xref: /openbmc/linux/drivers/base/component.c (revision f8a11425075ff11b4b5784f077cb84f3d2dfb3f0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Componentized device handling.
4  *
5  * This is work in progress.  We gather up the component devices into a list,
6  * and bind them when instructed.  At the moment, we're specific to the DRM
7  * subsystem, and only handles one master device, but this doesn't have to be
8  * the case.
9  */
10 #include <linux/component.h>
11 #include <linux/device.h>
12 #include <linux/kref.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/slab.h>
16 #include <linux/debugfs.h>
17 
18 /**
19  * DOC: overview
20  *
21  * The component helper allows drivers to collect a pile of sub-devices,
22  * including their bound drivers, into an aggregate driver. Various subsystems
23  * already provide functions to get hold of such components, e.g.
24  * of_clk_get_by_name(). The component helper can be used when such a
25  * subsystem-specific way to find a device is not available: The component
26  * helper fills the niche of aggregate drivers for specific hardware, where
27  * further standardization into a subsystem would not be practical. The common
28  * example is when a logical device (e.g. a DRM display driver) is spread around
29  * the SoC on various components (scanout engines, blending blocks, transcoders
30  * for various outputs and so on).
31  *
32  * The component helper also doesn't solve runtime dependencies, e.g. for system
33  * suspend and resume operations. See also :ref:`device links<device_link>`.
34  *
35  * Components are registered using component_add() and unregistered with
36  * component_del(), usually from the driver's probe and disconnect functions.
37  *
38  * Aggregate drivers first assemble a component match list of what they need
39  * using component_match_add(). This is then registered as an aggregate driver
40  * using component_master_add_with_match(), and unregistered using
41  * component_master_del().
42  */
43 
44 struct component;
45 
46 struct component_match_array {
47 	void *data;
48 	int (*compare)(struct device *, void *);
49 	int (*compare_typed)(struct device *, int, void *);
50 	void (*release)(struct device *, void *);
51 	struct component *component;
52 	bool duplicate;
53 };
54 
55 struct component_match {
56 	size_t alloc;
57 	size_t num;
58 	struct component_match_array *compare;
59 };
60 
61 struct master {
62 	struct list_head node;
63 	bool bound;
64 
65 	const struct component_master_ops *ops;
66 	struct device *dev;
67 	struct component_match *match;
68 };
69 
70 struct component {
71 	struct list_head node;
72 	struct master *master;
73 	bool bound;
74 
75 	const struct component_ops *ops;
76 	int subcomponent;
77 	struct device *dev;
78 };
79 
80 static DEFINE_MUTEX(component_mutex);
81 static LIST_HEAD(component_list);
82 static LIST_HEAD(masters);
83 
84 #ifdef CONFIG_DEBUG_FS
85 
86 static struct dentry *component_debugfs_dir;
87 
88 static int component_devices_show(struct seq_file *s, void *data)
89 {
90 	struct master *m = s->private;
91 	struct component_match *match = m->match;
92 	size_t i;
93 
94 	mutex_lock(&component_mutex);
95 	seq_printf(s, "%-40s %20s\n", "master name", "status");
96 	seq_puts(s, "-------------------------------------------------------------\n");
97 	seq_printf(s, "%-40s %20s\n\n",
98 		   dev_name(m->dev), m->bound ? "bound" : "not bound");
99 
100 	seq_printf(s, "%-40s %20s\n", "device name", "status");
101 	seq_puts(s, "-------------------------------------------------------------\n");
