1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/genhd.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sysfs.h> 30 31 #include "base.h" 32 #include "power/power.h" 33 34 #ifdef CONFIG_SYSFS_DEPRECATED 35 #ifdef CONFIG_SYSFS_DEPRECATED_V2 36 long sysfs_deprecated = 1; 37 #else 38 long sysfs_deprecated = 0; 39 #endif 40 static int __init sysfs_deprecated_setup(char *arg) 41 { 42 return kstrtol(arg, 10, &sysfs_deprecated); 43 } 44 early_param("sysfs.deprecated", sysfs_deprecated_setup); 45 #endif 46 47 /* Device links support. */ 48 static LIST_HEAD(wait_for_suppliers); 49 static DEFINE_MUTEX(wfs_lock); 50 static LIST_HEAD(deferred_sync); 51 static unsigned int defer_sync_state_count = 1; 52 53 #ifdef CONFIG_SRCU 54 static DEFINE_MUTEX(device_links_lock); 55 DEFINE_STATIC_SRCU(device_links_srcu); 56 57 static inline void device_links_write_lock(void) 58 { 59 mutex_lock(&device_links_lock); 60 } 61 62 static inline void device_links_write_unlock(void) 63 { 64 mutex_unlock(&device_links_lock); 65 } 66 67 int device_links_read_lock(void) __acquires(&device_links_srcu) 68 { 69 return srcu_read_lock(&device_links_srcu); 70 } 71 72 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 73 { 74 srcu_read_unlock(&device_links_srcu, idx); 75 } 76 77 int device_links_read_lock_held(void) 78 { 79 return srcu_read_lock_held(&device_links_srcu); 80 } 81 #else /* !CONFIG_SRCU */ 82 static DECLARE_RWSEM(device_links_lock); 83 84 static inline void device_links_write_lock(void) 85 { 86 down_write(&device_links_lock); 87 } 88 89 static inline void device_links_write_unlock(void) 90 { 91 up_write(&device_links_lock); 92 } 93 94 int device_links_read_lock(void) 95 { 96 down_read(&device_links_lock); 97 return 0; 98 } 99 100 void device_links_read_unlock(int not_used) 101 { 102 up_read(&device_links_lock); 103 } 104 105 #ifdef CONFIG_DEBUG_LOCK_ALLOC 106 int device_links_read_lock_held(void) 107 { 108 return lockdep_is_held(&device_links_lock); 109 } 110 #endif 111 #endif /* !CONFIG_SRCU */ 112 113 /** 114 * device_is_dependent - Check if one device depends on another one 115 * @dev: Device to check dependencies for. 116 * @target: Device to check against. 117 * 118 * Check if @target depends on @dev or any device dependent on it (its child or 119 * its consumer etc). Return 1 if that is the case or 0 otherwise. 120 */ 121 static int device_is_dependent(struct device *dev, void *target) 122 { 123 struct device_link *link; 124 int ret; 125 126 if (dev == target) 127 return 1; 128 129 ret = device_for_each_child(dev, target, device_is_dependent); 130 if (ret) 131 return ret; 132 133 list_for_each_entry(link, &dev->links.consumers, s_node) { 134 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 135 continue; 136 137 if (link->consumer == target) 138 return 1; 139 140 ret = device_is_dependent(link->consumer, target); 141 if (ret) 142 break; 143 } 144 return ret; 145 } 146 147 static void device_link_init_status(struct device_link *link, 148 struct device *consumer, 149 struct device *supplier) 150 { 151 switch (supplier->links.status) { 152 case DL_DEV_PROBING: 153 switch (consumer->links.status) { 154 case DL_DEV_PROBING: 155 /* 156 * A consumer driver can create a link to a supplier 157 * that has not completed its probing yet as long as it 158 * knows that the supplier is already functional (for 159 * example, it has just acquired some resources from the 160 * supplier). 161 */ 162 link->status = DL_STATE_CONSUMER_PROBE; 163 break; 164 default: 165 link->status = DL_STATE_DORMANT; 166 break; 167 } 168 break; 169 case DL_DEV_DRIVER_BOUND: 170 switch (consumer->links.status) { 171 case DL_DEV_PROBING: 172 link->status = DL_STATE_CONSUMER_PROBE; 173 break; 174 case DL_DEV_DRIVER_BOUND: 175 link->status = DL_STATE_ACTIVE; 176 break; 177 default: 178 link->status = DL_STATE_AVAILABLE; 179 break; 180 } 181 break; 182 case DL_DEV_UNBINDING: 183 link->status = DL_STATE_SUPPLIER_UNBIND; 184 break; 185 default: 186 link->status = DL_STATE_DORMANT; 187 break; 188 } 189 } 190 191 static int device_reorder_to_tail(struct device *dev, void *not_used) 192 { 193 struct device_link *link; 194 195 /* 196 * Devices that have not been registered yet will be put to the ends 197 * of the lists during the registration, so skip them here. 198 */ 199 if (device_is_registered(dev)) 200 devices_kset_move_last(dev); 201 202 if (device_pm_initialized(dev)) 203 device_pm_move_last(dev); 204 205 device_for_each_child(dev, NULL, device_reorder_to_tail); 206 list_for_each_entry(link, &dev->links.consumers, s_node) { 207 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 208 continue; 209 device_reorder_to_tail(link->consumer, NULL); 210 } 211 212 return 0; 213 } 214 215 /** 216 * device_pm_move_to_tail - Move set of devices to the end of device lists 217 * @dev: Device to move 218 * 219 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 220 * 221 * It moves the @dev along with all of its children and all of its consumers 222 * to the ends of the device_kset and dpm_list, recursively. 223 */ 224 void device_pm_move_to_tail(struct device *dev) 225 { 226 int idx; 227 228 idx = device_links_read_lock(); 229 device_pm_lock(); 230 device_reorder_to_tail(dev, NULL); 231 device_pm_unlock(); 232 device_links_read_unlock(idx); 233 } 234 235 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 236 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 237 DL_FLAG_AUTOPROBE_CONSUMER | \ 238 DL_FLAG_SYNC_STATE_ONLY) 239 240 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 241 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 242 243 /** 244 * device_link_add - Create a link between two devices. 245 * @consumer: Consumer end of the link. 246 * @supplier: Supplier end of the link. 247 * @flags: Link flags. 248 * 249 * The caller is responsible for the proper synchronization of the link creation 250 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 251 * runtime PM framework to take the link into account. Second, if the 252 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 253 * be forced into the active metastate and reference-counted upon the creation 254 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 255 * ignored. 256 * 257 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 258 * expected to release the link returned by it directly with the help of either 259 * device_link_del() or device_link_remove(). 260 * 261 * If that flag is not set, however, the caller of this function is handing the 262 * management of the link over to the driver core entirely and its return value 263 * can only be used to check whether or not the link is present. In that case, 264 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 265 * flags can be used to indicate to the driver core when the link can be safely 266 * deleted. Namely, setting one of them in @flags indicates to the driver core 267 * that the link is not going to be used (by the given caller of this function) 268 * after unbinding the consumer or supplier driver, respectively, from its 269 * device, so the link can be deleted at that point. If none of them is set, 270 * the link will be maintained until one of the devices pointed to by it (either 271 * the consumer or the supplier) is unregistered. 272 * 273 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 274 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 275 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 276 * be used to request the driver core to automaticall probe for a consmer 277 * driver after successfully binding a driver to the supplier device. 278 * 279 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 280 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 281 * the same time is invalid and will cause NULL to be returned upfront. 282 * However, if a device link between the given @consumer and @supplier pair 283 * exists already when this function is called for them, the existing link will 284 * be returned regardless of its current type and status (the link's flags may 285 * be modified then). The caller of this function is then expected to treat 286 * the link as though it has just been created, so (in particular) if 287 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 288 * explicitly when not needed any more (as stated above). 289 * 290 * A side effect of the link creation is re-ordering of dpm_list and the 291 * devices_kset list by moving the consumer device and all devices depending 292 * on it to the ends of these lists (that does not happen to devices that have 293 * not been registered when this function is called). 294 * 295 * The supplier device is required to be registered when this function is called 296 * and NULL will be returned if that is not the case. The consumer device need 297 * not be registered, however. 298 */ 299 struct device_link *device_link_add(struct device *consumer, 300 struct device *supplier, u32 flags) 301 { 302 struct device_link *link; 303 304 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS || 305 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 306 (flags & DL_FLAG_SYNC_STATE_ONLY && 307 flags != DL_FLAG_SYNC_STATE_ONLY) || 308 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 309 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 310 DL_FLAG_AUTOREMOVE_SUPPLIER))) 311 return NULL; 312 313 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 314 if (pm_runtime_get_sync(supplier) < 0) { 315 pm_runtime_put_noidle(supplier); 316 return NULL; 317 } 318 } 319 320 if (!(flags & DL_FLAG_STATELESS)) 321 flags |= DL_FLAG_MANAGED; 322 323 device_links_write_lock(); 324 device_pm_lock(); 325 326 /* 327 * If the supplier has not been fully registered yet or there is a 328 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 329 * the supplier already in the graph, return NULL. If the link is a 330 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 331 * because it only affects sync_state() callbacks. 332 */ 333 if (!device_pm_initialized(supplier) 334 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 335 device_is_dependent(consumer, supplier))) { 336 link = NULL; 337 goto out; 338 } 339 340 /* 341 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 342 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 343 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 344 */ 345 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 346 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 347 348 list_for_each_entry(link, &supplier->links.consumers, s_node) { 349 if (link->consumer != consumer) 350 continue; 351 352 if (flags & DL_FLAG_PM_RUNTIME) { 353 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 354 pm_runtime_new_link(consumer); 355 link->flags |= DL_FLAG_PM_RUNTIME; 356 } 357 if (flags & DL_FLAG_RPM_ACTIVE) 358 refcount_inc(&link->rpm_active); 359 } 360 361 if (flags & DL_FLAG_STATELESS) { 362 kref_get(&link->kref); 363 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 364 !(link->flags & DL_FLAG_STATELESS)) { 365 link->flags |= DL_FLAG_STATELESS; 366 goto reorder; 367 } else { 368 goto out; 369 } 370 } 371 372 /* 373 * If the life time of the link following from the new flags is 374 * longer than indicated by the flags of the existing link, 375 * update the existing link to stay around longer. 376 */ 377 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 378 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 379 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 380 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 381 } 382 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 383 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 384 DL_FLAG_AUTOREMOVE_SUPPLIER); 385 } 386 if (!(link->flags & DL_FLAG_MANAGED)) { 387 kref_get(&link->kref); 388 link->flags |= DL_FLAG_MANAGED; 389 device_link_init_status(link, consumer, supplier); 390 } 391 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 392 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 393 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 394 goto reorder; 395 } 396 397 goto out; 398 } 399 400 link = kzalloc(sizeof(*link), GFP_KERNEL); 401 if (!link) 402 goto out; 403 404 refcount_set(&link->rpm_active, 1); 405 406 if (flags & DL_FLAG_PM_RUNTIME) { 407 if (flags & DL_FLAG_RPM_ACTIVE) 408 refcount_inc(&link->rpm_active); 409 410 pm_runtime_new_link(consumer); 411 } 412 413 get_device(supplier); 414 link->supplier = supplier; 415 INIT_LIST_HEAD(&link->s_node); 416 get_device(consumer); 417 link->consumer = consumer; 418 INIT_LIST_HEAD(&link->c_node); 419 link->flags = flags; 420 kref_init(&link->kref); 421 422 /* Determine the initial link state. */ 423 if (flags & DL_FLAG_STATELESS) 424 link->status = DL_STATE_NONE; 425 else 426 device_link_init_status(link, consumer, supplier); 427 428 /* 429 * Some callers expect the link creation during consumer driver probe to 430 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 431 */ 432 if (link->status == DL_STATE_CONSUMER_PROBE && 433 flags & DL_FLAG_PM_RUNTIME) 434 pm_runtime_resume(supplier); 435 436 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 437 dev_dbg(consumer, 438 "Linked as a sync state only consumer to %s\n", 439 dev_name(supplier)); 440 goto out; 441 } 442 reorder: 443 /* 444 * Move the consumer and all of the devices depending on it to the end 445 * of dpm_list and the devices_kset list. 446 * 447 * It is necessary to hold dpm_list locked throughout all that or else 448 * we may end up suspending with a wrong ordering of it. 449 */ 450 device_reorder_to_tail(consumer, NULL); 451 452 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 453 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 454 455 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 456 457 out: 458 device_pm_unlock(); 459 device_links_write_unlock(); 460 461 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 462 pm_runtime_put(supplier); 463 464 return link; 465 } 466 EXPORT_SYMBOL_GPL(device_link_add); 467 468 /** 469 * device_link_wait_for_supplier - Add device to wait_for_suppliers list 470 * @consumer: Consumer device 471 * 472 * Marks the @consumer device as waiting for suppliers to become available by 473 * adding it to the wait_for_suppliers list. The consumer device will never be 474 * probed until it's removed from the wait_for_suppliers list. 475 * 476 * The caller is responsible for adding the links to the supplier devices once 477 * they are available and removing the @consumer device from the 478 * wait_for_suppliers list once links to all the suppliers have been created. 479 * 480 * This function is NOT meant to be called from the probe function of the 481 * consumer but rather from code that creates/adds the consumer device. 