1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/slab.h> 19 #include <linux/string.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/blkdev.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/sched/signal.h> 29 #include <linux/sched/mm.h> 30 #include <linux/swiotlb.h> 31 #include <linux/sysfs.h> 32 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 33 34 #include "base.h" 35 #include "physical_location.h" 36 #include "power/power.h" 37 38 #ifdef CONFIG_SYSFS_DEPRECATED 39 #ifdef CONFIG_SYSFS_DEPRECATED_V2 40 long sysfs_deprecated = 1; 41 #else 42 long sysfs_deprecated = 0; 43 #endif 44 static int __init sysfs_deprecated_setup(char *arg) 45 { 46 return kstrtol(arg, 10, &sysfs_deprecated); 47 } 48 early_param("sysfs.deprecated", sysfs_deprecated_setup); 49 #endif 50 51 /* Device links support. */ 52 static LIST_HEAD(deferred_sync); 53 static unsigned int defer_sync_state_count = 1; 54 static DEFINE_MUTEX(fwnode_link_lock); 55 static bool fw_devlink_is_permissive(void); 56 static bool fw_devlink_drv_reg_done; 57 static bool fw_devlink_best_effort; 58 59 /** 60 * fwnode_link_add - Create a link between two fwnode_handles. 61 * @con: Consumer end of the link. 62 * @sup: Supplier end of the link. 63 * 64 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 65 * represents the detail that the firmware lists @sup fwnode as supplying a 66 * resource to @con. 67 * 68 * The driver core will use the fwnode link to create a device link between the 69 * two device objects corresponding to @con and @sup when they are created. The 70 * driver core will automatically delete the fwnode link between @con and @sup 71 * after doing that. 72 * 73 * Attempts to create duplicate links between the same pair of fwnode handles 74 * are ignored and there is no reference counting. 75 */ 76 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup) 77 { 78 struct fwnode_link *link; 79 int ret = 0; 80 81 mutex_lock(&fwnode_link_lock); 82 83 list_for_each_entry(link, &sup->consumers, s_hook) 84 if (link->consumer == con) 85 goto out; 86 87 link = kzalloc(sizeof(*link), GFP_KERNEL); 88 if (!link) { 89 ret = -ENOMEM; 90 goto out; 91 } 92 93 link->supplier = sup; 94 INIT_LIST_HEAD(&link->s_hook); 95 link->consumer = con; 96 INIT_LIST_HEAD(&link->c_hook); 97 98 list_add(&link->s_hook, &sup->consumers); 99 list_add(&link->c_hook, &con->suppliers); 100 pr_debug("%pfwP Linked as a fwnode consumer to %pfwP\n", 101 con, sup); 102 out: 103 mutex_unlock(&fwnode_link_lock); 104 105 return ret; 106 } 107 108 /** 109 * __fwnode_link_del - Delete a link between two fwnode_handles. 110 * @link: the fwnode_link to be deleted 111 * 112 * The fwnode_link_lock needs to be held when this function is called. 113 */ 114 static void __fwnode_link_del(struct fwnode_link *link) 115 { 116 pr_debug("%pfwP Dropping the fwnode link to %pfwP\n", 117 link->consumer, link->supplier); 118 list_del(&link->s_hook); 119 list_del(&link->c_hook); 120 kfree(link); 121 } 122 123 /** 124 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 125 * @fwnode: fwnode whose supplier links need to be deleted 126 * 127 * Deletes all supplier links connecting directly to @fwnode. 128 */ 129 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 130 { 131 struct fwnode_link *link, *tmp; 132 133 mutex_lock(&fwnode_link_lock); 134 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 135 __fwnode_link_del(link); 136 mutex_unlock(&fwnode_link_lock); 137 } 138 139 /** 140 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 141 * @fwnode: fwnode whose consumer links need to be deleted 142 * 143 * Deletes all consumer links connecting directly to @fwnode. 144 */ 145 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 146 { 147 struct fwnode_link *link, *tmp; 148 149 mutex_lock(&fwnode_link_lock); 150 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 151 __fwnode_link_del(link); 152 mutex_unlock(&fwnode_link_lock); 153 } 154 155 /** 156 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 157 * @fwnode: fwnode whose links needs to be deleted 158 * 159 * Deletes all links connecting directly to a fwnode. 160 */ 161 void fwnode_links_purge(struct fwnode_handle *fwnode) 162 { 163 fwnode_links_purge_suppliers(fwnode); 164 fwnode_links_purge_consumers(fwnode); 165 } 166 167 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 168 { 169 struct fwnode_handle *child; 170 171 /* Don't purge consumer links of an added child */ 172 if (fwnode->dev) 173 return; 174 175 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 176 fwnode_links_purge_consumers(fwnode); 177 178 fwnode_for_each_available_child_node(fwnode, child) 179 fw_devlink_purge_absent_suppliers(child); 180 } 181 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 182 183 #ifdef CONFIG_SRCU 184 static DEFINE_MUTEX(device_links_lock); 185 DEFINE_STATIC_SRCU(device_links_srcu); 186 187 static inline void device_links_write_lock(void) 188 { 189 mutex_lock(&device_links_lock); 190 } 191 192 static inline void device_links_write_unlock(void) 193 { 194 mutex_unlock(&device_links_lock); 195 } 196 197 int device_links_read_lock(void) __acquires(&device_links_srcu) 198 { 199 return srcu_read_lock(&device_links_srcu); 200 } 201 202 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 203 { 204 srcu_read_unlock(&device_links_srcu, idx); 205 } 206 207 int device_links_read_lock_held(void) 208 { 209 return srcu_read_lock_held(&device_links_srcu); 210 } 211 212 static void device_link_synchronize_removal(void) 213 { 214 synchronize_srcu(&device_links_srcu); 215 } 216 217 static void device_link_remove_from_lists(struct device_link *link) 218 { 219 list_del_rcu(&link->s_node); 220 list_del_rcu(&link->c_node); 221 } 222 #else /* !CONFIG_SRCU */ 223 static DECLARE_RWSEM(device_links_lock); 224 225 static inline void device_links_write_lock(void) 226 { 227 down_write(&device_links_lock); 228 } 229 230 static inline void device_links_write_unlock(void) 231 { 232 up_write(&device_links_lock); 233 } 234 235 int device_links_read_lock(void) 236 { 237 down_read(&device_links_lock); 238 return 0; 239 } 240 241 void device_links_read_unlock(int not_used) 242 { 243 up_read(&device_links_lock); 244 } 245 246 #ifdef CONFIG_DEBUG_LOCK_ALLOC 247 int device_links_read_lock_held(void) 248 { 249 return lockdep_is_held(&device_links_lock); 250 } 251 #endif 252 253 static inline void device_link_synchronize_removal(void) 254 { 255 } 256 257 static void device_link_remove_from_lists(struct device_link *link) 258 { 259 list_del(&link->s_node); 260 list_del(&link->c_node); 261 } 262 #endif /* !CONFIG_SRCU */ 263 264 static bool device_is_ancestor(struct device *dev, struct device *target) 265 { 266 while (target->parent) { 267 target = target->parent; 268 if (dev == target) 269 return true; 270 } 271 return false; 272 } 273 274 /** 275 * device_is_dependent - Check if one device depends on another one 276 * @dev: Device to check dependencies for. 277 * @target: Device to check against. 278 * 279 * Check if @target depends on @dev or any device dependent on it (its child or 280 * its consumer etc). Return 1 if that is the case or 0 otherwise. 281 */ 282 int device_is_dependent(struct device *dev, void *target) 283 { 284 struct device_link *link; 285 int ret; 286 287 /* 288 * The "ancestors" check is needed to catch the case when the target 289 * device has not been completely initialized yet and it is still 290 * missing from the list of children of its parent device. 291 */ 292 if (dev == target || device_is_ancestor(dev, target)) 293 return 1; 294 295 ret = device_for_each_child(dev, target, device_is_dependent); 296 if (ret) 297 return ret; 298 299 list_for_each_entry(link, &dev->links.consumers, s_node) { 300 if ((link->flags & ~DL_FLAG_INFERRED) == 301 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 302 continue; 303 304 if (link->consumer == target) 305 return 1; 306 307 ret = device_is_dependent(link->consumer, target); 308 if (ret) 309 break; 310 } 311 return ret; 312 } 313 314 static void device_link_init_status(struct device_link *link, 315 struct device *consumer, 316 struct device *supplier) 317 { 318 switch (supplier->links.status) { 319 case DL_DEV_PROBING: 320 switch (consumer->links.status) { 321 case DL_DEV_PROBING: 322 /* 323 * A consumer driver can create a link to a supplier 324 * that has not completed its probing yet as long as it 325 * knows that the supplier is already functional (for 326 * example, it has just acquired some resources from the 327 * supplier). 328 */ 329 link->status = DL_STATE_CONSUMER_PROBE; 330 break; 331 default: 332 link->status = DL_STATE_DORMANT; 333 break; 334 } 335 break; 336 case DL_DEV_DRIVER_BOUND: 337 switch (consumer->links.status) { 338 case DL_DEV_PROBING: 339 link->status = DL_STATE_CONSUMER_PROBE; 340 break; 341 case DL_DEV_DRIVER_BOUND: 342 link->status = DL_STATE_ACTIVE; 343 break; 344 default: 345 link->status = DL_STATE_AVAILABLE; 346 break; 347 } 348 break; 349 case DL_DEV_UNBINDING: 350 link->status = DL_STATE_SUPPLIER_UNBIND; 351 break; 352 default: 353 link->status = DL_STATE_DORMANT; 354 break; 355 } 356 } 357 358 static int device_reorder_to_tail(struct device *dev, void *not_used) 359 { 360 struct device_link *link; 361 362 /* 363 * Devices that have not been registered yet will be put to the ends 364 * of the lists during the registration, so skip them here. 365 */ 366 if (device_is_registered(dev)) 367 devices_kset_move_last(dev); 368 369 if (device_pm_initialized(dev)) 370 device_pm_move_last(dev); 371 372 device_for_each_child(dev, NULL, device_reorder_to_tail); 373 list_for_each_entry(link, &dev->links.consumers, s_node) { 374 if ((link->flags & ~DL_FLAG_INFERRED) == 375 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 376 continue; 377 device_reorder_to_tail(link->consumer, NULL); 378 } 379 380 return 0; 381 } 382 383 /** 384 * device_pm_move_to_tail - Move set of devices to the end of device lists 385 * @dev: Device to move 386 * 387 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 388 * 389 * It moves the @dev along with all of its children and all of its consumers 390 * to the ends of the device_kset and dpm_list, recursively. 391 */ 392 void device_pm_move_to_tail(struct device *dev) 393 { 394 int idx; 395 396 idx = device_links_read_lock(); 397 device_pm_lock(); 398 device_reorder_to_tail(dev, NULL); 399 device_pm_unlock(); 400 device_links_read_unlock(idx); 401 } 402 403 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 404 405 static ssize_t status_show(struct device *dev, 406 struct device_attribute *attr, char *buf) 407 { 408 const char *output; 409 410 switch (to_devlink(dev)->status) { 411 case DL_STATE_NONE: 412 output = "not tracked"; 413 break; 414 case DL_STATE_DORMANT: 415 output = "dormant"; 416 break; 417 case DL_STATE_AVAILABLE: 418 output = "available"; 419 break; 420 case DL_STATE_CONSUMER_PROBE: 421 output = "consumer probing"; 422 break; 423 case DL_STATE_ACTIVE: 424 output = "active"; 425 break; 426 case DL_STATE_SUPPLIER_UNBIND: 427 output = "supplier unbinding"; 428 break; 429 default: 430 output = "unknown"; 431 break; 432 } 433 434 return sysfs_emit(buf, "%s\n", output); 435 } 436 static DEVICE_ATTR_RO(status); 437 438 static ssize_t auto_remove_on_show(struct device *dev, 439 struct device_attribute *attr, char *buf) 440 { 441 struct device_link *link = to_devlink(dev); 442 const char *output; 443 444 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 445 output = "supplier unbind"; 446 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 447 output = "consumer unbind"; 448 else 449 output = "never"; 450 451 return sysfs_emit(buf, "%s\n", output); 452 } 453 static DEVICE_ATTR_RO(auto_remove_on); 454 455 static ssize_t runtime_pm_show(struct device *dev, 456 struct device_attribute *attr, char *buf) 457 { 458 struct device_link *link = to_devlink(dev); 459 460 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 461 } 462 static DEVICE_ATTR_RO(runtime_pm); 463 464 static ssize_t sync_state_only_show(struct device *dev, 465 struct device_attribute *attr, char *buf) 466 { 467 struct device_link *link = to_devlink(dev); 468 469 return sysfs_emit(buf, "%d\n", 470 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 471 } 472 static DEVICE_ATTR_RO(sync_state_only); 473 474 static struct attribute *devlink_attrs[] = { 475 &dev_attr_status.attr, 476 &dev_attr_auto_remove_on.attr, 477 &dev_attr_runtime_pm.attr, 478 &dev_attr_sync_state_only.attr, 479 NULL, 480 }; 481 ATTRIBUTE_GROUPS(devlink); 482 483 static void device_link_release_fn(struct work_struct *work) 484 { 485 struct device_link *link = container_of(work, struct device_link, rm_work); 486 487 /* Ensure that all references to the link object have been dropped. */ 488 device_link_synchronize_removal(); 489 490 pm_runtime_release_supplier(link); 491 /* 492 * If supplier_preactivated is set, the link has been dropped between 493 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 494 * in __driver_probe_device(). In that case, drop the supplier's 495 * PM-runtime usage counter to remove the reference taken by 496 * pm_runtime_get_suppliers(). 497 */ 498 if (link->supplier_preactivated) 499 pm_runtime_put_noidle(link->supplier); 500 501 pm_request_idle(link->supplier); 502 503 put_device(link->consumer); 504 put_device(link->supplier); 505 kfree(link); 506 } 507 508 static void devlink_dev_release(struct device *dev) 509 { 510 struct device_link *link = to_devlink(dev); 511 512 INIT_WORK(&link->rm_work, device_link_release_fn); 513 /* 514 * It may take a while to complete this work because of the SRCU 515 * synchronization in device_link_release_fn() and if the consumer or 516 * supplier devices get deleted when it runs, so put it into the "long" 517 * workqueue. 518 */ 519 queue_work(system_long_wq, &link->rm_work); 520 } 521 522 static struct class devlink_class = { 523 .name = "devlink", 524 .owner = THIS_MODULE, 525 .dev_groups = devlink_groups, 526 .dev_release = devlink_dev_release, 527 }; 528 529 static int devlink_add_symlinks(struct device *dev, 530 struct class_interface *class_intf) 531 { 532 int ret; 533 size_t len; 534 struct device_link *link = to_devlink(dev); 535 struct device *sup = link->supplier; 536 struct device *con = link->consumer; 537 char *buf; 538 539 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 540 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 541 len += strlen(":"); 542 len += strlen("supplier:") + 1; 543 buf = kzalloc(len, GFP_KERNEL); 544 if (!buf) 545 return -ENOMEM; 546 547 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 548 if (ret) 549 goto out; 550 551 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 552 if (ret) 553 goto err_con; 554 555 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 556 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 557 if (ret) 558 goto err_con_dev; 559 560 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 561 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 562 if (ret) 563 goto err_sup_dev; 564 565 goto out; 566 567 err_sup_dev: 568 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 569 sysfs_remove_link(&sup->kobj, buf); 570 err_con_dev: 571 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 572 err_con: 573 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 574 out: 575 kfree(buf); 576 return ret; 577 } 578 579 static void devlink_remove_symlinks(struct device *dev, 580 struct class_interface *class_intf) 581 { 582 struct device_link *link = to_devlink(dev); 583 size_t len; 584 struct device *sup = link->supplier; 585 struct device *con = link->consumer; 586 char *buf; 587 588 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 589 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 590 591 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 592 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 593 len += strlen(":"); 594 len += strlen("supplier:") + 1; 595 buf = kzalloc(len, GFP_KERNEL); 596 if (!buf) { 597 WARN(1, "Unable to properly free device link symlinks!\n"); 598 return; 599 } 600 601 if (device_is_registered(con)) { 602 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 603 sysfs_remove_link(&con->kobj, buf); 604 } 605 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 606 sysfs_remove_link(&sup->kobj, buf); 607 kfree(buf); 608 } 609 610 static struct class_interface devlink_class_intf = { 611 .class = &devlink_class, 612 .add_dev = devlink_add_symlinks, 613 .remove_dev = devlink_remove_symlinks, 614 }; 615 616 static int __init devlink_class_init(void) 617 { 618 int ret; 619 620 ret = class_register(&devlink_class); 621 if (ret) 622 return ret; 623 624 ret = class_interface_register(&devlink_class_intf); 625 if (ret) 626 class_unregister(&devlink_class); 627 628 return ret; 629 } 630 postcore_initcall(devlink_class_init); 631 632 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 633 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 634 DL_FLAG_AUTOPROBE_CONSUMER | \ 635 DL_FLAG_SYNC_STATE_ONLY | \ 636 DL_FLAG_INFERRED) 637 638 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 639 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 640 641 /** 642 * device_link_add - Create a link between two devices. 643 * @consumer: Consumer end of the link. 644 * @supplier: Supplier end of the link. 645 * @flags: Link flags. 646 * 647 * The caller is responsible for the proper synchronization of the link creation 648 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 649 * runtime PM framework to take the link into account. Second, if the 650 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 651 * be forced into the active meta state and reference-counted upon the creation 652 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 653 * ignored. 654 * 655 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 656 * expected to release the link returned by it directly with the help of either 657 * device_link_del() or device_link_remove(). 658 * 659 * If that flag is not set, however, the caller of this function is handing the 660 * management of the link over to the driver core entirely and its return value 661 * can only be used to check whether or not the link is present. In that case, 662 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 663 * flags can be used to indicate to the driver core when the link can be safely 664 * deleted. Namely, setting one of them in @flags indicates to the driver core 665 * that the link is not going to be used (by the given caller of this function) 666 * after unbinding the consumer or supplier driver, respectively, from its 667 * device, so the link can be deleted at that point. If none of them is set, 668 * the link will be maintained until one of the devices pointed to by it (either 669 * the consumer or the supplier) is unregistered. 670 * 671 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 672 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 673 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 674 * be used to request the driver core to automatically probe for a consumer 675 * driver after successfully binding a driver to the supplier device. 