1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * drivers/base/core.c - core driver model code (device registration, etc) 4 * 5 * Copyright (c) 2002-3 Patrick Mochel 6 * Copyright (c) 2002-3 Open Source Development Labs 7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de> 8 * Copyright (c) 2006 Novell, Inc. 9 */ 10 11 #include <linux/acpi.h> 12 #include <linux/cpufreq.h> 13 #include <linux/device.h> 14 #include <linux/err.h> 15 #include <linux/fwnode.h> 16 #include <linux/init.h> 17 #include <linux/kstrtox.h> 18 #include <linux/module.h> 19 #include <linux/slab.h> 20 #include <linux/kdev_t.h> 21 #include <linux/notifier.h> 22 #include <linux/of.h> 23 #include <linux/of_device.h> 24 #include <linux/blkdev.h> 25 #include <linux/mutex.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/netdevice.h> 28 #include <linux/rcupdate.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/mm.h> 31 #include <linux/string_helpers.h> 32 #include <linux/swiotlb.h> 33 #include <linux/sysfs.h> 34 #include <linux/dma-map-ops.h> /* for dma_default_coherent */ 35 36 #include "base.h" 37 #include "physical_location.h" 38 #include "power/power.h" 39 40 /* Device links support. */ 41 static LIST_HEAD(deferred_sync); 42 static unsigned int defer_sync_state_count = 1; 43 static DEFINE_MUTEX(fwnode_link_lock); 44 static bool fw_devlink_is_permissive(void); 45 static void __fw_devlink_link_to_consumers(struct device *dev); 46 static bool fw_devlink_drv_reg_done; 47 static bool fw_devlink_best_effort; 48 static struct workqueue_struct *device_link_wq; 49 50 /** 51 * __fwnode_link_add - Create a link between two fwnode_handles. 52 * @con: Consumer end of the link. 53 * @sup: Supplier end of the link. 54 * 55 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link 56 * represents the detail that the firmware lists @sup fwnode as supplying a 57 * resource to @con. 58 * 59 * The driver core will use the fwnode link to create a device link between the 60 * two device objects corresponding to @con and @sup when they are created. The 61 * driver core will automatically delete the fwnode link between @con and @sup 62 * after doing that. 63 * 64 * Attempts to create duplicate links between the same pair of fwnode handles 65 * are ignored and there is no reference counting. 66 */ 67 static int __fwnode_link_add(struct fwnode_handle *con, 68 struct fwnode_handle *sup, u8 flags) 69 { 70 struct fwnode_link *link; 71 72 list_for_each_entry(link, &sup->consumers, s_hook) 73 if (link->consumer == con) { 74 link->flags |= flags; 75 return 0; 76 } 77 78 link = kzalloc(sizeof(*link), GFP_KERNEL); 79 if (!link) 80 return -ENOMEM; 81 82 link->supplier = sup; 83 INIT_LIST_HEAD(&link->s_hook); 84 link->consumer = con; 85 INIT_LIST_HEAD(&link->c_hook); 86 link->flags = flags; 87 88 list_add(&link->s_hook, &sup->consumers); 89 list_add(&link->c_hook, &con->suppliers); 90 pr_debug("%pfwf Linked as a fwnode consumer to %pfwf\n", 91 con, sup); 92 93 return 0; 94 } 95 96 int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup) 97 { 98 int ret; 99 100 mutex_lock(&fwnode_link_lock); 101 ret = __fwnode_link_add(con, sup, 0); 102 mutex_unlock(&fwnode_link_lock); 103 return ret; 104 } 105 106 /** 107 * __fwnode_link_del - Delete a link between two fwnode_handles. 108 * @link: the fwnode_link to be deleted 109 * 110 * The fwnode_link_lock needs to be held when this function is called. 111 */ 112 static void __fwnode_link_del(struct fwnode_link *link) 113 { 114 pr_debug("%pfwf Dropping the fwnode link to %pfwf\n", 115 link->consumer, link->supplier); 116 list_del(&link->s_hook); 117 list_del(&link->c_hook); 118 kfree(link); 119 } 120 121 /** 122 * __fwnode_link_cycle - Mark a fwnode link as being part of a cycle. 123 * @link: the fwnode_link to be marked 124 * 125 * The fwnode_link_lock needs to be held when this function is called. 126 */ 127 static void __fwnode_link_cycle(struct fwnode_link *link) 128 { 129 pr_debug("%pfwf: Relaxing link with %pfwf\n", 130 link->consumer, link->supplier); 131 link->flags |= FWLINK_FLAG_CYCLE; 132 } 133 134 /** 135 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle. 136 * @fwnode: fwnode whose supplier links need to be deleted 137 * 138 * Deletes all supplier links connecting directly to @fwnode. 139 */ 140 static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode) 141 { 142 struct fwnode_link *link, *tmp; 143 144 mutex_lock(&fwnode_link_lock); 145 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) 146 __fwnode_link_del(link); 147 mutex_unlock(&fwnode_link_lock); 148 } 149 150 /** 151 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle. 152 * @fwnode: fwnode whose consumer links need to be deleted 153 * 154 * Deletes all consumer links connecting directly to @fwnode. 155 */ 156 static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode) 157 { 158 struct fwnode_link *link, *tmp; 159 160 mutex_lock(&fwnode_link_lock); 161 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) 162 __fwnode_link_del(link); 163 mutex_unlock(&fwnode_link_lock); 164 } 165 166 /** 167 * fwnode_links_purge - Delete all links connected to a fwnode_handle. 168 * @fwnode: fwnode whose links needs to be deleted 169 * 170 * Deletes all links connecting directly to a fwnode. 171 */ 172 void fwnode_links_purge(struct fwnode_handle *fwnode) 173 { 174 fwnode_links_purge_suppliers(fwnode); 175 fwnode_links_purge_consumers(fwnode); 176 } 177 178 void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode) 179 { 180 struct fwnode_handle *child; 181 182 /* Don't purge consumer links of an added child */ 183 if (fwnode->dev) 184 return; 185 186 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 187 fwnode_links_purge_consumers(fwnode); 188 189 fwnode_for_each_available_child_node(fwnode, child) 190 fw_devlink_purge_absent_suppliers(child); 191 } 192 EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers); 193 194 /** 195 * __fwnode_links_move_consumers - Move consumer from @from to @to fwnode_handle 196 * @from: move consumers away from this fwnode 197 * @to: move consumers to this fwnode 198 * 199 * Move all consumer links from @from fwnode to @to fwnode. 200 */ 201 static void __fwnode_links_move_consumers(struct fwnode_handle *from, 202 struct fwnode_handle *to) 203 { 204 struct fwnode_link *link, *tmp; 205 206 list_for_each_entry_safe(link, tmp, &from->consumers, s_hook) { 207 __fwnode_link_add(link->consumer, to, link->flags); 208 __fwnode_link_del(link); 209 } 210 } 211 212 /** 213 * __fw_devlink_pickup_dangling_consumers - Pick up dangling consumers 214 * @fwnode: fwnode from which to pick up dangling consumers 215 * @new_sup: fwnode of new supplier 216 * 217 * If the @fwnode has a corresponding struct device and the device supports 218 * probing (that is, added to a bus), then we want to let fw_devlink create 219 * MANAGED device links to this device, so leave @fwnode and its descendant's 220 * fwnode links alone. 221 * 222 * Otherwise, move its consumers to the new supplier @new_sup. 223 */ 224 static void __fw_devlink_pickup_dangling_consumers(struct fwnode_handle *fwnode, 225 struct fwnode_handle *new_sup) 226 { 227 struct fwnode_handle *child; 228 229 if (fwnode->dev && fwnode->dev->bus) 230 return; 231 232 fwnode->flags |= FWNODE_FLAG_NOT_DEVICE; 233 __fwnode_links_move_consumers(fwnode, new_sup); 234 235 fwnode_for_each_available_child_node(fwnode, child) 236 __fw_devlink_pickup_dangling_consumers(child, new_sup); 237 } 238 239 static DEFINE_MUTEX(device_links_lock); 240 DEFINE_STATIC_SRCU(device_links_srcu); 241 242 static inline void device_links_write_lock(void) 243 { 244 mutex_lock(&device_links_lock); 245 } 246 247 static inline void device_links_write_unlock(void) 248 { 249 mutex_unlock(&device_links_lock); 250 } 251 252 int device_links_read_lock(void) __acquires(&device_links_srcu) 253 { 254 return srcu_read_lock(&device_links_srcu); 255 } 256 257 void device_links_read_unlock(int idx) __releases(&device_links_srcu) 258 { 259 srcu_read_unlock(&device_links_srcu, idx); 260 } 261 262 int device_links_read_lock_held(void) 263 { 264 return srcu_read_lock_held(&device_links_srcu); 265 } 266 267 static void device_link_synchronize_removal(void) 268 { 269 synchronize_srcu(&device_links_srcu); 270 } 271 272 static void device_link_remove_from_lists(struct device_link *link) 273 { 274 list_del_rcu(&link->s_node); 275 list_del_rcu(&link->c_node); 276 } 277 278 static bool device_is_ancestor(struct device *dev, struct device *target) 279 { 280 while (target->parent) { 281 target = target->parent; 282 if (dev == target) 283 return true; 284 } 285 return false; 286 } 287 288 #define DL_MARKER_FLAGS (DL_FLAG_INFERRED | \ 289 DL_FLAG_CYCLE | \ 290 DL_FLAG_MANAGED) 291 static inline bool device_link_flag_is_sync_state_only(u32 flags) 292 { 293 return (flags & ~DL_MARKER_FLAGS) == DL_FLAG_SYNC_STATE_ONLY; 294 } 295 296 /** 297 * device_is_dependent - Check if one device depends on another one 298 * @dev: Device to check dependencies for. 299 * @target: Device to check against. 300 * 301 * Check if @target depends on @dev or any device dependent on it (its child or 302 * its consumer etc). Return 1 if that is the case or 0 otherwise. 303 */ 304 int device_is_dependent(struct device *dev, void *target) 305 { 306 struct device_link *link; 307 int ret; 308 309 /* 310 * The "ancestors" check is needed to catch the case when the target 311 * device has not been completely initialized yet and it is still 312 * missing from the list of children of its parent device. 313 */ 314 if (dev == target || device_is_ancestor(dev, target)) 315 return 1; 316 317 ret = device_for_each_child(dev, target, device_is_dependent); 318 if (ret) 319 return ret; 320 321 list_for_each_entry(link, &dev->links.consumers, s_node) { 322 if (device_link_flag_is_sync_state_only(link->flags)) 323 continue; 324 325 if (link->consumer == target) 326 return 1; 327 328 ret = device_is_dependent(link->consumer, target); 329 if (ret) 330 break; 331 } 332 return ret; 333 } 334 335 static void device_link_init_status(struct device_link *link, 336 struct device *consumer, 337 struct device *supplier) 338 { 339 switch (supplier->links.status) { 340 case DL_DEV_PROBING: 341 switch (consumer->links.status) { 342 case DL_DEV_PROBING: 343 /* 344 * A consumer driver can create a link to a supplier 345 * that has not completed its probing yet as long as it 346 * knows that the supplier is already functional (for 347 * example, it has just acquired some resources from the 348 * supplier). 349 */ 350 link->status = DL_STATE_CONSUMER_PROBE; 351 break; 352 default: 353 link->status = DL_STATE_DORMANT; 354 break; 355 } 356 break; 357 case DL_DEV_DRIVER_BOUND: 358 switch (consumer->links.status) { 359 case DL_DEV_PROBING: 360 link->status = DL_STATE_CONSUMER_PROBE; 361 break; 362 case DL_DEV_DRIVER_BOUND: 363 link->status = DL_STATE_ACTIVE; 364 break; 365 default: 366 link->status = DL_STATE_AVAILABLE; 367 break; 368 } 369 break; 370 case DL_DEV_UNBINDING: 371 link->status = DL_STATE_SUPPLIER_UNBIND; 372 break; 373 default: 374 link->status = DL_STATE_DORMANT; 375 break; 376 } 377 } 378 379 static int device_reorder_to_tail(struct device *dev, void *not_used) 380 { 381 struct device_link *link; 382 383 /* 384 * Devices that have not been registered yet will be put to the ends 385 * of the lists during the registration, so skip them here. 386 */ 387 if (device_is_registered(dev)) 388 devices_kset_move_last(dev); 389 390 if (device_pm_initialized(dev)) 391 device_pm_move_last(dev); 392 393 device_for_each_child(dev, NULL, device_reorder_to_tail); 394 list_for_each_entry(link, &dev->links.consumers, s_node) { 395 if (device_link_flag_is_sync_state_only(link->flags)) 396 continue; 397 device_reorder_to_tail(link->consumer, NULL); 398 } 399 400 return 0; 401 } 402 403 /** 404 * device_pm_move_to_tail - Move set of devices to the end of device lists 405 * @dev: Device to move 406 * 407 * This is a device_reorder_to_tail() wrapper taking the requisite locks. 408 * 409 * It moves the @dev along with all of its children and all of its consumers 410 * to the ends of the device_kset and dpm_list, recursively. 411 */ 412 void device_pm_move_to_tail(struct device *dev) 413 { 414 int idx; 415 416 idx = device_links_read_lock(); 417 device_pm_lock(); 418 device_reorder_to_tail(dev, NULL); 419 device_pm_unlock(); 420 device_links_read_unlock(idx); 421 } 422 423 #define to_devlink(dev) container_of((dev), struct device_link, link_dev) 424 425 static ssize_t status_show(struct device *dev, 426 struct device_attribute *attr, char *buf) 427 { 428 const char *output; 429 430 switch (to_devlink(dev)->status) { 431 case DL_STATE_NONE: 432 output = "not tracked"; 433 break; 434 case DL_STATE_DORMANT: 435 output = "dormant"; 436 break; 437 case DL_STATE_AVAILABLE: 438 output = "available"; 439 break; 440 case DL_STATE_CONSUMER_PROBE: 441 output = "consumer probing"; 442 break; 443 case DL_STATE_ACTIVE: 444 output = "active"; 445 break; 446 case DL_STATE_SUPPLIER_UNBIND: 447 output = "supplier unbinding"; 448 break; 449 default: 450 output = "unknown"; 451 break; 452 } 453 454 return sysfs_emit(buf, "%s\n", output); 455 } 456 static DEVICE_ATTR_RO(status); 457 458 static ssize_t auto_remove_on_show(struct device *dev, 459 struct device_attribute *attr, char *buf) 460 { 461 struct device_link *link = to_devlink(dev); 462 const char *output; 463 464 if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 465 output = "supplier unbind"; 466 else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) 467 output = "consumer unbind"; 468 else 469 output = "never"; 470 471 return sysfs_emit(buf, "%s\n", output); 472 } 473 static DEVICE_ATTR_RO(auto_remove_on); 474 475 static ssize_t runtime_pm_show(struct device *dev, 476 struct device_attribute *attr, char *buf) 477 { 478 struct device_link *link = to_devlink(dev); 479 480 return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME)); 481 } 482 static DEVICE_ATTR_RO(runtime_pm); 483 484 static ssize_t sync_state_only_show(struct device *dev, 485 struct device_attribute *attr, char *buf) 486 { 487 struct device_link *link = to_devlink(dev); 488 489 return sysfs_emit(buf, "%d\n", 490 !!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 491 } 492 static DEVICE_ATTR_RO(sync_state_only); 493 494 static struct attribute *devlink_attrs[] = { 495 &dev_attr_status.attr, 496 &dev_attr_auto_remove_on.attr, 497 &dev_attr_runtime_pm.attr, 498 &dev_attr_sync_state_only.attr, 499 NULL, 500 }; 501 ATTRIBUTE_GROUPS(devlink); 502 503 static void device_link_release_fn(struct work_struct *work) 504 { 505 struct device_link *link = container_of(work, struct device_link, rm_work); 506 507 /* Ensure that all references to the link object have been dropped. */ 508 device_link_synchronize_removal(); 509 510 pm_runtime_release_supplier(link); 511 /* 512 * If supplier_preactivated is set, the link has been dropped between 513 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls 514 * in __driver_probe_device(). In that case, drop the supplier's 515 * PM-runtime usage counter to remove the reference taken by 516 * pm_runtime_get_suppliers(). 517 */ 518 if (link->supplier_preactivated) 519 pm_runtime_put_noidle(link->supplier); 520 521 pm_request_idle(link->supplier); 522 523 put_device(link->consumer); 524 put_device(link->supplier); 525 kfree(link); 526 } 527 528 static void devlink_dev_release(struct device *dev) 529 { 530 struct device_link *link = to_devlink(dev); 531 532 INIT_WORK(&link->rm_work, device_link_release_fn); 533 /* 534 * It may take a while to complete this work because of the SRCU 535 * synchronization in device_link_release_fn() and if the consumer or 536 * supplier devices get deleted when it runs, so put it into the 537 * dedicated workqueue. 538 */ 539 queue_work(device_link_wq, &link->rm_work); 540 } 541 542 /** 543 * device_link_wait_removal - Wait for ongoing devlink removal jobs to terminate 544 */ 545 void device_link_wait_removal(void) 546 { 547 /* 548 * devlink removal jobs are queued in the dedicated work queue. 549 * To be sure that all removal jobs are terminated, ensure that any 550 * scheduled work has run to completion. 551 */ 552 flush_workqueue(device_link_wq); 553 } 554 EXPORT_SYMBOL_GPL(device_link_wait_removal); 555 556 static struct class devlink_class = { 557 .name = "devlink", 558 .dev_groups = devlink_groups, 559 .dev_release = devlink_dev_release, 560 }; 561 562 static int devlink_add_symlinks(struct device *dev) 563 { 564 int ret; 565 size_t len; 566 struct device_link *link = to_devlink(dev); 567 struct device *sup = link->supplier; 568 struct device *con = link->consumer; 569 char *buf; 570 571 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 572 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 573 len += strlen(":"); 574 len += strlen("supplier:") + 1; 575 buf = kzalloc(len, GFP_KERNEL); 576 if (!buf) 577 return -ENOMEM; 578 579 ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier"); 580 if (ret) 581 goto out; 582 583 ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer"); 584 if (ret) 585 goto err_con; 586 587 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 588 ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf); 589 if (ret) 590 goto err_con_dev; 591 592 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 593 ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf); 594 if (ret) 595 goto err_sup_dev; 596 597 goto out; 598 599 err_sup_dev: 600 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 601 sysfs_remove_link(&sup->kobj, buf); 602 err_con_dev: 603 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 604 err_con: 605 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 606 out: 607 kfree(buf); 608 return ret; 609 } 610 611 static void devlink_remove_symlinks(struct device *dev) 612 { 613 struct device_link *link = to_devlink(dev); 614 size_t len; 615 struct device *sup = link->supplier; 616 struct device *con = link->consumer; 617 char *buf; 618 619 sysfs_remove_link(&link->link_dev.kobj, "consumer"); 620 sysfs_remove_link(&link->link_dev.kobj, "supplier"); 621 622 len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)), 623 strlen(dev_bus_name(con)) + strlen(dev_name(con))); 624 len += strlen(":"); 625 len += strlen("supplier:") + 1; 626 buf = kzalloc(len, GFP_KERNEL); 627 if (!buf) { 628 WARN(1, "Unable to properly free device link symlinks!\n"); 629 return; 630 } 631 632 if (device_is_registered(con)) { 633 snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup)); 634 sysfs_remove_link(&con->kobj, buf); 635 } 636 snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con)); 637 sysfs_remove_link(&sup->kobj, buf); 638 kfree(buf); 639 } 640 641 static struct class_interface devlink_class_intf = { 642 .class = &devlink_class, 643 .add_dev = devlink_add_symlinks, 644 .remove_dev = devlink_remove_symlinks, 645 }; 646 647 static int __init devlink_class_init(void) 648 { 649 int ret; 650 651 ret = class_register(&devlink_class); 652 if (ret) 653 return ret; 654 655 ret = class_interface_register(&devlink_class_intf); 656 if (ret) 657 class_unregister(&devlink_class); 658 659 return ret; 660 } 661 postcore_initcall(devlink_class_init); 662 663 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \ 664 DL_FLAG_AUTOREMOVE_SUPPLIER | \ 665 DL_FLAG_AUTOPROBE_CONSUMER | \ 666 DL_FLAG_SYNC_STATE_ONLY | \ 667 DL_FLAG_INFERRED | \ 668 DL_FLAG_CYCLE) 669 670 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \ 671 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE) 672 673 /** 674 * device_link_add - Create a link between two devices. 675 * @consumer: Consumer end of the link. 676 * @supplier: Supplier end of the link. 677 * @flags: Link flags. 