1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Componentized device handling. 4 * 5 * This is work in progress. We gather up the component devices into a list, 6 * and bind them when instructed. At the moment, we're specific to the DRM 7 * subsystem, and only handles one master device, but this doesn't have to be 8 * the case. 9 */ 10 #include <linux/component.h> 11 #include <linux/device.h> 12 #include <linux/kref.h> 13 #include <linux/list.h> 14 #include <linux/mutex.h> 15 #include <linux/slab.h> 16 #include <linux/debugfs.h> 17 18 /** 19 * DOC: overview 20 * 21 * The component helper allows drivers to collect a pile of sub-devices, 22 * including their bound drivers, into an aggregate driver. Various subsystems 23 * already provide functions to get hold of such components, e.g. 24 * of_clk_get_by_name(). The component helper can be used when such a 25 * subsystem-specific way to find a device is not available: The component 26 * helper fills the niche of aggregate drivers for specific hardware, where 27 * further standardization into a subsystem would not be practical. The common 28 * example is when a logical device (e.g. a DRM display driver) is spread around 29 * the SoC on various components (scanout engines, blending blocks, transcoders 30 * for various outputs and so on). 31 * 32 * The component helper also doesn't solve runtime dependencies, e.g. for system 33 * suspend and resume operations. See also :ref:`device links<device_link>`. 34 * 35 * Components are registered using component_add() and unregistered with 36 * component_del(), usually from the driver's probe and disconnect functions. 37 * 38 * Aggregate drivers first assemble a component match list of what they need 39 * using component_match_add(). This is then registered as an aggregate driver 40 * using component_master_add_with_match(), and unregistered using 41 * component_master_del(). 42 */ 43 44 struct component; 45 46 struct component_match_array { 47 void *data; 48 int (*compare)(struct device *, void *); 49 int (*compare_typed)(struct device *, int, void *); 50 void (*release)(struct device *, void *); 51 struct component *component; 52 bool duplicate; 53 }; 54 55 struct component_match { 56 size_t alloc; 57 size_t num; 58 struct component_match_array *compare; 59 }; 60 61 struct master { 62 struct list_head node; 63 bool bound; 64 65 const struct component_master_ops *ops; 66 struct device *dev; 67 struct component_match *match; 68 struct dentry *dentry; 69 }; 70 71 struct component { 72 struct list_head node; 73 struct master *master; 74 bool bound; 75 76 const struct component_ops *ops; 77 int subcomponent; 78 struct device *dev; 79 }; 80 81 static DEFINE_MUTEX(component_mutex); 82 static LIST_HEAD(component_list); 83 static LIST_HEAD(masters); 84 85 #ifdef CONFIG_DEBUG_FS 86 87 static struct dentry *component_debugfs_dir; 88 89 static int component_devices_show(struct seq_file *s, void *data) 90 { 91 struct master *m = s->private; 92 struct component_match *match = m->match; 93 size_t i; 94 95 mutex_lock(&component_mutex); 96 seq_printf(s, "%-40s %20s\n", "master name", "status"); 97 seq_puts(s, "-------------------------------------------------------------\n"); 98 seq_printf(s, "%-40s %20s\n\n", 99 dev_name(m->dev), m->bound ? "bound" : "not bound"); 100 101 seq_printf(s, "%-40s %20s\n", "device name", "status"); 102 seq_puts(s, "-------------------------------------------------------------\n"); 103 for (i = 0; i < match->num; i++) { 104 struct component *component = match->compare[i].component; 105 106 seq_printf(s, "%-40s %20s\n", 107 component ? dev_name(component->dev) : "(unknown)", 108 component ? (component->bound ? "bound" : "not bound") : "not registered"); 109 } 110 mutex_unlock(&component_mutex); 111 112 return 0; 113 } 114 115 DEFINE_SHOW_ATTRIBUTE(component_devices); 116 117 static int __init component_debug_init(void) 118 { 119 component_debugfs_dir = debugfs_create_dir("device_component", NULL); 