102 	for (i = 0; i < match->num; i++) {
103 		struct component *component = match->compare[i].component;
104 
105 		seq_printf(s, "%-40s %20s\n",
106 			   component ? dev_name(component->dev) : "(unknown)",
107 			   component ? (component->bound ? "bound" : "not bound") : "not registered");
108 	}
109 	mutex_unlock(&component_mutex);
110 
111 	return 0;
112 }
113 
114 DEFINE_SHOW_ATTRIBUTE(component_devices);
115 
116 static int __init component_debug_init(void)
117 {
118 	component_debugfs_dir = debugfs_create_dir("device_component", NULL);
119 
120 	return 0;
121 }
122 
123 core_initcall(component_debug_init);
124 
125 static void component_master_debugfs_add(struct master *m)
126 {
127 	debugfs_create_file(dev_name(m->dev), 0444, component_debugfs_dir, m,
128 			    &component_devices_fops);
129 }
130 
131 static void component_master_debugfs_del(struct master *m)
132 {
133 	debugfs_remove(debugfs_lookup(dev_name(m->dev), component_debugfs_dir));
134 }
135 
136 #else
137 
138 static void component_master_debugfs_add(struct master *m)
139 { }
140 
141 static void component_master_debugfs_del(struct master *m)
142 { }
143 
144 #endif
145 
146 static struct master *__master_find(struct device *dev,
147 	const struct component_master_ops *ops)
148 {
149 	struct master *m;
150 
151 	list_for_each_entry(m, &masters, node)
152 		if (m->dev == dev && (!ops || m->ops == ops))
153 			return m;
154 
155 	return NULL;
156 }
157 
158 static struct component *find_component(struct master *master,
159 	struct component_match_array *mc)
160 {
161 	struct component *c;
162 
163 	list_for_each_entry(c, &component_list, node) {
164 		if (c->master && c->master != master)
165 			continue;
166 
167 		if (mc->compare && mc->compare(c->dev, mc->data))
168 			return c;
169 
170 		if (mc->compare_typed &&
171 		    mc->compare_typed(c->dev, c->subcomponent, mc->data))
172 			return c;
173 	}
174 
175 	return NULL;
176 }
177 
178 static int find_components(struct master *master)
179 {
180 	struct component_match *match = master->match;
181 	size_t i;
182 	int ret = 0;
183 
184 	/*
185 	 * Scan the array of match functions and attach
186 	 * any components which are found to this master.
187 	 */
188 	for (i = 0; i < match->num; i++) {
189 		struct component_match_array *mc = &match->compare[i];
190 		struct component *c;
191 
192 		dev_dbg(master->dev, "Looking for component %zu\n", i);
193 
194 		if (match->compare[i].component)
195 			continue;
196 
197 		c = find_component(master, mc);
198 		if (!c) {
199 			ret = -ENXIO;
200 			break;
201 		}
202 
203 		dev_dbg(master->dev, "found component %s, duplicate %u\n", dev_name(c->dev), !!c->master);
204 
205 		/* Attach this component to the master */
206 		match->compare[i].duplicate = !!c->master;
207 		match->compare[i].component = c;
208 		c->master = master;
209 	}
210 	return ret;
211 }
212 
213 /* Detach component from associated master */
214 static void remove_component(struct master *master, struct component *c)
215 {
216 	size_t i;
217 
218 	/* Detach the component from this master. */
219 	for (i = 0; i < master->match->num; i++)
220 		if (master->match->compare[i].component == c)
221 			master->match->compare[i].component = NULL;
222 }
223 
224 /*
225  * Try to bring up a master.  If component is NULL, we're interested in
226  * this master, otherwise it's a component which must be present to try
227  * and bring up the master.
228  *
229  * Returns 1 for successful bringup, 0 if not ready, or -ve errno.