678 * 679 * The caller is responsible for the proper synchronization of the link creation 680 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the 681 * runtime PM framework to take the link into account. Second, if the 682 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will 683 * be forced into the active meta state and reference-counted upon the creation 684 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be 685 * ignored. 686 * 687 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is 688 * expected to release the link returned by it directly with the help of either 689 * device_link_del() or device_link_remove(). 690 * 691 * If that flag is not set, however, the caller of this function is handing the 692 * management of the link over to the driver core entirely and its return value 693 * can only be used to check whether or not the link is present. In that case, 694 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link 695 * flags can be used to indicate to the driver core when the link can be safely 696 * deleted. Namely, setting one of them in @flags indicates to the driver core 697 * that the link is not going to be used (by the given caller of this function) 698 * after unbinding the consumer or supplier driver, respectively, from its 699 * device, so the link can be deleted at that point. If none of them is set, 700 * the link will be maintained until one of the devices pointed to by it (either 701 * the consumer or the supplier) is unregistered. 702 * 703 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and 704 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent 705 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can 706 * be used to request the driver core to automatically probe for a consumer 707 * driver after successfully binding a driver to the supplier device. 708 * 709 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER, 710 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at 711 * the same time is invalid and will cause NULL to be returned upfront. 712 * However, if a device link between the given @consumer and @supplier pair 713 * exists already when this function is called for them, the existing link will 714 * be returned regardless of its current type and status (the link's flags may 715 * be modified then). The caller of this function is then expected to treat 716 * the link as though it has just been created, so (in particular) if 717 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released 718 * explicitly when not needed any more (as stated above). 719 * 720 * A side effect of the link creation is re-ordering of dpm_list and the 721 * devices_kset list by moving the consumer device and all devices depending 722 * on it to the ends of these lists (that does not happen to devices that have 723 * not been registered when this function is called). 724 * 725 * The supplier device is required to be registered when this function is called 726 * and NULL will be returned if that is not the case. The consumer device need 727 * not be registered, however. 728 */ 729 struct device_link *device_link_add(struct device *consumer, 730 struct device *supplier, u32 flags) 731 { 732 struct device_link *link; 733 734 if (!consumer || !supplier || consumer == supplier || 735 flags & ~DL_ADD_VALID_FLAGS || 736 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) || 737 (flags & DL_FLAG_AUTOPROBE_CONSUMER && 738 flags & (DL_FLAG_AUTOREMOVE_CONSUMER | 739 DL_FLAG_AUTOREMOVE_SUPPLIER))) 740 return NULL; 741 742 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) { 743 if (pm_runtime_get_sync(supplier) < 0) { 744 pm_runtime_put_noidle(supplier); 745 return NULL; 746 } 747 } 748 749 if (!(flags & DL_FLAG_STATELESS)) 750 flags |= DL_FLAG_MANAGED; 751 752 if (flags & DL_FLAG_SYNC_STATE_ONLY && 753 !device_link_flag_is_sync_state_only(flags)) 754 return NULL; 755 756 device_links_write_lock(); 757 device_pm_lock(); 758 759 /* 760 * If the supplier has not been fully registered yet or there is a 761 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and 762 * the supplier already in the graph, return NULL. If the link is a 763 * SYNC_STATE_ONLY link, we don't check for reverse dependencies 764 * because it only affects sync_state() callbacks. 765 */ 766 if (!device_pm_initialized(supplier) 767 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) && 768 device_is_dependent(consumer, supplier))) { 769 link = NULL; 770 goto out; 771 } 772 773 /* 774 * SYNC_STATE_ONLY links are useless once a consumer device has probed. 775 * So, only create it if the consumer hasn't probed yet. 776 */ 777 if (flags & DL_FLAG_SYNC_STATE_ONLY && 778 consumer->links.status != DL_DEV_NO_DRIVER && 779 consumer->links.status != DL_DEV_PROBING) { 780 link = NULL; 781 goto out; 782 } 783 784 /* 785 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed 786 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both 787 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER. 788 */ 789 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 790 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 791 792 list_for_each_entry(link, &supplier->links.consumers, s_node) { 793 if (link->consumer != consumer) 794 continue; 795 796 if (link->flags & DL_FLAG_INFERRED && 797 !(flags & DL_FLAG_INFERRED)) 798 link->flags &= ~DL_FLAG_INFERRED; 799 800 if (flags & DL_FLAG_PM_RUNTIME) { 801 if (!(link->flags & DL_FLAG_PM_RUNTIME)) { 802 pm_runtime_new_link(consumer); 803 link->flags |= DL_FLAG_PM_RUNTIME; 804 } 805 if (flags & DL_FLAG_RPM_ACTIVE) 806 refcount_inc(&link->rpm_active); 807 } 808 809 if (flags & DL_FLAG_STATELESS) { 810 kref_get(&link->kref); 811 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 812 !(link->flags & DL_FLAG_STATELESS)) { 813 link->flags |= DL_FLAG_STATELESS; 814 goto reorder; 815 } else { 816 link->flags |= DL_FLAG_STATELESS; 817 goto out; 818 } 819 } 820 821 /* 822 * If the life time of the link following from the new flags is 823 * longer than indicated by the flags of the existing link, 824 * update the existing link to stay around longer. 825 */ 826 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) { 827 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 828 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER; 829 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER; 830 } 831 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) { 832 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER | 833 DL_FLAG_AUTOREMOVE_SUPPLIER); 834 } 835 if (!(link->flags & DL_FLAG_MANAGED)) { 836 kref_get(&link->kref); 837 link->flags |= DL_FLAG_MANAGED; 838 device_link_init_status(link, consumer, supplier); 839 } 840 if (link->flags & DL_FLAG_SYNC_STATE_ONLY && 841 !(flags & DL_FLAG_SYNC_STATE_ONLY)) { 842 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY; 843 goto reorder; 844 } 845 846 goto out; 847 } 848 849 link = kzalloc(sizeof(*link), GFP_KERNEL); 850 if (!link) 851 goto out; 852 853 refcount_set(&link->rpm_active, 1); 854 855 get_device(supplier); 856 link->supplier = supplier; 857 INIT_LIST_HEAD(&link->s_node); 858 get_device(consumer); 859 link->consumer = consumer; 860 INIT_LIST_HEAD(&link->c_node); 861 link->flags = flags; 862 kref_init(&link->kref); 863 864 link->link_dev.class = &devlink_class; 865 device_set_pm_not_required(&link->link_dev); 866 dev_set_name(&link->link_dev, "%s:%s--%s:%s", 867 dev_bus_name(supplier), dev_name(supplier), 868 dev_bus_name(consumer), dev_name(consumer)); 869 if (device_register(&link->link_dev)) { 870 put_device(&link->link_dev); 871 link = NULL; 872 goto out; 873 } 874 875 if (flags & DL_FLAG_PM_RUNTIME) { 876 if (flags & DL_FLAG_RPM_ACTIVE) 877 refcount_inc(&link->rpm_active); 878 879 pm_runtime_new_link(consumer); 880 } 881 882 /* Determine the initial link state. */ 883 if (flags & DL_FLAG_STATELESS) 884 link->status = DL_STATE_NONE; 885 else 886 device_link_init_status(link, consumer, supplier); 887 888 /* 889 * Some callers expect the link creation during consumer driver probe to 890 * resume the supplier even without DL_FLAG_RPM_ACTIVE. 891 */ 892 if (link->status == DL_STATE_CONSUMER_PROBE && 893 flags & DL_FLAG_PM_RUNTIME) 894 pm_runtime_resume(supplier); 895 896 list_add_tail_rcu(&link->s_node, &supplier->links.consumers); 897 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers); 898 899 if (flags & DL_FLAG_SYNC_STATE_ONLY) { 900 dev_dbg(consumer, 901 "Linked as a sync state only consumer to %s\n", 902 dev_name(supplier)); 903 goto out; 904 } 905 906 reorder: 907 /* 908 * Move the consumer and all of the devices depending on it to the end 909 * of dpm_list and the devices_kset list. 910 * 911 * It is necessary to hold dpm_list locked throughout all that or else 912 * we may end up suspending with a wrong ordering of it. 913 */ 914 device_reorder_to_tail(consumer, NULL); 915 916 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier)); 917 918 out: 919 device_pm_unlock(); 920 device_links_write_unlock(); 921 922 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link) 923 pm_runtime_put(supplier); 924 925 return link; 926 } 927 EXPORT_SYMBOL_GPL(device_link_add); 928 929 static void __device_link_del(struct kref *kref) 930 { 931 struct device_link *link = container_of(kref, struct device_link, kref); 932 933 dev_dbg(link->consumer, "Dropping the link to %s\n", 934 dev_name(link->supplier)); 935 936 pm_runtime_drop_link(link); 937 938 device_link_remove_from_lists(link); 939 device_unregister(&link->link_dev); 940 } 941 942 static void device_link_put_kref(struct device_link *link) 943 { 944 if (link->flags & DL_FLAG_STATELESS) 945 kref_put(&link->kref, __device_link_del); 946 else if (!device_is_registered(link->consumer)) 947 __device_link_del(&link->kref); 948 else 949 WARN(1, "Unable to drop a managed device link reference\n"); 950 } 951 952 /** 953 * device_link_del - Delete a stateless link between two devices. 954 * @link: Device link to delete. 955 * 956 * The caller must ensure proper synchronization of this function with runtime 957 * PM. If the link was added multiple times, it needs to be deleted as often. 958 * Care is required for hotplugged devices: Their links are purged on removal 959 * and calling device_link_del() is then no longer allowed. 960 */ 961 void device_link_del(struct device_link *link) 962 { 963 device_links_write_lock(); 964 device_link_put_kref(link); 965 device_links_write_unlock(); 966 } 967 EXPORT_SYMBOL_GPL(device_link_del); 968 969 /** 970 * device_link_remove - Delete a stateless link between two devices. 971 * @consumer: Consumer end of the link. 972 * @supplier: Supplier end of the link. 973 * 974 * The caller must ensure proper synchronization of this function with runtime 975 * PM. 976 */ 977 void device_link_remove(void *consumer, struct device *supplier) 978 { 979 struct device_link *link; 980 981 if (WARN_ON(consumer == supplier)) 982 return; 983 984 device_links_write_lock(); 985 986 list_for_each_entry(link, &supplier->links.consumers, s_node) { 987 if (link->consumer == consumer) { 988 device_link_put_kref(link); 989 break; 990 } 991 } 992 993 device_links_write_unlock(); 994 } 995 EXPORT_SYMBOL_GPL(device_link_remove); 996 997 static void device_links_missing_supplier(struct device *dev) 998 { 999 struct device_link *link; 1000 1001 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1002 if (link->status != DL_STATE_CONSUMER_PROBE) 1003 continue; 1004 1005 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1006 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1007 } else { 1008 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1009 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1010 } 1011 } 1012 } 1013 1014 static bool dev_is_best_effort(struct device *dev) 1015 { 1016 return (fw_devlink_best_effort && dev->can_match) || 1017 (dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT)); 1018 } 1019 1020 static struct fwnode_handle *fwnode_links_check_suppliers( 1021 struct fwnode_handle *fwnode) 1022 { 1023 struct fwnode_link *link; 1024 1025 if (!fwnode || fw_devlink_is_permissive()) 1026 return NULL; 1027 1028 list_for_each_entry(link, &fwnode->suppliers, c_hook) 1029 if (!(link->flags & FWLINK_FLAG_CYCLE)) 1030 return link->supplier; 1031 1032 return NULL; 1033 } 1034 1035 /** 1036 * device_links_check_suppliers - Check presence of supplier drivers. 1037 * @dev: Consumer device. 1038 * 1039 * Check links from this device to any suppliers. Walk the list of the device's 1040 * links to suppliers and see if all of them are available. If not, simply 1041 * return -EPROBE_DEFER. 1042 * 1043 * We need to guarantee that the supplier will not go away after the check has 1044 * been positive here. It only can go away in __device_release_driver() and 1045 * that function checks the device's links to consumers. This means we need to 1046 * mark the link as "consumer probe in progress" to make the supplier removal 1047 * wait for us to complete (or bad things may happen). 1048 * 1049 * Links without the DL_FLAG_MANAGED flag set are ignored. 1050 */ 1051 int device_links_check_suppliers(struct device *dev) 1052 { 1053 struct device_link *link; 1054 int ret = 0, fwnode_ret = 0; 1055 struct fwnode_handle *sup_fw; 1056 1057 /* 1058 * Device waiting for supplier to become available is not allowed to 1059 * probe. 1060 */ 1061 mutex_lock(&fwnode_link_lock); 1062 sup_fw = fwnode_links_check_suppliers(dev->fwnode); 1063 if (sup_fw) { 1064 if (!dev_is_best_effort(dev)) { 1065 fwnode_ret = -EPROBE_DEFER; 1066 dev_err_probe(dev, -EPROBE_DEFER, 1067 "wait for supplier %pfwf\n", sup_fw); 1068 } else { 1069 fwnode_ret = -EAGAIN; 1070 } 1071 } 1072 mutex_unlock(&fwnode_link_lock); 1073 if (fwnode_ret == -EPROBE_DEFER) 1074 return fwnode_ret; 1075 1076 device_links_write_lock(); 1077 1078 list_for_each_entry(link, &dev->links.suppliers, c_node) { 1079 if (!(link->flags & DL_FLAG_MANAGED)) 1080 continue; 1081 1082 if (link->status != DL_STATE_AVAILABLE && 1083 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) { 1084 1085 if (dev_is_best_effort(dev) && 1086 link->flags & DL_FLAG_INFERRED && 1087 !link->supplier->can_match) { 1088 ret = -EAGAIN; 1089 continue; 1090 } 1091 1092 device_links_missing_supplier(dev); 1093 dev_err_probe(dev, -EPROBE_DEFER, 1094 "supplier %s not ready\n", 1095 dev_name(link->supplier)); 1096 ret = -EPROBE_DEFER; 1097 break; 1098 } 1099 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1100 } 1101 dev->links.status = DL_DEV_PROBING; 1102 1103 device_links_write_unlock(); 1104 1105 return ret ? ret : fwnode_ret; 1106 } 1107 1108 /** 1109 * __device_links_queue_sync_state - Queue a device for sync_state() callback 1110 * @dev: Device to call sync_state() on 1111 * @list: List head to queue the @dev on 1112 * 1113 * Queues a device for a sync_state() callback when the device links write lock 1114 * isn't held. This allows the sync_state() execution flow to use device links 1115 * APIs. The caller must ensure this function is called with 1116 * device_links_write_lock() held. 1117 * 1118 * This function does a get_device() to make sure the device is not freed while 1119 * on this list. 1120 * 1121 * So the caller must also ensure that device_links_flush_sync_list() is called 1122 * as soon as the caller releases device_links_write_lock(). This is necessary 1123 * to make sure the sync_state() is called in a timely fashion and the 1124 * put_device() is called on this device. 1125 */ 1126 static void __device_links_queue_sync_state(struct device *dev, 1127 struct list_head *list) 1128 { 1129 struct device_link *link; 1130 1131 if (!dev_has_sync_state(dev)) 1132 return; 1133 if (dev->state_synced) 1134 return; 1135 1136 list_for_each_entry(link, &dev->links.consumers, s_node) { 1137 if (!(link->flags & DL_FLAG_MANAGED)) 1138 continue; 1139 if (link->status != DL_STATE_ACTIVE) 1140 return; 1141 } 1142 1143 /* 1144 * Set the flag here to avoid adding the same device to a list more 1145 * than once. This can happen if new consumers get added to the device 1146 * and probed before the list is flushed. 1147 */ 1148 dev->state_synced = true; 1149 1150 if (WARN_ON(!list_empty(&dev->links.defer_sync))) 1151 return; 1152 1153 get_device(dev); 1154 list_add_tail(&dev->links.defer_sync, list); 1155 } 1156 1157 /** 1158 * device_links_flush_sync_list - Call sync_state() on a list of devices 1159 * @list: List of devices to call sync_state() on 1160 * @dont_lock_dev: Device for which lock is already held by the caller 1161 * 1162 * Calls sync_state() on all the devices that have been queued for it. This 1163 * function is used in conjunction with __device_links_queue_sync_state(). The 1164 * @dont_lock_dev parameter is useful when this function is called from a 1165 * context where a device lock is already held. 1166 */ 1167 static void device_links_flush_sync_list(struct list_head *list, 1168 struct device *dont_lock_dev) 1169 { 1170 struct device *dev, *tmp; 1171 1172 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) { 1173 list_del_init(&dev->links.defer_sync); 1174 1175 if (dev != dont_lock_dev) 1176 device_lock(dev); 1177 1178 dev_sync_state(dev); 1179 1180 if (dev != dont_lock_dev) 1181 device_unlock(dev); 1182 1183 put_device(dev); 1184 } 1185 } 1186 1187 void device_links_supplier_sync_state_pause(void) 1188 { 1189 device_links_write_lock(); 1190 defer_sync_state_count++; 1191 device_links_write_unlock(); 1192 } 1193 1194 void device_links_supplier_sync_state_resume(void) 1195 { 1196 struct device *dev, *tmp; 1197 LIST_HEAD(sync_list); 1198 1199 device_links_write_lock(); 1200 if (!defer_sync_state_count) { 1201 WARN(true, "Unmatched sync_state pause/resume!"); 1202 goto out; 1203 } 1204 defer_sync_state_count--; 1205 if (defer_sync_state_count) 1206 goto out; 1207 1208 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) { 1209 /* 1210 * Delete from deferred_sync list before queuing it to 1211 * sync_list because defer_sync is used for both lists. 1212 */ 1213 list_del_init(&dev->links.defer_sync); 1214 __device_links_queue_sync_state(dev, &sync_list); 1215 } 1216 out: 1217 device_links_write_unlock(); 1218 1219 device_links_flush_sync_list(&sync_list, NULL); 1220 } 1221 1222 static int sync_state_resume_initcall(void) 1223 { 1224 device_links_supplier_sync_state_resume(); 1225 return 0; 1226 } 1227 late_initcall(sync_state_resume_initcall); 1228 1229 static void __device_links_supplier_defer_sync(struct device *sup) 1230 { 1231 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup)) 1232 list_add_tail(&sup->links.defer_sync, &deferred_sync); 1233 } 1234 1235 static void device_link_drop_managed(struct device_link *link) 1236 { 1237 link->flags &= ~DL_FLAG_MANAGED; 1238 WRITE_ONCE(link->status, DL_STATE_NONE); 1239 kref_put(&link->kref, __device_link_del); 1240 } 1241 1242 static ssize_t waiting_for_supplier_show(struct device *dev, 1243 struct device_attribute *attr, 1244 char *buf) 1245 { 1246 bool val; 1247 1248 device_lock(dev); 1249 mutex_lock(&fwnode_link_lock); 1250 val = !!fwnode_links_check_suppliers(dev->fwnode); 1251 mutex_unlock(&fwnode_link_lock); 1252 device_unlock(dev); 1253 return sysfs_emit(buf, "%u\n", val); 1254 } 1255 static DEVICE_ATTR_RO(waiting_for_supplier); 1256 1257 /** 1258 * device_links_force_bind - Prepares device to be force bound 1259 * @dev: Consumer device. 1260 * 1261 * device_bind_driver() force binds a device to a driver without calling any 1262 * driver probe functions. So the consumer really isn't going to wait for any 1263 * supplier before it's bound to the driver. We still want the device link 1264 * states to be sensible when this happens. 