and refcount the device
2991  * before it is added to the hierarchy.
2992  *
2993  * For more information, see the kerneldoc for device_initialize()
2994  * and device_add().
2995  *
2996  * NOTE: _Never_ directly free @dev after calling this function, even
2997  * if it returned an error! Always use put_device() to give up the
2998  * reference initialized in this function instead.
2999  */
3000 int device_register(struct device *dev)
3001 {
3002 	device_initialize(dev);
3003 	return device_add(dev);
3004 }
3005 EXPORT_SYMBOL_GPL(device_register);
3006 
3007 /**
3008  * get_device - increment reference count for device.
3009  * @dev: device.
3010  *
3011  * This simply forwards the call to kobject_get(), though
3012  * we do take care to provide for the case that we get a NULL
3013  * pointer passed in.
3014  */
3015 struct device *get_device(struct device *dev)
3016 {
3017 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3018 }
3019 EXPORT_SYMBOL_GPL(get_device);
3020 
3021 /**
3022  * put_device - decrement reference count.
3023  * @dev: device in question.
3024  */
3025 void put_device(struct device *dev)
3026 {
3027 	/* might_sleep(); */
3028 	if (dev)
3029 		kobject_put(&dev->kobj);
3030 }
3031 EXPORT_SYMBOL_GPL(put_device);
3032 
3033 bool kill_device(struct device *dev)
3034 {
3035 	/*
3036 	 * Require the device lock and set the "dead" flag to guarantee that
3037 	 * the update behavior is consistent with the other bitfields near
3038 	 * it and that we cannot have an asynchronous probe routine trying
3039 	 * to run while we are tearing out the bus/class/sysfs from
3040 	 * underneath the device.
3041 	 */
3042 	lockdep_assert_held(&dev->mutex);
3043 
3044 	if (dev->p->dead)
3045 		return false;
3046 	dev->p->dead = true;
3047 	return true;
3048 }
3049 EXPORT_SYMBOL_GPL(kill_device);
3050 
3051 /**
3052  * device_del - delete device from system.
3053  * @dev: device.
3054  *
3055  * This is the first part of the device unregistration
3056  * sequence. This removes the device from the lists we control
3057  * from here, has it removed from the other driver model
3058  * subsystems it was added to in device_add(), and removes it
3059  * from the kobject hierarchy.
3060  *
3061  * NOTE: this should be called manually _iff_ device_add() was
3062  * also called manually.
3063  */
3064 void device_del(struct device *dev)
3065 {
3066 	struct device *parent = dev->parent;
3067 	struct kobject *glue_dir = NULL;
3068 	struct class_interface *class_intf;
3069 
3070 	device_lock(dev);
3071 	kill_device(dev);
3072 	device_unlock(dev);
3073 
3074 	if (dev->fwnode && dev->fwnode->dev == dev)
3075 		dev->fwnode->dev = NULL;
3076 
3077 	/* Notify clients of device removal.  This call must come
3078 	 * before dpm_sysfs_remove().
3079 	 */
3080 	if (dev->bus)
3081 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3082 					     BUS_NOTIFY_DEL_DEVICE, dev);
3083 
3084 	dpm_sysfs_remove(dev);
3085 	if (parent)
3086 		klist_del(&dev->p->knode_parent);
3087 	if (MAJOR(dev->devt)) {
3088 		devtmpfs_delete_node(dev);
3089 		device_remove_sys_dev_entry(dev);
3090 		device_remove_file(dev, &dev_attr_dev);
3091 	}
3092 	if (dev->class) {
3093 		device_remove_class_symlinks(dev);
3094 
3095 		mutex_lock(&dev->class->p->mutex);
3096 		/* notify any interfaces that the device is now gone */
3097 		list_for_each_entry(class_intf,
3098 				    &dev->class->p->interfaces, node)
3099 			if (class_intf->remove_dev)
3100 				class_intf->remove_dev(dev, class_intf);
3101 		/* remove the device from the class list */
3102 		klist_del(&dev->p->knode_class);
3103 		mutex_unlock(&dev->class->p->mutex);
3104 	}
3105 	device_remove_file(dev, &dev_attr_uevent);
3106 	device_remove_attrs(dev);
3107 	bus_remove_device(dev);
3108 	device_pm_remove(dev);
3109 	driver_deferred_probe_del(dev);
3110 	device_platform_notify(dev, KOBJ_REMOVE);
3111 	device_remove_properties(dev);
3112 	device_links_purge(dev);
3113 
3114 	if (dev->bus)
3115 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3116 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3117 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3118 	glue_dir = get_glue_dir(dev);
3119 	kobject_del(&dev->kobj);
3120 	cleanup_glue_dir(dev, glue_dir);
3121 	put_device(parent);
3122 }
3123 EXPORT_SYMBOL_GPL(device_del);
3124 
3125 /**
3126  * device_unregister - unregister device from system.
3127  * @dev: device going away.
3128  *
3129  * We do this in two parts, like we do device_register(). First,
3130  * we remove it from all the subsystems with device_del(), then
3131  * we decrement the reference count via put_device(). If that
3132  * is the final reference count, the device will be cleaned up
3133  * via device_release() above. Otherwise, the structure will
3134  * stick around until the final reference to the device is dropped.
