xref: /openbmc/linux/drivers/base/core.c (revision 1b39eacd)
1 /*
2  * drivers/base/core.c - core driver model code (device registration, etc)
3  *
4  * Copyright (c) 2002-3 Patrick Mochel
5  * Copyright (c) 2002-3 Open Source Development Labs
6  * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
7  * Copyright (c) 2006 Novell, Inc.
8  *
9  * This file is released under the GPLv2
10  *
11  */
12 
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/kallsyms.h>
26 #include <linux/mutex.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/netdevice.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sysfs.h>
31 
32 #include "base.h"
33 #include "power/power.h"
34 
35 #ifdef CONFIG_SYSFS_DEPRECATED
36 #ifdef CONFIG_SYSFS_DEPRECATED_V2
37 long sysfs_deprecated = 1;
38 #else
39 long sysfs_deprecated = 0;
40 #endif
41 static int __init sysfs_deprecated_setup(char *arg)
42 {
43 	return kstrtol(arg, 10, &sysfs_deprecated);
44 }
45 early_param("sysfs.deprecated", sysfs_deprecated_setup);
46 #endif
47 
48 /* Device links support. */
49 
50 #ifdef CONFIG_SRCU
51 static DEFINE_MUTEX(device_links_lock);
52 DEFINE_STATIC_SRCU(device_links_srcu);
53 
54 static inline void device_links_write_lock(void)
55 {
56 	mutex_lock(&device_links_lock);
57 }
58 
59 static inline void device_links_write_unlock(void)
60 {
61 	mutex_unlock(&device_links_lock);
62 }
63 
64 int device_links_read_lock(void)
65 {
66 	return srcu_read_lock(&device_links_srcu);
67 }
68 
69 void device_links_read_unlock(int idx)
70 {
71 	srcu_read_unlock(&device_links_srcu, idx);
72 }
73 #else /* !CONFIG_SRCU */
74 static DECLARE_RWSEM(device_links_lock);
75 
76 static inline void device_links_write_lock(void)
77 {
78 	down_write(&device_links_lock);
79 }
80 
81 static inline void device_links_write_unlock(void)
82 {
83 	up_write(&device_links_lock);
84 }
85 
86 int device_links_read_lock(void)
87 {
88 	down_read(&device_links_lock);
89 	return 0;
90 }
91 
92 void device_links_read_unlock(int not_used)
93 {
94 	up_read(&device_links_lock);
95 }
96 #endif /* !CONFIG_SRCU */
97 
98 /**
99  * device_is_dependent - Check if one device depends on another one
100  * @dev: Device to check dependencies for.
101  * @target: Device to check against.
102  *
103  * Check if @target depends on @dev or any device dependent on it (its child or
104  * its consumer etc).  Return 1 if that is the case or 0 otherwise.
105  */
106 static int device_is_dependent(struct device *dev, void *target)
107 {
108 	struct device_link *link;
109 	int ret;
110 
111 	if (WARN_ON(dev == target))
112 		return 1;
113 
114 	ret = device_for_each_child(dev, target, device_is_dependent);
115 	if (ret)
116 		return ret;
117 
118 	list_for_each_entry(link, &dev->links.consumers, s_node) {
119 		if (WARN_ON(link->consumer == target))
120 			return 1;
121 
122 		ret = device_is_dependent(link->consumer, target);
123 		if (ret)
124 			break;
125 	}
126 	return ret;
127 }
128 
129 static int device_reorder_to_tail(struct device *dev, void *not_used)
130 {
131 	struct device_link *link;
132 
133 	/*
134 	 * Devices that have not been registered yet will be put to the ends
135 	 * of the lists during the registration, so skip them here.
136 	 */
137 	if (device_is_registered(dev))
138 		devices_kset_move_last(dev);
139 
140 	if (device_pm_initialized(dev))
141 		device_pm_move_last(dev);
142 
143 	device_for_each_child(dev, NULL, device_reorder_to_tail);
144 	list_for_each_entry(link, &dev->links.consumers, s_node)
145 		device_reorder_to_tail(link->consumer, NULL);
146 
147 	return 0;
148 }
149 
150 /**
151  * device_link_add - Create a link between two devices.
152  * @consumer: Consumer end of the link.
153  * @supplier: Supplier end of the link.
154  * @flags: Link flags.
155  *
156  * The caller is responsible for the proper synchronization of the link creation
157  * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
158  * runtime PM framework to take the link into account.  Second, if the
159  * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
160  * be forced into the active metastate and reference-counted upon the creation
161  * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
162  * ignored.
163  *
164  * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically
165  * when the consumer device driver unbinds from it.  The combination of both
166  * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL
167  * to be returned.
168  *
169  * A side effect of the link creation is re-ordering of dpm_list and the
170  * devices_kset list by moving the consumer device and all devices depending
171  * on it to the ends of these lists (that does not happen to devices that have
172  * not been registered when this function is called).
173  *
174  * The supplier device is required to be registered when this function is called
175  * and NULL will be returned if that is not the case.  The consumer device need
176  * not be registered, however.
177  */
178 struct device_link *device_link_add(struct device *consumer,
179 				    struct device *supplier, u32 flags)
180 {
181 	struct device_link *link;
182 
183 	if (!consumer || !supplier ||
184 	    ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE)))
185 		return NULL;
186 
187 	device_links_write_lock();
188 	device_pm_lock();
189 
190 	/*
191 	 * If the supplier has not been fully registered yet or there is a
192 	 * reverse dependency between the consumer and the supplier already in
193 	 * the graph, return NULL.
194 	 */
195 	if (!device_pm_initialized(supplier)
196 	    || device_is_dependent(consumer, supplier)) {
197 		link = NULL;
198 		goto out;
199 	}
200 
201 	list_for_each_entry(link, &supplier->links.consumers, s_node)
202 		if (link->consumer == consumer)
203 			goto out;
204 
205 	link = kzalloc(sizeof(*link), GFP_KERNEL);
206 	if (!link)
207 		goto out;
208 
209 	if (flags & DL_FLAG_PM_RUNTIME) {
210 		if (flags & DL_FLAG_RPM_ACTIVE) {
211 			if (pm_runtime_get_sync(supplier) < 0) {
212 				pm_runtime_put_noidle(supplier);
213 				kfree(link);
214 				link = NULL;
215 				goto out;
216 			}
217 			link->rpm_active = true;
218 		}
219 		pm_runtime_new_link(consumer);
220 	}
221 	get_device(supplier);
222 	link->supplier = supplier;
223 	INIT_LIST_HEAD(&link->s_node);
224 	get_device(consumer);
225 	link->consumer = consumer;
226 	INIT_LIST_HEAD(&link->c_node);
227 	link->flags = flags;
228 
229 	/* Determine the initial link state. */
230 	if (flags & DL_FLAG_STATELESS) {
231 		link->status = DL_STATE_NONE;
232 	} else {
233 		switch (supplier->links.status) {
234 		case DL_DEV_DRIVER_BOUND:
235 			switch (consumer->links.status) {
236 			case DL_DEV_PROBING:
237 				/*
238 				 * Balance the decrementation of the supplier's
239 				 * runtime PM usage counter after consumer probe
240 				 * in driver_probe_device().
241 				 */
242 				if (flags & DL_FLAG_PM_RUNTIME)
243 					pm_runtime_get_sync(supplier);
244 
245 				link->status = DL_STATE_CONSUMER_PROBE;
246 				break;
247 			case DL_DEV_DRIVER_BOUND:
248 				link->status = DL_STATE_ACTIVE;
249 				break;
250 			default:
251 				link->status = DL_STATE_AVAILABLE;
252 				break;
253 			}
254 			break;
255 		case DL_DEV_UNBINDING:
256 			link->status = DL_STATE_SUPPLIER_UNBIND;
257 			break;
258 		default:
259 			link->status = DL_STATE_DORMANT;
260 			break;
261 		}
262 	}
263 
264 	/*
265 	 * Move the consumer and all of the devices depending on it to the end
266 	 * of dpm_list and the devices_kset list.
267 	 *
268 	 * It is necessary to hold dpm_list locked throughout all that or else
269 	 * we may end up suspending with a wrong ordering of it.
270 	 */
271 	device_reorder_to_tail(consumer, NULL);
272 
273 	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
274 	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
275 
276 	dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
277 
278  out:
279 	device_pm_unlock();
280 	device_links_write_unlock();
281 	return link;
282 }
283 EXPORT_SYMBOL_GPL(device_link_add);
284 
285 static void device_link_free(struct device_link *link)
286 {
287 	put_device(link->consumer);
288 	put_device(link->supplier);
289 	kfree(link);
290 }
291 
292 #ifdef CONFIG_SRCU
293 static void __device_link_free_srcu(struct rcu_head *rhead)
294 {
295 	device_link_free(container_of(rhead, struct device_link, rcu_head));
296 }
297 
298 static void __device_link_del(struct device_link *link)
299 {
300 	dev_info(link->consumer, "Dropping the link to %s\n",
301 		 dev_name(link->supplier));
302 
303 	if (link->flags & DL_FLAG_PM_RUNTIME)
304 		pm_runtime_drop_link(link->consumer);
305 
306 	list_del_rcu(&link->s_node);
307 	list_del_rcu(&link->c_node);
308 	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
309 }
310 #else /* !CONFIG_SRCU */
311 static void __device_link_del(struct device_link *link)
312 {
313 	dev_info(link->consumer, "Dropping the link to %s\n",
314 		 dev_name(link->supplier));
315 
316 	list_del(&link->s_node);
317 	list_del(&link->c_node);
318 	device_link_free(link);
319 }
320 #endif /* !CONFIG_SRCU */
321 
322 /**
323  * device_link_del - Delete a link between two devices.
324  * @link: Device link to delete.
325  *
326  * The caller must ensure proper synchronization of this function with runtime
327  * PM.
328  */
329 void device_link_del(struct device_link *link)
330 {
331 	device_links_write_lock();
332 	device_pm_lock();
333 	__device_link_del(link);
334 	device_pm_unlock();
335 	device_links_write_unlock();
336 }
337 EXPORT_SYMBOL_GPL(device_link_del);
338 
339 static void device_links_missing_supplier(struct device *dev)
340 {
341 	struct device_link *link;
342 
343 	list_for_each_entry(link, &dev->links.suppliers, c_node)
344 		if (link->status == DL_STATE_CONSUMER_PROBE)
345 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
346 }
347 
348 /**
349  * device_links_check_suppliers - Check presence of supplier drivers.
350  * @dev: Consumer device.
351  *
352  * Check links from this device to any suppliers.  Walk the list of the device's
353  * links to suppliers and see if all of them are available.  If not, simply
354  * return -EPROBE_DEFER.
355  *
356  * We need to guarantee that the supplier will not go away after the check has
357  * been positive here.  It only can go away in __device_release_driver() and
358  * that function  checks the device's links to consumers.  This means we need to
359  * mark the link as "consumer probe in progress" to make the supplier removal
360  * wait for us to complete (or bad things may happen).
361  *
362  * Links with the DL_FLAG_STATELESS flag set are ignored.
363  */
364 int device_links_check_suppliers(struct device *dev)
365 {
366 	struct device_link *link;
367 	int ret = 0;
368 
369 	device_links_write_lock();
370 
371 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
372 		if (link->flags & DL_FLAG_STATELESS)
373 			continue;
374 
375 		if (link->status != DL_STATE_AVAILABLE) {
376 			device_links_missing_supplier(dev);
377 			ret = -EPROBE_DEFER;
378 			break;
379 		}
380 		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
381 	}
382 	dev->links.status = DL_DEV_PROBING;
383 
384 	device_links_write_unlock();
385 	return ret;
386 }
387 
388 /**
389  * device_links_driver_bound - Update device links after probing its driver.
390  * @dev: Device to update the links for.
391  *
392  * The probe has been successful, so update links from this device to any
393  * consumers by changing their status to "available".
394  *
395  * Also change the status of @dev's links to suppliers to "active".
396  *
397  * Links with the DL_FLAG_STATELESS flag set are ignored.