482 */ 483 static void device_link_wait_for_supplier(struct device *consumer, 484 bool need_for_probe) 485 { 486 mutex_lock(&wfs_lock); 487 list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers); 488 consumer->links.need_for_probe = need_for_probe; 489 mutex_unlock(&wfs_lock); 490 } 491 492 static void device_link_wait_for_mandatory_supplier(struct device *consumer) 493 { 494 device_link_wait_for_supplier(consumer, true); 495 } 496 497 static void device_link_wait_for_optional_supplier(struct device *consumer) 498 { 499 device_link_wait_for_supplier(consumer, false); 500 } 501 502 /** 503 * device_link_add_missing_supplier_links - Add links from consumer devices to 504 * supplier devices, leaving any 505 * consumer with inactive suppliers on 506 * the wait_for_suppliers list 507 * 508 * Loops through all consumers waiting on suppliers and tries to add all their 509 * supplier links. If that succeeds, the consumer device is removed from 510 * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers 511 * list. Devices left on the wait_for_suppliers list will not be probed. 512 * 513 * The fwnode add_links callback is expected to return 0 if it has found and 514 * added all the supplier links for the consumer device. It should return an 515 * error if it isn't able to do so. 516 * 517 * The caller of device_link_wait_for_supplier() is expected to call this once 518 * it's aware of potential suppliers becoming available. 519 */ 520 static void device_link_add_missing_supplier_links(void) 521 { 522 struct device *dev, *tmp; 523 524 mutex_lock(&wfs_lock); 525 list_for_each_entry_safe(dev, tmp, &wait_for_suppliers, 526 links.needs_suppliers) { 527 int ret = fwnode_call_int_op(dev->fwnode, add_links, dev); 528 if (!ret) 529 list_del_init(&dev->links.needs_suppliers); 530 else if (ret != -ENODEV) 531 dev->links.need_for_probe = false; 532 } 533 mutex_unlock(&wfs_lock); 534 } 535 536 static void device_link_free(struct device_link *link) 537 { 538 while (refcount_dec_not_one(&link->rpm_active)) 539 pm_runtime_put(link->supplier); 540 541 put_device(link->consumer); 542 put_device(link->supplier); 543 kfree(link); 544 } 545 546 #ifdef CONFIG_SRCU 547 static void __device_link_free_srcu(struct rcu_head *rhead) 548 { 549 device_link_free(container_of(rhead, struct device_link, rcu_head)); 550 } 551 552 static void __device_link_del(struct kref *kref) 553 { 554 struct device_link *link = container_of(kref, struct device_link, kref); 555 556 dev_dbg(link->consumer, "Dropping the link to %s\n", 557 dev_name(link->supplier)); 558 559 if (link->flags & DL_FLAG_PM_RUNTIME) 560 pm_runtime_drop_link(link->consumer); 561 562 list_del_rcu(&link->s_node); 563 list_del_rcu(&link->c_node); 564 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu); 565 } 566 #else /* !CONFIG_SRCU */ 567 static void __device_link_del(struct kref *kref) 568 { 569 struct device_link *link = container_of(kref, struct device_link, kref); 570 571 dev_info(link->consumer, "Dropping the link to %s\n", 572 dev_name(link->supplier)); 573 574 if (link->flags & DL_FLAG_PM_RUNTIME) 575 pm_runtime_drop_link(link->consumer); 576 577 list_del(&link->s_node); 578 list_del(&link->c_node); 579 device_link_free(link); 580 } 581 #endif /* !CONFIG_SRCU */ 582 583 static void device_link_put_kref(struct device_link *link) 584 { 585 if (link->flags & DL_FLAG_STATELESS) 586 kref_put(&link->kref, __device_link_del); 587 else 588 WARN(1, "Unable to drop a managed device link reference\n"); 589 } 590 591 /** 592 * device_link_del - Delete a stateless link between two devices. 593 * @link: Device link to delete. 594 * 595 * The caller must ensure proper synchronization of this function with runtime 596 * PM. If the link was added multiple times, it needs to be deleted as often. 597 * Care is required for hotplugged devices: Their links are purged on removal 598 * and calling device_link_del() is then no longer allowed. 599 */ 600 void device_link_del(struct device_link *link) 601 { 602 device_links_write_lock(); 603 device_pm_lock(); 604 device_link_put_kref(link); 605 device_pm_unlock(); 606 device_links_write_unlock(); 607 } 608 EXPORT_SYMBOL_GPL(device_link_del); 609 610 /** 611 * device_link_remove - Delete a stateless link between two devices. 612 * @consumer: Consumer end of the link. 613 * @supplier: Supplier end of the link. 614 * 615 * The caller must ensure proper synchronization of this function with runtime 616 * PM. 617 */ 618 void device_link_remove(void *consumer, struct device *supplier) 619 { 620 struct device_link *link; 621 622 if (WARN_ON(consumer == supplier)) 623 return; 624 625 device_links_write_lock(); 626 device_pm_lock(); 627 628 list_for_each_entry(link, &supplier->links.consumers, s_node) { 629 if (link->consumer == consumer) { 630 device_link_put_kref(link); 631 break; 632 } 633 } 634 635 device_pm_unlock(); 636 device_links_write_unlock(); 637 } 638 EXPORT_SYMBOL_GPL(device_link_remove); 639 640 static void device_links_missing_supplier(struct device *dev) 641 { 642 struct device_link *link; 643 644 list_for_each_entry(link, &dev->links.suppliers, c_node) 645 if (link->status == DL_STATE_CONSUMER_PROBE) 646 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 647 } 648 649 /** 650 * device_links_check_suppliers - Check presence of supplier drivers. 651 * @dev: Consumer device. 652 * 653 * Check links from this device to any suppliers. Walk the list of the device's 654 * links to suppliers and see if all of them are available. If not, simply 655 * return -EPROBE_DEFER. 656 * 657 * We need to guarantee that the supplier will not go away after the check has 658 * been positive here. It only can go away in __device_release_driver() and 659 * that function checks the device's links to consumers. This means we need to 660 * mark the link as "consumer probe in progress" to make the supplier removal 661 * wait for us to complete (or bad things may happen). 662 * 663 * Links without the DL_FLAG_MANAGED flag set are ignored. 664 */ 665 int device_links_check_suppliers(struct device *dev) 666 { 667 struct device_link *link; 668 int ret = 0; 669 670 /* 671 * Device waiting for supplier to become available is not allowed to 672 * probe. 673 */ 674 mutex_lock(&wfs_lock); 675 if (!list_empty(&dev->links.needs_suppliers) && 676 dev->links.need_for_probe) { 677 mutex_unlock(&wfs_lock); 678 return -EPROBE_DEFER; 679 } 680 mutex_unlock(&wfs_lock); 681 682 device_links_write_lock(); 683 684 list_for_each_entry(link, &dev->links.suppliers, c_node) { 685 if (!(link->flags & DL_FLAG_MANAGED) || 686 link->flags & DL_FLAG_SYNC_STATE_ONLY) 687 continue; 688 689 if (link->status != DL_STATE_AVAILABLE) { 690 device_links_missing_supplier(dev); 691 ret = -EPROBE_DEFER; 692 break; 693 } 694 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 695 } 696 dev->links.status = DL_DEV_PROBING; 697 698 device_links_write_unlock(); 699 return ret; 700 } 701 702 /** 703 * __device_links_queue_sync_state - Queue a device for sync_state() callback 704 * @dev: Device to call sync_state() on 705 * @list: List head to queue the @dev on 706 * 707 * Queues a device for a sync_state() callback when the device links write lock 708 * isn't held. This allows the sync_state() execution flow to use device links 709 * APIs. The caller must ensure this function is called with 710 * device_links_write_lock() held. 711 * 712 * This function does a get_device() to make sure the device is not freed while 713 * on this list. 714 * 715 * So the caller must also ensure that device_links_flush_sync_list() is called 716 * as soon as the caller releases device_links_write_lock(). This is necessary 717 * to make sure the sync_state() is called in a timely fashion and the 718 * put_device() is called on this device. 719 */ 720 static void __device_links_queue_sync_state(struct device *dev, 721 struct list_head *list) 722 { 723 struct device_link *link; 724 725 if (!dev_has_sync_state(dev)) 726 return; 727 if (dev->state_synced) 728 return; 729 730 list_for_each_entry(link, &dev->links.consumers, s_node) { 731 if (!(link->flags & DL_FLAG_MANAGED)) 732 continue; 733 if (link->status != DL_STATE_ACTIVE) 734 return; 735 } 736 737 /* 738 * Set the flag here to avoid adding the same device to a list more 739 * than once. This can happen if new consumers get added to the device 740 * and probed before the list is flushed. 741 */ 742 dev->state_synced = true; 743 744 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 745 return; 746 747 get_device(dev); 748 list_add_tail(&dev->links.defer_sync, list); 749 } 750 751 /** 752 * device_links_flush_sync_list - Call sync_state() on a list of devices 753 * @list: List of devices to call sync_state() on 754 * @dont_lock_dev: Device for which lock is already held by the caller 755 * 756 * Calls sync_state() on all the devices that have been queued for it. This 757 * function is used in conjunction with __device_links_queue_sync_state(). The 758 * @dont_lock_dev parameter is useful when this function is called from a 759 * context where a device lock is already held. 760 */ 761 static void device_links_flush_sync_list(struct list_head *list, 762 struct device *dont_lock_dev) 763 { 764 struct device *dev, *tmp; 765 766 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 767 list_del_init(&dev->links.defer_sync); 768 769 if (dev != dont_lock_dev) 770 device_lock(dev); 771 772 if (dev->bus->sync_state) 773 dev->bus->sync_state(dev); 774 else if (dev->driver && dev->driver->sync_state) 775 dev->driver->sync_state(dev); 776 777 if (dev != dont_lock_dev) 778 device_unlock(dev); 779 780 put_device(dev); 781 } 782 } 783 784 void device_links_supplier_sync_state_pause(void) 785 { 786 device_links_write_lock(); 787 defer_sync_state_count++; 788 device_links_write_unlock(); 789 } 790 791 void device_links_supplier_sync_state_resume(void) 792 { 793 struct device *dev, *tmp; 794 LIST_HEAD(sync_list); 795 796 device_links_write_lock(); 797 if (!defer_sync_state_count) { 798 WARN(true, "Unmatched sync_state pause/resume!"); 799 goto out; 800 } 801 defer_sync_state_count--; 802 if (defer_sync_state_count) 803 goto out; 804 805 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 806 /* 807 * Delete from deferred_sync list before queuing it to 808 * sync_list because defer_sync is used for both lists. 809 */ 810 list_del_init(&dev->links.defer_sync); 811 __device_links_queue_sync_state(dev, &sync_list); 812 } 813 out: 814 device_links_write_unlock(); 815 816 device_links_flush_sync_list(&sync_list, NULL); 817 } 818 819 static int sync_state_resume_initcall(void) 820 { 821 device_links_supplier_sync_state_resume(); 822 return 0; 823 } 824 late_initcall(sync_state_resume_initcall); 825 826 static void __device_links_supplier_defer_sync(struct device *sup) 827 { 828 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 829 list_add_tail(&sup->links.defer_sync, &deferred_sync); 830 } 831 832 /** 833 * device_links_driver_bound - Update device links after probing its driver. 834 * @dev: Device to update the links for. 835 * 836 * The probe has been successful, so update links from this device to any 837 * consumers by changing their status to "available". 838 * 839 * Also change the status of @dev's links to suppliers to "active". 840 * 841 * Links without the DL_FLAG_MANAGED flag set are ignored. 842 */ 843 void device_links_driver_bound(struct device *dev) 844 { 845 struct device_link *link; 846 LIST_HEAD(sync_list); 847 848 /* 849 * If a device probes successfully, it's expected to have created all 850 * the device links it needs to or make new device links as it needs 851 * them. So, it no longer needs to wait on any suppliers. 852 */ 853 mutex_lock(&wfs_lock); 854 list_del_init(&dev->links.needs_suppliers); 855 mutex_unlock(&wfs_lock); 856 857 device_links_write_lock(); 858 859 list_for_each_entry(link, &dev->links.consumers, s_node) { 860 if (!(link->flags & DL_FLAG_MANAGED)) 861 continue; 862 863 /* 864 * Links created during consumer probe may be in the "consumer 865 * probe" state to start with if the supplier is still probing 866 * when they are created and they may become "active" if the 867 * consumer probe returns first. Skip them here. 868 */ 869 if (link->status == DL_STATE_CONSUMER_PROBE || 870 link->status == DL_STATE_ACTIVE) 871 continue; 872 873 WARN_ON(link->status != DL_STATE_DORMANT); 874 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 875 876 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 877 driver_deferred_probe_add(link->consumer); 878 } 879 880 if (defer_sync_state_count) 881 __device_links_supplier_defer_sync(dev); 882 else 883 __device_links_queue_sync_state(dev, &sync_list); 884 885 list_for_each_entry(link, &dev->links.suppliers, c_node) { 886 if (!(link->flags & DL_FLAG_MANAGED)) 887 continue; 888 889 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 890 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 891 892 if (defer_sync_state_count) 893 __device_links_supplier_defer_sync(link->supplier); 894 else 895 __device_links_queue_sync_state(link->supplier, 896 &sync_list); 897 } 898 899 dev->links.status = DL_DEV_DRIVER_BOUND; 900 901 device_links_write_unlock(); 902 903 device_links_flush_sync_list(&sync_list, dev); 904 } 905 906 static void device_link_drop_managed(struct device_link *link) 907 { 908 link->flags &= ~DL_FLAG_MANAGED; 909 WRITE_ONCE(link->status, DL_STATE_NONE); 910 kref_put(&link->kref, __device_link_del); 911 } 912 913 /** 914 * __device_links_no_driver - Update links of a device without a driver. 915 * @dev: Device without a drvier. 916 * 917 * Delete all non-persistent links from this device to any suppliers. 918 * 919 * Persistent links stay around, but their status is changed to "available", 920 * unless they already are in the "supplier unbind in progress" state in which 921 * case they need not be updated. 922 * 923 * Links without the DL_FLAG_MANAGED flag set are ignored. 924 */ 925 static void __device_links_no_driver(struct device *dev) 926 { 927 struct device_link *link, *ln; 928 929 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 930 if (!(link->flags & DL_FLAG_MANAGED)) 931 continue; 932 933 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 934 device_link_drop_managed(link); 935 else if (link->status == DL_STATE_CONSUMER_PROBE || 936 link->status == DL_STATE_ACTIVE) 937 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 938 } 939 940 dev->links.status = DL_DEV_NO_DRIVER; 941 } 942 943 /** 944 * device_links_no_driver - Update links after failing driver probe. 945 * @dev: Device whose driver has just failed to probe. 946 * 947 * Clean up leftover links to consumers for @dev and invoke 948 * %__device_links_no_driver() to update links to suppliers for it as 949 * appropriate. 950 * 951 * Links without the DL_FLAG_MANAGED flag set are ignored. 