1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sched/mm.h> 30 #include <linux/sysfs.h> 31 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 32 33 #include "base.h" 34 #include "power/power.h" 35 36 #ifdef CONFIG_SYSFS_DEPRECATED 37 #ifdef CONFIG_SYSFS_DEPRECATED_V2 38 long sysfs_deprecated = 1; 39 #else 40 long sysfs_deprecated = 0; 41 #endif 42 static int __init sysfs_deprecated_setup(char *arg) 43 { 44 return kstrtol(arg, 10, &sysfs_deprecated); 45 } 46 early_param("sysfs.deprecated", sysfs_deprecated_setup); 47 #endif 48 49 /* Device links support. */ 50 static LIST_HEAD(deferred_sync); 51 static unsigned int defer_sync_state_count = 1; 52 static DEFINE_MUTEX(fwnode_link_lock); 53 static bool fw_devlink_is_permissive(void); 54 static bool fw_devlink_drv_reg_done; 55 56 /** 57 * fwnode_link_add - Create a link between two fwnode_handles. 58 * @con: Consumer end of the link. 59 * @sup: Supplier end of the link. 60 * 61 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 62 * represents the detail that the firmware lists @sup fwnode as supplying a 63 * resource to @con. 64 * 65 * The driver core will use the fwnode link to create a device link between the 66 * two device objects corresponding to @con and @sup when they are created. The 67 * driver core will automatically delete the fwnode link between @con and @sup 68 * after doing that. 69 * 70 * Attempts to create duplicate links between the same pair of fwnode handles 71 * are ignored and there is no reference counting. 72 */ 73 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup) 74 { 75 struct fwnode_link *link; 76 int ret = 0; 77 78 mutex_lock(&fwnode_link_lock); 79 80 list_for_each_entry(link, &sup->consumers, s_hook) 81 if (link->consumer == con) 82 goto out; 83 84 link = kzalloc(sizeof(*link), GFP_KERNEL); 85 if (!link) { 86 ret = -ENOMEM; 87 goto out; 88 } 89 90 link->supplier = sup; 91 INIT_LIST_HEAD(&link->s_hook); 92 link->consumer = con; 93 INIT_LIST_HEAD(&link->c_hook); 94 95 list_add(&link->s_hook, &sup->consumers); 96 list_add(&link->c_hook, &con->suppliers); 97 out: 98 mutex_unlock(&fwnode_link_lock); 99 100 return ret; 101 } 102 103 /** 104 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 105 * @fwnode: fwnode whose supplier links need to be deleted 106 * 107 * Deletes all supplier links connecting directly to @fwnode. 108 */ 109 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 110 { 111 struct fwnode_link *link, *tmp; 112 113 mutex_lock(&fwnode_link_lock); 114 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 115 list_del(&link->s_hook); 116 list_del(&link->c_hook); 117 kfree(link); 118 } 119 mutex_unlock(&fwnode_link_lock); 120 } 121 122 /** 123 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 124 * @fwnode: fwnode whose consumer links need to be deleted 125 * 126 * Deletes all consumer links connecting directly to @fwnode. 127 */ 128 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 129 { 130 struct fwnode_link *link, *tmp; 131 132 mutex_lock(&fwnode_link_lock); 133 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 134 list_del(&link->s_hook); 135 list_del(&link->c_hook); 136 kfree(link); 137 } 138 mutex_unlock(&fwnode_link_lock); 139 } 140 141 /** 142 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 143 * @fwnode: fwnode whose links needs to be deleted 144 * 145 * Deletes all links connecting directly to a fwnode. 146 */ 147 void fwnode_links_purge(struct fwnode_handle *fwnode) 148 { 149 fwnode_links_purge_suppliers(fwnode); 150 fwnode_links_purge_consumers(fwnode); 151 } 152 153 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 154 { 155 struct fwnode_handle *child; 156 157 /* Don't purge consumer links of an added child */ 158 if (fwnode->dev) 159 return; 160 161 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 162 fwnode_links_purge_consumers(fwnode); 163 164 fwnode_for_each_available_child_node(fwnode, child) 165 fw_devlink_purge_absent_suppliers(child); 166 } 167 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 168 169 #ifdef CONFIG_SRCU 170 static DEFINE_MUTEX(device_links_lock); 171 DEFINE_STATIC_SRCU(device_links_srcu); 172 173 static inline void device_links_write_lock(void) 174 { 175 mutex_lock(&device_links_lock); 176 } 177 178 static inline void device_links_write_unlock(void) 179 { 180 mutex_unlock(&device_links_lock); 181 } 182 183 int device_links_read_lock(void) __acquires(&device_links_srcu) 184 { 185 return srcu_read_lock(&device_links_srcu); 186 } 187 188 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 189 { 190 srcu_read_unlock(&device_links_srcu, idx); 191 } 192 193 int device_links_read_lock_held(void) 194 { 195 return srcu_read_lock_held(&device_links_srcu); 196 } 197 198 static void device_link_synchronize_removal(void) 199 { 200 synchronize_srcu(&device_links_srcu); 201 } 202 203 static void device_link_remove_from_lists(struct device_link *link) 204 { 205 list_del_rcu(&link->s_node); 206 list_del_rcu(&link->c_node); 207 } 208 #else /* !CONFIG_SRCU */ 209 static DECLARE_RWSEM(device_links_lock); 210 211 static inline void device_links_write_lock(void) 212 { 213 down_write(&device_links_lock); 214 } 215 216 static inline void device_links_write_unlock(void) 217 { 218 up_write(&device_links_lock); 219 } 220 221 int device_links_read_lock(void) 222 { 223 down_read(&device_links_lock); 224 return 0; 225 } 226 227 void device_links_read_unlock(int not_used) 228 { 229 up_read(&device_links_lock); 230 } 231 232 #ifdef CONFIG_DEBUG_LOCK_ALLOC 233 int device_links_read_lock_held(void) 234 { 235 return lockdep_is_held(&device_links_lock); 236 } 237 #endif 238 239 static inline void device_link_synchronize_removal(void) 240 { 241 } 242 243 static void device_link_remove_from_lists(struct device_link *link) 244 { 245 list_del(&link->s_node); 246 list_del(&link->c_node); 247 } 248 #endif /* !CONFIG_SRCU */ 249 250 static bool device_is_ancestor(struct device *dev, struct device *target) 251 { 252 while (target->parent) { 253 target = target->parent; 254 if (dev == target) 255 return true; 256 } 257 return false; 258 } 259 260 /** 261 * device_is_dependent - Check if one device depends on another one 262 * @dev: Device to check dependencies for. 263 * @target: Device to check against. 264 * 265 * Check if @target depends on @dev or any device dependent on it (its child or 266 * its consumer etc). Return 1 if that is the case or 0 otherwise. 267 */ 268 int device_is_dependent(struct device *dev, void *target) 269 { 270 struct device_link *link; 271 int ret; 272 273 /* 274 * The "ancestors" check is needed to catch the case when the target 275 * device has not been completely initialized yet and it is still 276 * missing from the list of children of its parent device. 277 */ 278 if (dev == target || device_is_ancestor(dev, target)) 279 return 1; 280 281 ret = device_for_each_child(dev, target, device_is_dependent); 282 if (ret) 283 return ret; 284 285 list_for_each_entry(link, &dev->links.consumers, s_node) { 286 if ((link->flags & ~DL_FLAG_INFERRED) == 287 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 288 continue; 289 290 if (link->consumer == target) 291 return 1; 292 293 ret = device_is_dependent(link->consumer, target); 294 if (ret) 295 break; 296 } 297 return ret; 298 } 299 300 static void device_link_init_status(struct device_link *link, 301 struct device *consumer, 302 struct device *supplier) 303 { 304 switch (supplier->links.status) { 305 case DL_DEV_PROBING: 306 switch (consumer->links.status) { 307 case DL_DEV_PROBING: 308 /* 309 * A consumer driver can create a link to a supplier 310 * that has not completed its probing yet as long as it 311 * knows that the supplier is already functional (for 312 * example, it has just acquired some resources from the 313 * supplier). 314 */ 315 link->status = DL_STATE_CONSUMER_PROBE; 316 break; 317 default: 318 link->status = DL_STATE_DORMANT; 319 break; 320 } 321 break; 322 case DL_DEV_DRIVER_BOUND: 323 switch (consumer->links.status) { 324 case DL_DEV_PROBING: 325 link->status = DL_STATE_CONSUMER_PROBE; 326 break; 327 case DL_DEV_DRIVER_BOUND: 328 link->status = DL_STATE_ACTIVE; 329 break; 330 default: 331 link->status = DL_STATE_AVAILABLE; 332 break; 333 } 334 break; 335 case DL_DEV_UNBINDING: 336 link->status = DL_STATE_SUPPLIER_UNBIND; 337 break; 338 default: 339 link->status = DL_STATE_DORMANT; 340 break; 341 } 342 } 343 344 static int device_reorder_to_tail(struct device *dev, void *not_used) 345 { 346 struct device_link *link; 347 348 /* 349 * Devices that have not been registered yet will be put to the ends 350 * of the lists during the registration, so skip them here. 351 */ 352 if (device_is_registered(dev)) 353 devices_kset_move_last(dev); 354 355 if (device_pm_initialized(dev)) 356 device_pm_move_last(dev); 357 358 device_for_each_child(dev, NULL, device_reorder_to_tail); 359 list_for_each_entry(link, &dev->links.consumers, s_node) { 360 if ((link->flags & ~DL_FLAG_INFERRED) == 361 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 362 continue; 363 device_reorder_to_tail(link->consumer, NULL); 364 } 365 366 return 0; 367 } 368 369 /** 370 * device_pm_move_to_tail - Move set of devices to the end of device lists 371 * @dev: Device to move 372 * 373 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 374 * 375 * It moves the @dev along with all of its children and all of its consumers 376 * to the ends of the device_kset and dpm_list, recursively. 377 */ 378 void device_pm_move_to_tail(struct device *dev) 379 { 380 int idx; 381 382 idx = device_links_read_lock(); 383 device_pm_lock(); 384 device_reorder_to_tail(dev, NULL); 385 device_pm_unlock(); 386 device_links_read_unlock(idx); 387 } 388 389 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 390 391 static ssize_t status_show(struct device *dev, 392 struct device_attribute *attr, char *buf) 393 { 394 const char *output; 395 396 switch (to_devlink(dev)->status) { 397 case DL_STATE_NONE: 398 output = "not tracked"; 399 break; 400 case DL_STATE_DORMANT: 401 output = "dormant"; 402 break; 403 case DL_STATE_AVAILABLE: 404 output = "available"; 405 break; 406 case DL_STATE_CONSUMER_PROBE: 407 output = "consumer probing"; 408 break; 409 case DL_STATE_ACTIVE: 410 output = "active"; 411 break; 412 case DL_STATE_SUPPLIER_UNBIND: 413 output = "supplier unbinding"; 414 break; 415 default: 416 output = "unknown"; 417 break; 418 } 419 420 return sysfs_emit(buf, "%s\n", output); 421 } 422 static DEVICE_ATTR_RO(status); 423 424 static ssize_t auto_remove_on_show(struct device *dev, 425 struct device_attribute *attr, char *buf) 426 { 427 struct device_link *link = to_devlink(dev); 428 const char *output; 429 430 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 431 output = "supplier unbind"; 432 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 433 output = "consumer unbind"; 434 else 435 output = "never"; 436 437 return sysfs_emit(buf, "%s\n", output); 438 } 439 static DEVICE_ATTR_RO(auto_remove_on); 440 441 static ssize_t runtime_pm_show(struct device *dev, 442 struct device_attribute *attr, char *buf) 443 { 444 struct device_link *link = to_devlink(dev); 445 446 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 447 } 448 static DEVICE_ATTR_RO(runtime_pm); 449 450 static ssize_t sync_state_only_show(struct device *dev, 451 struct device_attribute *attr, char *buf) 452 { 453 struct device_link *link = to_devlink(dev); 454 455 return sysfs_emit(buf, "%d\n", 456 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 457 } 458 static DEVICE_ATTR_RO(sync_state_only); 459 460 static struct attribute *devlink_attrs[] = { 461 &dev_attr_status.attr, 462 &dev_attr_auto_remove_on.attr, 463 &dev_attr_runtime_pm.attr, 464 &dev_attr_sync_state_only.attr, 465 NULL, 466 }; 467 ATTRIBUTE_GROUPS(devlink); 468 469 static void device_link_release_fn(struct work_struct *work) 470 { 471 struct device_link *link = container_of(work, struct device_link, rm_work); 472 473 /* Ensure that all references to the link object have been dropped. */ 474 device_link_synchronize_removal(); 475 476 while (refcount_dec_not_one(&link->rpm_active)) 477 pm_runtime_put(link->supplier); 478 479 put_device(link->consumer); 480 put_device(link->supplier); 481 kfree(link); 482 } 483 484 static void devlink_dev_release(struct device *dev) 485 { 486 struct device_link *link = to_devlink(dev); 487 488 INIT_WORK(&link->rm_work, device_link_release_fn); 489 /* 490 * It may take a while to complete this work because of the SRCU 491 * synchronization in device_link_release_fn() and if the consumer or 492 * supplier devices get deleted when it runs, so put it into the "long" 493 * workqueue. 494 */ 495 queue_work(system_long_wq, &link->rm_work); 496 } 497 498 static struct class devlink_class = { 499 .name = "devlink", 500 .owner = THIS_MODULE, 501 .dev_groups = devlink_groups, 502 .dev_release = devlink_dev_release, 503 }; 504 505 static int devlink_add_symlinks(struct device *dev, 506 struct class_interface *class_intf) 507 { 508 int ret; 509 size_t len; 510 struct device_link *link = to_devlink(dev); 511 struct device *sup = link->supplier; 512 struct device *con = link->consumer; 513 char *buf; 514 515 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 516 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 517 len += strlen(":"); 518 len += strlen("supplier:") + 1; 519 buf = kzalloc(len, GFP_KERNEL); 520 if (!buf) 521 return -ENOMEM; 522 523 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 524 if (ret) 525 goto out; 526 527 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 528 if (ret) 529 goto err_con; 530 531 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 532 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 533 if (ret) 534 goto err_con_dev; 535 536 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 537 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 538 if (ret) 539 goto err_sup_dev; 540 541 goto out; 542 543 err_sup_dev: 544 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 545 sysfs_remove_link(&sup->kobj, buf); 546 err_con_dev: 547 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 548 err_con: 549 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 550 out: 551 kfree(buf); 552 return ret; 553 } 554 555 static void devlink_remove_symlinks(struct device *dev, 556 struct class_interface *class_intf) 557 { 558 struct device_link *link = to_devlink(dev); 559 size_t len; 560 struct device *sup = link->supplier; 561 struct device *con = link->consumer; 562 char *buf; 563 564 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 565 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 566 567 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 568 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 569 len += strlen(":"); 570 len += strlen("supplier:") + 1; 571 buf = kzalloc(len, GFP_KERNEL); 572 if (!buf) { 573 WARN(1, "Unable to properly free device link symlinks!\n"); 574 return; 575 } 576 577 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 578 sysfs_remove_link(&con->kobj, buf); 579 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 580 sysfs_remove_link(&sup->kobj, buf); 581 kfree(buf); 582 } 583 584 static struct class_interface devlink_class_intf = { 585 .class = &devlink_class, 586 .add_dev = devlink_add_symlinks, 587 .remove_dev = devlink_remove_symlinks, 588 }; 589 590 static int __init devlink_class_init(void) 591 { 592 int ret; 593 594 ret = class_register(&devlink_class); 595 if (ret) 596 return ret; 597 598 ret = class_interface_register(&devlink_class_intf); 599 if (ret) 600 class_unregister(&devlink_class); 601 602 return ret; 603 } 604 postcore_initcall(devlink_class_init); 605 606 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 607 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 608 DL_FLAG_AUTOPROBE_CONSUMER | \ 609 DL_FLAG_SYNC_STATE_ONLY | \ 610 DL_FLAG_INFERRED) 611 612 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 613 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 614 615 /** 616 * device_link_add - Create a link between two devices. 617 * @consumer: Consumer end of the link. 618 * @supplier: Supplier end of the link. 619 * @flags: Link flags. 620 * 621 * The caller is responsible for the proper synchronization of the link creation 622 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 623 * runtime PM framework to take the link into account. Second, if the 624 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 625 * be forced into the active meta state and reference-counted upon the creation 626 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 627 * ignored. 628 * 629 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 630 * expected to release the link returned by it directly with the help of either 631 * device_link_del() or device_link_remove(). 632 * 633 * If that flag is not set, however, the caller of this function is handing the 634 * management of the link over to the driver core entirely and its return value 635 * can only be used to check whether or not the link is present. In that case, 636 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 637 * flags can be used to indicate to the driver core when the link can be safely 638 * deleted. Namely, setting one of them in @flags indicates to the driver core 639 * that the link is not going to be used (by the given caller of this function) 640 * after unbinding the consumer or supplier driver, respectively, from its 641 * device, so the link can be deleted at that point. If none of them is set, 642 * the link will be maintained until one of the devices pointed to by it (either 643 * the consumer or the supplier) is unregistered. 644 * 645 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 646 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 647 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 648 * be used to request the driver core to automatically probe for a consumer 649 * driver after successfully binding a driver to the supplier device. 