398  */
399 void device_links_driver_bound(struct device *dev)
400 {
401 	struct device_link *link;
402 
403 	device_links_write_lock();
404 
405 	list_for_each_entry(link, &dev->links.consumers, s_node) {
406 		if (link->flags & DL_FLAG_STATELESS)
407 			continue;
408 
409 		WARN_ON(link->status != DL_STATE_DORMANT);
410 		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
411 	}
412 
413 	list_for_each_entry(link, &dev->links.suppliers, c_node) {
414 		if (link->flags & DL_FLAG_STATELESS)
415 			continue;
416 
417 		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
418 		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
419 	}
420 
421 	dev->links.status = DL_DEV_DRIVER_BOUND;
422 
423 	device_links_write_unlock();
424 }
425 
426 /**
427  * __device_links_no_driver - Update links of a device without a driver.
428  * @dev: Device without a drvier.
429  *
430  * Delete all non-persistent links from this device to any suppliers.
431  *
432  * Persistent links stay around, but their status is changed to "available",
433  * unless they already are in the "supplier unbind in progress" state in which
434  * case they need not be updated.
435  *
436  * Links with the DL_FLAG_STATELESS flag set are ignored.
437  */
438 static void __device_links_no_driver(struct device *dev)
439 {
440 	struct device_link *link, *ln;
441 
442 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
443 		if (link->flags & DL_FLAG_STATELESS)
444 			continue;
445 
446 		if (link->flags & DL_FLAG_AUTOREMOVE)
447 			__device_link_del(link);
448 		else if (link->status != DL_STATE_SUPPLIER_UNBIND)
449 			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
450 	}
451 
452 	dev->links.status = DL_DEV_NO_DRIVER;
453 }
454 
455 void device_links_no_driver(struct device *dev)
456 {
457 	device_links_write_lock();
458 	__device_links_no_driver(dev);
459 	device_links_write_unlock();
460 }
461 
462 /**
463  * device_links_driver_cleanup - Update links after driver removal.
464  * @dev: Device whose driver has just gone away.
465  *
466  * Update links to consumers for @dev by changing their status to "dormant" and
467  * invoke %__device_links_no_driver() to update links to suppliers for it as
468  * appropriate.
469  *
470  * Links with the DL_FLAG_STATELESS flag set are ignored.
471  */
472 void device_links_driver_cleanup(struct device *dev)
473 {
474 	struct device_link *link;
475 
476 	device_links_write_lock();
477 
478 	list_for_each_entry(link, &dev->links.consumers, s_node) {
479 		if (link->flags & DL_FLAG_STATELESS)
480 			continue;
481 
482 		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE);
483 		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
484 		WRITE_ONCE(link->status, DL_STATE_DORMANT);
485 	}
486 
487 	__device_links_no_driver(dev);
488 
489 	device_links_write_unlock();
490 }
491 
492 /**
493  * device_links_busy - Check if there are any busy links to consumers.
494  * @dev: Device to check.
495  *
496  * Check each consumer of the device and return 'true' if its link's status
497  * is one of "consumer probe" or "active" (meaning that the given consumer is
498  * probing right now or its driver is present).  Otherwise, change the link
499  * state to "supplier unbind" to prevent the consumer from being probed
500  * successfully going forward.
501  *
502  * Return 'false' if there are no probing or active consumers.
503  *
504  * Links with the DL_FLAG_STATELESS flag set are ignored.
505  */
506 bool device_links_busy(struct device *dev)
507 {
508 	struct device_link *link;
509 	bool ret = false;
510 
511 	device_links_write_lock();
512 
513 	list_for_each_entry(link, &dev->links.consumers, s_node) {
514 		if (link->flags & DL_FLAG_STATELESS)
515 			continue;
516 
517 		if (link->status == DL_STATE_CONSUMER_PROBE
518 		    || link->status == DL_STATE_ACTIVE) {
519 			ret = true;
520 			break;
521 		}
522 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
523 	}
524 
525 	dev->links.status = DL_DEV_UNBINDING;
526 
527 	device_links_write_unlock();
528 	return ret;
529 }
530 
531 /**
532  * device_links_unbind_consumers - Force unbind consumers of the given device.
533  * @dev: Device to unbind the consumers of.
534  *
535  * Walk the list of links to consumers for @dev and if any of them is in the
536  * "consumer probe" state, wait for all device probes in progress to complete
537  * and start over.
538  *
539  * If that's not the case, change the status of the link to "supplier unbind"
540  * and check if the link was in the "active" state.  If so, force the consumer
541  * driver to unbind and start over (the consumer will not re-probe as we have
542  * changed the state of the link already).
543  *
544  * Links with the DL_FLAG_STATELESS flag set are ignored.
545  */
546 void device_links_unbind_consumers(struct device *dev)
547 {
548 	struct device_link *link;
549 
550  start:
551 	device_links_write_lock();
552 
553 	list_for_each_entry(link, &dev->links.consumers, s_node) {
554 		enum device_link_state status;
555 
556 		if (link->flags & DL_FLAG_STATELESS)
557 			continue;
558 
559 		status = link->status;
560 		if (status == DL_STATE_CONSUMER_PROBE) {
561 			device_links_write_unlock();
562 
563 			wait_for_device_probe();
564 			goto start;
565 		}
566 		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
567 		if (status == DL_STATE_ACTIVE) {
568 			struct device *consumer = link->consumer;
569 
570 			get_device(consumer);
571 
572 			device_links_write_unlock();
573 
574 			device_release_driver_internal(consumer, NULL,
575 						       consumer->parent);
576 			put_device(consumer);
577 			goto start;
578 		}
579 	}
580 
581 	device_links_write_unlock();
582 }
583 
584 /**
585  * device_links_purge - Delete existing links to other devices.
586  * @dev: Target device.
587  */
588 static void device_links_purge(struct device *dev)
589 {
590 	struct device_link *link, *ln;
591 
592 	/*
593 	 * Delete all of the remaining links from this device to any other
594 	 * devices (either consumers or suppliers).
595 	 */
596 	device_links_write_lock();
597 
598 	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
599 		WARN_ON(link->status == DL_STATE_ACTIVE);
600 		__device_link_del(link);
601 	}
602 
603 	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
604 		WARN_ON(link->status != DL_STATE_DORMANT &&
605 			link->status != DL_STATE_NONE);
606 		__device_link_del(link);
607 	}
608 
609 	device_links_write_unlock();
610 }
611 
612 /* Device links support end. */
613 
614 int (*platform_notify)(struct device *dev) = NULL;
615 int (*platform_notify_remove)(struct device *dev) = NULL;
616 static struct kobject *dev_kobj;
617 struct kobject *sysfs_dev_char_kobj;
618 struct kobject *sysfs_dev_block_kobj;
619 
620 static DEFINE_MUTEX(device_hotplug_lock);
621 
622 void lock_device_hotplug(void)
623 {
624 	mutex_lock(&device_hotplug_lock);
625 }
626 
627 void unlock_device_hotplug(void)
628 {
629 	mutex_unlock(&device_hotplug_lock);
630 }
631 
632 int lock_device_hotplug_sysfs(void)
633 {
634 	if (mutex_trylock(&device_hotplug_lock))
635 		return 0;
636 
637 	/* Avoid busy looping (5 ms of sleep should do). */
638 	msleep(5);
639 	return restart_syscall();
640 }
641 
642 #ifdef CONFIG_BLOCK
643 static inline int device_is_not_partition(struct device *dev)
644 {
645 	return !(dev->type == &part_type);
646 }
647 #else
648 static inline int device_is_not_partition(struct device *dev)
649 {
650 	return 1;
651 }
652 #endif
653 
654 /**
655  * dev_driver_string - Return a device's driver name, if at all possible
656  * @dev: struct device to get the name of
657  *
658  * Will return the device's driver's name if it is bound to a device.  If
659  * the device is not bound to a driver, it will return the name of the bus
660  * it is attached to.  If it is not attached to a bus either, an empty
661  * string will be returned.
662  */
663 const char *dev_driver_string(const struct device *dev)
664 {
665 	struct device_driver *drv;
666 
667 	/* dev->driver can change to NULL underneath us because of unbinding,
668 	 * so be careful about accessing it.  dev->bus and dev->class should
669 	 * never change once they are set, so they don't need special care.
670 	 */
671 	drv = READ_ONCE(dev->driver);
672 	return drv ? drv->name :
673 			(dev->bus ? dev->bus->name :
674 			(dev->class ? dev->class->name : ""));
675 }
676 EXPORT_SYMBOL(dev_driver_string);
677 
678 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
679 
680 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
681 			     char *buf)
682 {
683 	struct device_attribute *dev_attr = to_dev_attr(attr);
684 	struct device *dev = kobj_to_dev(kobj);
685 	ssize_t ret = -EIO;
686 
687 	if (dev_attr->show)
688 		ret = dev_attr->show(dev, dev_attr, buf);
689 	if (ret >= (ssize_t)PAGE_SIZE) {
690 		print_symbol("dev_attr_show: %s returned bad count\n",
691 				(unsigned long)dev_attr->show);
692 	}
693 	return ret;
694 }
695 
696 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
697 			      const char *buf, size_t count)
698 {
699 	struct device_attribute *dev_attr = to_dev_attr(attr);
700 	struct device *dev = kobj_to_dev(kobj);
701 	ssize_t ret = -EIO;
702 
703 	if (dev_attr->store)
704 		ret = dev_attr->store(dev, dev_attr, buf, count);
705 	return ret;
706 }
707 
708 static const struct sysfs_ops dev_sysfs_ops = {
709 	.show	= dev_attr_show,
710 	.store	= dev_attr_store,
711 };
712 
713 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
714 
715 ssize_t device_store_ulong(struct device *dev,
716 			   struct device_attribute *attr,
717 			   const char *buf, size_t size)
718 {
719 	struct dev_ext_attribute *ea = to_ext_attr(attr);
720 	char *end;
721 	unsigned long new = simple_strtoul(buf, &end, 0);
722 	if (end == buf)
723 		return -EINVAL;
724 	*(unsigned long *)(ea->var) = new;
725 	/* Always return full write size even if we didn't consume all */
726 	return size;
727 }
728 EXPORT_SYMBOL_GPL(device_store_ulong);
729 
730 ssize_t device_show_ulong(struct device *dev,
731 			  struct device_attribute *attr,
732 			  char *buf)
733 {
734 	struct dev_ext_attribute *ea = to_ext_attr(attr);
735 	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
736 }
737 EXPORT_SYMBOL_GPL(device_show_ulong);
738 
739 ssize_t device_store_int(struct device *dev,
740 			 struct device_attribute *attr,
741 			 const char *buf, size_t size)
742 {
743 	struct dev_ext_attribute *ea = to_ext_attr(attr);
744 	char *end;
745 	long new = simple_strtol(buf, &end, 0);
746 	if (end == buf || new > INT_MAX || new < INT_MIN)
747 		return -EINVAL;
748 	*(int *)(ea->var) = new;
749 	/* Always return full write size even if we didn't consume all */
750 	return size;
751 }
752 EXPORT_SYMBOL_GPL(device_store_int);
753 
754 ssize_t device_show_int(struct device *dev,
755 			struct device_attribute *attr,
756 			char *buf)
757 {
758 	struct dev_ext_attribute *ea = to_ext_attr(attr);
759 
760 	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
761 }
762 EXPORT_SYMBOL_GPL(device_show_int);
763 
764 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
765 			  const char *buf, size_t size)
766 {
767 	struct dev_ext_attribute *ea = to_ext_attr(attr);
768 
769 	if (strtobool(buf, ea->var) < 0)
770 		return -EINVAL;
771 
772 	return size;
773 }
774 EXPORT_SYMBOL_GPL(device_store_bool);
775 
776 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
777 			 char *buf)
778 {
779 	struct dev_ext_attribute *ea = to_ext_attr(attr);
780 
781 	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
782 }
783 EXPORT_SYMBOL_GPL(device_show_bool);
784 
785 /**
786  * device_release - free device structure.
787  * @kobj: device's kobject.
788  *
789  * This is called once the reference count for the object
790  * reaches 0. We forward the call to the device's release
791  * method, which should handle actually freeing the structure.
792  */
793 static void device_release(struct kobject *kobj)
794 {
795 	struct device *dev = kobj_to_dev(kobj);
796 	struct device_private *p = dev->p;
797 
798 	/*
799 	 * Some platform devices are driven without driver attached
800 	 * and managed resources may have been acquired.  Make sure
801 	 * all resources are released.