3135  */
3136 void device_unregister(struct device *dev)
3137 {
3138 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3139 	device_del(dev);
3140 	put_device(dev);
3141 }
3142 EXPORT_SYMBOL_GPL(device_unregister);
3143 
3144 static struct device *prev_device(struct klist_iter *i)
3145 {
3146 	struct klist_node *n = klist_prev(i);
3147 	struct device *dev = NULL;
3148 	struct device_private *p;
3149 
3150 	if (n) {
3151 		p = to_device_private_parent(n);
3152 		dev = p->device;
3153 	}
3154 	return dev;
3155 }
3156 
3157 static struct device *next_device(struct klist_iter *i)
3158 {
3159 	struct klist_node *n = klist_next(i);
3160 	struct device *dev = NULL;
3161 	struct device_private *p;
3162 
3163 	if (n) {
3164 		p = to_device_private_parent(n);
3165 		dev = p->device;
3166 	}
3167 	return dev;
3168 }
3169 
3170 /**
3171  * device_get_devnode - path of device node file
3172  * @dev: device
3173  * @mode: returned file access mode
3174  * @uid: returned file owner
3175  * @gid: returned file group
3176  * @tmp: possibly allocated string
3177  *
3178  * Return the relative path of a possible device node.
3179  * Non-default names may need to allocate a memory to compose
3180  * a name. This memory is returned in tmp and needs to be
3181  * freed by the caller.
3182  */
3183 const char *device_get_devnode(struct device *dev,
3184 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3185 			       const char **tmp)
3186 {
3187 	char *s;
3188 
3189 	*tmp = NULL;
3190 
3191 	/* the device type may provide a specific name */
3192 	if (dev->type && dev->type->devnode)
3193 		*tmp = dev->type->devnode(dev, mode, uid, gid);
3194 	if (*tmp)
3195 		return *tmp;
3196 
3197 	/* the class may provide a specific name */
3198 	if (dev->class && dev->class->devnode)
3199 		*tmp = dev->class->devnode(dev, mode);
3200 	if (*tmp)
3201 		return *tmp;
3202 
3203 	/* return name without allocation, tmp == NULL */
3204 	if (strchr(dev_name(dev), '!') == NULL)
3205 		return dev_name(dev);
3206 
3207 	/* replace '!' in the name with '/' */
3208 	s = kstrdup(dev_name(dev), GFP_KERNEL);
3209 	if (!s)
3210 		return NULL;
3211 	strreplace(s, '!', '/');
3212 	return *tmp = s;
3213 }
3214 
3215 /**
3216  * device_for_each_child - device child iterator.
3217  * @parent: parent struct device.
3218  * @fn: function to be called for each device.
3219  * @data: data for the callback.
3220  *
3221  * Iterate over @parent's child devices, and call @fn for each,
3222  * passing it @data.
3223  *
3224  * We check the return of @fn each time. If it returns anything
3225  * other than 0, we break out and return that value.
3226  */
3227 int device_for_each_child(struct device *parent, void *data,
3228 			  int (*fn)(struct device *dev, void *data))
3229 {
3230 	struct klist_iter i;
3231 	struct device *child;
3232 	int error = 0;
3233 
3234 	if (!parent->p)
3235 		return 0;
3236 
3237 	klist_iter_init(&parent->p->klist_children, &i);
3238 	while (!error && (child = next_device(&i)))
3239 		error = fn(child, data);
3240 	klist_iter_exit(&i);
3241 	return error;
3242 }
3243 EXPORT_SYMBOL_GPL(device_for_each_child);
3244 
3245 /**
3246  * device_for_each_child_reverse - device child iterator in reversed order.
3247  * @parent: parent struct device.
3248  * @fn: function to be called for each device.
3249  * @data: data for the callback.
3250  *
3251  * Iterate over @parent's child devices, and call @fn for each,
3252  * passing it @data.
3253  *
3254  * We check the return of @fn each time. If it returns anything
3255  * other than 0, we break out and return that value.
3256  */
3257 int device_for_each_child_reverse(struct device *parent, void *data,
3258 				  int (*fn)(struct device *dev, void *data))
3259 {
3260 	struct klist_iter i;
3261 	struct device *child;
3262 	int error = 0;
3263 
3264 	if (!parent->p)
3265 		return 0;
3266 
3267 	klist_iter_init(&parent->p->klist_children, &i);
3268 	while ((child = prev_device(&i)) && !error)
3269 		error = fn(child, data);
3270 	klist_iter_exit(&i);
3271 	return error;
3272 }
3273 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3274 
3275 /**
3276  * device_find_child - device iterator for locating a particular device.
3277  * @parent: parent struct device
3278  * @match: Callback function to check device
3279  * @data: Data to pass to match function
3280  *
3281  * This is similar to the device_for_each_child() function above, but it
3282  * returns a reference to a device that is 'found' for later use, as
3283  * determined by the @match callback.
3284  *
3285  * The callback should return 0 if the device doesn't match and non-zero
3286  * if it does.  If the callback returns non-zero and a reference to the
3287  * current device can be obtained, this function will return to the caller
3288  * and not iterate over any more devices.
3289  *
3290  * NOTE: you will need to drop the reference with put_device() after use.
3291  */
3292 struct device *device_find_child(struct device *parent, void *data,
3293 				 int (*match)(struct device *dev, void *data))
3294 {
3295 	struct klist_iter i;
3296 	struct device *child;
3297 
3298 	if (!parent)
3299 		return NULL;
3300 
3301 	klist_iter_init(&parent->p->klist_children, &i);
3302 	while ((child = next_device(&i)))
3303 		if (match(child, data) && get_device(child))
3304 			break;
3305 	klist_iter_exit(&i);
3306 	return child;
3307 }
3308 EXPORT_SYMBOL_GPL(device_find_child);
3309 
3310 /**
3311  * device_find_child_by_name - device iterator for locating a child device.
3312  * @parent: parent struct device
3313  * @name: name of the child device
3314  *
3315  * This is similar to the device_find_child() function above, but it
3316  * returns a reference to a device that has the name @name.
3317  *
3318  * NOTE: you will need to drop the reference with put_device() after use.