1265 * 1266 * In preparation for device_bind_driver(), this function goes through each 1267 * supplier device links and checks if the supplier is bound. If it is, then 1268 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link 1269 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored. 1270 */ 1271 void device_links_force_bind(struct device *dev) 1272 { 1273 struct device_link *link, *ln; 1274 1275 device_links_write_lock(); 1276 1277 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1278 if (!(link->flags & DL_FLAG_MANAGED)) 1279 continue; 1280 1281 if (link->status != DL_STATE_AVAILABLE) { 1282 device_link_drop_managed(link); 1283 continue; 1284 } 1285 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE); 1286 } 1287 dev->links.status = DL_DEV_PROBING; 1288 1289 device_links_write_unlock(); 1290 } 1291 1292 /** 1293 * device_links_driver_bound - Update device links after probing its driver. 1294 * @dev: Device to update the links for. 1295 * 1296 * The probe has been successful, so update links from this device to any 1297 * consumers by changing their status to "available". 1298 * 1299 * Also change the status of @dev's links to suppliers to "active". 1300 * 1301 * Links without the DL_FLAG_MANAGED flag set are ignored. 1302 */ 1303 void device_links_driver_bound(struct device *dev) 1304 { 1305 struct device_link *link, *ln; 1306 LIST_HEAD(sync_list); 1307 1308 /* 1309 * If a device binds successfully, it's expected to have created all 1310 * the device links it needs to or make new device links as it needs 1311 * them. So, fw_devlink no longer needs to create device links to any 1312 * of the device's suppliers. 1313 * 1314 * Also, if a child firmware node of this bound device is not added as a 1315 * device by now, assume it is never going to be added. Make this bound 1316 * device the fallback supplier to the dangling consumers of the child 1317 * firmware node because this bound device is probably implementing the 1318 * child firmware node functionality and we don't want the dangling 1319 * consumers to defer probe indefinitely waiting for a device for the 1320 * child firmware node. 1321 */ 1322 if (dev->fwnode && dev->fwnode->dev == dev) { 1323 struct fwnode_handle *child; 1324 fwnode_links_purge_suppliers(dev->fwnode); 1325 mutex_lock(&fwnode_link_lock); 1326 fwnode_for_each_available_child_node(dev->fwnode, child) 1327 __fw_devlink_pickup_dangling_consumers(child, 1328 dev->fwnode); 1329 __fw_devlink_link_to_consumers(dev); 1330 mutex_unlock(&fwnode_link_lock); 1331 } 1332 device_remove_file(dev, &dev_attr_waiting_for_supplier); 1333 1334 device_links_write_lock(); 1335 1336 list_for_each_entry(link, &dev->links.consumers, s_node) { 1337 if (!(link->flags & DL_FLAG_MANAGED)) 1338 continue; 1339 1340 /* 1341 * Links created during consumer probe may be in the "consumer 1342 * probe" state to start with if the supplier is still probing 1343 * when they are created and they may become "active" if the 1344 * consumer probe returns first. Skip them here. 1345 */ 1346 if (link->status == DL_STATE_CONSUMER_PROBE || 1347 link->status == DL_STATE_ACTIVE) 1348 continue; 1349 1350 WARN_ON(link->status != DL_STATE_DORMANT); 1351 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1352 1353 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER) 1354 driver_deferred_probe_add(link->consumer); 1355 } 1356 1357 if (defer_sync_state_count) 1358 __device_links_supplier_defer_sync(dev); 1359 else 1360 __device_links_queue_sync_state(dev, &sync_list); 1361 1362 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) { 1363 struct device *supplier; 1364 1365 if (!(link->flags & DL_FLAG_MANAGED)) 1366 continue; 1367 1368 supplier = link->supplier; 1369 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) { 1370 /* 1371 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no 1372 * other DL_MANAGED_LINK_FLAGS have been set. So, it's 1373 * save to drop the managed link completely. 1374 */ 1375 device_link_drop_managed(link); 1376 } else if (dev_is_best_effort(dev) && 1377 link->flags & DL_FLAG_INFERRED && 1378 link->status != DL_STATE_CONSUMER_PROBE && 1379 !link->supplier->can_match) { 1380 /* 1381 * When dev_is_best_effort() is true, we ignore device 1382 * links to suppliers that don't have a driver. If the 1383 * consumer device still managed to probe, there's no 1384 * point in maintaining a device link in a weird state 1385 * (consumer probed before supplier). So delete it. 1386 */ 1387 device_link_drop_managed(link); 1388 } else { 1389 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE); 1390 WRITE_ONCE(link->status, DL_STATE_ACTIVE); 1391 } 1392 1393 /* 1394 * This needs to be done even for the deleted 1395 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last 1396 * device link that was preventing the supplier from getting a 1397 * sync_state() call. 1398 */ 1399 if (defer_sync_state_count) 1400 __device_links_supplier_defer_sync(supplier); 1401 else 1402 __device_links_queue_sync_state(supplier, &sync_list); 1403 } 1404 1405 dev->links.status = DL_DEV_DRIVER_BOUND; 1406 1407 device_links_write_unlock(); 1408 1409 device_links_flush_sync_list(&sync_list, dev); 1410 } 1411 1412 /** 1413 * __device_links_no_driver - Update links of a device without a driver. 1414 * @dev: Device without a drvier. 1415 * 1416 * Delete all non-persistent links from this device to any suppliers. 1417 * 1418 * Persistent links stay around, but their status is changed to "available", 1419 * unless they already are in the "supplier unbind in progress" state in which 1420 * case they need not be updated. 1421 * 1422 * Links without the DL_FLAG_MANAGED flag set are ignored. 1423 */ 1424 static void __device_links_no_driver(struct device *dev) 1425 { 1426 struct device_link *link, *ln; 1427 1428 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1429 if (!(link->flags & DL_FLAG_MANAGED)) 1430 continue; 1431 1432 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) { 1433 device_link_drop_managed(link); 1434 continue; 1435 } 1436 1437 if (link->status != DL_STATE_CONSUMER_PROBE && 1438 link->status != DL_STATE_ACTIVE) 1439 continue; 1440 1441 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) { 1442 WRITE_ONCE(link->status, DL_STATE_AVAILABLE); 1443 } else { 1444 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY)); 1445 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1446 } 1447 } 1448 1449 dev->links.status = DL_DEV_NO_DRIVER; 1450 } 1451 1452 /** 1453 * device_links_no_driver - Update links after failing driver probe. 1454 * @dev: Device whose driver has just failed to probe. 1455 * 1456 * Clean up leftover links to consumers for @dev and invoke 1457 * %__device_links_no_driver() to update links to suppliers for it as 1458 * appropriate. 1459 * 1460 * Links without the DL_FLAG_MANAGED flag set are ignored. 1461 */ 1462 void device_links_no_driver(struct device *dev) 1463 { 1464 struct device_link *link; 1465 1466 device_links_write_lock(); 1467 1468 list_for_each_entry(link, &dev->links.consumers, s_node) { 1469 if (!(link->flags & DL_FLAG_MANAGED)) 1470 continue; 1471 1472 /* 1473 * The probe has failed, so if the status of the link is 1474 * "consumer probe" or "active", it must have been added by 1475 * a probing consumer while this device was still probing. 1476 * Change its state to "dormant", as it represents a valid 1477 * relationship, but it is not functionally meaningful. 1478 */ 1479 if (link->status == DL_STATE_CONSUMER_PROBE || 1480 link->status == DL_STATE_ACTIVE) 1481 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1482 } 1483 1484 __device_links_no_driver(dev); 1485 1486 device_links_write_unlock(); 1487 } 1488 1489 /** 1490 * device_links_driver_cleanup - Update links after driver removal. 1491 * @dev: Device whose driver has just gone away. 1492 * 1493 * Update links to consumers for @dev by changing their status to "dormant" and 1494 * invoke %__device_links_no_driver() to update links to suppliers for it as 1495 * appropriate. 1496 * 1497 * Links without the DL_FLAG_MANAGED flag set are ignored. 1498 */ 1499 void device_links_driver_cleanup(struct device *dev) 1500 { 1501 struct device_link *link, *ln; 1502 1503 device_links_write_lock(); 1504 1505 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) { 1506 if (!(link->flags & DL_FLAG_MANAGED)) 1507 continue; 1508 1509 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER); 1510 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND); 1511 1512 /* 1513 * autoremove the links between this @dev and its consumer 1514 * devices that are not active, i.e. where the link state 1515 * has moved to DL_STATE_SUPPLIER_UNBIND. 1516 */ 1517 if (link->status == DL_STATE_SUPPLIER_UNBIND && 1518 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER) 1519 device_link_drop_managed(link); 1520 1521 WRITE_ONCE(link->status, DL_STATE_DORMANT); 1522 } 1523 1524 list_del_init(&dev->links.defer_sync); 1525 __device_links_no_driver(dev); 1526 1527 device_links_write_unlock(); 1528 } 1529 1530 /** 1531 * device_links_busy - Check if there are any busy links to consumers. 1532 * @dev: Device to check. 1533 * 1534 * Check each consumer of the device and return 'true' if its link's status 1535 * is one of "consumer probe" or "active" (meaning that the given consumer is 1536 * probing right now or its driver is present). Otherwise, change the link 1537 * state to "supplier unbind" to prevent the consumer from being probed 1538 * successfully going forward. 1539 * 1540 * Return 'false' if there are no probing or active consumers. 1541 * 1542 * Links without the DL_FLAG_MANAGED flag set are ignored. 1543 */ 1544 bool device_links_busy(struct device *dev) 1545 { 1546 struct device_link *link; 1547 bool ret = false; 1548 1549 device_links_write_lock(); 1550 1551 list_for_each_entry(link, &dev->links.consumers, s_node) { 1552 if (!(link->flags & DL_FLAG_MANAGED)) 1553 continue; 1554 1555 if (link->status == DL_STATE_CONSUMER_PROBE 1556 || link->status == DL_STATE_ACTIVE) { 1557 ret = true; 1558 break; 1559 } 1560 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1561 } 1562 1563 dev->links.status = DL_DEV_UNBINDING; 1564 1565 device_links_write_unlock(); 1566 return ret; 1567 } 1568 1569 /** 1570 * device_links_unbind_consumers - Force unbind consumers of the given device. 1571 * @dev: Device to unbind the consumers of. 1572 * 1573 * Walk the list of links to consumers for @dev and if any of them is in the 1574 * "consumer probe" state, wait for all device probes in progress to complete 1575 * and start over. 1576 * 1577 * If that's not the case, change the status of the link to "supplier unbind" 1578 * and check if the link was in the "active" state. If so, force the consumer 1579 * driver to unbind and start over (the consumer will not re-probe as we have 1580 * changed the state of the link already). 1581 * 1582 * Links without the DL_FLAG_MANAGED flag set are ignored. 1583 */ 1584 void device_links_unbind_consumers(struct device *dev) 1585 { 1586 struct device_link *link; 1587 1588 start: 1589 device_links_write_lock(); 1590 1591 list_for_each_entry(link, &dev->links.consumers, s_node) { 1592 enum device_link_state status; 1593 1594 if (!(link->flags & DL_FLAG_MANAGED) || 1595 link->flags & DL_FLAG_SYNC_STATE_ONLY) 1596 continue; 1597 1598 status = link->status; 1599 if (status == DL_STATE_CONSUMER_PROBE) { 1600 device_links_write_unlock(); 1601 1602 wait_for_device_probe(); 1603 goto start; 1604 } 1605 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND); 1606 if (status == DL_STATE_ACTIVE) { 1607 struct device *consumer = link->consumer; 1608 1609 get_device(consumer); 1610 1611 device_links_write_unlock(); 1612 1613 device_release_driver_internal(consumer, NULL, 1614 consumer->parent); 1615 put_device(consumer); 1616 goto start; 1617 } 1618 } 1619 1620 device_links_write_unlock(); 1621 } 1622 1623 /** 1624 * device_links_purge - Delete existing links to other devices. 1625 * @dev: Target device. 1626 */ 1627 static void device_links_purge(struct device *dev) 1628 { 1629 struct device_link *link, *ln; 1630 1631 if (dev->class == &devlink_class) 1632 return; 1633 1634 /* 1635 * Delete all of the remaining links from this device to any other 1636 * devices (either consumers or suppliers). 1637 */ 1638 device_links_write_lock(); 1639 1640 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) { 1641 WARN_ON(link->status == DL_STATE_ACTIVE); 1642 __device_link_del(&link->kref); 1643 } 1644 1645 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) { 1646 WARN_ON(link->status != DL_STATE_DORMANT && 1647 link->status != DL_STATE_NONE); 1648 __device_link_del(&link->kref); 1649 } 1650 1651 device_links_write_unlock(); 1652 } 1653 1654 #define FW_DEVLINK_FLAGS_PERMISSIVE (DL_FLAG_INFERRED | \ 1655 DL_FLAG_SYNC_STATE_ONLY) 1656 #define FW_DEVLINK_FLAGS_ON (DL_FLAG_INFERRED | \ 1657 DL_FLAG_AUTOPROBE_CONSUMER) 1658 #define FW_DEVLINK_FLAGS_RPM (FW_DEVLINK_FLAGS_ON | \ 1659 DL_FLAG_PM_RUNTIME) 1660 1661 static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1662 static int __init fw_devlink_setup(char *arg) 1663 { 1664 if (!arg) 1665 return -EINVAL; 1666 1667 if (strcmp(arg, "off") == 0) { 1668 fw_devlink_flags = 0; 1669 } else if (strcmp(arg, "permissive") == 0) { 1670 fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE; 1671 } else if (strcmp(arg, "on") == 0) { 1672 fw_devlink_flags = FW_DEVLINK_FLAGS_ON; 1673 } else if (strcmp(arg, "rpm") == 0) { 1674 fw_devlink_flags = FW_DEVLINK_FLAGS_RPM; 1675 } 1676 return 0; 1677 } 1678 early_param("fw_devlink", fw_devlink_setup); 1679 1680 static bool fw_devlink_strict; 1681 static int __init fw_devlink_strict_setup(char *arg) 1682 { 1683 return kstrtobool(arg, &fw_devlink_strict); 1684 } 1685 early_param("fw_devlink.strict", fw_devlink_strict_setup); 1686 1687 #define FW_DEVLINK_SYNC_STATE_STRICT 0 1688 #define FW_DEVLINK_SYNC_STATE_TIMEOUT 1 1689 1690 #ifndef CONFIG_FW_DEVLINK_SYNC_STATE_TIMEOUT 1691 static int fw_devlink_sync_state; 1692 #else 1693 static int fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1694 #endif 1695 1696 static int __init fw_devlink_sync_state_setup(char *arg) 1697 { 1698 if (!arg) 1699 return -EINVAL; 1700 1701 if (strcmp(arg, "strict") == 0) { 1702 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_STRICT; 1703 return 0; 1704 } else if (strcmp(arg, "timeout") == 0) { 1705 fw_devlink_sync_state = FW_DEVLINK_SYNC_STATE_TIMEOUT; 1706 return 0; 1707 } 1708 return -EINVAL; 1709 } 1710 early_param("fw_devlink.sync_state", fw_devlink_sync_state_setup); 1711 1712 static inline u32 fw_devlink_get_flags(u8 fwlink_flags) 1713 { 1714 if (fwlink_flags & FWLINK_FLAG_CYCLE) 1715 return FW_DEVLINK_FLAGS_PERMISSIVE | DL_FLAG_CYCLE; 1716 1717 return fw_devlink_flags; 1718 } 1719 1720 static bool fw_devlink_is_permissive(void) 1721 { 1722 return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE; 1723 } 1724 1725 bool fw_devlink_is_strict(void) 1726 { 1727 return fw_devlink_strict && !fw_devlink_is_permissive(); 1728 } 1729 1730 static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode) 1731 { 1732 if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED) 1733 return; 1734 1735 fwnode_call_int_op(fwnode, add_links); 1736 fwnode->flags |= FWNODE_FLAG_LINKS_ADDED; 1737 } 1738 1739 static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode) 1740 { 1741 struct fwnode_handle *child = NULL; 1742 1743 fw_devlink_parse_fwnode(fwnode); 1744 1745 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 1746 fw_devlink_parse_fwtree(child); 1747 } 1748 1749 static void fw_devlink_relax_link(struct device_link *link) 1750 { 1751 if (!(link->flags & DL_FLAG_INFERRED)) 1752 return; 1753 1754 if (device_link_flag_is_sync_state_only(link->flags)) 1755 return; 1756 1757 pm_runtime_drop_link(link); 1758 link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE; 1759 dev_dbg(link->consumer, "Relaxing link with %s\n", 1760 dev_name(link->supplier)); 1761 } 1762 1763 static int fw_devlink_no_driver(struct device *dev, void *data) 1764 { 1765 struct device_link *link = to_devlink(dev); 1766 1767 if (!link->supplier->can_match) 1768 fw_devlink_relax_link(link); 1769 1770 return 0; 1771 } 1772 1773 void fw_devlink_drivers_done(void) 1774 { 1775 fw_devlink_drv_reg_done = true; 1776 device_links_write_lock(); 1777 class_for_each_device(&devlink_class, NULL, NULL, 1778 fw_devlink_no_driver); 1779 device_links_write_unlock(); 1780 } 1781 1782 static int fw_devlink_dev_sync_state(struct device *dev, void *data) 1783 { 1784 struct device_link *link = to_devlink(dev); 1785 struct device *sup = link->supplier; 1786 1787 if (!(link->flags & DL_FLAG_MANAGED) || 1788 link->status == DL_STATE_ACTIVE || sup->state_synced || 1789 !dev_has_sync_state(sup)) 1790 return 0; 1791 1792 if (fw_devlink_sync_state == FW_DEVLINK_SYNC_STATE_STRICT) { 1793 dev_warn(sup, "sync_state() pending due to %s\n", 1794 dev_name(link->consumer)); 1795 return 0; 1796 } 1797 1798 if (!list_empty(&sup->links.defer_sync)) 1799 return 0; 1800 1801 dev_warn(sup, "Timed out. Forcing sync_state()\n"); 1802 sup->state_synced = true; 1803 get_device(sup); 1804 list_add_tail(&sup->links.defer_sync, data); 1805 1806 return 0; 1807 } 1808 1809 void fw_devlink_probing_done(void) 1810 { 1811 LIST_HEAD(sync_list); 1812 1813 device_links_write_lock(); 1814 class_for_each_device(&devlink_class, NULL, &sync_list, 1815 fw_devlink_dev_sync_state); 1816 device_links_write_unlock(); 1817 device_links_flush_sync_list(&sync_list, NULL); 1818 } 1819 1820 /** 1821 * wait_for_init_devices_probe - Try to probe any device needed for init 1822 * 1823 * Some devices might need to be probed and bound successfully before the kernel 1824 * boot sequence can finish and move on to init/userspace. For example, a 1825 * network interface might need to be bound to be able to mount a NFS rootfs. 1826 * 1827 * With fw_devlink=on by default, some of these devices might be blocked from 1828 * probing because they are waiting on a optional supplier that doesn't have a 1829 * driver. While fw_devlink will eventually identify such devices and unblock 1830 * the probing automatically, it might be too late by the time it unblocks the 1831 * probing of devices. For example, the IP4 autoconfig might timeout before 1832 * fw_devlink unblocks probing of the network interface. 1833 * 1834 * This function is available to temporarily try and probe all devices that have 1835 * a driver even if some of their suppliers haven't been added or don't have 1836 * drivers. 1837 * 1838 * The drivers can then decide which of the suppliers are optional vs mandatory 1839 * and probe the device if possible. By the time this function returns, all such 1840 * "best effort" probes are guaranteed to be completed. If a device successfully 1841 * probes in this mode, we delete all fw_devlink discovered dependencies of that 1842 * device where the supplier hasn't yet probed successfully because they have to 1843 * be optional dependencies. 1844 * 1845 * Any devices that didn't successfully probe go back to being treated as if 1846 * this function was never called. 1847 * 1848 * This also means that some devices that aren't needed for init and could have 1849 * waited for their optional supplier to probe (when the supplier's module is 1850 * loaded later on) would end up probing prematurely with limited functionality. 1851 * So call this function only when boot would fail without it. 1852 */ 1853 void __init wait_for_init_devices_probe(void) 1854 { 1855 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1856 return; 1857 1858 /* 1859 * Wait for all ongoing probes to finish so that the "best effort" is 1860 * only applied to devices that can't probe otherwise. 1861 */ 1862 wait_for_device_probe(); 1863 1864 pr_info("Trying to probe devices needed for running init ...