802 	 *
803 	 * Drivers still can add resources into device after device
804 	 * is deleted but alive, so release devres here to avoid
805 	 * possible memory leak.
806 	 */
807 	devres_release_all(dev);
808 
809 	if (dev->release)
810 		dev->release(dev);
811 	else if (dev->type && dev->type->release)
812 		dev->type->release(dev);
813 	else if (dev->class && dev->class->dev_release)
814 		dev->class->dev_release(dev);
815 	else
816 		WARN(1, KERN_ERR "Device '%s' does not have a release() "
817 			"function, it is broken and must be fixed.\n",
818 			dev_name(dev));
819 	kfree(p);
820 }
821 
822 static const void *device_namespace(struct kobject *kobj)
823 {
824 	struct device *dev = kobj_to_dev(kobj);
825 	const void *ns = NULL;
826 
827 	if (dev->class && dev->class->ns_type)
828 		ns = dev->class->namespace(dev);
829 
830 	return ns;
831 }
832 
833 static struct kobj_type device_ktype = {
834 	.release	= device_release,
835 	.sysfs_ops	= &dev_sysfs_ops,
836 	.namespace	= device_namespace,
837 };
838 
839 
840 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
841 {
842 	struct kobj_type *ktype = get_ktype(kobj);
843 
844 	if (ktype == &device_ktype) {
845 		struct device *dev = kobj_to_dev(kobj);
846 		if (dev->bus)
847 			return 1;
848 		if (dev->class)
849 			return 1;
850 	}
851 	return 0;
852 }
853 
854 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
855 {
856 	struct device *dev = kobj_to_dev(kobj);
857 
858 	if (dev->bus)
859 		return dev->bus->name;
860 	if (dev->class)
861 		return dev->class->name;
862 	return NULL;
863 }
864 
865 static int dev_uevent(struct kset *kset, struct kobject *kobj,
866 		      struct kobj_uevent_env *env)
867 {
868 	struct device *dev = kobj_to_dev(kobj);
869 	int retval = 0;
870 
871 	/* add device node properties if present */
872 	if (MAJOR(dev->devt)) {
873 		const char *tmp;
874 		const char *name;
875 		umode_t mode = 0;
876 		kuid_t uid = GLOBAL_ROOT_UID;
877 		kgid_t gid = GLOBAL_ROOT_GID;
878 
879 		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
880 		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
881 		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
882 		if (name) {
883 			add_uevent_var(env, "DEVNAME=%s", name);
884 			if (mode)
885 				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
886 			if (!uid_eq(uid, GLOBAL_ROOT_UID))
887 				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
888 			if (!gid_eq(gid, GLOBAL_ROOT_GID))
889 				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
890 			kfree(tmp);
891 		}
892 	}
893 
894 	if (dev->type && dev->type->name)
895 		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
896 
897 	if (dev->driver)
898 		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
899 
900 	/* Add common DT information about the device */
901 	of_device_uevent(dev, env);
902 
903 	/* have the bus specific function add its stuff */
904 	if (dev->bus && dev->bus->uevent) {
905 		retval = dev->bus->uevent(dev, env);
906 		if (retval)
907 			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
908 				 dev_name(dev), __func__, retval);
909 	}
910 
911 	/* have the class specific function add its stuff */
912 	if (dev->class && dev->class->dev_uevent) {
913 		retval = dev->class->dev_uevent(dev, env);
914 		if (retval)
915 			pr_debug("device: '%s': %s: class uevent() "
916 				 "returned %d\n", dev_name(dev),
917 				 __func__, retval);
918 	}
919 
920 	/* have the device type specific function add its stuff */
921 	if (dev->type && dev->type->uevent) {
922 		retval = dev->type->uevent(dev, env);
923 		if (retval)
924 			pr_debug("device: '%s': %s: dev_type uevent() "
925 				 "returned %d\n", dev_name(dev),
926 				 __func__, retval);
927 	}
928 
929 	return retval;
930 }
931 
932 static const struct kset_uevent_ops device_uevent_ops = {
933 	.filter =	dev_uevent_filter,
934 	.name =		dev_uevent_name,
935 	.uevent =	dev_uevent,
936 };
937 
938 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
939 			   char *buf)
940 {
941 	struct kobject *top_kobj;
942 	struct kset *kset;
943 	struct kobj_uevent_env *env = NULL;
944 	int i;
945 	size_t count = 0;
946 	int retval;
947 
948 	/* search the kset, the device belongs to */
949 	top_kobj = &dev->kobj;
950 	while (!top_kobj->kset && top_kobj->parent)
951 		top_kobj = top_kobj->parent;
952 	if (!top_kobj->kset)
953 		goto out;
954 
955 	kset = top_kobj->kset;
956 	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
957 		goto out;
958 
959 	/* respect filter */
960 	if (kset->uevent_ops && kset->uevent_ops->filter)
961 		if (!kset->uevent_ops->filter(kset, &dev->kobj))
962 			goto out;
963 
964 	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
965 	if (!env)
966 		return -ENOMEM;
967 
968 	/* let the kset specific function add its keys */
969 	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
970 	if (retval)
971 		goto out;
972 
973 	/* copy keys to file */
974 	for (i = 0; i < env->envp_idx; i++)
975 		count += sprintf(&buf[count], "%s\n", env->envp[i]);
976 out:
977 	kfree(env);
978 	return count;
979 }
980 
981 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
982 			    const char *buf, size_t count)
983 {
984 	if (kobject_synth_uevent(&dev->kobj, buf, count))
985 		dev_err(dev, "uevent: failed to send synthetic uevent\n");
986 
987 	return count;
988 }
989 static DEVICE_ATTR_RW(uevent);
990 
991 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
992 			   char *buf)
993 {
994 	bool val;
995 
996 	device_lock(dev);
997 	val = !dev->offline;
998 	device_unlock(dev);
999 	return sprintf(buf, "%u\n", val);
1000 }
1001 
1002 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1003 			    const char *buf, size_t count)
1004 {
1005 	bool val;
1006 	int ret;
1007 
1008 	ret = strtobool(buf, &val);
1009 	if (ret < 0)
1010 		return ret;
1011 
1012 	ret = lock_device_hotplug_sysfs();
1013 	if (ret)
1014 		return ret;
1015 
1016 	ret = val ? device_online(dev) : device_offline(dev);
1017 	unlock_device_hotplug();
1018 	return ret < 0 ? ret : count;
1019 }
1020 static DEVICE_ATTR_RW(online);
1021 
1022 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1023 {
1024 	return sysfs_create_groups(&dev->kobj, groups);
1025 }
1026 EXPORT_SYMBOL_GPL(device_add_groups);
1027 
1028 void device_remove_groups(struct device *dev,
1029 			  const struct attribute_group **groups)
1030 {
1031 	sysfs_remove_groups(&dev->kobj, groups);
1032 }
1033 EXPORT_SYMBOL_GPL(device_remove_groups);
1034 
1035 union device_attr_group_devres {
1036 	const struct attribute_group *group;
1037 	const struct attribute_group **groups;
1038 };
1039 
1040 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1041 {
1042 	return ((union device_attr_group_devres *)res)->group == data;
1043 }
1044 
1045 static void devm_attr_group_remove(struct device *dev, void *res)
1046 {
1047 	union device_attr_group_devres *devres = res;
1048 	const struct attribute_group *group = devres->group;
1049 
1050 	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1051 	sysfs_remove_group(&dev->kobj, group);
1052 }
1053 
1054 static void devm_attr_groups_remove(struct device *dev, void *res)
1055 {
1056 	union device_attr_group_devres *devres = res;
1057 	const struct attribute_group **groups = devres->groups;
1058 
1059 	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1060 	sysfs_remove_groups(&dev->kobj, groups);
1061 }
1062 
1063 /**
1064  * devm_device_add_group - given a device, create a managed attribute group
1065  * @dev:	The device to create the group for
1066  * @grp:	The attribute group to create
1067  *
1068  * This function creates a group for the first time.  It will explicitly
1069  * warn and error if any of the attribute files being created already exist.
1070  *
1071  * Returns 0 on success or error code on failure.
1072  */
1073 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1074 {
1075 	union device_attr_group_devres *devres;
1076 	int error;
1077 
1078 	devres = devres_alloc(devm_attr_group_remove,
1079 			      sizeof(*devres), GFP_KERNEL);
1080 	if (!devres)
1081 		return -ENOMEM;
1082 
1083 	error = sysfs_create_group(&dev->kobj, grp);
1084 	if (error) {
1085 		devres_free(devres);
1086 		return error;
1087 	}
1088 
1089 	devres->group = grp;
1090 	devres_add(dev, devres);
1091 	return 0;
1092 }
1093 EXPORT_SYMBOL_GPL(devm_device_add_group);
1094 
1095 /**
1096  * devm_device_remove_group: remove a managed group from a device
1097  * @dev:	device to remove the group from
1098  * @grp:	group to remove
1099  *
1100  * This function removes a group of attributes from a device. The attributes
1101  * previously have to have been created for this group, otherwise it will fail.
1102  */
1103 void devm_device_remove_group(struct device *dev,
1104 			      const struct attribute_group *grp)
1105 {
1106 	WARN_ON(devres_release(dev, devm_attr_group_remove,
1107 			       devm_attr_group_match,
1108 			       /* cast away const */ (void *)grp));
1109 }
1110 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1111 
1112 /**
1113  * devm_device_add_groups - create a bunch of managed attribute groups
1114  * @dev:	The device to create the group for
1115  * @groups:	The attribute groups to create, NULL terminated
1116  *
1117  * This function creates a bunch of managed attribute groups.  If an error
1118  * occurs when creating a group, all previously created groups will be
1119  * removed, unwinding everything back to the original state when this
1120  * function was called.  It will explicitly warn and error if any of the
1121  * attribute files being created already exist.
1122  *
1123  * Returns 0 on success or error code from sysfs_create_group on failure.
1124  */
1125 int devm_device_add_groups(struct device *dev,
1126 			   const struct attribute_group **groups)
1127 {
1128 	union device_attr_group_devres *devres;
1129 	int error;
1130 
1131 	devres = devres_alloc(devm_attr_groups_remove,
1132 			      sizeof(*devres), GFP_KERNEL);
1133 	if (!devres)
1134 		return -ENOMEM;
1135 
1136 	error = sysfs_create_groups(&dev->kobj, groups);
1137 	if (error) {
1138 		devres_free(devres);
1139 		return error;
1140 	}
1141 
1142 	devres->groups = groups;
1143 	devres_add(dev, devres);
1144 	return 0;
1145 }
1146 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1147 
1148 /**
1149  * devm_device_remove_groups - remove a list of managed groups
1150  *
1151  * @dev:	The device for the groups to be removed from
1152  * @groups:	NULL terminated list of groups to be removed
1153  *
1154  * If groups is not NULL, remove the specified groups from the device.
1155  */
1156 void devm_device_remove_groups(struct device *dev,
1157 			       const struct attribute_group **groups)
1158 {
1159 	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1160 			       devm_attr_group_match,
1161 			       /* cast away const */ (void *)groups));
1162 }
1163 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1164 
1165 static int device_add_attrs(struct device *dev)
1166 {
1167 	struct class *class = dev->class;
1168 	const struct device_type *type = dev->type;
1169 	int error;
1170 
1171 	if (class) {
1172 		error = device_add_groups(dev, class->dev_groups);
1173 		if (error)
1174 			return error;
1175 	}
1176 
1177 	if (type) {
1178 		error = device_add_groups(dev, type->groups);
1179 		if (error)
1180 			goto err_remove_class_groups;
1181 	}
1182 
1183 	error = device_add_groups(dev, dev->groups);
1184 	if (error)
1185 		goto err_remove_type_groups;
1186 
1187 	if (device_supports_offline(dev) && !dev->offline_disabled) {
1188 		error = device_create_file(dev, &dev_attr_online);
1189 		if (error)
1190 			goto err_remove_dev_groups;
1191 	}
1192 
1193 	return 0;
1194 
1195  err_remove_dev_groups:
1196 	device_remove_groups(dev, dev->groups);
1197  err_remove_type_groups:
1198 	if (type)
1199 		device_remove_groups(dev, type->groups);
1200  err_remove_class_groups:
1201 	if (class)
1202 		device_remove_groups(dev, class->dev_groups);
1203 
1204 	return error;
1205 }
1206 
1207 static void device_remove_attrs(struct device *dev)
1208 {
1209 	struct class *class = dev->class;
1210 	const struct device_type *type = dev->type;
1211 
1212 	device_remove_file(dev, &dev_attr_online);
1213 	device_remove_groups(dev, dev->groups);
1214 
1215 	if (type)
1216 		device_remove_groups(dev, type->groups);
1217 
1218 	if (class)
1219 		device_remove_groups(dev, class->dev_groups);
1220 }
1221 
1222 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1223 			char *buf)
1224 {
1225 	return print_dev_t(buf, dev->devt);
1226 }
1227 static DEVICE_ATTR_RO(dev);
1228 
1229 /* /sys/devices/ */
1230 struct kset *devices_kset;
1231 
1232 /**
1233  * devices_kset_move_before - Move device in the devices_kset's list.
