xref: /openbmc/linux/drivers/base/component.c (revision 19dc81b4017baffd6e919fd71cfc8dcbd5442e15)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Componentized device handling.
4  *
5  * This is work in progress.  We gather up the component devices into a list,
6  * and bind them when instructed.  At the moment, we're specific to the DRM
7  * subsystem, and only handles one master device, but this doesn't have to be
8  * the case.
9  */
10 #include <linux/component.h>
11 #include <linux/device.h>
12 #include <linux/list.h>
13 #include <linux/mutex.h>
14 #include <linux/slab.h>
15 #include <linux/debugfs.h>
16 
17 /**
18  * DOC: overview
19  *
20  * The component helper allows drivers to collect a pile of sub-devices,
21  * including their bound drivers, into an aggregate driver. Various subsystems
22  * already provide functions to get hold of such components, e.g.
23  * of_clk_get_by_name(). The component helper can be used when such a
24  * subsystem-specific way to find a device is not available: The component
25  * helper fills the niche of aggregate drivers for specific hardware, where
26  * further standardization into a subsystem would not be practical. The common
27  * example is when a logical device (e.g. a DRM display driver) is spread around
28  * the SoC on various components (scanout engines, blending blocks, transcoders
29  * for various outputs and so on).
30  *
31  * The component helper also doesn't solve runtime dependencies, e.g. for system
32  * suspend and resume operations. See also :ref:`device links<device_link>`.
33  *
34  * Components are registered using component_add() and unregistered with
35  * component_del(), usually from the driver's probe and disconnect functions.
36  *
37  * Aggregate drivers first assemble a component match list of what they need
38  * using component_match_add(). This is then registered as an aggregate driver
39  * using component_master_add_with_match(), and unregistered using
40  * component_master_del().
41  */
42 
43 struct component;
44 
45 struct component_match_array {
46 	void *data;
47 	int (*compare)(struct device *, void *);
48 	int (*compare_typed)(struct device *, int, void *);
49 	void (*release)(struct device *, void *);
50 	struct component *component;
51 	bool duplicate;
52 };
53 
54 struct component_match {
55 	size_t alloc;
56 	size_t num;
57 	struct component_match_array *compare;
58 };
59 
60 struct master {
61 	struct list_head node;
62 	bool bound;
63 
64 	const struct component_master_ops *ops;
65 	struct device *parent;
66 	struct component_match *match;
67 };
68 
69 struct component {
70 	struct list_head node;
71 	struct master *master;
72 	bool bound;
73 
74 	const struct component_ops *ops;
75 	int subcomponent;
76 	struct device *dev;
77 };
78 
79 static DEFINE_MUTEX(component_mutex);
80 static LIST_HEAD(component_list);
81 static LIST_HEAD(masters);
82 
83 #ifdef CONFIG_DEBUG_FS
84 
85 static struct dentry *component_debugfs_dir;
86 
87 static int component_devices_show(struct seq_file *s, void *data)
88 {
89 	struct master *m = s->private;
90 	struct component_match *match = m->match;
91 	size_t i;
92 
93 	mutex_lock(&component_mutex);
94 	seq_printf(s, "%-40s %20s\n", "master name", "status");
95 	seq_puts(s, "-------------------------------------------------------------\n");
96 	seq_printf(s, "%-40s %20s\n\n",
97 		   dev_name(m->parent), m->bound ? "bound" : "not bound");
98 
99 	seq_printf(s, "%-40s %20s\n", "device name", "status");
100 	seq_puts(s, "-------------------------------------------------------------\n");