\n"); 1865 fw_devlink_best_effort = true; 1866 driver_deferred_probe_trigger(); 1867 1868 /* 1869 * Wait for all "best effort" probes to finish before going back to 1870 * normal enforcement. 1871 */ 1872 wait_for_device_probe(); 1873 fw_devlink_best_effort = false; 1874 } 1875 1876 static void fw_devlink_unblock_consumers(struct device *dev) 1877 { 1878 struct device_link *link; 1879 1880 if (!fw_devlink_flags || fw_devlink_is_permissive()) 1881 return; 1882 1883 device_links_write_lock(); 1884 list_for_each_entry(link, &dev->links.consumers, s_node) 1885 fw_devlink_relax_link(link); 1886 device_links_write_unlock(); 1887 } 1888 1889 1890 static bool fwnode_init_without_drv(struct fwnode_handle *fwnode) 1891 { 1892 struct device *dev; 1893 bool ret; 1894 1895 if (!(fwnode->flags & FWNODE_FLAG_INITIALIZED)) 1896 return false; 1897 1898 dev = get_dev_from_fwnode(fwnode); 1899 ret = !dev || dev->links.status == DL_DEV_NO_DRIVER; 1900 put_device(dev); 1901 1902 return ret; 1903 } 1904 1905 static bool fwnode_ancestor_init_without_drv(struct fwnode_handle *fwnode) 1906 { 1907 struct fwnode_handle *parent; 1908 1909 fwnode_for_each_parent_node(fwnode, parent) { 1910 if (fwnode_init_without_drv(parent)) { 1911 fwnode_handle_put(parent); 1912 return true; 1913 } 1914 } 1915 1916 return false; 1917 } 1918 1919 /** 1920 * __fw_devlink_relax_cycles - Relax and mark dependency cycles. 1921 * @con: Potential consumer device. 1922 * @sup_handle: Potential supplier's fwnode. 1923 * 1924 * Needs to be called with fwnode_lock and device link lock held. 1925 * 1926 * Check if @sup_handle or any of its ancestors or suppliers direct/indirectly 1927 * depend on @con. This function can detect multiple cyles between @sup_handle 1928 * and @con. When such dependency cycles are found, convert all device links 1929 * created solely by fw_devlink into SYNC_STATE_ONLY device links. Also, mark 1930 * all fwnode links in the cycle with FWLINK_FLAG_CYCLE so that when they are 1931 * converted into a device link in the future, they are created as 1932 * SYNC_STATE_ONLY device links. This is the equivalent of doing 1933 * fw_devlink=permissive just between the devices in the cycle. We need to do 1934 * this because, at this point, fw_devlink can't tell which of these 1935 * dependencies is not a real dependency. 1936 * 1937 * Return true if one or more cycles were found. Otherwise, return false. 1938 */ 1939 static bool __fw_devlink_relax_cycles(struct device *con, 1940 struct fwnode_handle *sup_handle) 1941 { 1942 struct device *sup_dev = NULL, *par_dev = NULL; 1943 struct fwnode_link *link; 1944 struct device_link *dev_link; 1945 bool ret = false; 1946 1947 if (!sup_handle) 1948 return false; 1949 1950 /* 1951 * We aren't trying to find all cycles. Just a cycle between con and 1952 * sup_handle. 1953 */ 1954 if (sup_handle->flags & FWNODE_FLAG_VISITED) 1955 return false; 1956 1957 sup_handle->flags |= FWNODE_FLAG_VISITED; 1958 1959 sup_dev = get_dev_from_fwnode(sup_handle); 1960 1961 /* Termination condition. */ 1962 if (sup_dev == con) { 1963 ret = true; 1964 goto out; 1965 } 1966 1967 /* 1968 * If sup_dev is bound to a driver and @con hasn't started binding to a 1969 * driver, sup_dev can't be a consumer of @con. So, no need to check 1970 * further. 1971 */ 1972 if (sup_dev && sup_dev->links.status == DL_DEV_DRIVER_BOUND && 1973 con->links.status == DL_DEV_NO_DRIVER) { 1974 ret = false; 1975 goto out; 1976 } 1977 1978 list_for_each_entry(link, &sup_handle->suppliers, c_hook) { 1979 if (__fw_devlink_relax_cycles(con, link->supplier)) { 1980 __fwnode_link_cycle(link); 1981 ret = true; 1982 } 1983 } 1984 1985 /* 1986 * Give priority to device parent over fwnode parent to account for any 1987 * quirks in how fwnodes are converted to devices. 1988 */ 1989 if (sup_dev) 1990 par_dev = get_device(sup_dev->parent); 1991 else 1992 par_dev = fwnode_get_next_parent_dev(sup_handle); 1993 1994 if (par_dev && __fw_devlink_relax_cycles(con, par_dev->fwnode)) 1995 ret = true; 1996 1997 if (!sup_dev) 1998 goto out; 1999 2000 list_for_each_entry(dev_link, &sup_dev->links.suppliers, c_node) { 2001 /* 2002 * Ignore a SYNC_STATE_ONLY flag only if it wasn't marked as 2003 * such due to a cycle. 2004 */ 2005 if (device_link_flag_is_sync_state_only(dev_link->flags) && 2006 !(dev_link->flags & DL_FLAG_CYCLE)) 2007 continue; 2008 2009 if (__fw_devlink_relax_cycles(con, 2010 dev_link->supplier->fwnode)) { 2011 fw_devlink_relax_link(dev_link); 2012 dev_link->flags |= DL_FLAG_CYCLE; 2013 ret = true; 2014 } 2015 } 2016 2017 out: 2018 sup_handle->flags &= ~FWNODE_FLAG_VISITED; 2019 put_device(sup_dev); 2020 put_device(par_dev); 2021 return ret; 2022 } 2023 2024 /** 2025 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode 2026 * @con: consumer device for the device link 2027 * @sup_handle: fwnode handle of supplier 2028 * @link: fwnode link that's being converted to a device link 2029 * 2030 * This function will try to create a device link between the consumer device 2031 * @con and the supplier device represented by @sup_handle. 2032 * 2033 * The supplier has to be provided as a fwnode because incorrect cycles in 2034 * fwnode links can sometimes cause the supplier device to never be created. 2035 * This function detects such cases and returns an error if it cannot create a 2036 * device link from the consumer to a missing supplier. 2037 * 2038 * Returns, 2039 * 0 on successfully creating a device link 2040 * -EINVAL if the device link cannot be created as expected 2041 * -EAGAIN if the device link cannot be created right now, but it may be 2042 * possible to do that in the future 2043 */ 2044 static int fw_devlink_create_devlink(struct device *con, 2045 struct fwnode_handle *sup_handle, 2046 struct fwnode_link *link) 2047 { 2048 struct device *sup_dev; 2049 int ret = 0; 2050 u32 flags; 2051 2052 if (con->fwnode == link->consumer) 2053 flags = fw_devlink_get_flags(link->flags); 2054 else 2055 flags = FW_DEVLINK_FLAGS_PERMISSIVE; 2056 2057 /* 2058 * In some cases, a device P might also be a supplier to its child node 2059 * C. However, this would defer the probe of C until the probe of P 2060 * completes successfully. This is perfectly fine in the device driver 2061 * model. device_add() doesn't guarantee probe completion of the device 2062 * by the time it returns. 2063 * 2064 * However, there are a few drivers that assume C will finish probing 2065 * as soon as it's added and before P finishes probing. So, we provide 2066 * a flag to let fw_devlink know not to delay the probe of C until the 2067 * probe of P completes successfully. 2068 * 2069 * When such a flag is set, we can't create device links where P is the 2070 * supplier of C as that would delay the probe of C. 2071 */ 2072 if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD && 2073 fwnode_is_ancestor_of(sup_handle, con->fwnode)) 2074 return -EINVAL; 2075 2076 /* 2077 * SYNC_STATE_ONLY device links don't block probing and supports cycles. 2078 * So, one might expect that cycle detection isn't necessary for them. 2079 * However, if the device link was marked as SYNC_STATE_ONLY because 2080 * it's part of a cycle, then we still need to do cycle detection. This 2081 * is because the consumer and supplier might be part of multiple cycles 2082 * and we need to detect all those cycles. 2083 */ 2084 if (!device_link_flag_is_sync_state_only(flags) || 2085 flags & DL_FLAG_CYCLE) { 2086 device_links_write_lock(); 2087 if (__fw_devlink_relax_cycles(con, sup_handle)) { 2088 __fwnode_link_cycle(link); 2089 flags = fw_devlink_get_flags(link->flags); 2090 dev_info(con, "Fixed dependency cycle(s) with %pfwf\n", 2091 sup_handle); 2092 } 2093 device_links_write_unlock(); 2094 } 2095 2096 if (sup_handle->flags & FWNODE_FLAG_NOT_DEVICE) 2097 sup_dev = fwnode_get_next_parent_dev(sup_handle); 2098 else 2099 sup_dev = get_dev_from_fwnode(sup_handle); 2100 2101 if (sup_dev) { 2102 /* 2103 * If it's one of those drivers that don't actually bind to 2104 * their device using driver core, then don't wait on this 2105 * supplier device indefinitely. 2106 */ 2107 if (sup_dev->links.status == DL_DEV_NO_DRIVER && 2108 sup_handle->flags & FWNODE_FLAG_INITIALIZED) { 2109 dev_dbg(con, 2110 "Not linking %pfwf - dev might never probe\n", 2111 sup_handle); 2112 ret = -EINVAL; 2113 goto out; 2114 } 2115 2116 if (con != sup_dev && !device_link_add(con, sup_dev, flags)) { 2117 dev_err(con, "Failed to create device link (0x%x) with %s\n", 2118 flags, dev_name(sup_dev)); 2119 ret = -EINVAL; 2120 } 2121 2122 goto out; 2123 } 2124 2125 /* 2126 * Supplier or supplier's ancestor already initialized without a struct 2127 * device or being probed by a driver. 2128 */ 2129 if (fwnode_init_without_drv(sup_handle) || 2130 fwnode_ancestor_init_without_drv(sup_handle)) { 2131 dev_dbg(con, "Not linking %pfwf - might never become dev\n", 2132 sup_handle); 2133 return -EINVAL; 2134 } 2135 2136 ret = -EAGAIN; 2137 out: 2138 put_device(sup_dev); 2139 return ret; 2140 } 2141 2142 /** 2143 * __fw_devlink_link_to_consumers - Create device links to consumers of a device 2144 * @dev: Device that needs to be linked to its consumers 2145 * 2146 * This function looks at all the consumer fwnodes of @dev and creates device 2147 * links between the consumer device and @dev (supplier). 2148 * 2149 * If the consumer device has not been added yet, then this function creates a 2150 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device 2151 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a 2152 * sync_state() callback before the real consumer device gets to be added and 2153 * then probed. 2154 * 2155 * Once device links are created from the real consumer to @dev (supplier), the 2156 * fwnode links are deleted. 2157 */ 2158 static void __fw_devlink_link_to_consumers(struct device *dev) 2159 { 2160 struct fwnode_handle *fwnode = dev->fwnode; 2161 struct fwnode_link *link, *tmp; 2162 2163 list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) { 2164 struct device *con_dev; 2165 bool own_link = true; 2166 int ret; 2167 2168 con_dev = get_dev_from_fwnode(link->consumer); 2169 /* 2170 * If consumer device is not available yet, make a "proxy" 2171 * SYNC_STATE_ONLY link from the consumer's parent device to 2172 * the supplier device. This is necessary to make sure the 2173 * supplier doesn't get a sync_state() callback before the real 2174 * consumer can create a device link to the supplier. 2175 * 2176 * This proxy link step is needed to handle the case where the 2177 * consumer's parent device is added before the supplier. 2178 */ 2179 if (!con_dev) { 2180 con_dev = fwnode_get_next_parent_dev(link->consumer); 2181 /* 2182 * However, if the consumer's parent device is also the 2183 * parent of the supplier, don't create a 2184 * consumer-supplier link from the parent to its child 2185 * device. Such a dependency is impossible. 2186 */ 2187 if (con_dev && 2188 fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) { 2189 put_device(con_dev); 2190 con_dev = NULL; 2191 } else { 2192 own_link = false; 2193 } 2194 } 2195 2196 if (!con_dev) 2197 continue; 2198 2199 ret = fw_devlink_create_devlink(con_dev, fwnode, link); 2200 put_device(con_dev); 2201 if (!own_link || ret == -EAGAIN) 2202 continue; 2203 2204 __fwnode_link_del(link); 2205 } 2206 } 2207 2208 /** 2209 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device 2210 * @dev: The consumer device that needs to be linked to its suppliers 2211 * @fwnode: Root of the fwnode tree that is used to create device links 2212 * 2213 * This function looks at all the supplier fwnodes of fwnode tree rooted at 2214 * @fwnode and creates device links between @dev (consumer) and all the 2215 * supplier devices of the entire fwnode tree at @fwnode. 2216 * 2217 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev 2218 * and the real suppliers of @dev. Once these device links are created, the 2219 * fwnode links are deleted. 2220 * 2221 * In addition, it also looks at all the suppliers of the entire fwnode tree 2222 * because some of the child devices of @dev that have not been added yet 2223 * (because @dev hasn't probed) might already have their suppliers added to 2224 * driver core. So, this function creates SYNC_STATE_ONLY device links between 2225 * @dev (consumer) and these suppliers to make sure they don't execute their 2226 * sync_state() callbacks before these child devices have a chance to create 2227 * their device links. The fwnode links that correspond to the child devices 2228 * aren't delete because they are needed later to create the device links 2229 * between the real consumer and supplier devices. 2230 */ 2231 static void __fw_devlink_link_to_suppliers(struct device *dev, 2232 struct fwnode_handle *fwnode) 2233 { 2234 bool own_link = (dev->fwnode == fwnode); 2235 struct fwnode_link *link, *tmp; 2236 struct fwnode_handle *child = NULL; 2237 2238 list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) { 2239 int ret; 2240 struct fwnode_handle *sup = link->supplier; 2241 2242 ret = fw_devlink_create_devlink(dev, sup, link); 2243 if (!own_link || ret == -EAGAIN) 2244 continue; 2245 2246 __fwnode_link_del(link); 2247 } 2248 2249 /* 2250 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of 2251 * all the descendants. This proxy link step is needed to handle the 2252 * case where the supplier is added before the consumer's parent device 2253 * (@dev). 2254 */ 2255 while ((child = fwnode_get_next_available_child_node(fwnode, child))) 2256 __fw_devlink_link_to_suppliers(dev, child); 2257 } 2258 2259 static void fw_devlink_link_device(struct device *dev) 2260 { 2261 struct fwnode_handle *fwnode = dev->fwnode; 2262 2263 if (!fw_devlink_flags) 2264 return; 2265 2266 fw_devlink_parse_fwtree(fwnode); 2267 2268 mutex_lock(&fwnode_link_lock); 2269 __fw_devlink_link_to_consumers(dev); 2270 __fw_devlink_link_to_suppliers(dev, fwnode); 2271 mutex_unlock(&fwnode_link_lock); 2272 } 2273 2274 /* Device links support end. */ 2275 2276 int (*platform_notify)(struct device *dev) = NULL; 2277 int (*platform_notify_remove)(struct device *dev) = NULL; 2278 static struct kobject *dev_kobj; 2279 2280 /* /sys/dev/char */ 2281 static struct kobject *sysfs_dev_char_kobj; 2282 2283 /* /sys/dev/block */ 2284 static struct kobject *sysfs_dev_block_kobj; 2285 2286 static DEFINE_MUTEX(device_hotplug_lock); 2287 2288 void lock_device_hotplug(void) 2289 { 2290 mutex_lock(&device_hotplug_lock); 2291 } 2292 2293 void unlock_device_hotplug(void) 2294 { 2295 mutex_unlock(&device_hotplug_lock); 2296 } 2297 2298 int lock_device_hotplug_sysfs(void) 2299 { 2300 if (mutex_trylock(&device_hotplug_lock)) 2301 return 0; 2302 2303 /* Avoid busy looping (5 ms of sleep should do). */ 2304 msleep(5); 2305 return restart_syscall(); 2306 } 2307 2308 #ifdef CONFIG_BLOCK 2309 static inline int device_is_not_partition(struct device *dev) 2310 { 2311 return !(dev->type == &part_type); 2312 } 2313 #else 2314 static inline int device_is_not_partition(struct device *dev) 2315 { 2316 return 1; 2317 } 2318 #endif 2319 2320 static void device_platform_notify(struct device *dev) 2321 { 2322 acpi_device_notify(dev); 2323 2324 software_node_notify(dev); 2325 2326 if (platform_notify) 2327 platform_notify(dev); 2328 } 2329 2330 static void device_platform_notify_remove(struct device *dev) 2331 { 2332 if (platform_notify_remove) 2333 platform_notify_remove(dev); 2334 2335 software_node_notify_remove(dev); 2336 2337 acpi_device_notify_remove(dev); 2338 } 2339 2340 /** 2341 * dev_driver_string - Return a device's driver name, if at all possible 2342 * @dev: struct device to get the name of 2343 * 2344 * Will return the device's driver's name if it is bound to a device. If 2345 * the device is not bound to a driver, it will return the name of the bus 2346 * it is attached to. If it is not attached to a bus either, an empty 2347 * string will be returned. 2348 */ 2349 const char *dev_driver_string(const struct device *dev) 2350 { 2351 struct device_driver *drv; 2352 2353 /* dev->driver can change to NULL underneath us because of unbinding, 2354 * so be careful about accessing it. dev->bus and dev->class should 2355 * never change once they are set, so they don't need special care. 2356 */ 2357 drv = READ_ONCE(dev->driver); 2358 return drv ? drv->name : dev_bus_name(dev); 2359 } 2360 EXPORT_SYMBOL(dev_driver_string); 2361 2362 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr) 2363 2364 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr, 2365 char *buf) 2366 { 2367 struct device_attribute *dev_attr = to_dev_attr(attr); 2368 struct device *dev = kobj_to_dev(kobj); 2369 ssize_t ret = -EIO; 2370 2371 if (dev_attr->show) 2372 ret = dev_attr->show(dev, dev_attr, buf); 2373 if (ret >= (ssize_t)PAGE_SIZE) { 2374 printk("dev_attr_show: %pS returned bad count\n", 2375 dev_attr->show); 2376 } 2377 return ret; 2378 } 2379 2380 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr, 2381 const char *buf, size_t count) 2382 { 2383 struct device_attribute *dev_attr = to_dev_attr(attr); 2384 struct device *dev = kobj_to_dev(kobj); 2385 ssize_t ret = -EIO; 2386 2387 if (dev_attr->store) 2388 ret = dev_attr->store(dev, dev_attr, buf, count); 2389 return ret; 2390 } 2391 2392 static const struct sysfs_ops dev_sysfs_ops = { 2393 .show = dev_attr_show, 2394 .store = dev_attr_store, 2395 }; 2396 2397 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr) 2398 2399 ssize_t device_store_ulong(struct device *dev, 2400 struct device_attribute *attr, 2401 const char *buf, size_t size) 2402 { 2403 struct dev_ext_attribute *ea = to_ext_attr(attr); 2404 int ret; 2405 unsigned long new; 2406 2407 ret = kstrtoul(buf, 0, &new); 2408 if (ret) 2409 return ret; 2410 *(unsigned long *)(ea->var) = new; 2411 /* Always return full write size even if we didn't consume all */ 2412 return size; 2413 } 2414 EXPORT_SYMBOL_GPL(device_store_ulong); 2415 2416 ssize_t device_show_ulong(struct device *dev, 2417 struct device_attribute *attr, 2418 char *buf) 2419 { 2420 struct dev_ext_attribute *ea = to_ext_attr(attr); 2421 return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var)); 2422 } 2423 EXPORT_SYMBOL_GPL(device_show_ulong); 2424 2425 ssize_t device_store_int(struct device *dev, 2426 struct device_attribute *attr, 2427 const char *buf, size_t size) 2428 { 2429 struct dev_ext_attribute *ea = to_ext_attr(attr); 2430 int ret; 2431 long new; 2432 2433 ret = kstrtol(buf, 0, &new); 2434 if (ret) 2435 return ret; 2436 2437 if (new > INT_MAX || new < INT_MIN) 2438 return -EINVAL; 2439 *(int *)(ea->var) = new; 2440 /* Always return full write size even if we didn't consume all */ 2441 return size; 2442 } 2443 EXPORT_SYMBOL_GPL(device_store_int); 2444 2445 ssize_t device_show_int(struct device *dev, 2446 struct device_attribute *attr, 2447 char *buf) 2448 { 2449 struct dev_ext_attribute *ea = to_ext_attr(attr); 2450 2451 return sysfs_emit(buf, "%d\n", *(int *)(ea->var)); 2452 } 2453 EXPORT_SYMBOL_GPL(device_show_int); 2454 2455 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr, 2456 const char *buf, size_t size) 2457 { 2458 struct dev_ext_attribute *ea = to_ext_attr(attr); 2459 2460 if (kstrtobool(buf, ea->var) < 0) 2461 return -EINVAL; 2462 2463 return size; 2464 } 2465 EXPORT_SYMBOL_GPL(device_store_bool); 2466 2467 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr, 2468 char *buf) 2469 { 2470 struct dev_ext_attribute *ea = to_ext_attr(attr); 2471 2472 return sysfs_emit(buf, "%d\n", *(bool *)(ea->var)); 2473 } 2474 EXPORT_SYMBOL_GPL(device_show_bool); 2475 2476 /** 2477 * device_release - free device structure. 2478 * @kobj: device's kobject. 2479 * 2480 * This is called once the reference count for the object 2481 * reaches 0. We forward the call to the device's release 2482 * method, which should handle actually freeing the structure. 