1234  * @deva: Device to move.
1235  * @devb: Device @deva should come before.
1236  */
1237 static void devices_kset_move_before(struct device *deva, struct device *devb)
1238 {
1239 	if (!devices_kset)
1240 		return;
1241 	pr_debug("devices_kset: Moving %s before %s\n",
1242 		 dev_name(deva), dev_name(devb));
1243 	spin_lock(&devices_kset->list_lock);
1244 	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1245 	spin_unlock(&devices_kset->list_lock);
1246 }
1247 
1248 /**
1249  * devices_kset_move_after - Move device in the devices_kset's list.
1250  * @deva: Device to move
1251  * @devb: Device @deva should come after.
1252  */
1253 static void devices_kset_move_after(struct device *deva, struct device *devb)
1254 {
1255 	if (!devices_kset)
1256 		return;
1257 	pr_debug("devices_kset: Moving %s after %s\n",
1258 		 dev_name(deva), dev_name(devb));
1259 	spin_lock(&devices_kset->list_lock);
1260 	list_move(&deva->kobj.entry, &devb->kobj.entry);
1261 	spin_unlock(&devices_kset->list_lock);
1262 }
1263 
1264 /**
1265  * devices_kset_move_last - move the device to the end of devices_kset's list.
1266  * @dev: device to move
1267  */
1268 void devices_kset_move_last(struct device *dev)
1269 {
1270 	if (!devices_kset)
1271 		return;
1272 	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1273 	spin_lock(&devices_kset->list_lock);
1274 	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1275 	spin_unlock(&devices_kset->list_lock);
1276 }
1277 
1278 /**
1279  * device_create_file - create sysfs attribute file for device.
1280  * @dev: device.
1281  * @attr: device attribute descriptor.
1282  */
1283 int device_create_file(struct device *dev,
1284 		       const struct device_attribute *attr)
1285 {
1286 	int error = 0;
1287 
1288 	if (dev) {
1289 		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1290 			"Attribute %s: write permission without 'store'\n",
1291 			attr->attr.name);
1292 		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1293 			"Attribute %s: read permission without 'show'\n",
1294 			attr->attr.name);
1295 		error = sysfs_create_file(&dev->kobj, &attr->attr);
1296 	}
1297 
1298 	return error;
1299 }
1300 EXPORT_SYMBOL_GPL(device_create_file);
1301 
1302 /**
1303  * device_remove_file - remove sysfs attribute file.
1304  * @dev: device.
1305  * @attr: device attribute descriptor.
1306  */
1307 void device_remove_file(struct device *dev,
1308 			const struct device_attribute *attr)
1309 {
1310 	if (dev)
1311 		sysfs_remove_file(&dev->kobj, &attr->attr);
1312 }
1313 EXPORT_SYMBOL_GPL(device_remove_file);
1314 
1315 /**
1316  * device_remove_file_self - remove sysfs attribute file from its own method.
1317  * @dev: device.
1318  * @attr: device attribute descriptor.
1319  *
1320  * See kernfs_remove_self() for details.
1321  */
1322 bool device_remove_file_self(struct device *dev,
1323 			     const struct device_attribute *attr)
1324 {
1325 	if (dev)
1326 		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1327 	else
1328 		return false;
1329 }
1330 EXPORT_SYMBOL_GPL(device_remove_file_self);
1331 
1332 /**
1333  * device_create_bin_file - create sysfs binary attribute file for device.
1334  * @dev: device.
1335  * @attr: device binary attribute descriptor.
1336  */
1337 int device_create_bin_file(struct device *dev,
1338 			   const struct bin_attribute *attr)
1339 {
1340 	int error = -EINVAL;
1341 	if (dev)
1342 		error = sysfs_create_bin_file(&dev->kobj, attr);
1343 	return error;
1344 }
1345 EXPORT_SYMBOL_GPL(device_create_bin_file);
1346 
1347 /**
1348  * device_remove_bin_file - remove sysfs binary attribute file
1349  * @dev: device.
1350  * @attr: device binary attribute descriptor.
1351  */
1352 void device_remove_bin_file(struct device *dev,
1353 			    const struct bin_attribute *attr)
1354 {
1355 	if (dev)
1356 		sysfs_remove_bin_file(&dev->kobj, attr);
1357 }
1358 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1359 
1360 static void klist_children_get(struct klist_node *n)
1361 {
1362 	struct device_private *p = to_device_private_parent(n);
1363 	struct device *dev = p->device;
1364 
1365 	get_device(dev);
1366 }
1367 
1368 static void klist_children_put(struct klist_node *n)
1369 {
1370 	struct device_private *p = to_device_private_parent(n);
1371 	struct device *dev = p->device;
1372 
1373 	put_device(dev);
1374 }
1375 
1376 /**
1377  * device_initialize - init device structure.
1378  * @dev: device.
1379  *
1380  * This prepares the device for use by other layers by initializing
1381  * its fields.
1382  * It is the first half of device_register(), if called by
1383  * that function, though it can also be called separately, so one
1384  * may use @dev's fields. In particular, get_device()/put_device()
1385  * may be used for reference counting of @dev after calling this
1386  * function.
1387  *
1388  * All fields in @dev must be initialized by the caller to 0, except
1389  * for those explicitly set to some other value.  The simplest
1390  * approach is to use kzalloc() to allocate the structure containing
1391  * @dev.
1392  *
1393  * NOTE: Use put_device() to give up your reference instead of freeing
1394  * @dev directly once you have called this function.
1395  */
1396 void device_initialize(struct device *dev)
1397 {
1398 	dev->kobj.kset = devices_kset;
1399 	kobject_init(&dev->kobj, &device_ktype);
1400 	INIT_LIST_HEAD(&dev->dma_pools);
1401 	mutex_init(&dev->mutex);
1402 	lockdep_set_novalidate_class(&dev->mutex);
1403 	spin_lock_init(&dev->devres_lock);
1404 	INIT_LIST_HEAD(&dev->devres_head);
1405 	device_pm_init(dev);
1406 	set_dev_node(dev, -1);
1407 #ifdef CONFIG_GENERIC_MSI_IRQ
1408 	INIT_LIST_HEAD(&dev->msi_list);
1409 #endif
1410 	INIT_LIST_HEAD(&dev->links.consumers);
1411 	INIT_LIST_HEAD(&dev->links.suppliers);
1412 	dev->links.status = DL_DEV_NO_DRIVER;
1413 }
1414 EXPORT_SYMBOL_GPL(device_initialize);
1415 
1416 struct kobject *virtual_device_parent(struct device *dev)
1417 {
1418 	static struct kobject *virtual_dir = NULL;
1419 
1420 	if (!virtual_dir)
1421 		virtual_dir = kobject_create_and_add("virtual",
1422 						     &devices_kset->kobj);
1423 
1424 	return virtual_dir;
1425 }
1426 
1427 struct class_dir {
1428 	struct kobject kobj;
1429 	struct class *class;
1430 };
1431 
1432 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1433 
1434 static void class_dir_release(struct kobject *kobj)
1435 {
1436 	struct class_dir *dir = to_class_dir(kobj);
1437 	kfree(dir);
1438 }
1439 
1440 static const
1441 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1442 {
1443 	struct class_dir *dir = to_class_dir(kobj);
1444 	return dir->class->ns_type;
1445 }
1446 
1447 static struct kobj_type class_dir_ktype = {
1448 	.release	= class_dir_release,
1449 	.sysfs_ops	= &kobj_sysfs_ops,
1450 	.child_ns_type	= class_dir_child_ns_type
1451 };
1452 
1453 static struct kobject *
1454 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1455 {
1456 	struct class_dir *dir;
1457 	int retval;
1458 
1459 	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1460 	if (!dir)
1461 		return NULL;
1462 
1463 	dir->class = class;
1464 	kobject_init(&dir->kobj, &class_dir_ktype);
1465 
1466 	dir->kobj.kset = &class->p->glue_dirs;
1467 
1468 	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1469 	if (retval < 0) {
1470 		kobject_put(&dir->kobj);
1471 		return NULL;
1472 	}
1473 	return &dir->kobj;
1474 }
1475 
1476 static DEFINE_MUTEX(gdp_mutex);
1477 
1478 static struct kobject *get_device_parent(struct device *dev,
1479 					 struct device *parent)
1480 {
1481 	if (dev->class) {
1482 		struct kobject *kobj = NULL;
1483 		struct kobject *parent_kobj;
1484 		struct kobject *k;
1485 
1486 #ifdef CONFIG_BLOCK
1487 		/* block disks show up in /sys/block */
1488 		if (sysfs_deprecated && dev->class == &block_class) {
1489 			if (parent && parent->class == &block_class)
1490 				return &parent->kobj;
1491 			return &block_class.p->subsys.kobj;
1492 		}
1493 #endif
1494 
1495 		/*
1496 		 * If we have no parent, we live in "virtual".
1497 		 * Class-devices with a non class-device as parent, live
1498 		 * in a "glue" directory to prevent namespace collisions.