101 	for (i = 0; i < match->num; i++) {
102 		struct component *component = match->compare[i].component;
103 
104 		seq_printf(s, "%-40s %20s\n",
105 			   component ? dev_name(component->dev) : "(unknown)",
106 			   component ? (component->bound ? "bound" : "not bound") : "not registered");
107 	}
108 	mutex_unlock(&component_mutex);
109 
110 	return 0;
111 }
112 
113 DEFINE_SHOW_ATTRIBUTE(component_devices);
114 
115 static int __init component_debug_init(void)
116 {
117 	component_debugfs_dir = debugfs_create_dir("device_component", NULL);
118 
119 	return 0;
120 }
121 
122 core_initcall(component_debug_init);
123 
124 static void component_master_debugfs_add(struct master *m)
125 {
126 	debugfs_create_file(dev_name(m->parent), 0444, component_debugfs_dir, m,
127 			    &component_devices_fops);
128 }
129 
130 static void component_master_debugfs_del(struct master *m)
131 {
132 	debugfs_remove(debugfs_lookup(dev_name(m->parent), component_debugfs_dir));
133 }
134 
135 #else
136 
137 static void component_master_debugfs_add(struct master *m)
138 { }
139 
140 static void component_master_debugfs_del(struct master *m)
141 { }
142 
143 #endif
144 
145 static struct master *__master_find(struct device *parent,
146 	const struct component_master_ops *ops)
147 {
148 	struct master *m;
149 
150 	list_for_each_entry(m, &masters, node)
151 		if (m->parent == parent && (!ops || m->ops == ops))
152 			return m;
153 
154 	return NULL;
155 }
156 
157 static struct component *find_component(struct master *master,
158 	struct component_match_array *mc)
159 {
160 	struct component *c;
161 
162 	list_for_each_entry(c, &component_list, node) {
163 		if (c->master && c->master != master)
164 			continue;
165 
166 		if (mc->compare && mc->compare(c->dev, mc->data))
167 			return c;
168 
169 		if (mc->compare_typed &&
170 		    mc->compare_typed(c->dev, c->subcomponent, mc->data))
171 			return c;
172 	}
173 
174 	return NULL;
175 }
176 
177 static int find_components(struct master *master)
178 {
179 	struct component_match *match = master->match;
180 	size_t i;
181 	int ret = 0;
182 
183 	/*
184 	 * Scan the array of match functions and attach
185 	 * any components which are found to this master.
186 	 */
187 	for (i = 0; i < match->num; i++) {
188 		struct component_match_array *mc = &match->compare[i];
189 		struct component *c;
190 
191 		dev_dbg(master->parent, "Looking for component %zu\n", i);
192 
193 		if (match->compare[i].component)
194 			continue;
195 
196 		c = find_component(master, mc);
197 		if (!c) {
198 			ret = -ENXIO;
199 			break;
200 		}
201 
202 		dev_dbg(master->parent, "found component %s, duplicate %u\n", dev_name(c->dev), !!c->master);
203 
204 		/* Attach this component to the master */
205 		match->compare[i].duplicate = !!c->master;
206 		match->compare[i].component = c;
207 		c->master = master;
208 	}
209 	return ret;
210 }
211 
212 /* Detach component from associated master */
213 static void remove_component(struct master *master, struct component *c)
214 {
215 	size_t i;
216 
217 	/* Detach the component from this master. */
218 	for (i = 0; i < master->match->num; i++)
219 		if (master->match->compare[i].component == c)
220 			master->match->compare[i].component = NULL;
221 }
222 
223 /*
224  * Try to bring up a master.  If component is NULL, we're interested in
225  * this master, otherwise it's a component which must be present to try
226  * and bring up the master.
227  *
228  * Returns 1 for successful bringup, 0 if not ready, or -ve errno.