2483 */ 2484 static void device_release(struct kobject *kobj) 2485 { 2486 struct device *dev = kobj_to_dev(kobj); 2487 struct device_private *p = dev->p; 2488 2489 /* 2490 * Some platform devices are driven without driver attached 2491 * and managed resources may have been acquired. Make sure 2492 * all resources are released. 2493 * 2494 * Drivers still can add resources into device after device 2495 * is deleted but alive, so release devres here to avoid 2496 * possible memory leak. 2497 */ 2498 devres_release_all(dev); 2499 2500 kfree(dev->dma_range_map); 2501 2502 if (dev->release) 2503 dev->release(dev); 2504 else if (dev->type && dev->type->release) 2505 dev->type->release(dev); 2506 else if (dev->class && dev->class->dev_release) 2507 dev->class->dev_release(dev); 2508 else 2509 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n", 2510 dev_name(dev)); 2511 kfree(p); 2512 } 2513 2514 static const void *device_namespace(const struct kobject *kobj) 2515 { 2516 const struct device *dev = kobj_to_dev(kobj); 2517 const void *ns = NULL; 2518 2519 if (dev->class && dev->class->ns_type) 2520 ns = dev->class->namespace(dev); 2521 2522 return ns; 2523 } 2524 2525 static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid) 2526 { 2527 const struct device *dev = kobj_to_dev(kobj); 2528 2529 if (dev->class && dev->class->get_ownership) 2530 dev->class->get_ownership(dev, uid, gid); 2531 } 2532 2533 static const struct kobj_type device_ktype = { 2534 .release = device_release, 2535 .sysfs_ops = &dev_sysfs_ops, 2536 .namespace = device_namespace, 2537 .get_ownership = device_get_ownership, 2538 }; 2539 2540 2541 static int dev_uevent_filter(const struct kobject *kobj) 2542 { 2543 const struct kobj_type *ktype = get_ktype(kobj); 2544 2545 if (ktype == &device_ktype) { 2546 const struct device *dev = kobj_to_dev(kobj); 2547 if (dev->bus) 2548 return 1; 2549 if (dev->class) 2550 return 1; 2551 } 2552 return 0; 2553 } 2554 2555 static const char *dev_uevent_name(const struct kobject *kobj) 2556 { 2557 const struct device *dev = kobj_to_dev(kobj); 2558 2559 if (dev->bus) 2560 return dev->bus->name; 2561 if (dev->class) 2562 return dev->class->name; 2563 return NULL; 2564 } 2565 2566 static int dev_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 2567 { 2568 const struct device *dev = kobj_to_dev(kobj); 2569 struct device_driver *driver; 2570 int retval = 0; 2571 2572 /* add device node properties if present */ 2573 if (MAJOR(dev->devt)) { 2574 const char *tmp; 2575 const char *name; 2576 umode_t mode = 0; 2577 kuid_t uid = GLOBAL_ROOT_UID; 2578 kgid_t gid = GLOBAL_ROOT_GID; 2579 2580 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt)); 2581 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt)); 2582 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp); 2583 if (name) { 2584 add_uevent_var(env, "DEVNAME=%s", name); 2585 if (mode) 2586 add_uevent_var(env, "DEVMODE=%#o", mode & 0777); 2587 if (!uid_eq(uid, GLOBAL_ROOT_UID)) 2588 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid)); 2589 if (!gid_eq(gid, GLOBAL_ROOT_GID)) 2590 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid)); 2591 kfree(tmp); 2592 } 2593 } 2594 2595 if (dev->type && dev->type->name) 2596 add_uevent_var(env, "DEVTYPE=%s", dev->type->name); 2597 2598 /* Synchronize with module_remove_driver() */ 2599 rcu_read_lock(); 2600 driver = READ_ONCE(dev->driver); 2601 if (driver) 2602 add_uevent_var(env, "DRIVER=%s", driver->name); 2603 rcu_read_unlock(); 2604 2605 /* Add common DT information about the device */ 2606 of_device_uevent(dev, env); 2607 2608 /* have the bus specific function add its stuff */ 2609 if (dev->bus && dev->bus->uevent) { 2610 retval = dev->bus->uevent(dev, env); 2611 if (retval) 2612 pr_debug("device: '%s': %s: bus uevent() returned %d\n", 2613 dev_name(dev), __func__, retval); 2614 } 2615 2616 /* have the class specific function add its stuff */ 2617 if (dev->class && dev->class->dev_uevent) { 2618 retval = dev->class->dev_uevent(dev, env); 2619 if (retval) 2620 pr_debug("device: '%s': %s: class uevent() " 2621 "returned %d\n", dev_name(dev), 2622 __func__, retval); 2623 } 2624 2625 /* have the device type specific function add its stuff */ 2626 if (dev->type && dev->type->uevent) { 2627 retval = dev->type->uevent(dev, env); 2628 if (retval) 2629 pr_debug("device: '%s': %s: dev_type uevent() " 2630 "returned %d\n", dev_name(dev), 2631 __func__, retval); 2632 } 2633 2634 return retval; 2635 } 2636 2637 static const struct kset_uevent_ops device_uevent_ops = { 2638 .filter = dev_uevent_filter, 2639 .name = dev_uevent_name, 2640 .uevent = dev_uevent, 2641 }; 2642 2643 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr, 2644 char *buf) 2645 { 2646 struct kobject *top_kobj; 2647 struct kset *kset; 2648 struct kobj_uevent_env *env = NULL; 2649 int i; 2650 int len = 0; 2651 int retval; 2652 2653 /* search the kset, the device belongs to */ 2654 top_kobj = &dev->kobj; 2655 while (!top_kobj->kset && top_kobj->parent) 2656 top_kobj = top_kobj->parent; 2657 if (!top_kobj->kset) 2658 goto out; 2659 2660 kset = top_kobj->kset; 2661 if (!kset->uevent_ops || !kset->uevent_ops->uevent) 2662 goto out; 2663 2664 /* respect filter */ 2665 if (kset->uevent_ops && kset->uevent_ops->filter) 2666 if (!kset->uevent_ops->filter(&dev->kobj)) 2667 goto out; 2668 2669 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL); 2670 if (!env) 2671 return -ENOMEM; 2672 2673 /* let the kset specific function add its keys */ 2674 retval = kset->uevent_ops->uevent(&dev->kobj, env); 2675 if (retval) 2676 goto out; 2677 2678 /* copy keys to file */ 2679 for (i = 0; i < env->envp_idx; i++) 2680 len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]); 2681 out: 2682 kfree(env); 2683 return len; 2684 } 2685 2686 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr, 2687 const char *buf, size_t count) 2688 { 2689 int rc; 2690 2691 rc = kobject_synth_uevent(&dev->kobj, buf, count); 2692 2693 if (rc) { 2694 dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc); 2695 return rc; 2696 } 2697 2698 return count; 2699 } 2700 static DEVICE_ATTR_RW(uevent); 2701 2702 static ssize_t online_show(struct device *dev, struct device_attribute *attr, 2703 char *buf) 2704 { 2705 bool val; 2706 2707 device_lock(dev); 2708 val = !dev->offline; 2709 device_unlock(dev); 2710 return sysfs_emit(buf, "%u\n", val); 2711 } 2712 2713 static ssize_t online_store(struct device *dev, struct device_attribute *attr, 2714 const char *buf, size_t count) 2715 { 2716 bool val; 2717 int ret; 2718 2719 ret = kstrtobool(buf, &val); 2720 if (ret < 0) 2721 return ret; 2722 2723 ret = lock_device_hotplug_sysfs(); 2724 if (ret) 2725 return ret; 2726 2727 ret = val ? device_online(dev) : device_offline(dev); 2728 unlock_device_hotplug(); 2729 return ret < 0 ? ret : count; 2730 } 2731 static DEVICE_ATTR_RW(online); 2732 2733 static ssize_t removable_show(struct device *dev, struct device_attribute *attr, 2734 char *buf) 2735 { 2736 const char *loc; 2737 2738 switch (dev->removable) { 2739 case DEVICE_REMOVABLE: 2740 loc = "removable"; 2741 break; 2742 case DEVICE_FIXED: 2743 loc = "fixed"; 2744 break; 2745 default: 2746 loc = "unknown"; 2747 } 2748 return sysfs_emit(buf, "%s\n", loc); 2749 } 2750 static DEVICE_ATTR_RO(removable); 2751 2752 int device_add_groups(struct device *dev, const struct attribute_group **groups) 2753 { 2754 return sysfs_create_groups(&dev->kobj, groups); 2755 } 2756 EXPORT_SYMBOL_GPL(device_add_groups); 2757 2758 void device_remove_groups(struct device *dev, 2759 const struct attribute_group **groups) 2760 { 2761 sysfs_remove_groups(&dev->kobj, groups); 2762 } 2763 EXPORT_SYMBOL_GPL(device_remove_groups); 2764 2765 union device_attr_group_devres { 2766 const struct attribute_group *group; 2767 const struct attribute_group **groups; 2768 }; 2769 2770 static void devm_attr_group_remove(struct device *dev, void *res) 2771 { 2772 union device_attr_group_devres *devres = res; 2773 const struct attribute_group *group = devres->group; 2774 2775 dev_dbg(dev, "%s: removing group %p\n", __func__, group); 2776 sysfs_remove_group(&dev->kobj, group); 2777 } 2778 2779 static void devm_attr_groups_remove(struct device *dev, void *res) 2780 { 2781 union device_attr_group_devres *devres = res; 2782 const struct attribute_group **groups = devres->groups; 2783 2784 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups); 2785 sysfs_remove_groups(&dev->kobj, groups); 2786 } 2787 2788 /** 2789 * devm_device_add_group - given a device, create a managed attribute group 2790 * @dev: The device to create the group for 2791 * @grp: The attribute group to create 2792 * 2793 * This function creates a group for the first time. It will explicitly 2794 * warn and error if any of the attribute files being created already exist. 2795 * 2796 * Returns 0 on success or error code on failure. 2797 */ 2798 int devm_device_add_group(struct device *dev, const struct attribute_group *grp) 2799 { 2800 union device_attr_group_devres *devres; 2801 int error; 2802 2803 devres = devres_alloc(devm_attr_group_remove, 2804 sizeof(*devres), GFP_KERNEL); 2805 if (!devres) 2806 return -ENOMEM; 2807 2808 error = sysfs_create_group(&dev->kobj, grp); 2809 if (error) { 2810 devres_free(devres); 2811 return error; 2812 } 2813 2814 devres->group = grp; 2815 devres_add(dev, devres); 2816 return 0; 2817 } 2818 EXPORT_SYMBOL_GPL(devm_device_add_group); 2819 2820 /** 2821 * devm_device_add_groups - create a bunch of managed attribute groups 2822 * @dev: The device to create the group for 2823 * @groups: The attribute groups to create, NULL terminated 2824 * 2825 * This function creates a bunch of managed attribute groups. If an error 2826 * occurs when creating a group, all previously created groups will be 2827 * removed, unwinding everything back to the original state when this 2828 * function was called. It will explicitly warn and error if any of the 2829 * attribute files being created already exist. 2830 * 2831 * Returns 0 on success or error code from sysfs_create_group on failure. 2832 */ 2833 int devm_device_add_groups(struct device *dev, 2834 const struct attribute_group **groups) 2835 { 2836 union device_attr_group_devres *devres; 2837 int error; 2838 2839 devres = devres_alloc(devm_attr_groups_remove, 2840 sizeof(*devres), GFP_KERNEL); 2841 if (!devres) 2842 return -ENOMEM; 2843 2844 error = sysfs_create_groups(&dev->kobj, groups); 2845 if (error) { 2846 devres_free(devres); 2847 return error; 2848 } 2849 2850 devres->groups = groups; 2851 devres_add(dev, devres); 2852 return 0; 2853 } 2854 EXPORT_SYMBOL_GPL(devm_device_add_groups); 2855 2856 static int device_add_attrs(struct device *dev) 2857 { 2858 const struct class *class = dev->class; 2859 const struct device_type *type = dev->type; 2860 int error; 2861 2862 if (class) { 2863 error = device_add_groups(dev, class->dev_groups); 2864 if (error) 2865 return error; 2866 } 2867 2868 if (type) { 2869 error = device_add_groups(dev, type->groups); 2870 if (error) 2871 goto err_remove_class_groups; 2872 } 2873 2874 error = device_add_groups(dev, dev->groups); 2875 if (error) 2876 goto err_remove_type_groups; 2877 2878 if (device_supports_offline(dev) && !dev->offline_disabled) { 2879 error = device_create_file(dev, &dev_attr_online); 2880 if (error) 2881 goto err_remove_dev_groups; 2882 } 2883 2884 if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) { 2885 error = device_create_file(dev, &dev_attr_waiting_for_supplier); 2886 if (error) 2887 goto err_remove_dev_online; 2888 } 2889 2890 if (dev_removable_is_valid(dev)) { 2891 error = device_create_file(dev, &dev_attr_removable); 2892 if (error) 2893 goto err_remove_dev_waiting_for_supplier; 2894 } 2895 2896 if (dev_add_physical_location(dev)) { 2897 error = device_add_group(dev, 2898 &dev_attr_physical_location_group); 2899 if (error) 2900 goto err_remove_dev_removable; 2901 } 2902 2903 return 0; 2904 2905 err_remove_dev_removable: 2906 device_remove_file(dev, &dev_attr_removable); 2907 err_remove_dev_waiting_for_supplier: 2908 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2909 err_remove_dev_online: 2910 device_remove_file(dev, &dev_attr_online); 2911 err_remove_dev_groups: 2912 device_remove_groups(dev, dev->groups); 2913 err_remove_type_groups: 2914 if (type) 2915 device_remove_groups(dev, type->groups); 2916 err_remove_class_groups: 2917 if (class) 2918 device_remove_groups(dev, class->dev_groups); 2919 2920 return error; 2921 } 2922 2923 static void device_remove_attrs(struct device *dev) 2924 { 2925 const struct class *class = dev->class; 2926 const struct device_type *type = dev->type; 2927 2928 if (dev->physical_location) { 2929 device_remove_group(dev, &dev_attr_physical_location_group); 2930 kfree(dev->physical_location); 2931 } 2932 2933 device_remove_file(dev, &dev_attr_removable); 2934 device_remove_file(dev, &dev_attr_waiting_for_supplier); 2935 device_remove_file(dev, &dev_attr_online); 2936 device_remove_groups(dev, dev->groups); 2937 2938 if (type) 2939 device_remove_groups(dev, type->groups); 2940 2941 if (class) 2942 device_remove_groups(dev, class->dev_groups); 2943 } 2944 2945 static ssize_t dev_show(struct device *dev, struct device_attribute *attr, 2946 char *buf) 2947 { 2948 return print_dev_t(buf, dev->devt); 2949 } 2950 static DEVICE_ATTR_RO(dev); 2951 2952 /* /sys/devices/ */ 2953 struct kset *devices_kset; 2954 2955 /** 2956 * devices_kset_move_before - Move device in the devices_kset's list. 2957 * @deva: Device to move. 2958 * @devb: Device @deva should come before. 2959 */ 2960 static void devices_kset_move_before(struct device *deva, struct device *devb) 2961 { 2962 if (!devices_kset) 2963 return; 2964 pr_debug("devices_kset: Moving %s before %s\n", 2965 dev_name(deva), dev_name(devb)); 2966 spin_lock(&devices_kset->list_lock); 2967 list_move_tail(&deva->kobj.entry, &devb->kobj.entry); 2968 spin_unlock(&devices_kset->list_lock); 2969 } 2970 2971 /** 2972 * devices_kset_move_after - Move device in the devices_kset's list. 2973 * @deva: Device to move 2974 * @devb: Device @deva should come after. 2975 */ 2976 static void devices_kset_move_after(struct device *deva, struct device *devb) 2977 { 2978 if (!devices_kset) 2979 return; 2980 pr_debug("devices_kset: Moving %s after %s\n", 2981 dev_name(deva), dev_name(devb)); 2982 spin_lock(&devices_kset->list_lock); 2983 list_move(&deva->kobj.entry, &devb->kobj.entry); 2984 spin_unlock(&devices_kset->list_lock); 2985 } 2986 2987 /** 2988 * devices_kset_move_last - move the device to the end of devices_kset's list. 2989 * @dev: device to move 2990 */ 2991 void devices_kset_move_last(struct device *dev) 2992 { 2993 if (!devices_kset) 2994 return; 2995 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev)); 2996 spin_lock(&devices_kset->list_lock); 2997 list_move_tail(&dev->kobj.entry, &devices_kset->list); 2998 spin_unlock(&devices_kset->list_lock); 2999 } 3000 3001 /** 3002 * device_create_file - create sysfs attribute file for device. 3003 * @dev: device. 3004 * @attr: device attribute descriptor. 3005 */ 3006 int device_create_file(struct device *dev, 3007 const struct device_attribute *attr) 3008 { 3009 int error = 0; 3010 3011 if (dev) { 3012 WARN(((attr->attr.mode & S_IWUGO) && !attr->store), 3013 "Attribute %s: write permission without 'store'\n", 3014 attr->attr.name); 3015 WARN(((attr->attr.mode & S_IRUGO) && !attr->show), 3016 "Attribute %s: read permission without 'show'\n", 3017 attr->attr.name); 3018 error = sysfs_create_file(&dev->kobj, &attr->attr); 3019 } 3020 3021 return error; 3022 } 3023 EXPORT_SYMBOL_GPL(device_create_file); 3024 3025 /** 3026 * device_remove_file - remove sysfs attribute file. 3027 * @dev: device. 3028 * @attr: device attribute descriptor. 3029 */ 3030 void device_remove_file(struct device *dev, 3031 const struct device_attribute *attr) 3032 { 3033 if (dev) 3034 sysfs_remove_file(&dev->kobj, &attr->attr); 3035 } 3036 EXPORT_SYMBOL_GPL(device_remove_file); 3037 3038 /** 3039 * device_remove_file_self - remove sysfs attribute file from its own method. 3040 * @dev: device. 3041 * @attr: device attribute descriptor. 3042 * 3043 * See kernfs_remove_self() for details. 3044 */ 3045 bool device_remove_file_self(struct device *dev, 3046 const struct device_attribute *attr) 3047 { 3048 if (dev) 3049 return sysfs_remove_file_self(&dev->kobj, &attr->attr); 3050 else 3051 return false; 3052 } 3053 EXPORT_SYMBOL_GPL(device_remove_file_self); 3054 3055 /** 3056 * device_create_bin_file - create sysfs binary attribute file for device. 3057 * @dev: device. 3058 * @attr: device binary attribute descriptor. 3059 */ 3060 int device_create_bin_file(struct device *dev, 3061 const struct bin_attribute *attr) 3062 { 3063 int error = -EINVAL; 3064 if (dev) 3065 error = sysfs_create_bin_file(&dev->kobj, attr); 3066 return error; 3067 } 3068 EXPORT_SYMBOL_GPL(device_create_bin_file); 3069 3070 /** 3071 * device_remove_bin_file - remove sysfs binary attribute file 3072 * @dev: device. 3073 * @attr: device binary attribute descriptor. 3074 */ 3075 void device_remove_bin_file(struct device *dev, 3076 const struct bin_attribute *attr) 3077 { 3078 if (dev) 3079 sysfs_remove_bin_file(&dev->kobj, attr); 3080 } 3081 EXPORT_SYMBOL_GPL(device_remove_bin_file); 3082 3083 static void klist_children_get(struct klist_node *n) 3084 { 3085 struct device_private *p = to_device_private_parent(n); 3086 struct device *dev = p->device; 3087 3088 get_device(dev); 3089 } 3090 3091 static void klist_children_put(struct klist_node *n) 3092 { 3093 struct device_private *p = to_device_private_parent(n); 3094 struct device *dev = p->device; 3095 3096 put_device(dev); 3097 } 3098 3099 /** 3100 * device_initialize - init device structure. 3101 * @dev: device. 3102 * 3103 * This prepares the device for use by other layers by initializing 3104 * its fields. 3105 * It is the first half of device_register(), if called by 3106 * that function, though it can also be called separately, so one 3107 * may use @dev's fields. In particular, get_device()/put_device() 3108 * may be used for reference counting of @dev after calling this 3109 * function. 3110 * 3111 * All fields in @dev must be initialized by the caller to 0, except 3112 * for those explicitly set to some other value. The simplest 3113 * approach is to use kzalloc() to allocate the structure containing 3114 * @dev. 3115 * 3116 * NOTE: Use put_device() to give up your reference instead of freeing 3117 * @dev directly once you have called this function. 