650 * 651 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 652 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 653 * the same time is invalid and will cause NULL to be returned upfront. 654 * However, if a device link between the given @consumer and @supplier pair 655 * exists already when this function is called for them, the existing link will 656 * be returned regardless of its current type and status (the link's flags may 657 * be modified then). The caller of this function is then expected to treat 658 * the link as though it has just been created, so (in particular) if 659 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 660 * explicitly when not needed any more (as stated above). 661 * 662 * A side effect of the link creation is re-ordering of dpm_list and the 663 * devices_kset list by moving the consumer device and all devices depending 664 * on it to the ends of these lists (that does not happen to devices that have 665 * not been registered when this function is called). 666 * 667 * The supplier device is required to be registered when this function is called 668 * and NULL will be returned if that is not the case. The consumer device need 669 * not be registered, however. 670 */ 671 struct device_link *device_link_add(struct device *consumer, 672 struct device *supplier, u32 flags) 673 { 674 struct device_link *link; 675 676 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS || 677 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 678 (flags & DL_FLAG_SYNC_STATE_ONLY && 679 (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) || 680 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 681 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 682 DL_FLAG_AUTOREMOVE_SUPPLIER))) 683 return NULL; 684 685 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 686 if (pm_runtime_get_sync(supplier) < 0) { 687 pm_runtime_put_noidle(supplier); 688 return NULL; 689 } 690 } 691 692 if (!(flags & DL_FLAG_STATELESS)) 693 flags |= DL_FLAG_MANAGED; 694 695 device_links_write_lock(); 696 device_pm_lock(); 697 698 /* 699 * If the supplier has not been fully registered yet or there is a 700 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 701 * the supplier already in the graph, return NULL. If the link is a 702 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 703 * because it only affects sync_state() callbacks. 704 */ 705 if (!device_pm_initialized(supplier) 706 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 707 device_is_dependent(consumer, supplier))) { 708 link = NULL; 709 goto out; 710 } 711 712 /* 713 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 714 * So, only create it if the consumer hasn't probed yet. 715 */ 716 if (flags & DL_FLAG_SYNC_STATE_ONLY && 717 consumer->links.status != DL_DEV_NO_DRIVER && 718 consumer->links.status != DL_DEV_PROBING) { 719 link = NULL; 720 goto out; 721 } 722 723 /* 724 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 725 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 726 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 727 */ 728 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 729 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 730 731 list_for_each_entry(link, &supplier->links.consumers, s_node) { 732 if (link->consumer != consumer) 733 continue; 734 735 if (link->flags & DL_FLAG_INFERRED && 736 !(flags & DL_FLAG_INFERRED)) 737 link->flags &= ~DL_FLAG_INFERRED; 738 739 if (flags & DL_FLAG_PM_RUNTIME) { 740 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 741 pm_runtime_new_link(consumer); 742 link->flags |= DL_FLAG_PM_RUNTIME; 743 } 744 if (flags & DL_FLAG_RPM_ACTIVE) 745 refcount_inc(&link->rpm_active); 746 } 747 748 if (flags & DL_FLAG_STATELESS) { 749 kref_get(&link->kref); 750 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 751 !(link->flags & DL_FLAG_STATELESS)) { 752 link->flags |= DL_FLAG_STATELESS; 753 goto reorder; 754 } else { 755 link->flags |= DL_FLAG_STATELESS; 756 goto out; 757 } 758 } 759 760 /* 761 * If the life time of the link following from the new flags is 762 * longer than indicated by the flags of the existing link, 763 * update the existing link to stay around longer. 764 */ 765 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 766 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 767 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 768 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 769 } 770 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 771 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 772 DL_FLAG_AUTOREMOVE_SUPPLIER); 773 } 774 if (!(link->flags & DL_FLAG_MANAGED)) { 775 kref_get(&link->kref); 776 link->flags |= DL_FLAG_MANAGED; 777 device_link_init_status(link, consumer, supplier); 778 } 779 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 780 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 781 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 782 goto reorder; 783 } 784 785 goto out; 786 } 787 788 link = kzalloc(sizeof(*link), GFP_KERNEL); 789 if (!link) 790 goto out; 791 792 refcount_set(&link->rpm_active, 1); 793 794 get_device(supplier); 795 link->supplier = supplier; 796 INIT_LIST_HEAD(&link->s_node); 797 get_device(consumer); 798 link->consumer = consumer; 799 INIT_LIST_HEAD(&link->c_node); 800 link->flags = flags; 801 kref_init(&link->kref); 802 803 link->link_dev.class = &devlink_class; 804 device_set_pm_not_required(&link->link_dev); 805 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 806 dev_bus_name(supplier), dev_name(supplier), 807 dev_bus_name(consumer), dev_name(consumer)); 808 if (device_register(&link->link_dev)) { 809 put_device(consumer); 810 put_device(supplier); 811 kfree(link); 812 link = NULL; 813 goto out; 814 } 815 816 if (flags & DL_FLAG_PM_RUNTIME) { 817 if (flags & DL_FLAG_RPM_ACTIVE) 818 refcount_inc(&link->rpm_active); 819 820 pm_runtime_new_link(consumer); 821 } 822 823 /* Determine the initial link state. */ 824 if (flags & DL_FLAG_STATELESS) 825 link->status = DL_STATE_NONE; 826 else 827 device_link_init_status(link, consumer, supplier); 828 829 /* 830 * Some callers expect the link creation during consumer driver probe to 831 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 832 */ 833 if (link->status == DL_STATE_CONSUMER_PROBE && 834 flags & DL_FLAG_PM_RUNTIME) 835 pm_runtime_resume(supplier); 836 837 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 838 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 839 840 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 841 dev_dbg(consumer, 842 "Linked as a sync state only consumer to %s\n", 843 dev_name(supplier)); 844 goto out; 845 } 846 847 reorder: 848 /* 849 * Move the consumer and all of the devices depending on it to the end 850 * of dpm_list and the devices_kset list. 851 * 852 * It is necessary to hold dpm_list locked throughout all that or else 853 * we may end up suspending with a wrong ordering of it. 854 */ 855 device_reorder_to_tail(consumer, NULL); 856 857 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 858 859 out: 860 device_pm_unlock(); 861 device_links_write_unlock(); 862 863 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 864 pm_runtime_put(supplier); 865 866 return link; 867 } 868 EXPORT_SYMBOL_GPL(device_link_add); 869 870 static void __device_link_del(struct kref *kref) 871 { 872 struct device_link *link = container_of(kref, struct device_link, kref); 873 874 dev_dbg(link->consumer, "Dropping the link to %s\n", 875 dev_name(link->supplier)); 876 877 pm_runtime_drop_link(link); 878 879 device_link_remove_from_lists(link); 880 device_unregister(&link->link_dev); 881 } 882 883 static void device_link_put_kref(struct device_link *link) 884 { 885 if (link->flags & DL_FLAG_STATELESS) 886 kref_put(&link->kref, __device_link_del); 887 else 888 WARN(1, "Unable to drop a managed device link reference\n"); 889 } 890 891 /** 892 * device_link_del - Delete a stateless link between two devices. 893 * @link: Device link to delete. 894 * 895 * The caller must ensure proper synchronization of this function with runtime 896 * PM. If the link was added multiple times, it needs to be deleted as often. 897 * Care is required for hotplugged devices: Their links are purged on removal 898 * and calling device_link_del() is then no longer allowed. 899 */ 900 void device_link_del(struct device_link *link) 901 { 902 device_links_write_lock(); 903 device_link_put_kref(link); 904 device_links_write_unlock(); 905 } 906 EXPORT_SYMBOL_GPL(device_link_del); 907 908 /** 909 * device_link_remove - Delete a stateless link between two devices. 910 * @consumer: Consumer end of the link. 911 * @supplier: Supplier end of the link. 912 * 913 * The caller must ensure proper synchronization of this function with runtime 914 * PM. 915 */ 916 void device_link_remove(void *consumer, struct device *supplier) 917 { 918 struct device_link *link; 919 920 if (WARN_ON(consumer == supplier)) 921 return; 922 923 device_links_write_lock(); 924 925 list_for_each_entry(link, &supplier->links.consumers, s_node) { 926 if (link->consumer == consumer) { 927 device_link_put_kref(link); 928 break; 929 } 930 } 931 932 device_links_write_unlock(); 933 } 934 EXPORT_SYMBOL_GPL(device_link_remove); 935 936 static void device_links_missing_supplier(struct device *dev) 937 { 938 struct device_link *link; 939 940 list_for_each_entry(link, &dev->links.suppliers, c_node) { 941 if (link->status != DL_STATE_CONSUMER_PROBE) 942 continue; 943 944 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 945 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 946 } else { 947 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 948 WRITE_ONCE(link->status, DL_STATE_DORMANT); 949 } 950 } 951 } 952 953 /** 954 * device_links_check_suppliers - Check presence of supplier drivers. 955 * @dev: Consumer device. 956 * 957 * Check links from this device to any suppliers. Walk the list of the device's 958 * links to suppliers and see if all of them are available. If not, simply 959 * return -EPROBE_DEFER. 960 * 961 * We need to guarantee that the supplier will not go away after the check has 962 * been positive here. It only can go away in __device_release_driver() and 963 * that function checks the device's links to consumers. This means we need to 964 * mark the link as "consumer probe in progress" to make the supplier removal 965 * wait for us to complete (or bad things may happen). 966 * 967 * Links without the DL_FLAG_MANAGED flag set are ignored. 968 */ 969 int device_links_check_suppliers(struct device *dev) 970 { 971 struct device_link *link; 972 int ret = 0; 973 974 /* 975 * Device waiting for supplier to become available is not allowed to 976 * probe. 977 */ 978 mutex_lock(&fwnode_link_lock); 979 if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) && 980 !fw_devlink_is_permissive()) { 981 dev_dbg(dev, "probe deferral - wait for supplier %pfwP\n", 982 list_first_entry(&dev->fwnode->suppliers, 983 struct fwnode_link, 984 c_hook)->supplier); 985 mutex_unlock(&fwnode_link_lock); 986 return -EPROBE_DEFER; 987 } 988 mutex_unlock(&fwnode_link_lock); 989 990 device_links_write_lock(); 991 992 list_for_each_entry(link, &dev->links.suppliers, c_node) { 993 if (!(link->flags & DL_FLAG_MANAGED)) 994 continue; 995 996 if (link->status != DL_STATE_AVAILABLE && 997 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 998 device_links_missing_supplier(dev); 999 dev_dbg(dev, "probe deferral - supplier %s not ready\n", 1000 dev_name(link->supplier)); 1001 ret = -EPROBE_DEFER; 1002 break; 1003 } 1004 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1005 } 1006 dev->links.status = DL_DEV_PROBING; 1007 1008 device_links_write_unlock(); 1009 return ret; 1010 } 1011 1012 /** 1013 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1014 * @dev: Device to call sync_state() on 1015 * @list: List head to queue the @dev on 1016 * 1017 * Queues a device for a sync_state() callback when the device links write lock 1018 * isn't held. This allows the sync_state() execution flow to use device links 1019 * APIs. The caller must ensure this function is called with 1020 * device_links_write_lock() held. 1021 * 1022 * This function does a get_device() to make sure the device is not freed while 1023 * on this list. 1024 * 1025 * So the caller must also ensure that device_links_flush_sync_list() is called 1026 * as soon as the caller releases device_links_write_lock(). This is necessary 1027 * to make sure the sync_state() is called in a timely fashion and the 1028 * put_device() is called on this device. 1029 */ 1030 static void __device_links_queue_sync_state(struct device *dev, 1031 struct list_head *list) 1032 { 1033 struct device_link *link; 1034 1035 if (!dev_has_sync_state(dev)) 1036 return; 1037 if (dev->state_synced) 1038 return; 1039 1040 list_for_each_entry(link, &dev->links.consumers, s_node) { 1041 if (!(link->flags & DL_FLAG_MANAGED)) 1042 continue; 1043 if (link->status != DL_STATE_ACTIVE) 1044 return; 1045 } 1046 1047 /* 1048 * Set the flag here to avoid adding the same device to a list more 1049 * than once. This can happen if new consumers get added to the device 1050 * and probed before the list is flushed. 1051 */ 1052 dev->state_synced = true; 1053 1054 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1055 return; 1056 1057 get_device(dev); 1058 list_add_tail(&dev->links.defer_sync, list); 1059 } 1060 1061 /** 1062 * device_links_flush_sync_list - Call sync_state() on a list of devices 1063 * @list: List of devices to call sync_state() on 1064 * @dont_lock_dev: Device for which lock is already held by the caller 1065 * 1066 * Calls sync_state() on all the devices that have been queued for it. This 1067 * function is used in conjunction with __device_links_queue_sync_state(). The 1068 * @dont_lock_dev parameter is useful when this function is called from a 1069 * context where a device lock is already held. 1070 */ 1071 static void device_links_flush_sync_list(struct list_head *list, 1072 struct device *dont_lock_dev) 1073 { 1074 struct device *dev, *tmp; 1075 1076 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1077 list_del_init(&dev->links.defer_sync); 1078 1079 if (dev != dont_lock_dev) 1080 device_lock(dev); 1081 1082 if (dev->bus->sync_state) 1083 dev->bus->sync_state(dev); 1084 else if (dev->driver && dev->driver->sync_state) 1085 dev->driver->sync_state(dev); 1086 1087 if (dev != dont_lock_dev) 1088 device_unlock(dev); 1089 1090 put_device(dev); 1091 } 1092 } 1093 1094 void device_links_supplier_sync_state_pause(void) 1095 { 1096 device_links_write_lock(); 1097 defer_sync_state_count++; 1098 device_links_write_unlock(); 1099 } 1100 1101 void device_links_supplier_sync_state_resume(void) 1102 { 1103 struct device *dev, *tmp; 1104 LIST_HEAD(sync_list); 1105 1106 device_links_write_lock(); 1107 if (!defer_sync_state_count) { 1108 WARN(true, "Unmatched sync_state pause/resume!"); 1109 goto out; 1110 } 1111 defer_sync_state_count--; 1112 if (defer_sync_state_count) 1113 goto out; 1114 1115 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1116 /* 1117 * Delete from deferred_sync list before queuing it to 1118 * sync_list because defer_sync is used for both lists. 1119 */ 1120 list_del_init(&dev->links.defer_sync); 1121 __device_links_queue_sync_state(dev, &sync_list); 1122 } 1123 out: 1124 device_links_write_unlock(); 1125 1126 device_links_flush_sync_list(&sync_list, NULL); 1127 } 1128 1129 static int sync_state_resume_initcall(void) 1130 { 1131 device_links_supplier_sync_state_resume(); 1132 return 0; 1133 } 1134 late_initcall(sync_state_resume_initcall); 1135 1136 static void __device_links_supplier_defer_sync(struct device *sup) 1137 { 1138 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1139 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1140 } 1141 1142 static void device_link_drop_managed(struct device_link *link) 1143 { 1144 link->flags &= ~DL_FLAG_MANAGED; 1145 WRITE_ONCE(link->status, DL_STATE_NONE); 1146 kref_put(&link->kref, __device_link_del); 1147 } 1148 1149 static ssize_t waiting_for_supplier_show(struct device *dev, 1150 struct device_attribute *attr, 1151 char *buf) 1152 { 1153 bool val; 1154 1155 device_lock(dev); 1156 val = !list_empty(&dev->fwnode->suppliers); 1157 device_unlock(dev); 1158 return sysfs_emit(buf, "%u\n", val); 1159 } 1160 static DEVICE_ATTR_RO(waiting_for_supplier); 1161 1162 /** 1163 * device_links_force_bind - Prepares device to be force bound 1164 * @dev: Consumer device. 1165 * 1166 * device_bind_driver() force binds a device to a driver without calling any 1167 * driver probe functions. So the consumer really isn't going to wait for any 1168 * supplier before it's bound to the driver. We still want the device link 1169 * states to be sensible when this happens. 1170 * 1171 * In preparation for device_bind_driver(), this function goes through each 1172 * supplier device links and checks if the supplier is bound. If it is, then 1173 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1174 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1175 */ 1176 void device_links_force_bind(struct device *dev) 1177 { 1178 struct device_link *link, *ln; 1179 1180 device_links_write_lock(); 1181 1182 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1183 if (!(link->flags & DL_FLAG_MANAGED)) 1184 continue; 1185 1186 if (link->status != DL_STATE_AVAILABLE) { 1187 device_link_drop_managed(link); 1188 continue; 1189 } 1190 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1191 } 1192 dev->links.status = DL_DEV_PROBING; 1193 1194 device_links_write_unlock(); 1195 } 1196 1197 /** 1198 * device_links_driver_bound - Update device links after probing its driver. 1199 * @dev: Device to update the links for. 1200 * 1201 * The probe has been successful, so update links from this device to any 1202 * consumers by changing their status to "available". 