676 * 677 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 678 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 679 * the same time is invalid and will cause NULL to be returned upfront. 680 * However, if a device link between the given @consumer and @supplier pair 681 * exists already when this function is called for them, the existing link will 682 * be returned regardless of its current type and status (the link's flags may 683 * be modified then). The caller of this function is then expected to treat 684 * the link as though it has just been created, so (in particular) if 685 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 686 * explicitly when not needed any more (as stated above). 687 * 688 * A side effect of the link creation is re-ordering of dpm_list and the 689 * devices_kset list by moving the consumer device and all devices depending 690 * on it to the ends of these lists (that does not happen to devices that have 691 * not been registered when this function is called). 692 * 693 * The supplier device is required to be registered when this function is called 694 * and NULL will be returned if that is not the case. The consumer device need 695 * not be registered, however. 696 */ 697 struct device_link *device_link_add(struct device *consumer, 698 struct device *supplier, u32 flags) 699 { 700 struct device_link *link; 701 702 if (!consumer || !supplier || consumer == supplier || 703 flags & ~DL_ADD_VALID_FLAGS || 704 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 705 (flags & DL_FLAG_SYNC_STATE_ONLY && 706 (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) || 707 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 708 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 709 DL_FLAG_AUTOREMOVE_SUPPLIER))) 710 return NULL; 711 712 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 713 if (pm_runtime_get_sync(supplier) < 0) { 714 pm_runtime_put_noidle(supplier); 715 return NULL; 716 } 717 } 718 719 if (!(flags & DL_FLAG_STATELESS)) 720 flags |= DL_FLAG_MANAGED; 721 722 device_links_write_lock(); 723 device_pm_lock(); 724 725 /* 726 * If the supplier has not been fully registered yet or there is a 727 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 728 * the supplier already in the graph, return NULL. If the link is a 729 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 730 * because it only affects sync_state() callbacks. 731 */ 732 if (!device_pm_initialized(supplier) 733 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 734 device_is_dependent(consumer, supplier))) { 735 link = NULL; 736 goto out; 737 } 738 739 /* 740 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 741 * So, only create it if the consumer hasn't probed yet. 742 */ 743 if (flags & DL_FLAG_SYNC_STATE_ONLY && 744 consumer->links.status != DL_DEV_NO_DRIVER && 745 consumer->links.status != DL_DEV_PROBING) { 746 link = NULL; 747 goto out; 748 } 749 750 /* 751 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 752 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 753 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 754 */ 755 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 756 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 757 758 list_for_each_entry(link, &supplier->links.consumers, s_node) { 759 if (link->consumer != consumer) 760 continue; 761 762 if (link->flags & DL_FLAG_INFERRED && 763 !(flags & DL_FLAG_INFERRED)) 764 link->flags &= ~DL_FLAG_INFERRED; 765 766 if (flags & DL_FLAG_PM_RUNTIME) { 767 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 768 pm_runtime_new_link(consumer); 769 link->flags |= DL_FLAG_PM_RUNTIME; 770 } 771 if (flags & DL_FLAG_RPM_ACTIVE) 772 refcount_inc(&link->rpm_active); 773 } 774 775 if (flags & DL_FLAG_STATELESS) { 776 kref_get(&link->kref); 777 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 778 !(link->flags & DL_FLAG_STATELESS)) { 779 link->flags |= DL_FLAG_STATELESS; 780 goto reorder; 781 } else { 782 link->flags |= DL_FLAG_STATELESS; 783 goto out; 784 } 785 } 786 787 /* 788 * If the life time of the link following from the new flags is 789 * longer than indicated by the flags of the existing link, 790 * update the existing link to stay around longer. 791 */ 792 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 793 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 794 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 795 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 796 } 797 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 798 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 799 DL_FLAG_AUTOREMOVE_SUPPLIER); 800 } 801 if (!(link->flags & DL_FLAG_MANAGED)) { 802 kref_get(&link->kref); 803 link->flags |= DL_FLAG_MANAGED; 804 device_link_init_status(link, consumer, supplier); 805 } 806 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 807 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 808 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 809 goto reorder; 810 } 811 812 goto out; 813 } 814 815 link = kzalloc(sizeof(*link), GFP_KERNEL); 816 if (!link) 817 goto out; 818 819 refcount_set(&link->rpm_active, 1); 820 821 get_device(supplier); 822 link->supplier = supplier; 823 INIT_LIST_HEAD(&link->s_node); 824 get_device(consumer); 825 link->consumer = consumer; 826 INIT_LIST_HEAD(&link->c_node); 827 link->flags = flags; 828 kref_init(&link->kref); 829 830 link->link_dev.class = &devlink_class; 831 device_set_pm_not_required(&link->link_dev); 832 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 833 dev_bus_name(supplier), dev_name(supplier), 834 dev_bus_name(consumer), dev_name(consumer)); 835 if (device_register(&link->link_dev)) { 836 put_device(&link->link_dev); 837 link = NULL; 838 goto out; 839 } 840 841 if (flags & DL_FLAG_PM_RUNTIME) { 842 if (flags & DL_FLAG_RPM_ACTIVE) 843 refcount_inc(&link->rpm_active); 844 845 pm_runtime_new_link(consumer); 846 } 847 848 /* Determine the initial link state. */ 849 if (flags & DL_FLAG_STATELESS) 850 link->status = DL_STATE_NONE; 851 else 852 device_link_init_status(link, consumer, supplier); 853 854 /* 855 * Some callers expect the link creation during consumer driver probe to 856 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 857 */ 858 if (link->status == DL_STATE_CONSUMER_PROBE && 859 flags & DL_FLAG_PM_RUNTIME) 860 pm_runtime_resume(supplier); 861 862 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 863 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 864 865 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 866 dev_dbg(consumer, 867 "Linked as a sync state only consumer to %s\n", 868 dev_name(supplier)); 869 goto out; 870 } 871 872 reorder: 873 /* 874 * Move the consumer and all of the devices depending on it to the end 875 * of dpm_list and the devices_kset list. 876 * 877 * It is necessary to hold dpm_list locked throughout all that or else 878 * we may end up suspending with a wrong ordering of it. 879 */ 880 device_reorder_to_tail(consumer, NULL); 881 882 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 883 884 out: 885 device_pm_unlock(); 886 device_links_write_unlock(); 887 888 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 889 pm_runtime_put(supplier); 890 891 return link; 892 } 893 EXPORT_SYMBOL_GPL(device_link_add); 894 895 static void __device_link_del(struct kref *kref) 896 { 897 struct device_link *link = container_of(kref, struct device_link, kref); 898 899 dev_dbg(link->consumer, "Dropping the link to %s\n", 900 dev_name(link->supplier)); 901 902 pm_runtime_drop_link(link); 903 904 device_link_remove_from_lists(link); 905 device_unregister(&link->link_dev); 906 } 907 908 static void device_link_put_kref(struct device_link *link) 909 { 910 if (link->flags & DL_FLAG_STATELESS) 911 kref_put(&link->kref, __device_link_del); 912 else if (!device_is_registered(link->consumer)) 913 __device_link_del(&link->kref); 914 else 915 WARN(1, "Unable to drop a managed device link reference\n"); 916 } 917 918 /** 919 * device_link_del - Delete a stateless link between two devices. 920 * @link: Device link to delete. 921 * 922 * The caller must ensure proper synchronization of this function with runtime 923 * PM. If the link was added multiple times, it needs to be deleted as often. 924 * Care is required for hotplugged devices: Their links are purged on removal 925 * and calling device_link_del() is then no longer allowed. 926 */ 927 void device_link_del(struct device_link *link) 928 { 929 device_links_write_lock(); 930 device_link_put_kref(link); 931 device_links_write_unlock(); 932 } 933 EXPORT_SYMBOL_GPL(device_link_del); 934 935 /** 936 * device_link_remove - Delete a stateless link between two devices. 937 * @consumer: Consumer end of the link. 938 * @supplier: Supplier end of the link. 939 * 940 * The caller must ensure proper synchronization of this function with runtime 941 * PM. 942 */ 943 void device_link_remove(void *consumer, struct device *supplier) 944 { 945 struct device_link *link; 946 947 if (WARN_ON(consumer == supplier)) 948 return; 949 950 device_links_write_lock(); 951 952 list_for_each_entry(link, &supplier->links.consumers, s_node) { 953 if (link->consumer == consumer) { 954 device_link_put_kref(link); 955 break; 956 } 957 } 958 959 device_links_write_unlock(); 960 } 961 EXPORT_SYMBOL_GPL(device_link_remove); 962 963 static void device_links_missing_supplier(struct device *dev) 964 { 965 struct device_link *link; 966 967 list_for_each_entry(link, &dev->links.suppliers, c_node) { 968 if (link->status != DL_STATE_CONSUMER_PROBE) 969 continue; 970 971 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 972 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 973 } else { 974 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 975 WRITE_ONCE(link->status, DL_STATE_DORMANT); 976 } 977 } 978 } 979 980 static bool dev_is_best_effort(struct device *dev) 981 { 982 return (fw_devlink_best_effort && dev->can_match) || 983 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT)); 984 } 985 986 /** 987 * device_links_check_suppliers - Check presence of supplier drivers. 988 * @dev: Consumer device. 989 * 990 * Check links from this device to any suppliers. Walk the list of the device's 991 * links to suppliers and see if all of them are available. If not, simply 992 * return -EPROBE_DEFER. 993 * 994 * We need to guarantee that the supplier will not go away after the check has 995 * been positive here. It only can go away in __device_release_driver() and 996 * that function checks the device's links to consumers. This means we need to 997 * mark the link as "consumer probe in progress" to make the supplier removal 998 * wait for us to complete (or bad things may happen). 999 * 1000 * Links without the DL_FLAG_MANAGED flag set are ignored. 1001 */ 1002 int device_links_check_suppliers(struct device *dev) 1003 { 1004 struct device_link *link; 1005 int ret = 0, fwnode_ret = 0; 1006 struct fwnode_handle *sup_fw; 1007 1008 /* 1009 * Device waiting for supplier to become available is not allowed to 1010 * probe. 1011 */ 1012 mutex_lock(&fwnode_link_lock); 1013 if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) && 1014 !fw_devlink_is_permissive()) { 1015 sup_fw = list_first_entry(&dev->fwnode->suppliers, 1016 struct fwnode_link, 1017 c_hook)->supplier; 1018 if (!dev_is_best_effort(dev)) { 1019 fwnode_ret = -EPROBE_DEFER; 1020 dev_err_probe(dev, -EPROBE_DEFER, 1021 "wait for supplier %pfwP\n", sup_fw); 1022 } else { 1023 fwnode_ret = -EAGAIN; 1024 } 1025 } 1026 mutex_unlock(&fwnode_link_lock); 1027 if (fwnode_ret == -EPROBE_DEFER) 1028 return fwnode_ret; 1029 1030 device_links_write_lock(); 1031 1032 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1033 if (!(link->flags & DL_FLAG_MANAGED)) 1034 continue; 1035 1036 if (link->status != DL_STATE_AVAILABLE && 1037 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1038 1039 if (dev_is_best_effort(dev) && 1040 link->flags & DL_FLAG_INFERRED && 1041 !link->supplier->can_match) { 1042 ret = -EAGAIN; 1043 continue; 1044 } 1045 1046 device_links_missing_supplier(dev); 1047 dev_err_probe(dev, -EPROBE_DEFER, 1048 "supplier %s not ready\n", 1049 dev_name(link->supplier)); 1050 ret = -EPROBE_DEFER; 1051 break; 1052 } 1053 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1054 } 1055 dev->links.status = DL_DEV_PROBING; 1056 1057 device_links_write_unlock(); 1058 1059 return ret ? ret : fwnode_ret; 1060 } 1061 1062 /** 1063 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1064 * @dev: Device to call sync_state() on 1065 * @list: List head to queue the @dev on 1066 * 1067 * Queues a device for a sync_state() callback when the device links write lock 1068 * isn't held. This allows the sync_state() execution flow to use device links 1069 * APIs. The caller must ensure this function is called with 1070 * device_links_write_lock() held. 1071 * 1072 * This function does a get_device() to make sure the device is not freed while 1073 * on this list. 1074 * 1075 * So the caller must also ensure that device_links_flush_sync_list() is called 1076 * as soon as the caller releases device_links_write_lock(). This is necessary 1077 * to make sure the sync_state() is called in a timely fashion and the 1078 * put_device() is called on this device. 1079 */ 1080 static void __device_links_queue_sync_state(struct device *dev, 1081 struct list_head *list) 1082 { 1083 struct device_link *link; 1084 1085 if (!dev_has_sync_state(dev)) 1086 return; 1087 if (dev->state_synced) 1088 return; 1089 1090 list_for_each_entry(link, &dev->links.consumers, s_node) { 1091 if (!(link->flags & DL_FLAG_MANAGED)) 1092 continue; 1093 if (link->status != DL_STATE_ACTIVE) 1094 return; 1095 } 1096 1097 /* 1098 * Set the flag here to avoid adding the same device to a list more 1099 * than once. This can happen if new consumers get added to the device 1100 * and probed before the list is flushed. 1101 */ 1102 dev->state_synced = true; 1103 1104 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1105 return; 1106 1107 get_device(dev); 1108 list_add_tail(&dev->links.defer_sync, list); 1109 } 1110 1111 /** 1112 * device_links_flush_sync_list - Call sync_state() on a list of devices 1113 * @list: List of devices to call sync_state() on 1114 * @dont_lock_dev: Device for which lock is already held by the caller 1115 * 1116 * Calls sync_state() on all the devices that have been queued for it. This 1117 * function is used in conjunction with __device_links_queue_sync_state(). The 1118 * @dont_lock_dev parameter is useful when this function is called from a 1119 * context where a device lock is already held. 1120 */ 1121 static void device_links_flush_sync_list(struct list_head *list, 1122 struct device *dont_lock_dev) 1123 { 1124 struct device *dev, *tmp; 1125 1126 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1127 list_del_init(&dev->links.defer_sync); 1128 1129 if (dev != dont_lock_dev) 1130 device_lock(dev); 1131 1132 if (dev->bus->sync_state) 1133 dev->bus->sync_state(dev); 1134 else if (dev->driver && dev->driver->sync_state) 1135 dev->driver->sync_state(dev); 1136 1137 if (dev != dont_lock_dev) 1138 device_unlock(dev); 1139 1140 put_device(dev); 1141 } 1142 } 1143 1144 void device_links_supplier_sync_state_pause(void) 1145 { 1146 device_links_write_lock(); 1147 defer_sync_state_count++; 1148 device_links_write_unlock(); 1149 } 1150 1151 void device_links_supplier_sync_state_resume(void) 1152 { 1153 struct device *dev, *tmp; 1154 LIST_HEAD(sync_list); 1155 1156 device_links_write_lock(); 1157 if (!defer_sync_state_count) { 1158 WARN(true, "Unmatched sync_state pause/resume!"); 1159 goto out; 1160 } 1161 defer_sync_state_count--; 1162 if (defer_sync_state_count) 1163 goto out; 1164 1165 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1166 /* 1167 * Delete from deferred_sync list before queuing it to 1168 * sync_list because defer_sync is used for both lists. 1169 */ 1170 list_del_init(&dev->links.defer_sync); 1171 __device_links_queue_sync_state(dev, &sync_list); 1172 } 1173 out: 1174 device_links_write_unlock(); 1175 1176 device_links_flush_sync_list(&sync_list, NULL); 1177 } 1178 1179 static int sync_state_resume_initcall(void) 1180 { 1181 device_links_supplier_sync_state_resume(); 1182 return 0; 1183 } 1184 late_initcall(sync_state_resume_initcall); 1185 1186 static void __device_links_supplier_defer_sync(struct device *sup) 1187 { 1188 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1189 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1190 } 1191 1192 static void device_link_drop_managed(struct device_link *link) 1193 { 1194 link->flags &= ~DL_FLAG_MANAGED; 1195 WRITE_ONCE(link->status, DL_STATE_NONE); 1196 kref_put(&link->kref, __device_link_del); 1197 } 1198 1199 static ssize_t waiting_for_supplier_show(struct device *dev, 1200 struct device_attribute *attr, 1201 char *buf) 1202 { 1203 bool val; 1204 1205 device_lock(dev); 1206 val = !list_empty(&dev->fwnode->suppliers); 1207 device_unlock(dev); 1208 return sysfs_emit(buf, "%u\n", val); 1209 } 1210 static DEVICE_ATTR_RO(waiting_for_supplier); 1211 1212 /** 1213 * device_links_force_bind - Prepares device to be force bound 1214 * @dev: Consumer device. 1215 * 1216 * device_bind_driver() force binds a device to a driver without calling any 1217 * driver probe functions. So the consumer really isn't going to wait for any 1218 * supplier before it's bound to the driver. We still want the device link 1219 * states to be sensible when this happens. 1220 * 1221 * In preparation for device_bind_driver(), this function goes through each 1222 * supplier device links and checks if the supplier is bound. If it is, then 1223 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1224 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1225 */ 1226 void device_links_force_bind(struct device *dev) 1227 { 1228 struct device_link *link, *ln; 1229 1230 device_links_write_lock(); 1231 1232 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1233 if (!(link->flags & DL_FLAG_MANAGED)) 1234 continue; 1235 1236 if (link->status != DL_STATE_AVAILABLE) { 1237 device_link_drop_managed(link); 1238 continue; 1239 } 1240 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1241 } 1242 dev->links.status = DL_DEV_PROBING; 1243 1244 device_links_write_unlock(); 1245 } 1246 1247 /** 1248 * device_links_driver_bound - Update device links after probing its driver. 1249 * @dev: Device to update the links for. 1250 * 1251 * The probe has been successful, so update links from this device to any 1252 * consumers by changing their status to "available". 1253 * 1254 * Also change the status of @dev's links to suppliers to "active". 1255 * 1256 * Links without the DL_FLAG_MANAGED flag set are ignored. 1257 */ 1258 void device_links_driver_bound(struct device *dev) 1259 { 1260 struct device_link *link, *ln; 1261 LIST_HEAD(sync_list); 1262 1263 /* 1264 * If a device binds successfully, it's expected to have created all 1265 * the device links it needs to or make new device links as it needs 1266 * them. So, fw_devlink no longer needs to create device links to any 1267 * of the device's suppliers. 