1499 		 */
1500 		if (parent == NULL)
1501 			parent_kobj = virtual_device_parent(dev);
1502 		else if (parent->class && !dev->class->ns_type)
1503 			return &parent->kobj;
1504 		else
1505 			parent_kobj = &parent->kobj;
1506 
1507 		mutex_lock(&gdp_mutex);
1508 
1509 		/* find our class-directory at the parent and reference it */
1510 		spin_lock(&dev->class->p->glue_dirs.list_lock);
1511 		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1512 			if (k->parent == parent_kobj) {
1513 				kobj = kobject_get(k);
1514 				break;
1515 			}
1516 		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1517 		if (kobj) {
1518 			mutex_unlock(&gdp_mutex);
1519 			return kobj;
1520 		}
1521 
1522 		/* or create a new class-directory at the parent device */
1523 		k = class_dir_create_and_add(dev->class, parent_kobj);
1524 		/* do not emit an uevent for this simple "glue" directory */
1525 		mutex_unlock(&gdp_mutex);
1526 		return k;
1527 	}
1528 
1529 	/* subsystems can specify a default root directory for their devices */
1530 	if (!parent && dev->bus && dev->bus->dev_root)
1531 		return &dev->bus->dev_root->kobj;
1532 
1533 	if (parent)
1534 		return &parent->kobj;
1535 	return NULL;
1536 }
1537 
1538 static inline bool live_in_glue_dir(struct kobject *kobj,
1539 				    struct device *dev)
1540 {
1541 	if (!kobj || !dev->class ||
1542 	    kobj->kset != &dev->class->p->glue_dirs)
1543 		return false;
1544 	return true;
1545 }
1546 
1547 static inline struct kobject *get_glue_dir(struct device *dev)
1548 {
1549 	return dev->kobj.parent;
1550 }
1551 
1552 /*
1553  * make sure cleaning up dir as the last step, we need to make
1554  * sure .release handler of kobject is run with holding the
1555  * global lock
1556  */
1557 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1558 {
1559 	/* see if we live in a "glue" directory */
1560 	if (!live_in_glue_dir(glue_dir, dev))
1561 		return;
1562 
1563 	mutex_lock(&gdp_mutex);
1564 	kobject_put(glue_dir);
1565 	mutex_unlock(&gdp_mutex);
1566 }
1567 
1568 static int device_add_class_symlinks(struct device *dev)
1569 {
1570 	struct device_node *of_node = dev_of_node(dev);
1571 	int error;
1572 
1573 	if (of_node) {
1574 		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1575 		if (error)
1576 			dev_warn(dev, "Error %d creating of_node link\n",error);
1577 		/* An error here doesn't warrant bringing down the device */
1578 	}
1579 
1580 	if (!dev->class)
1581 		return 0;
1582 
1583 	error = sysfs_create_link(&dev->kobj,
1584 				  &dev->class->p->subsys.kobj,
1585 				  "subsystem");
1586 	if (error)
1587 		goto out_devnode;
1588 
1589 	if (dev->parent && device_is_not_partition(dev)) {
1590 		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1591 					  "device");
1592 		if (error)
1593 			goto out_subsys;
1594 	}
1595 
1596 #ifdef CONFIG_BLOCK
1597 	/* /sys/block has directories and does not need symlinks */
1598 	if (sysfs_deprecated && dev->class == &block_class)
1599 		return 0;
1600 #endif
1601 
1602 	/* link in the class directory pointing to the device */
1603 	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1604 				  &dev->kobj, dev_name(dev));
1605 	if (error)
1606 		goto out_device;
1607 
1608 	return 0;
1609 
1610 out_device:
1611 	sysfs_remove_link(&dev->kobj, "device");
1612 
1613 out_subsys:
1614 	sysfs_remove_link(&dev->kobj, "subsystem");
1615 out_devnode:
1616 	sysfs_remove_link(&dev->kobj, "of_node");
1617 	return error;
1618 }
1619 
1620 static void device_remove_class_symlinks(struct device *dev)
1621 {
1622 	if (dev_of_node(dev))
1623 		sysfs_remove_link(&dev->kobj, "of_node");
1624 
1625 	if (!dev->class)
1626 		return;
1627 
1628 	if (dev->parent && device_is_not_partition(dev))
1629 		sysfs_remove_link(&dev->kobj, "device");
1630 	sysfs_remove_link(&dev->kobj, "subsystem");
1631 #ifdef CONFIG_BLOCK
1632 	if (sysfs_deprecated && dev->class == &block_class)
1633 		return;
1634 #endif
1635 	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1636 }
1637 
1638 /**
1639  * dev_set_name - set a device name
1640  * @dev: device
1641  * @fmt: format string for the device's name
1642  */
1643 int dev_set_name(struct device *dev, const char *fmt, ...)
1644 {
1645 	va_list vargs;
1646 	int err;
1647 
1648 	va_start(vargs, fmt);
1649 	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1650 	va_end(vargs);
1651 	return err;
1652 }
1653 EXPORT_SYMBOL_GPL(dev_set_name);
1654 
1655 /**
1656  * device_to_dev_kobj - select a /sys/dev/ directory for the device
1657  * @dev: device
1658  *
1659  * By default we select char/ for new entries.  Setting class->dev_obj
1660  * to NULL prevents an entry from being created.  class->dev_kobj must
1661  * be set (or cleared) before any devices are registered to the class
1662  * otherwise device_create_sys_dev_entry() and
1663  * device_remove_sys_dev_entry() will disagree about the presence of
1664  * the link.
1665  */
1666 static struct kobject *device_to_dev_kobj(struct device *dev)
1667 {
1668 	struct kobject *kobj;
1669 
1670 	if (dev->class)
1671 		kobj = dev->class->dev_kobj;
1672 	else
1673 		kobj = sysfs_dev_char_kobj;
1674 
1675 	return kobj;
1676 }
1677 
1678 static int device_create_sys_dev_entry(struct device *dev)
1679 {
1680 	struct kobject *kobj = device_to_dev_kobj(dev);
1681 	int error = 0;
1682 	char devt_str[15];
1683 
1684 	if (kobj) {
1685 		format_dev_t(devt_str, dev->devt);
1686 		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1687 	}
1688 
1689 	return error;
1690 }
1691 
1692 static void device_remove_sys_dev_entry(struct device *dev)
1693 {
1694 	struct kobject *kobj = device_to_dev_kobj(dev);
1695 	char devt_str[15];
1696 
1697 	if (kobj) {
1698 		format_dev_t(devt_str, dev->devt);
1699 		sysfs_remove_link(kobj, devt_str);
1700 	}
1701 }
1702 
1703 int device_private_init(struct device *dev)
1704 {
1705 	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1706 	if (!dev->p)
1707 		return -ENOMEM;
1708 	dev->p->device = dev;
1709 	klist_init(&dev->p->klist_children, klist_children_get,
1710 		   klist_children_put);
1711 	INIT_LIST_HEAD(&dev->p->deferred_probe);
1712 	return 0;
1713 }
1714 
1715 /**
1716  * device_add - add device to device hierarchy.
1717  * @dev: device.
1718  *
1719  * This is part 2 of device_register(), though may be called
1720  * separately _iff_ device_initialize() has been called separately.
1721  *
1722  * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1723  * to the global and sibling lists for the device, then
1724  * adds it to the other relevant subsystems of the driver model.
1725  *
1726  * Do not call this routine or device_register() more than once for
1727  * any device structure.  The driver model core is not designed to work
1728  * with devices that get unregistered and then spring back to life.
1729  * (Among other things, it's very hard to guarantee that all references
1730  * to the previous incarnation of @dev have been dropped.)  Allocate
1731  * and register a fresh new struct device instead.
1732  *
1733  * NOTE: _Never_ directly free @dev after calling this function, even
1734  * if it returned an error! Always use put_device() to give up your
1735  * reference instead.
1736  */
1737 int device_add(struct device *dev)
1738 {
1739 	struct device *parent;
1740 	struct kobject *kobj;
1741 	struct class_interface *class_intf;
1742 	int error = -EINVAL;
1743 	struct kobject *glue_dir = NULL;
1744 
1745 	dev = get_device(dev);
1746 	if (!dev)
1747 		goto done;
1748 
1749 	if (!dev->p) {
1750 		error = device_private_init(dev);
1751 		if (error)
1752 			goto done;
1753 	}
1754 
1755 	/*
1756 	 * for statically allocated devices, which should all be converted
1757 	 * some day, we need to initialize the name. We prevent reading back
1758 	 * the name, and force the use of dev_name()
1759 	 */
1760 	if (dev->init_name) {
1761 		dev_set_name(dev, "%s", dev->init_name);
1762 		dev->init_name = NULL;
1763 	}
1764 
1765 	/* subsystems can specify simple device enumeration */
1766 	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1767 		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1768 
1769 	if (!dev_name(dev)) {
1770 		error = -EINVAL;
1771 		goto name_error;
1772 	}
1773 
1774 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1775 
1776 	parent = get_device(dev->parent);
1777 	kobj = get_device_parent(dev, parent);
1778 	if (kobj)
1779 		dev->kobj.parent = kobj;
1780 
1781 	/* use parent numa_node */
1782 	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1783 		set_dev_node(dev, dev_to_node(parent));
1784 
1785 	/* first, register with generic layer. */
1786 	/* we require the name to be set before, and pass NULL */
1787 	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1788 	if (error) {
1789 		glue_dir = get_glue_dir(dev);
1790 		goto Error;
1791 	}
1792 
1793 	/* notify platform of device entry */
1794 	if (platform_notify)
1795 		platform_notify(dev);
1796 
1797 	error = device_create_file(dev, &dev_attr_uevent);
1798 	if (error)
1799 		goto attrError;
1800 
1801 	error = device_add_class_symlinks(dev);
1802 	if (error)
1803 		goto SymlinkError;
1804 	error = device_add_attrs(dev);
1805 	if (error)
1806 		goto AttrsError;
1807 	error = bus_add_device(dev);
1808 	if (error)
1809 		goto BusError;
1810 	error = dpm_sysfs_add(dev);
1811 	if (error)
1812 		goto DPMError;
1813 	device_pm_add(dev);
1814 
1815 	if (MAJOR(dev->devt)) {
1816 		error = device_create_file(dev, &dev_attr_dev);
1817 		if (error)
1818 			goto DevAttrError;
1819 
1820 		error = device_create_sys_dev_entry(dev);
1821 		if (error)
1822 			goto SysEntryError;
1823 
1824 		devtmpfs_create_node(dev);
1825 	}
1826 
1827 	/* Notify clients of device addition.  This call must come
1828 	 * after dpm_sysfs_add() and before kobject_uevent().
1829 	 */
1830 	if (dev->bus)
1831 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1832 					     BUS_NOTIFY_ADD_DEVICE, dev);
1833 
1834 	kobject_uevent(&dev->kobj, KOBJ_ADD);
1835 	bus_probe_device(dev);
1836 	if (parent)
1837 		klist_add_tail(&dev->p->knode_parent,
1838 			       &parent->p->klist_children);
1839 
1840 	if (dev->class) {
1841 		mutex_lock(&dev->class->p->mutex);
1842 		/* tie the class to the device */
1843 		klist_add_tail(&dev->knode_class,
1844 			       &dev->class->p->klist_devices);
1845 
1846 		/* notify any interfaces that the device is here */
1847 		list_for_each_entry(class_intf,
1848 				    &dev->class->p->interfaces, node)
1849 			if (class_intf->add_dev)
1850 				class_intf->add_dev(dev, class_intf);
1851 		mutex_unlock(&dev->class->p->mutex);
1852 	}
1853 done:
1854 	put_device(dev);
1855 	return error;
1856  SysEntryError:
1857 	if (MAJOR(dev->devt))
1858 		device_remove_file(dev, &dev_attr_dev);
1859  DevAttrError:
1860 	device_pm_remove(dev);
1861 	dpm_sysfs_remove(dev);
1862  DPMError:
1863 	bus_remove_device(dev);
1864  BusError:
1865 	device_remove_attrs(dev);
1866  AttrsError:
1867 	device_remove_class_symlinks(dev);
1868  SymlinkError:
1869 	device_remove_file(dev, &dev_attr_uevent);
1870  attrError:
1871 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1872 	glue_dir = get_glue_dir(dev);
1873 	kobject_del(&dev->kobj);
1874  Error:
1875 	cleanup_glue_dir(dev, glue_dir);
1876 	put_device(parent);
1877 name_error:
1878 	kfree(dev->p);
1879 	dev->p = NULL;
1880 	goto done;
1881 }
1882 EXPORT_SYMBOL_GPL(device_add);
1883 
1884 /**
1885  * device_register - register a device with the system.
1886  * @dev: pointer to the device structure
1887  *
1888  * This happens in two clean steps - initialize the device
1889  * and add it to the system. The two steps can be called
1890  * separately, but this is the easiest and most common.
1891  * I.e. you should only call the two helpers separately if
1892  * have a clearly defined need to use and refcount the device
1893  * before it is added to the hierarchy.
1894  *
1895  * For more information, see the kerneldoc for device_initialize()
1896  * and device_add().
1897  *
1898  * NOTE: _Never_ directly free @dev after calling this function, even
1899  * if it returned an error! Always use put_device() to give up the
1900  * reference initialized in this function instead.
1901  */
1902 int device_register(struct device *dev)
1903 {
1904 	device_initialize(dev);
1905 	return device_add(dev);
1906 }
1907 EXPORT_SYMBOL_GPL(device_register);
1908 
1909 /**
1910  * get_device - increment reference count for device.
1911  * @dev: device.
1912  *
1913  * This simply forwards the call to kobject_get(), though
1914  * we do take care to provide for the case that we get a NULL
1915  * pointer passed in.
1916  */
1917 struct device *get_device(struct device *dev)
1918 {
1919 	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1920 }
1921 EXPORT_SYMBOL_GPL(get_device);
1922 
1923 /**
1924  * put_device - decrement reference count.
1925  * @dev: device in question.
1926  */
1927 void put_device(struct device *dev)
1928 {
1929 	/* might_sleep(); */
1930 	if (dev)
1931 		kobject_put(&dev->kobj);
1932 }
1933 EXPORT_SYMBOL_GPL(put_device);
1934 
1935 /**
1936  * device_del - delete device from system.
1937  * @dev: device.
1938  *
1939  * This is the first part of the device unregistration
1940  * sequence. This removes the device from the lists we control
1941  * from here, has it removed from the other driver model
1942  * subsystems it was added to in device_add(), and removes it
1943  * from the kobject hierarchy.