952 */ 953 void device_links_no_driver(struct device *dev) 954 { 955 struct device_link *link; 956 957 device_links_write_lock(); 958 959 list_for_each_entry(link, &dev->links.consumers, s_node) { 960 if (!(link->flags & DL_FLAG_MANAGED)) 961 continue; 962 963 /* 964 * The probe has failed, so if the status of the link is 965 * "consumer probe" or "active", it must have been added by 966 * a probing consumer while this device was still probing. 967 * Change its state to "dormant", as it represents a valid 968 * relationship, but it is not functionally meaningful. 969 */ 970 if (link->status == DL_STATE_CONSUMER_PROBE || 971 link->status == DL_STATE_ACTIVE) 972 WRITE_ONCE(link->status, DL_STATE_DORMANT); 973 } 974 975 __device_links_no_driver(dev); 976 977 device_links_write_unlock(); 978 } 979 980 /** 981 * device_links_driver_cleanup - Update links after driver removal. 982 * @dev: Device whose driver has just gone away. 983 * 984 * Update links to consumers for @dev by changing their status to "dormant" and 985 * invoke %__device_links_no_driver() to update links to suppliers for it as 986 * appropriate. 987 * 988 * Links without the DL_FLAG_MANAGED flag set are ignored. 989 */ 990 void device_links_driver_cleanup(struct device *dev) 991 { 992 struct device_link *link, *ln; 993 994 device_links_write_lock(); 995 996 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 997 if (!(link->flags & DL_FLAG_MANAGED)) 998 continue; 999 1000 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1001 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1002 1003 /* 1004 * autoremove the links between this @dev and its consumer 1005 * devices that are not active, i.e. where the link state 1006 * has moved to DL_STATE_SUPPLIER_UNBIND. 1007 */ 1008 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1009 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1010 device_link_drop_managed(link); 1011 1012 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1013 } 1014 1015 list_del_init(&dev->links.defer_sync); 1016 __device_links_no_driver(dev); 1017 1018 device_links_write_unlock(); 1019 } 1020 1021 /** 1022 * device_links_busy - Check if there are any busy links to consumers. 1023 * @dev: Device to check. 1024 * 1025 * Check each consumer of the device and return 'true' if its link's status 1026 * is one of "consumer probe" or "active" (meaning that the given consumer is 1027 * probing right now or its driver is present). Otherwise, change the link 1028 * state to "supplier unbind" to prevent the consumer from being probed 1029 * successfully going forward. 1030 * 1031 * Return 'false' if there are no probing or active consumers. 1032 * 1033 * Links without the DL_FLAG_MANAGED flag set are ignored. 1034 */ 1035 bool device_links_busy(struct device *dev) 1036 { 1037 struct device_link *link; 1038 bool ret = false; 1039 1040 device_links_write_lock(); 1041 1042 list_for_each_entry(link, &dev->links.consumers, s_node) { 1043 if (!(link->flags & DL_FLAG_MANAGED)) 1044 continue; 1045 1046 if (link->status == DL_STATE_CONSUMER_PROBE 1047 || link->status == DL_STATE_ACTIVE) { 1048 ret = true; 1049 break; 1050 } 1051 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1052 } 1053 1054 dev->links.status = DL_DEV_UNBINDING; 1055 1056 device_links_write_unlock(); 1057 return ret; 1058 } 1059 1060 /** 1061 * device_links_unbind_consumers - Force unbind consumers of the given device. 1062 * @dev: Device to unbind the consumers of. 1063 * 1064 * Walk the list of links to consumers for @dev and if any of them is in the 1065 * "consumer probe" state, wait for all device probes in progress to complete 1066 * and start over. 1067 * 1068 * If that's not the case, change the status of the link to "supplier unbind" 1069 * and check if the link was in the "active" state. If so, force the consumer 1070 * driver to unbind and start over (the consumer will not re-probe as we have 1071 * changed the state of the link already). 1072 * 1073 * Links without the DL_FLAG_MANAGED flag set are ignored. 1074 */ 1075 void device_links_unbind_consumers(struct device *dev) 1076 { 1077 struct device_link *link; 1078 1079 start: 1080 device_links_write_lock(); 1081 1082 list_for_each_entry(link, &dev->links.consumers, s_node) { 1083 enum device_link_state status; 1084 1085 if (!(link->flags & DL_FLAG_MANAGED) || 1086 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1087 continue; 1088 1089 status = link->status; 1090 if (status == DL_STATE_CONSUMER_PROBE) { 1091 device_links_write_unlock(); 1092 1093 wait_for_device_probe(); 1094 goto start; 1095 } 1096 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1097 if (status == DL_STATE_ACTIVE) { 1098 struct device *consumer = link->consumer; 1099 1100 get_device(consumer); 1101 1102 device_links_write_unlock(); 1103 1104 device_release_driver_internal(consumer, NULL, 1105 consumer->parent); 1106 put_device(consumer); 1107 goto start; 1108 } 1109 } 1110 1111 device_links_write_unlock(); 1112 } 1113 1114 /** 1115 * device_links_purge - Delete existing links to other devices. 1116 * @dev: Target device. 1117 */ 1118 static void device_links_purge(struct device *dev) 1119 { 1120 struct device_link *link, *ln; 1121 1122 mutex_lock(&wfs_lock); 1123 list_del(&dev->links.needs_suppliers); 1124 mutex_unlock(&wfs_lock); 1125 1126 /* 1127 * Delete all of the remaining links from this device to any other 1128 * devices (either consumers or suppliers). 1129 */ 1130 device_links_write_lock(); 1131 1132 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1133 WARN_ON(link->status == DL_STATE_ACTIVE); 1134 __device_link_del(&link->kref); 1135 } 1136 1137 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1138 WARN_ON(link->status != DL_STATE_DORMANT && 1139 link->status != DL_STATE_NONE); 1140 __device_link_del(&link->kref); 1141 } 1142 1143 device_links_write_unlock(); 1144 } 1145 1146 /* Device links support end. */ 1147 1148 int (*platform_notify)(struct device *dev) = NULL; 1149 int (*platform_notify_remove)(struct device *dev) = NULL; 1150 static struct kobject *dev_kobj; 1151 struct kobject *sysfs_dev_char_kobj; 1152 struct kobject *sysfs_dev_block_kobj; 1153 1154 static DEFINE_MUTEX(device_hotplug_lock); 1155 1156 void lock_device_hotplug(void) 1157 { 1158 mutex_lock(&device_hotplug_lock); 1159 } 1160 1161 void unlock_device_hotplug(void) 1162 { 1163 mutex_unlock(&device_hotplug_lock); 1164 } 1165 1166 int lock_device_hotplug_sysfs(void) 1167 { 1168 if (mutex_trylock(&device_hotplug_lock)) 1169 return 0; 1170 1171 /* Avoid busy looping (5 ms of sleep should do). */ 1172 msleep(5); 1173 return restart_syscall(); 1174 } 1175 1176 #ifdef CONFIG_BLOCK 1177 static inline int device_is_not_partition(struct device *dev) 1178 { 1179 return !(dev->type == &part_type); 1180 } 1181 #else 1182 static inline int device_is_not_partition(struct device *dev) 1183 { 1184 return 1; 1185 } 1186 #endif 1187 1188 static int 1189 device_platform_notify(struct device *dev, enum kobject_action action) 1190 { 1191 int ret; 1192 1193 ret = acpi_platform_notify(dev, action); 1194 if (ret) 1195 return ret; 1196 1197 ret = software_node_notify(dev, action); 1198 if (ret) 1199 return ret; 1200 1201 if (platform_notify && action == KOBJ_ADD) 1202 platform_notify(dev); 1203 else if (platform_notify_remove && action == KOBJ_REMOVE) 1204 platform_notify_remove(dev); 1205 return 0; 1206 } 1207 1208 /** 1209 * dev_driver_string - Return a device's driver name, if at all possible 1210 * @dev: struct device to get the name of 1211 * 1212 * Will return the device's driver's name if it is bound to a device. If 1213 * the device is not bound to a driver, it will return the name of the bus 1214 * it is attached to. If it is not attached to a bus either, an empty 1215 * string will be returned. 1216 */ 1217 const char *dev_driver_string(const struct device *dev) 1218 { 1219 struct device_driver *drv; 1220 1221 /* dev->driver can change to NULL underneath us because of unbinding, 1222 * so be careful about accessing it. dev->bus and dev->class should 1223 * never change once they are set, so they don't need special care. 1224 */ 1225 drv = READ_ONCE(dev->driver); 1226 return drv ? drv->name : 1227 (dev->bus ? dev->bus->name : 1228 (dev->class ? dev->class->name : "")); 1229 } 1230 EXPORT_SYMBOL(dev_driver_string); 1231 1232 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 1233 1234 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 1235 char *buf) 1236 { 1237 struct device_attribute *dev_attr = to_dev_attr(attr); 1238 struct device *dev = kobj_to_dev(kobj); 1239 ssize_t ret = -EIO; 1240 1241 if (dev_attr->show) 1242 ret = dev_attr->show(dev, dev_attr, buf); 1243 if (ret >= (ssize_t)PAGE_SIZE) { 1244 printk("dev_attr_show: %pS returned bad count\n", 1245 dev_attr->show); 1246 } 1247 return ret; 1248 } 1249 1250 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 1251 const char *buf, size_t count) 1252 { 1253 struct device_attribute *dev_attr = to_dev_attr(attr); 1254 struct device *dev = kobj_to_dev(kobj); 1255 ssize_t ret = -EIO; 1256 1257 if (dev_attr->store) 1258 ret = dev_attr->store(dev, dev_attr, buf, count); 1259 return ret; 1260 } 1261 1262 static const struct sysfs_ops dev_sysfs_ops = { 1263 .show = dev_attr_show, 1264 .store = dev_attr_store, 1265 }; 1266 1267 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 1268 1269 ssize_t device_store_ulong(struct device *dev, 1270 struct device_attribute *attr, 1271 const char *buf, size_t size) 1272 { 1273 struct dev_ext_attribute *ea = to_ext_attr(attr); 1274 int ret; 1275 unsigned long new; 1276 1277 ret = kstrtoul(buf, 0, &new); 1278 if (ret) 1279 return ret; 1280 *(unsigned long *)(ea->var) = new; 1281 /* Always return full write size even if we didn't consume all */ 1282 return size; 1283 } 1284 EXPORT_SYMBOL_GPL(device_store_ulong); 1285 1286 ssize_t device_show_ulong(struct device *dev, 1287 struct device_attribute *attr, 1288 char *buf) 1289 { 1290 struct dev_ext_attribute *ea = to_ext_attr(attr); 1291 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var)); 1292 } 1293 EXPORT_SYMBOL_GPL(device_show_ulong); 1294 1295 ssize_t device_store_int(struct device *dev, 1296 struct device_attribute *attr, 1297 const char *buf, size_t size) 1298 { 1299 struct dev_ext_attribute *ea = to_ext_attr(attr); 1300 int ret; 1301 long new; 1302 1303 ret = kstrtol(buf, 0, &new); 1304 if (ret) 1305 return ret; 1306 1307 if (new > INT_MAX || new < INT_MIN) 1308 return -EINVAL; 1309 *(int *)(ea->var) = new; 1310 /* Always return full write size even if we didn't consume all */ 1311 return size; 1312 } 1313 EXPORT_SYMBOL_GPL(device_store_int); 1314 1315 ssize_t device_show_int(struct device *dev, 1316 struct device_attribute *attr, 1317 char *buf) 1318 { 1319 struct dev_ext_attribute *ea = to_ext_attr(attr); 1320 1321 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var)); 1322 } 1323 EXPORT_SYMBOL_GPL(device_show_int); 1324 1325 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 1326 const char *buf, size_t size) 1327 { 1328 struct dev_ext_attribute *ea = to_ext_attr(attr); 1329 1330 if (strtobool(buf, ea->var) < 0) 1331 return -EINVAL; 1332 1333 return size; 1334 } 1335 EXPORT_SYMBOL_GPL(device_store_bool); 1336 1337 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 1338 char *buf) 1339 { 1340 struct dev_ext_attribute *ea = to_ext_attr(attr); 1341 1342 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var)); 1343 } 1344 EXPORT_SYMBOL_GPL(device_show_bool); 1345 1346 /** 1347 * device_release - free device structure. 1348 * @kobj: device's kobject. 1349 * 1350 * This is called once the reference count for the object 1351 * reaches 0. We forward the call to the device's release 1352 * method, which should handle actually freeing the structure. 1353 */ 1354 static void device_release(struct kobject *kobj) 1355 { 1356 struct device *dev = kobj_to_dev(kobj); 1357 struct device_private *p = dev->p; 1358 1359 /* 1360 * Some platform devices are driven without driver attached 1361 * and managed resources may have been acquired. Make sure 1362 * all resources are released. 1363 * 1364 * Drivers still can add resources into device after device 1365 * is deleted but alive, so release devres here to avoid 1366 * possible memory leak. 1367 */ 1368 devres_release_all(dev); 1369 1370 if (dev->release) 1371 dev->release(dev); 1372 else if (dev->type && dev->type->release) 1373 dev->type->release(dev); 1374 else if (dev->class && dev->class->dev_release) 1375 dev->class->dev_release(dev); 1376 else 1377 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt.\n", 1378 dev_name(dev)); 1379 kfree(p); 1380 } 1381 1382 static const void *device_namespace(struct kobject *kobj) 1383 { 1384 struct device *dev = kobj_to_dev(kobj); 1385 const void *ns = NULL; 1386 1387 if (dev->class && dev->class->ns_type) 1388 ns = dev->class->namespace(dev); 1389 1390 return ns; 1391 } 1392 1393 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) 1394 { 1395 struct device *dev = kobj_to_dev(kobj); 1396 1397 if (dev->class && dev->class->get_ownership) 1398 dev->class->get_ownership(dev, uid, gid); 1399 } 1400 1401 static struct kobj_type device_ktype = { 1402 .release = device_release, 1403 .sysfs_ops = &dev_sysfs_ops, 1404 .namespace = device_namespace, 1405 .get_ownership = device_get_ownership, 1406 }; 1407 1408 1409 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj) 1410 { 1411 struct kobj_type *ktype = get_ktype(kobj); 1412 1413 if (ktype == &device_ktype) { 1414 struct device *dev = kobj_to_dev(kobj); 1415 if (dev->bus) 1416 return 1; 1417 if (dev->class) 1418 return 1; 1419 } 1420 return 0; 1421 } 1422 1423 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj) 1424 { 1425 struct device *dev = kobj_to_dev(kobj); 1426 1427 if (dev->bus) 1428 return dev->bus->name; 1429 if (dev->class) 1430 return dev->class->name; 1431 return NULL; 1432 } 1433 1434 static int dev_uevent(struct kset *kset, struct kobject *kobj, 1435 struct kobj_uevent_env *env) 1436 { 1437 struct device *dev = kobj_to_dev(kobj); 1438 int retval = 0; 1439 1440 /* add device node properties if present */ 1441 if (MAJOR(dev->devt)) { 1442 const char *tmp; 1443 const char *name; 1444 umode_t mode = 0; 1445 kuid_t uid = GLOBAL_ROOT_UID; 1446 kgid_t gid = GLOBAL_ROOT_GID; 1447 1448 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 1449 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 1450 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 1451 if (name) { 1452 add_uevent_var(env, "DEVNAME=%s", name); 1453 if (mode) 1454 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 1455 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 1456 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 1457 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 1458 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 1459 kfree(tmp); 