229  */
230 static int try_to_bring_up_master(struct master *master,
231 	struct component *component)
232 {
233 	int ret;
234 
235 	dev_dbg(master->parent, "trying to bring up master\n");
236 
237 	if (find_components(master)) {
238 		dev_dbg(master->parent, "master has incomplete components\n");
239 		return 0;
240 	}
241 
242 	if (component && component->master != master) {
243 		dev_dbg(master->parent, "master is not for this component (%s)\n",
244 			dev_name(component->dev));
245 		return 0;
246 	}
247 
248 	if (!devres_open_group(master->parent, master, GFP_KERNEL))
249 		return -ENOMEM;
250 
251 	/* Found all components */
252 	ret = master->ops->bind(master->parent);
253 	if (ret < 0) {
254 		devres_release_group(master->parent, NULL);
255 		if (ret != -EPROBE_DEFER)
256 			dev_info(master->parent, "master bind failed: %d\n", ret);
257 		return ret;
258 	}
259 
260 	devres_close_group(master->parent, NULL);
261 	master->bound = true;
262 	return 1;
263 }
264 
265 static int try_to_bring_up_masters(struct component *component)
266 {
267 	struct master *m;
268 	int ret = 0;
269 
270 	list_for_each_entry(m, &masters, node) {
271 		if (!m->bound) {
272 			ret = try_to_bring_up_master(m, component);
273 			if (ret != 0)
274 				break;
275 		}
276 	}
277 
278 	return ret;
279 }
280 
281 static void take_down_master(struct master *master)
282 {
283 	if (master->bound) {
284 		master->ops->unbind(master->parent);
285 		devres_release_group(master->parent, master);
286 		master->bound = false;
287 	}
288 }
289 
290 static void devm_component_match_release(struct device *parent, void *res)
291 {
292 	struct component_match *match = res;
293 	unsigned int i;
294 
295 	for (i = 0; i < match->num; i++) {
296 		struct component_match_array *mc = &match->compare[i];
297 
298 		if (mc->release)
299 			mc->release(parent, mc->data);
300 	}
301 
302 	kfree(match->compare);
303 }
304 
305 static int component_match_realloc(struct component_match *match, size_t num)
306 {
307 	struct component_match_array *new;
308 
309 	if (match->alloc == num)
310 		return 0;
311 
312 	new = kmalloc_array(num, sizeof(*new), GFP_KERNEL);
313 	if (!new)
314 		return -ENOMEM;
315 
316 	if (match->compare) {
317 		memcpy(new, match->compare, sizeof(*new) *
318 					    min(match->num, num));
319 		kfree(match->compare);
320 	}
321 	match->compare = new;
322 	match->alloc = num;
323 
324 	return 0;
325 }
326 
327 static void __component_match_add(struct device *master,
328 	struct component_match **matchptr,
329 	void (*release)(struct device *, void *),
330 	int (*compare)(struct device *, void *),
331 	int (*compare_typed)(struct device *, int, void *),
332 	void *compare_data)
333 {
334 	struct component_match *match = *matchptr;
335 
336 	if (IS_ERR(match))
337 		return;
338 
339 	if (!match) {
340 		match = devres_alloc(devm_component_match_release,
341 				     sizeof(*match), GFP_KERNEL);
342 		if (!match) {
343 			*matchptr = ERR_PTR(-ENOMEM);
344 			return;
345 		}
346 
347 		devres_add(master, match);
348 
349 		*matchptr = match;
350 	}
351 
352 	if (match->num == match->alloc) {
353 		size_t new_size = match->alloc + 16;
354 		int ret;
355 
356 		ret = component_match_realloc(match, new_size);
357 		if (ret) {
358 			*matchptr = ERR_PTR(ret);
359 			return;
360 		}
361 	}
362 
363 	match->compare[match->num].compare = compare;
364 	match->compare[match->num].compare_typed = compare_typed;
365 	match->compare[match->num].release = release;
366 	match->compare[match->num].data = compare_data;
367 	match->compare[match->num].component = NULL;
368 	match->num++;
369 }
370 
371 /**
372  * component_match_add_release - add a component match entry with release callback
373  * @master: device with the aggregate driver
374  * @matchptr: pointer to the list of component matches
375  * @release: release function for @compare_data
376  * @compare: compare function to match against all components
377  * @compare_data: opaque pointer passed to the @compare function
378  *
379  * Adds a new component match to the list stored in @matchptr, which the @master
380  * aggregate driver needs to function. The list of component matches pointed to
381  * by @matchptr must be initialized to NULL before adding the first match. This
382  * only matches against components added with component_add().
383  *
384  * The allocated match list in @matchptr is automatically released using devm
385  * actions, where upon @release will be called to free any references held by
386  * @compare_data, e.g. when @compare_data is a &device_node that must be
387  * released with of_node_put().
388  *
389  * See also component_match_add() and component_match_add_typed().