1203 * 1204 * Also change the status of @dev's links to suppliers to "active". 1205 * 1206 * Links without the DL_FLAG_MANAGED flag set are ignored. 1207 */ 1208 void device_links_driver_bound(struct device *dev) 1209 { 1210 struct device_link *link, *ln; 1211 LIST_HEAD(sync_list); 1212 1213 /* 1214 * If a device binds successfully, it's expected to have created all 1215 * the device links it needs to or make new device links as it needs 1216 * them. So, fw_devlink no longer needs to create device links to any 1217 * of the device's suppliers. 1218 * 1219 * Also, if a child firmware node of this bound device is not added as 1220 * a device by now, assume it is never going to be added and make sure 1221 * other devices don't defer probe indefinitely by waiting for such a 1222 * child device. 1223 */ 1224 if (dev->fwnode && dev->fwnode->dev == dev) { 1225 struct fwnode_handle *child; 1226 fwnode_links_purge_suppliers(dev->fwnode); 1227 fwnode_for_each_available_child_node(dev->fwnode, child) 1228 fw_devlink_purge_absent_suppliers(child); 1229 } 1230 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1231 1232 device_links_write_lock(); 1233 1234 list_for_each_entry(link, &dev->links.consumers, s_node) { 1235 if (!(link->flags & DL_FLAG_MANAGED)) 1236 continue; 1237 1238 /* 1239 * Links created during consumer probe may be in the "consumer 1240 * probe" state to start with if the supplier is still probing 1241 * when they are created and they may become "active" if the 1242 * consumer probe returns first. Skip them here. 1243 */ 1244 if (link->status == DL_STATE_CONSUMER_PROBE || 1245 link->status == DL_STATE_ACTIVE) 1246 continue; 1247 1248 WARN_ON(link->status != DL_STATE_DORMANT); 1249 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1250 1251 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1252 driver_deferred_probe_add(link->consumer); 1253 } 1254 1255 if (defer_sync_state_count) 1256 __device_links_supplier_defer_sync(dev); 1257 else 1258 __device_links_queue_sync_state(dev, &sync_list); 1259 1260 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1261 struct device *supplier; 1262 1263 if (!(link->flags & DL_FLAG_MANAGED)) 1264 continue; 1265 1266 supplier = link->supplier; 1267 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1268 /* 1269 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1270 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1271 * save to drop the managed link completely. 1272 */ 1273 device_link_drop_managed(link); 1274 } else { 1275 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1276 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1277 } 1278 1279 /* 1280 * This needs to be done even for the deleted 1281 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1282 * device link that was preventing the supplier from getting a 1283 * sync_state() call. 1284 */ 1285 if (defer_sync_state_count) 1286 __device_links_supplier_defer_sync(supplier); 1287 else 1288 __device_links_queue_sync_state(supplier, &sync_list); 1289 } 1290 1291 dev->links.status = DL_DEV_DRIVER_BOUND; 1292 1293 device_links_write_unlock(); 1294 1295 device_links_flush_sync_list(&sync_list, dev); 1296 } 1297 1298 /** 1299 * __device_links_no_driver - Update links of a device without a driver. 1300 * @dev: Device without a drvier. 1301 * 1302 * Delete all non-persistent links from this device to any suppliers. 1303 * 1304 * Persistent links stay around, but their status is changed to "available", 1305 * unless they already are in the "supplier unbind in progress" state in which 1306 * case they need not be updated. 1307 * 1308 * Links without the DL_FLAG_MANAGED flag set are ignored. 1309 */ 1310 static void __device_links_no_driver(struct device *dev) 1311 { 1312 struct device_link *link, *ln; 1313 1314 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1315 if (!(link->flags & DL_FLAG_MANAGED)) 1316 continue; 1317 1318 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1319 device_link_drop_managed(link); 1320 continue; 1321 } 1322 1323 if (link->status != DL_STATE_CONSUMER_PROBE && 1324 link->status != DL_STATE_ACTIVE) 1325 continue; 1326 1327 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1328 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1329 } else { 1330 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1331 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1332 } 1333 } 1334 1335 dev->links.status = DL_DEV_NO_DRIVER; 1336 } 1337 1338 /** 1339 * device_links_no_driver - Update links after failing driver probe. 1340 * @dev: Device whose driver has just failed to probe. 1341 * 1342 * Clean up leftover links to consumers for @dev and invoke 1343 * %__device_links_no_driver() to update links to suppliers for it as 1344 * appropriate. 1345 * 1346 * Links without the DL_FLAG_MANAGED flag set are ignored. 1347 */ 1348 void device_links_no_driver(struct device *dev) 1349 { 1350 struct device_link *link; 1351 1352 device_links_write_lock(); 1353 1354 list_for_each_entry(link, &dev->links.consumers, s_node) { 1355 if (!(link->flags & DL_FLAG_MANAGED)) 1356 continue; 1357 1358 /* 1359 * The probe has failed, so if the status of the link is 1360 * "consumer probe" or "active", it must have been added by 1361 * a probing consumer while this device was still probing. 1362 * Change its state to "dormant", as it represents a valid 1363 * relationship, but it is not functionally meaningful. 1364 */ 1365 if (link->status == DL_STATE_CONSUMER_PROBE || 1366 link->status == DL_STATE_ACTIVE) 1367 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1368 } 1369 1370 __device_links_no_driver(dev); 1371 1372 device_links_write_unlock(); 1373 } 1374 1375 /** 1376 * device_links_driver_cleanup - Update links after driver removal. 1377 * @dev: Device whose driver has just gone away. 1378 * 1379 * Update links to consumers for @dev by changing their status to "dormant" and 1380 * invoke %__device_links_no_driver() to update links to suppliers for it as 1381 * appropriate. 1382 * 1383 * Links without the DL_FLAG_MANAGED flag set are ignored. 1384 */ 1385 void device_links_driver_cleanup(struct device *dev) 1386 { 1387 struct device_link *link, *ln; 1388 1389 device_links_write_lock(); 1390 1391 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1392 if (!(link->flags & DL_FLAG_MANAGED)) 1393 continue; 1394 1395 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1396 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1397 1398 /* 1399 * autoremove the links between this @dev and its consumer 1400 * devices that are not active, i.e. where the link state 1401 * has moved to DL_STATE_SUPPLIER_UNBIND. 1402 */ 1403 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1404 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1405 device_link_drop_managed(link); 1406 1407 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1408 } 1409 1410 list_del_init(&dev->links.defer_sync); 1411 __device_links_no_driver(dev); 1412 1413 device_links_write_unlock(); 1414 } 1415 1416 /** 1417 * device_links_busy - Check if there are any busy links to consumers. 1418 * @dev: Device to check. 1419 * 1420 * Check each consumer of the device and return 'true' if its link's status 1421 * is one of "consumer probe" or "active" (meaning that the given consumer is 1422 * probing right now or its driver is present). Otherwise, change the link 1423 * state to "supplier unbind" to prevent the consumer from being probed 1424 * successfully going forward. 1425 * 1426 * Return 'false' if there are no probing or active consumers. 1427 * 1428 * Links without the DL_FLAG_MANAGED flag set are ignored. 1429 */ 1430 bool device_links_busy(struct device *dev) 1431 { 1432 struct device_link *link; 1433 bool ret = false; 1434 1435 device_links_write_lock(); 1436 1437 list_for_each_entry(link, &dev->links.consumers, s_node) { 1438 if (!(link->flags & DL_FLAG_MANAGED)) 1439 continue; 1440 1441 if (link->status == DL_STATE_CONSUMER_PROBE 1442 || link->status == DL_STATE_ACTIVE) { 1443 ret = true; 1444 break; 1445 } 1446 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1447 } 1448 1449 dev->links.status = DL_DEV_UNBINDING; 1450 1451 device_links_write_unlock(); 1452 return ret; 1453 } 1454 1455 /** 1456 * device_links_unbind_consumers - Force unbind consumers of the given device. 1457 * @dev: Device to unbind the consumers of. 1458 * 1459 * Walk the list of links to consumers for @dev and if any of them is in the 1460 * "consumer probe" state, wait for all device probes in progress to complete 1461 * and start over. 1462 * 1463 * If that's not the case, change the status of the link to "supplier unbind" 1464 * and check if the link was in the "active" state. If so, force the consumer 1465 * driver to unbind and start over (the consumer will not re-probe as we have 1466 * changed the state of the link already). 1467 * 1468 * Links without the DL_FLAG_MANAGED flag set are ignored. 1469 */ 1470 void device_links_unbind_consumers(struct device *dev) 1471 { 1472 struct device_link *link; 1473 1474 start: 1475 device_links_write_lock(); 1476 1477 list_for_each_entry(link, &dev->links.consumers, s_node) { 1478 enum device_link_state status; 1479 1480 if (!(link->flags & DL_FLAG_MANAGED) || 1481 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1482 continue; 1483 1484 status = link->status; 1485 if (status == DL_STATE_CONSUMER_PROBE) { 1486 device_links_write_unlock(); 1487 1488 wait_for_device_probe(); 1489 goto start; 1490 } 1491 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1492 if (status == DL_STATE_ACTIVE) { 1493 struct device *consumer = link->consumer; 1494 1495 get_device(consumer); 1496 1497 device_links_write_unlock(); 1498 1499 device_release_driver_internal(consumer, NULL, 1500 consumer->parent); 1501 put_device(consumer); 1502 goto start; 1503 } 1504 } 1505 1506 device_links_write_unlock(); 1507 } 1508 1509 /** 1510 * device_links_purge - Delete existing links to other devices. 1511 * @dev: Target device. 1512 */ 1513 static void device_links_purge(struct device *dev) 1514 { 1515 struct device_link *link, *ln; 1516 1517 if (dev->class == &devlink_class) 1518 return; 1519 1520 /* 1521 * Delete all of the remaining links from this device to any other 1522 * devices (either consumers or suppliers). 1523 */ 1524 device_links_write_lock(); 1525 1526 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1527 WARN_ON(link->status == DL_STATE_ACTIVE); 1528 __device_link_del(&link->kref); 1529 } 1530 1531 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1532 WARN_ON(link->status != DL_STATE_DORMANT && 1533 link->status != DL_STATE_NONE); 1534 __device_link_del(&link->kref); 1535 } 1536 1537 device_links_write_unlock(); 1538 } 1539 1540 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1541 DL_FLAG_SYNC_STATE_ONLY) 1542 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1543 DL_FLAG_AUTOPROBE_CONSUMER) 1544 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1545 DL_FLAG_PM_RUNTIME) 1546 1547 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1548 static int __init fw_devlink_setup(char *arg) 1549 { 1550 if (!arg) 1551 return -EINVAL; 1552 1553 if (strcmp(arg, "off") == 0) { 1554 fw_devlink_flags = 0; 1555 } else if (strcmp(arg, "permissive") == 0) { 1556 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1557 } else if (strcmp(arg, "on") == 0) { 1558 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1559 } else if (strcmp(arg, "rpm") == 0) { 1560 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1561 } 1562 return 0; 1563 } 1564 early_param("fw_devlink", fw_devlink_setup); 1565 1566 static bool fw_devlink_strict; 1567 static int __init fw_devlink_strict_setup(char *arg) 1568 { 1569 return strtobool(arg, &fw_devlink_strict); 1570 } 1571 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1572 1573 u32 fw_devlink_get_flags(void) 1574 { 1575 return fw_devlink_flags; 1576 } 1577 1578 static bool fw_devlink_is_permissive(void) 1579 { 1580 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1581 } 1582 1583 bool fw_devlink_is_strict(void) 1584 { 1585 return fw_devlink_strict && !fw_devlink_is_permissive(); 1586 } 1587 1588 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1589 { 1590 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1591 return; 1592 1593 fwnode_call_int_op(fwnode, add_links); 1594 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1595 } 1596 1597 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1598 { 1599 struct fwnode_handle *child = NULL; 1600 1601 fw_devlink_parse_fwnode(fwnode); 1602 1603 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1604 fw_devlink_parse_fwtree(child); 1605 } 1606 1607 static void fw_devlink_relax_link(struct device_link *link) 1608 { 1609 if (!(link->flags & DL_FLAG_INFERRED)) 1610 return; 1611 1612 if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE)) 1613 return; 1614 1615 pm_runtime_drop_link(link); 1616 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1617 dev_dbg(link->consumer, "Relaxing link with %s\n", 1618 dev_name(link->supplier)); 1619 } 1620 1621 static int fw_devlink_no_driver(struct device *dev, void *data) 1622 { 1623 struct device_link *link = to_devlink(dev); 1624 1625 if (!link->supplier->can_match) 1626 fw_devlink_relax_link(link); 1627 1628 return 0; 1629 } 1630 1631 void fw_devlink_drivers_done(void) 1632 { 1633 fw_devlink_drv_reg_done = true; 1634 device_links_write_lock(); 1635 class_for_each_device(&devlink_class, NULL, NULL, 1636 fw_devlink_no_driver); 1637 device_links_write_unlock(); 1638 } 1639 1640 static void fw_devlink_unblock_consumers(struct device *dev) 1641 { 1642 struct device_link *link; 1643 1644 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1645 return; 1646 1647 device_links_write_lock(); 1648 list_for_each_entry(link, &dev->links.consumers, s_node) 1649 fw_devlink_relax_link(link); 1650 device_links_write_unlock(); 1651 } 1652 1653 /** 1654 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links 1655 * @con: Device to check dependencies for. 1656 * @sup: Device to check against. 1657 * 1658 * Check if @sup depends on @con or any device dependent on it (its child or 1659 * its consumer etc). When such a cyclic dependency is found, convert all 1660 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links. 1661 * This is the equivalent of doing fw_devlink=permissive just between the 1662 * devices in the cycle. We need to do this because, at this point, fw_devlink 1663 * can't tell which of these dependencies is not a real dependency. 1664 * 1665 * Return 1 if a cycle is found. Otherwise, return 0. 1666 */ 1667 static int fw_devlink_relax_cycle(struct device *con, void *sup) 1668 { 1669 struct device_link *link; 1670 int ret; 1671 1672 if (con == sup) 1673 return 1; 1674 1675 ret = device_for_each_child(con, sup, fw_devlink_relax_cycle); 1676 if (ret) 1677 return ret; 1678 1679 list_for_each_entry(link, &con->links.consumers, s_node) { 1680 if ((link->flags & ~DL_FLAG_INFERRED) == 1681 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 1682 continue; 1683 1684 if (!fw_devlink_relax_cycle(link->consumer, sup)) 1685 continue; 1686 1687 ret = 1; 1688 1689 fw_devlink_relax_link(link); 1690 } 1691 return ret; 1692 } 1693 1694 /** 1695 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 1696 * @con: consumer device for the device link 1697 * @sup_handle: fwnode handle of supplier 1698 * @flags: devlink flags 1699 * 1700 * This function will try to create a device link between the consumer device 1701 * @con and the supplier device represented by @sup_handle. 1702 * 1703 * The supplier has to be provided as a fwnode because incorrect cycles in 1704 * fwnode links can sometimes cause the supplier device to never be created. 1705 * This function detects such cases and returns an error if it cannot create a 1706 * device link from the consumer to a missing supplier. 1707 * 1708 * Returns, 1709 * 0 on successfully creating a device link 1710 * -EINVAL if the device link cannot be created as expected 1711 * -EAGAIN if the device link cannot be created right now, but it may be 1712 * possible to do that in the future 1713 */ 1714 static int fw_devlink_create_devlink(struct device *con, 1715 struct fwnode_handle *sup_handle, u32 flags) 1716 { 1717 struct device *sup_dev; 1718 int ret = 0; 1719 1720 sup_dev = get_dev_from_fwnode(sup_handle); 1721 if (sup_dev) { 1722 /* 1723 * If it's one of those drivers that don't actually bind to 1724 * their device using driver core, then don't wait on this 1725 * supplier device indefinitely. 1726 */ 1727 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 1728 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 1729 ret = -EINVAL; 1730 goto out; 1731 } 1732 1733 /* 1734 * If this fails, it is due to cycles in device links. Just 1735 * give up on this link and treat it as invalid. 1736 */ 1737 if (!device_link_add(con, sup_dev, flags) && 1738 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 1739 dev_info(con, "Fixing up cyclic dependency with %s\n", 1740 dev_name(sup_dev)); 1741 device_links_write_lock(); 1742 fw_devlink_relax_cycle(con, sup_dev); 1743 device_links_write_unlock(); 1744 device_link_add(con, sup_dev, 1745 FW_DEVLINK_FLAGS_PERMISSIVE); 1746 ret = -EINVAL; 1747 } 1748 1749 goto out; 1750 } 1751 1752 /* Supplier that's already initialized without a struct device. */ 1753 if (sup_handle->flags & FWNODE_FLAG_INITIALIZED) 1754 return -EINVAL; 1755 1756 /* 1757 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports 1758 * cycles. So cycle detection isn't necessary and shouldn't be 1759 * done. 1760 */ 1761 if (flags & DL_FLAG_SYNC_STATE_ONLY) 1762 return -EAGAIN; 1763 1764 /* 1765 * If we can't find the supplier device from its fwnode, it might be 1766 * due to a cyclic dependency between fwnodes. Some of these cycles can 1767 * be broken by applying logic. Check for these types of cycles and 1768 * break them so that devices in the cycle probe properly. 