1460 } 1461 } 1462 1463 if (dev->type && dev->type->name) 1464 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 1465 1466 if (dev->driver) 1467 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 1468 1469 /* Add common DT information about the device */ 1470 of_device_uevent(dev, env); 1471 1472 /* have the bus specific function add its stuff */ 1473 if (dev->bus && dev->bus->uevent) { 1474 retval = dev->bus->uevent(dev, env); 1475 if (retval) 1476 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 1477 dev_name(dev), __func__, retval); 1478 } 1479 1480 /* have the class specific function add its stuff */ 1481 if (dev->class && dev->class->dev_uevent) { 1482 retval = dev->class->dev_uevent(dev, env); 1483 if (retval) 1484 pr_debug("device: '%s': %s: class uevent() " 1485 "returned %d\n", dev_name(dev), 1486 __func__, retval); 1487 } 1488 1489 /* have the device type specific function add its stuff */ 1490 if (dev->type && dev->type->uevent) { 1491 retval = dev->type->uevent(dev, env); 1492 if (retval) 1493 pr_debug("device: '%s': %s: dev_type uevent() " 1494 "returned %d\n", dev_name(dev), 1495 __func__, retval); 1496 } 1497 1498 return retval; 1499 } 1500 1501 static const struct kset_uevent_ops device_uevent_ops = { 1502 .filter = dev_uevent_filter, 1503 .name = dev_uevent_name, 1504 .uevent = dev_uevent, 1505 }; 1506 1507 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 1508 char *buf) 1509 { 1510 struct kobject *top_kobj; 1511 struct kset *kset; 1512 struct kobj_uevent_env *env = NULL; 1513 int i; 1514 size_t count = 0; 1515 int retval; 1516 1517 /* search the kset, the device belongs to */ 1518 top_kobj = &dev->kobj; 1519 while (!top_kobj->kset && top_kobj->parent) 1520 top_kobj = top_kobj->parent; 1521 if (!top_kobj->kset) 1522 goto out; 1523 1524 kset = top_kobj->kset; 1525 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 1526 goto out; 1527 1528 /* respect filter */ 1529 if (kset->uevent_ops && kset->uevent_ops->filter) 1530 if (!kset->uevent_ops->filter(kset, &dev->kobj)) 1531 goto out; 1532 1533 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 1534 if (!env) 1535 return -ENOMEM; 1536 1537 /* let the kset specific function add its keys */ 1538 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env); 1539 if (retval) 1540 goto out; 1541 1542 /* copy keys to file */ 1543 for (i = 0; i < env->envp_idx; i++) 1544 count += sprintf(&buf[count], "%s\n", env->envp[i]); 1545 out: 1546 kfree(env); 1547 return count; 1548 } 1549 1550 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 1551 const char *buf, size_t count) 1552 { 1553 int rc; 1554 1555 rc = kobject_synth_uevent(&dev->kobj, buf, count); 1556 1557 if (rc) { 1558 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 1559 return rc; 1560 } 1561 1562 return count; 1563 } 1564 static DEVICE_ATTR_RW(uevent); 1565 1566 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 1567 char *buf) 1568 { 1569 bool val; 1570 1571 device_lock(dev); 1572 val = !dev->offline; 1573 device_unlock(dev); 1574 return sprintf(buf, "%u\n", val); 1575 } 1576 1577 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 1578 const char *buf, size_t count) 1579 { 1580 bool val; 1581 int ret; 1582 1583 ret = strtobool(buf, &val); 1584 if (ret < 0) 1585 return ret; 1586 1587 ret = lock_device_hotplug_sysfs(); 1588 if (ret) 1589 return ret; 1590 1591 ret = val ? device_online(dev) : device_offline(dev); 1592 unlock_device_hotplug(); 1593 return ret < 0 ? ret : count; 1594 } 1595 static DEVICE_ATTR_RW(online); 1596 1597 int device_add_groups(struct device *dev, const struct attribute_group **groups) 1598 { 1599 return sysfs_create_groups(&dev->kobj, groups); 1600 } 1601 EXPORT_SYMBOL_GPL(device_add_groups); 1602 1603 void device_remove_groups(struct device *dev, 1604 const struct attribute_group **groups) 1605 { 1606 sysfs_remove_groups(&dev->kobj, groups); 1607 } 1608 EXPORT_SYMBOL_GPL(device_remove_groups); 1609 1610 union device_attr_group_devres { 1611 const struct attribute_group *group; 1612 const struct attribute_group **groups; 1613 }; 1614 1615 static int devm_attr_group_match(struct device *dev, void *res, void *data) 1616 { 1617 return ((union device_attr_group_devres *)res)->group == data; 1618 } 1619 1620 static void devm_attr_group_remove(struct device *dev, void *res) 1621 { 1622 union device_attr_group_devres *devres = res; 1623 const struct attribute_group *group = devres->group; 1624 1625 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 1626 sysfs_remove_group(&dev->kobj, group); 1627 } 1628 1629 static void devm_attr_groups_remove(struct device *dev, void *res) 1630 { 1631 union device_attr_group_devres *devres = res; 1632 const struct attribute_group **groups = devres->groups; 1633 1634 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 1635 sysfs_remove_groups(&dev->kobj, groups); 1636 } 1637 1638 /** 1639 * devm_device_add_group - given a device, create a managed attribute group 1640 * @dev: The device to create the group for 1641 * @grp: The attribute group to create 1642 * 1643 * This function creates a group for the first time. It will explicitly 1644 * warn and error if any of the attribute files being created already exist. 1645 * 1646 * Returns 0 on success or error code on failure. 1647 */ 1648 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 1649 { 1650 union device_attr_group_devres *devres; 1651 int error; 1652 1653 devres = devres_alloc(devm_attr_group_remove, 1654 sizeof(*devres), GFP_KERNEL); 1655 if (!devres) 1656 return -ENOMEM; 1657 1658 error = sysfs_create_group(&dev->kobj, grp); 1659 if (error) { 1660 devres_free(devres); 1661 return error; 1662 } 1663 1664 devres->group = grp; 1665 devres_add(dev, devres); 1666 return 0; 1667 } 1668 EXPORT_SYMBOL_GPL(devm_device_add_group); 1669 1670 /** 1671 * devm_device_remove_group: remove a managed group from a device 1672 * @dev: device to remove the group from 1673 * @grp: group to remove 1674 * 1675 * This function removes a group of attributes from a device. The attributes 1676 * previously have to have been created for this group, otherwise it will fail. 1677 */ 1678 void devm_device_remove_group(struct device *dev, 1679 const struct attribute_group *grp) 1680 { 1681 WARN_ON(devres_release(dev, devm_attr_group_remove, 1682 devm_attr_group_match, 1683 /* cast away const */ (void *)grp)); 1684 } 1685 EXPORT_SYMBOL_GPL(devm_device_remove_group); 1686 1687 /** 1688 * devm_device_add_groups - create a bunch of managed attribute groups 1689 * @dev: The device to create the group for 1690 * @groups: The attribute groups to create, NULL terminated 1691 * 1692 * This function creates a bunch of managed attribute groups. If an error 1693 * occurs when creating a group, all previously created groups will be 1694 * removed, unwinding everything back to the original state when this 1695 * function was called. It will explicitly warn and error if any of the 1696 * attribute files being created already exist. 1697 * 1698 * Returns 0 on success or error code from sysfs_create_group on failure. 1699 */ 1700 int devm_device_add_groups(struct device *dev, 1701 const struct attribute_group **groups) 1702 { 1703 union device_attr_group_devres *devres; 1704 int error; 1705 1706 devres = devres_alloc(devm_attr_groups_remove, 1707 sizeof(*devres), GFP_KERNEL); 1708 if (!devres) 1709 return -ENOMEM; 1710 1711 error = sysfs_create_groups(&dev->kobj, groups); 1712 if (error) { 1713 devres_free(devres); 1714 return error; 1715 } 1716 1717 devres->groups = groups; 1718 devres_add(dev, devres); 1719 return 0; 1720 } 1721 EXPORT_SYMBOL_GPL(devm_device_add_groups); 1722 1723 /** 1724 * devm_device_remove_groups - remove a list of managed groups 1725 * 1726 * @dev: The device for the groups to be removed from 1727 * @groups: NULL terminated list of groups to be removed 1728 * 1729 * If groups is not NULL, remove the specified groups from the device. 1730 */ 1731 void devm_device_remove_groups(struct device *dev, 1732 const struct attribute_group **groups) 1733 { 1734 WARN_ON(devres_release(dev, devm_attr_groups_remove, 1735 devm_attr_group_match, 1736 /* cast away const */ (void *)groups)); 1737 } 1738 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 1739 1740 static int device_add_attrs(struct device *dev) 1741 { 1742 struct class *class = dev->class; 1743 const struct device_type *type = dev->type; 1744 int error; 1745 1746 if (class) { 1747 error = device_add_groups(dev, class->dev_groups); 1748 if (error) 1749 return error; 1750 } 1751 1752 if (type) { 1753 error = device_add_groups(dev, type->groups); 1754 if (error) 1755 goto err_remove_class_groups; 1756 } 1757 1758 error = device_add_groups(dev, dev->groups); 1759 if (error) 1760 goto err_remove_type_groups; 1761 1762 if (device_supports_offline(dev) && !dev->offline_disabled) { 1763 error = device_create_file(dev, &dev_attr_online); 1764 if (error) 1765 goto err_remove_dev_groups; 1766 } 1767 1768 return 0; 1769 1770 err_remove_dev_groups: 1771 device_remove_groups(dev, dev->groups); 1772 err_remove_type_groups: 1773 if (type) 1774 device_remove_groups(dev, type->groups); 1775 err_remove_class_groups: 1776 if (class) 1777 device_remove_groups(dev, class->dev_groups); 1778 1779 return error; 1780 } 1781 1782 static void device_remove_attrs(struct device *dev) 1783 { 1784 struct class *class = dev->class; 1785 const struct device_type *type = dev->type; 1786 1787 device_remove_file(dev, &dev_attr_online); 1788 device_remove_groups(dev, dev->groups); 1789 1790 if (type) 1791 device_remove_groups(dev, type->groups); 1792 1793 if (class) 1794 device_remove_groups(dev, class->dev_groups); 1795 } 1796 1797 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 1798 char *buf) 1799 { 1800 return print_dev_t(buf, dev->devt); 1801 } 1802 static DEVICE_ATTR_RO(dev); 1803 1804 /* /sys/devices/ */ 1805 struct kset *devices_kset; 1806 1807 /** 1808 * devices_kset_move_before - Move device in the devices_kset's list. 1809 * @deva: Device to move. 1810 * @devb: Device @deva should come before. 1811 */ 1812 static void devices_kset_move_before(struct device *deva, struct device *devb) 1813 { 1814 if (!devices_kset) 1815 return; 1816 pr_debug("devices_kset: Moving %s before %s\n", 1817 dev_name(deva), dev_name(devb)); 1818 spin_lock(&devices_kset->list_lock); 1819 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 1820 spin_unlock(&devices_kset->list_lock); 1821 } 1822 1823 /** 1824 * devices_kset_move_after - Move device in the devices_kset's list. 1825 * @deva: Device to move 1826 * @devb: Device @deva should come after. 1827 */ 1828 static void devices_kset_move_after(struct device *deva, struct device *devb) 1829 { 1830 if (!devices_kset) 1831 return; 1832 pr_debug("devices_kset: Moving %s after %s\n", 1833 dev_name(deva), dev_name(devb)); 1834 spin_lock(&devices_kset->list_lock); 1835 list_move(&deva->kobj.entry, &devb->kobj.entry); 1836 spin_unlock(&devices_kset->list_lock); 1837 } 1838 1839 /** 1840 * devices_kset_move_last - move the device to the end of devices_kset's list. 1841 * @dev: device to move 1842 */ 1843 void devices_kset_move_last(struct device *dev) 1844 { 1845 if (!devices_kset) 1846 return; 1847 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 1848 spin_lock(&devices_kset->list_lock); 1849 list_move_tail(&dev->kobj.entry, &devices_kset->list); 1850 spin_unlock(&devices_kset->list_lock); 1851 } 1852 1853 /** 1854 * device_create_file - create sysfs attribute file for device. 1855 * @dev: device. 1856 * @attr: device attribute descriptor. 1857 */ 1858 int device_create_file(struct device *dev, 1859 const struct device_attribute *attr) 1860 { 1861 int error = 0; 1862 1863 if (dev) { 1864 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 1865 "Attribute %s: write permission without 'store'\n", 1866 attr->attr.name); 1867 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 1868 "Attribute %s: read permission without 'show'\n", 1869 attr->attr.name); 1870 error = sysfs_create_file(&dev->kobj, &attr->attr); 1871 } 1872 1873 return error; 1874 } 1875 EXPORT_SYMBOL_GPL(device_create_file); 1876 1877 /** 1878 * device_remove_file - remove sysfs attribute file. 1879 * @dev: device. 1880 * @attr: device attribute descriptor. 1881 */ 1882 void device_remove_file(struct device *dev, 1883 const struct device_attribute *attr) 1884 { 1885 if (dev) 1886 sysfs_remove_file(&dev->kobj, &attr->attr); 1887 } 1888 EXPORT_SYMBOL_GPL(device_remove_file); 1889 1890 /** 1891 * device_remove_file_self - remove sysfs attribute file from its own method. 1892 * @dev: device. 1893 * @attr: device attribute descriptor. 1894 * 1895 * See kernfs_remove_self() for details. 1896 */ 1897 bool device_remove_file_self(struct device *dev, 1898 const struct device_attribute *attr) 1899 { 1900 if (dev) 1901 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 1902 else 1903 return false; 1904 } 1905 EXPORT_SYMBOL_GPL(device_remove_file_self); 1906 1907 /** 1908 * device_create_bin_file - create sysfs binary attribute file for device. 1909 * @dev: device. 1910 * @attr: device binary attribute descriptor. 1911 */ 1912 int device_create_bin_file(struct device *dev, 1913 const struct bin_attribute *attr) 1914 { 1915 int error = -EINVAL; 1916 if (dev) 1917 error = sysfs_create_bin_file(&dev->kobj, attr); 1918 return error; 1919 } 1920 EXPORT_SYMBOL_GPL(device_create_bin_file); 1921 1922 /** 1923 * device_remove_bin_file - remove sysfs binary attribute file 1924 * @dev: device. 1925 * @attr: device binary attribute descriptor. 1926 */ 1927 void device_remove_bin_file(struct device *dev, 1928 const struct bin_attribute *attr) 1929 { 1930 if (dev) 1931 sysfs_remove_bin_file(&dev->kobj, attr); 1932 } 1933 EXPORT_SYMBOL_GPL(device_remove_bin_file); 1934 1935 static void klist_children_get(struct klist_node *n) 1936 { 1937 struct device_private *p = to_device_private_parent(n); 1938 struct device *dev = p->device; 1939 1940 get_device(dev); 1941 } 1942 1943 static void klist_children_put(struct klist_node *n) 1944 { 1945 struct device_private *p = to_device_private_parent(n); 1946 struct device *dev = p->device; 1947 1948 put_device(dev); 1949 } 1950 1951 /** 1952 * device_initialize - init device structure. 1953 * @dev: device. 1954 * 1955 * This prepares the device for use by other layers by initializing 1956 * its fields. 1957 * It is the first half of device_register(), if called by 1958 * that function, though it can also be called separately, so one 1959 * may use @dev's fields. In particular, get_device()/put_device() 1960 * may be used for reference counting of @dev after calling this 1961 * function. 