1944  *
1945  * NOTE: this should be called manually _iff_ device_add() was
1946  * also called manually.
1947  */
1948 void device_del(struct device *dev)
1949 {
1950 	struct device *parent = dev->parent;
1951 	struct kobject *glue_dir = NULL;
1952 	struct class_interface *class_intf;
1953 
1954 	/* Notify clients of device removal.  This call must come
1955 	 * before dpm_sysfs_remove().
1956 	 */
1957 	if (dev->bus)
1958 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1959 					     BUS_NOTIFY_DEL_DEVICE, dev);
1960 
1961 	dpm_sysfs_remove(dev);
1962 	if (parent)
1963 		klist_del(&dev->p->knode_parent);
1964 	if (MAJOR(dev->devt)) {
1965 		devtmpfs_delete_node(dev);
1966 		device_remove_sys_dev_entry(dev);
1967 		device_remove_file(dev, &dev_attr_dev);
1968 	}
1969 	if (dev->class) {
1970 		device_remove_class_symlinks(dev);
1971 
1972 		mutex_lock(&dev->class->p->mutex);
1973 		/* notify any interfaces that the device is now gone */
1974 		list_for_each_entry(class_intf,
1975 				    &dev->class->p->interfaces, node)
1976 			if (class_intf->remove_dev)
1977 				class_intf->remove_dev(dev, class_intf);
1978 		/* remove the device from the class list */
1979 		klist_del(&dev->knode_class);
1980 		mutex_unlock(&dev->class->p->mutex);
1981 	}
1982 	device_remove_file(dev, &dev_attr_uevent);
1983 	device_remove_attrs(dev);
1984 	bus_remove_device(dev);
1985 	device_pm_remove(dev);
1986 	driver_deferred_probe_del(dev);
1987 	device_remove_properties(dev);
1988 	device_links_purge(dev);
1989 
1990 	/* Notify the platform of the removal, in case they
1991 	 * need to do anything...
1992 	 */
1993 	if (platform_notify_remove)
1994 		platform_notify_remove(dev);
1995 	if (dev->bus)
1996 		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1997 					     BUS_NOTIFY_REMOVED_DEVICE, dev);
1998 	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1999 	glue_dir = get_glue_dir(dev);
2000 	kobject_del(&dev->kobj);
2001 	cleanup_glue_dir(dev, glue_dir);
2002 	put_device(parent);
2003 }
2004 EXPORT_SYMBOL_GPL(device_del);
2005 
2006 /**
2007  * device_unregister - unregister device from system.
2008  * @dev: device going away.
2009  *
2010  * We do this in two parts, like we do device_register(). First,
2011  * we remove it from all the subsystems with device_del(), then
2012  * we decrement the reference count via put_device(). If that
2013  * is the final reference count, the device will be cleaned up
2014  * via device_release() above. Otherwise, the structure will
2015  * stick around until the final reference to the device is dropped.
2016  */
2017 void device_unregister(struct device *dev)
2018 {
2019 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2020 	device_del(dev);
2021 	put_device(dev);
2022 }
2023 EXPORT_SYMBOL_GPL(device_unregister);
2024 
2025 static struct device *prev_device(struct klist_iter *i)
2026 {
2027 	struct klist_node *n = klist_prev(i);
2028 	struct device *dev = NULL;
2029 	struct device_private *p;
2030 
2031 	if (n) {
2032 		p = to_device_private_parent(n);
2033 		dev = p->device;
2034 	}
2035 	return dev;
2036 }
2037 
2038 static struct device *next_device(struct klist_iter *i)
2039 {
2040 	struct klist_node *n = klist_next(i);
2041 	struct device *dev = NULL;
2042 	struct device_private *p;
2043 
2044 	if (n) {
2045 		p = to_device_private_parent(n);
2046 		dev = p->device;
2047 	}
2048 	return dev;
2049 }
2050 
2051 /**
2052  * device_get_devnode - path of device node file
2053  * @dev: device
2054  * @mode: returned file access mode
2055  * @uid: returned file owner
2056  * @gid: returned file group
2057  * @tmp: possibly allocated string
2058  *
2059  * Return the relative path of a possible device node.
2060  * Non-default names may need to allocate a memory to compose
2061  * a name. This memory is returned in tmp and needs to be
2062  * freed by the caller.
2063  */
2064 const char *device_get_devnode(struct device *dev,
2065 			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2066 			       const char **tmp)
2067 {
2068 	char *s;
2069 
2070 	*tmp = NULL;
2071 
2072 	/* the device type may provide a specific name */
2073 	if (dev->type && dev->type->devnode)
2074 		*tmp = dev->type->devnode(dev, mode, uid, gid);
2075 	if (*tmp)
2076 		return *tmp;
2077 
2078 	/* the class may provide a specific name */
2079 	if (dev->class && dev->class->devnode)
2080 		*tmp = dev->class->devnode(dev, mode);
2081 	if (*tmp)
2082 		return *tmp;
2083 
2084 	/* return name without allocation, tmp == NULL */
2085 	if (strchr(dev_name(dev), '!') == NULL)
2086 		return dev_name(dev);
2087 
2088 	/* replace '!' in the name with '/' */
2089 	s = kstrdup(dev_name(dev), GFP_KERNEL);
2090 	if (!s)
2091 		return NULL;
2092 	strreplace(s, '!', '/');
2093 	return *tmp = s;
2094 }
2095 
2096 /**
2097  * device_for_each_child - device child iterator.
2098  * @parent: parent struct device.
2099  * @fn: function to be called for each device.
2100  * @data: data for the callback.
2101  *
2102  * Iterate over @parent's child devices, and call @fn for each,
2103  * passing it @data.
2104  *
2105  * We check the return of @fn each time. If it returns anything
2106  * other than 0, we break out and return that value.
2107  */
2108 int device_for_each_child(struct device *parent, void *data,
2109 			  int (*fn)(struct device *dev, void *data))
2110 {
2111 	struct klist_iter i;
2112 	struct device *child;
2113 	int error = 0;
2114 
2115 	if (!parent->p)
2116 		return 0;
2117 
2118 	klist_iter_init(&parent->p->klist_children, &i);
2119 	while ((child = next_device(&i)) && !error)
2120 		error = fn(child, data);
2121 	klist_iter_exit(&i);
2122 	return error;
2123 }
2124 EXPORT_SYMBOL_GPL(device_for_each_child);
2125 
2126 /**
2127  * device_for_each_child_reverse - device child iterator in reversed order.
2128  * @parent: parent struct device.
2129  * @fn: function to be called for each device.
2130  * @data: data for the callback.
2131  *
2132  * Iterate over @parent's child devices, and call @fn for each,
2133  * passing it @data.
2134  *
2135  * We check the return of @fn each time. If it returns anything
2136  * other than 0, we break out and return that value.
2137  */
2138 int device_for_each_child_reverse(struct device *parent, void *data,
2139 				  int (*fn)(struct device *dev, void *data))
2140 {
2141 	struct klist_iter i;
2142 	struct device *child;
2143 	int error = 0;
2144 
2145 	if (!parent->p)
2146 		return 0;
2147 
2148 	klist_iter_init(&parent->p->klist_children, &i);
2149 	while ((child = prev_device(&i)) && !error)
2150 		error = fn(child, data);
2151 	klist_iter_exit(&i);
2152 	return error;
2153 }
2154 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2155 
2156 /**
2157  * device_find_child - device iterator for locating a particular device.
2158  * @parent: parent struct device
2159  * @match: Callback function to check device
2160  * @data: Data to pass to match function
2161  *
2162  * This is similar to the device_for_each_child() function above, but it
2163  * returns a reference to a device that is 'found' for later use, as
2164  * determined by the @match callback.
2165  *
2166  * The callback should return 0 if the device doesn't match and non-zero
2167  * if it does.  If the callback returns non-zero and a reference to the
2168  * current device can be obtained, this function will return to the caller
2169  * and not iterate over any more devices.
2170  *
2171  * NOTE: you will need to drop the reference with put_device() after use.
2172  */
2173 struct device *device_find_child(struct device *parent, void *data,
2174 				 int (*match)(struct device *dev, void *data))
2175 {
2176 	struct klist_iter i;
2177 	struct device *child;
2178 
2179 	if (!parent)
2180 		return NULL;
2181 
2182 	klist_iter_init(&parent->p->klist_children, &i);
2183 	while ((child = next_device(&i)))
2184 		if (match(child, data) && get_device(child))
2185 			break;
2186 	klist_iter_exit(&i);
2187 	return child;
2188 }
2189 EXPORT_SYMBOL_GPL(device_find_child);
2190 
2191 int __init devices_init(void)
2192 {
2193 	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2194 	if (!devices_kset)
2195 		return -ENOMEM;
2196 	dev_kobj = kobject_create_and_add("dev", NULL);
2197 	if (!dev_kobj)
2198 		goto dev_kobj_err;
2199 	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2200 	if (!sysfs_dev_block_kobj)
2201 		goto block_kobj_err;
2202 	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2203 	if (!sysfs_dev_char_kobj)
2204 		goto char_kobj_err;
2205 
2206 	return 0;
2207 
2208  char_kobj_err:
2209 	kobject_put(sysfs_dev_block_kobj);
2210  block_kobj_err:
2211 	kobject_put(dev_kobj);
2212  dev_kobj_err:
2213 	kset_unregister(devices_kset);
2214 	return -ENOMEM;
2215 }
2216 
2217 static int device_check_offline(struct device *dev, void *not_used)
2218 {
2219 	int ret;
2220 
2221 	ret = device_for_each_child(dev, NULL, device_check_offline);
2222 	if (ret)
2223 		return ret;
2224 
2225 	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2226 }
2227 
2228 /**
2229  * device_offline - Prepare the device for hot-removal.
2230  * @dev: Device to be put offline.
2231  *
2232  * Execute the device bus type's .offline() callback, if present, to prepare
2233  * the device for a subsequent hot-removal.  If that succeeds, the device must
2234  * not be used until either it is removed or its bus type's .online() callback
2235  * is executed.
2236  *
2237  * Call under device_hotplug_lock.
2238  */
2239 int device_offline(struct device *dev)
2240 {
2241 	int ret;
2242 
2243 	if (dev->offline_disabled)
2244 		return -EPERM;
2245 
2246 	ret = device_for_each_child(dev, NULL, device_check_offline);
2247 	if (ret)
2248 		return ret;
2249 
2250 	device_lock(dev);
2251 	if (device_supports_offline(dev)) {
2252 		if (dev->offline) {
2253 			ret = 1;
2254 		} else {
2255 			ret = dev->bus->offline(dev);
2256 			if (!ret) {
2257 				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2258 				dev->offline = true;
2259 			}
2260 		}
2261 	}
2262 	device_unlock(dev);
2263 
2264 	return ret;
2265 }
2266 
2267 /**
2268  * device_online - Put the device back online after successful device_offline().
2269  * @dev: Device to be put back online.
2270  *
2271  * If device_offline() has been successfully executed for @dev, but the device
2272  * has not been removed subsequently, execute its bus type's .online() callback
2273  * to indicate that the device can be used again.
2274  *
2275  * Call under device_hotplug_lock.
2276  */
2277 int device_online(struct device *dev)
2278 {
2279 	int ret = 0;
2280 
2281 	device_lock(dev);
2282 	if (device_supports_offline(dev)) {
2283 		if (dev->offline) {
2284 			ret = dev->bus->online(dev);
2285 			if (!ret) {
2286 				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2287 				dev->offline = false;
2288 			}
2289 		} else {
2290 			ret = 1;
2291 		}
2292 	}
2293 	device_unlock(dev);
2294 
2295 	return ret;
2296 }
2297 
2298 struct root_device {
2299 	struct device dev;
2300 	struct module *owner;
2301 };
2302 
2303 static inline struct root_device *to_root_device(struct device *d)
2304 {
2305 	return container_of(d, struct root_device, dev);
2306 }
2307 
2308 static void root_device_release(struct device *dev)
2309 {
2310 	kfree(to_root_device(dev));
2311 }
2312 
2313 /**
2314  * __root_device_register - allocate and register a root device
2315  * @name: root device name
2316  * @owner: owner module of the root device, usually THIS_MODULE
2317  *
2318  * This function allocates a root device and registers it
2319  * using device_register(). In order to free the returned
2320  * device, use root_device_unregister().