1268 * 1269 * Also, if a child firmware node of this bound device is not added as 1270 * a device by now, assume it is never going to be added and make sure 1271 * other devices don't defer probe indefinitely by waiting for such a 1272 * child device. 1273 */ 1274 if (dev->fwnode && dev->fwnode->dev == dev) { 1275 struct fwnode_handle *child; 1276 fwnode_links_purge_suppliers(dev->fwnode); 1277 fwnode_for_each_available_child_node(dev->fwnode, child) 1278 fw_devlink_purge_absent_suppliers(child); 1279 } 1280 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1281 1282 device_links_write_lock(); 1283 1284 list_for_each_entry(link, &dev->links.consumers, s_node) { 1285 if (!(link->flags & DL_FLAG_MANAGED)) 1286 continue; 1287 1288 /* 1289 * Links created during consumer probe may be in the "consumer 1290 * probe" state to start with if the supplier is still probing 1291 * when they are created and they may become "active" if the 1292 * consumer probe returns first. Skip them here. 1293 */ 1294 if (link->status == DL_STATE_CONSUMER_PROBE || 1295 link->status == DL_STATE_ACTIVE) 1296 continue; 1297 1298 WARN_ON(link->status != DL_STATE_DORMANT); 1299 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1300 1301 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1302 driver_deferred_probe_add(link->consumer); 1303 } 1304 1305 if (defer_sync_state_count) 1306 __device_links_supplier_defer_sync(dev); 1307 else 1308 __device_links_queue_sync_state(dev, &sync_list); 1309 1310 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1311 struct device *supplier; 1312 1313 if (!(link->flags & DL_FLAG_MANAGED)) 1314 continue; 1315 1316 supplier = link->supplier; 1317 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1318 /* 1319 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1320 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1321 * save to drop the managed link completely. 1322 */ 1323 device_link_drop_managed(link); 1324 } else if (dev_is_best_effort(dev) && 1325 link->flags & DL_FLAG_INFERRED && 1326 link->status != DL_STATE_CONSUMER_PROBE && 1327 !link->supplier->can_match) { 1328 /* 1329 * When dev_is_best_effort() is true, we ignore device 1330 * links to suppliers that don't have a driver. If the 1331 * consumer device still managed to probe, there's no 1332 * point in maintaining a device link in a weird state 1333 * (consumer probed before supplier). So delete it. 1334 */ 1335 device_link_drop_managed(link); 1336 } else { 1337 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1338 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1339 } 1340 1341 /* 1342 * This needs to be done even for the deleted 1343 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1344 * device link that was preventing the supplier from getting a 1345 * sync_state() call. 1346 */ 1347 if (defer_sync_state_count) 1348 __device_links_supplier_defer_sync(supplier); 1349 else 1350 __device_links_queue_sync_state(supplier, &sync_list); 1351 } 1352 1353 dev->links.status = DL_DEV_DRIVER_BOUND; 1354 1355 device_links_write_unlock(); 1356 1357 device_links_flush_sync_list(&sync_list, dev); 1358 } 1359 1360 /** 1361 * __device_links_no_driver - Update links of a device without a driver. 1362 * @dev: Device without a drvier. 1363 * 1364 * Delete all non-persistent links from this device to any suppliers. 1365 * 1366 * Persistent links stay around, but their status is changed to "available", 1367 * unless they already are in the "supplier unbind in progress" state in which 1368 * case they need not be updated. 1369 * 1370 * Links without the DL_FLAG_MANAGED flag set are ignored. 1371 */ 1372 static void __device_links_no_driver(struct device *dev) 1373 { 1374 struct device_link *link, *ln; 1375 1376 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1377 if (!(link->flags & DL_FLAG_MANAGED)) 1378 continue; 1379 1380 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1381 device_link_drop_managed(link); 1382 continue; 1383 } 1384 1385 if (link->status != DL_STATE_CONSUMER_PROBE && 1386 link->status != DL_STATE_ACTIVE) 1387 continue; 1388 1389 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1390 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1391 } else { 1392 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1393 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1394 } 1395 } 1396 1397 dev->links.status = DL_DEV_NO_DRIVER; 1398 } 1399 1400 /** 1401 * device_links_no_driver - Update links after failing driver probe. 1402 * @dev: Device whose driver has just failed to probe. 1403 * 1404 * Clean up leftover links to consumers for @dev and invoke 1405 * %__device_links_no_driver() to update links to suppliers for it as 1406 * appropriate. 1407 * 1408 * Links without the DL_FLAG_MANAGED flag set are ignored. 1409 */ 1410 void device_links_no_driver(struct device *dev) 1411 { 1412 struct device_link *link; 1413 1414 device_links_write_lock(); 1415 1416 list_for_each_entry(link, &dev->links.consumers, s_node) { 1417 if (!(link->flags & DL_FLAG_MANAGED)) 1418 continue; 1419 1420 /* 1421 * The probe has failed, so if the status of the link is 1422 * "consumer probe" or "active", it must have been added by 1423 * a probing consumer while this device was still probing. 1424 * Change its state to "dormant", as it represents a valid 1425 * relationship, but it is not functionally meaningful. 1426 */ 1427 if (link->status == DL_STATE_CONSUMER_PROBE || 1428 link->status == DL_STATE_ACTIVE) 1429 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1430 } 1431 1432 __device_links_no_driver(dev); 1433 1434 device_links_write_unlock(); 1435 } 1436 1437 /** 1438 * device_links_driver_cleanup - Update links after driver removal. 1439 * @dev: Device whose driver has just gone away. 1440 * 1441 * Update links to consumers for @dev by changing their status to "dormant" and 1442 * invoke %__device_links_no_driver() to update links to suppliers for it as 1443 * appropriate. 1444 * 1445 * Links without the DL_FLAG_MANAGED flag set are ignored. 1446 */ 1447 void device_links_driver_cleanup(struct device *dev) 1448 { 1449 struct device_link *link, *ln; 1450 1451 device_links_write_lock(); 1452 1453 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1454 if (!(link->flags & DL_FLAG_MANAGED)) 1455 continue; 1456 1457 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1458 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1459 1460 /* 1461 * autoremove the links between this @dev and its consumer 1462 * devices that are not active, i.e. where the link state 1463 * has moved to DL_STATE_SUPPLIER_UNBIND. 1464 */ 1465 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1466 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1467 device_link_drop_managed(link); 1468 1469 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1470 } 1471 1472 list_del_init(&dev->links.defer_sync); 1473 __device_links_no_driver(dev); 1474 1475 device_links_write_unlock(); 1476 } 1477 1478 /** 1479 * device_links_busy - Check if there are any busy links to consumers. 1480 * @dev: Device to check. 1481 * 1482 * Check each consumer of the device and return 'true' if its link's status 1483 * is one of "consumer probe" or "active" (meaning that the given consumer is 1484 * probing right now or its driver is present). Otherwise, change the link 1485 * state to "supplier unbind" to prevent the consumer from being probed 1486 * successfully going forward. 1487 * 1488 * Return 'false' if there are no probing or active consumers. 1489 * 1490 * Links without the DL_FLAG_MANAGED flag set are ignored. 1491 */ 1492 bool device_links_busy(struct device *dev) 1493 { 1494 struct device_link *link; 1495 bool ret = false; 1496 1497 device_links_write_lock(); 1498 1499 list_for_each_entry(link, &dev->links.consumers, s_node) { 1500 if (!(link->flags & DL_FLAG_MANAGED)) 1501 continue; 1502 1503 if (link->status == DL_STATE_CONSUMER_PROBE 1504 || link->status == DL_STATE_ACTIVE) { 1505 ret = true; 1506 break; 1507 } 1508 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1509 } 1510 1511 dev->links.status = DL_DEV_UNBINDING; 1512 1513 device_links_write_unlock(); 1514 return ret; 1515 } 1516 1517 /** 1518 * device_links_unbind_consumers - Force unbind consumers of the given device. 1519 * @dev: Device to unbind the consumers of. 1520 * 1521 * Walk the list of links to consumers for @dev and if any of them is in the 1522 * "consumer probe" state, wait for all device probes in progress to complete 1523 * and start over. 1524 * 1525 * If that's not the case, change the status of the link to "supplier unbind" 1526 * and check if the link was in the "active" state. If so, force the consumer 1527 * driver to unbind and start over (the consumer will not re-probe as we have 1528 * changed the state of the link already). 1529 * 1530 * Links without the DL_FLAG_MANAGED flag set are ignored. 1531 */ 1532 void device_links_unbind_consumers(struct device *dev) 1533 { 1534 struct device_link *link; 1535 1536 start: 1537 device_links_write_lock(); 1538 1539 list_for_each_entry(link, &dev->links.consumers, s_node) { 1540 enum device_link_state status; 1541 1542 if (!(link->flags & DL_FLAG_MANAGED) || 1543 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1544 continue; 1545 1546 status = link->status; 1547 if (status == DL_STATE_CONSUMER_PROBE) { 1548 device_links_write_unlock(); 1549 1550 wait_for_device_probe(); 1551 goto start; 1552 } 1553 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1554 if (status == DL_STATE_ACTIVE) { 1555 struct device *consumer = link->consumer; 1556 1557 get_device(consumer); 1558 1559 device_links_write_unlock(); 1560 1561 device_release_driver_internal(consumer, NULL, 1562 consumer->parent); 1563 put_device(consumer); 1564 goto start; 1565 } 1566 } 1567 1568 device_links_write_unlock(); 1569 } 1570 1571 /** 1572 * device_links_purge - Delete existing links to other devices. 1573 * @dev: Target device. 1574 */ 1575 static void device_links_purge(struct device *dev) 1576 { 1577 struct device_link *link, *ln; 1578 1579 if (dev->class == &devlink_class) 1580 return; 1581 1582 /* 1583 * Delete all of the remaining links from this device to any other 1584 * devices (either consumers or suppliers). 1585 */ 1586 device_links_write_lock(); 1587 1588 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1589 WARN_ON(link->status == DL_STATE_ACTIVE); 1590 __device_link_del(&link->kref); 1591 } 1592 1593 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1594 WARN_ON(link->status != DL_STATE_DORMANT && 1595 link->status != DL_STATE_NONE); 1596 __device_link_del(&link->kref); 1597 } 1598 1599 device_links_write_unlock(); 1600 } 1601 1602 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1603 DL_FLAG_SYNC_STATE_ONLY) 1604 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1605 DL_FLAG_AUTOPROBE_CONSUMER) 1606 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1607 DL_FLAG_PM_RUNTIME) 1608 1609 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1610 static int __init fw_devlink_setup(char *arg) 1611 { 1612 if (!arg) 1613 return -EINVAL; 1614 1615 if (strcmp(arg, "off") == 0) { 1616 fw_devlink_flags = 0; 1617 } else if (strcmp(arg, "permissive") == 0) { 1618 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1619 } else if (strcmp(arg, "on") == 0) { 1620 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1621 } else if (strcmp(arg, "rpm") == 0) { 1622 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1623 } 1624 return 0; 1625 } 1626 early_param("fw_devlink", fw_devlink_setup); 1627 1628 static bool fw_devlink_strict; 1629 static int __init fw_devlink_strict_setup(char *arg) 1630 { 1631 return strtobool(arg, &fw_devlink_strict); 1632 } 1633 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1634 1635 u32 fw_devlink_get_flags(void) 1636 { 1637 return fw_devlink_flags; 1638 } 1639 1640 static bool fw_devlink_is_permissive(void) 1641 { 1642 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1643 } 1644 1645 bool fw_devlink_is_strict(void) 1646 { 1647 return fw_devlink_strict && !fw_devlink_is_permissive(); 1648 } 1649 1650 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1651 { 1652 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1653 return; 1654 1655 fwnode_call_int_op(fwnode, add_links); 1656 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1657 } 1658 1659 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1660 { 1661 struct fwnode_handle *child = NULL; 1662 1663 fw_devlink_parse_fwnode(fwnode); 1664 1665 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1666 fw_devlink_parse_fwtree(child); 1667 } 1668 1669 static void fw_devlink_relax_link(struct device_link *link) 1670 { 1671 if (!(link->flags & DL_FLAG_INFERRED)) 1672 return; 1673 1674 if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE)) 1675 return; 1676 1677 pm_runtime_drop_link(link); 1678 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1679 dev_dbg(link->consumer, "Relaxing link with %s\n", 1680 dev_name(link->supplier)); 1681 } 1682 1683 static int fw_devlink_no_driver(struct device *dev, void *data) 1684 { 1685 struct device_link *link = to_devlink(dev); 1686 1687 if (!link->supplier->can_match) 1688 fw_devlink_relax_link(link); 1689 1690 return 0; 1691 } 1692 1693 void fw_devlink_drivers_done(void) 1694 { 1695 fw_devlink_drv_reg_done = true; 1696 device_links_write_lock(); 1697 class_for_each_device(&devlink_class, NULL, NULL, 1698 fw_devlink_no_driver); 1699 device_links_write_unlock(); 1700 } 1701 1702 /** 1703 * wait_for_init_devices_probe - Try to probe any device needed for init 1704 * 1705 * Some devices might need to be probed and bound successfully before the kernel 1706 * boot sequence can finish and move on to init/userspace. For example, a 1707 * network interface might need to be bound to be able to mount a NFS rootfs. 1708 * 1709 * With fw_devlink=on by default, some of these devices might be blocked from 1710 * probing because they are waiting on a optional supplier that doesn't have a 1711 * driver. While fw_devlink will eventually identify such devices and unblock 1712 * the probing automatically, it might be too late by the time it unblocks the 1713 * probing of devices. For example, the IP4 autoconfig might timeout before 1714 * fw_devlink unblocks probing of the network interface. 1715 * 1716 * This function is available to temporarily try and probe all devices that have 1717 * a driver even if some of their suppliers haven't been added or don't have 1718 * drivers. 1719 * 1720 * The drivers can then decide which of the suppliers are optional vs mandatory 1721 * and probe the device if possible. By the time this function returns, all such 1722 * "best effort" probes are guaranteed to be completed. If a device successfully 1723 * probes in this mode, we delete all fw_devlink discovered dependencies of that 1724 * device where the supplier hasn't yet probed successfully because they have to 1725 * be optional dependencies. 1726 * 1727 * Any devices that didn't successfully probe go back to being treated as if 1728 * this function was never called. 1729 * 1730 * This also means that some devices that aren't needed for init and could have 1731 * waited for their optional supplier to probe (when the supplier's module is 1732 * loaded later on) would end up probing prematurely with limited functionality. 1733 * So call this function only when boot would fail without it. 1734 */ 1735 void __init wait_for_init_devices_probe(void) 1736 { 1737 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1738 return; 1739 1740 /* 1741 * Wait for all ongoing probes to finish so that the "best effort" is 1742 * only applied to devices that can't probe otherwise. 1743 */ 1744 wait_for_device_probe(); 1745 1746 pr_info("Trying to probe devices needed for running init ...\n"); 1747 fw_devlink_best_effort = true; 1748 driver_deferred_probe_trigger(); 1749 1750 /* 1751 * Wait for all "best effort" probes to finish before going back to 1752 * normal enforcement. 1753 */ 1754 wait_for_device_probe(); 1755 fw_devlink_best_effort = false; 1756 } 1757 1758 static void fw_devlink_unblock_consumers(struct device *dev) 1759 { 1760 struct device_link *link; 1761 1762 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1763 return; 1764 1765 device_links_write_lock(); 1766 list_for_each_entry(link, &dev->links.consumers, s_node) 1767 fw_devlink_relax_link(link); 1768 device_links_write_unlock(); 1769 } 1770 1771 /** 1772 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links 1773 * @con: Device to check dependencies for. 1774 * @sup: Device to check against. 1775 * 1776 * Check if @sup depends on @con or any device dependent on it (its child or 1777 * its consumer etc). When such a cyclic dependency is found, convert all 1778 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links. 1779 * This is the equivalent of doing fw_devlink=permissive just between the 1780 * devices in the cycle. We need to do this because, at this point, fw_devlink 1781 * can't tell which of these dependencies is not a real dependency. 1782 * 1783 * Return 1 if a cycle is found. Otherwise, return 0. 1784 */ 1785 static int fw_devlink_relax_cycle(struct device *con, void *sup) 1786 { 1787 struct device_link *link; 1788 int ret; 1789 1790 if (con == sup) 1791 return 1; 1792 1793 ret = device_for_each_child(con, sup, fw_devlink_relax_cycle); 1794 if (ret) 1795 return ret; 1796 1797 list_for_each_entry(link, &con->links.consumers, s_node) { 1798 if ((link->flags & ~DL_FLAG_INFERRED) == 1799 (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED)) 1800 continue; 1801 1802 if (!fw_devlink_relax_cycle(link->consumer, sup)) 1803 continue; 1804 1805 ret = 1; 1806 1807 fw_devlink_relax_link(link); 1808 } 1809 return ret; 1810 } 1811 1812 /** 1813 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 1814 * @con: consumer device for the device link 1815 * @sup_handle: fwnode handle of supplier 1816 * @flags: devlink flags 1817 * 1818 * This function will try to create a device link between the consumer device 1819 * @con and the supplier device represented by @sup_handle. 1820 * 1821 * The supplier has to be provided as a fwnode because incorrect cycles in 1822 * fwnode links can sometimes cause the supplier device to never be created. 1823 * This function detects such cases and returns an error if it cannot create a 1824 * device link from the consumer to a missing supplier. 1825 * 1826 * Returns, 1827 * 0 on successfully creating a device link 1828 * -EINVAL if the device link cannot be created as expected 1829 * -EAGAIN if the device link cannot be created right now, but it may be 1830 * possible to do that in the future 1831 */ 1832 static int fw_devlink_create_devlink(struct device *con, 1833 struct fwnode_handle *sup_handle, u32 flags) 1834 { 1835 struct device *sup_dev; 1836 int ret = 0; 1837 1838 /* 1839 * In some cases, a device P might also be a supplier to its child node 1840 * C. However, this would defer the probe of C until the probe of P 1841 * completes successfully. This is perfectly fine in the device driver 1842 * model. device_add() doesn't guarantee probe completion of the device 1843 * by the time it returns. 