3319  */
3320 struct device *device_find_child_by_name(struct device *parent,
3321 					 const char *name)
3322 {
3323 	struct klist_iter i;
3324 	struct device *child;
3325 
3326 	if (!parent)
3327 		return NULL;
3328 
3329 	klist_iter_init(&parent->p->klist_children, &i);
3330 	while ((child = next_device(&i)))
3331 		if (!strcmp(dev_name(child), name) && get_device(child))
3332 			break;
3333 	klist_iter_exit(&i);
3334 	return child;
3335 }
3336 EXPORT_SYMBOL_GPL(device_find_child_by_name);
3337 
3338 int __init devices_init(void)
3339 {
3340 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3341 	if (!devices_kset)
3342 		return -ENOMEM;
3343 	dev_kobj = kobject_create_and_add("dev", NULL);
3344 	if (!dev_kobj)
3345 		goto dev_kobj_err;
3346 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3347 	if (!sysfs_dev_block_kobj)
3348 		goto block_kobj_err;
3349 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3350 	if (!sysfs_dev_char_kobj)
3351 		goto char_kobj_err;
3352 
3353 	return 0;
3354 
3355  char_kobj_err:
3356 	kobject_put(sysfs_dev_block_kobj);
3357  block_kobj_err:
3358 	kobject_put(dev_kobj);
3359  dev_kobj_err:
3360 	kset_unregister(devices_kset);
3361 	return -ENOMEM;
3362 }
3363 
3364 static int device_check_offline(struct device *dev, void *not_used)
3365 {
3366 	int ret;
3367 
3368 	ret = device_for_each_child(dev, NULL, device_check_offline);
3369 	if (ret)
3370 		return ret;
3371 
3372 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3373 }
3374 
3375 /**
3376  * device_offline - Prepare the device for hot-removal.
3377  * @dev: Device to be put offline.
3378  *
3379  * Execute the device bus type's .offline() callback, if present, to prepare
3380  * the device for a subsequent hot-removal.  If that succeeds, the device must
3381  * not be used until either it is removed or its bus type's .online() callback
3382  * is executed.
3383  *
3384  * Call under device_hotplug_lock.
3385  */
3386 int device_offline(struct device *dev)
3387 {
3388 	int ret;
3389 
3390 	if (dev->offline_disabled)
3391 		return -EPERM;
3392 
3393 	ret = device_for_each_child(dev, NULL, device_check_offline);
3394 	if (ret)
3395 		return ret;
3396 
3397 	device_lock(dev);
3398 	if (device_supports_offline(dev)) {
3399 		if (dev->offline) {
3400 			ret = 1;
3401 		} else {
3402 			ret = dev->bus->offline(dev);
3403 			if (!ret) {
3404 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3405 				dev->offline = true;
3406 			}
3407 		}
3408 	}
3409 	device_unlock(dev);
3410 
3411 	return ret;
3412 }
3413 
3414 /**
3415  * device_online - Put the device back online after successful device_offline().
3416  * @dev: Device to be put back online.
3417  *
3418  * If device_offline() has been successfully executed for @dev, but the device
3419  * has not been removed subsequently, execute its bus type's .online() callback
3420  * to indicate that the device can be used again.
3421  *
3422  * Call under device_hotplug_lock.
3423  */
3424 int device_online(struct device *dev)
3425 {
3426 	int ret = 0;
3427 
3428 	device_lock(dev);
3429 	if (device_supports_offline(dev)) {
3430 		if (dev->offline) {
3431 			ret = dev->bus->online(dev);
3432 			if (!ret) {
3433 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3434 				dev->offline = false;
3435 			}
3436 		} else {
3437 			ret = 1;
3438 		}
3439 	}
3440 	device_unlock(dev);
3441 
3442 	return ret;
3443 }
3444 
3445 struct root_device {
3446 	struct device dev;
3447 	struct module *owner;
3448 };
3449 
3450 static inline struct root_device *to_root_device(struct device *d)
3451 {
3452 	return container_of(d, struct root_device, dev);
3453 }
3454 
3455 static void root_device_release(struct device *dev)
3456 {
3457 	kfree(to_root_device(dev));
3458 }
3459 
3460 /**
3461  * __root_device_register - allocate and register a root device
3462  * @name: root device name
3463  * @owner: owner module of the root device, usually THIS_MODULE
3464  *
3465  * This function allocates a root device and registers it
3466  * using device_register(). In order to free the returned
3467  * device, use root_device_unregister().
3468  *
3469  * Root devices are dummy devices which allow other devices
3470  * to be grouped under /sys/devices. Use this function to
3471  * allocate a root device and then use it as the parent of
3472  * any device which should appear under /sys/devices/{name}
3473  *
3474  * The /sys/devices/{name} directory will also contain a
3475  * 'module' symlink which points to the @owner directory
3476  * in sysfs.
3477  *
3478  * Returns &struct device pointer on success, or ERR_PTR() on error.
3479  *
3480  * Note: You probably want to use root_device_register().
3481  */
3482 struct device *__root_device_register(const char *name, struct module *owner)
3483 {
3484 	struct root_device *root;
3485 	int err = -ENOMEM;
3486 
3487 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3488 	if (!root)
3489 		return ERR_PTR(err);
3490 
3491 	err = dev_set_name(&root->dev, "%s", name);
3492 	if (err) {
3493 		kfree(root);
3494 		return ERR_PTR(err);
3495 	}
3496 
3497 	root->dev.release = root_device_release;
3498 
3499 	err = device_register(&root->dev);
3500 	if (err) {
3501 		put_device(&root->dev);
3502 		return ERR_PTR(err);
3503 	}
3504 
3505 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
3506 	if (owner) {
3507 		struct module_kobject *mk = &owner->mkobj;
3508 
3509 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3510 		if (err) {
3511 			device_unregister(&root->dev);
3512 			return ERR_PTR(err);
3513 		}
3514 		root->owner = owner;
3515 	}
3516 #endif
3517 
3518 	return &root->dev;
3519 }
3520 EXPORT_SYMBOL_GPL(__root_device_register);
3521 
3522 /**
3523  * root_device_unregister - unregister and free a root device
3524  * @dev: device going away
3525  *
3526  * This function unregisters and cleans up a device that was created by
3527  * root_device_register().