3118 */ 3119 void device_initialize(struct device *dev) 3120 { 3121 dev->kobj.kset = devices_kset; 3122 kobject_init(&dev->kobj, &device_ktype); 3123 INIT_LIST_HEAD(&dev->dma_pools); 3124 mutex_init(&dev->mutex); 3125 lockdep_set_novalidate_class(&dev->mutex); 3126 spin_lock_init(&dev->devres_lock); 3127 INIT_LIST_HEAD(&dev->devres_head); 3128 device_pm_init(dev); 3129 set_dev_node(dev, NUMA_NO_NODE); 3130 INIT_LIST_HEAD(&dev->links.consumers); 3131 INIT_LIST_HEAD(&dev->links.suppliers); 3132 INIT_LIST_HEAD(&dev->links.defer_sync); 3133 dev->links.status = DL_DEV_NO_DRIVER; 3134 #if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \ 3135 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \ 3136 defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) 3137 dev->dma_coherent = dma_default_coherent; 3138 #endif 3139 swiotlb_dev_init(dev); 3140 } 3141 EXPORT_SYMBOL_GPL(device_initialize); 3142 3143 struct kobject *virtual_device_parent(struct device *dev) 3144 { 3145 static struct kobject *virtual_dir = NULL; 3146 3147 if (!virtual_dir) 3148 virtual_dir = kobject_create_and_add("virtual", 3149 &devices_kset->kobj); 3150 3151 return virtual_dir; 3152 } 3153 3154 struct class_dir { 3155 struct kobject kobj; 3156 const struct class *class; 3157 }; 3158 3159 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj) 3160 3161 static void class_dir_release(struct kobject *kobj) 3162 { 3163 struct class_dir *dir = to_class_dir(kobj); 3164 kfree(dir); 3165 } 3166 3167 static const 3168 struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj) 3169 { 3170 const struct class_dir *dir = to_class_dir(kobj); 3171 return dir->class->ns_type; 3172 } 3173 3174 static const struct kobj_type class_dir_ktype = { 3175 .release = class_dir_release, 3176 .sysfs_ops = &kobj_sysfs_ops, 3177 .child_ns_type = class_dir_child_ns_type 3178 }; 3179 3180 static struct kobject *class_dir_create_and_add(struct subsys_private *sp, 3181 struct kobject *parent_kobj) 3182 { 3183 struct class_dir *dir; 3184 int retval; 3185 3186 dir = kzalloc(sizeof(*dir), GFP_KERNEL); 3187 if (!dir) 3188 return ERR_PTR(-ENOMEM); 3189 3190 dir->class = sp->class; 3191 kobject_init(&dir->kobj, &class_dir_ktype); 3192 3193 dir->kobj.kset = &sp->glue_dirs; 3194 3195 retval = kobject_add(&dir->kobj, parent_kobj, "%s", sp->class->name); 3196 if (retval < 0) { 3197 kobject_put(&dir->kobj); 3198 return ERR_PTR(retval); 3199 } 3200 return &dir->kobj; 3201 } 3202 3203 static DEFINE_MUTEX(gdp_mutex); 3204 3205 static struct kobject *get_device_parent(struct device *dev, 3206 struct device *parent) 3207 { 3208 struct subsys_private *sp = class_to_subsys(dev->class); 3209 struct kobject *kobj = NULL; 3210 3211 if (sp) { 3212 struct kobject *parent_kobj; 3213 struct kobject *k; 3214 3215 /* 3216 * If we have no parent, we live in "virtual". 3217 * Class-devices with a non class-device as parent, live 3218 * in a "glue" directory to prevent namespace collisions. 3219 */ 3220 if (parent == NULL) 3221 parent_kobj = virtual_device_parent(dev); 3222 else if (parent->class && !dev->class->ns_type) { 3223 subsys_put(sp); 3224 return &parent->kobj; 3225 } else { 3226 parent_kobj = &parent->kobj; 3227 } 3228 3229 mutex_lock(&gdp_mutex); 3230 3231 /* find our class-directory at the parent and reference it */ 3232 spin_lock(&sp->glue_dirs.list_lock); 3233 list_for_each_entry(k, &sp->glue_dirs.list, entry) 3234 if (k->parent == parent_kobj) { 3235 kobj = kobject_get(k); 3236 break; 3237 } 3238 spin_unlock(&sp->glue_dirs.list_lock); 3239 if (kobj) { 3240 mutex_unlock(&gdp_mutex); 3241 subsys_put(sp); 3242 return kobj; 3243 } 3244 3245 /* or create a new class-directory at the parent device */ 3246 k = class_dir_create_and_add(sp, parent_kobj); 3247 /* do not emit an uevent for this simple "glue" directory */ 3248 mutex_unlock(&gdp_mutex); 3249 subsys_put(sp); 3250 return k; 3251 } 3252 3253 /* subsystems can specify a default root directory for their devices */ 3254 if (!parent && dev->bus) { 3255 struct device *dev_root = bus_get_dev_root(dev->bus); 3256 3257 if (dev_root) { 3258 kobj = &dev_root->kobj; 3259 put_device(dev_root); 3260 return kobj; 3261 } 3262 } 3263 3264 if (parent) 3265 return &parent->kobj; 3266 return NULL; 3267 } 3268 3269 static inline bool live_in_glue_dir(struct kobject *kobj, 3270 struct device *dev) 3271 { 3272 struct subsys_private *sp; 3273 bool retval; 3274 3275 if (!kobj || !dev->class) 3276 return false; 3277 3278 sp = class_to_subsys(dev->class); 3279 if (!sp) 3280 return false; 3281 3282 if (kobj->kset == &sp->glue_dirs) 3283 retval = true; 3284 else 3285 retval = false; 3286 3287 subsys_put(sp); 3288 return retval; 3289 } 3290 3291 static inline struct kobject *get_glue_dir(struct device *dev) 3292 { 3293 return dev->kobj.parent; 3294 } 3295 3296 /** 3297 * kobject_has_children - Returns whether a kobject has children. 3298 * @kobj: the object to test 3299 * 3300 * This will return whether a kobject has other kobjects as children. 3301 * 3302 * It does NOT account for the presence of attribute files, only sub 3303 * directories. It also assumes there is no concurrent addition or 3304 * removal of such children, and thus relies on external locking. 3305 */ 3306 static inline bool kobject_has_children(struct kobject *kobj) 3307 { 3308 WARN_ON_ONCE(kref_read(&kobj->kref) == 0); 3309 3310 return kobj->sd && kobj->sd->dir.subdirs; 3311 } 3312 3313 /* 3314 * make sure cleaning up dir as the last step, we need to make 3315 * sure .release handler of kobject is run with holding the 3316 * global lock 3317 */ 3318 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir) 3319 { 3320 unsigned int ref; 3321 3322 /* see if we live in a "glue" directory */ 3323 if (!live_in_glue_dir(glue_dir, dev)) 3324 return; 3325 3326 mutex_lock(&gdp_mutex); 3327 /** 3328 * There is a race condition between removing glue directory 3329 * and adding a new device under the glue directory. 3330 * 3331 * CPU1: CPU2: 3332 * 3333 * device_add() 3334 * get_device_parent() 3335 * class_dir_create_and_add() 3336 * kobject_add_internal() 3337 * create_dir() // create glue_dir 3338 * 3339 * device_add() 3340 * get_device_parent() 3341 * kobject_get() // get glue_dir 3342 * 3343 * device_del() 3344 * cleanup_glue_dir() 3345 * kobject_del(glue_dir) 3346 * 3347 * kobject_add() 3348 * kobject_add_internal() 3349 * create_dir() // in glue_dir 3350 * sysfs_create_dir_ns() 3351 * kernfs_create_dir_ns(sd) 3352 * 3353 * sysfs_remove_dir() // glue_dir->sd=NULL 3354 * sysfs_put() // free glue_dir->sd 3355 * 3356 * // sd is freed 3357 * kernfs_new_node(sd) 3358 * kernfs_get(glue_dir) 3359 * kernfs_add_one() 3360 * kernfs_put() 3361 * 3362 * Before CPU1 remove last child device under glue dir, if CPU2 add 3363 * a new device under glue dir, the glue_dir kobject reference count 3364 * will be increase to 2 in kobject_get(k). And CPU2 has been called 3365 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir() 3366 * and sysfs_put(). This result in glue_dir->sd is freed. 3367 * 3368 * Then the CPU2 will see a stale "empty" but still potentially used 3369 * glue dir around in kernfs_new_node(). 3370 * 3371 * In order to avoid this happening, we also should make sure that 3372 * kernfs_node for glue_dir is released in CPU1 only when refcount 3373 * for glue_dir kobj is 1. 3374 */ 3375 ref = kref_read(&glue_dir->kref); 3376 if (!kobject_has_children(glue_dir) && !--ref) 3377 kobject_del(glue_dir); 3378 kobject_put(glue_dir); 3379 mutex_unlock(&gdp_mutex); 3380 } 3381 3382 static int device_add_class_symlinks(struct device *dev) 3383 { 3384 struct device_node *of_node = dev_of_node(dev); 3385 struct subsys_private *sp; 3386 int error; 3387 3388 if (of_node) { 3389 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node"); 3390 if (error) 3391 dev_warn(dev, "Error %d creating of_node link\n",error); 3392 /* An error here doesn't warrant bringing down the device */ 3393 } 3394 3395 sp = class_to_subsys(dev->class); 3396 if (!sp) 3397 return 0; 3398 3399 error = sysfs_create_link(&dev->kobj, &sp->subsys.kobj, "subsystem"); 3400 if (error) 3401 goto out_devnode; 3402 3403 if (dev->parent && device_is_not_partition(dev)) { 3404 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj, 3405 "device"); 3406 if (error) 3407 goto out_subsys; 3408 } 3409 3410 /* link in the class directory pointing to the device */ 3411 error = sysfs_create_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3412 if (error) 3413 goto out_device; 3414 goto exit; 3415 3416 out_device: 3417 sysfs_remove_link(&dev->kobj, "device"); 3418 out_subsys: 3419 sysfs_remove_link(&dev->kobj, "subsystem"); 3420 out_devnode: 3421 sysfs_remove_link(&dev->kobj, "of_node"); 3422 exit: 3423 subsys_put(sp); 3424 return error; 3425 } 3426 3427 static void device_remove_class_symlinks(struct device *dev) 3428 { 3429 struct subsys_private *sp = class_to_subsys(dev->class); 3430 3431 if (dev_of_node(dev)) 3432 sysfs_remove_link(&dev->kobj, "of_node"); 3433 3434 if (!sp) 3435 return; 3436 3437 if (dev->parent && device_is_not_partition(dev)) 3438 sysfs_remove_link(&dev->kobj, "device"); 3439 sysfs_remove_link(&dev->kobj, "subsystem"); 3440 sysfs_delete_link(&sp->subsys.kobj, &dev->kobj, dev_name(dev)); 3441 subsys_put(sp); 3442 } 3443 3444 /** 3445 * dev_set_name - set a device name 3446 * @dev: device 3447 * @fmt: format string for the device's name 3448 */ 3449 int dev_set_name(struct device *dev, const char *fmt, ...) 3450 { 3451 va_list vargs; 3452 int err; 3453 3454 va_start(vargs, fmt); 3455 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs); 3456 va_end(vargs); 3457 return err; 3458 } 3459 EXPORT_SYMBOL_GPL(dev_set_name); 3460 3461 /* select a /sys/dev/ directory for the device */ 3462 static struct kobject *device_to_dev_kobj(struct device *dev) 3463 { 3464 if (is_blockdev(dev)) 3465 return sysfs_dev_block_kobj; 3466 else 3467 return sysfs_dev_char_kobj; 3468 } 3469 3470 static int device_create_sys_dev_entry(struct device *dev) 3471 { 3472 struct kobject *kobj = device_to_dev_kobj(dev); 3473 int error = 0; 3474 char devt_str[15]; 3475 3476 if (kobj) { 3477 format_dev_t(devt_str, dev->devt); 3478 error = sysfs_create_link(kobj, &dev->kobj, devt_str); 3479 } 3480 3481 return error; 3482 } 3483 3484 static void device_remove_sys_dev_entry(struct device *dev) 3485 { 3486 struct kobject *kobj = device_to_dev_kobj(dev); 3487 char devt_str[15]; 3488 3489 if (kobj) { 3490 format_dev_t(devt_str, dev->devt); 3491 sysfs_remove_link(kobj, devt_str); 3492 } 3493 } 3494 3495 static int device_private_init(struct device *dev) 3496 { 3497 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL); 3498 if (!dev->p) 3499 return -ENOMEM; 3500 dev->p->device = dev; 3501 klist_init(&dev->p->klist_children, klist_children_get, 3502 klist_children_put); 3503 INIT_LIST_HEAD(&dev->p->deferred_probe); 3504 return 0; 3505 } 3506 3507 /** 3508 * device_add - add device to device hierarchy. 3509 * @dev: device. 3510 * 3511 * This is part 2 of device_register(), though may be called 3512 * separately _iff_ device_initialize() has been called separately. 3513 * 3514 * This adds @dev to the kobject hierarchy via kobject_add(), adds it 3515 * to the global and sibling lists for the device, then 3516 * adds it to the other relevant subsystems of the driver model. 3517 * 3518 * Do not call this routine or device_register() more than once for 3519 * any device structure. The driver model core is not designed to work 3520 * with devices that get unregistered and then spring back to life. 3521 * (Among other things, it's very hard to guarantee that all references 3522 * to the previous incarnation of @dev have been dropped.) Allocate 3523 * and register a fresh new struct device instead. 3524 * 3525 * NOTE: _Never_ directly free @dev after calling this function, even 3526 * if it returned an error! Always use put_device() to give up your 3527 * reference instead. 3528 * 3529 * Rule of thumb is: if device_add() succeeds, you should call 3530 * device_del() when you want to get rid of it. If device_add() has 3531 * *not* succeeded, use *only* put_device() to drop the reference 3532 * count. 3533 */ 3534 int device_add(struct device *dev) 3535 { 3536 struct subsys_private *sp; 3537 struct device *parent; 3538 struct kobject *kobj; 3539 struct class_interface *class_intf; 3540 int error = -EINVAL; 3541 struct kobject *glue_dir = NULL; 3542 3543 dev = get_device(dev); 3544 if (!dev) 3545 goto done; 3546 3547 if (!dev->p) { 3548 error = device_private_init(dev); 3549 if (error) 3550 goto done; 3551 } 3552 3553 /* 3554 * for statically allocated devices, which should all be converted 3555 * some day, we need to initialize the name. We prevent reading back 3556 * the name, and force the use of dev_name() 3557 */ 3558 if (dev->init_name) { 3559 error = dev_set_name(dev, "%s", dev->init_name); 3560 dev->init_name = NULL; 3561 } 3562 3563 if (dev_name(dev)) 3564 error = 0; 3565 /* subsystems can specify simple device enumeration */ 3566 else if (dev->bus && dev->bus->dev_name) 3567 error = dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id); 3568 else 3569 error = -EINVAL; 3570 if (error) 3571 goto name_error; 3572 3573 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3574 3575 parent = get_device(dev->parent); 3576 kobj = get_device_parent(dev, parent); 3577 if (IS_ERR(kobj)) { 3578 error = PTR_ERR(kobj); 3579 goto parent_error; 3580 } 3581 if (kobj) 3582 dev->kobj.parent = kobj; 3583 3584 /* use parent numa_node */ 3585 if (parent && (dev_to_node(dev) == NUMA_NO_NODE)) 3586 set_dev_node(dev, dev_to_node(parent)); 3587 3588 /* first, register with generic layer. */ 3589 /* we require the name to be set before, and pass NULL */ 3590 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL); 3591 if (error) { 3592 glue_dir = kobj; 3593 goto Error; 3594 } 3595 3596 /* notify platform of device entry */ 3597 device_platform_notify(dev); 3598 3599 error = device_create_file(dev, &dev_attr_uevent); 3600 if (error) 3601 goto attrError; 3602 3603 error = device_add_class_symlinks(dev); 3604 if (error) 3605 goto SymlinkError; 3606 error = device_add_attrs(dev); 3607 if (error) 3608 goto AttrsError; 3609 error = bus_add_device(dev); 3610 if (error) 3611 goto BusError; 3612 error = dpm_sysfs_add(dev); 3613 if (error) 3614 goto DPMError; 3615 device_pm_add(dev); 3616 3617 if (MAJOR(dev->devt)) { 3618 error = device_create_file(dev, &dev_attr_dev); 3619 if (error) 3620 goto DevAttrError; 3621 3622 error = device_create_sys_dev_entry(dev); 3623 if (error) 3624 goto SysEntryError; 3625 3626 devtmpfs_create_node(dev); 3627 } 3628 3629 /* Notify clients of device addition. This call must come 3630 * after dpm_sysfs_add() and before kobject_uevent(). 3631 */ 3632 bus_notify(dev, BUS_NOTIFY_ADD_DEVICE); 3633 kobject_uevent(&dev->kobj, KOBJ_ADD); 3634 3635 /* 3636 * Check if any of the other devices (consumers) have been waiting for 3637 * this device (supplier) to be added so that they can create a device 3638 * link to it. 3639 * 3640 * This needs to happen after device_pm_add() because device_link_add() 3641 * requires the supplier be registered before it's called. 3642 * 3643 * But this also needs to happen before bus_probe_device() to make sure 3644 * waiting consumers can link to it before the driver is bound to the 3645 * device and the driver sync_state callback is called for this device. 3646 */ 3647 if (dev->fwnode && !dev->fwnode->dev) { 3648 dev->fwnode->dev = dev; 3649 fw_devlink_link_device(dev); 3650 } 3651 3652 bus_probe_device(dev); 3653 3654 /* 3655 * If all driver registration is done and a newly added device doesn't 3656 * match with any driver, don't block its consumers from probing in 3657 * case the consumer device is able to operate without this supplier. 3658 */ 3659 if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match) 3660 fw_devlink_unblock_consumers(dev); 3661 3662 if (parent) 3663 klist_add_tail(&dev->p->knode_parent, 3664 &parent->p->klist_children); 3665 3666 sp = class_to_subsys(dev->class); 3667 if (sp) { 3668 mutex_lock(&sp->mutex); 3669 /* tie the class to the device */ 3670 klist_add_tail(&dev->p->knode_class, &sp->klist_devices); 3671 3672 /* notify any interfaces that the device is here */ 3673 list_for_each_entry(class_intf, &sp->interfaces, node) 3674 if (class_intf->add_dev) 3675 class_intf->add_dev(dev); 3676 mutex_unlock(&sp->mutex); 3677 subsys_put(sp); 3678 } 3679 done: 3680 put_device(dev); 3681 return error; 3682 SysEntryError: 3683 if (MAJOR(dev->devt)) 3684 device_remove_file(dev, &dev_attr_dev); 3685 DevAttrError: 3686 device_pm_remove(dev); 3687 dpm_sysfs_remove(dev); 3688 DPMError: 3689 dev->driver = NULL; 3690 bus_remove_device(dev); 3691 BusError: 3692 device_remove_attrs(dev); 3693 AttrsError: 3694 device_remove_class_symlinks(dev); 3695 SymlinkError: 3696 device_remove_file(dev, &dev_attr_uevent); 3697 attrError: 3698 device_platform_notify_remove(dev); 3699 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3700 glue_dir = get_glue_dir(dev); 3701 kobject_del(&dev->kobj); 3702 Error: 3703 cleanup_glue_dir(dev, glue_dir); 3704 parent_error: 3705 put_device(parent); 3706 name_error: 3707 kfree(dev->p); 3708 dev->p = NULL; 3709 goto done; 3710 } 3711 EXPORT_SYMBOL_GPL(device_add); 3712 3713 /** 3714 * device_register - register a device with the system. 3715 * @dev: pointer to the device structure 3716 * 3717 * This happens in two clean steps - initialize the device 3718 * and add it to the system. The two steps can be called 3719 * separately, but this is the easiest and most common. 3720 * I.e. you should only call the two helpers separately if 3721 * have a clearly defined need to use and refcount the device 3722 * before it is added to the hierarchy. 3723 * 3724 * For more information, see the kerneldoc for device_initialize() 3725 * and device_add(). 3726 * 3727 * NOTE: _Never_ directly free @dev after calling this function, even 3728 * if it returned an error! Always use put_device() to give up the 3729 * reference initialized in this function instead. 3730 */ 3731 int device_register(struct device *dev) 3732 { 3733 device_initialize(dev); 3734 return device_add(dev); 3735 } 3736 EXPORT_SYMBOL_GPL(device_register); 3737 3738 /** 3739 * get_device - increment reference count for device. 3740 * @dev: device. 3741 * 3742 * This simply forwards the call to kobject_get(), though 3743 * we do take care to provide for the case that we get a NULL 3744 * pointer passed in. 3745 */ 3746 struct device *get_device(struct device *dev) 3747 { 3748 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL; 3749 } 3750 EXPORT_SYMBOL_GPL(get_device); 3751 3752 /** 3753 * put_device - decrement reference count. 3754 * @dev: device in question. 3755 */ 3756 void put_device(struct device *dev) 3757 { 3758 /* might_sleep(); */ 3759 if (dev) 3760 kobject_put(&dev->kobj); 3761 } 3762 EXPORT_SYMBOL_GPL(put_device); 3763 3764 bool kill_device(struct device *dev) 3765 { 3766 /* 3767 * Require the device lock and set the "dead" flag to guarantee that 3768 * the update behavior is consistent with the other bitfields near 3769 * it and that we cannot have an asynchronous probe routine trying 3770 * to run while we are tearing out the bus/class/sysfs from 3771 * underneath the device. 3772 */ 3773 device_lock_assert(dev); 3774 3775 if (dev->p->dead) 3776 return false; 3777 dev->p->dead = true; 3778 return true; 3779 } 3780 EXPORT_SYMBOL_GPL(kill_device); 3781 3782 /** 3783 * device_del - delete device from system. 3784 * @dev: device. 3785 * 3786 * This is the first part of the device unregistration 3787 * sequence. This removes the device from the lists we control 3788 * from here, has it removed from the other driver model 3789 * subsystems it was added to in device_add(), and removes it 3790 * from the kobject hierarchy. 3791 * 3792 * NOTE: this should be called manually _iff_ device_add() was 3793 * also called manually. 3794 */ 3795 void device_del(struct device *dev) 3796 { 3797 struct subsys_private *sp; 3798 struct device *parent = dev->parent; 3799 struct kobject *glue_dir = NULL; 3800 struct class_interface *class_intf; 3801 unsigned int noio_flag; 3802 3803 device_lock(dev); 3804 kill_device(dev); 3805 device_unlock(dev); 3806 3807 if (dev->fwnode && dev->fwnode->dev == dev) 3808 dev->fwnode->dev = NULL; 3809 3810 /* Notify clients of device removal. This call must come 3811 * before dpm_sysfs_remove(). 