1962 * 1963 * All fields in @dev must be initialized by the caller to 0, except 1964 * for those explicitly set to some other value. The simplest 1965 * approach is to use kzalloc() to allocate the structure containing 1966 * @dev. 1967 * 1968 * NOTE: Use put_device() to give up your reference instead of freeing 1969 * @dev directly once you have called this function. 1970 */ 1971 void device_initialize(struct device *dev) 1972 { 1973 dev->kobj.kset = devices_kset; 1974 kobject_init(&dev->kobj, &device_ktype); 1975 INIT_LIST_HEAD(&dev->dma_pools); 1976 mutex_init(&dev->mutex); 1977 #ifdef CONFIG_PROVE_LOCKING 1978 mutex_init(&dev->lockdep_mutex); 1979 #endif 1980 lockdep_set_novalidate_class(&dev->mutex); 1981 spin_lock_init(&dev->devres_lock); 1982 INIT_LIST_HEAD(&dev->devres_head); 1983 device_pm_init(dev); 1984 set_dev_node(dev, -1); 1985 #ifdef CONFIG_GENERIC_MSI_IRQ 1986 INIT_LIST_HEAD(&dev->msi_list); 1987 #endif 1988 INIT_LIST_HEAD(&dev->links.consumers); 1989 INIT_LIST_HEAD(&dev->links.suppliers); 1990 INIT_LIST_HEAD(&dev->links.needs_suppliers); 1991 INIT_LIST_HEAD(&dev->links.defer_sync); 1992 dev->links.status = DL_DEV_NO_DRIVER; 1993 } 1994 EXPORT_SYMBOL_GPL(device_initialize); 1995 1996 struct kobject *virtual_device_parent(struct device *dev) 1997 { 1998 static struct kobject *virtual_dir = NULL; 1999 2000 if (!virtual_dir) 2001 virtual_dir = kobject_create_and_add("virtual", 2002 &devices_kset->kobj); 2003 2004 return virtual_dir; 2005 } 2006 2007 struct class_dir { 2008 struct kobject kobj; 2009 struct class *class; 2010 }; 2011 2012 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 2013 2014 static void class_dir_release(struct kobject *kobj) 2015 { 2016 struct class_dir *dir = to_class_dir(kobj); 2017 kfree(dir); 2018 } 2019 2020 static const 2021 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 2022 { 2023 struct class_dir *dir = to_class_dir(kobj); 2024 return dir->class->ns_type; 2025 } 2026 2027 static struct kobj_type class_dir_ktype = { 2028 .release = class_dir_release, 2029 .sysfs_ops = &kobj_sysfs_ops, 2030 .child_ns_type = class_dir_child_ns_type 2031 }; 2032 2033 static struct kobject * 2034 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 2035 { 2036 struct class_dir *dir; 2037 int retval; 2038 2039 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 2040 if (!dir) 2041 return ERR_PTR(-ENOMEM); 2042 2043 dir->class = class; 2044 kobject_init(&dir->kobj, &class_dir_ktype); 2045 2046 dir->kobj.kset = &class->p->glue_dirs; 2047 2048 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 2049 if (retval < 0) { 2050 kobject_put(&dir->kobj); 2051 return ERR_PTR(retval); 2052 } 2053 return &dir->kobj; 2054 } 2055 2056 static DEFINE_MUTEX(gdp_mutex); 2057 2058 static struct kobject *get_device_parent(struct device *dev, 2059 struct device *parent) 2060 { 2061 if (dev->class) { 2062 struct kobject *kobj = NULL; 2063 struct kobject *parent_kobj; 2064 struct kobject *k; 2065 2066 #ifdef CONFIG_BLOCK 2067 /* block disks show up in /sys/block */ 2068 if (sysfs_deprecated && dev->class == &block_class) { 2069 if (parent && parent->class == &block_class) 2070 return &parent->kobj; 2071 return &block_class.p->subsys.kobj; 2072 } 2073 #endif 2074 2075 /* 2076 * If we have no parent, we live in "virtual". 2077 * Class-devices with a non class-device as parent, live 2078 * in a "glue" directory to prevent namespace collisions. 2079 */ 2080 if (parent == NULL) 2081 parent_kobj = virtual_device_parent(dev); 2082 else if (parent->class && !dev->class->ns_type) 2083 return &parent->kobj; 2084 else 2085 parent_kobj = &parent->kobj; 2086 2087 mutex_lock(&gdp_mutex); 2088 2089 /* find our class-directory at the parent and reference it */ 2090 spin_lock(&dev->class->p->glue_dirs.list_lock); 2091 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 2092 if (k->parent == parent_kobj) { 2093 kobj = kobject_get(k); 2094 break; 2095 } 2096 spin_unlock(&dev->class->p->glue_dirs.list_lock); 2097 if (kobj) { 2098 mutex_unlock(&gdp_mutex); 2099 return kobj; 2100 } 2101 2102 /* or create a new class-directory at the parent device */ 2103 k = class_dir_create_and_add(dev->class, parent_kobj); 2104 /* do not emit an uevent for this simple "glue" directory */ 2105 mutex_unlock(&gdp_mutex); 2106 return k; 2107 } 2108 2109 /* subsystems can specify a default root directory for their devices */ 2110 if (!parent && dev->bus && dev->bus->dev_root) 2111 return &dev->bus->dev_root->kobj; 2112 2113 if (parent) 2114 return &parent->kobj; 2115 return NULL; 2116 } 2117 2118 static inline bool live_in_glue_dir(struct kobject *kobj, 2119 struct device *dev) 2120 { 2121 if (!kobj || !dev->class || 2122 kobj->kset != &dev->class->p->glue_dirs) 2123 return false; 2124 return true; 2125 } 2126 2127 static inline struct kobject *get_glue_dir(struct device *dev) 2128 { 2129 return dev->kobj.parent; 2130 } 2131 2132 /* 2133 * make sure cleaning up dir as the last step, we need to make 2134 * sure .release handler of kobject is run with holding the 2135 * global lock 2136 */ 2137 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 2138 { 2139 unsigned int ref; 2140 2141 /* see if we live in a "glue" directory */ 2142 if (!live_in_glue_dir(glue_dir, dev)) 2143 return; 2144 2145 mutex_lock(&gdp_mutex); 2146 /** 2147 * There is a race condition between removing glue directory 2148 * and adding a new device under the glue directory. 2149 * 2150 * CPU1: CPU2: 2151 * 2152 * device_add() 2153 * get_device_parent() 2154 * class_dir_create_and_add() 2155 * kobject_add_internal() 2156 * create_dir() // create glue_dir 2157 * 2158 * device_add() 2159 * get_device_parent() 2160 * kobject_get() // get glue_dir 2161 * 2162 * device_del() 2163 * cleanup_glue_dir() 2164 * kobject_del(glue_dir) 2165 * 2166 * kobject_add() 2167 * kobject_add_internal() 2168 * create_dir() // in glue_dir 2169 * sysfs_create_dir_ns() 2170 * kernfs_create_dir_ns(sd) 2171 * 2172 * sysfs_remove_dir() // glue_dir->sd=NULL 2173 * sysfs_put() // free glue_dir->sd 2174 * 2175 * // sd is freed 2176 * kernfs_new_node(sd) 2177 * kernfs_get(glue_dir) 2178 * kernfs_add_one() 2179 * kernfs_put() 2180 * 2181 * Before CPU1 remove last child device under glue dir, if CPU2 add 2182 * a new device under glue dir, the glue_dir kobject reference count 2183 * will be increase to 2 in kobject_get(k). And CPU2 has been called 2184 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 2185 * and sysfs_put(). This result in glue_dir->sd is freed. 2186 * 2187 * Then the CPU2 will see a stale "empty" but still potentially used 2188 * glue dir around in kernfs_new_node(). 2189 * 2190 * In order to avoid this happening, we also should make sure that 2191 * kernfs_node for glue_dir is released in CPU1 only when refcount 2192 * for glue_dir kobj is 1. 2193 */ 2194 ref = kref_read(&glue_dir->kref); 2195 if (!kobject_has_children(glue_dir) && !--ref) 2196 kobject_del(glue_dir); 2197 kobject_put(glue_dir); 2198 mutex_unlock(&gdp_mutex); 2199 } 2200 2201 static int device_add_class_symlinks(struct device *dev) 2202 { 2203 struct device_node *of_node = dev_of_node(dev); 2204 int error; 2205 2206 if (of_node) { 2207 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 2208 if (error) 2209 dev_warn(dev, "Error %d creating of_node link\n",error); 2210 /* An error here doesn't warrant bringing down the device */ 2211 } 2212 2213 if (!dev->class) 2214 return 0; 2215 2216 error = sysfs_create_link(&dev->kobj, 2217 &dev->class->p->subsys.kobj, 2218 "subsystem"); 2219 if (error) 2220 goto out_devnode; 2221 2222 if (dev->parent && device_is_not_partition(dev)) { 2223 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 2224 "device"); 2225 if (error) 2226 goto out_subsys; 2227 } 2228 2229 #ifdef CONFIG_BLOCK 2230 /* /sys/block has directories and does not need symlinks */ 2231 if (sysfs_deprecated && dev->class == &block_class) 2232 return 0; 2233 #endif 2234 2235 /* link in the class directory pointing to the device */ 2236 error = sysfs_create_link(&dev->class->p->subsys.kobj, 2237 &dev->kobj, dev_name(dev)); 2238 if (error) 2239 goto out_device; 2240 2241 return 0; 2242 2243 out_device: 2244 sysfs_remove_link(&dev->kobj, "device"); 2245 2246 out_subsys: 2247 sysfs_remove_link(&dev->kobj, "subsystem"); 2248 out_devnode: 2249 sysfs_remove_link(&dev->kobj, "of_node"); 2250 return error; 2251 } 2252 2253 static void device_remove_class_symlinks(struct device *dev) 2254 { 2255 if (dev_of_node(dev)) 2256 sysfs_remove_link(&dev->kobj, "of_node"); 2257 2258 if (!dev->class) 2259 return; 2260 2261 if (dev->parent && device_is_not_partition(dev)) 2262 sysfs_remove_link(&dev->kobj, "device"); 2263 sysfs_remove_link(&dev->kobj, "subsystem"); 2264 #ifdef CONFIG_BLOCK 2265 if (sysfs_deprecated && dev->class == &block_class) 2266 return; 2267 #endif 2268 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 2269 } 2270 2271 /** 2272 * dev_set_name - set a device name 2273 * @dev: device 2274 * @fmt: format string for the device's name 2275 */ 2276 int dev_set_name(struct device *dev, const char *fmt, ...) 2277 { 2278 va_list vargs; 2279 int err; 2280 2281 va_start(vargs, fmt); 2282 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 2283 va_end(vargs); 2284 return err; 2285 } 2286 EXPORT_SYMBOL_GPL(dev_set_name); 2287 2288 /** 2289 * device_to_dev_kobj - select a /sys/dev/ directory for the device 2290 * @dev: device 2291 * 2292 * By default we select char/ for new entries. Setting class->dev_obj 2293 * to NULL prevents an entry from being created. class->dev_kobj must 2294 * be set (or cleared) before any devices are registered to the class 2295 * otherwise device_create_sys_dev_entry() and 2296 * device_remove_sys_dev_entry() will disagree about the presence of 2297 * the link. 2298 */ 2299 static struct kobject *device_to_dev_kobj(struct device *dev) 2300 { 2301 struct kobject *kobj; 2302 2303 if (dev->class) 2304 kobj = dev->class->dev_kobj; 2305 else 2306 kobj = sysfs_dev_char_kobj; 2307 2308 return kobj; 2309 } 2310 2311 static int device_create_sys_dev_entry(struct device *dev) 2312 { 2313 struct kobject *kobj = device_to_dev_kobj(dev); 2314 int error = 0; 2315 char devt_str[15]; 2316 2317 if (kobj) { 2318 format_dev_t(devt_str, dev->devt); 2319 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 2320 } 2321 2322 return error; 2323 } 2324 2325 static void device_remove_sys_dev_entry(struct device *dev) 2326 { 2327 struct kobject *kobj = device_to_dev_kobj(dev); 2328 char devt_str[15]; 2329 2330 if (kobj) { 2331 format_dev_t(devt_str, dev->devt); 2332 sysfs_remove_link(kobj, devt_str); 2333 } 2334 } 2335 2336 static int device_private_init(struct device *dev) 2337 { 2338 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 2339 if (!dev->p) 2340 return -ENOMEM; 2341 dev->p->device = dev; 2342 klist_init(&dev->p->klist_children, klist_children_get, 2343 klist_children_put); 2344 INIT_LIST_HEAD(&dev->p->deferred_probe); 2345 return 0; 2346 } 2347 2348 static u32 fw_devlink_flags; 2349 static int __init fw_devlink_setup(char *arg) 2350 { 2351 if (!arg) 2352 return -EINVAL; 2353 2354 if (strcmp(arg, "off") == 0) { 2355 fw_devlink_flags = 0; 2356 } else if (strcmp(arg, "permissive") == 0) { 2357 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY; 2358 } else if (strcmp(arg, "on") == 0) { 2359 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER; 2360 } else if (strcmp(arg, "rpm") == 0) { 2361 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER | 2362 DL_FLAG_PM_RUNTIME; 2363 } 2364 return 0; 2365 } 2366 early_param("fw_devlink", fw_devlink_setup); 2367 2368 u32 fw_devlink_get_flags(void) 2369 { 2370 return fw_devlink_flags; 2371 } 2372 2373 /** 2374 * device_add - add device to device hierarchy. 2375 * @dev: device. 2376 * 2377 * This is part 2 of device_register(), though may be called 2378 * separately _iff_ device_initialize() has been called separately. 2379 * 2380 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 2381 * to the global and sibling lists for the device, then 2382 * adds it to the other relevant subsystems of the driver model. 2383 * 2384 * Do not call this routine or device_register() more than once for 2385 * any device structure. The driver model core is not designed to work 2386 * with devices that get unregistered and then spring back to life. 2387 * (Among other things, it's very hard to guarantee that all references 2388 * to the previous incarnation of @dev have been dropped.) Allocate 2389 * and register a fresh new struct device instead. 2390 * 2391 * NOTE: _Never_ directly free @dev after calling this function, even 2392 * if it returned an error! Always use put_device() to give up your 2393 * reference instead. 2394 * 2395 * Rule of thumb is: if device_add() succeeds, you should call 2396 * device_del() when you want to get rid of it. If device_add() has 2397 * *not* succeeded, use *only* put_device() to drop the reference 2398 * count. 2399 */ 2400 int device_add(struct device *dev) 2401 { 2402 struct device *parent; 2403 struct kobject *kobj; 2404 struct class_interface *class_intf; 2405 int error = -EINVAL, fw_ret; 2406 struct kobject *glue_dir = NULL; 2407 bool is_fwnode_dev = false; 2408 2409 dev = get_device(dev); 2410 if (!dev) 2411 goto done; 2412 2413 if (!dev->p) { 2414 error = device_private_init(dev); 2415 if (error) 2416 goto done; 2417 } 2418 2419 /* 2420 * for statically allocated devices, which should all be converted 2421 * some day, we need to initialize the name. We prevent reading back 2422 * the name, and force the use of dev_name() 2423 */ 2424 if (dev->init_name) { 2425 dev_set_name(dev, "%s", dev->init_name); 2426 dev->init_name = NULL; 2427 } 2428 2429 /* subsystems can specify simple device enumeration */ 2430 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 2431 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 2432 2433 if (!dev_name(dev)) { 2434 error = -EINVAL; 2435 goto name_error; 2436 } 2437 2438 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2439 2440 parent = get_device(dev->parent); 2441 kobj = get_device_parent(dev, parent); 2442 if (IS_ERR(kobj)) { 2443 error = PTR_ERR(kobj); 2444 goto parent_error; 2445 } 2446 if (kobj) 2447 dev->kobj.parent = kobj; 2448 2449 /* use parent numa_node */ 2450 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 2451 set_dev_node(dev, dev_to_node(parent)); 2452 2453 /* first, register with generic layer. */ 2454 /* we require the name to be set before, and pass NULL */ 2455 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 2456 if (error) { 2457 glue_dir = get_glue_dir(dev); 2458 goto Error; 2459 } 2460 2461 /* notify platform of device entry */ 2462 error = device_platform_notify(dev, KOBJ_ADD); 2463 if (error) 2464 goto platform_error; 2465 2466 error = device_create_file(dev, &dev_attr_uevent); 2467 if (error) 2468 goto attrError; 2469 2470 error = device_add_class_symlinks(dev); 2471 if (error) 2472 goto SymlinkError; 2473 error = device_add_attrs(dev); 2474 if (error) 2475 goto AttrsError; 2476 error = bus_add_device(dev); 2477 if (error) 2478 goto BusError; 2479 error = dpm_sysfs_add(dev); 2480 if (error) 2481 goto DPMError; 2482 device_pm_add(dev); 2483 2484 if (MAJOR(dev->devt)) { 2485 error = device_create_file(dev, &dev_attr_dev); 2486 if (error) 2487 goto DevAttrError; 2488 2489 error = device_create_sys_dev_entry(dev); 2490 if (error) 2491 goto SysEntryError; 2492 2493 devtmpfs_create_node(dev); 2494 } 2495 2496 /* Notify clients of device addition. This call must come 2497 * after dpm_sysfs_add() and before kobject_uevent(). 