3528  */
3529 void root_device_unregister(struct device *dev)
3530 {
3531 	struct root_device *root = to_root_device(dev);
3532 
3533 	if (root->owner)
3534 		sysfs_remove_link(&root->dev.kobj, "module");
3535 
3536 	device_unregister(dev);
3537 }
3538 EXPORT_SYMBOL_GPL(root_device_unregister);
3539 
3540 
3541 static void device_create_release(struct device *dev)
3542 {
3543 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3544 	kfree(dev);
3545 }
3546 
3547 static __printf(6, 0) struct device *
3548 device_create_groups_vargs(struct class *class, struct device *parent,
3549 			   dev_t devt, void *drvdata,
3550 			   const struct attribute_group **groups,
3551 			   const char *fmt, va_list args)
3552 {
3553 	struct device *dev = NULL;
3554 	int retval = -ENODEV;
3555 
3556 	if (class == NULL || IS_ERR(class))
3557 		goto error;
3558 
3559 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3560 	if (!dev) {
3561 		retval = -ENOMEM;
3562 		goto error;
3563 	}
3564 
3565 	device_initialize(dev);
3566 	dev->devt = devt;
3567 	dev->class = class;
3568 	dev->parent = parent;
3569 	dev->groups = groups;
3570 	dev->release = device_create_release;
3571 	dev_set_drvdata(dev, drvdata);
3572 
3573 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3574 	if (retval)
3575 		goto error;
3576 
3577 	retval = device_add(dev);
3578 	if (retval)
3579 		goto error;
3580 
3581 	return dev;
3582 
3583 error:
3584 	put_device(dev);
3585 	return ERR_PTR(retval);
3586 }
3587 
3588 /**
3589  * device_create - creates a device and registers it with sysfs
3590  * @class: pointer to the struct class that this device should be registered to
3591  * @parent: pointer to the parent struct device of this new device, if any
3592  * @devt: the dev_t for the char device to be added
3593  * @drvdata: the data to be added to the device for callbacks
3594  * @fmt: string for the device's name
3595  *
3596  * This function can be used by char device classes.  A struct device
3597  * will be created in sysfs, registered to the specified class.
3598  *
3599  * A "dev" file will be created, showing the dev_t for the device, if
3600  * the dev_t is not 0,0.
3601  * If a pointer to a parent struct device is passed in, the newly created
3602  * struct device will be a child of that device in sysfs.
3603  * The pointer to the struct device will be returned from the call.
3604  * Any further sysfs files that might be required can be created using this
3605  * pointer.
3606  *
3607  * Returns &struct device pointer on success, or ERR_PTR() on error.
3608  *
3609  * Note: the struct class passed to this function must have previously
3610  * been created with a call to class_create().
3611  */
3612 struct device *device_create(struct class *class, struct device *parent,
3613 			     dev_t devt, void *drvdata, const char *fmt, ...)
3614 {
3615 	va_list vargs;
3616 	struct device *dev;
3617 
3618 	va_start(vargs, fmt);
3619 	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3620 					  fmt, vargs);
3621 	va_end(vargs);
3622 	return dev;
3623 }
3624 EXPORT_SYMBOL_GPL(device_create);
3625 
3626 /**
3627  * device_create_with_groups - creates a device and registers it with sysfs
3628  * @class: pointer to the struct class that this device should be registered to
3629  * @parent: pointer to the parent struct device of this new device, if any
3630  * @devt: the dev_t for the char device to be added
3631  * @drvdata: the data to be added to the device for callbacks
3632  * @groups: NULL-terminated list of attribute groups to be created
3633  * @fmt: string for the device's name
3634  *
3635  * This function can be used by char device classes.  A struct device
3636  * will be created in sysfs, registered to the specified class.
3637  * Additional attributes specified in the groups parameter will also
3638  * be created automatically.
3639  *
3640  * A "dev" file will be created, showing the dev_t for the device, if
3641  * the dev_t is not 0,0.
3642  * If a pointer to a parent struct device is passed in, the newly created
3643  * struct device will be a child of that device in sysfs.
3644  * The pointer to the struct device will be returned from the call.
3645  * Any further sysfs files that might be required can be created using this
3646  * pointer.
3647  *
3648  * Returns &struct device pointer on success, or ERR_PTR() on error.
3649  *
3650  * Note: the struct class passed to this function must have previously
3651  * been created with a call to class_create().
3652  */
3653 struct device *device_create_with_groups(struct class *class,
3654 					 struct device *parent, dev_t devt,
3655 					 void *drvdata,
3656 					 const struct attribute_group **groups,
3657 					 const char *fmt, ...)
3658 {
3659 	va_list vargs;
3660 	struct device *dev;
3661 
3662 	va_start(vargs, fmt);
3663 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3664 					 fmt, vargs);
3665 	va_end(vargs);
3666 	return dev;
3667 }
3668 EXPORT_SYMBOL_GPL(device_create_with_groups);
3669 
3670 /**
3671  * device_destroy - removes a device that was created with device_create()
3672  * @class: pointer to the struct class that this device was registered with
3673  * @devt: the dev_t of the device that was previously registered
3674  *
3675  * This call unregisters and cleans up a device that was created with a
3676  * call to device_create().