1844 * 1845 * However, there are a few drivers that assume C will finish probing 1846 * as soon as it's added and before P finishes probing. So, we provide 1847 * a flag to let fw_devlink know not to delay the probe of C until the 1848 * probe of P completes successfully. 1849 * 1850 * When such a flag is set, we can't create device links where P is the 1851 * supplier of C as that would delay the probe of C. 1852 */ 1853 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 1854 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 1855 return -EINVAL; 1856 1857 sup_dev = get_dev_from_fwnode(sup_handle); 1858 if (sup_dev) { 1859 /* 1860 * If it's one of those drivers that don't actually bind to 1861 * their device using driver core, then don't wait on this 1862 * supplier device indefinitely. 1863 */ 1864 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 1865 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 1866 ret = -EINVAL; 1867 goto out; 1868 } 1869 1870 /* 1871 * If this fails, it is due to cycles in device links. Just 1872 * give up on this link and treat it as invalid. 1873 */ 1874 if (!device_link_add(con, sup_dev, flags) && 1875 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 1876 dev_info(con, "Fixing up cyclic dependency with %s\n", 1877 dev_name(sup_dev)); 1878 device_links_write_lock(); 1879 fw_devlink_relax_cycle(con, sup_dev); 1880 device_links_write_unlock(); 1881 device_link_add(con, sup_dev, 1882 FW_DEVLINK_FLAGS_PERMISSIVE); 1883 ret = -EINVAL; 1884 } 1885 1886 goto out; 1887 } 1888 1889 /* Supplier that's already initialized without a struct device. */ 1890 if (sup_handle->flags & FWNODE_FLAG_INITIALIZED) 1891 return -EINVAL; 1892 1893 /* 1894 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports 1895 * cycles. So cycle detection isn't necessary and shouldn't be 1896 * done. 1897 */ 1898 if (flags & DL_FLAG_SYNC_STATE_ONLY) 1899 return -EAGAIN; 1900 1901 /* 1902 * If we can't find the supplier device from its fwnode, it might be 1903 * due to a cyclic dependency between fwnodes. Some of these cycles can 1904 * be broken by applying logic. Check for these types of cycles and 1905 * break them so that devices in the cycle probe properly. 1906 * 1907 * If the supplier's parent is dependent on the consumer, then the 1908 * consumer and supplier have a cyclic dependency. Since fw_devlink 1909 * can't tell which of the inferred dependencies are incorrect, don't 1910 * enforce probe ordering between any of the devices in this cyclic 1911 * dependency. Do this by relaxing all the fw_devlink device links in 1912 * this cycle and by treating the fwnode link between the consumer and 1913 * the supplier as an invalid dependency. 1914 */ 1915 sup_dev = fwnode_get_next_parent_dev(sup_handle); 1916 if (sup_dev && device_is_dependent(con, sup_dev)) { 1917 dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n", 1918 sup_handle, dev_name(sup_dev)); 1919 device_links_write_lock(); 1920 fw_devlink_relax_cycle(con, sup_dev); 1921 device_links_write_unlock(); 1922 ret = -EINVAL; 1923 } else { 1924 /* 1925 * Can't check for cycles or no cycles. So let's try 1926 * again later. 1927 */ 1928 ret = -EAGAIN; 1929 } 1930 1931 out: 1932 put_device(sup_dev); 1933 return ret; 1934 } 1935 1936 /** 1937 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 1938 * @dev: Device that needs to be linked to its consumers 1939 * 1940 * This function looks at all the consumer fwnodes of @dev and creates device 1941 * links between the consumer device and @dev (supplier). 1942 * 1943 * If the consumer device has not been added yet, then this function creates a 1944 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 1945 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 1946 * sync_state() callback before the real consumer device gets to be added and 1947 * then probed. 1948 * 1949 * Once device links are created from the real consumer to @dev (supplier), the 1950 * fwnode links are deleted. 1951 */ 1952 static void __fw_devlink_link_to_consumers(struct device *dev) 1953 { 1954 struct fwnode_handle *fwnode = dev->fwnode; 1955 struct fwnode_link *link, *tmp; 1956 1957 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 1958 u32 dl_flags = fw_devlink_get_flags(); 1959 struct device *con_dev; 1960 bool own_link = true; 1961 int ret; 1962 1963 con_dev = get_dev_from_fwnode(link->consumer); 1964 /* 1965 * If consumer device is not available yet, make a "proxy" 1966 * SYNC_STATE_ONLY link from the consumer's parent device to 1967 * the supplier device. This is necessary to make sure the 1968 * supplier doesn't get a sync_state() callback before the real 1969 * consumer can create a device link to the supplier. 1970 * 1971 * This proxy link step is needed to handle the case where the 1972 * consumer's parent device is added before the supplier. 1973 */ 1974 if (!con_dev) { 1975 con_dev = fwnode_get_next_parent_dev(link->consumer); 1976 /* 1977 * However, if the consumer's parent device is also the 1978 * parent of the supplier, don't create a 1979 * consumer-supplier link from the parent to its child 1980 * device. Such a dependency is impossible. 1981 */ 1982 if (con_dev && 1983 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 1984 put_device(con_dev); 1985 con_dev = NULL; 1986 } else { 1987 own_link = false; 1988 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1989 } 1990 } 1991 1992 if (!con_dev) 1993 continue; 1994 1995 ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags); 1996 put_device(con_dev); 1997 if (!own_link || ret == -EAGAIN) 1998 continue; 1999 2000 __fwnode_link_del(link); 2001 } 2002 } 2003 2004 /** 2005 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 2006 * @dev: The consumer device that needs to be linked to its suppliers 2007 * @fwnode: Root of the fwnode tree that is used to create device links 2008 * 2009 * This function looks at all the supplier fwnodes of fwnode tree rooted at 2010 * @fwnode and creates device links between @dev (consumer) and all the 2011 * supplier devices of the entire fwnode tree at @fwnode. 2012 * 2013 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 2014 * and the real suppliers of @dev. Once these device links are created, the 2015 * fwnode links are deleted. When such device links are successfully created, 2016 * this function is called recursively on those supplier devices. This is 2017 * needed to detect and break some invalid cycles in fwnode links. See 2018 * fw_devlink_create_devlink() for more details. 2019 * 2020 * In addition, it also looks at all the suppliers of the entire fwnode tree 2021 * because some of the child devices of @dev that have not been added yet 2022 * (because @dev hasn't probed) might already have their suppliers added to 2023 * driver core. So, this function creates SYNC_STATE_ONLY device links between 2024 * @dev (consumer) and these suppliers to make sure they don't execute their 2025 * sync_state() callbacks before these child devices have a chance to create 2026 * their device links. The fwnode links that correspond to the child devices 2027 * aren't delete because they are needed later to create the device links 2028 * between the real consumer and supplier devices. 2029 */ 2030 static void __fw_devlink_link_to_suppliers(struct device *dev, 2031 struct fwnode_handle *fwnode) 2032 { 2033 bool own_link = (dev->fwnode == fwnode); 2034 struct fwnode_link *link, *tmp; 2035 struct fwnode_handle *child = NULL; 2036 u32 dl_flags; 2037 2038 if (own_link) 2039 dl_flags = fw_devlink_get_flags(); 2040 else 2041 dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 2042 2043 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 2044 int ret; 2045 struct device *sup_dev; 2046 struct fwnode_handle *sup = link->supplier; 2047 2048 ret = fw_devlink_create_devlink(dev, sup, dl_flags); 2049 if (!own_link || ret == -EAGAIN) 2050 continue; 2051 2052 __fwnode_link_del(link); 2053 2054 /* If no device link was created, nothing more to do. */ 2055 if (ret) 2056 continue; 2057 2058 /* 2059 * If a device link was successfully created to a supplier, we 2060 * now need to try and link the supplier to all its suppliers. 2061 * 2062 * This is needed to detect and delete false dependencies in 2063 * fwnode links that haven't been converted to a device link 2064 * yet. See comments in fw_devlink_create_devlink() for more 2065 * details on the false dependency. 2066 * 2067 * Without deleting these false dependencies, some devices will 2068 * never probe because they'll keep waiting for their false 2069 * dependency fwnode links to be converted to device links. 2070 */ 2071 sup_dev = get_dev_from_fwnode(sup); 2072 __fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode); 2073 put_device(sup_dev); 2074 } 2075 2076 /* 2077 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 2078 * all the descendants. This proxy link step is needed to handle the 2079 * case where the supplier is added before the consumer's parent device 2080 * (@dev). 2081 */ 2082 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 2083 __fw_devlink_link_to_suppliers(dev, child); 2084 } 2085 2086 static void fw_devlink_link_device(struct device *dev) 2087 { 2088 struct fwnode_handle *fwnode = dev->fwnode; 2089 2090 if (!fw_devlink_flags) 2091 return; 2092 2093 fw_devlink_parse_fwtree(fwnode); 2094 2095 mutex_lock(&fwnode_link_lock); 2096 __fw_devlink_link_to_consumers(dev); 2097 __fw_devlink_link_to_suppliers(dev, fwnode); 2098 mutex_unlock(&fwnode_link_lock); 2099 } 2100 2101 /* Device links support end. */ 2102 2103 int (*platform_notify)(struct device *dev) = NULL; 2104 int (*platform_notify_remove)(struct device *dev) = NULL; 2105 static struct kobject *dev_kobj; 2106 struct kobject *sysfs_dev_char_kobj; 2107 struct kobject *sysfs_dev_block_kobj; 2108 2109 static DEFINE_MUTEX(device_hotplug_lock); 2110 2111 void lock_device_hotplug(void) 2112 { 2113 mutex_lock(&device_hotplug_lock); 2114 } 2115 2116 void unlock_device_hotplug(void) 2117 { 2118 mutex_unlock(&device_hotplug_lock); 2119 } 2120 2121 int lock_device_hotplug_sysfs(void) 2122 { 2123 if (mutex_trylock(&device_hotplug_lock)) 2124 return 0; 2125 2126 /* Avoid busy looping (5 ms of sleep should do). */ 2127 msleep(5); 2128 return restart_syscall(); 2129 } 2130 2131 #ifdef CONFIG_BLOCK 2132 static inline int device_is_not_partition(struct device *dev) 2133 { 2134 return !(dev->type == &part_type); 2135 } 2136 #else 2137 static inline int device_is_not_partition(struct device *dev) 2138 { 2139 return 1; 2140 } 2141 #endif 2142 2143 static void device_platform_notify(struct device *dev) 2144 { 2145 acpi_device_notify(dev); 2146 2147 software_node_notify(dev); 2148 2149 if (platform_notify) 2150 platform_notify(dev); 2151 } 2152 2153 static void device_platform_notify_remove(struct device *dev) 2154 { 2155 acpi_device_notify_remove(dev); 2156 2157 software_node_notify_remove(dev); 2158 2159 if (platform_notify_remove) 2160 platform_notify_remove(dev); 2161 } 2162 2163 /** 2164 * dev_driver_string - Return a device's driver name, if at all possible 2165 * @dev: struct device to get the name of 2166 * 2167 * Will return the device's driver's name if it is bound to a device. If 2168 * the device is not bound to a driver, it will return the name of the bus 2169 * it is attached to. If it is not attached to a bus either, an empty 2170 * string will be returned. 2171 */ 2172 const char *dev_driver_string(const struct device *dev) 2173 { 2174 struct device_driver *drv; 2175 2176 /* dev->driver can change to NULL underneath us because of unbinding, 2177 * so be careful about accessing it. dev->bus and dev->class should 2178 * never change once they are set, so they don't need special care. 2179 */ 2180 drv = READ_ONCE(dev->driver); 2181 return drv ? drv->name : dev_bus_name(dev); 2182 } 2183 EXPORT_SYMBOL(dev_driver_string); 2184 2185 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2186 2187 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2188 char *buf) 2189 { 2190 struct device_attribute *dev_attr = to_dev_attr(attr); 2191 struct device *dev = kobj_to_dev(kobj); 2192 ssize_t ret = -EIO; 2193 2194 if (dev_attr->show) 2195 ret = dev_attr->show(dev, dev_attr, buf); 2196 if (ret >= (ssize_t)PAGE_SIZE) { 2197 printk("dev_attr_show: %pS returned bad count\n", 2198 dev_attr->show); 2199 } 2200 return ret; 2201 } 2202 2203 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2204 const char *buf, size_t count) 2205 { 2206 struct device_attribute *dev_attr = to_dev_attr(attr); 2207 struct device *dev = kobj_to_dev(kobj); 2208 ssize_t ret = -EIO; 2209 2210 if (dev_attr->store) 2211 ret = dev_attr->store(dev, dev_attr, buf, count); 2212 return ret; 2213 } 2214 2215 static const struct sysfs_ops dev_sysfs_ops = { 2216 .show = dev_attr_show, 2217 .store = dev_attr_store, 2218 }; 2219 2220 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2221 2222 ssize_t device_store_ulong(struct device *dev, 2223 struct device_attribute *attr, 2224 const char *buf, size_t size) 2225 { 2226 struct dev_ext_attribute *ea = to_ext_attr(attr); 2227 int ret; 2228 unsigned long new; 2229 2230 ret = kstrtoul(buf, 0, &new); 2231 if (ret) 2232 return ret; 2233 *(unsigned long *)(ea->var) = new; 2234 /* Always return full write size even if we didn't consume all */ 2235 return size; 2236 } 2237 EXPORT_SYMBOL_GPL(device_store_ulong); 2238 2239 ssize_t device_show_ulong(struct device *dev, 2240 struct device_attribute *attr, 2241 char *buf) 2242 { 2243 struct dev_ext_attribute *ea = to_ext_attr(attr); 2244 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2245 } 2246 EXPORT_SYMBOL_GPL(device_show_ulong); 2247 2248 ssize_t device_store_int(struct device *dev, 2249 struct device_attribute *attr, 2250 const char *buf, size_t size) 2251 { 2252 struct dev_ext_attribute *ea = to_ext_attr(attr); 2253 int ret; 2254 long new; 2255 2256 ret = kstrtol(buf, 0, &new); 2257 if (ret) 2258 return ret; 2259 2260 if (new > INT_MAX || new < INT_MIN) 2261 return -EINVAL; 2262 *(int *)(ea->var) = new; 2263 /* Always return full write size even if we didn't consume all */ 2264 return size; 2265 } 2266 EXPORT_SYMBOL_GPL(device_store_int); 2267 2268 ssize_t device_show_int(struct device *dev, 2269 struct device_attribute *attr, 2270 char *buf) 2271 { 2272 struct dev_ext_attribute *ea = to_ext_attr(attr); 2273 2274 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2275 } 2276 EXPORT_SYMBOL_GPL(device_show_int); 2277 2278 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2279 const char *buf, size_t size) 2280 { 2281 struct dev_ext_attribute *ea = to_ext_attr(attr); 2282 2283 if (strtobool(buf, ea->var) < 0) 2284 return -EINVAL; 2285 2286 return size; 2287 } 2288 EXPORT_SYMBOL_GPL(device_store_bool); 2289 2290 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2291 char *buf) 2292 { 2293 struct dev_ext_attribute *ea = to_ext_attr(attr); 2294 2295 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2296 } 2297 EXPORT_SYMBOL_GPL(device_show_bool); 2298 2299 /** 2300 * device_release - free device structure. 2301 * @kobj: device's kobject. 2302 * 2303 * This is called once the reference count for the object 2304 * reaches 0. We forward the call to the device's release 2305 * method, which should handle actually freeing the structure. 2306 */ 2307 static void device_release(struct kobject *kobj) 2308 { 2309 struct device *dev = kobj_to_dev(kobj); 2310 struct device_private *p = dev->p; 2311 2312 /* 2313 * Some platform devices are driven without driver attached 2314 * and managed resources may have been acquired. Make sure 2315 * all resources are released. 2316 * 2317 * Drivers still can add resources into device after device 2318 * is deleted but alive, so release devres here to avoid 2319 * possible memory leak. 2320 */ 2321 devres_release_all(dev); 2322 2323 kfree(dev->dma_range_map); 2324 2325 if (dev->release) 2326 dev->release(dev); 2327 else if (dev->type && dev->type->release) 2328 dev->type->release(dev); 2329 else if (dev->class && dev->class->dev_release) 2330 dev->class->dev_release(dev); 2331 else 2332 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2333 dev_name(dev)); 2334 kfree(p); 2335 } 2336 2337 static const void *device_namespace(struct kobject *kobj) 2338 { 2339 struct device *dev = kobj_to_dev(kobj); 2340 const void *ns = NULL; 2341 2342 if (dev->class && dev->class->ns_type) 2343 ns = dev->class->namespace(dev); 2344 2345 return ns; 2346 } 2347 2348 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2349 { 2350 struct device *dev = kobj_to_dev(kobj); 2351 2352 if (dev->class && dev->class->get_ownership) 2353 dev->class->get_ownership(dev, uid, gid); 2354 } 2355 2356 static struct kobj_type device_ktype = { 2357 .release = device_release, 2358 .sysfs_ops = &dev_sysfs_ops, 2359 .namespace = device_namespace, 2360 .get_ownership = device_get_ownership, 2361 }; 2362 2363 2364 static int dev_uevent_filter(struct kobject *kobj) 2365 { 2366 const struct kobj_type *ktype = get_ktype(kobj); 2367 2368 if (ktype == &device_ktype) { 2369 struct device *dev = kobj_to_dev(kobj); 2370 if (dev->bus) 2371 return 1; 2372 if (dev->class) 2373 return 1; 2374 } 2375 return 0; 2376 } 2377 2378 static const char *dev_uevent_name(struct kobject *kobj) 2379 { 2380 struct device *dev = kobj_to_dev(kobj); 2381 2382 if (dev->bus) 2383 return dev->bus->name; 2384 if (dev->class) 2385 return dev->class->name; 2386 return NULL; 2387 } 2388 2389 static int dev_uevent(struct kobject *kobj, struct kobj_uevent_env *env) 2390 { 2391 struct device *dev = kobj_to_dev(kobj); 2392 int retval = 0; 2393 2394 /* add device node properties if present */ 2395 if (MAJOR(dev->devt)) { 2396 const char *tmp; 2397 const char *name; 2398 umode_t mode = 0; 2399 kuid_t uid = GLOBAL_ROOT_UID; 2400 kgid_t gid = GLOBAL_ROOT_GID; 2401 2402 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2403 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2404 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2405 if (name) { 2406 add_uevent_var(env, "DEVNAME=%s", name); 2407 if (mode) 2408 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2409 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2410 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2411 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2412 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2413 kfree(tmp); 2414 } 2415 } 2416 2417 if (dev->type && dev->type->name) 2418 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2419 2420 if (dev->driver) 2421 add_uevent_var(env, "DRIVER=%s", dev->driver->name); 2422 2423 /* Add common DT information about the device */ 2424 of_device_uevent(dev, env); 2425 2426 /* have the bus specific function add its stuff */ 2427 if (dev->bus && dev->bus->uevent) { 2428 