1769 * 1770 * If the supplier's parent is dependent on the consumer, then 1771 * the consumer-supplier dependency is a false dependency. So, 1772 * treat it as an invalid link. 1773 */ 1774 sup_dev = fwnode_get_next_parent_dev(sup_handle); 1775 if (sup_dev && device_is_dependent(con, sup_dev)) { 1776 dev_dbg(con, "Not linking to %pfwP - False link\n", 1777 sup_handle); 1778 ret = -EINVAL; 1779 } else { 1780 /* 1781 * Can't check for cycles or no cycles. So let's try 1782 * again later. 1783 */ 1784 ret = -EAGAIN; 1785 } 1786 1787 out: 1788 put_device(sup_dev); 1789 return ret; 1790 } 1791 1792 /** 1793 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 1794 * @dev: Device that needs to be linked to its consumers 1795 * 1796 * This function looks at all the consumer fwnodes of @dev and creates device 1797 * links between the consumer device and @dev (supplier). 1798 * 1799 * If the consumer device has not been added yet, then this function creates a 1800 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 1801 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 1802 * sync_state() callback before the real consumer device gets to be added and 1803 * then probed. 1804 * 1805 * Once device links are created from the real consumer to @dev (supplier), the 1806 * fwnode links are deleted. 1807 */ 1808 static void __fw_devlink_link_to_consumers(struct device *dev) 1809 { 1810 struct fwnode_handle *fwnode = dev->fwnode; 1811 struct fwnode_link *link, *tmp; 1812 1813 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 1814 u32 dl_flags = fw_devlink_get_flags(); 1815 struct device *con_dev; 1816 bool own_link = true; 1817 int ret; 1818 1819 con_dev = get_dev_from_fwnode(link->consumer); 1820 /* 1821 * If consumer device is not available yet, make a "proxy" 1822 * SYNC_STATE_ONLY link from the consumer's parent device to 1823 * the supplier device. This is necessary to make sure the 1824 * supplier doesn't get a sync_state() callback before the real 1825 * consumer can create a device link to the supplier. 1826 * 1827 * This proxy link step is needed to handle the case where the 1828 * consumer's parent device is added before the supplier. 1829 */ 1830 if (!con_dev) { 1831 con_dev = fwnode_get_next_parent_dev(link->consumer); 1832 /* 1833 * However, if the consumer's parent device is also the 1834 * parent of the supplier, don't create a 1835 * consumer-supplier link from the parent to its child 1836 * device. Such a dependency is impossible. 1837 */ 1838 if (con_dev && 1839 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 1840 put_device(con_dev); 1841 con_dev = NULL; 1842 } else { 1843 own_link = false; 1844 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1845 } 1846 } 1847 1848 if (!con_dev) 1849 continue; 1850 1851 ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags); 1852 put_device(con_dev); 1853 if (!own_link || ret == -EAGAIN) 1854 continue; 1855 1856 list_del(&link->s_hook); 1857 list_del(&link->c_hook); 1858 kfree(link); 1859 } 1860 } 1861 1862 /** 1863 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 1864 * @dev: The consumer device that needs to be linked to its suppliers 1865 * @fwnode: Root of the fwnode tree that is used to create device links 1866 * 1867 * This function looks at all the supplier fwnodes of fwnode tree rooted at 1868 * @fwnode and creates device links between @dev (consumer) and all the 1869 * supplier devices of the entire fwnode tree at @fwnode. 1870 * 1871 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 1872 * and the real suppliers of @dev. Once these device links are created, the 1873 * fwnode links are deleted. When such device links are successfully created, 1874 * this function is called recursively on those supplier devices. This is 1875 * needed to detect and break some invalid cycles in fwnode links. See 1876 * fw_devlink_create_devlink() for more details. 1877 * 1878 * In addition, it also looks at all the suppliers of the entire fwnode tree 1879 * because some of the child devices of @dev that have not been added yet 1880 * (because @dev hasn't probed) might already have their suppliers added to 1881 * driver core. So, this function creates SYNC_STATE_ONLY device links between 1882 * @dev (consumer) and these suppliers to make sure they don't execute their 1883 * sync_state() callbacks before these child devices have a chance to create 1884 * their device links. The fwnode links that correspond to the child devices 1885 * aren't delete because they are needed later to create the device links 1886 * between the real consumer and supplier devices. 1887 */ 1888 static void __fw_devlink_link_to_suppliers(struct device *dev, 1889 struct fwnode_handle *fwnode) 1890 { 1891 bool own_link = (dev->fwnode == fwnode); 1892 struct fwnode_link *link, *tmp; 1893 struct fwnode_handle *child = NULL; 1894 u32 dl_flags; 1895 1896 if (own_link) 1897 dl_flags = fw_devlink_get_flags(); 1898 else 1899 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1900 1901 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 1902 int ret; 1903 struct device *sup_dev; 1904 struct fwnode_handle *sup = link->supplier; 1905 1906 ret = fw_devlink_create_devlink(dev, sup, dl_flags); 1907 if (!own_link || ret == -EAGAIN) 1908 continue; 1909 1910 list_del(&link->s_hook); 1911 list_del(&link->c_hook); 1912 kfree(link); 1913 1914 /* If no device link was created, nothing more to do. */ 1915 if (ret) 1916 continue; 1917 1918 /* 1919 * If a device link was successfully created to a supplier, we 1920 * now need to try and link the supplier to all its suppliers. 1921 * 1922 * This is needed to detect and delete false dependencies in 1923 * fwnode links that haven't been converted to a device link 1924 * yet. See comments in fw_devlink_create_devlink() for more 1925 * details on the false dependency. 1926 * 1927 * Without deleting these false dependencies, some devices will 1928 * never probe because they'll keep waiting for their false 1929 * dependency fwnode links to be converted to device links. 1930 */ 1931 sup_dev = get_dev_from_fwnode(sup); 1932 __fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode); 1933 put_device(sup_dev); 1934 } 1935 1936 /* 1937 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 1938 * all the descendants. This proxy link step is needed to handle the 1939 * case where the supplier is added before the consumer's parent device 1940 * (@dev). 1941 */ 1942 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1943 __fw_devlink_link_to_suppliers(dev, child); 1944 } 1945 1946 static void fw_devlink_link_device(struct device *dev) 1947 { 1948 struct fwnode_handle *fwnode = dev->fwnode; 1949 1950 if (!fw_devlink_flags) 1951 return; 1952 1953 fw_devlink_parse_fwtree(fwnode); 1954 1955 mutex_lock(&fwnode_link_lock); 1956 __fw_devlink_link_to_consumers(dev); 1957 __fw_devlink_link_to_suppliers(dev, fwnode); 1958 mutex_unlock(&fwnode_link_lock); 1959 } 1960 1961 /* Device links support end. */ 1962 1963 int (*platform_notify)(struct device *dev) = NULL; 1964 int (*platform_notify_remove)(struct device *dev) = NULL; 1965 static struct kobject *dev_kobj; 1966 struct kobject *sysfs_dev_char_kobj; 1967 struct kobject *sysfs_dev_block_kobj; 1968 1969 static DEFINE_MUTEX(device_hotplug_lock); 1970 1971 void lock_device_hotplug(void) 1972 { 1973 mutex_lock(&device_hotplug_lock); 1974 } 1975 1976 void unlock_device_hotplug(void) 1977 { 1978 mutex_unlock(&device_hotplug_lock); 1979 } 1980 1981 int lock_device_hotplug_sysfs(void) 1982 { 1983 if (mutex_trylock(&device_hotplug_lock)) 1984 return 0; 1985 1986 /* Avoid busy looping (5 ms of sleep should do). */ 1987 msleep(5); 1988 return restart_syscall(); 1989 } 1990 1991 #ifdef CONFIG_BLOCK 1992 static inline int device_is_not_partition(struct device *dev) 1993 { 1994 return !(dev->type == &part_type); 1995 } 1996 #else 1997 static inline int device_is_not_partition(struct device *dev) 1998 { 1999 return 1; 2000 } 2001 #endif 2002 2003 static int 2004 device_platform_notify(struct device *dev, enum kobject_action action) 2005 { 2006 int ret; 2007 2008 ret = acpi_platform_notify(dev, action); 2009 if (ret) 2010 return ret; 2011 2012 ret = software_node_notify(dev, action); 2013 if (ret) 2014 return ret; 2015 2016 if (platform_notify && action == KOBJ_ADD) 2017 platform_notify(dev); 2018 else if (platform_notify_remove && action == KOBJ_REMOVE) 2019 platform_notify_remove(dev); 2020 return 0; 2021 } 2022 2023 /** 2024 * dev_driver_string - Return a device's driver name, if at all possible 2025 * @dev: struct device to get the name of 2026 * 2027 * Will return the device's driver's name if it is bound to a device. If 2028 * the device is not bound to a driver, it will return the name of the bus 2029 * it is attached to. If it is not attached to a bus either, an empty 2030 * string will be returned. 2031 */ 2032 const char *dev_driver_string(const struct device *dev) 2033 { 2034 struct device_driver *drv; 2035 2036 /* dev->driver can change to NULL underneath us because of unbinding, 2037 * so be careful about accessing it. dev->bus and dev->class should 2038 * never change once they are set, so they don't need special care. 2039 */ 2040 drv = READ_ONCE(dev->driver); 2041 return drv ? drv->name : dev_bus_name(dev); 2042 } 2043 EXPORT_SYMBOL(dev_driver_string); 2044 2045 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2046 2047 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2048 char *buf) 2049 { 2050 struct device_attribute *dev_attr = to_dev_attr(attr); 2051 struct device *dev = kobj_to_dev(kobj); 2052 ssize_t ret = -EIO; 2053 2054 if (dev_attr->show) 2055 ret = dev_attr->show(dev, dev_attr, buf); 2056 if (ret >= (ssize_t)PAGE_SIZE) { 2057 printk("dev_attr_show: %pS returned bad count\n", 2058 dev_attr->show); 2059 } 2060 return ret; 2061 } 2062 2063 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2064 const char *buf, size_t count) 2065 { 2066 struct device_attribute *dev_attr = to_dev_attr(attr); 2067 struct device *dev = kobj_to_dev(kobj); 2068 ssize_t ret = -EIO; 2069 2070 if (dev_attr->store) 2071 ret = dev_attr->store(dev, dev_attr, buf, count); 2072 return ret; 2073 } 2074 2075 static const struct sysfs_ops dev_sysfs_ops = { 2076 .show = dev_attr_show, 2077 .store = dev_attr_store, 2078 }; 2079 2080 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2081 2082 ssize_t device_store_ulong(struct device *dev, 2083 struct device_attribute *attr, 2084 const char *buf, size_t size) 2085 { 2086 struct dev_ext_attribute *ea = to_ext_attr(attr); 2087 int ret; 2088 unsigned long new; 2089 2090 ret = kstrtoul(buf, 0, &new); 2091 if (ret) 2092 return ret; 2093 *(unsigned long *)(ea->var) = new; 2094 /* Always return full write size even if we didn't consume all */ 2095 return size; 2096 } 2097 EXPORT_SYMBOL_GPL(device_store_ulong); 2098 2099 ssize_t device_show_ulong(struct device *dev, 2100 struct device_attribute *attr, 2101 char *buf) 2102 { 2103 struct dev_ext_attribute *ea = to_ext_attr(attr); 2104 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2105 } 2106 EXPORT_SYMBOL_GPL(device_show_ulong); 2107 2108 ssize_t device_store_int(struct device *dev, 2109 struct device_attribute *attr, 2110 const char *buf, size_t size) 2111 { 2112 struct dev_ext_attribute *ea = to_ext_attr(attr); 2113 int ret; 2114 long new; 2115 2116 ret = kstrtol(buf, 0, &new); 2117 if (ret) 2118 return ret; 2119 2120 if (new > INT_MAX || new < INT_MIN) 2121 return -EINVAL; 2122 *(int *)(ea->var) = new; 2123 /* Always return full write size even if we didn't consume all */ 2124 return size; 2125 } 2126 EXPORT_SYMBOL_GPL(device_store_int); 2127 2128 ssize_t device_show_int(struct device *dev, 2129 struct device_attribute *attr, 2130 char *buf) 2131 { 2132 struct dev_ext_attribute *ea = to_ext_attr(attr); 2133 2134 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2135 } 2136 EXPORT_SYMBOL_GPL(device_show_int); 2137 2138 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2139 const char *buf, size_t size) 2140 { 2141 struct dev_ext_attribute *ea = to_ext_attr(attr); 2142 2143 if (strtobool(buf, ea->var) < 0) 2144 return -EINVAL; 2145 2146 return size; 2147 } 2148 EXPORT_SYMBOL_GPL(device_store_bool); 2149 2150 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2151 char *buf) 2152 { 2153 struct dev_ext_attribute *ea = to_ext_attr(attr); 2154 2155 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2156 } 2157 EXPORT_SYMBOL_GPL(device_show_bool); 2158 2159 /** 2160 * device_release - free device structure. 2161 * @kobj: device's kobject. 2162 * 2163 * This is called once the reference count for the object 2164 * reaches 0. We forward the call to the device's release 2165 * method, which should handle actually freeing the structure. 2166 */ 2167 static void device_release(struct kobject *kobj) 2168 { 2169 struct device *dev = kobj_to_dev(kobj); 2170 struct device_private *p = dev->p; 2171 2172 /* 2173 * Some platform devices are driven without driver attached 2174 * and managed resources may have been acquired. Make sure 2175 * all resources are released. 2176 * 2177 * Drivers still can add resources into device after device 2178 * is deleted but alive, so release devres here to avoid 2179 * possible memory leak. 2180 */ 2181 devres_release_all(dev); 2182 2183 kfree(dev->dma_range_map); 2184 2185 if (dev->release) 2186 dev->release(dev); 2187 else if (dev->type && dev->type->release) 2188 dev->type->release(dev); 2189 else if (dev->class && dev->class->dev_release) 2190 dev->class->dev_release(dev); 2191 else 2192 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2193 dev_name(dev)); 2194 kfree(p); 2195 } 2196 2197 static const void *device_namespace(struct kobject *kobj) 2198 { 2199 struct device *dev = kobj_to_dev(kobj); 2200 const void *ns = NULL; 2201 2202 if (dev->class && dev->class->ns_type) 2203 ns = dev->class->namespace(dev); 2204 2205 return ns; 2206 } 2207 2208 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2209 { 2210 struct device *dev = kobj_to_dev(kobj); 2211 2212 if (dev->class && dev->class->get_ownership) 2213 dev->class->get_ownership(dev, uid, gid); 2214 } 2215 2216 static struct kobj_type device_ktype = { 2217 .release = device_release, 2218 .sysfs_ops = &dev_sysfs_ops, 2219 .namespace = device_namespace, 2220 .get_ownership = device_get_ownership, 2221 }; 2222 2223 2224 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 2225 { 2226 struct kobj_type *ktype = get_ktype(kobj); 2227 2228 if (ktype == &device_ktype) { 2229 struct device *dev = kobj_to_dev(kobj); 2230 if (dev->bus) 2231 return 1; 2232 if (dev->class) 2233 return 1; 2234 } 2235 return 0; 2236 } 2237 2238 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 2239 { 2240 struct device *dev = kobj_to_dev(kobj); 2241 2242 if (dev->bus) 2243 return dev->bus->name; 2244 if (dev->class) 2245 return dev->class->name; 2246 return NULL; 2247 } 2248 2249 static int dev_uevent(struct kset *kset, struct kobject *kobj, 2250 struct kobj_uevent_env *env) 2251 { 2252 struct device *dev = kobj_to_dev(kobj); 2253 int retval = 0; 2254 2255 /* add device node properties if present */ 2256 if (MAJOR(dev->devt)) { 2257 const char *tmp; 2258 const char *name; 2259 umode_t mode = 0; 2260 kuid_t uid = GLOBAL_ROOT_UID; 2261 kgid_t gid = GLOBAL_ROOT_GID; 2262 2263 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2264 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2265 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2266 if (name) { 2267 add_uevent_var(env, "DEVNAME=%s", name); 2268 if (mode) 2269 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2270 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2271 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2272 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2273 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2274 kfree(tmp); 2275 } 2276 } 2277 2278 if (dev->type && dev->type->name) 2279 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2280 2281 if (dev->driver) 2282 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2283 2284 /* Add common DT information about the device */ 2285 of_device_uevent(dev, env); 2286 2287 /* have the bus specific function add its stuff */ 2288 if (dev->bus && dev->bus->uevent) { 2289 retval = dev->bus->uevent(dev, env); 2290 if (retval) 2291 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2292 dev_name(dev), __func__, retval); 2293 } 2294 2295 /* have the class specific function add its stuff */ 2296 if (dev->class && dev->class->dev_uevent) { 2297 retval = dev->class->dev_uevent(dev, env); 2298 if (retval) 2299 pr_debug("device: '%s': %s: class uevent() " 2300 "returned %d\n", dev_name(dev), 2301 __func__, retval); 2302 } 2303 2304 /* have the device type specific function add its stuff */ 2305 if (dev->type && dev->type->uevent) { 2306 retval = dev->type->uevent(dev, env); 2307 if (retval) 2308 pr_debug("device: '%s': %s: dev_type uevent() " 2309 "returned %d\n", dev_name(dev), 2310 __func__, retval); 2311 } 2312 2313 return retval; 2314 } 2315 2316 static const struct kset_uevent_ops device_uevent_ops = { 2317 .filter = dev_uevent_filter, 2318 .name = dev_uevent_name, 2319 .uevent = dev_uevent, 2320 }; 2321 2322 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2323 char *buf) 2324 { 2325 struct kobject *top_kobj; 2326 struct kset *kset; 2327 struct kobj_uevent_env *env = NULL; 2328 int i; 2329 int len = 0; 2330 int retval; 2331 2332 /* search the kset, the device belongs to */ 2333 top_kobj = &dev->kobj; 2334 while (!top_kobj->kset && top_kobj->parent) 2335 top_kobj = top_kobj->parent; 2336 if (!top_kobj->kset) 2337 goto out; 2338 2339 kset = top_kobj->kset; 2340 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2341 goto out; 2342 2343 /* respect filter */ 2344 if (kset->uevent_ops && kset->uevent_ops->filter) 2345 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 2346 goto out; 2347 2348 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2349 if (!env) 2350 