230  */
231 static int try_to_bring_up_master(struct master *master,
232 	struct component *component)
233 {
234 	int ret;
235 
236 	dev_dbg(master->dev, "trying to bring up master\n");
237 
238 	if (find_components(master)) {
239 		dev_dbg(master->dev, "master has incomplete components\n");
240 		return 0;
241 	}
242 
243 	if (component && component->master != master) {
244 		dev_dbg(master->dev, "master is not for this component (%s)\n",
245 			dev_name(component->dev));
246 		return 0;
247 	}
248 
249 	if (!devres_open_group(master->dev, NULL, GFP_KERNEL))
250 		return -ENOMEM;
251 
252 	/* Found all components */
253 	ret = master->ops->bind(master->dev);
254 	if (ret < 0) {
255 		devres_release_group(master->dev, NULL);
256 		if (ret != -EPROBE_DEFER)
257 			dev_info(master->dev, "master bind failed: %d\n", ret);
258 		return ret;
259 	}
260 
261 	master->bound = true;
262 	return 1;
263 }
264 
265 static int try_to_bring_up_masters(struct component *component)
266 {
267 	struct master *m;
268 	int ret = 0;
269 
270 	list_for_each_entry(m, &masters, node) {
271 		if (!m->bound) {
272 			ret = try_to_bring_up_master(m, component);
273 			if (ret != 0)
274 				break;
275 		}
276 	}
277 
278 	return ret;
279 }
280 
281 static void take_down_master(struct master *master)
282 {
283 	if (master->bound) {
284 		master->ops->unbind(master->dev);
285 		devres_release_group(master->dev, NULL);
286 		master->bound = false;
287 	}
288 }
289 
290 static void component_match_release(struct device *master,
291 	struct component_match *match)
292 {
293 	unsigned int i;
294 
295 	for (i = 0; i < match->num; i++) {
296 		struct component_match_array *mc = &match->compare[i];
297 
298 		if (mc->release)
299 			mc->release(master, mc->data);
300 	}
301 
302 	kfree(match->compare);
303 }
304 
305 static void devm_component_match_release(struct device *dev, void *res)
306 {
307 	component_match_release(dev, res);
308 }
309 
310 static int component_match_realloc(struct device *dev,
311 	struct component_match *match, size_t num)
312 {
313 	struct component_match_array *new;
314 
315 	if (match->alloc == num)
316 		return 0;
317 
318 	new = kmalloc_array(num, sizeof(*new), GFP_KERNEL);
319 	if (!new)
320 		return -ENOMEM;
321 
322 	if (match->compare) {
323 		memcpy(new, match->compare, sizeof(*new) *
324 					    min(match->num, num));
325 		kfree(match->compare);
326 	}
327 	match->compare = new;
328 	match->alloc = num;
329 
330 	return 0;
331 }
332 
333 static void __component_match_add(struct device *master,
334 	struct component_match **matchptr,
335 	void (*release)(struct device *, void *),
336 	int (*compare)(struct device *, void *),
337 	int (*compare_typed)(struct device *, int, void *),
338 	void *compare_data)
339 {
340 	struct component_match *match = *matchptr;
341 
342 	if (IS_ERR(match))
343 		return;
344 
345 	if (!match) {
346 		match = devres_alloc(devm_component_match_release,
347 				     sizeof(*match), GFP_KERNEL);
348 		if (!match) {
349 			*matchptr = ERR_PTR(-ENOMEM);
350 			return;
351 		}
352 
353 		devres_add(master, match);
354 
355 		*matchptr = match;
356 	}
357 
358 	if (match->num == match->alloc) {
359 		size_t new_size = match->alloc + 16;
360 		int ret;
361 
362 		ret = component_match_realloc(master, match, new_size);
363 		if (ret) {
364 			*matchptr = ERR_PTR(ret);
365 			return;
366 		}
367 	}
368 
369 	match->compare[match->num].compare = compare;
370 	match->compare[match->num].compare_typed = compare_typed;
371 	match->compare[match->num].release = release;
372 	match->compare[match->num].data = compare_data;
373 	match->compare[match->num].component = NULL;
374 	match->num++;
375 }
376 
377 /**
378  * component_match_add_release - add a component match entry with release callback
379  * @master: device with the aggregate driver
380  * @matchptr: pointer to the list of component matches
381  * @release: release function for @compare_data
382  * @compare: compare function to match against all components
383  * @compare_data: opaque pointer passed to the @compare function
384  *
385  * Adds a new component match to the list stored in @matchptr, which the @master
386  * aggregate driver needs to function. The list of component matches pointed to
387  * by @matchptr must be initialized to NULL before adding the first match. This
388  * only matches against components added with component_add().
389  *
390  * The allocated match list in @matchptr is automatically released using devm
391  * actions, where upon @release will be called to free any references held by
392  * @compare_data, e.g. when @compare_data is a &device_node that must be
393  * released with of_node_put().
394  *
395  * See also component_match_add() and component_match_add_typed().