retval = dev->bus->uevent(dev, env); 2429 if (retval) 2430 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2431 dev_name(dev), __func__, retval); 2432 } 2433 2434 /* have the class specific function add its stuff */ 2435 if (dev->class && dev->class->dev_uevent) { 2436 retval = dev->class->dev_uevent(dev, env); 2437 if (retval) 2438 pr_debug("device: '%s': %s: class uevent() " 2439 "returned %d\n", dev_name(dev), 2440 __func__, retval); 2441 } 2442 2443 /* have the device type specific function add its stuff */ 2444 if (dev->type && dev->type->uevent) { 2445 retval = dev->type->uevent(dev, env); 2446 if (retval) 2447 pr_debug("device: '%s': %s: dev_type uevent() " 2448 "returned %d\n", dev_name(dev), 2449 __func__, retval); 2450 } 2451 2452 return retval; 2453 } 2454 2455 static const struct kset_uevent_ops device_uevent_ops = { 2456 .filter = dev_uevent_filter, 2457 .name = dev_uevent_name, 2458 .uevent = dev_uevent, 2459 }; 2460 2461 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2462 char *buf) 2463 { 2464 struct kobject *top_kobj; 2465 struct kset *kset; 2466 struct kobj_uevent_env *env = NULL; 2467 int i; 2468 int len = 0; 2469 int retval; 2470 2471 /* search the kset, the device belongs to */ 2472 top_kobj = &dev->kobj; 2473 while (!top_kobj->kset && top_kobj->parent) 2474 top_kobj = top_kobj->parent; 2475 if (!top_kobj->kset) 2476 goto out; 2477 2478 kset = top_kobj->kset; 2479 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2480 goto out; 2481 2482 /* respect filter */ 2483 if (kset->uevent_ops && kset->uevent_ops->filter) 2484 if (!kset->uevent_ops->filter(&dev->kobj)) 2485 goto out; 2486 2487 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2488 if (!env) 2489 return -ENOMEM; 2490 2491 /* let the kset specific function add its keys */ 2492 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2493 if (retval) 2494 goto out; 2495 2496 /* copy keys to file */ 2497 for (i = 0; i < env->envp_idx; i++) 2498 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2499 out: 2500 kfree(env); 2501 return len; 2502 } 2503 2504 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2505 const char *buf, size_t count) 2506 { 2507 int rc; 2508 2509 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2510 2511 if (rc) { 2512 dev_err(dev, "uevent: failed to send synthetic uevent\n"); 2513 return rc; 2514 } 2515 2516 return count; 2517 } 2518 static DEVICE_ATTR_RW(uevent); 2519 2520 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2521 char *buf) 2522 { 2523 bool val; 2524 2525 device_lock(dev); 2526 val = !dev->offline; 2527 device_unlock(dev); 2528 return sysfs_emit(buf, "%u\n", val); 2529 } 2530 2531 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2532 const char *buf, size_t count) 2533 { 2534 bool val; 2535 int ret; 2536 2537 ret = strtobool(buf, &val); 2538 if (ret < 0) 2539 return ret; 2540 2541 ret = lock_device_hotplug_sysfs(); 2542 if (ret) 2543 return ret; 2544 2545 ret = val ? device_online(dev) : device_offline(dev); 2546 unlock_device_hotplug(); 2547 return ret < 0 ? ret : count; 2548 } 2549 static DEVICE_ATTR_RW(online); 2550 2551 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2552 char *buf) 2553 { 2554 const char *loc; 2555 2556 switch (dev->removable) { 2557 case DEVICE_REMOVABLE: 2558 loc = "removable"; 2559 break; 2560 case DEVICE_FIXED: 2561 loc = "fixed"; 2562 break; 2563 default: 2564 loc = "unknown"; 2565 } 2566 return sysfs_emit(buf, "%s\n", loc); 2567 } 2568 static DEVICE_ATTR_RO(removable); 2569 2570 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2571 { 2572 return sysfs_create_groups(&dev->kobj, groups); 2573 } 2574 EXPORT_SYMBOL_GPL(device_add_groups); 2575 2576 void device_remove_groups(struct device *dev, 2577 const struct attribute_group **groups) 2578 { 2579 sysfs_remove_groups(&dev->kobj, groups); 2580 } 2581 EXPORT_SYMBOL_GPL(device_remove_groups); 2582 2583 union device_attr_group_devres { 2584 const struct attribute_group *group; 2585 const struct attribute_group **groups; 2586 }; 2587 2588 static int devm_attr_group_match(struct device *dev, void *res, void *data) 2589 { 2590 return ((union device_attr_group_devres *)res)->group == data; 2591 } 2592 2593 static void devm_attr_group_remove(struct device *dev, void *res) 2594 { 2595 union device_attr_group_devres *devres = res; 2596 const struct attribute_group *group = devres->group; 2597 2598 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2599 sysfs_remove_group(&dev->kobj, group); 2600 } 2601 2602 static void devm_attr_groups_remove(struct device *dev, void *res) 2603 { 2604 union device_attr_group_devres *devres = res; 2605 const struct attribute_group **groups = devres->groups; 2606 2607 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2608 sysfs_remove_groups(&dev->kobj, groups); 2609 } 2610 2611 /** 2612 * devm_device_add_group - given a device, create a managed attribute group 2613 * @dev: The device to create the group for 2614 * @grp: The attribute group to create 2615 * 2616 * This function creates a group for the first time. It will explicitly 2617 * warn and error if any of the attribute files being created already exist. 2618 * 2619 * Returns 0 on success or error code on failure. 2620 */ 2621 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2622 { 2623 union device_attr_group_devres *devres; 2624 int error; 2625 2626 devres = devres_alloc(devm_attr_group_remove, 2627 sizeof(*devres), GFP_KERNEL); 2628 if (!devres) 2629 return -ENOMEM; 2630 2631 error = sysfs_create_group(&dev->kobj, grp); 2632 if (error) { 2633 devres_free(devres); 2634 return error; 2635 } 2636 2637 devres->group = grp; 2638 devres_add(dev, devres); 2639 return 0; 2640 } 2641 EXPORT_SYMBOL_GPL(devm_device_add_group); 2642 2643 /** 2644 * devm_device_remove_group: remove a managed group from a device 2645 * @dev: device to remove the group from 2646 * @grp: group to remove 2647 * 2648 * This function removes a group of attributes from a device. The attributes 2649 * previously have to have been created for this group, otherwise it will fail. 2650 */ 2651 void devm_device_remove_group(struct device *dev, 2652 const struct attribute_group *grp) 2653 { 2654 WARN_ON(devres_release(dev, devm_attr_group_remove, 2655 devm_attr_group_match, 2656 /* cast away const */ (void *)grp)); 2657 } 2658 EXPORT_SYMBOL_GPL(devm_device_remove_group); 2659 2660 /** 2661 * devm_device_add_groups - create a bunch of managed attribute groups 2662 * @dev: The device to create the group for 2663 * @groups: The attribute groups to create, NULL terminated 2664 * 2665 * This function creates a bunch of managed attribute groups. If an error 2666 * occurs when creating a group, all previously created groups will be 2667 * removed, unwinding everything back to the original state when this 2668 * function was called. It will explicitly warn and error if any of the 2669 * attribute files being created already exist. 2670 * 2671 * Returns 0 on success or error code from sysfs_create_group on failure. 2672 */ 2673 int devm_device_add_groups(struct device *dev, 2674 const struct attribute_group **groups) 2675 { 2676 union device_attr_group_devres *devres; 2677 int error; 2678 2679 devres = devres_alloc(devm_attr_groups_remove, 2680 sizeof(*devres), GFP_KERNEL); 2681 if (!devres) 2682 return -ENOMEM; 2683 2684 error = sysfs_create_groups(&dev->kobj, groups); 2685 if (error) { 2686 devres_free(devres); 2687 return error; 2688 } 2689 2690 devres->groups = groups; 2691 devres_add(dev, devres); 2692 return 0; 2693 } 2694 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2695 2696 /** 2697 * devm_device_remove_groups - remove a list of managed groups 2698 * 2699 * @dev: The device for the groups to be removed from 2700 * @groups: NULL terminated list of groups to be removed 2701 * 2702 * If groups is not NULL, remove the specified groups from the device. 2703 */ 2704 void devm_device_remove_groups(struct device *dev, 2705 const struct attribute_group **groups) 2706 { 2707 WARN_ON(devres_release(dev, devm_attr_groups_remove, 2708 devm_attr_group_match, 2709 /* cast away const */ (void *)groups)); 2710 } 2711 EXPORT_SYMBOL_GPL(devm_device_remove_groups); 2712 2713 static int device_add_attrs(struct device *dev) 2714 { 2715 struct class *class = dev->class; 2716 const struct device_type *type = dev->type; 2717 int error; 2718 2719 if (class) { 2720 error = device_add_groups(dev, class->dev_groups); 2721 if (error) 2722 return error; 2723 } 2724 2725 if (type) { 2726 error = device_add_groups(dev, type->groups); 2727 if (error) 2728 goto err_remove_class_groups; 2729 } 2730 2731 error = device_add_groups(dev, dev->groups); 2732 if (error) 2733 goto err_remove_type_groups; 2734 2735 if (device_supports_offline(dev) && !dev->offline_disabled) { 2736 error = device_create_file(dev, &dev_attr_online); 2737 if (error) 2738 goto err_remove_dev_groups; 2739 } 2740 2741 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2742 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2743 if (error) 2744 goto err_remove_dev_online; 2745 } 2746 2747 if (dev_removable_is_valid(dev)) { 2748 error = device_create_file(dev, &dev_attr_removable); 2749 if (error) 2750 goto err_remove_dev_waiting_for_supplier; 2751 } 2752 2753 if (dev_add_physical_location(dev)) { 2754 error = device_add_group(dev, 2755 &dev_attr_physical_location_group); 2756 if (error) 2757 goto err_remove_dev_removable; 2758 } 2759 2760 return 0; 2761 2762 err_remove_dev_removable: 2763 device_remove_file(dev, &dev_attr_removable); 2764 err_remove_dev_waiting_for_supplier: 2765 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2766 err_remove_dev_online: 2767 device_remove_file(dev, &dev_attr_online); 2768 err_remove_dev_groups: 2769 device_remove_groups(dev, dev->groups); 2770 err_remove_type_groups: 2771 if (type) 2772 device_remove_groups(dev, type->groups); 2773 err_remove_class_groups: 2774 if (class) 2775 device_remove_groups(dev, class->dev_groups); 2776 2777 return error; 2778 } 2779 2780 static void device_remove_attrs(struct device *dev) 2781 { 2782 struct class *class = dev->class; 2783 const struct device_type *type = dev->type; 2784 2785 if (dev->physical_location) { 2786 device_remove_group(dev, &dev_attr_physical_location_group); 2787 kfree(dev->physical_location); 2788 } 2789 2790 device_remove_file(dev, &dev_attr_removable); 2791 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2792 device_remove_file(dev, &dev_attr_online); 2793 device_remove_groups(dev, dev->groups); 2794 2795 if (type) 2796 device_remove_groups(dev, type->groups); 2797 2798 if (class) 2799 device_remove_groups(dev, class->dev_groups); 2800 } 2801 2802 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2803 char *buf) 2804 { 2805 return print_dev_t(buf, dev->devt); 2806 } 2807 static DEVICE_ATTR_RO(dev); 2808 2809 /* /sys/devices/ */ 2810 struct kset *devices_kset; 2811 2812 /** 2813 * devices_kset_move_before - Move device in the devices_kset's list. 2814 * @deva: Device to move. 2815 * @devb: Device @deva should come before. 2816 */ 2817 static void devices_kset_move_before(struct device *deva, struct device *devb) 2818 { 2819 if (!devices_kset) 2820 return; 2821 pr_debug("devices_kset: Moving %s before %s\n", 2822 dev_name(deva), dev_name(devb)); 2823 spin_lock(&devices_kset->list_lock); 2824 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2825 spin_unlock(&devices_kset->list_lock); 2826 } 2827 2828 /** 2829 * devices_kset_move_after - Move device in the devices_kset's list. 2830 * @deva: Device to move 2831 * @devb: Device @deva should come after. 2832 */ 2833 static void devices_kset_move_after(struct device *deva, struct device *devb) 2834 { 2835 if (!devices_kset) 2836 return; 2837 pr_debug("devices_kset: Moving %s after %s\n", 2838 dev_name(deva), dev_name(devb)); 2839 spin_lock(&devices_kset->list_lock); 2840 list_move(&deva->kobj.entry, &devb->kobj.entry); 2841 spin_unlock(&devices_kset->list_lock); 2842 } 2843 2844 /** 2845 * devices_kset_move_last - move the device to the end of devices_kset's list. 2846 * @dev: device to move 2847 */ 2848 void devices_kset_move_last(struct device *dev) 2849 { 2850 if (!devices_kset) 2851 return; 2852 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2853 spin_lock(&devices_kset->list_lock); 2854 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2855 spin_unlock(&devices_kset->list_lock); 2856 } 2857 2858 /** 2859 * device_create_file - create sysfs attribute file for device. 2860 * @dev: device. 2861 * @attr: device attribute descriptor. 2862 */ 2863 int device_create_file(struct device *dev, 2864 const struct device_attribute *attr) 2865 { 2866 int error = 0; 2867 2868 if (dev) { 2869 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 2870 "Attribute %s: write permission without 'store'\n", 2871 attr->attr.name); 2872 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 2873 "Attribute %s: read permission without 'show'\n", 2874 attr->attr.name); 2875 error = sysfs_create_file(&dev->kobj, &attr->attr); 2876 } 2877 2878 return error; 2879 } 2880 EXPORT_SYMBOL_GPL(device_create_file); 2881 2882 /** 2883 * device_remove_file - remove sysfs attribute file. 2884 * @dev: device. 2885 * @attr: device attribute descriptor. 2886 */ 2887 void device_remove_file(struct device *dev, 2888 const struct device_attribute *attr) 2889 { 2890 if (dev) 2891 sysfs_remove_file(&dev->kobj, &attr->attr); 2892 } 2893 EXPORT_SYMBOL_GPL(device_remove_file); 2894 2895 /** 2896 * device_remove_file_self - remove sysfs attribute file from its own method. 2897 * @dev: device. 2898 * @attr: device attribute descriptor. 2899 * 2900 * See kernfs_remove_self() for details. 2901 */ 2902 bool device_remove_file_self(struct device *dev, 2903 const struct device_attribute *attr) 2904 { 2905 if (dev) 2906 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 2907 else 2908 return false; 2909 } 2910 EXPORT_SYMBOL_GPL(device_remove_file_self); 2911 2912 /** 2913 * device_create_bin_file - create sysfs binary attribute file for device. 2914 * @dev: device. 2915 * @attr: device binary attribute descriptor. 2916 */ 2917 int device_create_bin_file(struct device *dev, 2918 const struct bin_attribute *attr) 2919 { 2920 int error = -EINVAL; 2921 if (dev) 2922 error = sysfs_create_bin_file(&dev->kobj, attr); 2923 return error; 2924 } 2925 EXPORT_SYMBOL_GPL(device_create_bin_file); 2926 2927 /** 2928 * device_remove_bin_file - remove sysfs binary attribute file 2929 * @dev: device. 2930 * @attr: device binary attribute descriptor. 2931 */ 2932 void device_remove_bin_file(struct device *dev, 2933 const struct bin_attribute *attr) 2934 { 2935 if (dev) 2936 sysfs_remove_bin_file(&dev->kobj, attr); 2937 } 2938 EXPORT_SYMBOL_GPL(device_remove_bin_file); 2939 2940 static void klist_children_get(struct klist_node *n) 2941 { 2942 struct device_private *p = to_device_private_parent(n); 2943 struct device *dev = p->device; 2944 2945 get_device(dev); 2946 } 2947 2948 static void klist_children_put(struct klist_node *n) 2949 { 2950 struct device_private *p = to_device_private_parent(n); 2951 struct device *dev = p->device; 2952 2953 put_device(dev); 2954 } 2955 2956 /** 2957 * device_initialize - init device structure. 2958 * @dev: device. 2959 * 2960 * This prepares the device for use by other layers by initializing 2961 * its fields. 2962 * It is the first half of device_register(), if called by 2963 * that function, though it can also be called separately, so one 2964 * may use @dev's fields. In particular, get_device()/put_device() 2965 * may be used for reference counting of @dev after calling this 2966 * function. 2967 * 2968 * All fields in @dev must be initialized by the caller to 0, except 2969 * for those explicitly set to some other value. The simplest 2970 * approach is to use kzalloc() to allocate the structure containing 2971 * @dev. 2972 * 2973 * NOTE: Use put_device() to give up your reference instead of freeing 2974 * @dev directly once you have called this function. 2975 */ 2976 void device_initialize(struct device *dev) 2977 { 2978 dev->kobj.kset = devices_kset; 2979 kobject_init(&dev->kobj, &device_ktype); 2980 INIT_LIST_HEAD(&dev->dma_pools); 2981 mutex_init(&dev->mutex); 2982 lockdep_set_novalidate_class(&dev->mutex); 2983 spin_lock_init(&dev->devres_lock); 2984 INIT_LIST_HEAD(&dev->devres_head); 2985 device_pm_init(dev); 2986 set_dev_node(dev, NUMA_NO_NODE); 2987 INIT_LIST_HEAD(&dev->links.consumers); 2988 INIT_LIST_HEAD(&dev->links.suppliers); 2989 INIT_LIST_HEAD(&dev->links.defer_sync); 2990 dev->links.status = DL_DEV_NO_DRIVER; 2991 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 2992 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 2993 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 2994 dev->dma_coherent = dma_default_coherent; 2995 #endif 2996 #ifdef CONFIG_SWIOTLB 2997 dev->dma_io_tlb_mem = &io_tlb_default_mem; 2998 #endif 2999 } 3000 EXPORT_SYMBOL_GPL(device_initialize); 3001 3002 struct kobject *virtual_device_parent(struct device *dev) 3003 { 3004 static struct kobject *virtual_dir = NULL; 3005 3006 if (!virtual_dir) 3007 virtual_dir = kobject_create_and_add("virtual", 3008 &devices_kset->kobj); 3009 3010 return virtual_dir; 3011 } 3012 3013 struct class_dir { 3014 struct kobject kobj; 3015 struct class *class; 3016 }; 3017 3018 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 3019 3020 static void class_dir_release(struct kobject *kobj) 3021 { 3022 struct class_dir *dir = to_class_dir(kobj); 3023 kfree(dir); 3024 } 3025 3026 static const 3027 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj) 3028 { 3029 struct class_dir *dir = to_class_dir(kobj); 3030 return dir->class->ns_type; 3031 } 3032 3033 static struct kobj_type class_dir_ktype = { 3034 .release = class_dir_release, 3035 .sysfs_ops = &kobj_sysfs_ops, 3036 .child_ns_type = class_dir_child_ns_type 3037 }; 3038 3039 static struct kobject * 3040 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj) 3041 { 3042 struct class_dir *dir; 3043 int retval; 3044 3045 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 3046 if (!dir) 3047 return ERR_PTR(-ENOMEM); 3048 3049 dir->class = class; 3050 kobject_init(&dir->kobj, &class_dir_ktype); 3051 3052 dir->kobj.kset = &class->p->glue_dirs; 3053 3054 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name); 3055 if (retval < 0) { 3056 kobject_put(&dir->kobj); 3057 return ERR_PTR(retval); 3058 } 3059 return &dir->kobj; 3060 } 3061 3062 static DEFINE_MUTEX(gdp_mutex); 3063 3064 static struct kobject *get_device_parent(struct device *dev, 3065 struct device *parent) 3066 { 3067 if (dev->class) { 3068 struct kobject *kobj = NULL; 3069 struct kobject *parent_kobj; 3070 struct kobject *k; 3071 3072 #ifdef CONFIG_BLOCK 3073 /* block disks show up in /sys/block */ 3074 if (sysfs_deprecated && dev->class == &block_class) { 3075 if (parent && parent->class == &block_class) 3076 return &parent->kobj; 3077 return &block_class.p->subsys.kobj; 3078 } 3079 #endif 3080 3081 /* 3082 * If we have no parent, we live in "virtual". 