2498 */ 2499 if (dev->bus) 2500 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2501 BUS_NOTIFY_ADD_DEVICE, dev); 2502 2503 kobject_uevent(&dev->kobj, KOBJ_ADD); 2504 2505 if (dev->fwnode && !dev->fwnode->dev) { 2506 dev->fwnode->dev = dev; 2507 is_fwnode_dev = true; 2508 } 2509 2510 /* 2511 * Check if any of the other devices (consumers) have been waiting for 2512 * this device (supplier) to be added so that they can create a device 2513 * link to it. 2514 * 2515 * This needs to happen after device_pm_add() because device_link_add() 2516 * requires the supplier be registered before it's called. 2517 * 2518 * But this also needs to happe before bus_probe_device() to make sure 2519 * waiting consumers can link to it before the driver is bound to the 2520 * device and the driver sync_state callback is called for this device. 2521 */ 2522 device_link_add_missing_supplier_links(); 2523 2524 if (fw_devlink_flags && is_fwnode_dev && 2525 fwnode_has_op(dev->fwnode, add_links)) { 2526 fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev); 2527 if (fw_ret == -ENODEV) 2528 device_link_wait_for_mandatory_supplier(dev); 2529 else if (fw_ret) 2530 device_link_wait_for_optional_supplier(dev); 2531 } 2532 2533 bus_probe_device(dev); 2534 if (parent) 2535 klist_add_tail(&dev->p->knode_parent, 2536 &parent->p->klist_children); 2537 2538 if (dev->class) { 2539 mutex_lock(&dev->class->p->mutex); 2540 /* tie the class to the device */ 2541 klist_add_tail(&dev->p->knode_class, 2542 &dev->class->p->klist_devices); 2543 2544 /* notify any interfaces that the device is here */ 2545 list_for_each_entry(class_intf, 2546 &dev->class->p->interfaces, node) 2547 if (class_intf->add_dev) 2548 class_intf->add_dev(dev, class_intf); 2549 mutex_unlock(&dev->class->p->mutex); 2550 } 2551 done: 2552 put_device(dev); 2553 return error; 2554 SysEntryError: 2555 if (MAJOR(dev->devt)) 2556 device_remove_file(dev, &dev_attr_dev); 2557 DevAttrError: 2558 device_pm_remove(dev); 2559 dpm_sysfs_remove(dev); 2560 DPMError: 2561 bus_remove_device(dev); 2562 BusError: 2563 device_remove_attrs(dev); 2564 AttrsError: 2565 device_remove_class_symlinks(dev); 2566 SymlinkError: 2567 device_remove_file(dev, &dev_attr_uevent); 2568 attrError: 2569 device_platform_notify(dev, KOBJ_REMOVE); 2570 platform_error: 2571 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 2572 glue_dir = get_glue_dir(dev); 2573 kobject_del(&dev->kobj); 2574 Error: 2575 cleanup_glue_dir(dev, glue_dir); 2576 parent_error: 2577 put_device(parent); 2578 name_error: 2579 kfree(dev->p); 2580 dev->p = NULL; 2581 goto done; 2582 } 2583 EXPORT_SYMBOL_GPL(device_add); 2584 2585 /** 2586 * device_register - register a device with the system. 2587 * @dev: pointer to the device structure 2588 * 2589 * This happens in two clean steps - initialize the device 2590 * and add it to the system. The two steps can be called 2591 * separately, but this is the easiest and most common. 2592 * I.e. you should only call the two helpers separately if 2593 * have a clearly defined need to use and refcount the device 2594 * before it is added to the hierarchy. 2595 * 2596 * For more information, see the kerneldoc for device_initialize() 2597 * and device_add(). 2598 * 2599 * NOTE: _Never_ directly free @dev after calling this function, even 2600 * if it returned an error! Always use put_device() to give up the 2601 * reference initialized in this function instead. 2602 */ 2603 int device_register(struct device *dev) 2604 { 2605 device_initialize(dev); 2606 return device_add(dev); 2607 } 2608 EXPORT_SYMBOL_GPL(device_register); 2609 2610 /** 2611 * get_device - increment reference count for device. 2612 * @dev: device. 2613 * 2614 * This simply forwards the call to kobject_get(), though 2615 * we do take care to provide for the case that we get a NULL 2616 * pointer passed in. 2617 */ 2618 struct device *get_device(struct device *dev) 2619 { 2620 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 2621 } 2622 EXPORT_SYMBOL_GPL(get_device); 2623 2624 /** 2625 * put_device - decrement reference count. 2626 * @dev: device in question. 2627 */ 2628 void put_device(struct device *dev) 2629 { 2630 /* might_sleep(); */ 2631 if (dev) 2632 kobject_put(&dev->kobj); 2633 } 2634 EXPORT_SYMBOL_GPL(put_device); 2635 2636 bool kill_device(struct device *dev) 2637 { 2638 /* 2639 * Require the device lock and set the "dead" flag to guarantee that 2640 * the update behavior is consistent with the other bitfields near 2641 * it and that we cannot have an asynchronous probe routine trying 2642 * to run while we are tearing out the bus/class/sysfs from 2643 * underneath the device. 2644 */ 2645 lockdep_assert_held(&dev->mutex); 2646 2647 if (dev->p->dead) 2648 return false; 2649 dev->p->dead = true; 2650 return true; 2651 } 2652 EXPORT_SYMBOL_GPL(kill_device); 2653 2654 /** 2655 * device_del - delete device from system. 2656 * @dev: device. 2657 * 2658 * This is the first part of the device unregistration 2659 * sequence. This removes the device from the lists we control 2660 * from here, has it removed from the other driver model 2661 * subsystems it was added to in device_add(), and removes it 2662 * from the kobject hierarchy. 2663 * 2664 * NOTE: this should be called manually _iff_ device_add() was 2665 * also called manually. 2666 */ 2667 void device_del(struct device *dev) 2668 { 2669 struct device *parent = dev->parent; 2670 struct kobject *glue_dir = NULL; 2671 struct class_interface *class_intf; 2672 2673 device_lock(dev); 2674 kill_device(dev); 2675 device_unlock(dev); 2676 2677 if (dev->fwnode && dev->fwnode->dev == dev) 2678 dev->fwnode->dev = NULL; 2679 2680 /* Notify clients of device removal. This call must come 2681 * before dpm_sysfs_remove(). 2682 */ 2683 if (dev->bus) 2684 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2685 BUS_NOTIFY_DEL_DEVICE, dev); 2686 2687 dpm_sysfs_remove(dev); 2688 if (parent) 2689 klist_del(&dev->p->knode_parent); 2690 if (MAJOR(dev->devt)) { 2691 devtmpfs_delete_node(dev); 2692 device_remove_sys_dev_entry(dev); 2693 device_remove_file(dev, &dev_attr_dev); 2694 } 2695 if (dev->class) { 2696 device_remove_class_symlinks(dev); 2697 2698 mutex_lock(&dev->class->p->mutex); 2699 /* notify any interfaces that the device is now gone */ 2700 list_for_each_entry(class_intf, 2701 &dev->class->p->interfaces, node) 2702 if (class_intf->remove_dev) 2703 class_intf->remove_dev(dev, class_intf); 2704 /* remove the device from the class list */ 2705 klist_del(&dev->p->knode_class); 2706 mutex_unlock(&dev->class->p->mutex); 2707 } 2708 device_remove_file(dev, &dev_attr_uevent); 2709 device_remove_attrs(dev); 2710 bus_remove_device(dev); 2711 device_pm_remove(dev); 2712 driver_deferred_probe_del(dev); 2713 device_platform_notify(dev, KOBJ_REMOVE); 2714 device_remove_properties(dev); 2715 device_links_purge(dev); 2716 2717 if (dev->bus) 2718 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 2719 BUS_NOTIFY_REMOVED_DEVICE, dev); 2720 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 2721 glue_dir = get_glue_dir(dev); 2722 kobject_del(&dev->kobj); 2723 cleanup_glue_dir(dev, glue_dir); 2724 put_device(parent); 2725 } 2726 EXPORT_SYMBOL_GPL(device_del); 2727 2728 /** 2729 * device_unregister - unregister device from system. 2730 * @dev: device going away. 2731 * 2732 * We do this in two parts, like we do device_register(). First, 2733 * we remove it from all the subsystems with device_del(), then 2734 * we decrement the reference count via put_device(). If that 2735 * is the final reference count, the device will be cleaned up 2736 * via device_release() above. Otherwise, the structure will 2737 * stick around until the final reference to the device is dropped. 2738 */ 2739 void device_unregister(struct device *dev) 2740 { 2741 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 2742 device_del(dev); 2743 put_device(dev); 2744 } 2745 EXPORT_SYMBOL_GPL(device_unregister); 2746 2747 static struct device *prev_device(struct klist_iter *i) 2748 { 2749 struct klist_node *n = klist_prev(i); 2750 struct device *dev = NULL; 2751 struct device_private *p; 2752 2753 if (n) { 2754 p = to_device_private_parent(n); 2755 dev = p->device; 2756 } 2757 return dev; 2758 } 2759 2760 static struct device *next_device(struct klist_iter *i) 2761 { 2762 struct klist_node *n = klist_next(i); 2763 struct device *dev = NULL; 2764 struct device_private *p; 2765 2766 if (n) { 2767 p = to_device_private_parent(n); 2768 dev = p->device; 2769 } 2770 return dev; 2771 } 2772 2773 /** 2774 * device_get_devnode - path of device node file 2775 * @dev: device 2776 * @mode: returned file access mode 2777 * @uid: returned file owner 2778 * @gid: returned file group 2779 * @tmp: possibly allocated string 2780 * 2781 * Return the relative path of a possible device node. 2782 * Non-default names may need to allocate a memory to compose 2783 * a name. This memory is returned in tmp and needs to be 2784 * freed by the caller. 2785 */ 2786 const char *device_get_devnode(struct device *dev, 2787 umode_t *mode, kuid_t *uid, kgid_t *gid, 2788 const char **tmp) 2789 { 2790 char *s; 2791 2792 *tmp = NULL; 2793 2794 /* the device type may provide a specific name */ 2795 if (dev->type && dev->type->devnode) 2796 *tmp = dev->type->devnode(dev, mode, uid, gid); 2797 if (*tmp) 2798 return *tmp; 2799 2800 /* the class may provide a specific name */ 2801 if (dev->class && dev->class->devnode) 2802 *tmp = dev->class->devnode(dev, mode); 2803 if (*tmp) 2804 return *tmp; 2805 2806 /* return name without allocation, tmp == NULL */ 2807 if (strchr(dev_name(dev), '!') == NULL) 2808 return dev_name(dev); 2809 2810 /* replace '!' in the name with '/' */ 2811 s = kstrdup(dev_name(dev), GFP_KERNEL); 2812 if (!s) 2813 return NULL; 2814 strreplace(s, '!', '/'); 2815 return *tmp = s; 2816 } 2817 2818 /** 2819 * device_for_each_child - device child iterator. 2820 * @parent: parent struct device. 2821 * @fn: function to be called for each device. 2822 * @data: data for the callback. 2823 * 2824 * Iterate over @parent's child devices, and call @fn for each, 2825 * passing it @data. 2826 * 2827 * We check the return of @fn each time. If it returns anything 2828 * other than 0, we break out and return that value. 2829 */ 2830 int device_for_each_child(struct device *parent, void *data, 2831 int (*fn)(struct device *dev, void *data)) 2832 { 2833 struct klist_iter i; 2834 struct device *child; 2835 int error = 0; 2836 2837 if (!parent->p) 2838 return 0; 2839 2840 klist_iter_init(&parent->p->klist_children, &i); 2841 while (!error && (child = next_device(&i))) 2842 error = fn(child, data); 2843 klist_iter_exit(&i); 2844 return error; 2845 } 2846 EXPORT_SYMBOL_GPL(device_for_each_child); 2847 2848 /** 2849 * device_for_each_child_reverse - device child iterator in reversed order. 2850 * @parent: parent struct device. 2851 * @fn: function to be called for each device. 2852 * @data: data for the callback. 2853 * 2854 * Iterate over @parent's child devices, and call @fn for each, 2855 * passing it @data. 2856 * 2857 * We check the return of @fn each time. If it returns anything 2858 * other than 0, we break out and return that value. 2859 */ 2860 int device_for_each_child_reverse(struct device *parent, void *data, 2861 int (*fn)(struct device *dev, void *data)) 2862 { 2863 struct klist_iter i; 2864 struct device *child; 2865 int error = 0; 2866 2867 if (!parent->p) 2868 return 0; 2869 2870 klist_iter_init(&parent->p->klist_children, &i); 2871 while ((child = prev_device(&i)) && !error) 2872 error = fn(child, data); 2873 klist_iter_exit(&i); 2874 return error; 2875 } 2876 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 2877 2878 /** 2879 * device_find_child - device iterator for locating a particular device. 2880 * @parent: parent struct device 2881 * @match: Callback function to check device 2882 * @data: Data to pass to match function 2883 * 2884 * This is similar to the device_for_each_child() function above, but it 2885 * returns a reference to a device that is 'found' for later use, as 2886 * determined by the @match callback. 2887 * 2888 * The callback should return 0 if the device doesn't match and non-zero 2889 * if it does. If the callback returns non-zero and a reference to the 2890 * current device can be obtained, this function will return to the caller 2891 * and not iterate over any more devices. 2892 * 2893 * NOTE: you will need to drop the reference with put_device() after use. 2894 */ 2895 struct device *device_find_child(struct device *parent, void *data, 2896 int (*match)(struct device *dev, void *data)) 2897 { 2898 struct klist_iter i; 2899 struct device *child; 2900 2901 if (!parent) 2902 return NULL; 2903 2904 klist_iter_init(&parent->p->klist_children, &i); 2905 while ((child = next_device(&i))) 2906 if (match(child, data) && get_device(child)) 2907 break; 2908 klist_iter_exit(&i); 2909 return child; 2910 } 2911 EXPORT_SYMBOL_GPL(device_find_child); 2912 2913 /** 2914 * device_find_child_by_name - device iterator for locating a child device. 2915 * @parent: parent struct device 2916 * @name: name of the child device 2917 * 2918 * This is similar to the device_find_child() function above, but it 2919 * returns a reference to a device that has the name @name. 2920 * 2921 * NOTE: you will need to drop the reference with put_device() after use. 2922 */ 2923 struct device *device_find_child_by_name(struct device *parent, 2924 const char *name) 2925 { 2926 struct klist_iter i; 2927 struct device *child; 2928 2929 if (!parent) 2930 return NULL; 2931 2932 klist_iter_init(&parent->p->klist_children, &i); 2933 while ((child = next_device(&i))) 2934 if (!strcmp(dev_name(child), name) && get_device(child)) 2935 break; 2936 klist_iter_exit(&i); 2937 return child; 2938 } 2939 EXPORT_SYMBOL_GPL(device_find_child_by_name); 2940 2941 int __init devices_init(void) 2942 { 2943 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 2944 if (!devices_kset) 2945 return -ENOMEM; 2946 dev_kobj = kobject_create_and_add("dev", NULL); 2947 if (!dev_kobj) 2948 goto dev_kobj_err; 2949 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 2950 if (!sysfs_dev_block_kobj) 2951 goto block_kobj_err; 2952 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 2953 if (!sysfs_dev_char_kobj) 2954 goto char_kobj_err; 2955 2956 return 0; 2957 2958 char_kobj_err: 2959 kobject_put(sysfs_dev_block_kobj); 2960 block_kobj_err: 2961 kobject_put(dev_kobj); 2962 dev_kobj_err: 2963 kset_unregister(devices_kset); 2964 return -ENOMEM; 2965 } 2966 2967 static int device_check_offline(struct device *dev, void *not_used) 2968 { 2969 int ret; 2970 2971 ret = device_for_each_child(dev, NULL, device_check_offline); 2972 if (ret) 2973 return ret; 2974 2975 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 2976 } 2977 2978 /** 2979 * device_offline - Prepare the device for hot-removal. 