396  */
397 void component_match_add_release(struct device *master,
398 	struct component_match **matchptr,
399 	void (*release)(struct device *, void *),
400 	int (*compare)(struct device *, void *), void *compare_data)
401 {
402 	__component_match_add(master, matchptr, release, compare, NULL,
403 			      compare_data);
404 }
405 EXPORT_SYMBOL(component_match_add_release);
406 
407 /**
408  * component_match_add_typed - add a component match entry for a typed component
409  * @master: device with the aggregate driver
410  * @matchptr: pointer to the list of component matches
411  * @compare_typed: compare function to match against all typed components
412  * @compare_data: opaque pointer passed to the @compare function
413  *
414  * Adds a new component match to the list stored in @matchptr, which the @master
415  * aggregate driver needs to function. The list of component matches pointed to
416  * by @matchptr must be initialized to NULL before adding the first match. This
417  * only matches against components added with component_add_typed().
418  *
419  * The allocated match list in @matchptr is automatically released using devm
420  * actions.
421  *
422  * See also component_match_add_release() and component_match_add_typed().
423  */
424 void component_match_add_typed(struct device *master,
425 	struct component_match **matchptr,
426 	int (*compare_typed)(struct device *, int, void *), void *compare_data)
427 {
428 	__component_match_add(master, matchptr, NULL, NULL, compare_typed,
429 			      compare_data);
430 }
431 EXPORT_SYMBOL(component_match_add_typed);
432 
433 static void free_master(struct master *master)
434 {
435 	struct component_match *match = master->match;
436 	int i;
437 
438 	component_master_debugfs_del(master);
439 	list_del(&master->node);
440 
441 	if (match) {
442 		for (i = 0; i < match->num; i++) {
443 			struct component *c = match->compare[i].component;
444 			if (c)
445 				c->master = NULL;
446 		}
447 	}
448 
449 	kfree(master);
450 }
451 
452 /**
453  * component_master_add_with_match - register an aggregate driver
454  * @dev: device with the aggregate driver
455  * @ops: callbacks for the aggregate driver
456  * @match: component match list for the aggregate driver
457  *
458  * Registers a new aggregate driver consisting of the components added to @match
459  * by calling one of the component_match_add() functions. Once all components in
460  * @match are available, it will be assembled by calling
461  * &component_master_ops.bind from @ops. Must be unregistered by calling
462  * component_master_del().
463  */
464 int component_master_add_with_match(struct device *dev,
465 	const struct component_master_ops *ops,
466 	struct component_match *match)
467 {
468 	struct master *master;
469 	int ret;
470 
471 	/* Reallocate the match array for its true size */
472 	ret = component_match_realloc(dev, match, match->num);
473 	if (ret)
474 		return ret;
475 
476 	master = kzalloc(sizeof(*master), GFP_KERNEL);
477 	if (!master)
478 		return -ENOMEM;
479 
480 	master->dev = dev;
481 	master->ops = ops;
482 	master->match = match;
483 
484 	component_master_debugfs_add(master);
485 	/* Add to the list of available masters. */
486 	mutex_lock(&component_mutex);
487 	list_add(&master->node, &masters);
488 
489 	ret = try_to_bring_up_master(master, NULL);
490 
491 	if (ret < 0)
492 		free_master(master);
493 
494 	mutex_unlock(&component_mutex);
495 
496 	return ret < 0 ? ret : 0;
497 }
498 EXPORT_SYMBOL_GPL(component_master_add_with_match);
499 
500 /**
501  * component_master_del - unregister an aggregate driver
502  * @dev: device with the aggregate driver
503  * @ops: callbacks for the aggregate driver
504  *
505  * Unregisters an aggregate driver registered with
506  * component_master_add_with_match(). If necessary the aggregate driver is first
507  * disassembled by calling &component_master_ops.unbind from @ops.