3083 * Class-devices with a non class-device as parent, live 3084 * in a "glue" directory to prevent namespace collisions. 3085 */ 3086 if (parent == NULL) 3087 parent_kobj = virtual_device_parent(dev); 3088 else if (parent->class && !dev->class->ns_type) 3089 return &parent->kobj; 3090 else 3091 parent_kobj = &parent->kobj; 3092 3093 mutex_lock(&gdp_mutex); 3094 3095 /* find our class-directory at the parent and reference it */ 3096 spin_lock(&dev->class->p->glue_dirs.list_lock); 3097 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry) 3098 if (k->parent == parent_kobj) { 3099 kobj = kobject_get(k); 3100 break; 3101 } 3102 spin_unlock(&dev->class->p->glue_dirs.list_lock); 3103 if (kobj) { 3104 mutex_unlock(&gdp_mutex); 3105 return kobj; 3106 } 3107 3108 /* or create a new class-directory at the parent device */ 3109 k = class_dir_create_and_add(dev->class, parent_kobj); 3110 /* do not emit an uevent for this simple "glue" directory */ 3111 mutex_unlock(&gdp_mutex); 3112 return k; 3113 } 3114 3115 /* subsystems can specify a default root directory for their devices */ 3116 if (!parent && dev->bus && dev->bus->dev_root) 3117 return &dev->bus->dev_root->kobj; 3118 3119 if (parent) 3120 return &parent->kobj; 3121 return NULL; 3122 } 3123 3124 static inline bool live_in_glue_dir(struct kobject *kobj, 3125 struct device *dev) 3126 { 3127 if (!kobj || !dev->class || 3128 kobj->kset != &dev->class->p->glue_dirs) 3129 return false; 3130 return true; 3131 } 3132 3133 static inline struct kobject *get_glue_dir(struct device *dev) 3134 { 3135 return dev->kobj.parent; 3136 } 3137 3138 /** 3139 * kobject_has_children - Returns whether a kobject has children. 3140 * @kobj: the object to test 3141 * 3142 * This will return whether a kobject has other kobjects as children. 3143 * 3144 * It does NOT account for the presence of attribute files, only sub 3145 * directories. It also assumes there is no concurrent addition or 3146 * removal of such children, and thus relies on external locking. 3147 */ 3148 static inline bool kobject_has_children(struct kobject *kobj) 3149 { 3150 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3151 3152 return kobj->sd && kobj->sd->dir.subdirs; 3153 } 3154 3155 /* 3156 * make sure cleaning up dir as the last step, we need to make 3157 * sure .release handler of kobject is run with holding the 3158 * global lock 3159 */ 3160 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3161 { 3162 unsigned int ref; 3163 3164 /* see if we live in a "glue" directory */ 3165 if (!live_in_glue_dir(glue_dir, dev)) 3166 return; 3167 3168 mutex_lock(&gdp_mutex); 3169 /** 3170 * There is a race condition between removing glue directory 3171 * and adding a new device under the glue directory. 3172 * 3173 * CPU1: CPU2: 3174 * 3175 * device_add() 3176 * get_device_parent() 3177 * class_dir_create_and_add() 3178 * kobject_add_internal() 3179 * create_dir() // create glue_dir 3180 * 3181 * device_add() 3182 * get_device_parent() 3183 * kobject_get() // get glue_dir 3184 * 3185 * device_del() 3186 * cleanup_glue_dir() 3187 * kobject_del(glue_dir) 3188 * 3189 * kobject_add() 3190 * kobject_add_internal() 3191 * create_dir() // in glue_dir 3192 * sysfs_create_dir_ns() 3193 * kernfs_create_dir_ns(sd) 3194 * 3195 * sysfs_remove_dir() // glue_dir->sd=NULL 3196 * sysfs_put() // free glue_dir->sd 3197 * 3198 * // sd is freed 3199 * kernfs_new_node(sd) 3200 * kernfs_get(glue_dir) 3201 * kernfs_add_one() 3202 * kernfs_put() 3203 * 3204 * Before CPU1 remove last child device under glue dir, if CPU2 add 3205 * a new device under glue dir, the glue_dir kobject reference count 3206 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3207 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3208 * and sysfs_put(). This result in glue_dir->sd is freed. 3209 * 3210 * Then the CPU2 will see a stale "empty" but still potentially used 3211 * glue dir around in kernfs_new_node(). 3212 * 3213 * In order to avoid this happening, we also should make sure that 3214 * kernfs_node for glue_dir is released in CPU1 only when refcount 3215 * for glue_dir kobj is 1. 3216 */ 3217 ref = kref_read(&glue_dir->kref); 3218 if (!kobject_has_children(glue_dir) && !--ref) 3219 kobject_del(glue_dir); 3220 kobject_put(glue_dir); 3221 mutex_unlock(&gdp_mutex); 3222 } 3223 3224 static int device_add_class_symlinks(struct device *dev) 3225 { 3226 struct device_node *of_node = dev_of_node(dev); 3227 int error; 3228 3229 if (of_node) { 3230 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3231 if (error) 3232 dev_warn(dev, "Error %d creating of_node link\n",error); 3233 /* An error here doesn't warrant bringing down the device */ 3234 } 3235 3236 if (!dev->class) 3237 return 0; 3238 3239 error = sysfs_create_link(&dev->kobj, 3240 &dev->class->p->subsys.kobj, 3241 "subsystem"); 3242 if (error) 3243 goto out_devnode; 3244 3245 if (dev->parent && device_is_not_partition(dev)) { 3246 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3247 "device"); 3248 if (error) 3249 goto out_subsys; 3250 } 3251 3252 #ifdef CONFIG_BLOCK 3253 /* /sys/block has directories and does not need symlinks */ 3254 if (sysfs_deprecated && dev->class == &block_class) 3255 return 0; 3256 #endif 3257 3258 /* link in the class directory pointing to the device */ 3259 error = sysfs_create_link(&dev->class->p->subsys.kobj, 3260 &dev->kobj, dev_name(dev)); 3261 if (error) 3262 goto out_device; 3263 3264 return 0; 3265 3266 out_device: 3267 sysfs_remove_link(&dev->kobj, "device"); 3268 3269 out_subsys: 3270 sysfs_remove_link(&dev->kobj, "subsystem"); 3271 out_devnode: 3272 sysfs_remove_link(&dev->kobj, "of_node"); 3273 return error; 3274 } 3275 3276 static void device_remove_class_symlinks(struct device *dev) 3277 { 3278 if (dev_of_node(dev)) 3279 sysfs_remove_link(&dev->kobj, "of_node"); 3280 3281 if (!dev->class) 3282 return; 3283 3284 if (dev->parent && device_is_not_partition(dev)) 3285 sysfs_remove_link(&dev->kobj, "device"); 3286 sysfs_remove_link(&dev->kobj, "subsystem"); 3287 #ifdef CONFIG_BLOCK 3288 if (sysfs_deprecated && dev->class == &block_class) 3289 return; 3290 #endif 3291 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev)); 3292 } 3293 3294 /** 3295 * dev_set_name - set a device name 3296 * @dev: device 3297 * @fmt: format string for the device's name 3298 */ 3299 int dev_set_name(struct device *dev, const char *fmt, ...) 3300 { 3301 va_list vargs; 3302 int err; 3303 3304 va_start(vargs, fmt); 3305 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3306 va_end(vargs); 3307 return err; 3308 } 3309 EXPORT_SYMBOL_GPL(dev_set_name); 3310 3311 /** 3312 * device_to_dev_kobj - select a /sys/dev/ directory for the device 3313 * @dev: device 3314 * 3315 * By default we select char/ for new entries. Setting class->dev_obj 3316 * to NULL prevents an entry from being created. class->dev_kobj must 3317 * be set (or cleared) before any devices are registered to the class 3318 * otherwise device_create_sys_dev_entry() and 3319 * device_remove_sys_dev_entry() will disagree about the presence of 3320 * the link. 3321 */ 3322 static struct kobject *device_to_dev_kobj(struct device *dev) 3323 { 3324 struct kobject *kobj; 3325 3326 if (dev->class) 3327 kobj = dev->class->dev_kobj; 3328 else 3329 kobj = sysfs_dev_char_kobj; 3330 3331 return kobj; 3332 } 3333 3334 static int device_create_sys_dev_entry(struct device *dev) 3335 { 3336 struct kobject *kobj = device_to_dev_kobj(dev); 3337 int error = 0; 3338 char devt_str[15]; 3339 3340 if (kobj) { 3341 format_dev_t(devt_str, dev->devt); 3342 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3343 } 3344 3345 return error; 3346 } 3347 3348 static void device_remove_sys_dev_entry(struct device *dev) 3349 { 3350 struct kobject *kobj = device_to_dev_kobj(dev); 3351 char devt_str[15]; 3352 3353 if (kobj) { 3354 format_dev_t(devt_str, dev->devt); 3355 sysfs_remove_link(kobj, devt_str); 3356 } 3357 } 3358 3359 static int device_private_init(struct device *dev) 3360 { 3361 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3362 if (!dev->p) 3363 return -ENOMEM; 3364 dev->p->device = dev; 3365 klist_init(&dev->p->klist_children, klist_children_get, 3366 klist_children_put); 3367 INIT_LIST_HEAD(&dev->p->deferred_probe); 3368 return 0; 3369 } 3370 3371 /** 3372 * device_add - add device to device hierarchy. 3373 * @dev: device. 3374 * 3375 * This is part 2 of device_register(), though may be called 3376 * separately _iff_ device_initialize() has been called separately. 3377 * 3378 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3379 * to the global and sibling lists for the device, then 3380 * adds it to the other relevant subsystems of the driver model. 3381 * 3382 * Do not call this routine or device_register() more than once for 3383 * any device structure. The driver model core is not designed to work 3384 * with devices that get unregistered and then spring back to life. 3385 * (Among other things, it's very hard to guarantee that all references 3386 * to the previous incarnation of @dev have been dropped.) Allocate 3387 * and register a fresh new struct device instead. 3388 * 3389 * NOTE: _Never_ directly free @dev after calling this function, even 3390 * if it returned an error! Always use put_device() to give up your 3391 * reference instead. 3392 * 3393 * Rule of thumb is: if device_add() succeeds, you should call 3394 * device_del() when you want to get rid of it. If device_add() has 3395 * *not* succeeded, use *only* put_device() to drop the reference 3396 * count. 3397 */ 3398 int device_add(struct device *dev) 3399 { 3400 struct device *parent; 3401 struct kobject *kobj; 3402 struct class_interface *class_intf; 3403 int error = -EINVAL; 3404 struct kobject *glue_dir = NULL; 3405 3406 dev = get_device(dev); 3407 if (!dev) 3408 goto done; 3409 3410 if (!dev->p) { 3411 error = device_private_init(dev); 3412 if (error) 3413 goto done; 3414 } 3415 3416 /* 3417 * for statically allocated devices, which should all be converted 3418 * some day, we need to initialize the name. We prevent reading back 3419 * the name, and force the use of dev_name() 3420 */ 3421 if (dev->init_name) { 3422 dev_set_name(dev, "%s", dev->init_name); 3423 dev->init_name = NULL; 3424 } 3425 3426 /* subsystems can specify simple device enumeration */ 3427 if (!dev_name(dev) && dev->bus && dev->bus->dev_name) 3428 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3429 3430 if (!dev_name(dev)) { 3431 error = -EINVAL; 3432 goto name_error; 3433 } 3434 3435 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3436 3437 parent = get_device(dev->parent); 3438 kobj = get_device_parent(dev, parent); 3439 if (IS_ERR(kobj)) { 3440 error = PTR_ERR(kobj); 3441 goto parent_error; 3442 } 3443 if (kobj) 3444 dev->kobj.parent = kobj; 3445 3446 /* use parent numa_node */ 3447 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3448 set_dev_node(dev, dev_to_node(parent)); 3449 3450 /* first, register with generic layer. */ 3451 /* we require the name to be set before, and pass NULL */ 3452 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3453 if (error) { 3454 glue_dir = get_glue_dir(dev); 3455 goto Error; 3456 } 3457 3458 /* notify platform of device entry */ 3459 device_platform_notify(dev); 3460 3461 error = device_create_file(dev, &dev_attr_uevent); 3462 if (error) 3463 goto attrError; 3464 3465 error = device_add_class_symlinks(dev); 3466 if (error) 3467 goto SymlinkError; 3468 error = device_add_attrs(dev); 3469 if (error) 3470 goto AttrsError; 3471 error = bus_add_device(dev); 3472 if (error) 3473 goto BusError; 3474 error = dpm_sysfs_add(dev); 3475 if (error) 3476 goto DPMError; 3477 device_pm_add(dev); 3478 3479 if (MAJOR(dev->devt)) { 3480 error = device_create_file(dev, &dev_attr_dev); 3481 if (error) 3482 goto DevAttrError; 3483 3484 error = device_create_sys_dev_entry(dev); 3485 if (error) 3486 goto SysEntryError; 3487 3488 devtmpfs_create_node(dev); 3489 } 3490 3491 /* Notify clients of device addition. This call must come 3492 * after dpm_sysfs_add() and before kobject_uevent(). 3493 */ 3494 if (dev->bus) 3495 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3496 BUS_NOTIFY_ADD_DEVICE, dev); 3497 3498 kobject_uevent(&dev->kobj, KOBJ_ADD); 3499 3500 /* 3501 * Check if any of the other devices (consumers) have been waiting for 3502 * this device (supplier) to be added so that they can create a device 3503 * link to it. 3504 * 3505 * This needs to happen after device_pm_add() because device_link_add() 3506 * requires the supplier be registered before it's called. 3507 * 3508 * But this also needs to happen before bus_probe_device() to make sure 3509 * waiting consumers can link to it before the driver is bound to the 3510 * device and the driver sync_state callback is called for this device. 3511 */ 3512 if (dev->fwnode && !dev->fwnode->dev) { 3513 dev->fwnode->dev = dev; 3514 fw_devlink_link_device(dev); 3515 } 3516 3517 bus_probe_device(dev); 3518 3519 /* 3520 * If all driver registration is done and a newly added device doesn't 3521 * match with any driver, don't block its consumers from probing in 3522 * case the consumer device is able to operate without this supplier. 3523 */ 3524 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3525 fw_devlink_unblock_consumers(dev); 3526 3527 if (parent) 3528 klist_add_tail(&dev->p->knode_parent, 3529 &parent->p->klist_children); 3530 3531 if (dev->class) { 3532 mutex_lock(&dev->class->p->mutex); 3533 /* tie the class to the device */ 3534 klist_add_tail(&dev->p->knode_class, 3535 &dev->class->p->klist_devices); 3536 3537 /* notify any interfaces that the device is here */ 3538 list_for_each_entry(class_intf, 3539 &dev->class->p->interfaces, node) 3540 if (class_intf->add_dev) 3541 class_intf->add_dev(dev, class_intf); 3542 mutex_unlock(&dev->class->p->mutex); 3543 } 3544 done: 3545 put_device(dev); 3546 return error; 3547 SysEntryError: 3548 if (MAJOR(dev->devt)) 3549 device_remove_file(dev, &dev_attr_dev); 3550 DevAttrError: 3551 device_pm_remove(dev); 3552 dpm_sysfs_remove(dev); 3553 DPMError: 3554 bus_remove_device(dev); 3555 BusError: 3556 device_remove_attrs(dev); 3557 AttrsError: 3558 device_remove_class_symlinks(dev); 3559 SymlinkError: 3560 device_remove_file(dev, &dev_attr_uevent); 3561 attrError: 3562 device_platform_notify_remove(dev); 3563 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3564 glue_dir = get_glue_dir(dev); 3565 kobject_del(&dev->kobj); 3566 Error: 3567 cleanup_glue_dir(dev, glue_dir); 3568 parent_error: 3569 put_device(parent); 3570 name_error: 3571 kfree(dev->p); 3572 dev->p = NULL; 3573 goto done; 3574 } 3575 EXPORT_SYMBOL_GPL(device_add); 3576 3577 /** 3578 * device_register - register a device with the system. 3579 * @dev: pointer to the device structure 3580 * 3581 * This happens in two clean steps - initialize the device 3582 * and add it to the system. The two steps can be called 3583 * separately, but this is the easiest and most common. 3584 * I.e. you should only call the two helpers separately if 3585 * have a clearly defined need to use and refcount the device 3586 * before it is added to the hierarchy. 3587 * 3588 * For more information, see the kerneldoc for device_initialize() 3589 * and device_add(). 3590 * 3591 * NOTE: _Never_ directly free @dev after calling this function, even 3592 * if it returned an error! Always use put_device() to give up the 3593 * reference initialized in this function instead. 3594 */ 3595 int device_register(struct device *dev) 3596 { 3597 device_initialize(dev); 3598 return device_add(dev); 3599 } 3600 EXPORT_SYMBOL_GPL(device_register); 3601 3602 /** 3603 * get_device - increment reference count for device. 3604 * @dev: device. 3605 * 3606 * This simply forwards the call to kobject_get(), though 3607 * we do take care to provide for the case that we get a NULL 3608 * pointer passed in. 3609 */ 3610 struct device *get_device(struct device *dev) 3611 { 3612 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3613 } 3614 EXPORT_SYMBOL_GPL(get_device); 3615 3616 /** 3617 * put_device - decrement reference count. 3618 * @dev: device in question. 3619 */ 3620 void put_device(struct device *dev) 3621 { 3622 /* might_sleep(); */ 3623 if (dev) 3624 kobject_put(&dev->kobj); 3625 } 3626 EXPORT_SYMBOL_GPL(put_device); 3627 3628 bool kill_device(struct device *dev) 3629 { 3630 /* 3631 * Require the device lock and set the "dead" flag to guarantee that 3632 * the update behavior is consistent with the other bitfields near 3633 * it and that we cannot have an asynchronous probe routine trying 3634 * to run while we are tearing out the bus/class/sysfs from 3635 * underneath the device. 3636 */ 3637 device_lock_assert(dev); 3638 3639 if (dev->p->dead) 3640 return false; 3641 dev->p->dead = true; 3642 return true; 3643 } 3644 EXPORT_SYMBOL_GPL(kill_device); 3645 3646 /** 3647 * device_del - delete device from system. 3648 * @dev: device. 3649 * 3650 * This is the first part of the device unregistration 3651 * sequence. This removes the device from the lists we control 3652 * from here, has it removed from the other driver model 3653 * subsystems it was added to in device_add(), and removes it 3654 * from the kobject hierarchy. 3655 * 3656 * NOTE: this should be called manually _iff_ device_add() was 3657 * also called manually. 3658 */ 3659 void device_del(struct device *dev) 3660 { 3661 struct device *parent = dev->parent; 3662 struct kobject *glue_dir = NULL; 3663 struct class_interface *class_intf; 3664 unsigned int noio_flag; 3665 3666 device_lock(dev); 3667 kill_device(dev); 3668 device_unlock(dev); 3669 3670 if (dev->fwnode && dev->fwnode->dev == dev) 3671 dev->fwnode->dev = NULL; 3672 3673 /* Notify clients of device removal. This call must come 3674 * before dpm_sysfs_remove(). 3675 */ 3676 noio_flag = memalloc_noio_save(); 3677 if (dev->bus) 3678 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3679 BUS_NOTIFY_DEL_DEVICE, dev); 3680 3681 dpm_sysfs_remove(dev); 3682 if (parent) 3683 klist_del(&dev->p->knode_parent); 3684 if (MAJOR(dev->devt)) { 3685 devtmpfs_delete_node(dev); 3686 device_remove_sys_dev_entry(dev); 3687 device_remove_file(dev, &dev_attr_dev); 3688 } 3689 if (dev->class) { 3690 device_remove_class_symlinks(dev); 3691 3692 mutex_lock(&dev->class->p->mutex); 3693 /* notify any interfaces that the device is now gone */ 3694 list_for_each_entry(class_intf, 3695 &dev->class->p->interfaces, node) 3696 if (class_intf->remove_dev) 3697 class_intf->remove_dev(dev, class_intf); 3698 /* remove the device from the class list */ 3699 klist_del(&dev->p->knode_class); 3700 mutex_unlock(&dev->class->p->mutex); 3701 } 3702 device_remove_file(dev, &dev_attr_uevent); 3703 device_remove_attrs(dev); 3704 bus_remove_device(dev); 3705 device_pm_remove(dev); 3706 driver_deferred_probe_del(dev); 3707 device_platform_notify_remove(dev); 3708 device_links_purge(dev); 3709 3710 if (dev->bus) 3711 blocking_notifier_call_chain(&dev->bus->p->bus_notifier, 3712 BUS_NOTIFY_REMOVED_DEVICE, dev); 3713 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3714 glue_dir = get_glue_dir(dev); 3715 kobject_del(&dev->kobj); 3716 cleanup_glue_dir(dev, glue_dir); 3717 memalloc_noio_restore(noio_flag); 3718 put_device(parent); 3719 } 3720 EXPORT_SYMBOL_GPL(device_del); 3721 3722 /** 3723 * device_unregister - unregister device from system. 