3677  */
3678 void device_destroy(struct class *class, dev_t devt)
3679 {
3680 	struct device *dev;
3681 
3682 	dev = class_find_device_by_devt(class, devt);
3683 	if (dev) {
3684 		put_device(dev);
3685 		device_unregister(dev);
3686 	}
3687 }
3688 EXPORT_SYMBOL_GPL(device_destroy);
3689 
3690 /**
3691  * device_rename - renames a device
3692  * @dev: the pointer to the struct device to be renamed
3693  * @new_name: the new name of the device
3694  *
3695  * It is the responsibility of the caller to provide mutual
3696  * exclusion between two different calls of device_rename
3697  * on the same device to ensure that new_name is valid and
3698  * won't conflict with other devices.
3699  *
3700  * Note: Don't call this function.  Currently, the networking layer calls this
3701  * function, but that will change.  The following text from Kay Sievers offers
3702  * some insight:
3703  *
3704  * Renaming devices is racy at many levels, symlinks and other stuff are not
3705  * replaced atomically, and you get a "move" uevent, but it's not easy to
3706  * connect the event to the old and new device. Device nodes are not renamed at
3707  * all, there isn't even support for that in the kernel now.
3708  *
3709  * In the meantime, during renaming, your target name might be taken by another
3710  * driver, creating conflicts. Or the old name is taken directly after you
3711  * renamed it -- then you get events for the same DEVPATH, before you even see
3712  * the "move" event. It's just a mess, and nothing new should ever rely on
3713  * kernel device renaming. Besides that, it's not even implemented now for
3714  * other things than (driver-core wise very simple) network devices.
3715  *
3716  * We are currently about to change network renaming in udev to completely
3717  * disallow renaming of devices in the same namespace as the kernel uses,
3718  * because we can't solve the problems properly, that arise with swapping names
3719  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3720  * be allowed to some other name than eth[0-9]*, for the aforementioned
3721  * reasons.
3722  *
3723  * Make up a "real" name in the driver before you register anything, or add
3724  * some other attributes for userspace to find the device, or use udev to add
3725  * symlinks -- but never rename kernel devices later, it's a complete mess. We
3726  * don't even want to get into that and try to implement the missing pieces in
3727  * the core. We really have other pieces to fix in the driver core mess. :)
3728  */
3729 int device_rename(struct device *dev, const char *new_name)
3730 {
3731 	struct kobject *kobj = &dev->kobj;
3732 	char *old_device_name = NULL;
3733 	int error;
3734 
3735 	dev = get_device(dev);
3736 	if (!dev)
3737 		return -EINVAL;
3738 
3739 	dev_dbg(dev, "renaming to %s\n", new_name);
3740 
3741 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3742 	if (!old_device_name) {
3743 		error = -ENOMEM;
3744 		goto out;
3745 	}
3746 
3747 	if (dev->class) {
3748 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3749 					     kobj, old_device_name,
3750 					     new_name, kobject_namespace(kobj));
3751 		if (error)
3752 			goto out;
3753 	}
3754 
3755 	error = kobject_rename(kobj, new_name);
3756 	if (error)
3757 		goto out;
3758 
3759 out:
3760 	put_device(dev);
3761 
3762 	kfree(old_device_name);
3763 
3764 	return error;
3765 }
3766 EXPORT_SYMBOL_GPL(device_rename);
3767 
3768 static int device_move_class_links(struct device *dev,
3769 				   struct device *old_parent,
3770 				   struct device *new_parent)
3771 {
3772 	int error = 0;
3773 
3774 	if (old_parent)
3775 		sysfs_remove_link(&dev->kobj, "device");
3776 	if (new_parent)
3777 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3778 					  "device");
3779 	return error;
3780 }
3781 
3782 /**
3783  * device_move - moves a device to a new parent
3784  * @dev: the pointer to the struct device to be moved
3785  * @new_parent: the new parent of the device (can be NULL)
3786  * @dpm_order: how to reorder the dpm_list
3787  */
3788 int device_move(struct device *dev, struct device *new_parent,
3789 		enum dpm_order dpm_order)
3790 {
3791 	int error;
3792 	struct device *old_parent;
3793 	struct kobject *new_parent_kobj;
3794 
3795 	dev = get_device(dev);
3796 	if (!dev)
3797 		return -EINVAL;
3798 
3799 	device_pm_lock();
3800 	new_parent = get_device(new_parent);
3801 	new_parent_kobj = get_device_parent(dev, new_parent);
3802 	if (IS_ERR(new_parent_kobj)) {
3803 		error = PTR_ERR(new_parent_kobj);
3804 		put_device(new_parent);
3805 		goto out;
3806 	}
3807 
3808 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3809 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3810 	error = kobject_move(&dev->kobj, new_parent_kobj);
3811 	if (error) {
3812 		cleanup_glue_dir(dev, new_parent_kobj);
3813 		put_device(new_parent);
3814 		goto out;
3815 	}
3816 	old_parent = dev->parent;
3817 	dev->parent = new_parent;
3818 	if (old_parent)
3819 		klist_remove(&dev->p->knode_parent);
3820 	if (new_parent) {
3821 		klist_add_tail(&dev->p->knode_parent,
3822 			       &new_parent->p->klist_children);
3823 		set_dev_node(dev, dev_to_node(new_parent));
3824 	}
3825 
3826 	if (dev->class) {
3827 		error = device_move_class_links(dev, old_parent, new_parent);
3828 		if (error) {
3829 			/* We ignore errors on cleanup since we're hosed anyway... */
3830 			device_move_class_links(dev, new_parent, old_parent);
3831 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3832 				if (new_parent)
3833 					klist_remove(&dev->p->knode_parent);
3834 				dev->parent = old_parent;
3835 				if (old_parent) {
3836 					klist_add_tail(&dev->p->knode_parent,
3837 						       &old_parent->p->klist_children);
3838 					set_dev_node(dev, dev_to_node(old_parent));
3839 				}
3840 			}
3841 			cleanup_glue_dir(dev, new_parent_kobj);
3842 			put_device(new_parent);
3843 			goto out;
3844 		}
3845 	}
3846 	switch (dpm_order) {
3847 	case DPM_ORDER_NONE:
3848 		break;
3849 	case DPM_ORDER_DEV_AFTER_PARENT:
3850 		device_pm_move_after(dev, new_parent);
3851 		devices_kset_move_after(dev, new_parent);
3852 		break;
3853 	case DPM_ORDER_PARENT_BEFORE_DEV:
3854 		device_pm_move_before(new_parent, dev);
3855 		devices_kset_move_before(new_parent, dev);
3856 		break;
3857 	case DPM_ORDER_DEV_LAST:
3858 		device_pm_move_last(dev);
3859 		devices_kset_move_last(dev);
3860 		break;
3861 	}
3862 
3863 	put_device(old_parent);
3864 out:
3865 	device_pm_unlock();
3866 	put_device(dev);
3867 	return error;
3868 }
3869 EXPORT_SYMBOL_GPL(device_move);
3870 
3871 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
3872 				     kgid_t kgid)
3873 {
3874 	struct kobject *kobj = &dev->kobj;
3875 	struct class *class = dev->class;
3876 	const struct device_type *type = dev->type;
3877 	int error;
3878 
3879 	if (class) {
3880 		/*
3881 		 * Change the device groups of the device class for @dev to
3882 		 * @kuid/@kgid.