2321  *
2322  * Root devices are dummy devices which allow other devices
2323  * to be grouped under /sys/devices. Use this function to
2324  * allocate a root device and then use it as the parent of
2325  * any device which should appear under /sys/devices/{name}
2326  *
2327  * The /sys/devices/{name} directory will also contain a
2328  * 'module' symlink which points to the @owner directory
2329  * in sysfs.
2330  *
2331  * Returns &struct device pointer on success, or ERR_PTR() on error.
2332  *
2333  * Note: You probably want to use root_device_register().
2334  */
2335 struct device *__root_device_register(const char *name, struct module *owner)
2336 {
2337 	struct root_device *root;
2338 	int err = -ENOMEM;
2339 
2340 	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2341 	if (!root)
2342 		return ERR_PTR(err);
2343 
2344 	err = dev_set_name(&root->dev, "%s", name);
2345 	if (err) {
2346 		kfree(root);
2347 		return ERR_PTR(err);
2348 	}
2349 
2350 	root->dev.release = root_device_release;
2351 
2352 	err = device_register(&root->dev);
2353 	if (err) {
2354 		put_device(&root->dev);
2355 		return ERR_PTR(err);
2356 	}
2357 
2358 #ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2359 	if (owner) {
2360 		struct module_kobject *mk = &owner->mkobj;
2361 
2362 		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2363 		if (err) {
2364 			device_unregister(&root->dev);
2365 			return ERR_PTR(err);
2366 		}
2367 		root->owner = owner;
2368 	}
2369 #endif
2370 
2371 	return &root->dev;
2372 }
2373 EXPORT_SYMBOL_GPL(__root_device_register);
2374 
2375 /**
2376  * root_device_unregister - unregister and free a root device
2377  * @dev: device going away
2378  *
2379  * This function unregisters and cleans up a device that was created by
2380  * root_device_register().
2381  */
2382 void root_device_unregister(struct device *dev)
2383 {
2384 	struct root_device *root = to_root_device(dev);
2385 
2386 	if (root->owner)
2387 		sysfs_remove_link(&root->dev.kobj, "module");
2388 
2389 	device_unregister(dev);
2390 }
2391 EXPORT_SYMBOL_GPL(root_device_unregister);
2392 
2393 
2394 static void device_create_release(struct device *dev)
2395 {
2396 	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2397 	kfree(dev);
2398 }
2399 
2400 static struct device *
2401 device_create_groups_vargs(struct class *class, struct device *parent,
2402 			   dev_t devt, void *drvdata,
2403 			   const struct attribute_group **groups,
2404 			   const char *fmt, va_list args)
2405 {
2406 	struct device *dev = NULL;
2407 	int retval = -ENODEV;
2408 
2409 	if (class == NULL || IS_ERR(class))
2410 		goto error;
2411 
2412 	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2413 	if (!dev) {
2414 		retval = -ENOMEM;
2415 		goto error;
2416 	}
2417 
2418 	device_initialize(dev);
2419 	dev->devt = devt;
2420 	dev->class = class;
2421 	dev->parent = parent;
2422 	dev->groups = groups;
2423 	dev->release = device_create_release;
2424 	dev_set_drvdata(dev, drvdata);
2425 
2426 	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2427 	if (retval)
2428 		goto error;
2429 
2430 	retval = device_add(dev);
2431 	if (retval)
2432 		goto error;
2433 
2434 	return dev;
2435 
2436 error:
2437 	put_device(dev);
2438 	return ERR_PTR(retval);
2439 }
2440 
2441 /**
2442  * device_create_vargs - creates a device and registers it with sysfs
2443  * @class: pointer to the struct class that this device should be registered to
2444  * @parent: pointer to the parent struct device of this new device, if any
2445  * @devt: the dev_t for the char device to be added
2446  * @drvdata: the data to be added to the device for callbacks
2447  * @fmt: string for the device's name
2448  * @args: va_list for the device's name
2449  *
2450  * This function can be used by char device classes.  A struct device
2451  * will be created in sysfs, registered to the specified class.
2452  *
2453  * A "dev" file will be created, showing the dev_t for the device, if
2454  * the dev_t is not 0,0.
2455  * If a pointer to a parent struct device is passed in, the newly created
2456  * struct device will be a child of that device in sysfs.
2457  * The pointer to the struct device will be returned from the call.
2458  * Any further sysfs files that might be required can be created using this
2459  * pointer.
2460  *
2461  * Returns &struct device pointer on success, or ERR_PTR() on error.
2462  *
2463  * Note: the struct class passed to this function must have previously
2464  * been created with a call to class_create().
2465  */
2466 struct device *device_create_vargs(struct class *class, struct device *parent,
2467 				   dev_t devt, void *drvdata, const char *fmt,
2468 				   va_list args)
2469 {
2470 	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2471 					  fmt, args);
2472 }
2473 EXPORT_SYMBOL_GPL(device_create_vargs);
2474 
2475 /**
2476  * device_create - creates a device and registers it with sysfs
2477  * @class: pointer to the struct class that this device should be registered to
2478  * @parent: pointer to the parent struct device of this new device, if any
2479  * @devt: the dev_t for the char device to be added
2480  * @drvdata: the data to be added to the device for callbacks
2481  * @fmt: string for the device's name
2482  *
2483  * This function can be used by char device classes.  A struct device
2484  * will be created in sysfs, registered to the specified class.
2485  *
2486  * A "dev" file will be created, showing the dev_t for the device, if
2487  * the dev_t is not 0,0.
2488  * If a pointer to a parent struct device is passed in, the newly created
2489  * struct device will be a child of that device in sysfs.
2490  * The pointer to the struct device will be returned from the call.
2491  * Any further sysfs files that might be required can be created using this
2492  * pointer.
2493  *
2494  * Returns &struct device pointer on success, or ERR_PTR() on error.
2495  *
2496  * Note: the struct class passed to this function must have previously
2497  * been created with a call to class_create().
2498  */
2499 struct device *device_create(struct class *class, struct device *parent,
2500 			     dev_t devt, void *drvdata, const char *fmt, ...)
2501 {
2502 	va_list vargs;
2503 	struct device *dev;
2504 
2505 	va_start(vargs, fmt);
2506 	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2507 	va_end(vargs);
2508 	return dev;
2509 }
2510 EXPORT_SYMBOL_GPL(device_create);
2511 
2512 /**
2513  * device_create_with_groups - creates a device and registers it with sysfs
2514  * @class: pointer to the struct class that this device should be registered to
2515  * @parent: pointer to the parent struct device of this new device, if any
2516  * @devt: the dev_t for the char device to be added
2517  * @drvdata: the data to be added to the device for callbacks
2518  * @groups: NULL-terminated list of attribute groups to be created
2519  * @fmt: string for the device's name
2520  *
2521  * This function can be used by char device classes.  A struct device
2522  * will be created in sysfs, registered to the specified class.
2523  * Additional attributes specified in the groups parameter will also
2524  * be created automatically.
2525  *
2526  * A "dev" file will be created, showing the dev_t for the device, if
2527  * the dev_t is not 0,0.
2528  * If a pointer to a parent struct device is passed in, the newly created
2529  * struct device will be a child of that device in sysfs.
2530  * The pointer to the struct device will be returned from the call.
2531  * Any further sysfs files that might be required can be created using this
2532  * pointer.
2533  *
2534  * Returns &struct device pointer on success, or ERR_PTR() on error.
2535  *
2536  * Note: the struct class passed to this function must have previously
2537  * been created with a call to class_create().
2538  */
2539 struct device *device_create_with_groups(struct class *class,
2540 					 struct device *parent, dev_t devt,
2541 					 void *drvdata,
2542 					 const struct attribute_group **groups,
2543 					 const char *fmt, ...)
2544 {
2545 	va_list vargs;
2546 	struct device *dev;
2547 
2548 	va_start(vargs, fmt);
2549 	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2550 					 fmt, vargs);
2551 	va_end(vargs);
2552 	return dev;
2553 }
2554 EXPORT_SYMBOL_GPL(device_create_with_groups);
2555 
2556 static int __match_devt(struct device *dev, const void *data)
2557 {
2558 	const dev_t *devt = data;
2559 
2560 	return dev->devt == *devt;
2561 }
2562 
2563 /**
2564  * device_destroy - removes a device that was created with device_create()
2565  * @class: pointer to the struct class that this device was registered with
2566  * @devt: the dev_t of the device that was previously registered
2567  *
2568  * This call unregisters and cleans up a device that was created with a
2569  * call to device_create().
2570  */
2571 void device_destroy(struct class *class, dev_t devt)
2572 {
2573 	struct device *dev;
2574 
2575 	dev = class_find_device(class, NULL, &devt, __match_devt);
2576 	if (dev) {
2577 		put_device(dev);
2578 		device_unregister(dev);
2579 	}
2580 }
2581 EXPORT_SYMBOL_GPL(device_destroy);
2582 
2583 /**
2584  * device_rename - renames a device
2585  * @dev: the pointer to the struct device to be renamed
2586  * @new_name: the new name of the device
2587  *
2588  * It is the responsibility of the caller to provide mutual
2589  * exclusion between two different calls of device_rename
2590  * on the same device to ensure that new_name is valid and
2591  * won't conflict with other devices.
2592  *
2593  * Note: Don't call this function.  Currently, the networking layer calls this
2594  * function, but that will change.  The following text from Kay Sievers offers
2595  * some insight:
2596  *
2597  * Renaming devices is racy at many levels, symlinks and other stuff are not
2598  * replaced atomically, and you get a "move" uevent, but it's not easy to
2599  * connect the event to the old and new device. Device nodes are not renamed at
2600  * all, there isn't even support for that in the kernel now.
2601  *
2602  * In the meantime, during renaming, your target name might be taken by another
2603  * driver, creating conflicts. Or the old name is taken directly after you
2604  * renamed it -- then you get events for the same DEVPATH, before you even see
2605  * the "move" event. It's just a mess, and nothing new should ever rely on
2606  * kernel device renaming. Besides that, it's not even implemented now for
2607  * other things than (driver-core wise very simple) network devices.
2608  *
2609  * We are currently about to change network renaming in udev to completely
2610  * disallow renaming of devices in the same namespace as the kernel uses,
2611  * because we can't solve the problems properly, that arise with swapping names
2612  * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2613  * be allowed to some other name than eth[0-9]*, for the aforementioned
2614  * reasons.