3724 * @dev: device going away. 3725 * 3726 * We do this in two parts, like we do device_register(). First, 3727 * we remove it from all the subsystems with device_del(), then 3728 * we decrement the reference count via put_device(). If that 3729 * is the final reference count, the device will be cleaned up 3730 * via device_release() above. Otherwise, the structure will 3731 * stick around until the final reference to the device is dropped. 3732 */ 3733 void device_unregister(struct device *dev) 3734 { 3735 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3736 device_del(dev); 3737 put_device(dev); 3738 } 3739 EXPORT_SYMBOL_GPL(device_unregister); 3740 3741 static struct device *prev_device(struct klist_iter *i) 3742 { 3743 struct klist_node *n = klist_prev(i); 3744 struct device *dev = NULL; 3745 struct device_private *p; 3746 3747 if (n) { 3748 p = to_device_private_parent(n); 3749 dev = p->device; 3750 } 3751 return dev; 3752 } 3753 3754 static struct device *next_device(struct klist_iter *i) 3755 { 3756 struct klist_node *n = klist_next(i); 3757 struct device *dev = NULL; 3758 struct device_private *p; 3759 3760 if (n) { 3761 p = to_device_private_parent(n); 3762 dev = p->device; 3763 } 3764 return dev; 3765 } 3766 3767 /** 3768 * device_get_devnode - path of device node file 3769 * @dev: device 3770 * @mode: returned file access mode 3771 * @uid: returned file owner 3772 * @gid: returned file group 3773 * @tmp: possibly allocated string 3774 * 3775 * Return the relative path of a possible device node. 3776 * Non-default names may need to allocate a memory to compose 3777 * a name. This memory is returned in tmp and needs to be 3778 * freed by the caller. 3779 */ 3780 const char *device_get_devnode(struct device *dev, 3781 umode_t *mode, kuid_t *uid, kgid_t *gid, 3782 const char **tmp) 3783 { 3784 char *s; 3785 3786 *tmp = NULL; 3787 3788 /* the device type may provide a specific name */ 3789 if (dev->type && dev->type->devnode) 3790 *tmp = dev->type->devnode(dev, mode, uid, gid); 3791 if (*tmp) 3792 return *tmp; 3793 3794 /* the class may provide a specific name */ 3795 if (dev->class && dev->class->devnode) 3796 *tmp = dev->class->devnode(dev, mode); 3797 if (*tmp) 3798 return *tmp; 3799 3800 /* return name without allocation, tmp == NULL */ 3801 if (strchr(dev_name(dev), '!') == NULL) 3802 return dev_name(dev); 3803 3804 /* replace '!' in the name with '/' */ 3805 s = kstrdup(dev_name(dev), GFP_KERNEL); 3806 if (!s) 3807 return NULL; 3808 strreplace(s, '!', '/'); 3809 return *tmp = s; 3810 } 3811 3812 /** 3813 * device_for_each_child - device child iterator. 3814 * @parent: parent struct device. 3815 * @fn: function to be called for each device. 3816 * @data: data for the callback. 3817 * 3818 * Iterate over @parent's child devices, and call @fn for each, 3819 * passing it @data. 3820 * 3821 * We check the return of @fn each time. If it returns anything 3822 * other than 0, we break out and return that value. 3823 */ 3824 int device_for_each_child(struct device *parent, void *data, 3825 int (*fn)(struct device *dev, void *data)) 3826 { 3827 struct klist_iter i; 3828 struct device *child; 3829 int error = 0; 3830 3831 if (!parent->p) 3832 return 0; 3833 3834 klist_iter_init(&parent->p->klist_children, &i); 3835 while (!error && (child = next_device(&i))) 3836 error = fn(child, data); 3837 klist_iter_exit(&i); 3838 return error; 3839 } 3840 EXPORT_SYMBOL_GPL(device_for_each_child); 3841 3842 /** 3843 * device_for_each_child_reverse - device child iterator in reversed order. 3844 * @parent: parent struct device. 3845 * @fn: function to be called for each device. 3846 * @data: data for the callback. 3847 * 3848 * Iterate over @parent's child devices, and call @fn for each, 3849 * passing it @data. 3850 * 3851 * We check the return of @fn each time. If it returns anything 3852 * other than 0, we break out and return that value. 3853 */ 3854 int device_for_each_child_reverse(struct device *parent, void *data, 3855 int (*fn)(struct device *dev, void *data)) 3856 { 3857 struct klist_iter i; 3858 struct device *child; 3859 int error = 0; 3860 3861 if (!parent->p) 3862 return 0; 3863 3864 klist_iter_init(&parent->p->klist_children, &i); 3865 while ((child = prev_device(&i)) && !error) 3866 error = fn(child, data); 3867 klist_iter_exit(&i); 3868 return error; 3869 } 3870 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 3871 3872 /** 3873 * device_find_child - device iterator for locating a particular device. 3874 * @parent: parent struct device 3875 * @match: Callback function to check device 3876 * @data: Data to pass to match function 3877 * 3878 * This is similar to the device_for_each_child() function above, but it 3879 * returns a reference to a device that is 'found' for later use, as 3880 * determined by the @match callback. 3881 * 3882 * The callback should return 0 if the device doesn't match and non-zero 3883 * if it does. If the callback returns non-zero and a reference to the 3884 * current device can be obtained, this function will return to the caller 3885 * and not iterate over any more devices. 3886 * 3887 * NOTE: you will need to drop the reference with put_device() after use. 3888 */ 3889 struct device *device_find_child(struct device *parent, void *data, 3890 int (*match)(struct device *dev, void *data)) 3891 { 3892 struct klist_iter i; 3893 struct device *child; 3894 3895 if (!parent) 3896 return NULL; 3897 3898 klist_iter_init(&parent->p->klist_children, &i); 3899 while ((child = next_device(&i))) 3900 if (match(child, data) && get_device(child)) 3901 break; 3902 klist_iter_exit(&i); 3903 return child; 3904 } 3905 EXPORT_SYMBOL_GPL(device_find_child); 3906 3907 /** 3908 * device_find_child_by_name - device iterator for locating a child device. 3909 * @parent: parent struct device 3910 * @name: name of the child device 3911 * 3912 * This is similar to the device_find_child() function above, but it 3913 * returns a reference to a device that has the name @name. 3914 * 3915 * NOTE: you will need to drop the reference with put_device() after use. 3916 */ 3917 struct device *device_find_child_by_name(struct device *parent, 3918 const char *name) 3919 { 3920 struct klist_iter i; 3921 struct device *child; 3922 3923 if (!parent) 3924 return NULL; 3925 3926 klist_iter_init(&parent->p->klist_children, &i); 3927 while ((child = next_device(&i))) 3928 if (sysfs_streq(dev_name(child), name) && get_device(child)) 3929 break; 3930 klist_iter_exit(&i); 3931 return child; 3932 } 3933 EXPORT_SYMBOL_GPL(device_find_child_by_name); 3934 3935 static int match_any(struct device *dev, void *unused) 3936 { 3937 return 1; 3938 } 3939 3940 /** 3941 * device_find_any_child - device iterator for locating a child device, if any. 3942 * @parent: parent struct device 3943 * 3944 * This is similar to the device_find_child() function above, but it 3945 * returns a reference to a child device, if any. 3946 * 3947 * NOTE: you will need to drop the reference with put_device() after use. 3948 */ 3949 struct device *device_find_any_child(struct device *parent) 3950 { 3951 return device_find_child(parent, NULL, match_any); 3952 } 3953 EXPORT_SYMBOL_GPL(device_find_any_child); 3954 3955 int __init devices_init(void) 3956 { 3957 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 3958 if (!devices_kset) 3959 return -ENOMEM; 3960 dev_kobj = kobject_create_and_add("dev", NULL); 3961 if (!dev_kobj) 3962 goto dev_kobj_err; 3963 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 3964 if (!sysfs_dev_block_kobj) 3965 goto block_kobj_err; 3966 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 3967 if (!sysfs_dev_char_kobj) 3968 goto char_kobj_err; 3969 3970 return 0; 3971 3972 char_kobj_err: 3973 kobject_put(sysfs_dev_block_kobj); 3974 block_kobj_err: 3975 kobject_put(dev_kobj); 3976 dev_kobj_err: 3977 kset_unregister(devices_kset); 3978 return -ENOMEM; 3979 } 3980 3981 static int device_check_offline(struct device *dev, void *not_used) 3982 { 3983 int ret; 3984 3985 ret = device_for_each_child(dev, NULL, device_check_offline); 3986 if (ret) 3987 return ret; 3988 3989 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 3990 } 3991 3992 /** 3993 * device_offline - Prepare the device for hot-removal. 3994 * @dev: Device to be put offline. 3995 * 3996 * Execute the device bus type's .offline() callback, if present, to prepare 3997 * the device for a subsequent hot-removal. If that succeeds, the device must 3998 * not be used until either it is removed or its bus type's .online() callback 3999 * is executed. 4000 * 4001 * Call under device_hotplug_lock. 4002 */ 4003 int device_offline(struct device *dev) 4004 { 4005 int ret; 4006 4007 if (dev->offline_disabled) 4008 return -EPERM; 4009 4010 ret = device_for_each_child(dev, NULL, device_check_offline); 4011 if (ret) 4012 return ret; 4013 4014 device_lock(dev); 4015 if (device_supports_offline(dev)) { 4016 if (dev->offline) { 4017 ret = 1; 4018 } else { 4019 ret = dev->bus->offline(dev); 4020 if (!ret) { 4021 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 4022 dev->offline = true; 4023 } 4024 } 4025 } 4026 device_unlock(dev); 4027 4028 return ret; 4029 } 4030 4031 /** 4032 * device_online - Put the device back online after successful device_offline(). 4033 * @dev: Device to be put back online. 4034 * 4035 * If device_offline() has been successfully executed for @dev, but the device 4036 * has not been removed subsequently, execute its bus type's .online() callback 4037 * to indicate that the device can be used again. 4038 * 4039 * Call under device_hotplug_lock. 4040 */ 4041 int device_online(struct device *dev) 4042 { 4043 int ret = 0; 4044 4045 device_lock(dev); 4046 if (device_supports_offline(dev)) { 4047 if (dev->offline) { 4048 ret = dev->bus->online(dev); 4049 if (!ret) { 4050 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 4051 dev->offline = false; 4052 } 4053 } else { 4054 ret = 1; 4055 } 4056 } 4057 device_unlock(dev); 4058 4059 return ret; 4060 } 4061 4062 struct root_device { 4063 struct device dev; 4064 struct module *owner; 4065 }; 4066 4067 static inline struct root_device *to_root_device(struct device *d) 4068 { 4069 return container_of(d, struct root_device, dev); 4070 } 4071 4072 static void root_device_release(struct device *dev) 4073 { 4074 kfree(to_root_device(dev)); 4075 } 4076 4077 /** 4078 * __root_device_register - allocate and register a root device 4079 * @name: root device name 4080 * @owner: owner module of the root device, usually THIS_MODULE 4081 * 4082 * This function allocates a root device and registers it 4083 * using device_register(). In order to free the returned 4084 * device, use root_device_unregister(). 4085 * 4086 * Root devices are dummy devices which allow other devices 4087 * to be grouped under /sys/devices. Use this function to 4088 * allocate a root device and then use it as the parent of 4089 * any device which should appear under /sys/devices/{name} 4090 * 4091 * The /sys/devices/{name} directory will also contain a 4092 * 'module' symlink which points to the @owner directory 4093 * in sysfs. 4094 * 4095 * Returns &struct device pointer on success, or ERR_PTR() on error. 4096 * 4097 * Note: You probably want to use root_device_register(). 4098 */ 4099 struct device *__root_device_register(const char *name, struct module *owner) 4100 { 4101 struct root_device *root; 4102 int err = -ENOMEM; 4103 4104 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 4105 if (!root) 4106 return ERR_PTR(err); 4107 4108 err = dev_set_name(&root->dev, "%s", name); 4109 if (err) { 4110 kfree(root); 4111 return ERR_PTR(err); 4112 } 4113 4114 root->dev.release = root_device_release; 4115 4116 err = device_register(&root->dev); 4117 if (err) { 4118 put_device(&root->dev); 4119 return ERR_PTR(err); 4120 } 4121 4122 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4123 if (owner) { 4124 struct module_kobject *mk = &owner->mkobj; 4125 4126 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4127 if (err) { 4128 device_unregister(&root->dev); 4129 return ERR_PTR(err); 4130 } 4131 root->owner = owner; 4132 } 4133 #endif 4134 4135 return &root->dev; 4136 } 4137 EXPORT_SYMBOL_GPL(__root_device_register); 4138 4139 /** 4140 * root_device_unregister - unregister and free a root device 4141 * @dev: device going away 4142 * 4143 * This function unregisters and cleans up a device that was created by 4144 * root_device_register(). 4145 */ 4146 void root_device_unregister(struct device *dev) 4147 { 4148 struct root_device *root = to_root_device(dev); 4149 4150 if (root->owner) 4151 sysfs_remove_link(&root->dev.kobj, "module"); 4152 4153 device_unregister(dev); 4154 } 4155 EXPORT_SYMBOL_GPL(root_device_unregister); 4156 4157 4158 static void device_create_release(struct device *dev) 4159 { 4160 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4161 kfree(dev); 4162 } 4163 4164 static __printf(6, 0) struct device * 4165 device_create_groups_vargs(struct class *class, struct device *parent, 4166 dev_t devt, void *drvdata, 4167 const struct attribute_group **groups, 4168 const char *fmt, va_list args) 4169 { 4170 struct device *dev = NULL; 4171 int retval = -ENODEV; 4172 4173 if (class == NULL || IS_ERR(class)) 4174 goto error; 4175 4176 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4177 if (!dev) { 4178 retval = -ENOMEM; 4179 goto error; 4180 } 4181 4182 device_initialize(dev); 4183 dev->devt = devt; 4184 dev->class = class; 4185 dev->parent = parent; 4186 dev->groups = groups; 4187 dev->release = device_create_release; 4188 dev_set_drvdata(dev, drvdata); 4189 4190 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4191 if (retval) 4192 goto error; 4193 4194 retval = device_add(dev); 4195 if (retval) 4196 goto error; 4197 4198 return dev; 4199 4200 error: 4201 put_device(dev); 4202 return ERR_PTR(retval); 4203 } 4204 4205 /** 4206 * device_create - creates a device and registers it with sysfs 4207 * @class: pointer to the struct class that this device should be registered to 4208 * @parent: pointer to the parent struct device of this new device, if any 4209 * @devt: the dev_t for the char device to be added 4210 * @drvdata: the data to be added to the device for callbacks 4211 * @fmt: string for the device's name 4212 * 4213 * This function can be used by char device classes. A struct device 4214 * will be created in sysfs, registered to the specified class. 4215 * 4216 * A "dev" file will be created, showing the dev_t for the device, if 4217 * the dev_t is not 0,0. 4218 * If a pointer to a parent struct device is passed in, the newly created 4219 * struct device will be a child of that device in sysfs. 4220 * The pointer to the struct device will be returned from the call. 4221 * Any further sysfs files that might be required can be created using this 4222 * pointer. 4223 * 4224 * Returns &struct device pointer on success, or ERR_PTR() on error. 4225 * 4226 * Note: the struct class passed to this function must have previously 4227 * been created with a call to class_create(). 4228 */ 4229 struct device *device_create(struct class *class, struct device *parent, 4230 dev_t devt, void *drvdata, const char *fmt, ...) 4231 { 4232 va_list vargs; 4233 struct device *dev; 4234 4235 va_start(vargs, fmt); 4236 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4237 fmt, vargs); 4238 va_end(vargs); 4239 return dev; 4240 } 4241 EXPORT_SYMBOL_GPL(device_create); 4242 4243 /** 4244 * device_create_with_groups - creates a device and registers it with sysfs 4245 * @class: pointer to the struct class that this device should be registered to 4246 * @parent: pointer to the parent struct device of this new device, if any 4247 * @devt: the dev_t for the char device to be added 4248 * @drvdata: the data to be added to the device for callbacks 4249 * @groups: NULL-terminated list of attribute groups to be created 4250 * @fmt: string for the device's name 4251 * 4252 * This function can be used by char device classes. A struct device 4253 * will be created in sysfs, registered to the specified class. 4254 * Additional attributes specified in the groups parameter will also 4255 * be created automatically. 4256 * 4257 * A "dev" file will be created, showing the dev_t for the device, if 4258 * the dev_t is not 0,0. 4259 * If a pointer to a parent struct device is passed in, the newly created 4260 * struct device will be a child of that device in sysfs. 4261 * The pointer to the struct device will be returned from the call. 4262 * Any further sysfs files that might be required can be created using this 4263 * pointer. 4264 * 4265 * Returns &struct device pointer on success, or ERR_PTR() on error. 4266 * 4267 * Note: the struct class passed to this function must have previously 4268 * been created with a call to class_create(). 4269 */ 4270 struct device *device_create_with_groups(struct class *class, 4271 struct device *parent, dev_t devt, 4272 void *drvdata, 4273 const struct attribute_group **groups, 4274 const char *fmt, ...) 4275 { 4276 va_list vargs; 4277 struct device *dev; 4278 4279 va_start(vargs, fmt); 4280 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4281 fmt, vargs); 4282 va_end(vargs); 4283 return dev; 4284 } 4285 EXPORT_SYMBOL_GPL(device_create_with_groups); 4286 4287 /** 4288 * device_destroy - removes a device that was created with device_create() 4289 * @class: pointer to the struct class that this device was registered with 4290 * @devt: the dev_t of the device that was previously registered 4291 * 4292 * This call unregisters and cleans up a device that was created with a 4293 * call to device_create(). 4294 */ 4295 void device_destroy(struct class *class, dev_t devt) 4296 { 4297 struct device *dev; 4298 4299 dev = class_find_device_by_devt(class, devt); 4300 if (dev) { 4301 put_device(dev); 4302 device_unregister(dev); 4303 } 4304 } 4305 EXPORT_SYMBOL_GPL(device_destroy); 4306 4307 /** 4308 * device_rename - renames a device 4309 * @dev: the pointer to the struct device to be renamed 4310 * @new_name: the new name of the device 4311 * 4312 * It is the responsibility of the caller to provide mutual 4313 * exclusion between two different calls of device_rename 4314 * on the same device to ensure that new_name is valid and 4315 * won't conflict with other devices. 