3883 		 */
3884 		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
3885 						  kgid);
3886 		if (error)
3887 			return error;
3888 	}
3889 
3890 	if (type) {
3891 		/*
3892 		 * Change the device groups of the device type for @dev to
3893 		 * @kuid/@kgid.
3894 		 */
3895 		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
3896 						  kgid);
3897 		if (error)
3898 			return error;
3899 	}
3900 
3901 	/* Change the device groups of @dev to @kuid/@kgid. */
3902 	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
3903 	if (error)
3904 		return error;
3905 
3906 	if (device_supports_offline(dev) && !dev->offline_disabled) {
3907 		/* Change online device attributes of @dev to @kuid/@kgid. */
3908 		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
3909 						kuid, kgid);
3910 		if (error)
3911 			return error;
3912 	}
3913 
3914 	return 0;
3915 }
3916 
3917 /**
3918  * device_change_owner - change the owner of an existing device.
3919  * @dev: device.
3920  * @kuid: new owner's kuid
3921  * @kgid: new owner's kgid
3922  *
3923  * This changes the owner of @dev and its corresponding sysfs entries to
3924  * @kuid/@kgid. This function closely mirrors how @dev was added via driver
3925  * core.
3926  *
3927  * Returns 0 on success or error code on failure.
3928  */
3929 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
3930 {
3931 	int error;
3932 	struct kobject *kobj = &dev->kobj;
3933 
3934 	dev = get_device(dev);
3935 	if (!dev)
3936 		return -EINVAL;
3937 
3938 	/*
3939 	 * Change the kobject and the default attributes and groups of the
3940 	 * ktype associated with it to @kuid/@kgid.
3941 	 */
3942 	error = sysfs_change_owner(kobj, kuid, kgid);
3943 	if (error)
3944 		goto out;
3945 
3946 	/*
3947 	 * Change the uevent file for @dev to the new owner. The uevent file
3948 	 * was created in a separate step when @dev got added and we mirror
3949 	 * that step here.
3950 	 */
3951 	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
3952 					kgid);
3953 	if (error)
3954 		goto out;
3955 
3956 	/*
3957 	 * Change the device groups, the device groups associated with the
3958 	 * device class, and the groups associated with the device type of @dev
3959 	 * to @kuid/@kgid.
3960 	 */
3961 	error = device_attrs_change_owner(dev, kuid, kgid);
3962 	if (error)
3963 		goto out;
3964 
3965 	error = dpm_sysfs_change_owner(dev, kuid, kgid);
3966 	if (error)
3967 		goto out;
3968 
3969 #ifdef CONFIG_BLOCK
3970 	if (sysfs_deprecated && dev->class == &block_class)
3971 		goto out;
3972 #endif
3973 
3974 	/*
3975 	 * Change the owner of the symlink located in the class directory of
3976 	 * the device class associated with @dev which points to the actual
3977 	 * directory entry for @dev to @kuid/@kgid. This ensures that the
3978 	 * symlink shows the same permissions as its target.
3979 	 */
3980 	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
3981 					dev_name(dev), kuid, kgid);
3982 	if (error)
3983 		goto out;
3984 
3985 out:
3986 	put_device(dev);
3987 	return error;
3988 }
3989 EXPORT_SYMBOL_GPL(device_change_owner);
3990 
3991 /**
3992  * device_shutdown - call ->shutdown() on each device to shutdown.
3993  */
3994 void device_shutdown(void)
3995 {
3996 	struct device *dev, *parent;
3997 
3998 	wait_for_device_probe();
3999 	device_block_probing();
4000 
4001 	cpufreq_suspend();
4002 
4003 	spin_lock(&devices_kset->list_lock);
4004 	/*
4005 	 * Walk the devices list backward, shutting down each in turn.
4006 	 * Beware that device unplug events may also start pulling
4007 	 * devices offline, even as the system is shutting down.