508  */
509 void component_master_del(struct device *dev,
510 	const struct component_master_ops *ops)
511 {
512 	struct master *master;
513 
514 	mutex_lock(&component_mutex);
515 	master = __master_find(dev, ops);
516 	if (master) {
517 		take_down_master(master);
518 		free_master(master);
519 	}
520 	mutex_unlock(&component_mutex);
521 }
522 EXPORT_SYMBOL_GPL(component_master_del);
523 
524 static void component_unbind(struct component *component,
525 	struct master *master, void *data)
526 {
527 	WARN_ON(!component->bound);
528 
529 	if (component->ops && component->ops->unbind)
530 		component->ops->unbind(component->dev, master->dev, data);
531 	component->bound = false;
532 
533 	/* Release all resources claimed in the binding of this component */
534 	devres_release_group(component->dev, component);
535 }
536 
537 /**
538  * component_unbind_all - unbind all components of an aggregate driver
539  * @master_dev: device with the aggregate driver
540  * @data: opaque pointer, passed to all components
541  *
542  * Unbinds all components of the aggregate @dev by passing @data to their
543  * &component_ops.unbind functions. Should be called from
544  * &component_master_ops.unbind.
545  */
546 void component_unbind_all(struct device *master_dev, void *data)
547 {
548 	struct master *master;
549 	struct component *c;
550 	size_t i;
551 
552 	WARN_ON(!mutex_is_locked(&component_mutex));
553 
554 	master = __master_find(master_dev, NULL);
555 	if (!master)
556 		return;
557 
558 	/* Unbind components in reverse order */
559 	for (i = master->match->num; i--; )
560 		if (!master->match->compare[i].duplicate) {
561 			c = master->match->compare[i].component;
562 			component_unbind(c, master, data);
563 		}
564 }
565 EXPORT_SYMBOL_GPL(component_unbind_all);
566 
567 static int component_bind(struct component *component, struct master *master,
568 	void *data)
569 {
570 	int ret;
571 
572 	/*
573 	 * Each component initialises inside its own devres group.
574 	 * This allows us to roll-back a failed component without
575 	 * affecting anything else.
576 	 */
577 	if (!devres_open_group(master->dev, NULL, GFP_KERNEL))
578 		return -ENOMEM;
579 
580 	/*
581 	 * Also open a group for the device itself: this allows us
582 	 * to release the resources claimed against the sub-device
583 	 * at the appropriate moment.
584 	 */
585 	if (!devres_open_group(component->dev, component, GFP_KERNEL)) {
586 		devres_release_group(master->dev, NULL);
587 		return -ENOMEM;
588 	}
589 
590 	dev_dbg(master->dev, "binding %s (ops %ps)\n",
591 		dev_name(component->dev), component->ops);
592 
593 	ret = component->ops->bind(component->dev, master->dev, data);
594 	if (!ret) {
595 		component->bound = true;
596 
597 		/*
598 		 * Close the component device's group so that resources
599 		 * allocated in the binding are encapsulated for removal
600 		 * at unbind.  Remove the group on the DRM device as we
601 		 * can clean those resources up independently.
602 		 */
603 		devres_close_group(component->dev, NULL);
604 		devres_remove_group(master->dev, NULL);
605 
606 		dev_info(master->dev, "bound %s (ops %ps)\n",
607 			 dev_name(component->dev), component->ops);
608 	} else {
609 		devres_release_group(component->dev, NULL);
610 		devres_release_group(master->dev, NULL);
611 
612 		if (ret != -EPROBE_DEFER)
613 			dev_err(master->dev, "failed to bind %s (ops %ps): %d\n",
614 				dev_name(component->dev), component->ops, ret);
615 	}
616 
617 	return ret;
618 }
619 
620 /**
621  * component_bind_all - bind all components of an aggregate driver
622  * @master_dev: device with the aggregate driver
623  * @data: opaque pointer, passed to all components
624  *
625  * Binds all components of the aggregate @dev by passing @data to their
626  * &component_ops.bind functions. Should be called from
627  * &component_master_ops.bind.