3812 */ 3813 noio_flag = memalloc_noio_save(); 3814 bus_notify(dev, BUS_NOTIFY_DEL_DEVICE); 3815 3816 dpm_sysfs_remove(dev); 3817 if (parent) 3818 klist_del(&dev->p->knode_parent); 3819 if (MAJOR(dev->devt)) { 3820 devtmpfs_delete_node(dev); 3821 device_remove_sys_dev_entry(dev); 3822 device_remove_file(dev, &dev_attr_dev); 3823 } 3824 3825 sp = class_to_subsys(dev->class); 3826 if (sp) { 3827 device_remove_class_symlinks(dev); 3828 3829 mutex_lock(&sp->mutex); 3830 /* notify any interfaces that the device is now gone */ 3831 list_for_each_entry(class_intf, &sp->interfaces, node) 3832 if (class_intf->remove_dev) 3833 class_intf->remove_dev(dev); 3834 /* remove the device from the class list */ 3835 klist_del(&dev->p->knode_class); 3836 mutex_unlock(&sp->mutex); 3837 subsys_put(sp); 3838 } 3839 device_remove_file(dev, &dev_attr_uevent); 3840 device_remove_attrs(dev); 3841 bus_remove_device(dev); 3842 device_pm_remove(dev); 3843 driver_deferred_probe_del(dev); 3844 device_platform_notify_remove(dev); 3845 device_links_purge(dev); 3846 3847 /* 3848 * If a device does not have a driver attached, we need to clean 3849 * up any managed resources. We do this in device_release(), but 3850 * it's never called (and we leak the device) if a managed 3851 * resource holds a reference to the device. So release all 3852 * managed resources here, like we do in driver_detach(). We 3853 * still need to do so again in device_release() in case someone 3854 * adds a new resource after this point, though. 3855 */ 3856 devres_release_all(dev); 3857 3858 bus_notify(dev, BUS_NOTIFY_REMOVED_DEVICE); 3859 kobject_uevent(&dev->kobj, KOBJ_REMOVE); 3860 glue_dir = get_glue_dir(dev); 3861 kobject_del(&dev->kobj); 3862 cleanup_glue_dir(dev, glue_dir); 3863 memalloc_noio_restore(noio_flag); 3864 put_device(parent); 3865 } 3866 EXPORT_SYMBOL_GPL(device_del); 3867 3868 /** 3869 * device_unregister - unregister device from system. 3870 * @dev: device going away. 3871 * 3872 * We do this in two parts, like we do device_register(). First, 3873 * we remove it from all the subsystems with device_del(), then 3874 * we decrement the reference count via put_device(). If that 3875 * is the final reference count, the device will be cleaned up 3876 * via device_release() above. Otherwise, the structure will 3877 * stick around until the final reference to the device is dropped. 3878 */ 3879 void device_unregister(struct device *dev) 3880 { 3881 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 3882 device_del(dev); 3883 put_device(dev); 3884 } 3885 EXPORT_SYMBOL_GPL(device_unregister); 3886 3887 static struct device *prev_device(struct klist_iter *i) 3888 { 3889 struct klist_node *n = klist_prev(i); 3890 struct device *dev = NULL; 3891 struct device_private *p; 3892 3893 if (n) { 3894 p = to_device_private_parent(n); 3895 dev = p->device; 3896 } 3897 return dev; 3898 } 3899 3900 static struct device *next_device(struct klist_iter *i) 3901 { 3902 struct klist_node *n = klist_next(i); 3903 struct device *dev = NULL; 3904 struct device_private *p; 3905 3906 if (n) { 3907 p = to_device_private_parent(n); 3908 dev = p->device; 3909 } 3910 return dev; 3911 } 3912 3913 /** 3914 * device_get_devnode - path of device node file 3915 * @dev: device 3916 * @mode: returned file access mode 3917 * @uid: returned file owner 3918 * @gid: returned file group 3919 * @tmp: possibly allocated string 3920 * 3921 * Return the relative path of a possible device node. 3922 * Non-default names may need to allocate a memory to compose 3923 * a name. This memory is returned in tmp and needs to be 3924 * freed by the caller. 3925 */ 3926 const char *device_get_devnode(const struct device *dev, 3927 umode_t *mode, kuid_t *uid, kgid_t *gid, 3928 const char **tmp) 3929 { 3930 char *s; 3931 3932 *tmp = NULL; 3933 3934 /* the device type may provide a specific name */ 3935 if (dev->type && dev->type->devnode) 3936 *tmp = dev->type->devnode(dev, mode, uid, gid); 3937 if (*tmp) 3938 return *tmp; 3939 3940 /* the class may provide a specific name */ 3941 if (dev->class && dev->class->devnode) 3942 *tmp = dev->class->devnode(dev, mode); 3943 if (*tmp) 3944 return *tmp; 3945 3946 /* return name without allocation, tmp == NULL */ 3947 if (strchr(dev_name(dev), '!') == NULL) 3948 return dev_name(dev); 3949 3950 /* replace '!' in the name with '/' */ 3951 s = kstrdup_and_replace(dev_name(dev), '!', '/', GFP_KERNEL); 3952 if (!s) 3953 return NULL; 3954 return *tmp = s; 3955 } 3956 3957 /** 3958 * device_for_each_child - device child iterator. 3959 * @parent: parent struct device. 3960 * @fn: function to be called for each device. 3961 * @data: data for the callback. 3962 * 3963 * Iterate over @parent's child devices, and call @fn for each, 3964 * passing it @data. 3965 * 3966 * We check the return of @fn each time. If it returns anything 3967 * other than 0, we break out and return that value. 3968 */ 3969 int device_for_each_child(struct device *parent, void *data, 3970 int (*fn)(struct device *dev, void *data)) 3971 { 3972 struct klist_iter i; 3973 struct device *child; 3974 int error = 0; 3975 3976 if (!parent->p) 3977 return 0; 3978 3979 klist_iter_init(&parent->p->klist_children, &i); 3980 while (!error && (child = next_device(&i))) 3981 error = fn(child, data); 3982 klist_iter_exit(&i); 3983 return error; 3984 } 3985 EXPORT_SYMBOL_GPL(device_for_each_child); 3986 3987 /** 3988 * device_for_each_child_reverse - device child iterator in reversed order. 3989 * @parent: parent struct device. 3990 * @fn: function to be called for each device. 3991 * @data: data for the callback. 3992 * 3993 * Iterate over @parent's child devices, and call @fn for each, 3994 * passing it @data. 3995 * 3996 * We check the return of @fn each time. If it returns anything 3997 * other than 0, we break out and return that value. 3998 */ 3999 int device_for_each_child_reverse(struct device *parent, void *data, 4000 int (*fn)(struct device *dev, void *data)) 4001 { 4002 struct klist_iter i; 4003 struct device *child; 4004 int error = 0; 4005 4006 if (!parent->p) 4007 return 0; 4008 4009 klist_iter_init(&parent->p->klist_children, &i); 4010 while ((child = prev_device(&i)) && !error) 4011 error = fn(child, data); 4012 klist_iter_exit(&i); 4013 return error; 4014 } 4015 EXPORT_SYMBOL_GPL(device_for_each_child_reverse); 4016 4017 /** 4018 * device_find_child - device iterator for locating a particular device. 4019 * @parent: parent struct device 4020 * @match: Callback function to check device 4021 * @data: Data to pass to match function 4022 * 4023 * This is similar to the device_for_each_child() function above, but it 4024 * returns a reference to a device that is 'found' for later use, as 4025 * determined by the @match callback. 4026 * 4027 * The callback should return 0 if the device doesn't match and non-zero 4028 * if it does. If the callback returns non-zero and a reference to the 4029 * current device can be obtained, this function will return to the caller 4030 * and not iterate over any more devices. 4031 * 4032 * NOTE: you will need to drop the reference with put_device() after use. 4033 */ 4034 struct device *device_find_child(struct device *parent, void *data, 4035 int (*match)(struct device *dev, void *data)) 4036 { 4037 struct klist_iter i; 4038 struct device *child; 4039 4040 if (!parent) 4041 return NULL; 4042 4043 klist_iter_init(&parent->p->klist_children, &i); 4044 while ((child = next_device(&i))) 4045 if (match(child, data) && get_device(child)) 4046 break; 4047 klist_iter_exit(&i); 4048 return child; 4049 } 4050 EXPORT_SYMBOL_GPL(device_find_child); 4051 4052 /** 4053 * device_find_child_by_name - device iterator for locating a child device. 4054 * @parent: parent struct device 4055 * @name: name of the child device 4056 * 4057 * This is similar to the device_find_child() function above, but it 4058 * returns a reference to a device that has the name @name. 4059 * 4060 * NOTE: you will need to drop the reference with put_device() after use. 4061 */ 4062 struct device *device_find_child_by_name(struct device *parent, 4063 const char *name) 4064 { 4065 struct klist_iter i; 4066 struct device *child; 4067 4068 if (!parent) 4069 return NULL; 4070 4071 klist_iter_init(&parent->p->klist_children, &i); 4072 while ((child = next_device(&i))) 4073 if (sysfs_streq(dev_name(child), name) && get_device(child)) 4074 break; 4075 klist_iter_exit(&i); 4076 return child; 4077 } 4078 EXPORT_SYMBOL_GPL(device_find_child_by_name); 4079 4080 static int match_any(struct device *dev, void *unused) 4081 { 4082 return 1; 4083 } 4084 4085 /** 4086 * device_find_any_child - device iterator for locating a child device, if any. 4087 * @parent: parent struct device 4088 * 4089 * This is similar to the device_find_child() function above, but it 4090 * returns a reference to a child device, if any. 4091 * 4092 * NOTE: you will need to drop the reference with put_device() after use. 4093 */ 4094 struct device *device_find_any_child(struct device *parent) 4095 { 4096 return device_find_child(parent, NULL, match_any); 4097 } 4098 EXPORT_SYMBOL_GPL(device_find_any_child); 4099 4100 int __init devices_init(void) 4101 { 4102 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL); 4103 if (!devices_kset) 4104 return -ENOMEM; 4105 dev_kobj = kobject_create_and_add("dev", NULL); 4106 if (!dev_kobj) 4107 goto dev_kobj_err; 4108 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj); 4109 if (!sysfs_dev_block_kobj) 4110 goto block_kobj_err; 4111 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj); 4112 if (!sysfs_dev_char_kobj) 4113 goto char_kobj_err; 4114 device_link_wq = alloc_workqueue("device_link_wq", 0, 0); 4115 if (!device_link_wq) 4116 goto wq_err; 4117 4118 return 0; 4119 4120 wq_err: 4121 kobject_put(sysfs_dev_char_kobj); 4122 char_kobj_err: 4123 kobject_put(sysfs_dev_block_kobj); 4124 block_kobj_err: 4125 kobject_put(dev_kobj); 4126 dev_kobj_err: 4127 kset_unregister(devices_kset); 4128 return -ENOMEM; 4129 } 4130 4131 static int device_check_offline(struct device *dev, void *not_used) 4132 { 4133 int ret; 4134 4135 ret = device_for_each_child(dev, NULL, device_check_offline); 4136 if (ret) 4137 return ret; 4138 4139 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0; 4140 } 4141 4142 /** 4143 * device_offline - Prepare the device for hot-removal. 4144 * @dev: Device to be put offline. 4145 * 4146 * Execute the device bus type's .offline() callback, if present, to prepare 4147 * the device for a subsequent hot-removal. If that succeeds, the device must 4148 * not be used until either it is removed or its bus type's .online() callback 4149 * is executed. 4150 * 4151 * Call under device_hotplug_lock. 4152 */ 4153 int device_offline(struct device *dev) 4154 { 4155 int ret; 4156 4157 if (dev->offline_disabled) 4158 return -EPERM; 4159 4160 ret = device_for_each_child(dev, NULL, device_check_offline); 4161 if (ret) 4162 return ret; 4163 4164 device_lock(dev); 4165 if (device_supports_offline(dev)) { 4166 if (dev->offline) { 4167 ret = 1; 4168 } else { 4169 ret = dev->bus->offline(dev); 4170 if (!ret) { 4171 kobject_uevent(&dev->kobj, KOBJ_OFFLINE); 4172 dev->offline = true; 4173 } 4174 } 4175 } 4176 device_unlock(dev); 4177 4178 return ret; 4179 } 4180 4181 /** 4182 * device_online - Put the device back online after successful device_offline(). 4183 * @dev: Device to be put back online. 4184 * 4185 * If device_offline() has been successfully executed for @dev, but the device 4186 * has not been removed subsequently, execute its bus type's .online() callback 4187 * to indicate that the device can be used again. 4188 * 4189 * Call under device_hotplug_lock. 4190 */ 4191 int device_online(struct device *dev) 4192 { 4193 int ret = 0; 4194 4195 device_lock(dev); 4196 if (device_supports_offline(dev)) { 4197 if (dev->offline) { 4198 ret = dev->bus->online(dev); 4199 if (!ret) { 4200 kobject_uevent(&dev->kobj, KOBJ_ONLINE); 4201 dev->offline = false; 4202 } 4203 } else { 4204 ret = 1; 4205 } 4206 } 4207 device_unlock(dev); 4208 4209 return ret; 4210 } 4211 4212 struct root_device { 4213 struct device dev; 4214 struct module *owner; 4215 }; 4216 4217 static inline struct root_device *to_root_device(struct device *d) 4218 { 4219 return container_of(d, struct root_device, dev); 4220 } 4221 4222 static void root_device_release(struct device *dev) 4223 { 4224 kfree(to_root_device(dev)); 4225 } 4226 4227 /** 4228 * __root_device_register - allocate and register a root device 4229 * @name: root device name 4230 * @owner: owner module of the root device, usually THIS_MODULE 4231 * 4232 * This function allocates a root device and registers it 4233 * using device_register(). In order to free the returned 4234 * device, use root_device_unregister(). 4235 * 4236 * Root devices are dummy devices which allow other devices 4237 * to be grouped under /sys/devices. Use this function to 4238 * allocate a root device and then use it as the parent of 4239 * any device which should appear under /sys/devices/{name} 4240 * 4241 * The /sys/devices/{name} directory will also contain a 4242 * 'module' symlink which points to the @owner directory 4243 * in sysfs. 4244 * 4245 * Returns &struct device pointer on success, or ERR_PTR() on error. 4246 * 4247 * Note: You probably want to use root_device_register(). 4248 */ 4249 struct device *__root_device_register(const char *name, struct module *owner) 4250 { 4251 struct root_device *root; 4252 int err = -ENOMEM; 4253 4254 root = kzalloc(sizeof(struct root_device), GFP_KERNEL); 4255 if (!root) 4256 return ERR_PTR(err); 4257 4258 err = dev_set_name(&root->dev, "%s", name); 4259 if (err) { 4260 kfree(root); 4261 return ERR_PTR(err); 4262 } 4263 4264 root->dev.release = root_device_release; 4265 4266 err = device_register(&root->dev); 4267 if (err) { 4268 put_device(&root->dev); 4269 return ERR_PTR(err); 4270 } 4271 4272 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */ 4273 if (owner) { 4274 struct module_kobject *mk = &owner->mkobj; 4275 4276 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module"); 4277 if (err) { 4278 device_unregister(&root->dev); 4279 return ERR_PTR(err); 4280 } 4281 root->owner = owner; 4282 } 4283 #endif 4284 4285 return &root->dev; 4286 } 4287 EXPORT_SYMBOL_GPL(__root_device_register); 4288 4289 /** 4290 * root_device_unregister - unregister and free a root device 4291 * @dev: device going away 4292 * 4293 * This function unregisters and cleans up a device that was created by 4294 * root_device_register(). 4295 */ 4296 void root_device_unregister(struct device *dev) 4297 { 4298 struct root_device *root = to_root_device(dev); 4299 4300 if (root->owner) 4301 sysfs_remove_link(&root->dev.kobj, "module"); 4302 4303 device_unregister(dev); 4304 } 4305 EXPORT_SYMBOL_GPL(root_device_unregister); 4306 4307 4308 static void device_create_release(struct device *dev) 4309 { 4310 pr_debug("device: '%s': %s\n", dev_name(dev), __func__); 4311 kfree(dev); 4312 } 4313 4314 static __printf(6, 0) struct device * 4315 device_create_groups_vargs(const struct class *class, struct device *parent, 4316 dev_t devt, void *drvdata, 4317 const struct attribute_group **groups, 4318 const char *fmt, va_list args) 4319 { 4320 struct device *dev = NULL; 4321 int retval = -ENODEV; 4322 4323 if (IS_ERR_OR_NULL(class)) 4324 goto error; 4325 4326 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 4327 if (!dev) { 4328 retval = -ENOMEM; 4329 goto error; 4330 } 4331 4332 device_initialize(dev); 4333 dev->devt = devt; 4334 dev->class = class; 4335 dev->parent = parent; 4336 dev->groups = groups; 4337 dev->release = device_create_release; 4338 dev_set_drvdata(dev, drvdata); 4339 4340 retval = kobject_set_name_vargs(&dev->kobj, fmt, args); 4341 if (retval) 4342 goto error; 4343 4344 retval = device_add(dev); 4345 if (retval) 4346 goto error; 4347 4348 return dev; 4349 4350 error: 4351 put_device(dev); 4352 return ERR_PTR(retval); 4353 } 4354 4355 /** 4356 * device_create - creates a device and registers it with sysfs 4357 * @class: pointer to the struct class that this device should be registered to 4358 * @parent: pointer to the parent struct device of this new device, if any 4359 * @devt: the dev_t for the char device to be added 4360 * @drvdata: the data to be added to the device for callbacks 4361 * @fmt: string for the device's name 4362 * 4363 * This function can be used by char device classes. A struct device 4364 * will be created in sysfs, registered to the specified class. 4365 * 4366 * A "dev" file will be created, showing the dev_t for the device, if 4367 * the dev_t is not 0,0. 4368 * If a pointer to a parent struct device is passed in, the newly created 4369 * struct device will be a child of that device in sysfs. 4370 * The pointer to the struct device will be returned from the call. 4371 * Any further sysfs files that might be required can be created using this 4372 * pointer. 4373 * 4374 * Returns &struct device pointer on success, or ERR_PTR() on error. 4375 */ 4376 struct device *device_create(const struct class *class, struct device *parent, 4377 dev_t devt, void *drvdata, const char *fmt, ...) 4378 { 4379 va_list vargs; 4380 struct device *dev; 4381 4382 va_start(vargs, fmt); 4383 dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL, 4384 fmt, vargs); 4385 va_end(vargs); 4386 return dev; 4387 } 4388 EXPORT_SYMBOL_GPL(device_create); 4389 4390 /** 4391 * device_create_with_groups - creates a device and registers it with sysfs 4392 * @class: pointer to the struct class that this device should be registered to 4393 * @parent: pointer to the parent struct device of this new device, if any 4394 * @devt: the dev_t for the char device to be added 4395 * @drvdata: the data to be added to the device for callbacks 4396 * @groups: NULL-terminated list of attribute groups to be created 4397 * @fmt: string for the device's name 4398 * 4399 * This function can be used by char device classes. A struct device 4400 * will be created in sysfs, registered to the specified class. 4401 * Additional attributes specified in the groups parameter will also 4402 * be created automatically. 4403 * 4404 * A "dev" file will be created, showing the dev_t for the device, if 4405 * the dev_t is not 0,0. 4406 * If a pointer to a parent struct device is passed in, the newly created 4407 * struct device will be a child of that device in sysfs. 4408 * The pointer to the struct device will be returned from the call. 4409 * Any further sysfs files that might be required can be created using this 4410 * pointer. 4411 * 4412 * Returns &struct device pointer on success, or ERR_PTR() on error. 4413 */ 4414 struct device *device_create_with_groups(const struct class *class, 4415 struct device *parent, dev_t devt, 4416 void *drvdata, 4417 const struct attribute_group **groups, 4418 const char *fmt, ...) 4419 { 4420 va_list vargs; 4421 struct device *dev; 4422 4423 va_start(vargs, fmt); 4424 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups, 4425 fmt, vargs); 4426 va_end(vargs); 4427 return dev; 4428 } 4429 EXPORT_SYMBOL_GPL(device_create_with_groups); 4430 4431 /** 4432 * device_destroy - removes a device that was created with device_create() 4433 * @class: pointer to the struct class that this device was registered with 4434 * @devt: the dev_t of the device that was previously registered 4435 * 4436 * This call unregisters and cleans up a device that was created with a 4437 * call to device_create(). 4438 */ 4439 void device_destroy(const struct class *class, dev_t devt) 4440 { 4441 struct device *dev; 4442 4443 dev = class_find_device_by_devt(class, devt); 4444 if (dev) { 4445 put_device(dev); 4446 device_unregister(dev); 4447 } 4448 } 4449 EXPORT_SYMBOL_GPL(device_destroy); 4450 4451 /** 4452 * device_rename - renames a device 4453 * @dev: the pointer to the struct device to be renamed 4454 * @new_name: the new name of the device 4455 * 4456 * It is the responsibility of the caller to provide mutual 4457 * exclusion between two different calls of device_rename 4458 * on the same device to ensure that new_name is valid and 4459 * won't conflict with other devices. 