return -ENOMEM; 2351 2352 /* let the kset specific function add its keys */ 2353 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 2354 if (retval) 2355 goto out; 2356 2357 /* copy keys to file */ 2358 for (i = 0; i < env->envp_idx; i++) 2359 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2360 out: 2361 kfree(env); 2362 return len; 2363 } 2364 2365 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2366 const char *buf, size_t count) 2367 { 2368 int rc; 2369 2370 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2371 2372 if (rc) { 2373 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 2374 return rc; 2375 } 2376 2377 return count; 2378 } 2379 static DEVICE_ATTR_RW(uevent); 2380 2381 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2382 char *buf) 2383 { 2384 bool val; 2385 2386 device_lock(dev); 2387 val = !dev->offline; 2388 device_unlock(dev); 2389 return sysfs_emit(buf, "%u\n", val); 2390 } 2391 2392 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2393 const char *buf, size_t count) 2394 { 2395 bool val; 2396 int ret; 2397 2398 ret = strtobool(buf, &val); 2399 if (ret < 0) 2400 return ret; 2401 2402 ret = lock_device_hotplug_sysfs(); 2403 if (ret) 2404 return ret; 2405 2406 ret = val ? device_online(dev) : device_offline(dev); 2407 unlock_device_hotplug(); 2408 return ret < 0 ? ret : count; 2409 } 2410 static DEVICE_ATTR_RW(online); 2411 2412 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2413 { 2414 return sysfs_create_groups(&dev->kobj, groups); 2415 } 2416 EXPORT_SYMBOL_GPL(device_add_groups); 2417 2418 void device_remove_groups(struct device *dev, 2419 const struct attribute_group **groups) 2420 { 2421 sysfs_remove_groups(&dev->kobj, groups); 2422 } 2423 EXPORT_SYMBOL_GPL(device_remove_groups); 2424 2425 union device_attr_group_devres { 2426 const struct attribute_group *group; 2427 const struct attribute_group **groups; 2428 }; 2429 2430 static int devm_attr_group_match(struct device *dev, void *res, void *data) 2431 { 2432 return ((union device_attr_group_devres *)res)->group == data; 2433 } 2434 2435 static void devm_attr_group_remove(struct device *dev, void *res) 2436 { 2437 union device_attr_group_devres *devres = res; 2438 const struct attribute_group *group = devres->group; 2439 2440 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2441 sysfs_remove_group(&dev->kobj, group); 2442 } 2443 2444 static void devm_attr_groups_remove(struct device *dev, void *res) 2445 { 2446 union device_attr_group_devres *devres = res; 2447 const struct attribute_group **groups = devres->groups; 2448 2449 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2450 sysfs_remove_groups(&dev->kobj, groups); 2451 } 2452 2453 /** 2454 * devm_device_add_group - given a device, create a managed attribute group 2455 * @dev: The device to create the group for 2456 * @grp: The attribute group to create 2457 * 2458 * This function creates a group for the first time. It will explicitly 2459 * warn and error if any of the attribute files being created already exist. 2460 * 2461 * Returns 0 on success or error code on failure. 2462 */ 2463 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2464 { 2465 union device_attr_group_devres *devres; 2466 int error; 2467 2468 devres = devres_alloc(devm_attr_group_remove, 2469 sizeof(*devres), GFP_KERNEL); 2470 if (!devres) 2471 return -ENOMEM; 2472 2473 error = sysfs_create_group(&dev->kobj, grp); 2474 if (error) { 2475 devres_free(devres); 2476 return error; 2477 } 2478 2479 devres->group = grp; 2480 devres_add(dev, devres); 2481 return 0; 2482 } 2483 EXPORT_SYMBOL_GPL(devm_device_add_group); 2484 2485 /** 2486 * devm_device_remove_group: remove a managed group from a device 2487 * @dev: device to remove the group from 2488 * @grp: group to remove 2489 * 2490 * This function removes a group of attributes from a device. The attributes 2491 * previously have to have been created for this group, otherwise it will fail. 2492 */ 2493 void devm_device_remove_group(struct device *dev, 2494 const struct attribute_group *grp) 2495 { 2496 WARN_ON(devres_release(dev, devm_attr_group_remove, 2497 devm_attr_group_match, 2498 /* cast away const */ (void *)grp)); 2499 } 2500 EXPORT_SYMBOL_GPL(devm_device_remove_group); 2501 2502 /** 2503 * devm_device_add_groups - create a bunch of managed attribute groups 2504 * @dev: The device to create the group for 2505 * @groups: The attribute groups to create, NULL terminated 2506 * 2507 * This function creates a bunch of managed attribute groups. If an error 2508 * occurs when creating a group, all previously created groups will be 2509 * removed, unwinding everything back to the original state when this 2510 * function was called. It will explicitly warn and error if any of the 2511 * attribute files being created already exist. 2512 * 2513 * Returns 0 on success or error code from sysfs_create_group on failure. 2514 */ 2515 int devm_device_add_groups(struct device *dev, 2516 const struct attribute_group **groups) 2517 { 2518 union device_attr_group_devres *devres; 2519 int error; 2520 2521 devres = devres_alloc(devm_attr_groups_remove, 2522 sizeof(*devres), GFP_KERNEL); 2523 if (!devres) 2524 return -ENOMEM; 2525 2526 error = sysfs_create_groups(&dev->kobj, groups); 2527 if (error) { 2528 devres_free(devres); 2529 return error; 2530 } 2531 2532 devres->groups = groups; 2533 devres_add(dev, devres); 2534 return 0; 2535 } 2536 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2537 2538 /** 2539 * devm_device_remove_groups - remove a list of managed groups 2540 * 2541 * @dev: The device for the groups to be removed from 2542 * @groups: NULL terminated list of groups to be removed 2543 * 2544 * If groups is not NULL, remove the specified groups from the device. 2545 */ 2546 void devm_device_remove_groups(struct device *dev, 2547 const struct attribute_group **groups) 2548 { 2549 WARN_ON(devres_release(dev, devm_attr_groups_remove, 2550 devm_attr_group_match, 2551 /* cast away const */ (void *)groups)); 2552 } 2553 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 2554 2555 static int device_add_attrs(struct device *dev) 2556 { 2557 struct class *class = dev->class; 2558 const struct device_type *type = dev->type; 2559 int error; 2560 2561 if (class) { 2562 error = device_add_groups(dev, class->dev_groups); 2563 if (error) 2564 return error; 2565 } 2566 2567 if (type) { 2568 error = device_add_groups(dev, type->groups); 2569 if (error) 2570 goto err_remove_class_groups; 2571 } 2572 2573 error = device_add_groups(dev, dev->groups); 2574 if (error) 2575 goto err_remove_type_groups; 2576 2577 if (device_supports_offline(dev) && !dev->offline_disabled) { 2578 error = device_create_file(dev, &dev_attr_online); 2579 if (error) 2580 goto err_remove_dev_groups; 2581 } 2582 2583 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2584 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2585 if (error) 2586 goto err_remove_dev_online; 2587 } 2588 2589 return 0; 2590 2591 err_remove_dev_online: 2592 device_remove_file(dev, &dev_attr_online); 2593 err_remove_dev_groups: 2594 device_remove_groups(dev, dev->groups); 2595 err_remove_type_groups: 2596 if (type) 2597 device_remove_groups(dev, type->groups); 2598 err_remove_class_groups: 2599 if (class) 2600 device_remove_groups(dev, class->dev_groups); 2601 2602 return error; 2603 } 2604 2605 static void device_remove_attrs(struct device *dev) 2606 { 2607 struct class *class = dev->class; 2608 const struct device_type *type = dev->type; 2609 2610 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2611 device_remove_file(dev, &dev_attr_online); 2612 device_remove_groups(dev, dev->groups); 2613 2614 if (type) 2615 device_remove_groups(dev, type->groups); 2616 2617 if (class) 2618 device_remove_groups(dev, class->dev_groups); 2619 } 2620 2621 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2622 char *buf) 2623 { 2624 return print_dev_t(buf, dev->devt); 2625 } 2626 static DEVICE_ATTR_RO(dev); 2627 2628 /* /sys/devices/ */ 2629 struct kset *devices_kset; 2630 2631 /** 2632 * devices_kset_move_before - Move device in the devices_kset's list. 2633 * @deva: Device to move. 2634 * @devb: Device @deva should come before. 2635 */ 2636 static void devices_kset_move_before(struct device *deva, struct device *devb) 2637 { 2638 if (!devices_kset) 2639 return; 2640 pr_debug("devices_kset: Moving %s before %s\n", 2641 dev_name(deva), dev_name(devb)); 2642 spin_lock(&devices_kset->list_lock); 2643 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2644 spin_unlock(&devices_kset->list_lock); 2645 } 2646 2647 /** 2648 * devices_kset_move_after - Move device in the devices_kset's list. 2649 * @deva: Device to move 2650 * @devb: Device @deva should come after. 2651 */ 2652 static void devices_kset_move_after(struct device *deva, struct device *devb) 2653 { 2654 if (!devices_kset) 2655 return; 2656 pr_debug("devices_kset: Moving %s after %s\n", 2657 dev_name(deva), dev_name(devb)); 2658 spin_lock(&devices_kset->list_lock); 2659 list_move(&deva->kobj.entry, &devb->kobj.entry); 2660 spin_unlock(&devices_kset->list_lock); 2661 } 2662 2663 /** 2664 * devices_kset_move_last - move the device to the end of devices_kset's list. 2665 * @dev: device to move 2666 */ 2667 void devices_kset_move_last(struct device *dev) 2668 { 2669 if (!devices_kset) 2670 return; 2671 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2672 spin_lock(&devices_kset->list_lock); 2673 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2674 spin_unlock(&devices_kset->list_lock); 2675 } 2676 2677 /** 2678 * device_create_file - create sysfs attribute file for device. 2679 * @dev: device. 2680 * @attr: device attribute descriptor. 2681 */ 2682 int device_create_file(struct device *dev, 2683 const struct device_attribute *attr) 2684 { 2685 int error = 0; 2686 2687 if (dev) { 2688 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 2689 "Attribute %s: write permission without 'store'\n", 2690 attr->attr.name); 2691 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 2692 "Attribute %s: read permission without 'show'\n", 2693 attr->attr.name); 2694 error = sysfs_create_file(&dev->kobj, &attr->attr); 2695 } 2696 2697 return error; 2698 } 2699 EXPORT_SYMBOL_GPL(device_create_file); 2700 2701 /** 2702 * device_remove_file - remove sysfs attribute file. 2703 * @dev: device. 2704 * @attr: device attribute descriptor. 2705 */ 2706 void device_remove_file(struct device *dev, 2707 const struct device_attribute *attr) 2708 { 2709 if (dev) 2710 sysfs_remove_file(&dev->kobj, &attr->attr); 2711 } 2712 EXPORT_SYMBOL_GPL(device_remove_file); 2713 2714 /** 2715 * device_remove_file_self - remove sysfs attribute file from its own method. 2716 * @dev: device. 2717 * @attr: device attribute descriptor. 2718 * 2719 * See kernfs_remove_self() for details. 2720 */ 2721 bool device_remove_file_self(struct device *dev, 2722 const struct device_attribute *attr) 2723 { 2724 if (dev) 2725 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 2726 else 2727 return false; 2728 } 2729 EXPORT_SYMBOL_GPL(device_remove_file_self); 2730 2731 /** 2732 * device_create_bin_file - create sysfs binary attribute file for device. 2733 * @dev: device. 2734 * @attr: device binary attribute descriptor. 2735 */ 2736 int device_create_bin_file(struct device *dev, 2737 const struct bin_attribute *attr) 2738 { 2739 int error = -EINVAL; 2740 if (dev) 2741 error = sysfs_create_bin_file(&dev->kobj, attr); 2742 return error; 2743 } 2744 EXPORT_SYMBOL_GPL(device_create_bin_file); 2745 2746 /** 2747 * device_remove_bin_file - remove sysfs binary attribute file 2748 * @dev: device. 2749 * @attr: device binary attribute descriptor. 2750 */ 2751 void device_remove_bin_file(struct device *dev, 2752 const struct bin_attribute *attr) 2753 { 2754 if (dev) 2755 sysfs_remove_bin_file(&dev->kobj, attr); 2756 } 2757 EXPORT_SYMBOL_GPL(device_remove_bin_file); 2758 2759 static void klist_children_get(struct klist_node *n) 2760 { 2761 struct device_private *p = to_device_private_parent(n); 2762 struct device *dev = p->device; 2763 2764 get_device(dev); 2765 } 2766 2767 static void klist_children_put(struct klist_node *n) 2768 { 2769 struct device_private *p = to_device_private_parent(n); 2770 struct device *dev = p->device; 2771 2772 put_device(dev); 2773 } 2774 2775 /** 2776 * device_initialize - init device structure. 2777 * @dev: device. 2778 * 2779 * This prepares the device for use by other layers by initializing 2780 * its fields. 2781 * It is the first half of device_register(), if called by 2782 * that function, though it can also be called separately, so one 2783 * may use @dev's fields. In particular, get_device()/put_device() 2784 * may be used for reference counting of @dev after calling this 2785 * function. 2786 * 2787 * All fields in @dev must be initialized by the caller to 0, except 2788 * for those explicitly set to some other value. The simplest 2789 * approach is to use kzalloc() to allocate the structure containing 2790 * @dev. 2791 * 2792 * NOTE: Use put_device() to give up your reference instead of freeing 2793 * @dev directly once you have called this function. 2794 */ 2795 void device_initialize(struct device *dev) 2796 { 2797 dev->kobj.kset = devices_kset; 2798 kobject_init(&dev->kobj, &device_ktype); 2799 INIT_LIST_HEAD(&dev->dma_pools); 2800 mutex_init(&dev->mutex); 2801 #ifdef CONFIG_PROVE_LOCKING 2802 mutex_init(&dev->lockdep_mutex); 2803 #endif 2804 lockdep_set_novalidate_class(&dev->mutex); 2805 spin_lock_init(&dev->devres_lock); 2806 INIT_LIST_HEAD(&dev->devres_head); 2807 device_pm_init(dev); 2808 set_dev_node(dev, -1); 2809 #ifdef CONFIG_GENERIC_MSI_IRQ 2810 INIT_LIST_HEAD(&dev->msi_list); 2811 #endif 2812 INIT_LIST_HEAD(&dev->links.consumers); 2813 INIT_LIST_HEAD(&dev->links.suppliers); 2814 INIT_LIST_HEAD(&dev->links.defer_sync); 2815 dev->links.status = DL_DEV_NO_DRIVER; 2816 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 2817 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 2818 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 2819 dev->dma_coherent = dma_default_coherent; 2820 #endif 2821 } 2822 EXPORT_SYMBOL_GPL(device_initialize); 2823 2824 struct kobject *virtual_device_parent(struct device *dev) 2825 { 2826 static struct kobject *virtual_dir = NULL; 2827 2828 if (!virtual_dir) 2829 virtual_dir = kobject_create_and_add("virtual", 2830 &devices_kset->kobj); 2831 2832 return virtual_dir; 2833 } 2834 2835 struct class_dir { 2836 struct kobject kobj; 2837 struct class *class; 2838 }; 2839 2840 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 2841 2842 static void class_dir_release(struct kobject *kobj) 2843 { 2844 struct class_dir *dir = to_class_dir(kobj); 2845 kfree(dir); 2846 } 2847 2848 static const 2849 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 2850 { 2851 struct class_dir *dir = to_class_dir(kobj); 2852 return dir->class->ns_type; 2853 } 2854 2855 static struct kobj_type class_dir_ktype = { 2856 .release = class_dir_release, 2857 .sysfs_ops = &kobj_sysfs_ops, 2858 .child_ns_type = class_dir_child_ns_type 2859 }; 2860 2861 static struct kobject * 2862 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 2863 { 2864 struct class_dir *dir; 2865 int retval; 2866 2867 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 2868 if (!dir) 2869 return ERR_PTR(-ENOMEM); 2870 2871 dir->class = class; 2872 kobject_init(&dir->kobj, &class_dir_ktype); 2873 2874 dir->kobj.kset = &class->p->glue_dirs; 2875 2876 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 2877 if (retval < 0) { 2878 kobject_put(&dir->kobj); 2879 return ERR_PTR(retval); 2880 } 2881 return &dir->kobj; 2882 } 2883 2884 static DEFINE_MUTEX(gdp_mutex); 2885 2886 static struct kobject *get_device_parent(struct device *dev, 2887 struct device *parent) 2888 { 2889 if (dev->class) { 2890 struct kobject *kobj = NULL; 2891 struct kobject *parent_kobj; 2892 struct kobject *k; 2893 2894 #ifdef CONFIG_BLOCK 2895 /* block disks show up in /sys/block */ 2896 if (sysfs_deprecated && dev->class == &block_class) { 2897 if (parent && parent->class == &block_class) 2898 return &parent->kobj; 2899 return &block_class.p->subsys.kobj; 2900 } 2901 #endif 2902 2903 /* 2904 * If we have no parent, we live in "virtual". 2905 * Class-devices with a non class-device as parent, live 2906 * in a "glue" directory to prevent namespace collisions. 2907 */ 2908 if (parent == NULL) 2909 parent_kobj = virtual_device_parent(dev); 2910 else if (parent->class && !dev->class->ns_type) 2911 return &parent->kobj; 2912 else 2913 parent_kobj = &parent->kobj; 2914 2915 mutex_lock(&gdp_mutex); 2916 2917 /* find our class-directory at the parent and reference it */ 2918 spin_lock(&dev->class->p->glue_dirs.list_lock); 2919 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 2920 if (k->parent == parent_kobj) { 2921 kobj = kobject_get(k); 2922 break; 2923 } 2924 spin_unlock(&dev->class->p->glue_dirs.list_lock); 2925 if (kobj) { 2926 mutex_unlock(&gdp_mutex); 2927 return kobj; 2928 } 2929 2930 /* or create a new class-directory at the parent device */ 2931 k = class_dir_create_and_add(dev->class, parent_kobj); 2932 /* do not emit an uevent for this simple "glue" directory */ 2933 mutex_unlock(&gdp_mutex); 2934 return k; 2935 } 2936 2937 /* subsystems can specify a default root directory for their devices */ 2938 if (!parent && dev->bus && dev->bus->dev_root) 2939 return &dev->bus->dev_root->kobj; 2940 2941 if (parent) 2942 return &parent->kobj; 2943 return NULL; 2944 } 2945 2946 static inline bool live_in_glue_dir(struct kobject *kobj, 2947 struct device *dev) 2948 { 2949 if (!kobj || !dev->class || 2950 kobj->kset != &dev->class->p->glue_dirs) 2951 return false; 2952 return true; 2953 } 2954 2955 static inline struct kobject *get_glue_dir(struct device *dev) 2956 { 2957 return dev->kobj.parent; 2958 } 2959 2960 /* 2961 * make sure cleaning up dir as the last step, we need to make 2962 * sure .release handler of kobject is run with holding the 2963 * global lock 2964 */ 2965 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 2966 { 2967 unsigned int ref; 2968 2969 /* see if we live in a "glue" directory */ 2970 if (!live_in_glue_dir(glue_dir, dev)) 2971 return; 2972 2973 mutex_lock(&gdp_mutex); 2974 /** 2975 * There is a race condition between removing glue directory 2976 * and adding a new device under the glue directory. 