390  */
391 void component_match_add_release(struct device *master,
392 	struct component_match **matchptr,
393 	void (*release)(struct device *, void *),
394 	int (*compare)(struct device *, void *), void *compare_data)
395 {
396 	__component_match_add(master, matchptr, release, compare, NULL,
397 			      compare_data);
398 }
399 EXPORT_SYMBOL(component_match_add_release);
400 
401 /**
402  * component_match_add_typed - add a component match entry for a typed component
403  * @master: device with the aggregate driver
404  * @matchptr: pointer to the list of component matches
405  * @compare_typed: compare function to match against all typed components
406  * @compare_data: opaque pointer passed to the @compare function
407  *
408  * Adds a new component match to the list stored in @matchptr, which the @master
409  * aggregate driver needs to function. The list of component matches pointed to
410  * by @matchptr must be initialized to NULL before adding the first match. This
411  * only matches against components added with component_add_typed().
412  *
413  * The allocated match list in @matchptr is automatically released using devm
414  * actions.
415  *
416  * See also component_match_add_release() and component_match_add_typed().
417  */
418 void component_match_add_typed(struct device *master,
419 	struct component_match **matchptr,
420 	int (*compare_typed)(struct device *, int, void *), void *compare_data)
421 {
422 	__component_match_add(master, matchptr, NULL, NULL, compare_typed,
423 			      compare_data);
424 }
425 EXPORT_SYMBOL(component_match_add_typed);
426 
427 static void free_master(struct master *master)
428 {
429 	struct component_match *match = master->match;
430 	int i;
431 
432 	component_master_debugfs_del(master);
433 	list_del(&master->node);
434 
435 	if (match) {
436 		for (i = 0; i < match->num; i++) {
437 			struct component *c = match->compare[i].component;
438 			if (c)
439 				c->master = NULL;
440 		}
441 	}
442 
443 	kfree(master);
444 }
445 
446 /**
447  * component_master_add_with_match - register an aggregate driver
448  * @parent: parent device of the aggregate driver
449  * @ops: callbacks for the aggregate driver
450  * @match: component match list for the aggregate driver
451  *
452  * Registers a new aggregate driver consisting of the components added to @match
453  * by calling one of the component_match_add() functions. Once all components in
454  * @match are available, it will be assembled by calling
455  * &component_master_ops.bind from @ops. Must be unregistered by calling
456  * component_master_del().
457  */
458 int component_master_add_with_match(struct device *parent,
459 	const struct component_master_ops *ops,
460 	struct component_match *match)
461 {
462 	struct master *master;
463 	int ret;
464 
465 	/* Reallocate the match array for its true size */
466 	ret = component_match_realloc(match, match->num);
467 	if (ret)
468 		return ret;
469 
470 	master = kzalloc(sizeof(*master), GFP_KERNEL);
471 	if (!master)
472 		return -ENOMEM;
473 
474 	master->parent = parent;
475 	master->ops = ops;
476 	master->match = match;
477 
478 	component_master_debugfs_add(master);
479 	/* Add to the list of available masters. */
480 	mutex_lock(&component_mutex);
481 	list_add(&master->node, &masters);
482 
483 	ret = try_to_bring_up_master(master, NULL);
484 
485 	if (ret < 0)
486 		free_master(master);
487 
488 	mutex_unlock(&component_mutex);
489 
490 	return ret < 0 ? ret : 0;
491 }
492 EXPORT_SYMBOL_GPL(component_master_add_with_match);
493 
494 /**
495  * component_master_del - unregister an aggregate driver
496  * @parent: parent device of the aggregate driver
497  * @ops: callbacks for the aggregate driver
498  *
499  * Unregisters an aggregate driver registered with
500  * component_master_add_with_match(). If necessary the aggregate driver is first
501  * disassembled by calling &component_master_ops.unbind from @ops.