628  */
629 int component_bind_all(struct device *master_dev, void *data)
630 {
631 	struct master *master;
632 	struct component *c;
633 	size_t i;
634 	int ret = 0;
635 
636 	WARN_ON(!mutex_is_locked(&component_mutex));
637 
638 	master = __master_find(master_dev, NULL);
639 	if (!master)
640 		return -EINVAL;
641 
642 	/* Bind components in match order */
643 	for (i = 0; i < master->match->num; i++)
644 		if (!master->match->compare[i].duplicate) {
645 			c = master->match->compare[i].component;
646 			ret = component_bind(c, master, data);
647 			if (ret)
648 				break;
649 		}
650 
651 	if (ret != 0) {
652 		for (; i > 0; i--)
653 			if (!master->match->compare[i - 1].duplicate) {
654 				c = master->match->compare[i - 1].component;
655 				component_unbind(c, master, data);
656 			}
657 	}
658 
659 	return ret;
660 }
661 EXPORT_SYMBOL_GPL(component_bind_all);
662 
663 static int __component_add(struct device *dev, const struct component_ops *ops,
664 	int subcomponent)
665 {
666 	struct component *component;
667 	int ret;
668 
669 	component = kzalloc(sizeof(*component), GFP_KERNEL);
670 	if (!component)
671 		return -ENOMEM;
672 
673 	component->ops = ops;
674 	component->dev = dev;
675 	component->subcomponent = subcomponent;
676 
677 	dev_dbg(dev, "adding component (ops %ps)\n", ops);
678 
679 	mutex_lock(&component_mutex);
680 	list_add_tail(&component->node, &component_list);
681 
682 	ret = try_to_bring_up_masters(component);
683 	if (ret < 0) {
684 		if (component->master)
685 			remove_component(component->master, component);
686 		list_del(&component->node);
687 
688 		kfree(component);
689 	}
690 	mutex_unlock(&component_mutex);
691 
692 	return ret < 0 ? ret : 0;
693 }
694 
695 /**
696  * component_add_typed - register a component
697  * @dev: component device
698  * @ops: component callbacks
699  * @subcomponent: nonzero identifier for subcomponents
700  *
701  * Register a new component for @dev. Functions in @ops will be call when the
702  * aggregate driver is ready to bind the overall driver by calling
703  * component_bind_all(). See also &struct component_ops.
704  *
705  * @subcomponent must be nonzero and is used to differentiate between multiple
706  * components registerd on the same device @dev. These components are match
707  * using component_match_add_typed().
708  *
709  * The component needs to be unregistered at driver unload/disconnect by
710  * calling component_del().
711  *
712  * See also component_add().
713  */
714 int component_add_typed(struct device *dev, const struct component_ops *ops,
715 	int subcomponent)
716 {
717 	if (WARN_ON(subcomponent == 0))
718 		return -EINVAL;
719 
720 	return __component_add(dev, ops, subcomponent);
721 }
722 EXPORT_SYMBOL_GPL(component_add_typed);
723 
724 /**
725  * component_add - register a component
726  * @dev: component device
727  * @ops: component callbacks
728  *
729  * Register a new component for @dev. Functions in @ops will be called when the
730  * aggregate driver is ready to bind the overall driver by calling
731  * component_bind_all(). See also &struct component_ops.
732  *
733  * The component needs to be unregistered at driver unload/disconnect by
734  * calling component_del().
735  *
736  * See also component_add_typed() for a variant that allows multipled different
737  * components on the same device.
738  */
739 int component_add(struct device *dev, const struct component_ops *ops)
740 {
741 	return __component_add(dev, ops, 0);
742 }
743 EXPORT_SYMBOL_GPL(component_add);
744 
745 /**
746  * component_del - unregister a component
747  * @dev: component device
748  * @ops: component callbacks
749  *
750  * Unregister a component added with component_add(). If the component is bound
751  * into an aggregate driver, this will force the entire aggregate driver, including
752  * all its components, to be unbound.
753  */
754 void component_del(struct device *dev, const struct component_ops *ops)
755 {
756 	struct component *c, *component = NULL;
757 
758 	mutex_lock(&component_mutex);
759 	list_for_each_entry(c, &component_list, node)
760 		if (c->dev == dev && c->ops == ops) {
761 			list_del(&c->node);
762 			component = c;
763 			break;
764 		}
765 
766 	if (component && component->master) {
767 		take_down_master(component->master);
768 		remove_component(component->master, component);
769 	}
770 
771 	mutex_unlock(&component_mutex);
772 
773 	WARN_ON(!component);
774 	kfree(component);
775 }
776 EXPORT_SYMBOL_GPL(component_del);
777