2977 * 2978 * CPU1: CPU2: 2979 * 2980 * device_add() 2981 * get_device_parent() 2982 * class_dir_create_and_add() 2983 * kobject_add_internal() 2984 * create_dir() // create glue_dir 2985 * 2986 * device_add() 2987 * get_device_parent() 2988 * kobject_get() // get glue_dir 2989 * 2990 * device_del() 2991 * cleanup_glue_dir() 2992 * kobject_del(glue_dir) 2993 * 2994 * kobject_add() 2995 * kobject_add_internal() 2996 * create_dir() // in glue_dir 2997 * sysfs_create_dir_ns() 2998 * kernfs_create_dir_ns(sd) 2999 * 3000 * sysfs_remove_dir() // glue_dir->sd=NULL 3001 * sysfs_put() // free glue_dir->sd 3002 * 3003 * // sd is freed 3004 * kernfs_new_node(sd) 3005 * kernfs_get(glue_dir) 3006 * kernfs_add_one() 3007 * kernfs_put() 3008 * 3009 * Before CPU1 remove last child device under glue dir, if CPU2 add 3010 * a new device under glue dir, the glue_dir kobject reference count 3011 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3012 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3013 * and sysfs_put(). This result in glue_dir->sd is freed. 3014 * 3015 * Then the CPU2 will see a stale "empty" but still potentially used 3016 * glue dir around in kernfs_new_node(). 3017 * 3018 * In order to avoid this happening, we also should make sure that 3019 * kernfs_node for glue_dir is released in CPU1 only when refcount 3020 * for glue_dir kobj is 1. 3021 */ 3022 ref = kref_read(&glue_dir->kref); 3023 if (!kobject_has_children(glue_dir) && !--ref) 3024 kobject_del(glue_dir); 3025 kobject_put(glue_dir); 3026 mutex_unlock(&gdp_mutex); 3027 } 3028 3029 static int device_add_class_symlinks(struct device *dev) 3030 { 3031 struct device_node *of_node = dev_of_node(dev); 3032 int error; 3033 3034 if (of_node) { 3035 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3036 if (error) 3037 dev_warn(dev, "Error %d creating of_node link\n",error); 3038 /* An error here doesn't warrant bringing down the device */ 3039 } 3040 3041 if (!dev->class) 3042 return 0; 3043 3044 error = sysfs_create_link(&dev->kobj, 3045 &dev->class->p->subsys.kobj, 3046 "subsystem"); 3047 if (error) 3048 goto out_devnode; 3049 3050 if (dev->parent && device_is_not_partition(dev)) { 3051 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3052 "device"); 3053 if (error) 3054 goto out_subsys; 3055 } 3056 3057 #ifdef CONFIG_BLOCK 3058 /* /sys/block has directories and does not need symlinks */ 3059 if (sysfs_deprecated && dev->class == &block_class) 3060 return 0; 3061 #endif 3062 3063 /* link in the class directory pointing to the device */ 3064 error = sysfs_create_link(&dev->class->p->subsys.kobj, 3065 &dev->kobj, dev_name(dev)); 3066 if (error) 3067 goto out_device; 3068 3069 return 0; 3070 3071 out_device: 3072 sysfs_remove_link(&dev->kobj, "device"); 3073 3074 out_subsys: 3075 sysfs_remove_link(&dev->kobj, "subsystem"); 3076 out_devnode: 3077 sysfs_remove_link(&dev->kobj, "of_node"); 3078 return error; 3079 } 3080 3081 static void device_remove_class_symlinks(struct device *dev) 3082 { 3083 if (dev_of_node(dev)) 3084 sysfs_remove_link(&dev->kobj, "of_node"); 3085 3086 if (!dev->class) 3087 return; 3088 3089 if (dev->parent && device_is_not_partition(dev)) 3090 sysfs_remove_link(&dev->kobj, "device"); 3091 sysfs_remove_link(&dev->kobj, "subsystem"); 3092 #ifdef CONFIG_BLOCK 3093 if (sysfs_deprecated && dev->class == &block_class) 3094 return; 3095 #endif 3096 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 3097 } 3098 3099 /** 3100 * dev_set_name - set a device name 3101 * @dev: device 3102 * @fmt: format string for the device's name 3103 */ 3104 int dev_set_name(struct device *dev, const char *fmt, ...) 3105 { 3106 va_list vargs; 3107 int err; 3108 3109 va_start(vargs, fmt); 3110 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3111 va_end(vargs); 3112 return err; 3113 } 3114 EXPORT_SYMBOL_GPL(dev_set_name); 3115 3116 /** 3117 * device_to_dev_kobj - select a /sys/dev/ directory for the device 3118 * @dev: device 3119 * 3120 * By default we select char/ for new entries. Setting class->dev_obj 3121 * to NULL prevents an entry from being created. class->dev_kobj must 3122 * be set (or cleared) before any devices are registered to the class 3123 * otherwise device_create_sys_dev_entry() and 3124 * device_remove_sys_dev_entry() will disagree about the presence of 3125 * the link. 3126 */ 3127 static struct kobject *device_to_dev_kobj(struct device *dev) 3128 { 3129 struct kobject *kobj; 3130 3131 if (dev->class) 3132 kobj = dev->class->dev_kobj; 3133 else 3134 kobj = sysfs_dev_char_kobj; 3135 3136 return kobj; 3137 } 3138 3139 static int device_create_sys_dev_entry(struct device *dev) 3140 { 3141 struct kobject *kobj = device_to_dev_kobj(dev); 3142 int error = 0; 3143 char devt_str[15]; 3144 3145 if (kobj) { 3146 format_dev_t(devt_str, dev->devt); 3147 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3148 } 3149 3150 return error; 3151 } 3152 3153 static void device_remove_sys_dev_entry(struct device *dev) 3154 { 3155 struct kobject *kobj = device_to_dev_kobj(dev); 3156 char devt_str[15]; 3157 3158 if (kobj) { 3159 format_dev_t(devt_str, dev->devt); 3160 sysfs_remove_link(kobj, devt_str); 3161 } 3162 } 3163 3164 static int device_private_init(struct device *dev) 3165 { 3166 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3167 if (!dev->p) 3168 return -ENOMEM; 3169 dev->p->device = dev; 3170 klist_init(&dev->p->klist_children, klist_children_get, 3171 klist_children_put); 3172 INIT_LIST_HEAD(&dev->p->deferred_probe); 3173 return 0; 3174 } 3175 3176 /** 3177 * device_add - add device to device hierarchy. 3178 * @dev: device. 3179 * 3180 * This is part 2 of device_register(), though may be called 3181 * separately _iff_ device_initialize() has been called separately. 3182 * 3183 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3184 * to the global and sibling lists for the device, then 3185 * adds it to the other relevant subsystems of the driver model. 3186 * 3187 * Do not call this routine or device_register() more than once for 3188 * any device structure. The driver model core is not designed to work 3189 * with devices that get unregistered and then spring back to life. 3190 * (Among other things, it's very hard to guarantee that all references 3191 * to the previous incarnation of @dev have been dropped.) Allocate 3192 * and register a fresh new struct device instead. 3193 * 3194 * NOTE: _Never_ directly free @dev after calling this function, even 3195 * if it returned an error! Always use put_device() to give up your 3196 * reference instead. 3197 * 3198 * Rule of thumb is: if device_add() succeeds, you should call 3199 * device_del() when you want to get rid of it. If device_add() has 3200 * *not* succeeded, use *only* put_device() to drop the reference 3201 * count. 3202 */ 3203 int device_add(struct device *dev) 3204 { 3205 struct device *parent; 3206 struct kobject *kobj; 3207 struct class_interface *class_intf; 3208 int error = -EINVAL; 3209 struct kobject *glue_dir = NULL; 3210 3211 dev = get_device(dev); 3212 if (!dev) 3213 goto done; 3214 3215 if (!dev->p) { 3216 error = device_private_init(dev); 3217 if (error) 3218 goto done; 3219 } 3220 3221 /* 3222 * for statically allocated devices, which should all be converted 3223 * some day, we need to initialize the name. We prevent reading back 3224 * the name, and force the use of dev_name() 3225 */ 3226 if (dev->init_name) { 3227 dev_set_name(dev, "%s", dev->init_name); 3228 dev->init_name = NULL; 3229 } 3230 3231 /* subsystems can specify simple device enumeration */ 3232 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 3233 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3234 3235 if (!dev_name(dev)) { 3236 error = -EINVAL; 3237 goto name_error; 3238 } 3239 3240 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3241 3242 parent = get_device(dev->parent); 3243 kobj = get_device_parent(dev, parent); 3244 if (IS_ERR(kobj)) { 3245 error = PTR_ERR(kobj); 3246 goto parent_error; 3247 } 3248 if (kobj) 3249 dev->kobj.parent = kobj; 3250 3251 /* use parent numa_node */ 3252 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3253 set_dev_node(dev, dev_to_node(parent)); 3254 3255 /* first, register with generic layer. */ 3256 /* we require the name to be set before, and pass NULL */ 3257 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3258 if (error) { 3259 glue_dir = get_glue_dir(dev); 3260 goto Error; 3261 } 3262 3263 /* notify platform of device entry */ 3264 error = device_platform_notify(dev, KOBJ_ADD); 3265 if (error) 3266 goto platform_error; 3267 3268 error = device_create_file(dev, &dev_attr_uevent); 3269 if (error) 3270 goto attrError; 3271 3272 error = device_add_class_symlinks(dev); 3273 if (error) 3274 goto SymlinkError; 3275 error = device_add_attrs(dev); 3276 if (error) 3277 goto AttrsError; 3278 error = bus_add_device(dev); 3279 if (error) 3280 goto BusError; 3281 error = dpm_sysfs_add(dev); 3282 if (error) 3283 goto DPMError; 3284 device_pm_add(dev); 3285 3286 if (MAJOR(dev->devt)) { 3287 error = device_create_file(dev, &dev_attr_dev); 3288 if (error) 3289 goto DevAttrError; 3290 3291 error = device_create_sys_dev_entry(dev); 3292 if (error) 3293 goto SysEntryError; 3294 3295 devtmpfs_create_node(dev); 3296 } 3297 3298 /* Notify clients of device addition. This call must come 3299 * after dpm_sysfs_add() and before kobject_uevent(). 3300 */ 3301 if (dev->bus) 3302 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3303 BUS_NOTIFY_ADD_DEVICE, dev); 3304 3305 kobject_uevent(&dev->kobj, KOBJ_ADD); 3306 3307 /* 3308 * Check if any of the other devices (consumers) have been waiting for 3309 * this device (supplier) to be added so that they can create a device 3310 * link to it. 3311 * 3312 * This needs to happen after device_pm_add() because device_link_add() 3313 * requires the supplier be registered before it's called. 3314 * 3315 * But this also needs to happen before bus_probe_device() to make sure 3316 * waiting consumers can link to it before the driver is bound to the 3317 * device and the driver sync_state callback is called for this device. 3318 */ 3319 if (dev->fwnode && !dev->fwnode->dev) { 3320 dev->fwnode->dev = dev; 3321 fw_devlink_link_device(dev); 3322 } 3323 3324 bus_probe_device(dev); 3325 3326 /* 3327 * If all driver registration is done and a newly added device doesn't 3328 * match with any driver, don't block its consumers from probing in 3329 * case the consumer device is able to operate without this supplier. 3330 */ 3331 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3332 fw_devlink_unblock_consumers(dev); 3333 3334 if (parent) 3335 klist_add_tail(&dev->p->knode_parent, 3336 &parent->p->klist_children); 3337 3338 if (dev->class) { 3339 mutex_lock(&dev->class->p->mutex); 3340 /* tie the class to the device */ 3341 klist_add_tail(&dev->p->knode_class, 3342 &dev->class->p->klist_devices); 3343 3344 /* notify any interfaces that the device is here */ 3345 list_for_each_entry(class_intf, 3346 &dev->class->p->interfaces, node) 3347 if (class_intf->add_dev) 3348 class_intf->add_dev(dev, class_intf); 3349 mutex_unlock(&dev->class->p->mutex); 3350 } 3351 done: 3352 put_device(dev); 3353 return error; 3354 SysEntryError: 3355 if (MAJOR(dev->devt)) 3356 device_remove_file(dev, &dev_attr_dev); 3357 DevAttrError: 3358 device_pm_remove(dev); 3359 dpm_sysfs_remove(dev); 3360 DPMError: 3361 bus_remove_device(dev); 3362 BusError: 3363 device_remove_attrs(dev); 3364 AttrsError: 3365 device_remove_class_symlinks(dev); 3366 SymlinkError: 3367 device_remove_file(dev, &dev_attr_uevent); 3368 attrError: 3369 device_platform_notify(dev, KOBJ_REMOVE); 3370 platform_error: 3371 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3372 glue_dir = get_glue_dir(dev); 3373 kobject_del(&dev->kobj); 3374 Error: 3375 cleanup_glue_dir(dev, glue_dir); 3376 parent_error: 3377 put_device(parent); 3378 name_error: 3379 kfree(dev->p); 3380 dev->p = NULL; 3381 goto done; 3382 } 3383 EXPORT_SYMBOL_GPL(device_add); 3384 3385 /** 3386 * device_register - register a device with the system. 3387 * @dev: pointer to the device structure 3388 * 3389 * This happens in two clean steps - initialize the device 3390 * and add it to the system. The two steps can be called 3391 * separately, but this is the easiest and most common. 3392 * I.e. you should only call the two helpers separately if 3393 * have a clearly defined need to use and refcount the device 3394 * before it is added to the hierarchy. 3395 * 3396 * For more information, see the kerneldoc for device_initialize() 3397 * and device_add(). 3398 * 3399 * NOTE: _Never_ directly free @dev after calling this function, even 3400 * if it returned an error! Always use put_device() to give up the 3401 * reference initialized in this function instead. 3402 */ 3403 int device_register(struct device *dev) 3404 { 3405 device_initialize(dev); 3406 return device_add(dev); 3407 } 3408 EXPORT_SYMBOL_GPL(device_register); 3409 3410 /** 3411 * get_device - increment reference count for device. 3412 * @dev: device. 3413 * 3414 * This simply forwards the call to kobject_get(), though 3415 * we do take care to provide for the case that we get a NULL 3416 * pointer passed in. 3417 */ 3418 struct device *get_device(struct device *dev) 3419 { 3420 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3421 } 3422 EXPORT_SYMBOL_GPL(get_device); 3423 3424 /** 3425 * put_device - decrement reference count. 3426 * @dev: device in question. 3427 */ 3428 void put_device(struct device *dev) 3429 { 3430 /* might_sleep(); */ 3431 if (dev) 3432 kobject_put(&dev->kobj); 3433 } 3434 EXPORT_SYMBOL_GPL(put_device); 3435 3436 bool kill_device(struct device *dev) 3437 { 3438 /* 3439 * Require the device lock and set the "dead" flag to guarantee that 3440 * the update behavior is consistent with the other bitfields near 3441 * it and that we cannot have an asynchronous probe routine trying 3442 * to run while we are tearing out the bus/class/sysfs from 3443 * underneath the device. 3444 */ 3445 lockdep_assert_held(&dev->mutex); 3446 3447 if (dev->p->dead) 3448 return false; 3449 dev->p->dead = true; 3450 return true; 3451 } 3452 EXPORT_SYMBOL_GPL(kill_device); 3453 3454 /** 3455 * device_del - delete device from system. 3456 * @dev: device. 3457 * 3458 * This is the first part of the device unregistration 3459 * sequence. This removes the device from the lists we control 3460 * from here, has it removed from the other driver model 3461 * subsystems it was added to in device_add(), and removes it 3462 * from the kobject hierarchy. 3463 * 3464 * NOTE: this should be called manually _iff_ device_add() was 3465 * also called manually. 3466 */ 3467 void device_del(struct device *dev) 3468 { 3469 struct device *parent = dev->parent; 3470 struct kobject *glue_dir = NULL; 3471 struct class_interface *class_intf; 3472 unsigned int noio_flag; 3473 3474 device_lock(dev); 3475 kill_device(dev); 3476 device_unlock(dev); 3477 3478 if (dev->fwnode && dev->fwnode->dev == dev) 3479 dev->fwnode->dev = NULL; 3480 3481 /* Notify clients of device removal. This call must come 3482 * before dpm_sysfs_remove(). 3483 */ 3484 noio_flag = memalloc_noio_save(); 3485 if (dev->bus) 3486 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3487 BUS_NOTIFY_DEL_DEVICE, dev); 3488 3489 dpm_sysfs_remove(dev); 3490 if (parent) 3491 klist_del(&dev->p->knode_parent); 3492 if (MAJOR(dev->devt)) { 3493 devtmpfs_delete_node(dev); 3494 device_remove_sys_dev_entry(dev); 3495 device_remove_file(dev, &dev_attr_dev); 3496 } 3497 if (dev->class) { 3498 device_remove_class_symlinks(dev); 3499 3500 mutex_lock(&dev->class->p->mutex); 3501 /* notify any interfaces that the device is now gone */ 3502 list_for_each_entry(class_intf, 3503 &dev->class->p->interfaces, node) 3504 if (class_intf->remove_dev) 3505 class_intf->remove_dev(dev, class_intf); 3506 /* remove the device from the class list */ 3507 klist_del(&dev->p->knode_class); 3508 mutex_unlock(&dev->class->p->mutex); 3509 } 3510 device_remove_file(dev, &dev_attr_uevent); 3511 device_remove_attrs(dev); 3512 bus_remove_device(dev); 3513 device_pm_remove(dev); 3514 driver_deferred_probe_del(dev); 3515 device_platform_notify(dev, KOBJ_REMOVE); 3516 device_remove_properties(dev); 3517 device_links_purge(dev); 3518 3519 if (dev->bus) 3520 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3521 BUS_NOTIFY_REMOVED_DEVICE, dev); 3522 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3523 glue_dir = get_glue_dir(dev); 3524 kobject_del(&dev->kobj); 3525 cleanup_glue_dir(dev, glue_dir); 3526 memalloc_noio_restore(noio_flag); 3527 put_device(parent); 3528 } 3529 EXPORT_SYMBOL_GPL(device_del); 3530 3531 /** 3532 * device_unregister - unregister device from system. 3533 * @dev: device going away. 3534 * 3535 * We do this in two parts, like we do device_register(). First, 3536 * we remove it from all the subsystems with device_del(), then 3537 * we decrement the reference count via put_device(). If that 3538 * is the final reference count, the device will be cleaned up 3539 * via device_release() above. Otherwise, the structure will 3540 * stick around until the final reference to the device is dropped. 