502  */
503 void component_master_del(struct device *parent,
504 	const struct component_master_ops *ops)
505 {
506 	struct master *master;
507 
508 	mutex_lock(&component_mutex);
509 	master = __master_find(parent, ops);
510 	if (master) {
511 		take_down_master(master);
512 		free_master(master);
513 	}
514 	mutex_unlock(&component_mutex);
515 }
516 EXPORT_SYMBOL_GPL(component_master_del);
517 
518 static void component_unbind(struct component *component,
519 	struct master *master, void *data)
520 {
521 	WARN_ON(!component->bound);
522 
523 	if (component->ops && component->ops->unbind)
524 		component->ops->unbind(component->dev, master->parent, data);
525 	component->bound = false;
526 
527 	/* Release all resources claimed in the binding of this component */
528 	devres_release_group(component->dev, component);
529 }
530 
531 /**
532  * component_unbind_all - unbind all components of an aggregate driver
533  * @parent: parent device of the aggregate driver
534  * @data: opaque pointer, passed to all components
535  *
536  * Unbinds all components of the aggregate device by passing @data to their
537  * &component_ops.unbind functions. Should be called from
538  * &component_master_ops.unbind.
539  */
540 void component_unbind_all(struct device *parent, void *data)
541 {
542 	struct master *master;
543 	struct component *c;
544 	size_t i;
545 
546 	WARN_ON(!mutex_is_locked(&component_mutex));
547 
548 	master = __master_find(parent, NULL);
549 	if (!master)
550 		return;
551 
552 	/* Unbind components in reverse order */
553 	for (i = master->match->num; i--; )
554 		if (!master->match->compare[i].duplicate) {
555 			c = master->match->compare[i].component;
556 			component_unbind(c, master, data);
557 		}
558 }
559 EXPORT_SYMBOL_GPL(component_unbind_all);
560 
561 static int component_bind(struct component *component, struct master *master,
562 	void *data)
563 {
564 	int ret;
565 
566 	/*
567 	 * Each component initialises inside its own devres group.
568 	 * This allows us to roll-back a failed component without
569 	 * affecting anything else.
570 	 */
571 	if (!devres_open_group(master->parent, NULL, GFP_KERNEL))
572 		return -ENOMEM;
573 
574 	/*
575 	 * Also open a group for the device itself: this allows us
576 	 * to release the resources claimed against the sub-device
577 	 * at the appropriate moment.
578 	 */
579 	if (!devres_open_group(component->dev, component, GFP_KERNEL)) {
580 		devres_release_group(master->parent, NULL);
581 		return -ENOMEM;
582 	}
583 
584 	dev_dbg(master->parent, "binding %s (ops %ps)\n",
585 		dev_name(component->dev), component->ops);
586 
587 	ret = component->ops->bind(component->dev, master->parent, data);
588 	if (!ret) {
589 		component->bound = true;
590 
591 		/*
592 		 * Close the component device's group so that resources
593 		 * allocated in the binding are encapsulated for removal
594 		 * at unbind.  Remove the group on the DRM device as we
595 		 * can clean those resources up independently.
596 		 */
597 		devres_close_group(component->dev, NULL);
598 		devres_remove_group(master->parent, NULL);
599 
600 		dev_info(master->parent, "bound %s (ops %ps)\n",
601 			 dev_name(component->dev), component->ops);
602 	} else {
603 		devres_release_group(component->dev, NULL);
604 		devres_release_group(master->parent, NULL);
605 
606 		if (ret != -EPROBE_DEFER)
607 			dev_err(master->parent, "failed to bind %s (ops %ps): %d\n",
608 				dev_name(component->dev), component->ops, ret);
609 	}
610 
611 	return ret;
612 }
613 
614 /**
615  * component_bind_all - bind all components of an aggregate driver
616  * @parent: parent device of the aggregate driver
617  * @data: opaque pointer, passed to all components
618  *
619  * Binds all components of the aggregate @dev by passing @data to their
620  * &component_ops.bind functions. Should be called from
621  * &component_master_ops.bind.