4460 * 4461 * Note: given that some subsystems (networking and infiniband) use this 4462 * function, with no immediate plans for this to change, we cannot assume or 4463 * require that this function not be called at all. 4464 * 4465 * However, if you're writing new code, do not call this function. The following 4466 * text from Kay Sievers offers some insight: 4467 * 4468 * Renaming devices is racy at many levels, symlinks and other stuff are not 4469 * replaced atomically, and you get a "move" uevent, but it's not easy to 4470 * connect the event to the old and new device. Device nodes are not renamed at 4471 * all, there isn't even support for that in the kernel now. 4472 * 4473 * In the meantime, during renaming, your target name might be taken by another 4474 * driver, creating conflicts. Or the old name is taken directly after you 4475 * renamed it -- then you get events for the same DEVPATH, before you even see 4476 * the "move" event. It's just a mess, and nothing new should ever rely on 4477 * kernel device renaming. Besides that, it's not even implemented now for 4478 * other things than (driver-core wise very simple) network devices. 4479 * 4480 * Make up a "real" name in the driver before you register anything, or add 4481 * some other attributes for userspace to find the device, or use udev to add 4482 * symlinks -- but never rename kernel devices later, it's a complete mess. We 4483 * don't even want to get into that and try to implement the missing pieces in 4484 * the core. We really have other pieces to fix in the driver core mess. :) 4485 */ 4486 int device_rename(struct device *dev, const char *new_name) 4487 { 4488 struct subsys_private *sp = NULL; 4489 struct kobject *kobj = &dev->kobj; 4490 char *old_device_name = NULL; 4491 int error; 4492 bool is_link_renamed = false; 4493 4494 dev = get_device(dev); 4495 if (!dev) 4496 return -EINVAL; 4497 4498 dev_dbg(dev, "renaming to %s\n", new_name); 4499 4500 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL); 4501 if (!old_device_name) { 4502 error = -ENOMEM; 4503 goto out; 4504 } 4505 4506 if (dev->class) { 4507 sp = class_to_subsys(dev->class); 4508 4509 if (!sp) { 4510 error = -EINVAL; 4511 goto out; 4512 } 4513 4514 error = sysfs_rename_link_ns(&sp->subsys.kobj, kobj, old_device_name, 4515 new_name, kobject_namespace(kobj)); 4516 if (error) 4517 goto out; 4518 4519 is_link_renamed = true; 4520 } 4521 4522 error = kobject_rename(kobj, new_name); 4523 out: 4524 if (error && is_link_renamed) 4525 sysfs_rename_link_ns(&sp->subsys.kobj, kobj, new_name, 4526 old_device_name, kobject_namespace(kobj)); 4527 subsys_put(sp); 4528 4529 put_device(dev); 4530 4531 kfree(old_device_name); 4532 4533 return error; 4534 } 4535 EXPORT_SYMBOL_GPL(device_rename); 4536 4537 static int device_move_class_links(struct device *dev, 4538 struct device *old_parent, 4539 struct device *new_parent) 4540 { 4541 int error = 0; 4542 4543 if (old_parent) 4544 sysfs_remove_link(&dev->kobj, "device"); 4545 if (new_parent) 4546 error = sysfs_create_link(&dev->kobj, &new_parent->kobj, 4547 "device"); 4548 return error; 4549 } 4550 4551 /** 4552 * device_move - moves a device to a new parent 4553 * @dev: the pointer to the struct device to be moved 4554 * @new_parent: the new parent of the device (can be NULL) 4555 * @dpm_order: how to reorder the dpm_list 4556 */ 4557 int device_move(struct device *dev, struct device *new_parent, 4558 enum dpm_order dpm_order) 4559 { 4560 int error; 4561 struct device *old_parent; 4562 struct kobject *new_parent_kobj; 4563 4564 dev = get_device(dev); 4565 if (!dev) 4566 return -EINVAL; 4567 4568 device_pm_lock(); 4569 new_parent = get_device(new_parent); 4570 new_parent_kobj = get_device_parent(dev, new_parent); 4571 if (IS_ERR(new_parent_kobj)) { 4572 error = PTR_ERR(new_parent_kobj); 4573 put_device(new_parent); 4574 goto out; 4575 } 4576 4577 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev), 4578 __func__, new_parent ? dev_name(new_parent) : "<NULL>"); 4579 error = kobject_move(&dev->kobj, new_parent_kobj); 4580 if (error) { 4581 cleanup_glue_dir(dev, new_parent_kobj); 4582 put_device(new_parent); 4583 goto out; 4584 } 4585 old_parent = dev->parent; 4586 dev->parent = new_parent; 4587 if (old_parent) 4588 klist_remove(&dev->p->knode_parent); 4589 if (new_parent) { 4590 klist_add_tail(&dev->p->knode_parent, 4591 &new_parent->p->klist_children); 4592 set_dev_node(dev, dev_to_node(new_parent)); 4593 } 4594 4595 if (dev->class) { 4596 error = device_move_class_links(dev, old_parent, new_parent); 4597 if (error) { 4598 /* We ignore errors on cleanup since we're hosed anyway... */ 4599 device_move_class_links(dev, new_parent, old_parent); 4600 if (!kobject_move(&dev->kobj, &old_parent->kobj)) { 4601 if (new_parent) 4602 klist_remove(&dev->p->knode_parent); 4603 dev->parent = old_parent; 4604 if (old_parent) { 4605 klist_add_tail(&dev->p->knode_parent, 4606 &old_parent->p->klist_children); 4607 set_dev_node(dev, dev_to_node(old_parent)); 4608 } 4609 } 4610 cleanup_glue_dir(dev, new_parent_kobj); 4611 put_device(new_parent); 4612 goto out; 4613 } 4614 } 4615 switch (dpm_order) { 4616 case DPM_ORDER_NONE: 4617 break; 4618 case DPM_ORDER_DEV_AFTER_PARENT: 4619 device_pm_move_after(dev, new_parent); 4620 devices_kset_move_after(dev, new_parent); 4621 break; 4622 case DPM_ORDER_PARENT_BEFORE_DEV: 4623 device_pm_move_before(new_parent, dev); 4624 devices_kset_move_before(new_parent, dev); 4625 break; 4626 case DPM_ORDER_DEV_LAST: 4627 device_pm_move_last(dev); 4628 devices_kset_move_last(dev); 4629 break; 4630 } 4631 4632 put_device(old_parent); 4633 out: 4634 device_pm_unlock(); 4635 put_device(dev); 4636 return error; 4637 } 4638 EXPORT_SYMBOL_GPL(device_move); 4639 4640 static int device_attrs_change_owner(struct device *dev, kuid_t kuid, 4641 kgid_t kgid) 4642 { 4643 struct kobject *kobj = &dev->kobj; 4644 const struct class *class = dev->class; 4645 const struct device_type *type = dev->type; 4646 int error; 4647 4648 if (class) { 4649 /* 4650 * Change the device groups of the device class for @dev to 4651 * @kuid/@kgid. 4652 */ 4653 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid, 4654 kgid); 4655 if (error) 4656 return error; 4657 } 4658 4659 if (type) { 4660 /* 4661 * Change the device groups of the device type for @dev to 4662 * @kuid/@kgid. 4663 */ 4664 error = sysfs_groups_change_owner(kobj, type->groups, kuid, 4665 kgid); 4666 if (error) 4667 return error; 4668 } 4669 4670 /* Change the device groups of @dev to @kuid/@kgid. */ 4671 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid); 4672 if (error) 4673 return error; 4674 4675 if (device_supports_offline(dev) && !dev->offline_disabled) { 4676 /* Change online device attributes of @dev to @kuid/@kgid. */ 4677 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name, 4678 kuid, kgid); 4679 if (error) 4680 return error; 4681 } 4682 4683 return 0; 4684 } 4685 4686 /** 4687 * device_change_owner - change the owner of an existing device. 4688 * @dev: device. 4689 * @kuid: new owner's kuid 4690 * @kgid: new owner's kgid 4691 * 4692 * This changes the owner of @dev and its corresponding sysfs entries to 4693 * @kuid/@kgid. This function closely mirrors how @dev was added via driver 4694 * core. 4695 * 4696 * Returns 0 on success or error code on failure. 4697 */ 4698 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid) 4699 { 4700 int error; 4701 struct kobject *kobj = &dev->kobj; 4702 struct subsys_private *sp; 4703 4704 dev = get_device(dev); 4705 if (!dev) 4706 return -EINVAL; 4707 4708 /* 4709 * Change the kobject and the default attributes and groups of the 4710 * ktype associated with it to @kuid/@kgid. 4711 */ 4712 error = sysfs_change_owner(kobj, kuid, kgid); 4713 if (error) 4714 goto out; 4715 4716 /* 4717 * Change the uevent file for @dev to the new owner. The uevent file 4718 * was created in a separate step when @dev got added and we mirror 4719 * that step here. 4720 */ 4721 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid, 4722 kgid); 4723 if (error) 4724 goto out; 4725 4726 /* 4727 * Change the device groups, the device groups associated with the 4728 * device class, and the groups associated with the device type of @dev 4729 * to @kuid/@kgid. 4730 */ 4731 error = device_attrs_change_owner(dev, kuid, kgid); 4732 if (error) 4733 goto out; 4734 4735 error = dpm_sysfs_change_owner(dev, kuid, kgid); 4736 if (error) 4737 goto out; 4738 4739 /* 4740 * Change the owner of the symlink located in the class directory of 4741 * the device class associated with @dev which points to the actual 4742 * directory entry for @dev to @kuid/@kgid. This ensures that the 4743 * symlink shows the same permissions as its target. 4744 */ 4745 sp = class_to_subsys(dev->class); 4746 if (!sp) { 4747 error = -EINVAL; 4748 goto out; 4749 } 4750 error = sysfs_link_change_owner(&sp->subsys.kobj, &dev->kobj, dev_name(dev), kuid, kgid); 4751 subsys_put(sp); 4752 4753 out: 4754 put_device(dev); 4755 return error; 4756 } 4757 EXPORT_SYMBOL_GPL(device_change_owner); 4758 4759 /** 4760 * device_shutdown - call ->shutdown() on each device to shutdown. 4761 */ 4762 void device_shutdown(void) 4763 { 4764 struct device *dev, *parent; 4765 4766 wait_for_device_probe(); 4767 device_block_probing(); 4768 4769 cpufreq_suspend(); 4770 4771 spin_lock(&devices_kset->list_lock); 4772 /* 4773 * Walk the devices list backward, shutting down each in turn. 4774 * Beware that device unplug events may also start pulling 4775 * devices offline, even as the system is shutting down. 4776 */ 4777 while (!list_empty(&devices_kset->list)) { 4778 dev = list_entry(devices_kset->list.prev, struct device, 4779 kobj.entry); 4780 4781 /* 4782 * hold reference count of device's parent to 4783 * prevent it from being freed because parent's 4784 * lock is to be held 4785 */ 4786 parent = get_device(dev->parent); 4787 get_device(dev); 4788 /* 4789 * Make sure the device is off the kset list, in the 4790 * event that dev->*->shutdown() doesn't remove it. 4791 */ 4792 list_del_init(&dev->kobj.entry); 4793 spin_unlock(&devices_kset->list_lock); 4794 4795 /* hold lock to avoid race with probe/release */ 4796 if (parent) 4797 device_lock(parent); 4798 device_lock(dev); 4799 4800 /* Don't allow any more runtime suspends */ 4801 pm_runtime_get_noresume(dev); 4802 pm_runtime_barrier(dev); 4803 4804 if (dev->class && dev->class->shutdown_pre) { 4805 if (initcall_debug) 4806 dev_info(dev, "shutdown_pre\n"); 4807 dev->class->shutdown_pre(dev); 4808 } 4809 if (dev->bus && dev->bus->shutdown) { 4810 if (initcall_debug) 4811 dev_info(dev, "shutdown\n"); 4812 dev->bus->shutdown(dev); 4813 } else if (dev->driver && dev->driver->shutdown) { 4814 if (initcall_debug) 4815 dev_info(dev, "shutdown\n"); 4816 dev->driver->shutdown(dev); 4817 } 4818 4819 device_unlock(dev); 4820 if (parent) 4821 device_unlock(parent); 4822 4823 put_device(dev); 4824 put_device(parent); 4825 4826 spin_lock(&devices_kset->list_lock); 4827 } 4828 spin_unlock(&devices_kset->list_lock); 4829 } 4830 4831 /* 4832 * Device logging functions 4833 */ 4834 4835 #ifdef CONFIG_PRINTK 4836 static void 4837 set_dev_info(const struct device *dev, struct dev_printk_info *dev_info) 4838 { 4839 const char *subsys; 4840 4841 memset(dev_info, 0, sizeof(*dev_info)); 4842 4843 if (dev->class) 4844 subsys = dev->class->name; 4845 else if (dev->bus) 4846 subsys = dev->bus->name; 4847 else 4848 return; 4849 4850 strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem)); 4851 4852 /* 4853 * Add device identifier DEVICE=: 4854 * b12:8 block dev_t 4855 * c127:3 char dev_t 4856 * n8 netdev ifindex 4857 * +sound:card0 subsystem:devname 4858 */ 4859 if (MAJOR(dev->devt)) { 4860 char c; 4861 4862 if (strcmp(subsys, "block") == 0) 4863 c = 'b'; 4864 else 4865 c = 'c'; 4866 4867 snprintf(dev_info->device, sizeof(dev_info->device), 4868 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt)); 4869 } else if (strcmp(subsys, "net") == 0) { 4870 struct net_device *net = to_net_dev(dev); 4871 4872 snprintf(dev_info->device, sizeof(dev_info->device), 4873 "n%u", net->ifindex); 4874 } else { 4875 snprintf(dev_info->device, sizeof(dev_info->device), 4876 "+%s:%s", subsys, dev_name(dev)); 4877 } 4878 } 4879 4880 int dev_vprintk_emit(int level, const struct device *dev, 4881 const char *fmt, va_list args) 4882 { 4883 struct dev_printk_info dev_info; 4884 4885 set_dev_info(dev, &dev_info); 4886 4887 return vprintk_emit(0, level, &dev_info, fmt, args); 4888 } 4889 EXPORT_SYMBOL(dev_vprintk_emit); 4890 4891 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...) 4892 { 4893 va_list args; 4894 int r; 4895 4896 va_start(args, fmt); 4897 4898 r = dev_vprintk_emit(level, dev, fmt, args); 4899 4900 va_end(args); 4901 4902 return r; 4903 } 4904 EXPORT_SYMBOL(dev_printk_emit); 4905 4906 static void __dev_printk(const char *level, const struct device *dev, 4907 struct va_format *vaf) 4908 { 4909 if (dev) 4910 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV", 4911 dev_driver_string(dev), dev_name(dev), vaf); 4912 else 4913 printk("%s(NULL device *): %pV", level, vaf); 4914 } 4915 4916 void _dev_printk(const char *level, const struct device *dev, 4917 const char *fmt, ...) 4918 { 4919 struct va_format vaf; 4920 va_list args; 4921 4922 va_start(args, fmt); 4923 4924 vaf.fmt = fmt; 4925 vaf.va = &args; 4926 4927 __dev_printk(level, dev, &vaf); 4928 4929 va_end(args); 4930 } 4931 EXPORT_SYMBOL(_dev_printk); 4932 4933 #define define_dev_printk_level(func, kern_level) \ 4934 void func(const struct device *dev, const char *fmt, ...) \ 4935 { \ 4936 struct va_format vaf; \ 4937 va_list args; \ 4938 \ 4939 va_start(args, fmt); \ 4940 \ 4941 vaf.fmt = fmt; \ 4942 vaf.va = &args; \ 4943 \ 4944 __dev_printk(kern_level, dev, &vaf); \ 4945 \ 4946 va_end(args); \ 4947 } \ 4948 EXPORT_SYMBOL(func); 4949 4950 define_dev_printk_level(_dev_emerg, KERN_EMERG); 4951 define_dev_printk_level(_dev_alert, KERN_ALERT); 4952 define_dev_printk_level(_dev_crit, KERN_CRIT); 4953 define_dev_printk_level(_dev_err, KERN_ERR); 4954 define_dev_printk_level(_dev_warn, KERN_WARNING); 4955 define_dev_printk_level(_dev_notice, KERN_NOTICE); 4956 define_dev_printk_level(_dev_info, KERN_INFO); 4957 4958 #endif 4959 4960 /** 4961 * dev_err_probe - probe error check and log helper 4962 * @dev: the pointer to the struct device 4963 * @err: error value to test 4964 * @fmt: printf-style format string 4965 * @...: arguments as specified in the format string 4966 * 4967 * This helper implements common pattern present in probe functions for error 4968 * checking: print debug or error message depending if the error value is 4969 * -EPROBE_DEFER and propagate error upwards. 4970 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be 4971 * checked later by reading devices_deferred debugfs attribute. 4972 * It replaces code sequence:: 4973 * 4974 * if (err != -EPROBE_DEFER) 4975 * dev_err(dev, ...); 4976 * else 4977 * dev_dbg(dev, ...); 4978 * return err; 4979 * 4980 * with:: 4981 * 4982 * return dev_err_probe(dev, err, ...); 4983 * 4984 * Note that it is deemed acceptable to use this function for error 4985 * prints during probe even if the @err is known to never be -EPROBE_DEFER. 4986 * The benefit compared to a normal dev_err() is the standardized format 4987 * of the error code and the fact that the error code is returned. 4988 * 4989 * Returns @err. 4990 * 4991 */ 4992 int dev_err_probe(const struct device *dev, int err, const char *fmt, ...) 4993 { 4994 struct va_format vaf; 4995 va_list args; 4996 4997 va_start(args, fmt); 4998 vaf.fmt = fmt; 4999 vaf.va = &args; 5000 5001 if (err != -EPROBE_DEFER) { 5002 dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5003 } else { 5004 device_set_deferred_probe_reason(dev, &vaf); 5005 dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf); 5006 } 5007 5008 va_end(args); 5009 5010 return err; 5011 } 5012 EXPORT_SYMBOL_GPL(dev_err_probe); 5013 5014 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode) 5015 { 5016 return fwnode && !IS_ERR(fwnode->secondary); 5017 } 5018 5019 /** 5020 * set_primary_fwnode - Change the primary firmware node of a given device. 5021 * @dev: Device to handle. 5022 * @fwnode: New primary firmware node of the device. 5023 * 5024 * Set the device's firmware node pointer to @fwnode, but if a secondary 5025 * firmware node of the device is present, preserve it. 5026 * 5027 * Valid fwnode cases are: 5028 * - primary --> secondary --> -ENODEV 5029 * - primary --> NULL 5030 * - secondary --> -ENODEV 5031 * - NULL 5032 */ 5033 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5034 { 5035 struct device *parent = dev->parent; 5036 struct fwnode_handle *fn = dev->fwnode; 5037 5038 if (fwnode) { 5039 if (fwnode_is_primary(fn)) 5040 fn = fn->secondary; 5041 5042 if (fn) { 5043 WARN_ON(fwnode->secondary); 5044 fwnode->secondary = fn; 5045 } 5046 dev->fwnode = fwnode; 5047 } else { 5048 if (fwnode_is_primary(fn)) { 5049 dev->fwnode = fn->secondary; 5050 5051 /* Skip nullifying fn->secondary if the primary is shared */ 5052 if (parent && fn == parent->fwnode) 5053 return; 5054 5055 /* Set fn->secondary = NULL, so fn remains the primary fwnode */ 5056 fn->secondary = NULL; 5057 } else { 5058 dev->fwnode = NULL; 5059 } 5060 } 5061 } 5062 EXPORT_SYMBOL_GPL(set_primary_fwnode); 5063 5064 /** 5065 * set_secondary_fwnode - Change the secondary firmware node of a given device. 5066 * @dev: Device to handle. 5067 * @fwnode: New secondary firmware node of the device. 5068 * 5069 * If a primary firmware node of the device is present, set its secondary 5070 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to 5071 * @fwnode. 5072 */ 5073 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode) 5074 { 5075 if (fwnode) 5076 fwnode->secondary = ERR_PTR(-ENODEV); 5077 5078 if (fwnode_is_primary(dev->fwnode)) 5079 dev->fwnode->secondary = fwnode; 5080 else 5081 dev->fwnode = fwnode; 5082 } 5083 EXPORT_SYMBOL_GPL(set_secondary_fwnode); 5084 5085 /** 5086 * device_set_of_node_from_dev - reuse device-tree node of another device 5087 * @dev: device whose device-tree node is being set 5088 * @dev2: device whose device-tree node is being reused 5089 * 5090 * Takes another reference to the new device-tree node after first dropping 5091 * any reference held to the old node. 5092 */ 5093 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2) 5094 { 5095 of_node_put(dev->of_node); 5096 dev->of_node = of_node_get(dev2->of_node); 5097 dev->of_node_reused = true; 5098 } 5099 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev); 5100 5101 void device_set_node(struct device *dev, struct fwnode_handle *fwnode) 5102 { 5103 dev->fwnode = fwnode; 5104 dev->of_node = to_of_node(fwnode); 5105 } 5106 EXPORT_SYMBOL_GPL(device_set_node); 5107 5108 int device_match_name(struct device *dev, const void *name) 5109 { 5110 return sysfs_streq(dev_name(dev), name); 5111 } 5112 EXPORT_SYMBOL_GPL(device_match_name); 5113 5114 int device_match_of_node(struct device *dev, const void *np) 5115 { 5116 return dev->of_node == np; 5117 } 5118 EXPORT_SYMBOL_GPL(device_match_of_node); 5119 5120 int device_match_fwnode(struct device *dev, const void *fwnode) 5121 { 5122 return dev_fwnode(dev) == fwnode; 5123 } 5124 EXPORT_SYMBOL_GPL(device_match_fwnode); 5125 5126 int device_match_devt(struct device *dev, const void *pdevt) 5127 { 5128 return dev->devt == *(dev_t *)pdevt; 5129 } 5130 EXPORT_SYMBOL_GPL(device_match_devt); 5131 5132 int device_match_acpi_dev(struct device *dev, const void *adev) 5133 { 5134 return ACPI_COMPANION(dev) == adev; 5135 } 5136 EXPORT_SYMBOL(device_match_acpi_dev); 5137 5138 int device_match_acpi_handle(struct device *dev, const void *handle) 5139 { 5140 return ACPI_HANDLE(dev) == handle; 5141 } 5142 EXPORT_SYMBOL(device_match_acpi_handle); 5143 5144 int device_match_any(struct device *dev, const void *unused) 5145 { 5146 return 1; 5147 } 5148 EXPORT_SYMBOL_GPL(device_match_any); 5149