4008 	 */
4009 	while (!list_empty(&devices_kset->list)) {
4010 		dev = list_entry(devices_kset->list.prev, struct device,
4011 				kobj.entry);
4012 
4013 		/*
4014 		 * hold reference count of device's parent to
4015 		 * prevent it from being freed because parent's
4016 		 * lock is to be held
4017 		 */
4018 		parent = get_device(dev->parent);
4019 		get_device(dev);
4020 		/*
4021 		 * Make sure the device is off the kset list, in the
4022 		 * event that dev->*->shutdown() doesn't remove it.
4023 		 */
4024 		list_del_init(&dev->kobj.entry);
4025 		spin_unlock(&devices_kset->list_lock);
4026 
4027 		/* hold lock to avoid race with probe/release */
4028 		if (parent)
4029 			device_lock(parent);
4030 		device_lock(dev);
4031 
4032 		/* Don't allow any more runtime suspends */
4033 		pm_runtime_get_noresume(dev);
4034 		pm_runtime_barrier(dev);
4035 
4036 		if (dev->class && dev->class->shutdown_pre) {
4037 			if (initcall_debug)
4038 				dev_info(dev, "shutdown_pre\n");
4039 			dev->class->shutdown_pre(dev);
4040 		}
4041 		if (dev->bus && dev->bus->shutdown) {
4042 			if (initcall_debug)
4043 				dev_info(dev, "shutdown\n");
4044 			dev->bus->shutdown(dev);
4045 		} else if (dev->driver && dev->driver->shutdown) {
4046 			if (initcall_debug)
4047 				dev_info(dev, "shutdown\n");
4048 			dev->driver->shutdown(dev);
4049 		}
4050 
4051 		device_unlock(dev);
4052 		if (parent)
4053 			device_unlock(parent);
4054 
4055 		put_device(dev);
4056 		put_device(parent);
4057 
4058 		spin_lock(&devices_kset->list_lock);
4059 	}
4060 	spin_unlock(&devices_kset->list_lock);
4061 }
4062 
4063 /*
4064  * Device logging functions
4065  */
4066 
4067 #ifdef CONFIG_PRINTK
4068 static int
4069 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
4070 {
4071 	const char *subsys;
4072 	size_t pos = 0;
4073 
4074 	if (dev->class)
4075 		subsys = dev->class->name;
4076 	else if (dev->bus)
4077 		subsys = dev->bus->name;
4078 	else
4079 		return 0;
4080 
4081 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
4082 	if (pos >= hdrlen)
4083 		goto overflow;
4084 
4085 	/*
4086 	 * Add device identifier DEVICE=:
4087 	 *   b12:8         block dev_t
4088 	 *   c127:3        char dev_t
4089 	 *   n8            netdev ifindex
4090 	 *   +sound:card0  subsystem:devname
4091 	 */
4092 	if (MAJOR(dev->devt)) {
4093 		char c;
4094 
4095 		if (strcmp(subsys, "block") == 0)
4096 			c = 'b';
4097 		else
4098 			c = 'c';
4099 		pos++;
4100 		pos += snprintf(hdr + pos, hdrlen - pos,
4101 				"DEVICE=%c%u:%u",
4102 				c, MAJOR(dev->devt), MINOR(dev->devt));
4103 	} else if (strcmp(subsys, "net") == 0) {
4104 		struct net_device *net = to_net_dev(dev);
4105 
4106 		pos++;
4107 		pos += snprintf(hdr + pos, hdrlen - pos,
4108 				"DEVICE=n%u", net->ifindex);
4109 	} else {
4110 		pos++;
4111 		pos += snprintf(hdr + pos, hdrlen - pos,
4112 				"DEVICE=+%s:%s", subsys, dev_name(dev));
4113 	}
4114 
4115 	if (pos >= hdrlen)
4116 		goto overflow;
4117 
4118 	return pos;
4119 
4120 overflow:
4121 	dev_WARN(dev, "device/subsystem name too long");
4122 	return 0;
4123 }
4124 
4125 int dev_vprintk_emit(int level, const struct device *dev,
4126 		     const char *fmt, va_list args)
4127 {
4128 	char hdr[128];
4129 	size_t hdrlen;
4130 
4131 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
4132 
4133 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
4134 }
4135 EXPORT_SYMBOL(dev_vprintk_emit);
4136 
4137 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4138 {
4139 	va_list args;
4140 	int r;
4141 
4142 	va_start(args, fmt);
4143 
4144 	r = dev_vprintk_emit(level, dev, fmt, args);
4145 
4146 	va_end(args);
4147 
4148 	return r;
4149 }
4150 EXPORT_SYMBOL(dev_printk_emit);
4151 
4152 static void __dev_printk(const char *level, const struct device *dev,
4153 			struct va_format *vaf)
4154 {
4155 	if (dev)
4156 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4157 				dev_driver_string(dev), dev_name(dev), vaf);
4158 	else
4159 		printk("%s(NULL device *): %pV", level, vaf);
4160 }
4161 
4162 void dev_printk(const char *level, const struct device *dev,
4163 		const char *fmt, ...)