3541 */ 3542 void device_unregister(struct device *dev) 3543 { 3544 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3545 device_del(dev); 3546 put_device(dev); 3547 } 3548 EXPORT_SYMBOL_GPL(device_unregister); 3549 3550 static struct device *prev_device(struct klist_iter *i) 3551 { 3552 struct klist_node *n = klist_prev(i); 3553 struct device *dev = NULL; 3554 struct device_private *p; 3555 3556 if (n) { 3557 p = to_device_private_parent(n); 3558 dev = p->device; 3559 } 3560 return dev; 3561 } 3562 3563 static struct device *next_device(struct klist_iter *i) 3564 { 3565 struct klist_node *n = klist_next(i); 3566 struct device *dev = NULL; 3567 struct device_private *p; 3568 3569 if (n) { 3570 p = to_device_private_parent(n); 3571 dev = p->device; 3572 } 3573 return dev; 3574 } 3575 3576 /** 3577 * device_get_devnode - path of device node file 3578 * @dev: device 3579 * @mode: returned file access mode 3580 * @uid: returned file owner 3581 * @gid: returned file group 3582 * @tmp: possibly allocated string 3583 * 3584 * Return the relative path of a possible device node. 3585 * Non-default names may need to allocate a memory to compose 3586 * a name. This memory is returned in tmp and needs to be 3587 * freed by the caller. 3588 */ 3589 const char *device_get_devnode(struct device *dev, 3590 umode_t *mode, kuid_t *uid, kgid_t *gid, 3591 const char **tmp) 3592 { 3593 char *s; 3594 3595 *tmp = NULL; 3596 3597 /* the device type may provide a specific name */ 3598 if (dev->type && dev->type->devnode) 3599 *tmp = dev->type->devnode(dev, mode, uid, gid); 3600 if (*tmp) 3601 return *tmp; 3602 3603 /* the class may provide a specific name */ 3604 if (dev->class && dev->class->devnode) 3605 *tmp = dev->class->devnode(dev, mode); 3606 if (*tmp) 3607 return *tmp; 3608 3609 /* return name without allocation, tmp == NULL */ 3610 if (strchr(dev_name(dev), '!') == NULL) 3611 return dev_name(dev); 3612 3613 /* replace '!' in the name with '/' */ 3614 s = kstrdup(dev_name(dev), GFP_KERNEL); 3615 if (!s) 3616 return NULL; 3617 strreplace(s, '!', '/'); 3618 return *tmp = s; 3619 } 3620 3621 /** 3622 * device_for_each_child - device child iterator. 3623 * @parent: parent struct device. 3624 * @fn: function to be called for each device. 3625 * @data: data for the callback. 3626 * 3627 * Iterate over @parent's child devices, and call @fn for each, 3628 * passing it @data. 3629 * 3630 * We check the return of @fn each time. If it returns anything 3631 * other than 0, we break out and return that value. 3632 */ 3633 int device_for_each_child(struct device *parent, void *data, 3634 int (*fn)(struct device *dev, void *data)) 3635 { 3636 struct klist_iter i; 3637 struct device *child; 3638 int error = 0; 3639 3640 if (!parent->p) 3641 return 0; 3642 3643 klist_iter_init(&parent->p->klist_children, &i); 3644 while (!error && (child = next_device(&i))) 3645 error = fn(child, data); 3646 klist_iter_exit(&i); 3647 return error; 3648 } 3649 EXPORT_SYMBOL_GPL(device_for_each_child); 3650 3651 /** 3652 * device_for_each_child_reverse - device child iterator in reversed order. 3653 * @parent: parent struct device. 3654 * @fn: function to be called for each device. 3655 * @data: data for the callback. 3656 * 3657 * Iterate over @parent's child devices, and call @fn for each, 3658 * passing it @data. 3659 * 3660 * We check the return of @fn each time. If it returns anything 3661 * other than 0, we break out and return that value. 3662 */ 3663 int device_for_each_child_reverse(struct device *parent, void *data, 3664 int (*fn)(struct device *dev, void *data)) 3665 { 3666 struct klist_iter i; 3667 struct device *child; 3668 int error = 0; 3669 3670 if (!parent->p) 3671 return 0; 3672 3673 klist_iter_init(&parent->p->klist_children, &i); 3674 while ((child = prev_device(&i)) && !error) 3675 error = fn(child, data); 3676 klist_iter_exit(&i); 3677 return error; 3678 } 3679 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 3680 3681 /** 3682 * device_find_child - device iterator for locating a particular device. 3683 * @parent: parent struct device 3684 * @match: Callback function to check device 3685 * @data: Data to pass to match function 3686 * 3687 * This is similar to the device_for_each_child() function above, but it 3688 * returns a reference to a device that is 'found' for later use, as 3689 * determined by the @match callback. 3690 * 3691 * The callback should return 0 if the device doesn't match and non-zero 3692 * if it does. If the callback returns non-zero and a reference to the 3693 * current device can be obtained, this function will return to the caller 3694 * and not iterate over any more devices. 3695 * 3696 * NOTE: you will need to drop the reference with put_device() after use. 3697 */ 3698 struct device *device_find_child(struct device *parent, void *data, 3699 int (*match)(struct device *dev, void *data)) 3700 { 3701 struct klist_iter i; 3702 struct device *child; 3703 3704 if (!parent) 3705 return NULL; 3706 3707 klist_iter_init(&parent->p->klist_children, &i); 3708 while ((child = next_device(&i))) 3709 if (match(child, data) && get_device(child)) 3710 break; 3711 klist_iter_exit(&i); 3712 return child; 3713 } 3714 EXPORT_SYMBOL_GPL(device_find_child); 3715 3716 /** 3717 * device_find_child_by_name - device iterator for locating a child device. 3718 * @parent: parent struct device 3719 * @name: name of the child device 3720 * 3721 * This is similar to the device_find_child() function above, but it 3722 * returns a reference to a device that has the name @name. 3723 * 3724 * NOTE: you will need to drop the reference with put_device() after use. 3725 */ 3726 struct device *device_find_child_by_name(struct device *parent, 3727 const char *name) 3728 { 3729 struct klist_iter i; 3730 struct device *child; 3731 3732 if (!parent) 3733 return NULL; 3734 3735 klist_iter_init(&parent->p->klist_children, &i); 3736 while ((child = next_device(&i))) 3737 if (sysfs_streq(dev_name(child), name) && get_device(child)) 3738 break; 3739 klist_iter_exit(&i); 3740 return child; 3741 } 3742 EXPORT_SYMBOL_GPL(device_find_child_by_name); 3743 3744 int __init devices_init(void) 3745 { 3746 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 3747 if (!devices_kset) 3748 return -ENOMEM; 3749 dev_kobj = kobject_create_and_add("dev", NULL); 3750 if (!dev_kobj) 3751 goto dev_kobj_err; 3752 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 3753 if (!sysfs_dev_block_kobj) 3754 goto block_kobj_err; 3755 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 3756 if (!sysfs_dev_char_kobj) 3757 goto char_kobj_err; 3758 3759 return 0; 3760 3761 char_kobj_err: 3762 kobject_put(sysfs_dev_block_kobj); 3763 block_kobj_err: 3764 kobject_put(dev_kobj); 3765 dev_kobj_err: 3766 kset_unregister(devices_kset); 3767 return -ENOMEM; 3768 } 3769 3770 static int device_check_offline(struct device *dev, void *not_used) 3771 { 3772 int ret; 3773 3774 ret = device_for_each_child(dev, NULL, device_check_offline); 3775 if (ret) 3776 return ret; 3777 3778 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 3779 } 3780 3781 /** 3782 * device_offline - Prepare the device for hot-removal. 3783 * @dev: Device to be put offline. 3784 * 3785 * Execute the device bus type's .offline() callback, if present, to prepare 3786 * the device for a subsequent hot-removal. If that succeeds, the device must 3787 * not be used until either it is removed or its bus type's .online() callback 3788 * is executed. 3789 * 3790 * Call under device_hotplug_lock. 3791 */ 3792 int device_offline(struct device *dev) 3793 { 3794 int ret; 3795 3796 if (dev->offline_disabled) 3797 return -EPERM; 3798 3799 ret = device_for_each_child(dev, NULL, device_check_offline); 3800 if (ret) 3801 return ret; 3802 3803 device_lock(dev); 3804 if (device_supports_offline(dev)) { 3805 if (dev->offline) { 3806 ret = 1; 3807 } else { 3808 ret = dev->bus->offline(dev); 3809 if (!ret) { 3810 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 3811 dev->offline = true; 3812 } 3813 } 3814 } 3815 device_unlock(dev); 3816 3817 return ret; 3818 } 3819 3820 /** 3821 * device_online - Put the device back online after successful device_offline(). 3822 * @dev: Device to be put back online. 3823 * 3824 * If device_offline() has been successfully executed for @dev, but the device 3825 * has not been removed subsequently, execute its bus type's .online() callback 3826 * to indicate that the device can be used again. 3827 * 3828 * Call under device_hotplug_lock. 3829 */ 3830 int device_online(struct device *dev) 3831 { 3832 int ret = 0; 3833 3834 device_lock(dev); 3835 if (device_supports_offline(dev)) { 3836 if (dev->offline) { 3837 ret = dev->bus->online(dev); 3838 if (!ret) { 3839 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 3840 dev->offline = false; 3841 } 3842 } else { 3843 ret = 1; 3844 } 3845 } 3846 device_unlock(dev); 3847 3848 return ret; 3849 } 3850 3851 struct root_device { 3852 struct device dev; 3853 struct module *owner; 3854 }; 3855 3856 static inline struct root_device *to_root_device(struct device *d) 3857 { 3858 return container_of(d, struct root_device, dev); 3859 } 3860 3861 static void root_device_release(struct device *dev) 3862 { 3863 kfree(to_root_device(dev)); 3864 } 3865 3866 /** 3867 * __root_device_register - allocate and register a root device 3868 * @name: root device name 3869 * @owner: owner module of the root device, usually THIS_MODULE 3870 * 3871 * This function allocates a root device and registers it 3872 * using device_register(). In order to free the returned 3873 * device, use root_device_unregister(). 3874 * 3875 * Root devices are dummy devices which allow other devices 3876 * to be grouped under /sys/devices. Use this function to 3877 * allocate a root device and then use it as the parent of 3878 * any device which should appear under /sys/devices/{name} 3879 * 3880 * The /sys/devices/{name} directory will also contain a 3881 * 'module' symlink which points to the @owner directory 3882 * in sysfs. 3883 * 3884 * Returns &struct device pointer on success, or ERR_PTR() on error. 3885 * 3886 * Note: You probably want to use root_device_register(). 3887 */ 3888 struct device *__root_device_register(const char *name, struct module *owner) 3889 { 3890 struct root_device *root; 3891 int err = -ENOMEM; 3892 3893 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 3894 if (!root) 3895 return ERR_PTR(err); 3896 3897 err = dev_set_name(&root->dev, "%s", name); 3898 if (err) { 3899 kfree(root); 3900 return ERR_PTR(err); 3901 } 3902 3903 root->dev.release = root_device_release; 3904 3905 err = device_register(&root->dev); 3906 if (err) { 3907 put_device(&root->dev); 3908 return ERR_PTR(err); 3909 } 3910 3911 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 3912 if (owner) { 3913 struct module_kobject *mk = &owner->mkobj; 3914 3915 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 3916 if (err) { 3917 device_unregister(&root->dev); 3918 return ERR_PTR(err); 3919 } 3920 root->owner = owner; 3921 } 3922 #endif 3923 3924 return &root->dev; 3925 } 3926 EXPORT_SYMBOL_GPL(__root_device_register); 3927 3928 /** 3929 * root_device_unregister - unregister and free a root device 3930 * @dev: device going away 3931 * 3932 * This function unregisters and cleans up a device that was created by 3933 * root_device_register(). 3934 */ 3935 void root_device_unregister(struct device *dev) 3936 { 3937 struct root_device *root = to_root_device(dev); 3938 3939 if (root->owner) 3940 sysfs_remove_link(&root->dev.kobj, "module"); 3941 3942 device_unregister(dev); 3943 } 3944 EXPORT_SYMBOL_GPL(root_device_unregister); 3945 3946 3947 static void device_create_release(struct device *dev) 3948 { 3949 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3950 kfree(dev); 3951 } 3952 3953 static __printf(6, 0) struct device * 3954 device_create_groups_vargs(struct class *class, struct device *parent, 3955 dev_t devt, void *drvdata, 3956 const struct attribute_group **groups, 3957 const char *fmt, va_list args) 3958 { 3959 struct device *dev = NULL; 3960 int retval = -ENODEV; 3961 3962 if (class == NULL || IS_ERR(class)) 3963 goto error; 3964 3965 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3966 if (!dev) { 3967 retval = -ENOMEM; 3968 goto error; 3969 } 3970 3971 device_initialize(dev); 3972 dev->devt = devt; 3973 dev->class = class; 3974 dev->parent = parent; 3975 dev->groups = groups; 3976 dev->release = device_create_release; 3977 dev_set_drvdata(dev, drvdata); 3978 3979 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 3980 if (retval) 3981 goto error; 3982 3983 retval = device_add(dev); 3984 if (retval) 3985 goto error; 3986 3987 return dev; 3988 3989 error: 3990 put_device(dev); 3991 return ERR_PTR(retval); 3992 } 3993 3994 /** 3995 * device_create - creates a device and registers it with sysfs 3996 * @class: pointer to the struct class that this device should be registered to 3997 * @parent: pointer to the parent struct device of this new device, if any 3998 * @devt: the dev_t for the char device to be added 3999 * @drvdata: the data to be added to the device for callbacks 4000 * @fmt: string for the device's name 4001 * 4002 * This function can be used by char device classes. A struct device 4003 * will be created in sysfs, registered to the specified class. 4004 * 4005 * A "dev" file will be created, showing the dev_t for the device, if 4006 * the dev_t is not 0,0. 4007 * If a pointer to a parent struct device is passed in, the newly created 4008 * struct device will be a child of that device in sysfs. 4009 * The pointer to the struct device will be returned from the call. 4010 * Any further sysfs files that might be required can be created using this 4011 * pointer. 4012 * 4013 * Returns &struct device pointer on success, or ERR_PTR() on error. 4014 * 4015 * Note: the struct class passed to this function must have previously 4016 * been created with a call to class_create(). 4017 */ 4018 struct device *device_create(struct class *class, struct device *parent, 4019 dev_t devt, void *drvdata, const char *fmt, ...) 4020 { 4021 va_list vargs; 4022 struct device *dev; 4023 4024 va_start(vargs, fmt); 4025 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4026 fmt, vargs); 4027 va_end(vargs); 4028 return dev; 4029 } 4030 EXPORT_SYMBOL_GPL(device_create); 4031 4032 /** 4033 * device_create_with_groups - creates a device and registers it with sysfs 4034 * @class: pointer to the struct class that this device should be registered to 4035 * @parent: pointer to the parent struct device of this new device, if any 4036 * @devt: the dev_t for the char device to be added 4037 * @drvdata: the data to be added to the device for callbacks 4038 * @groups: NULL-terminated list of attribute groups to be created 4039 * @fmt: string for the device's name 4040 * 4041 * This function can be used by char device classes. A struct device 4042 * will be created in sysfs, registered to the specified class. 4043 * Additional attributes specified in the groups parameter will also 4044 * be created automatically. 4045 * 4046 * A "dev" file will be created, showing the dev_t for the device, if 4047 * the dev_t is not 0,0. 4048 * If a pointer to a parent struct device is passed in, the newly created 4049 * struct device will be a child of that device in sysfs. 4050 * The pointer to the struct device will be returned from the call. 4051 * Any further sysfs files that might be required can be created using this 4052 * pointer. 4053 * 4054 * Returns &struct device pointer on success, or ERR_PTR() on error. 4055 * 4056 * Note: the struct class passed to this function must have previously 4057 * been created with a call to class_create(). 4058 */ 4059 struct device *device_create_with_groups(struct class *class, 4060 struct device *parent, dev_t devt, 4061 void *drvdata, 4062 const struct attribute_group **groups, 4063 const char *fmt, ...) 4064 { 4065 va_list vargs; 4066 struct device *dev; 4067 4068 va_start(vargs, fmt); 4069 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4070 fmt, vargs); 4071 va_end(vargs); 4072 return dev; 4073 } 4074 EXPORT_SYMBOL_GPL(device_create_with_groups); 4075 4076 /** 4077 * device_destroy - removes a device that was created with device_create() 4078 * @class: pointer to the struct class that this device was registered with 4079 * @devt: the dev_t of the device that was previously registered 4080 * 4081 * This call unregisters and cleans up a device that was created with a 4082 * call to device_create(). 4083 */ 4084 void device_destroy(struct class *class, dev_t devt) 4085 { 4086 struct device *dev; 4087 4088 dev = class_find_device_by_devt(class, devt); 4089 if (dev) { 4090 put_device(dev); 4091 device_unregister(dev); 4092 } 4093 } 4094 EXPORT_SYMBOL_GPL(device_destroy); 4095 4096 /** 4097 * device_rename - renames a device 4098 * @dev: the pointer to the struct device to be renamed 4099 * @new_name: the new name of the device 4100 * 4101 * It is the responsibility of the caller to provide mutual 4102 * exclusion between two different calls of device_rename 4103 * on the same device to ensure that new_name is valid and 4104 * won't conflict with other devices. 4105 * 4106 * Note: Don't call this function. Currently, the networking layer calls this 4107 * function, but that will change. The following text from Kay Sievers offers 4108 * some insight: 4109 * 4110 * Renaming devices is racy at many levels, symlinks and other stuff are not 4111 * replaced atomically, and you get a "move" uevent, but it's not easy to 4112 * connect the event to the old and new device. Device nodes are not renamed at 4113 * all, there isn't even support for that in the kernel now. 4114 * 4115 * In the meantime, during renaming, your target name might be taken by another 4116 * driver, creating conflicts. Or the old name is taken directly after you 4117 * renamed it -- then you get events for the same DEVPATH, before you even see 4118 * the "move" event. It's just a mess, and nothing new should ever rely on 4119 * kernel device renaming. Besides that, it's not even implemented now for 4120 * other things than (driver-core wise very simple) network devices. 