2615  *
2616  * Make up a "real" name in the driver before you register anything, or add
2617  * some other attributes for userspace to find the device, or use udev to add
2618  * symlinks -- but never rename kernel devices later, it's a complete mess. We
2619  * don't even want to get into that and try to implement the missing pieces in
2620  * the core. We really have other pieces to fix in the driver core mess. :)
2621  */
2622 int device_rename(struct device *dev, const char *new_name)
2623 {
2624 	struct kobject *kobj = &dev->kobj;
2625 	char *old_device_name = NULL;
2626 	int error;
2627 
2628 	dev = get_device(dev);
2629 	if (!dev)
2630 		return -EINVAL;
2631 
2632 	dev_dbg(dev, "renaming to %s\n", new_name);
2633 
2634 	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2635 	if (!old_device_name) {
2636 		error = -ENOMEM;
2637 		goto out;
2638 	}
2639 
2640 	if (dev->class) {
2641 		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2642 					     kobj, old_device_name,
2643 					     new_name, kobject_namespace(kobj));
2644 		if (error)
2645 			goto out;
2646 	}
2647 
2648 	error = kobject_rename(kobj, new_name);
2649 	if (error)
2650 		goto out;
2651 
2652 out:
2653 	put_device(dev);
2654 
2655 	kfree(old_device_name);
2656 
2657 	return error;
2658 }
2659 EXPORT_SYMBOL_GPL(device_rename);
2660 
2661 static int device_move_class_links(struct device *dev,
2662 				   struct device *old_parent,
2663 				   struct device *new_parent)
2664 {
2665 	int error = 0;
2666 
2667 	if (old_parent)
2668 		sysfs_remove_link(&dev->kobj, "device");
2669 	if (new_parent)
2670 		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2671 					  "device");
2672 	return error;
2673 }
2674 
2675 /**
2676  * device_move - moves a device to a new parent
2677  * @dev: the pointer to the struct device to be moved
2678  * @new_parent: the new parent of the device (can by NULL)
2679  * @dpm_order: how to reorder the dpm_list
2680  */
2681 int device_move(struct device *dev, struct device *new_parent,
2682 		enum dpm_order dpm_order)
2683 {
2684 	int error;
2685 	struct device *old_parent;
2686 	struct kobject *new_parent_kobj;
2687 
2688 	dev = get_device(dev);
2689 	if (!dev)
2690 		return -EINVAL;
2691 
2692 	device_pm_lock();
2693 	new_parent = get_device(new_parent);
2694 	new_parent_kobj = get_device_parent(dev, new_parent);
2695 
2696 	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2697 		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2698 	error = kobject_move(&dev->kobj, new_parent_kobj);
2699 	if (error) {
2700 		cleanup_glue_dir(dev, new_parent_kobj);
2701 		put_device(new_parent);
2702 		goto out;
2703 	}
2704 	old_parent = dev->parent;
2705 	dev->parent = new_parent;
2706 	if (old_parent)
2707 		klist_remove(&dev->p->knode_parent);
2708 	if (new_parent) {
2709 		klist_add_tail(&dev->p->knode_parent,
2710 			       &new_parent->p->klist_children);
2711 		set_dev_node(dev, dev_to_node(new_parent));
2712 	}
2713 
2714 	if (dev->class) {
2715 		error = device_move_class_links(dev, old_parent, new_parent);
2716 		if (error) {
2717 			/* We ignore errors on cleanup since we're hosed anyway... */
2718 			device_move_class_links(dev, new_parent, old_parent);
2719 			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2720 				if (new_parent)
2721 					klist_remove(&dev->p->knode_parent);
2722 				dev->parent = old_parent;
2723 				if (old_parent) {
2724 					klist_add_tail(&dev->p->knode_parent,
2725 						       &old_parent->p->klist_children);
2726 					set_dev_node(dev, dev_to_node(old_parent));
2727 				}
2728 			}
2729 			cleanup_glue_dir(dev, new_parent_kobj);
2730 			put_device(new_parent);
2731 			goto out;
2732 		}
2733 	}
2734 	switch (dpm_order) {
2735 	case DPM_ORDER_NONE:
2736 		break;
2737 	case DPM_ORDER_DEV_AFTER_PARENT:
2738 		device_pm_move_after(dev, new_parent);
2739 		devices_kset_move_after(dev, new_parent);
2740 		break;
2741 	case DPM_ORDER_PARENT_BEFORE_DEV:
2742 		device_pm_move_before(new_parent, dev);
2743 		devices_kset_move_before(new_parent, dev);
2744 		break;
2745 	case DPM_ORDER_DEV_LAST:
2746 		device_pm_move_last(dev);
2747 		devices_kset_move_last(dev);
2748 		break;
2749 	}
2750 
2751 	put_device(old_parent);
2752 out:
2753 	device_pm_unlock();
2754 	put_device(dev);
2755 	return error;
2756 }
2757 EXPORT_SYMBOL_GPL(device_move);
2758 
2759 /**
2760  * device_shutdown - call ->shutdown() on each device to shutdown.
2761  */
2762 void device_shutdown(void)
2763 {
2764 	struct device *dev, *parent;
2765 
2766 	spin_lock(&devices_kset->list_lock);
2767 	/*
2768 	 * Walk the devices list backward, shutting down each in turn.
2769 	 * Beware that device unplug events may also start pulling
2770 	 * devices offline, even as the system is shutting down.
2771 	 */
2772 	while (!list_empty(&devices_kset->list)) {
2773 		dev = list_entry(devices_kset->list.prev, struct device,
2774 				kobj.entry);
2775 
2776 		/*
2777 		 * hold reference count of device's parent to
2778 		 * prevent it from being freed because parent's
2779 		 * lock is to be held
2780 		 */
2781 		parent = get_device(dev->parent);
2782 		get_device(dev);
2783 		/*
2784 		 * Make sure the device is off the kset list, in the
2785 		 * event that dev->*->shutdown() doesn't remove it.
2786 		 */
2787 		list_del_init(&dev->kobj.entry);
2788 		spin_unlock(&devices_kset->list_lock);
2789 
2790 		/* hold lock to avoid race with probe/release */
2791 		if (parent)
2792 			device_lock(parent);
2793 		device_lock(dev);
2794 
2795 		/* Don't allow any more runtime suspends */
2796 		pm_runtime_get_noresume(dev);
2797 		pm_runtime_barrier(dev);
2798 
2799 		if (dev->class && dev->class->shutdown_pre) {
2800 			if (initcall_debug)
2801 				dev_info(dev, "shutdown_pre\n");
2802 			dev->class->shutdown_pre(dev);
2803 		}
2804 		if (dev->bus && dev->bus->shutdown) {
2805 			if (initcall_debug)
2806 				dev_info(dev, "shutdown\n");
2807 			dev->bus->shutdown(dev);
2808 		} else if (dev->driver && dev->driver->shutdown) {
2809 			if (initcall_debug)
2810 				dev_info(dev, "shutdown\n");
2811 			dev->driver->shutdown(dev);
2812 		}
2813 
2814 		device_unlock(dev);
2815 		if (parent)
2816 			device_unlock(parent);
2817 
2818 		put_device(dev);
2819 		put_device(parent);
2820 
2821 		spin_lock(&devices_kset->list_lock);
2822 	}
2823 	spin_unlock(&devices_kset->list_lock);
2824 }
2825 
2826 /*
2827  * Device logging functions
2828  */
2829 
2830 #ifdef CONFIG_PRINTK
2831 static int
2832 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2833 {
2834 	const char *subsys;
2835 	size_t pos = 0;
2836 
2837 	if (dev->class)
2838 		subsys = dev->class->name;
2839 	else if (dev->bus)
2840 		subsys = dev->bus->name;
2841 	else
2842 		return 0;
2843 
2844 	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2845 	if (pos >= hdrlen)
2846 		goto overflow;
2847 
2848 	/*
2849 	 * Add device identifier DEVICE=:
2850 	 *   b12:8         block dev_t
2851 	 *   c127:3        char dev_t
2852 	 *   n8            netdev ifindex
2853 	 *   +sound:card0  subsystem:devname
2854 	 */
2855 	if (MAJOR(dev->devt)) {
2856 		char c;
2857 
2858 		if (strcmp(subsys, "block") == 0)
2859 			c = 'b';
2860 		else
2861 			c = 'c';
2862 		pos++;
2863 		pos += snprintf(hdr + pos, hdrlen - pos,
2864 				"DEVICE=%c%u:%u",
2865 				c, MAJOR(dev->devt), MINOR(dev->devt));
2866 	} else if (strcmp(subsys, "net") == 0) {
2867 		struct net_device *net = to_net_dev(dev);
2868 
2869 		pos++;
2870 		pos += snprintf(hdr + pos, hdrlen - pos,
2871 				"DEVICE=n%u", net->ifindex);
2872 	} else {
2873 		pos++;
2874 		pos += snprintf(hdr + pos, hdrlen - pos,
2875 				"DEVICE=+%s:%s", subsys, dev_name(dev));
2876 	}
2877 
2878 	if (pos >= hdrlen)
2879 		goto overflow;
2880 
2881 	return pos;
2882 
2883 overflow:
2884 	dev_WARN(dev, "device/subsystem name too long");
2885 	return 0;
2886 }
2887 
2888 int dev_vprintk_emit(int level, const struct device *dev,
2889 		     const char *fmt, va_list args)
2890 {
2891 	char hdr[128];
2892 	size_t hdrlen;
2893 
2894 	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2895 
2896 	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2897 }
2898 EXPORT_SYMBOL(dev_vprintk_emit);
2899 
2900 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2901 {
2902 	va_list args;
2903 	int r;
2904 
2905 	va_start(args, fmt);
2906 
2907 	r = dev_vprintk_emit(level, dev, fmt, args);
2908 
2909 	va_end(args);
2910 
2911 	return r;
2912 }
2913 EXPORT_SYMBOL(dev_printk_emit);
2914 
2915 static void __dev_printk(const char *level, const struct device *dev,
2916 			struct va_format *vaf)
2917 {
2918 	if (dev)
2919 		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2920 				dev_driver_string(dev), dev_name(dev), vaf);
2921 	else
2922 		printk("%s(NULL device *): %pV", level, vaf);
2923 }
2924 
2925 void dev_printk(const char *level, const struct device *dev,
2926 		const char *fmt, ...)
2927 {
2928 	struct va_format vaf;
2929 	va_list args;
2930 
2931 	va_start(args, fmt);
2932 
2933 	vaf.fmt = fmt;
2934 	vaf.va = &args;
2935 
2936 	__dev_printk(level, dev, &vaf);
2937 
2938 	va_end(args);
2939 }
2940 EXPORT_SYMBOL(dev_printk);
2941 
2942 #define define_dev_printk_level(func, kern_level)		\
2943 void func(const struct device *dev, const char *fmt, ...)	\
2944 {								\
2945 	struct va_format vaf;					\
2946 	va_list args;						\
2947 								\
2948 	va_start(args, fmt);					\
2949 								\
2950 	vaf.fmt = fmt;						\
2951 	vaf.va = &args;						\
2952 								\
2953 	__dev_printk(kern_level, dev, &vaf);			\
2954 								\
2955 	va_end(args);						\
2956 }								\
2957 EXPORT_SYMBOL(func);
2958 
2959 define_dev_printk_level(dev_emerg, KERN_EMERG);
2960 define_dev_printk_level(dev_alert, KERN_ALERT);
2961 define_dev_printk_level(dev_crit, KERN_CRIT);
2962 define_dev_printk_level(dev_err, KERN_ERR);
2963 define_dev_printk_level(dev_warn, KERN_WARNING);
2964 define_dev_printk_level(dev_notice, KERN_NOTICE);
2965 define_dev_printk_level(_dev_info, KERN_INFO);
2966 
2967 #endif
2968 
2969 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
2970 {
2971 	return fwnode && !IS_ERR(fwnode->secondary);
2972 }
2973 
2974 /**
2975  * set_primary_fwnode - Change the primary firmware node of a given device.
2976  * @dev: Device to handle.
2977  * @fwnode: New primary firmware node of the device.
2978  *
2979  * Set the device's firmware node pointer to @fwnode, but if a secondary
2980  * firmware node of the device is present, preserve it.
2981  */
2982 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2983 {
2984 	if (fwnode) {
2985 		struct fwnode_handle *fn = dev->fwnode;
2986 
2987 		if (fwnode_is_primary(fn))
2988 			fn = fn->secondary;
2989 
2990 		if (fn) {
2991 			WARN_ON(fwnode->secondary);
2992 			fwnode->secondary = fn;
2993 		}
2994 		dev->fwnode = fwnode;
2995 	} else {
2996 		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
2997 			dev->fwnode->secondary : NULL;
2998 	}
2999 }
3000 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3001 
3002 /**
3003  * set_secondary_fwnode - Change the secondary firmware node of a given device.
3004  * @dev: Device to handle.
3005  * @fwnode: New secondary firmware node of the device.
3006  *
3007  * If a primary firmware node of the device is present, set its secondary
3008  * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3009  * @fwnode.
3010  */
3011 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3012 {
3013 	if (fwnode)
3014 		fwnode->secondary = ERR_PTR(-ENODEV);
3015 
3016 	if (fwnode_is_primary(dev->fwnode))
3017 		dev->fwnode->secondary = fwnode;
3018 	else
3019 		dev->fwnode = fwnode;
3020 }
3021 
3022 /**
3023  * device_set_of_node_from_dev - reuse device-tree node of another device
3024  * @dev: device whose device-tree node is being set
3025  * @dev2: device whose device-tree node is being reused
3026  *
3027  * Takes another reference to the new device-tree node after first dropping
3028  * any reference held to the old node.
3029  */
3030 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3031 {
3032 	of_node_put(dev->of_node);
3033 	dev->of_node = of_node_get(dev2->of_node);
3034 	dev->of_node_reused = true;
3035 }
3036 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3037