4316 * 4317 * Note: Don't call this function. Currently, the networking layer calls this 4318 * function, but that will change. The following text from Kay Sievers offers 4319 * some insight: 4320 * 4321 * Renaming devices is racy at many levels, symlinks and other stuff are not 4322 * replaced atomically, and you get a "move" uevent, but it's not easy to 4323 * connect the event to the old and new device. Device nodes are not renamed at 4324 * all, there isn't even support for that in the kernel now. 4325 * 4326 * In the meantime, during renaming, your target name might be taken by another 4327 * driver, creating conflicts. Or the old name is taken directly after you 4328 * renamed it -- then you get events for the same DEVPATH, before you even see 4329 * the "move" event. It's just a mess, and nothing new should ever rely on 4330 * kernel device renaming. Besides that, it's not even implemented now for 4331 * other things than (driver-core wise very simple) network devices. 4332 * 4333 * We are currently about to change network renaming in udev to completely 4334 * disallow renaming of devices in the same namespace as the kernel uses, 4335 * because we can't solve the problems properly, that arise with swapping names 4336 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only 4337 * be allowed to some other name than eth[0-9]*, for the aforementioned 4338 * reasons. 4339 * 4340 * Make up a "real" name in the driver before you register anything, or add 4341 * some other attributes for userspace to find the device, or use udev to add 4342 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4343 * don't even want to get into that and try to implement the missing pieces in 4344 * the core. We really have other pieces to fix in the driver core mess. :) 4345 */ 4346 int device_rename(struct device *dev, const char *new_name) 4347 { 4348 struct kobject *kobj = &dev->kobj; 4349 char *old_device_name = NULL; 4350 int error; 4351 4352 dev = get_device(dev); 4353 if (!dev) 4354 return -EINVAL; 4355 4356 dev_dbg(dev, "renaming to %s\n", new_name); 4357 4358 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4359 if (!old_device_name) { 4360 error = -ENOMEM; 4361 goto out; 4362 } 4363 4364 if (dev->class) { 4365 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj, 4366 kobj, old_device_name, 4367 new_name, kobject_namespace(kobj)); 4368 if (error) 4369 goto out; 4370 } 4371 4372 error = kobject_rename(kobj, new_name); 4373 if (error) 4374 goto out; 4375 4376 out: 4377 put_device(dev); 4378 4379 kfree(old_device_name); 4380 4381 return error; 4382 } 4383 EXPORT_SYMBOL_GPL(device_rename); 4384 4385 static int device_move_class_links(struct device *dev, 4386 struct device *old_parent, 4387 struct device *new_parent) 4388 { 4389 int error = 0; 4390 4391 if (old_parent) 4392 sysfs_remove_link(&dev->kobj, "device"); 4393 if (new_parent) 4394 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4395 "device"); 4396 return error; 4397 } 4398 4399 /** 4400 * device_move - moves a device to a new parent 4401 * @dev: the pointer to the struct device to be moved 4402 * @new_parent: the new parent of the device (can be NULL) 4403 * @dpm_order: how to reorder the dpm_list 4404 */ 4405 int device_move(struct device *dev, struct device *new_parent, 4406 enum dpm_order dpm_order) 4407 { 4408 int error; 4409 struct device *old_parent; 4410 struct kobject *new_parent_kobj; 4411 4412 dev = get_device(dev); 4413 if (!dev) 4414 return -EINVAL; 4415 4416 device_pm_lock(); 4417 new_parent = get_device(new_parent); 4418 new_parent_kobj = get_device_parent(dev, new_parent); 4419 if (IS_ERR(new_parent_kobj)) { 4420 error = PTR_ERR(new_parent_kobj); 4421 put_device(new_parent); 4422 goto out; 4423 } 4424 4425 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4426 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4427 error = kobject_move(&dev->kobj, new_parent_kobj); 4428 if (error) { 4429 cleanup_glue_dir(dev, new_parent_kobj); 4430 put_device(new_parent); 4431 goto out; 4432 } 4433 old_parent = dev->parent; 4434 dev->parent = new_parent; 4435 if (old_parent) 4436 klist_remove(&dev->p->knode_parent); 4437 if (new_parent) { 4438 klist_add_tail(&dev->p->knode_parent, 4439 &new_parent->p->klist_children); 4440 set_dev_node(dev, dev_to_node(new_parent)); 4441 } 4442 4443 if (dev->class) { 4444 error = device_move_class_links(dev, old_parent, new_parent); 4445 if (error) { 4446 /* We ignore errors on cleanup since we're hosed anyway... */ 4447 device_move_class_links(dev, new_parent, old_parent); 4448 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4449 if (new_parent) 4450 klist_remove(&dev->p->knode_parent); 4451 dev->parent = old_parent; 4452 if (old_parent) { 4453 klist_add_tail(&dev->p->knode_parent, 4454 &old_parent->p->klist_children); 4455 set_dev_node(dev, dev_to_node(old_parent)); 4456 } 4457 } 4458 cleanup_glue_dir(dev, new_parent_kobj); 4459 put_device(new_parent); 4460 goto out; 4461 } 4462 } 4463 switch (dpm_order) { 4464 case DPM_ORDER_NONE: 4465 break; 4466 case DPM_ORDER_DEV_AFTER_PARENT: 4467 device_pm_move_after(dev, new_parent); 4468 devices_kset_move_after(dev, new_parent); 4469 break; 4470 case DPM_ORDER_PARENT_BEFORE_DEV: 4471 device_pm_move_before(new_parent, dev); 4472 devices_kset_move_before(new_parent, dev); 4473 break; 4474 case DPM_ORDER_DEV_LAST: 4475 device_pm_move_last(dev); 4476 devices_kset_move_last(dev); 4477 break; 4478 } 4479 4480 put_device(old_parent); 4481 out: 4482 device_pm_unlock(); 4483 put_device(dev); 4484 return error; 4485 } 4486 EXPORT_SYMBOL_GPL(device_move); 4487 4488 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4489 kgid_t kgid) 4490 { 4491 struct kobject *kobj = &dev->kobj; 4492 struct class *class = dev->class; 4493 const struct device_type *type = dev->type; 4494 int error; 4495 4496 if (class) { 4497 /* 4498 * Change the device groups of the device class for @dev to 4499 * @kuid/@kgid. 4500 */ 4501 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4502 kgid); 4503 if (error) 4504 return error; 4505 } 4506 4507 if (type) { 4508 /* 4509 * Change the device groups of the device type for @dev to 4510 * @kuid/@kgid. 4511 */ 4512 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4513 kgid); 4514 if (error) 4515 return error; 4516 } 4517 4518 /* Change the device groups of @dev to @kuid/@kgid. */ 4519 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4520 if (error) 4521 return error; 4522 4523 if (device_supports_offline(dev) && !dev->offline_disabled) { 4524 /* Change online device attributes of @dev to @kuid/@kgid. */ 4525 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4526 kuid, kgid); 4527 if (error) 4528 return error; 4529 } 4530 4531 return 0; 4532 } 4533 4534 /** 4535 * device_change_owner - change the owner of an existing device. 4536 * @dev: device. 4537 * @kuid: new owner's kuid 4538 * @kgid: new owner's kgid 4539 * 4540 * This changes the owner of @dev and its corresponding sysfs entries to 4541 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4542 * core. 4543 * 4544 * Returns 0 on success or error code on failure. 4545 */ 4546 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4547 { 4548 int error; 4549 struct kobject *kobj = &dev->kobj; 4550 4551 dev = get_device(dev); 4552 if (!dev) 4553 return -EINVAL; 4554 4555 /* 4556 * Change the kobject and the default attributes and groups of the 4557 * ktype associated with it to @kuid/@kgid. 4558 */ 4559 error = sysfs_change_owner(kobj, kuid, kgid); 4560 if (error) 4561 goto out; 4562 4563 /* 4564 * Change the uevent file for @dev to the new owner. The uevent file 4565 * was created in a separate step when @dev got added and we mirror 4566 * that step here. 4567 */ 4568 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4569 kgid); 4570 if (error) 4571 goto out; 4572 4573 /* 4574 * Change the device groups, the device groups associated with the 4575 * device class, and the groups associated with the device type of @dev 4576 * to @kuid/@kgid. 4577 */ 4578 error = device_attrs_change_owner(dev, kuid, kgid); 4579 if (error) 4580 goto out; 4581 4582 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4583 if (error) 4584 goto out; 4585 4586 #ifdef CONFIG_BLOCK 4587 if (sysfs_deprecated && dev->class == &block_class) 4588 goto out; 4589 #endif 4590 4591 /* 4592 * Change the owner of the symlink located in the class directory of 4593 * the device class associated with @dev which points to the actual 4594 * directory entry for @dev to @kuid/@kgid. This ensures that the 4595 * symlink shows the same permissions as its target. 4596 */ 4597 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj, 4598 dev_name(dev), kuid, kgid); 4599 if (error) 4600 goto out; 4601 4602 out: 4603 put_device(dev); 4604 return error; 4605 } 4606 EXPORT_SYMBOL_GPL(device_change_owner); 4607 4608 /** 4609 * device_shutdown - call ->shutdown() on each device to shutdown. 4610 */ 4611 void device_shutdown(void) 4612 { 4613 struct device *dev, *parent; 4614 4615 wait_for_device_probe(); 4616 device_block_probing(); 4617 4618 cpufreq_suspend(); 4619 4620 spin_lock(&devices_kset->list_lock); 4621 /* 4622 * Walk the devices list backward, shutting down each in turn. 4623 * Beware that device unplug events may also start pulling 4624 * devices offline, even as the system is shutting down. 4625 */ 4626 while (!list_empty(&devices_kset->list)) { 4627 dev = list_entry(devices_kset->list.prev, struct device, 4628 kobj.entry); 4629 4630 /* 4631 * hold reference count of device's parent to 4632 * prevent it from being freed because parent's 4633 * lock is to be held 4634 */ 4635 parent = get_device(dev->parent); 4636 get_device(dev); 4637 /* 4638 * Make sure the device is off the kset list, in the 4639 * event that dev->*->shutdown() doesn't remove it. 4640 */ 4641 list_del_init(&dev->kobj.entry); 4642 spin_unlock(&devices_kset->list_lock); 4643 4644 /* hold lock to avoid race with probe/release */ 4645 if (parent) 4646 device_lock(parent); 4647 device_lock(dev); 4648 4649 /* Don't allow any more runtime suspends */ 4650 pm_runtime_get_noresume(dev); 4651 pm_runtime_barrier(dev); 4652 4653 if (dev->class && dev->class->shutdown_pre) { 4654 if (initcall_debug) 4655 dev_info(dev, "shutdown_pre\n"); 4656 dev->class->shutdown_pre(dev); 4657 } 4658 if (dev->bus && dev->bus->shutdown) { 4659 if (initcall_debug) 4660 dev_info(dev, "shutdown\n"); 4661 dev->bus->shutdown(dev); 4662 } else if (dev->driver && dev->driver->shutdown) { 4663 if (initcall_debug) 4664 dev_info(dev, "shutdown\n"); 4665 dev->driver->shutdown(dev); 4666 } 4667 4668 device_unlock(dev); 4669 if (parent) 4670 device_unlock(parent); 4671 4672 put_device(dev); 4673 put_device(parent); 4674 4675 spin_lock(&devices_kset->list_lock); 4676 } 4677 spin_unlock(&devices_kset->list_lock); 4678 } 4679 4680 /* 4681 * Device logging functions 4682 */ 4683 4684 #ifdef CONFIG_PRINTK 4685 static void 4686 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4687 { 4688 const char *subsys; 4689 4690 memset(dev_info, 0, sizeof(*dev_info)); 4691 4692 if (dev->class) 4693 subsys = dev->class->name; 4694 else if (dev->bus) 4695 subsys = dev->bus->name; 4696 else 4697 return; 4698 4699 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4700 4701 /* 4702 * Add device identifier DEVICE=: 4703 * b12:8 block dev_t 4704 * c127:3 char dev_t 4705 * n8 netdev ifindex 4706 * +sound:card0 subsystem:devname 4707 */ 4708 if (MAJOR(dev->devt)) { 4709 char c; 4710 4711 if (strcmp(subsys, "block") == 0) 4712 c = 'b'; 4713 else 4714 c = 'c'; 4715 4716 snprintf(dev_info->device, sizeof(dev_info->device), 4717 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4718 } else if (strcmp(subsys, "net") == 0) { 4719 struct net_device *net = to_net_dev(dev); 4720 4721 snprintf(dev_info->device, sizeof(dev_info->device), 4722 "n%u", net->ifindex); 4723 } else { 4724 snprintf(dev_info->device, sizeof(dev_info->device), 4725 "+%s:%s", subsys, dev_name(dev)); 4726 } 4727 } 4728 4729 int dev_vprintk_emit(int level, const struct device *dev, 4730 const char *fmt, va_list args) 4731 { 4732 struct dev_printk_info dev_info; 4733 4734 set_dev_info(dev, &dev_info); 4735 4736 return vprintk_emit(0, level, &dev_info, fmt, args); 4737 } 4738 EXPORT_SYMBOL(dev_vprintk_emit); 4739 4740 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4741 { 4742 va_list args; 4743 int r; 4744 4745 va_start(args, fmt); 4746 4747 r = dev_vprintk_emit(level, dev, fmt, args); 4748 4749 va_end(args); 4750 4751 return r; 4752 } 4753 EXPORT_SYMBOL(dev_printk_emit); 4754 4755 static void __dev_printk(const char *level, const struct device *dev, 4756 struct va_format *vaf) 4757 { 4758 if (dev) 4759 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4760 dev_driver_string(dev), dev_name(dev), vaf); 4761 else 4762 printk("%s(NULL device *): %pV", level, vaf); 4763 } 4764 4765 void _dev_printk(const char *level, const struct device *dev, 4766 const char *fmt, ...) 4767 { 4768 struct va_format vaf; 4769 va_list args; 4770 4771 va_start(args, fmt); 4772 4773 vaf.fmt = fmt; 4774 vaf.va = &args; 4775 4776 __dev_printk(level, dev, &vaf); 4777 4778 va_end(args); 4779 } 4780 EXPORT_SYMBOL(_dev_printk); 4781 4782 #define define_dev_printk_level(func, kern_level) \ 4783 void func(const struct device *dev, const char *fmt, ...) \ 4784 { \ 4785 struct va_format vaf; \ 4786 va_list args; \ 4787 \ 4788 va_start(args, fmt); \ 4789 \ 4790 vaf.fmt = fmt; \ 4791 vaf.va = &args; \ 4792 \ 4793 __dev_printk(kern_level, dev, &vaf); \ 4794 \ 4795 va_end(args); \ 4796 } \ 4797 EXPORT_SYMBOL(func); 4798 4799 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4800 define_dev_printk_level(_dev_alert, KERN_ALERT); 4801 define_dev_printk_level(_dev_crit, KERN_CRIT); 4802 define_dev_printk_level(_dev_err, KERN_ERR); 4803 define_dev_printk_level(_dev_warn, KERN_WARNING); 4804 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4805 define_dev_printk_level(_dev_info, KERN_INFO); 4806 4807 #endif 4808 4809 /** 4810 * dev_err_probe - probe error check and log helper 4811 * @dev: the pointer to the struct device 4812 * @err: error value to test 4813 * @fmt: printf-style format string 4814 * @...: arguments as specified in the format string 4815 * 4816 * This helper implements common pattern present in probe functions for error 4817 * checking: print debug or error message depending if the error value is 4818 * -EPROBE_DEFER and propagate error upwards. 4819 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4820 * checked later by reading devices_deferred debugfs attribute. 4821 * It replaces code sequence:: 4822 * 4823 * if (err != -EPROBE_DEFER) 4824 * dev_err(dev, ...); 4825 * else 4826 * dev_dbg(dev, ...); 4827 * return err; 4828 * 4829 * with:: 4830 * 4831 * return dev_err_probe(dev, err, ...); 4832 * 4833 * Note that it is deemed acceptable to use this function for error 4834 * prints during probe even if the @err is known to never be -EPROBE_DEFER. 4835 * The benefit compared to a normal dev_err() is the standardized format 4836 * of the error code and the fact that the error code is returned. 4837 * 4838 * Returns @err. 4839 * 4840 */ 4841 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4842 { 4843 struct va_format vaf; 4844 va_list args; 4845 4846 va_start(args, fmt); 4847 vaf.fmt = fmt; 4848 vaf.va = &args; 4849 4850 if (err != -EPROBE_DEFER) { 4851 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4852 } else { 4853 device_set_deferred_probe_reason(dev, &vaf); 4854 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 4855 } 4856 4857 va_end(args); 4858 4859 return err; 4860 } 4861 EXPORT_SYMBOL_GPL(dev_err_probe); 4862 4863 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 4864 { 4865 return fwnode && !IS_ERR(fwnode->secondary); 4866 } 4867 4868 /** 4869 * set_primary_fwnode - Change the primary firmware node of a given device. 4870 * @dev: Device to handle. 4871 * @fwnode: New primary firmware node of the device. 4872 * 4873 * Set the device's firmware node pointer to @fwnode, but if a secondary 4874 * firmware node of the device is present, preserve it. 4875 * 4876 * Valid fwnode cases are: 4877 * - primary --> secondary --> -ENODEV 4878 * - primary --> NULL 4879 * - secondary --> -ENODEV 4880 * - NULL 4881 */ 4882 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4883 { 4884 struct device *parent = dev->parent; 4885 struct fwnode_handle *fn = dev->fwnode; 4886 4887 if (fwnode) { 4888 if (fwnode_is_primary(fn)) 4889 fn = fn->secondary; 4890 4891 if (fn) { 4892 WARN_ON(fwnode->secondary); 4893 fwnode->secondary = fn; 4894 } 4895 dev->fwnode = fwnode; 4896 } else { 4897 if (fwnode_is_primary(fn)) { 4898 dev->fwnode = fn->secondary; 4899 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 4900 if (!(parent && fn == parent->fwnode)) 4901 fn->secondary = NULL; 4902 } else { 4903 dev->fwnode = NULL; 4904 } 4905 } 4906 } 4907 EXPORT_SYMBOL_GPL(set_primary_fwnode); 4908 4909 /** 4910 * set_secondary_fwnode - Change the secondary firmware node of a given device. 4911 * @dev: Device to handle. 4912 * @fwnode: New secondary firmware node of the device. 4913 * 4914 * If a primary firmware node of the device is present, set its secondary 4915 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 4916 * @fwnode. 4917 */ 4918 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 4919 { 4920 if (fwnode) 4921 fwnode->secondary = ERR_PTR(-ENODEV); 4922 4923 if (fwnode_is_primary(dev->fwnode)) 4924 dev->fwnode->secondary = fwnode; 4925 else 4926 dev->fwnode = fwnode; 4927 } 4928 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 4929 4930 /** 4931 * device_set_of_node_from_dev - reuse device-tree node of another device 4932 * @dev: device whose device-tree node is being set 4933 * @dev2: device whose device-tree node is being reused 4934 * 4935 * Takes another reference to the new device-tree node after first dropping 4936 * any reference held to the old node. 4937 */ 4938 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 4939 { 4940 of_node_put(dev->of_node); 4941 dev->of_node = of_node_get(dev2->of_node); 4942 dev->of_node_reused = true; 4943 } 4944 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 4945 4946 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 4947 { 4948 dev->fwnode = fwnode; 4949 dev->of_node = to_of_node(fwnode); 4950 } 4951 EXPORT_SYMBOL_GPL(device_set_node); 4952 4953 int device_match_name(struct device *dev, const void *name) 4954 { 4955 return sysfs_streq(dev_name(dev), name); 4956 } 4957 EXPORT_SYMBOL_GPL(device_match_name); 4958 4959 int device_match_of_node(struct device *dev, const void *np) 4960 { 4961 return dev->of_node == np; 4962 } 4963 EXPORT_SYMBOL_GPL(device_match_of_node); 4964 4965 int device_match_fwnode(struct device *dev, const void *fwnode) 4966 { 4967 return dev_fwnode(dev) == fwnode; 4968 } 4969 EXPORT_SYMBOL_GPL(device_match_fwnode); 4970 4971 int device_match_devt(struct device *dev, const void *pdevt) 4972 { 4973 return dev->devt == *(dev_t *)pdevt; 4974 } 4975 EXPORT_SYMBOL_GPL(device_match_devt); 4976 4977 int device_match_acpi_dev(struct device *dev, const void *adev) 4978 { 4979 return ACPI_COMPANION(dev) == adev; 4980 } 4981 EXPORT_SYMBOL(device_match_acpi_dev); 4982 4983 int device_match_acpi_handle(struct device *dev, const void *handle) 4984 { 4985 return ACPI_HANDLE(dev) == handle; 4986 } 4987 EXPORT_SYMBOL(device_match_acpi_handle); 4988 4989 int device_match_any(struct device *dev, const void *unused) 4990 { 4991 return 1; 4992 } 4993 EXPORT_SYMBOL_GPL(device_match_any); 4994