622  */
623 int component_bind_all(struct device *parent, void *data)
624 {
625 	struct master *master;
626 	struct component *c;
627 	size_t i;
628 	int ret = 0;
629 
630 	WARN_ON(!mutex_is_locked(&component_mutex));
631 
632 	master = __master_find(parent, NULL);
633 	if (!master)
634 		return -EINVAL;
635 
636 	/* Bind components in match order */
637 	for (i = 0; i < master->match->num; i++)
638 		if (!master->match->compare[i].duplicate) {
639 			c = master->match->compare[i].component;
640 			ret = component_bind(c, master, data);
641 			if (ret)
642 				break;
643 		}
644 
645 	if (ret != 0) {
646 		for (; i > 0; i--)
647 			if (!master->match->compare[i - 1].duplicate) {
648 				c = master->match->compare[i - 1].component;
649 				component_unbind(c, master, data);
650 			}
651 	}
652 
653 	return ret;
654 }
655 EXPORT_SYMBOL_GPL(component_bind_all);
656 
657 static int __component_add(struct device *dev, const struct component_ops *ops,
658 	int subcomponent)
659 {
660 	struct component *component;
661 	int ret;
662 
663 	component = kzalloc(sizeof(*component), GFP_KERNEL);
664 	if (!component)
665 		return -ENOMEM;
666 
667 	component->ops = ops;
668 	component->dev = dev;
669 	component->subcomponent = subcomponent;
670 
671 	dev_dbg(dev, "adding component (ops %ps)\n", ops);
672 
673 	mutex_lock(&component_mutex);
674 	list_add_tail(&component->node, &component_list);
675 
676 	ret = try_to_bring_up_masters(component);
677 	if (ret < 0) {
678 		if (component->master)
679 			remove_component(component->master, component);
680 		list_del(&component->node);
681 
682 		kfree(component);
683 	}
684 	mutex_unlock(&component_mutex);
685 
686 	return ret < 0 ? ret : 0;
687 }
688 
689 /**
690  * component_add_typed - register a component
691  * @dev: component device
692  * @ops: component callbacks
693  * @subcomponent: nonzero identifier for subcomponents
694  *
695  * Register a new component for @dev. Functions in @ops will be call when the
696  * aggregate driver is ready to bind the overall driver by calling
697  * component_bind_all(). See also &struct component_ops.
698  *
699  * @subcomponent must be nonzero and is used to differentiate between multiple
700  * components registerd on the same device @dev. These components are match
701  * using component_match_add_typed().
702  *
703  * The component needs to be unregistered at driver unload/disconnect by
704  * calling component_del().
705  *
706  * See also component_add().
707  */
708 int component_add_typed(struct device *dev, const struct component_ops *ops,
709 	int subcomponent)
710 {
711 	if (WARN_ON(subcomponent == 0))
712 		return -EINVAL;
713 
714 	return __component_add(dev, ops, subcomponent);
715 }
716 EXPORT_SYMBOL_GPL(component_add_typed);
717 
718 /**
719  * component_add - register a component
720  * @dev: component device
721  * @ops: component callbacks
722  *
723  * Register a new component for @dev. Functions in @ops will be called when the
724  * aggregate driver is ready to bind the overall driver by calling
725  * component_bind_all(). See also &struct component_ops.
726  *
727  * The component needs to be unregistered at driver unload/disconnect by
728  * calling component_del().
729  *
730  * See also component_add_typed() for a variant that allows multipled different
731  * components on the same device.
732  */
733 int component_add(struct device *dev, const struct component_ops *ops)
734 {
735 	return __component_add(dev, ops, 0);
736 }
737 EXPORT_SYMBOL_GPL(component_add);
738 
739 /**
740  * component_del - unregister a component
741  * @dev: component device
742  * @ops: component callbacks
743  *
744  * Unregister a component added with component_add(). If the component is bound
745  * into an aggregate driver, this will force the entire aggregate driver, including
746  * all its components, to be unbound.
747  */
748 void component_del(struct device *dev, const struct component_ops *ops)
749 {
750 	struct component *c, *component = NULL;
751 
752 	mutex_lock(&component_mutex);
753 	list_for_each_entry(c, &component_list, node)
754 		if (c->dev == dev && c->ops == ops) {
755 			list_del(&c->node);
756 			component = c;
757 			break;
758 		}
759 
760 	if (component && component->master) {
761 		take_down_master(component->master);
762 		remove_component(component->master, component);
763 	}
764 
765 	mutex_unlock(&component_mutex);
766 
767 	WARN_ON(!component);
768 	kfree(component);
769 }
770 EXPORT_SYMBOL_GPL(component_del);
771