4164 {
4165 	struct va_format vaf;
4166 	va_list args;
4167 
4168 	va_start(args, fmt);
4169 
4170 	vaf.fmt = fmt;
4171 	vaf.va = &args;
4172 
4173 	__dev_printk(level, dev, &vaf);
4174 
4175 	va_end(args);
4176 }
4177 EXPORT_SYMBOL(dev_printk);
4178 
4179 #define define_dev_printk_level(func, kern_level)		\
4180 void func(const struct device *dev, const char *fmt, ...)	\
4181 {								\
4182 	struct va_format vaf;					\
4183 	va_list args;						\
4184 								\
4185 	va_start(args, fmt);					\
4186 								\
4187 	vaf.fmt = fmt;						\
4188 	vaf.va = &args;						\
4189 								\
4190 	__dev_printk(kern_level, dev, &vaf);			\
4191 								\
4192 	va_end(args);						\
4193 }								\
4194 EXPORT_SYMBOL(func);
4195 
4196 define_dev_printk_level(_dev_emerg, KERN_EMERG);
4197 define_dev_printk_level(_dev_alert, KERN_ALERT);
4198 define_dev_printk_level(_dev_crit, KERN_CRIT);
4199 define_dev_printk_level(_dev_err, KERN_ERR);
4200 define_dev_printk_level(_dev_warn, KERN_WARNING);
4201 define_dev_printk_level(_dev_notice, KERN_NOTICE);
4202 define_dev_printk_level(_dev_info, KERN_INFO);
4203 
4204 #endif
4205 
4206 /**
4207  * dev_err_probe - probe error check and log helper
4208  * @dev: the pointer to the struct device
4209  * @err: error value to test
4210  * @fmt: printf-style format string
4211  * @...: arguments as specified in the format string
4212  *
4213  * This helper implements common pattern present in probe functions for error
4214  * checking: print debug or error message depending if the error value is
4215  * -EPROBE_DEFER and propagate error upwards.
4216  * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4217  * checked later by reading devices_deferred debugfs attribute.
4218  * It replaces code sequence:
4219  * 	if (err != -EPROBE_DEFER)
4220  * 		dev_err(dev, ...);
4221  * 	else
4222  * 		dev_dbg(dev, ...);
4223  * 	return err;
4224  * with
4225  * 	return dev_err_probe(dev, err, ...);
4226  *
4227  * Returns @err.
4228  *
4229  */
4230 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4231 {
4232 	struct va_format vaf;
4233 	va_list args;
4234 
4235 	va_start(args, fmt);
4236 	vaf.fmt = fmt;
4237 	vaf.va = &args;
4238 
4239 	if (err != -EPROBE_DEFER) {
4240 		dev_err(dev, "error %d: %pV", err, &vaf);
4241 	} else {
4242 		device_set_deferred_probe_reason(dev, &vaf);
4243 		dev_dbg(dev, "error %d: %pV", err, &vaf);
4244 	}
4245 
4246 	va_end(args);
4247 
4248 	return err;
4249 }
4250 EXPORT_SYMBOL_GPL(dev_err_probe);
4251 
4252 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4253 {
4254 	return fwnode && !IS_ERR(fwnode->secondary);
4255 }
4256 
4257 /**
4258  * set_primary_fwnode - Change the primary firmware node of a given device.
4259  * @dev: Device to handle.
4260  * @fwnode: New primary firmware node of the device.
4261  *
4262  * Set the device's firmware node pointer to @fwnode, but if a secondary
4263  * firmware node of the device is present, preserve it.
4264  */
4265 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4266 {
4267 	if (fwnode) {
4268 		struct fwnode_handle *fn = dev->fwnode;
4269 
4270 		if (fwnode_is_primary(fn))
4271 			fn = fn->secondary;
4272 
4273 		if (fn) {
4274 			WARN_ON(fwnode->secondary);
4275 			fwnode->secondary = fn;
4276 		}
4277 		dev->fwnode = fwnode;
4278 	} else {
4279 		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
4280 			dev->fwnode->secondary : NULL;
4281 	}
4282 }
4283 EXPORT_SYMBOL_GPL(set_primary_fwnode);
4284 
4285 /**
4286  * set_secondary_fwnode - Change the secondary firmware node of a given device.
4287  * @dev: Device to handle.
4288  * @fwnode: New secondary firmware node of the device.
4289  *
4290  * If a primary firmware node of the device is present, set its secondary
4291  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4292  * @fwnode.
4293  */
4294 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4295 {
4296 	if (fwnode)
4297 		fwnode->secondary = ERR_PTR(-ENODEV);
4298 
4299 	if (fwnode_is_primary(dev->fwnode))
4300 		dev->fwnode->secondary = fwnode;
4301 	else
4302 		dev->fwnode = fwnode;
4303 }
4304 EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4305 
4306 /**
4307  * device_set_of_node_from_dev - reuse device-tree node of another device
4308  * @dev: device whose device-tree node is being set
4309  * @dev2: device whose device-tree node is being reused
4310  *
4311  * Takes another reference to the new device-tree node after first dropping
4312  * any reference held to the old node.
4313  */
4314 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4315 {
4316 	of_node_put(dev->of_node);
4317 	dev->of_node = of_node_get(dev2->of_node);
4318 	dev->of_node_reused = true;
4319 }
4320 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4321 
4322 int device_match_name(struct device *dev, const void *name)
4323 {
4324 	return sysfs_streq(dev_name(dev), name);
4325 }
4326 EXPORT_SYMBOL_GPL(device_match_name);
4327 
4328 int device_match_of_node(struct device *dev, const void *np)
4329 {
4330 	return dev->of_node == np;
4331 }
4332 EXPORT_SYMBOL_GPL(device_match_of_node);
4333 
4334 int device_match_fwnode(struct device *dev, const void *fwnode)
4335 {
4336 	return dev_fwnode(dev) == fwnode;
4337 }
4338 EXPORT_SYMBOL_GPL(device_match_fwnode);
4339 
4340 int device_match_devt(struct device *dev, const void *pdevt)
4341 {
4342 	return dev->devt == *(dev_t *)pdevt;
4343 }
4344 EXPORT_SYMBOL_GPL(device_match_devt);
4345 
4346 int device_match_acpi_dev(struct device *dev, const void *adev)
4347 {
4348 	return ACPI_COMPANION(dev) == adev;
4349 }
4350 EXPORT_SYMBOL(device_match_acpi_dev);
4351 
4352 int device_match_any(struct device *dev, const void *unused)
4353 {
4354 	return 1;
4355 }
4356 EXPORT_SYMBOL_GPL(device_match_any);
4357