2980 * @dev: Device to be put offline. 2981 * 2982 * Execute the device bus type's .offline() callback, if present, to prepare 2983 * the device for a subsequent hot-removal. If that succeeds, the device must 2984 * not be used until either it is removed or its bus type's .online() callback 2985 * is executed. 2986 * 2987 * Call under device_hotplug_lock. 2988 */ 2989 int device_offline(struct device *dev) 2990 { 2991 int ret; 2992 2993 if (dev->offline_disabled) 2994 return -EPERM; 2995 2996 ret = device_for_each_child(dev, NULL, device_check_offline); 2997 if (ret) 2998 return ret; 2999 3000 device_lock(dev); 3001 if (device_supports_offline(dev)) { 3002 if (dev->offline) { 3003 ret = 1; 3004 } else { 3005 ret = dev->bus->offline(dev); 3006 if (!ret) { 3007 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 3008 dev->offline = true; 3009 } 3010 } 3011 } 3012 device_unlock(dev); 3013 3014 return ret; 3015 } 3016 3017 /** 3018 * device_online - Put the device back online after successful device_offline(). 3019 * @dev: Device to be put back online. 3020 * 3021 * If device_offline() has been successfully executed for @dev, but the device 3022 * has not been removed subsequently, execute its bus type's .online() callback 3023 * to indicate that the device can be used again. 3024 * 3025 * Call under device_hotplug_lock. 3026 */ 3027 int device_online(struct device *dev) 3028 { 3029 int ret = 0; 3030 3031 device_lock(dev); 3032 if (device_supports_offline(dev)) { 3033 if (dev->offline) { 3034 ret = dev->bus->online(dev); 3035 if (!ret) { 3036 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 3037 dev->offline = false; 3038 } 3039 } else { 3040 ret = 1; 3041 } 3042 } 3043 device_unlock(dev); 3044 3045 return ret; 3046 } 3047 3048 struct root_device { 3049 struct device dev; 3050 struct module *owner; 3051 }; 3052 3053 static inline struct root_device *to_root_device(struct device *d) 3054 { 3055 return container_of(d, struct root_device, dev); 3056 } 3057 3058 static void root_device_release(struct device *dev) 3059 { 3060 kfree(to_root_device(dev)); 3061 } 3062 3063 /** 3064 * __root_device_register - allocate and register a root device 3065 * @name: root device name 3066 * @owner: owner module of the root device, usually THIS_MODULE 3067 * 3068 * This function allocates a root device and registers it 3069 * using device_register(). In order to free the returned 3070 * device, use root_device_unregister(). 3071 * 3072 * Root devices are dummy devices which allow other devices 3073 * to be grouped under /sys/devices. Use this function to 3074 * allocate a root device and then use it as the parent of 3075 * any device which should appear under /sys/devices/{name} 3076 * 3077 * The /sys/devices/{name} directory will also contain a 3078 * 'module' symlink which points to the @owner directory 3079 * in sysfs. 3080 * 3081 * Returns &struct device pointer on success, or ERR_PTR() on error. 3082 * 3083 * Note: You probably want to use root_device_register(). 3084 */ 3085 struct device *__root_device_register(const char *name, struct module *owner) 3086 { 3087 struct root_device *root; 3088 int err = -ENOMEM; 3089 3090 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 3091 if (!root) 3092 return ERR_PTR(err); 3093 3094 err = dev_set_name(&root->dev, "%s", name); 3095 if (err) { 3096 kfree(root); 3097 return ERR_PTR(err); 3098 } 3099 3100 root->dev.release = root_device_release; 3101 3102 err = device_register(&root->dev); 3103 if (err) { 3104 put_device(&root->dev); 3105 return ERR_PTR(err); 3106 } 3107 3108 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 3109 if (owner) { 3110 struct module_kobject *mk = &owner->mkobj; 3111 3112 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 3113 if (err) { 3114 device_unregister(&root->dev); 3115 return ERR_PTR(err); 3116 } 3117 root->owner = owner; 3118 } 3119 #endif 3120 3121 return &root->dev; 3122 } 3123 EXPORT_SYMBOL_GPL(__root_device_register); 3124 3125 /** 3126 * root_device_unregister - unregister and free a root device 3127 * @dev: device going away 3128 * 3129 * This function unregisters and cleans up a device that was created by 3130 * root_device_register(). 3131 */ 3132 void root_device_unregister(struct device *dev) 3133 { 3134 struct root_device *root = to_root_device(dev); 3135 3136 if (root->owner) 3137 sysfs_remove_link(&root->dev.kobj, "module"); 3138 3139 device_unregister(dev); 3140 } 3141 EXPORT_SYMBOL_GPL(root_device_unregister); 3142 3143 3144 static void device_create_release(struct device *dev) 3145 { 3146 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3147 kfree(dev); 3148 } 3149 3150 static __printf(6, 0) struct device * 3151 device_create_groups_vargs(struct class *class, struct device *parent, 3152 dev_t devt, void *drvdata, 3153 const struct attribute_group **groups, 3154 const char *fmt, va_list args) 3155 { 3156 struct device *dev = NULL; 3157 int retval = -ENODEV; 3158 3159 if (class == NULL || IS_ERR(class)) 3160 goto error; 3161 3162 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 3163 if (!dev) { 3164 retval = -ENOMEM; 3165 goto error; 3166 } 3167 3168 device_initialize(dev); 3169 dev->devt = devt; 3170 dev->class = class; 3171 dev->parent = parent; 3172 dev->groups = groups; 3173 dev->release = device_create_release; 3174 dev_set_drvdata(dev, drvdata); 3175 3176 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 3177 if (retval) 3178 goto error; 3179 3180 retval = device_add(dev); 3181 if (retval) 3182 goto error; 3183 3184 return dev; 3185 3186 error: 3187 put_device(dev); 3188 return ERR_PTR(retval); 3189 } 3190 3191 /** 3192 * device_create_vargs - creates a device and registers it with sysfs 3193 * @class: pointer to the struct class that this device should be registered to 3194 * @parent: pointer to the parent struct device of this new device, if any 3195 * @devt: the dev_t for the char device to be added 3196 * @drvdata: the data to be added to the device for callbacks 3197 * @fmt: string for the device's name 3198 * @args: va_list for the device's name 3199 * 3200 * This function can be used by char device classes. A struct device 3201 * will be created in sysfs, registered to the specified class. 3202 * 3203 * A "dev" file will be created, showing the dev_t for the device, if 3204 * the dev_t is not 0,0. 3205 * If a pointer to a parent struct device is passed in, the newly created 3206 * struct device will be a child of that device in sysfs. 3207 * The pointer to the struct device will be returned from the call. 3208 * Any further sysfs files that might be required can be created using this 3209 * pointer. 3210 * 3211 * Returns &struct device pointer on success, or ERR_PTR() on error. 3212 * 3213 * Note: the struct class passed to this function must have previously 3214 * been created with a call to class_create(). 3215 */ 3216 struct device *device_create_vargs(struct class *class, struct device *parent, 3217 dev_t devt, void *drvdata, const char *fmt, 3218 va_list args) 3219 { 3220 return device_create_groups_vargs(class, parent, devt, drvdata, NULL, 3221 fmt, args); 3222 } 3223 EXPORT_SYMBOL_GPL(device_create_vargs); 3224 3225 /** 3226 * device_create - creates a device and registers it with sysfs 3227 * @class: pointer to the struct class that this device should be registered to 3228 * @parent: pointer to the parent struct device of this new device, if any 3229 * @devt: the dev_t for the char device to be added 3230 * @drvdata: the data to be added to the device for callbacks 3231 * @fmt: string for the device's name 3232 * 3233 * This function can be used by char device classes. A struct device 3234 * will be created in sysfs, registered to the specified class. 3235 * 3236 * A "dev" file will be created, showing the dev_t for the device, if 3237 * the dev_t is not 0,0. 3238 * If a pointer to a parent struct device is passed in, the newly created 3239 * struct device will be a child of that device in sysfs. 3240 * The pointer to the struct device will be returned from the call. 3241 * Any further sysfs files that might be required can be created using this 3242 * pointer. 3243 * 3244 * Returns &struct device pointer on success, or ERR_PTR() on error. 3245 * 3246 * Note: the struct class passed to this function must have previously 3247 * been created with a call to class_create(). 3248 */ 3249 struct device *device_create(struct class *class, struct device *parent, 3250 dev_t devt, void *drvdata, const char *fmt, ...) 3251 { 3252 va_list vargs; 3253 struct device *dev; 3254 3255 va_start(vargs, fmt); 3256 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs); 3257 va_end(vargs); 3258 return dev; 3259 } 3260 EXPORT_SYMBOL_GPL(device_create); 3261 3262 /** 3263 * device_create_with_groups - creates a device and registers it with sysfs 3264 * @class: pointer to the struct class that this device should be registered to 3265 * @parent: pointer to the parent struct device of this new device, if any 3266 * @devt: the dev_t for the char device to be added 3267 * @drvdata: the data to be added to the device for callbacks 3268 * @groups: NULL-terminated list of attribute groups to be created 3269 * @fmt: string for the device's name 3270 * 3271 * This function can be used by char device classes. A struct device 3272 * will be created in sysfs, registered to the specified class. 3273 * Additional attributes specified in the groups parameter will also 3274 * be created automatically. 3275 * 3276 * A "dev" file will be created, showing the dev_t for the device, if 3277 * the dev_t is not 0,0. 3278 * If a pointer to a parent struct device is passed in, the newly created 3279 * struct device will be a child of that device in sysfs. 3280 * The pointer to the struct device will be returned from the call. 3281 * Any further sysfs files that might be required can be created using this 3282 * pointer. 3283 * 3284 * Returns &struct device pointer on success, or ERR_PTR() on error. 3285 * 3286 * Note: the struct class passed to this function must have previously 3287 * been created with a call to class_create(). 3288 */ 3289 struct device *device_create_with_groups(struct class *class, 3290 struct device *parent, dev_t devt, 3291 void *drvdata, 3292 const struct attribute_group **groups, 3293 const char *fmt, ...) 3294 { 3295 va_list vargs; 3296 struct device *dev; 3297 3298 va_start(vargs, fmt); 3299 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 3300 fmt, vargs); 3301 va_end(vargs); 3302 return dev; 3303 } 3304 EXPORT_SYMBOL_GPL(device_create_with_groups); 3305 3306 /** 3307 * device_destroy - removes a device that was created with device_create() 3308 * @class: pointer to the struct class that this device was registered with 3309 * @devt: the dev_t of the device that was previously registered 3310 * 3311 * This call unregisters and cleans up a device that was created with a 3312 * call to device_create(). 3313 */ 3314 void device_destroy(struct class *class, dev_t devt) 3315 { 3316 struct device *dev; 3317 3318 dev = class_find_device_by_devt(class, devt); 3319 if (dev) { 3320 put_device(dev); 3321 device_unregister(dev); 3322 } 3323 } 3324 EXPORT_SYMBOL_GPL(device_destroy); 3325 3326 /** 3327 * device_rename - renames a device 3328 * @dev: the pointer to the struct device to be renamed 3329 * @new_name: the new name of the device 3330 * 3331 * It is the responsibility of the caller to provide mutual 3332 * exclusion between two different calls of device_rename 3333 * on the same device to ensure that new_name is valid and 3334 * won't conflict with other devices. 3335 * 3336 * Note: Don't call this function. Currently, the networking layer calls this 3337 * function, but that will change. The following text from Kay Sievers offers 3338 * some insight: 3339 * 3340 * Renaming devices is racy at many levels, symlinks and other stuff are not 3341 * replaced atomically, and you get a "move" uevent, but it's not easy to 3342 * connect the event to the old and new device. Device nodes are not renamed at 3343 * all, there isn't even support for that in the kernel now. 3344 * 3345 * In the meantime, during renaming, your target name might be taken by another 3346 * driver, creating conflicts. Or the old name is taken directly after you 3347 * renamed it -- then you get events for the same DEVPATH, before you even see 3348 * the "move" event. It's just a mess, and nothing new should ever rely on 3349 * kernel device renaming. Besides that, it's not even implemented now for 3350 * other things than (driver-core wise very simple) network devices. 3351 * 3352 * We are currently about to change network renaming in udev to completely 3353 * disallow renaming of devices in the same namespace as the kernel uses, 3354 * because we can't solve the problems properly, that arise with swapping names 3355 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 3356 * be allowed to some other name than eth[0-9]*, for the aforementioned 3357 * reasons. 