4121 * 4122 * We are currently about to change network renaming in udev to completely 4123 * disallow renaming of devices in the same namespace as the kernel uses, 4124 * because we can't solve the problems properly, that arise with swapping names 4125 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 4126 * be allowed to some other name than eth[0-9]*, for the aforementioned 4127 * reasons. 4128 * 4129 * Make up a "real" name in the driver before you register anything, or add 4130 * some other attributes for userspace to find the device, or use udev to add 4131 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4132 * don't even want to get into that and try to implement the missing pieces in 4133 * the core. We really have other pieces to fix in the driver core mess. :) 4134 */ 4135 int device_rename(struct device *dev, const char *new_name) 4136 { 4137 struct kobject *kobj = &dev->kobj; 4138 char *old_device_name = NULL; 4139 int error; 4140 4141 dev = get_device(dev); 4142 if (!dev) 4143 return -EINVAL; 4144 4145 dev_dbg(dev, "renaming to %s\n", new_name); 4146 4147 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4148 if (!old_device_name) { 4149 error = -ENOMEM; 4150 goto out; 4151 } 4152 4153 if (dev->class) { 4154 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 4155 kobj, old_device_name, 4156 new_name, kobject_namespace(kobj)); 4157 if (error) 4158 goto out; 4159 } 4160 4161 error = kobject_rename(kobj, new_name); 4162 if (error) 4163 goto out; 4164 4165 out: 4166 put_device(dev); 4167 4168 kfree(old_device_name); 4169 4170 return error; 4171 } 4172 EXPORT_SYMBOL_GPL(device_rename); 4173 4174 static int device_move_class_links(struct device *dev, 4175 struct device *old_parent, 4176 struct device *new_parent) 4177 { 4178 int error = 0; 4179 4180 if (old_parent) 4181 sysfs_remove_link(&dev->kobj, "device"); 4182 if (new_parent) 4183 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4184 "device"); 4185 return error; 4186 } 4187 4188 /** 4189 * device_move - moves a device to a new parent 4190 * @dev: the pointer to the struct device to be moved 4191 * @new_parent: the new parent of the device (can be NULL) 4192 * @dpm_order: how to reorder the dpm_list 4193 */ 4194 int device_move(struct device *dev, struct device *new_parent, 4195 enum dpm_order dpm_order) 4196 { 4197 int error; 4198 struct device *old_parent; 4199 struct kobject *new_parent_kobj; 4200 4201 dev = get_device(dev); 4202 if (!dev) 4203 return -EINVAL; 4204 4205 device_pm_lock(); 4206 new_parent = get_device(new_parent); 4207 new_parent_kobj = get_device_parent(dev, new_parent); 4208 if (IS_ERR(new_parent_kobj)) { 4209 error = PTR_ERR(new_parent_kobj); 4210 put_device(new_parent); 4211 goto out; 4212 } 4213 4214 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4215 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4216 error = kobject_move(&dev->kobj, new_parent_kobj); 4217 if (error) { 4218 cleanup_glue_dir(dev, new_parent_kobj); 4219 put_device(new_parent); 4220 goto out; 4221 } 4222 old_parent = dev->parent; 4223 dev->parent = new_parent; 4224 if (old_parent) 4225 klist_remove(&dev->p->knode_parent); 4226 if (new_parent) { 4227 klist_add_tail(&dev->p->knode_parent, 4228 &new_parent->p->klist_children); 4229 set_dev_node(dev, dev_to_node(new_parent)); 4230 } 4231 4232 if (dev->class) { 4233 error = device_move_class_links(dev, old_parent, new_parent); 4234 if (error) { 4235 /* We ignore errors on cleanup since we're hosed anyway... */ 4236 device_move_class_links(dev, new_parent, old_parent); 4237 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4238 if (new_parent) 4239 klist_remove(&dev->p->knode_parent); 4240 dev->parent = old_parent; 4241 if (old_parent) { 4242 klist_add_tail(&dev->p->knode_parent, 4243 &old_parent->p->klist_children); 4244 set_dev_node(dev, dev_to_node(old_parent)); 4245 } 4246 } 4247 cleanup_glue_dir(dev, new_parent_kobj); 4248 put_device(new_parent); 4249 goto out; 4250 } 4251 } 4252 switch (dpm_order) { 4253 case DPM_ORDER_NONE: 4254 break; 4255 case DPM_ORDER_DEV_AFTER_PARENT: 4256 device_pm_move_after(dev, new_parent); 4257 devices_kset_move_after(dev, new_parent); 4258 break; 4259 case DPM_ORDER_PARENT_BEFORE_DEV: 4260 device_pm_move_before(new_parent, dev); 4261 devices_kset_move_before(new_parent, dev); 4262 break; 4263 case DPM_ORDER_DEV_LAST: 4264 device_pm_move_last(dev); 4265 devices_kset_move_last(dev); 4266 break; 4267 } 4268 4269 put_device(old_parent); 4270 out: 4271 device_pm_unlock(); 4272 put_device(dev); 4273 return error; 4274 } 4275 EXPORT_SYMBOL_GPL(device_move); 4276 4277 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4278 kgid_t kgid) 4279 { 4280 struct kobject *kobj = &dev->kobj; 4281 struct class *class = dev->class; 4282 const struct device_type *type = dev->type; 4283 int error; 4284 4285 if (class) { 4286 /* 4287 * Change the device groups of the device class for @dev to 4288 * @kuid/@kgid. 4289 */ 4290 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4291 kgid); 4292 if (error) 4293 return error; 4294 } 4295 4296 if (type) { 4297 /* 4298 * Change the device groups of the device type for @dev to 4299 * @kuid/@kgid. 4300 */ 4301 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4302 kgid); 4303 if (error) 4304 return error; 4305 } 4306 4307 /* Change the device groups of @dev to @kuid/@kgid. */ 4308 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4309 if (error) 4310 return error; 4311 4312 if (device_supports_offline(dev) && !dev->offline_disabled) { 4313 /* Change online device attributes of @dev to @kuid/@kgid. */ 4314 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4315 kuid, kgid); 4316 if (error) 4317 return error; 4318 } 4319 4320 return 0; 4321 } 4322 4323 /** 4324 * device_change_owner - change the owner of an existing device. 4325 * @dev: device. 4326 * @kuid: new owner's kuid 4327 * @kgid: new owner's kgid 4328 * 4329 * This changes the owner of @dev and its corresponding sysfs entries to 4330 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4331 * core. 4332 * 4333 * Returns 0 on success or error code on failure. 4334 */ 4335 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4336 { 4337 int error; 4338 struct kobject *kobj = &dev->kobj; 4339 4340 dev = get_device(dev); 4341 if (!dev) 4342 return -EINVAL; 4343 4344 /* 4345 * Change the kobject and the default attributes and groups of the 4346 * ktype associated with it to @kuid/@kgid. 4347 */ 4348 error = sysfs_change_owner(kobj, kuid, kgid); 4349 if (error) 4350 goto out; 4351 4352 /* 4353 * Change the uevent file for @dev to the new owner. The uevent file 4354 * was created in a separate step when @dev got added and we mirror 4355 * that step here. 4356 */ 4357 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4358 kgid); 4359 if (error) 4360 goto out; 4361 4362 /* 4363 * Change the device groups, the device groups associated with the 4364 * device class, and the groups associated with the device type of @dev 4365 * to @kuid/@kgid. 4366 */ 4367 error = device_attrs_change_owner(dev, kuid, kgid); 4368 if (error) 4369 goto out; 4370 4371 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4372 if (error) 4373 goto out; 4374 4375 #ifdef CONFIG_BLOCK 4376 if (sysfs_deprecated && dev->class == &block_class) 4377 goto out; 4378 #endif 4379 4380 /* 4381 * Change the owner of the symlink located in the class directory of 4382 * the device class associated with @dev which points to the actual 4383 * directory entry for @dev to @kuid/@kgid. This ensures that the 4384 * symlink shows the same permissions as its target. 4385 */ 4386 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj, 4387 dev_name(dev), kuid, kgid); 4388 if (error) 4389 goto out; 4390 4391 out: 4392 put_device(dev); 4393 return error; 4394 } 4395 EXPORT_SYMBOL_GPL(device_change_owner); 4396 4397 /** 4398 * device_shutdown - call ->shutdown() on each device to shutdown. 4399 */ 4400 void device_shutdown(void) 4401 { 4402 struct device *dev, *parent; 4403 4404 wait_for_device_probe(); 4405 device_block_probing(); 4406 4407 cpufreq_suspend(); 4408 4409 spin_lock(&devices_kset->list_lock); 4410 /* 4411 * Walk the devices list backward, shutting down each in turn. 4412 * Beware that device unplug events may also start pulling 4413 * devices offline, even as the system is shutting down. 4414 */ 4415 while (!list_empty(&devices_kset->list)) { 4416 dev = list_entry(devices_kset->list.prev, struct device, 4417 kobj.entry); 4418 4419 /* 4420 * hold reference count of device's parent to 4421 * prevent it from being freed because parent's 4422 * lock is to be held 4423 */ 4424 parent = get_device(dev->parent); 4425 get_device(dev); 4426 /* 4427 * Make sure the device is off the kset list, in the 4428 * event that dev->*->shutdown() doesn't remove it. 4429 */ 4430 list_del_init(&dev->kobj.entry); 4431 spin_unlock(&devices_kset->list_lock); 4432 4433 /* hold lock to avoid race with probe/release */ 4434 if (parent) 4435 device_lock(parent); 4436 device_lock(dev); 4437 4438 /* Don't allow any more runtime suspends */ 4439 pm_runtime_get_noresume(dev); 4440 pm_runtime_barrier(dev); 4441 4442 if (dev->class && dev->class->shutdown_pre) { 4443 if (initcall_debug) 4444 dev_info(dev, "shutdown_pre\n"); 4445 dev->class->shutdown_pre(dev); 4446 } 4447 if (dev->bus && dev->bus->shutdown) { 4448 if (initcall_debug) 4449 dev_info(dev, "shutdown\n"); 4450 dev->bus->shutdown(dev); 4451 } else if (dev->driver && dev->driver->shutdown) { 4452 if (initcall_debug) 4453 dev_info(dev, "shutdown\n"); 4454 dev->driver->shutdown(dev); 4455 } 4456 4457 device_unlock(dev); 4458 if (parent) 4459 device_unlock(parent); 4460 4461 put_device(dev); 4462 put_device(parent); 4463 4464 spin_lock(&devices_kset->list_lock); 4465 } 4466 spin_unlock(&devices_kset->list_lock); 4467 } 4468 4469 /* 4470 * Device logging functions 4471 */ 4472 4473 #ifdef CONFIG_PRINTK 4474 static void 4475 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4476 { 4477 const char *subsys; 4478 4479 memset(dev_info, 0, sizeof(*dev_info)); 4480 4481 if (dev->class) 4482 subsys = dev->class->name; 4483 else if (dev->bus) 4484 subsys = dev->bus->name; 4485 else 4486 return; 4487 4488 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4489 4490 /* 4491 * Add device identifier DEVICE=: 4492 * b12:8 block dev_t 4493 * c127:3 char dev_t 4494 * n8 netdev ifindex 4495 * +sound:card0 subsystem:devname 4496 */ 4497 if (MAJOR(dev->devt)) { 4498 char c; 4499 4500 if (strcmp(subsys, "block") == 0) 4501 c = 'b'; 4502 else 4503 c = 'c'; 4504 4505 snprintf(dev_info->device, sizeof(dev_info->device), 4506 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4507 } else if (strcmp(subsys, "net") == 0) { 4508 struct net_device *net = to_net_dev(dev); 4509 4510 snprintf(dev_info->device, sizeof(dev_info->device), 4511 "n%u", net->ifindex); 4512 } else { 4513 snprintf(dev_info->device, sizeof(dev_info->device), 4514 "+%s:%s", subsys, dev_name(dev)); 4515 } 4516 } 4517 4518 int dev_vprintk_emit(int level, const struct device *dev, 4519 const char *fmt, va_list args) 4520 { 4521 struct dev_printk_info dev_info; 4522 4523 set_dev_info(dev, &dev_info); 4524 4525 return vprintk_emit(0, level, &dev_info, fmt, args); 4526 } 4527 EXPORT_SYMBOL(dev_vprintk_emit); 4528 4529 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4530 { 4531 va_list args; 4532 int r; 4533 4534 va_start(args, fmt); 4535 4536 r = dev_vprintk_emit(level, dev, fmt, args); 4537 4538 va_end(args); 4539 4540 return r; 4541 } 4542 EXPORT_SYMBOL(dev_printk_emit); 4543 4544 static void __dev_printk(const char *level, const struct device *dev, 4545 struct va_format *vaf) 4546 { 4547 if (dev) 4548 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4549 dev_driver_string(dev), dev_name(dev), vaf); 4550 else 4551 printk("%s(NULL device *): %pV", level, vaf); 4552 } 4553 4554 void dev_printk(const char *level, const struct device *dev, 4555 const char *fmt, ...) 4556 { 4557 struct va_format vaf; 4558 va_list args; 4559 4560 va_start(args, fmt); 4561 4562 vaf.fmt = fmt; 4563 vaf.va = &args; 4564 4565 __dev_printk(level, dev, &vaf); 4566 4567 va_end(args); 4568 } 4569 EXPORT_SYMBOL(dev_printk); 4570 4571 #define define_dev_printk_level(func, kern_level) \ 4572 void func(const struct device *dev, const char *fmt, ...) \ 4573 { \ 4574 struct va_format vaf; \ 4575 va_list args; \ 4576 \ 4577 va_start(args, fmt); \ 4578 \ 4579 vaf.fmt = fmt; \ 4580 vaf.va = &args; \ 4581 \ 4582 __dev_printk(kern_level, dev, &vaf); \ 4583 \ 4584 va_end(args); \ 4585 } \ 4586 EXPORT_SYMBOL(func); 4587 4588 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4589 define_dev_printk_level(_dev_alert, KERN_ALERT); 4590 define_dev_printk_level(_dev_crit, KERN_CRIT); 4591 define_dev_printk_level(_dev_err, KERN_ERR); 4592 define_dev_printk_level(_dev_warn, KERN_WARNING); 4593 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4594 define_dev_printk_level(_dev_info, KERN_INFO); 4595 4596 #endif 4597 4598 /** 4599 * dev_err_probe - probe error check and log helper 4600 * @dev: the pointer to the struct device 4601 * @err: error value to test 4602 * @fmt: printf-style format string 4603 * @...: arguments as specified in the format string 4604 * 4605 * This helper implements common pattern present in probe functions for error 4606 * checking: print debug or error message depending if the error value is 4607 * -EPROBE_DEFER and propagate error upwards. 4608 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4609 * checked later by reading devices_deferred debugfs attribute. 4610 * It replaces code sequence:: 4611 * 4612 * if (err != -EPROBE_DEFER) 4613 * dev_err(dev, ...); 4614 * else 4615 * dev_dbg(dev, ...); 4616 * return err; 4617 * 4618 * with:: 4619 * 4620 * return dev_err_probe(dev, err, ...); 4621 * 4622 * Returns @err. 4623 * 4624 */ 4625 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4626 { 4627 struct va_format vaf; 4628 va_list args; 4629 4630 va_start(args, fmt); 4631 vaf.fmt = fmt; 4632 vaf.va = &args; 4633 4634 if (err != -EPROBE_DEFER) { 4635 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4636 } else { 4637 device_set_deferred_probe_reason(dev, &vaf); 4638 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4639 } 4640 4641 va_end(args); 4642 4643 return err; 4644 } 4645 EXPORT_SYMBOL_GPL(dev_err_probe); 4646 4647 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 4648 { 4649 return fwnode && !IS_ERR(fwnode->secondary); 4650 } 4651 4652 /** 4653 * set_primary_fwnode - Change the primary firmware node of a given device. 4654 * @dev: Device to handle. 4655 * @fwnode: New primary firmware node of the device. 4656 * 4657 * Set the device's firmware node pointer to @fwnode, but if a secondary 4658 * firmware node of the device is present, preserve it. 4659 * 4660 * Valid fwnode cases are: 4661 * - primary --> secondary --> -ENODEV 4662 * - primary --> NULL 4663 * - secondary --> -ENODEV 4664 * - NULL 4665 */ 4666 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4667 { 4668 struct device *parent = dev->parent; 4669 struct fwnode_handle *fn = dev->fwnode; 4670 4671 if (fwnode) { 4672 if (fwnode_is_primary(fn)) 4673 fn = fn->secondary; 4674 4675 if (fn) { 4676 WARN_ON(fwnode->secondary); 4677 fwnode->secondary = fn; 4678 } 4679 dev->fwnode = fwnode; 4680 } else { 4681 if (fwnode_is_primary(fn)) { 4682 dev->fwnode = fn->secondary; 4683 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 4684 if (!(parent && fn == parent->fwnode)) 4685 fn->secondary = NULL; 4686 } else { 4687 dev->fwnode = NULL; 4688 } 4689 } 4690 } 4691 EXPORT_SYMBOL_GPL(set_primary_fwnode); 4692 4693 /** 4694 * set_secondary_fwnode - Change the secondary firmware node of a given device. 4695 * @dev: Device to handle. 4696 * @fwnode: New secondary firmware node of the device. 4697 * 4698 * If a primary firmware node of the device is present, set its secondary 4699 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 4700 * @fwnode. 4701 */ 4702 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4703 { 4704 if (fwnode) 4705 fwnode->secondary = ERR_PTR(-ENODEV); 4706 4707 if (fwnode_is_primary(dev->fwnode)) 4708 dev->fwnode->secondary = fwnode; 4709 else 4710 dev->fwnode = fwnode; 4711 } 4712 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 4713 4714 /** 4715 * device_set_of_node_from_dev - reuse device-tree node of another device 4716 * @dev: device whose device-tree node is being set 4717 * @dev2: device whose device-tree node is being reused 4718 * 4719 * Takes another reference to the new device-tree node after first dropping 4720 * any reference held to the old node. 4721 */ 4722 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 4723 { 4724 of_node_put(dev->of_node); 4725 dev->of_node = of_node_get(dev2->of_node); 4726 dev->of_node_reused = true; 4727 } 4728 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 4729 4730 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 4731 { 4732 dev->fwnode = fwnode; 4733 dev->of_node = to_of_node(fwnode); 4734 } 4735 EXPORT_SYMBOL_GPL(device_set_node); 4736 4737 int device_match_name(struct device *dev, const void *name) 4738 { 4739 return sysfs_streq(dev_name(dev), name); 4740 } 4741 EXPORT_SYMBOL_GPL(device_match_name); 4742 4743 int device_match_of_node(struct device *dev, const void *np) 4744 { 4745 return dev->of_node == np; 4746 } 4747 EXPORT_SYMBOL_GPL(device_match_of_node); 4748 4749 int device_match_fwnode(struct device *dev, const void *fwnode) 4750 { 4751 return dev_fwnode(dev) == fwnode; 4752 } 4753 EXPORT_SYMBOL_GPL(device_match_fwnode); 4754 4755 int device_match_devt(struct device *dev, const void *pdevt) 4756 { 4757 return dev->devt == *(dev_t *)pdevt; 4758 } 4759 EXPORT_SYMBOL_GPL(device_match_devt); 4760 4761 int device_match_acpi_dev(struct device *dev, const void *adev) 4762 { 4763 return ACPI_COMPANION(dev) == adev; 4764 } 4765 EXPORT_SYMBOL(device_match_acpi_dev); 4766 4767 int device_match_any(struct device *dev, const void *unused) 4768 { 4769 return 1; 4770 } 4771 EXPORT_SYMBOL_GPL(device_match_any); 4772