3358 * 3359 * Make up a "real" name in the driver before you register anything, or add 3360 * some other attributes for userspace to find the device, or use udev to add 3361 * symlinks -- but never rename kernel devices later, it's a complete mess. We 3362 * don't even want to get into that and try to implement the missing pieces in 3363 * the core. We really have other pieces to fix in the driver core mess. :) 3364 */ 3365 int device_rename(struct device *dev, const char *new_name) 3366 { 3367 struct kobject *kobj = &dev->kobj; 3368 char *old_device_name = NULL; 3369 int error; 3370 3371 dev = get_device(dev); 3372 if (!dev) 3373 return -EINVAL; 3374 3375 dev_dbg(dev, "renaming to %s\n", new_name); 3376 3377 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 3378 if (!old_device_name) { 3379 error = -ENOMEM; 3380 goto out; 3381 } 3382 3383 if (dev->class) { 3384 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 3385 kobj, old_device_name, 3386 new_name, kobject_namespace(kobj)); 3387 if (error) 3388 goto out; 3389 } 3390 3391 error = kobject_rename(kobj, new_name); 3392 if (error) 3393 goto out; 3394 3395 out: 3396 put_device(dev); 3397 3398 kfree(old_device_name); 3399 3400 return error; 3401 } 3402 EXPORT_SYMBOL_GPL(device_rename); 3403 3404 static int device_move_class_links(struct device *dev, 3405 struct device *old_parent, 3406 struct device *new_parent) 3407 { 3408 int error = 0; 3409 3410 if (old_parent) 3411 sysfs_remove_link(&dev->kobj, "device"); 3412 if (new_parent) 3413 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 3414 "device"); 3415 return error; 3416 } 3417 3418 /** 3419 * device_move - moves a device to a new parent 3420 * @dev: the pointer to the struct device to be moved 3421 * @new_parent: the new parent of the device (can be NULL) 3422 * @dpm_order: how to reorder the dpm_list 3423 */ 3424 int device_move(struct device *dev, struct device *new_parent, 3425 enum dpm_order dpm_order) 3426 { 3427 int error; 3428 struct device *old_parent; 3429 struct kobject *new_parent_kobj; 3430 3431 dev = get_device(dev); 3432 if (!dev) 3433 return -EINVAL; 3434 3435 device_pm_lock(); 3436 new_parent = get_device(new_parent); 3437 new_parent_kobj = get_device_parent(dev, new_parent); 3438 if (IS_ERR(new_parent_kobj)) { 3439 error = PTR_ERR(new_parent_kobj); 3440 put_device(new_parent); 3441 goto out; 3442 } 3443 3444 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 3445 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 3446 error = kobject_move(&dev->kobj, new_parent_kobj); 3447 if (error) { 3448 cleanup_glue_dir(dev, new_parent_kobj); 3449 put_device(new_parent); 3450 goto out; 3451 } 3452 old_parent = dev->parent; 3453 dev->parent = new_parent; 3454 if (old_parent) 3455 klist_remove(&dev->p->knode_parent); 3456 if (new_parent) { 3457 klist_add_tail(&dev->p->knode_parent, 3458 &new_parent->p->klist_children); 3459 set_dev_node(dev, dev_to_node(new_parent)); 3460 } 3461 3462 if (dev->class) { 3463 error = device_move_class_links(dev, old_parent, new_parent); 3464 if (error) { 3465 /* We ignore errors on cleanup since we're hosed anyway... */ 3466 device_move_class_links(dev, new_parent, old_parent); 3467 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 3468 if (new_parent) 3469 klist_remove(&dev->p->knode_parent); 3470 dev->parent = old_parent; 3471 if (old_parent) { 3472 klist_add_tail(&dev->p->knode_parent, 3473 &old_parent->p->klist_children); 3474 set_dev_node(dev, dev_to_node(old_parent)); 3475 } 3476 } 3477 cleanup_glue_dir(dev, new_parent_kobj); 3478 put_device(new_parent); 3479 goto out; 3480 } 3481 } 3482 switch (dpm_order) { 3483 case DPM_ORDER_NONE: 3484 break; 3485 case DPM_ORDER_DEV_AFTER_PARENT: 3486 device_pm_move_after(dev, new_parent); 3487 devices_kset_move_after(dev, new_parent); 3488 break; 3489 case DPM_ORDER_PARENT_BEFORE_DEV: 3490 device_pm_move_before(new_parent, dev); 3491 devices_kset_move_before(new_parent, dev); 3492 break; 3493 case DPM_ORDER_DEV_LAST: 3494 device_pm_move_last(dev); 3495 devices_kset_move_last(dev); 3496 break; 3497 } 3498 3499 put_device(old_parent); 3500 out: 3501 device_pm_unlock(); 3502 put_device(dev); 3503 return error; 3504 } 3505 EXPORT_SYMBOL_GPL(device_move); 3506 3507 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 3508 kgid_t kgid) 3509 { 3510 struct kobject *kobj = &dev->kobj; 3511 struct class *class = dev->class; 3512 const struct device_type *type = dev->type; 3513 int error; 3514 3515 if (class) { 3516 /* 3517 * Change the device groups of the device class for @dev to 3518 * @kuid/@kgid. 3519 */ 3520 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 3521 kgid); 3522 if (error) 3523 return error; 3524 } 3525 3526 if (type) { 3527 /* 3528 * Change the device groups of the device type for @dev to 3529 * @kuid/@kgid. 3530 */ 3531 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 3532 kgid); 3533 if (error) 3534 return error; 3535 } 3536 3537 /* Change the device groups of @dev to @kuid/@kgid. */ 3538 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 3539 if (error) 3540 return error; 3541 3542 if (device_supports_offline(dev) && !dev->offline_disabled) { 3543 /* Change online device attributes of @dev to @kuid/@kgid. */ 3544 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 3545 kuid, kgid); 3546 if (error) 3547 return error; 3548 } 3549 3550 return 0; 3551 } 3552 3553 /** 3554 * device_change_owner - change the owner of an existing device. 3555 * @dev: device. 3556 * @kuid: new owner's kuid 3557 * @kgid: new owner's kgid 3558 * 3559 * This changes the owner of @dev and its corresponding sysfs entries to 3560 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 3561 * core. 3562 * 3563 * Returns 0 on success or error code on failure. 3564 */ 3565 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 3566 { 3567 int error; 3568 struct kobject *kobj = &dev->kobj; 3569 3570 dev = get_device(dev); 3571 if (!dev) 3572 return -EINVAL; 3573 3574 /* 3575 * Change the kobject and the default attributes and groups of the 3576 * ktype associated with it to @kuid/@kgid. 3577 */ 3578 error = sysfs_change_owner(kobj, kuid, kgid); 3579 if (error) 3580 goto out; 3581 3582 /* 3583 * Change the uevent file for @dev to the new owner. The uevent file 3584 * was created in a separate step when @dev got added and we mirror 3585 * that step here. 3586 */ 3587 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 3588 kgid); 3589 if (error) 3590 goto out; 3591 3592 /* 3593 * Change the device groups, the device groups associated with the 3594 * device class, and the groups associated with the device type of @dev 3595 * to @kuid/@kgid. 3596 */ 3597 error = device_attrs_change_owner(dev, kuid, kgid); 3598 if (error) 3599 goto out; 3600 3601 error = dpm_sysfs_change_owner(dev, kuid, kgid); 3602 if (error) 3603 goto out; 3604 3605 #ifdef CONFIG_BLOCK 3606 if (sysfs_deprecated && dev->class == &block_class) 3607 goto out; 3608 #endif 3609 3610 /* 3611 * Change the owner of the symlink located in the class directory of 3612 * the device class associated with @dev which points to the actual 3613 * directory entry for @dev to @kuid/@kgid. This ensures that the 3614 * symlink shows the same permissions as its target. 3615 */ 3616 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj, 3617 dev_name(dev), kuid, kgid); 3618 if (error) 3619 goto out; 3620 3621 out: 3622 put_device(dev); 3623 return error; 3624 } 3625 EXPORT_SYMBOL_GPL(device_change_owner); 3626 3627 /** 3628 * device_shutdown - call ->shutdown() on each device to shutdown. 3629 */ 3630 void device_shutdown(void) 3631 { 3632 struct device *dev, *parent; 3633 3634 wait_for_device_probe(); 3635 device_block_probing(); 3636 3637 cpufreq_suspend(); 3638 3639 spin_lock(&devices_kset->list_lock); 3640 /* 3641 * Walk the devices list backward, shutting down each in turn. 3642 * Beware that device unplug events may also start pulling 3643 * devices offline, even as the system is shutting down. 3644 */ 3645 while (!list_empty(&devices_kset->list)) { 3646 dev = list_entry(devices_kset->list.prev, struct device, 3647 kobj.entry); 3648 3649 /* 3650 * hold reference count of device's parent to 3651 * prevent it from being freed because parent's 3652 * lock is to be held 3653 */ 3654 parent = get_device(dev->parent); 3655 get_device(dev); 3656 /* 3657 * Make sure the device is off the kset list, in the 3658 * event that dev->*->shutdown() doesn't remove it. 3659 */ 3660 list_del_init(&dev->kobj.entry); 3661 spin_unlock(&devices_kset->list_lock); 3662 3663 /* hold lock to avoid race with probe/release */ 3664 if (parent) 3665 device_lock(parent); 3666 device_lock(dev); 3667 3668 /* Don't allow any more runtime suspends */ 3669 pm_runtime_get_noresume(dev); 3670 pm_runtime_barrier(dev); 3671 3672 if (dev->class && dev->class->shutdown_pre) { 3673 if (initcall_debug) 3674 dev_info(dev, "shutdown_pre\n"); 3675 dev->class->shutdown_pre(dev); 3676 } 3677 if (dev->bus && dev->bus->shutdown) { 3678 if (initcall_debug) 3679 dev_info(dev, "shutdown\n"); 3680 dev->bus->shutdown(dev); 3681 } else if (dev->driver && dev->driver->shutdown) { 3682 if (initcall_debug) 3683 dev_info(dev, "shutdown\n"); 3684 dev->driver->shutdown(dev); 3685 } 3686 3687 device_unlock(dev); 3688 if (parent) 3689 device_unlock(parent); 3690 3691 put_device(dev); 3692 put_device(parent); 3693 3694 spin_lock(&devices_kset->list_lock); 3695 } 3696 spin_unlock(&devices_kset->list_lock); 3697 } 3698 3699 /* 3700 * Device logging functions 3701 */ 3702 3703 #ifdef CONFIG_PRINTK 3704 static int 3705 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen) 3706 { 3707 const char *subsys; 3708 size_t pos = 0; 3709 3710 if (dev->class) 3711 subsys = dev->class->name; 3712 else if (dev->bus) 3713 subsys = dev->bus->name; 3714 else 3715 return 0; 3716 3717 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys); 3718 if (pos >= hdrlen) 3719 goto overflow; 3720 3721 /* 3722 * Add device identifier DEVICE=: 3723 * b12:8 block dev_t 3724 * c127:3 char dev_t 3725 * n8 netdev ifindex 3726 * +sound:card0 subsystem:devname 3727 */ 3728 if (MAJOR(dev->devt)) { 3729 char c; 3730 3731 if (strcmp(subsys, "block") == 0) 3732 c = 'b'; 3733 else 3734 c = 'c'; 3735 pos++; 3736 pos += snprintf(hdr + pos, hdrlen - pos, 3737 "DEVICE=%c%u:%u", 3738 c, MAJOR(dev->devt), MINOR(dev->devt)); 3739 } else if (strcmp(subsys, "net") == 0) { 3740 struct net_device *net = to_net_dev(dev); 3741 3742 pos++; 3743 pos += snprintf(hdr + pos, hdrlen - pos, 3744 "DEVICE=n%u", net->ifindex); 3745 } else { 3746 pos++; 3747 pos += snprintf(hdr + pos, hdrlen - pos, 3748 "DEVICE=+%s:%s", subsys, dev_name(dev)); 3749 } 3750 3751 if (pos >= hdrlen) 3752 goto overflow; 3753 3754 return pos; 3755 3756 overflow: 3757 dev_WARN(dev, "device/subsystem name too long"); 3758 return 0; 3759 } 3760 3761 int dev_vprintk_emit(int level, const struct device *dev, 3762 const char *fmt, va_list args) 3763 { 3764 char hdr[128]; 3765 size_t hdrlen; 3766 3767 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr)); 3768 3769 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args); 3770 } 3771 EXPORT_SYMBOL(dev_vprintk_emit); 3772 3773 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 3774 { 3775 va_list args; 3776 int r; 3777 3778 va_start(args, fmt); 3779 3780 r = dev_vprintk_emit(level, dev, fmt, args); 3781 3782 va_end(args); 3783 3784 return r; 3785 } 3786 EXPORT_SYMBOL(dev_printk_emit); 3787 3788 static void __dev_printk(const char *level, const struct device *dev, 3789 struct va_format *vaf) 3790 { 3791 if (dev) 3792 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 3793 dev_driver_string(dev), dev_name(dev), vaf); 3794 else 3795 printk("%s(NULL device *): %pV", level, vaf); 3796 } 3797 3798 void dev_printk(const char *level, const struct device *dev, 3799 const char *fmt, ...) 3800 { 3801 struct va_format vaf; 3802 va_list args; 3803 3804 va_start(args, fmt); 3805 3806 vaf.fmt = fmt; 3807 vaf.va = &args; 3808 3809 __dev_printk(level, dev, &vaf); 3810 3811 va_end(args); 3812 } 3813 EXPORT_SYMBOL(dev_printk); 3814 3815 #define define_dev_printk_level(func, kern_level) \ 3816 void func(const struct device *dev, const char *fmt, ...) \ 3817 { \ 3818 struct va_format vaf; \ 3819 va_list args; \ 3820 \ 3821 va_start(args, fmt); \ 3822 \ 3823 vaf.fmt = fmt; \ 3824 vaf.va = &args; \ 3825 \ 3826 __dev_printk(kern_level, dev, &vaf); \ 3827 \ 3828 va_end(args); \ 3829 } \ 3830 EXPORT_SYMBOL(func); 3831 3832 define_dev_printk_level(_dev_emerg, KERN_EMERG); 3833 define_dev_printk_level(_dev_alert, KERN_ALERT); 3834 define_dev_printk_level(_dev_crit, KERN_CRIT); 3835 define_dev_printk_level(_dev_err, KERN_ERR); 3836 define_dev_printk_level(_dev_warn, KERN_WARNING); 3837 define_dev_printk_level(_dev_notice, KERN_NOTICE); 3838 define_dev_printk_level(_dev_info, KERN_INFO); 3839 3840 #endif 3841 3842 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 3843 { 3844 return fwnode && !IS_ERR(fwnode->secondary); 3845 } 3846 3847 /** 3848 * set_primary_fwnode - Change the primary firmware node of a given device. 3849 * @dev: Device to handle. 3850 * @fwnode: New primary firmware node of the device. 3851 * 3852 * Set the device's firmware node pointer to @fwnode, but if a secondary 3853 * firmware node of the device is present, preserve it. 3854 */ 3855 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 3856 { 3857 if (fwnode) { 3858 struct fwnode_handle *fn = dev->fwnode; 3859 3860 if (fwnode_is_primary(fn)) 3861 fn = fn->secondary; 3862 3863 if (fn) { 3864 WARN_ON(fwnode->secondary); 3865 fwnode->secondary = fn; 3866 } 3867 dev->fwnode = fwnode; 3868 } else { 3869 dev->fwnode = fwnode_is_primary(dev->fwnode) ? 3870 dev->fwnode->secondary : NULL; 3871 } 3872 } 3873 EXPORT_SYMBOL_GPL(set_primary_fwnode); 3874 3875 /** 3876 * set_secondary_fwnode - Change the secondary firmware node of a given device. 3877 * @dev: Device to handle. 3878 * @fwnode: New secondary firmware node of the device. 3879 * 3880 * If a primary firmware node of the device is present, set its secondary 3881 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 3882 * @fwnode. 3883 */ 3884 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 3885 { 3886 if (fwnode) 3887 fwnode->secondary = ERR_PTR(-ENODEV); 3888 3889 if (fwnode_is_primary(dev->fwnode)) 3890 dev->fwnode->secondary = fwnode; 3891 else 3892 dev->fwnode = fwnode; 3893 } 3894 3895 /** 3896 * device_set_of_node_from_dev - reuse device-tree node of another device 3897 * @dev: device whose device-tree node is being set 3898 * @dev2: device whose device-tree node is being reused 3899 * 3900 * Takes another reference to the new device-tree node after first dropping 3901 * any reference held to the old node. 3902 */ 3903 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 3904 { 3905 of_node_put(dev->of_node); 3906 dev->of_node = of_node_get(dev2->of_node); 3907 dev->of_node_reused = true; 3908 } 3909 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 3910 3911 int device_match_name(struct device *dev, const void *name) 3912 { 3913 return sysfs_streq(dev_name(dev), name); 3914 } 3915 EXPORT_SYMBOL_GPL(device_match_name); 3916 3917 int device_match_of_node(struct device *dev, const void *np) 3918 { 3919 return dev->of_node == np; 3920 } 3921 EXPORT_SYMBOL_GPL(device_match_of_node); 3922 3923 int device_match_fwnode(struct device *dev, const void *fwnode) 3924 { 3925 return dev_fwnode(dev) == fwnode; 3926 } 3927 EXPORT_SYMBOL_GPL(device_match_fwnode); 3928 3929 int device_match_devt(struct device *dev, const void *pdevt) 3930 { 3931 return dev->devt == *(dev_t *)pdevt; 3932 } 3933 EXPORT_SYMBOL_GPL(device_match_devt); 3934 3935 int device_match_acpi_dev(struct device *dev, const void *adev) 3936 { 3937 return ACPI_COMPANION(dev) == adev; 3938 } 3939 EXPORT_SYMBOL(device_match_acpi_dev); 3940 3941 int device_match_any(struct device *dev, const void *unused) 3942 { 3943 return 1; 3944 } 3945 EXPORT_SYMBOL_GPL(device_match_any); 3946