120 121 return 0; 122 } 123 124 core_initcall(component_debug_init); 125 126 static void component_master_debugfs_add(struct master *m) 127 { 128 m->dentry = debugfs_create_file(dev_name(m->dev), 0444, 129 component_debugfs_dir, 130 m, &component_devices_fops); 131 } 132 133 static void component_master_debugfs_del(struct master *m) 134 { 135 debugfs_remove(m->dentry); 136 m->dentry = NULL; 137 } 138 139 #else 140 141 static void component_master_debugfs_add(struct master *m) 142 { } 143 144 static void component_master_debugfs_del(struct master *m) 145 { } 146 147 #endif 148 149 static struct master *__master_find(struct device *dev, 150 const struct component_master_ops *ops) 151 { 152 struct master *m; 153 154 list_for_each_entry(m, &masters, node) 155 if (m->dev == dev && (!ops || m->ops == ops)) 156 return m; 157 158 return NULL; 159 } 160 161 static struct component *find_component(struct master *master, 162 struct component_match_array *mc) 163 { 164 struct component *c; 165 166 list_for_each_entry(c, &component_list, node) { 167 if (c->master && c->master != master) 168 continue; 169 170 if (mc->compare && mc->compare(c->dev, mc->data)) 171 return c; 172 173 if (mc->compare_typed && 174 mc->compare_typed(c->dev, c->subcomponent, mc->data)) 175 return c; 176 } 177 178 return NULL; 179 } 180 181 static int find_components(struct master *master) 182 { 183 struct component_match *match = master->match; 184 size_t i; 185 int ret = 0; 186 187 /* 188 * Scan the array of match functions and attach 189 * any components which are found to this master. 190 */ 191 for (i = 0; i < match->num; i++) { 192 struct component_match_array *mc = &match->compare[i]; 193 struct component *c; 194 195 dev_dbg(master->dev, "Looking for component %zu\n", i); 196 197 if (match->compare[i].component) 198 continue; 199 200 c = find_component(master, mc); 201 if (!c) { 202 ret = -ENXIO; 203 break; 204 } 205 206 dev_dbg(master->dev, "found component %s, duplicate %u\n", dev_name(c->dev), !!c->master); 207 208 /* Attach this component to the master */ 209 match->compare[i].duplicate = !!c->master; 210 match->compare[i].component = c; 211 c->master = master; 212 } 213 return ret; 214 } 215 216 /* Detach component from associated master */ 217 static void remove_component(struct master *master, struct component *c) 218 { 219 size_t i; 220 221 /* Detach the component from this master. */ 222 for (i = 0; i < master->match->num; i++) 223 if (master->match->compare[i].component == c) 224 master->match->compare[i].component = NULL; 225 } 226 227 /* 228 * Try to bring up a master. If component is NULL, we're interested in 229 * this master, otherwise it's a component which must be present to try 230 * and bring up the master. 231 * 232 * Returns 1 for successful bringup, 0 if not ready, or -ve errno. 233 */ 234 static int try_to_bring_up_master(struct master *master, 235 struct component *component) 236 { 237 int ret; 238 239 dev_dbg(master->dev, "trying to bring up master\n"); 240 241 if (find_components(master)) { 242 dev_dbg(master->dev, "master has incomplete components\n"); 243 return 0; 244 } 245 246 if (component && component->master != master) { 247 dev_dbg(master->dev, "master is not for this component (%s)\n", 248 dev_name(component->dev)); 249 return 0; 250 } 251 252 if (!devres_open_group(master->dev, NULL, GFP_KERNEL)) 253 return -ENOMEM; 254 255 /* Found all components */ 256 ret = master->ops->bind(master->dev); 257 if (ret < 0) { 258 devres_release_group(master->dev, NULL); 259 dev_info(master->dev, "master bind failed: %d\n", ret); 260 return ret; 261 } 262 263 master->bound = true; 264 return 1; 265 } 266 267 static int try_to_bring_up_masters(struct component *component) 268 { 269 struct master *m; 270 int ret = 0; 271 272 list_for_each_entry(m, &masters, node) { 273 if (!m->bound) { 274 ret = try_to_bring_up_master(m, component); 275 if (ret != 0) 276 break; 277 } 278 } 279 280 return ret; 281 } 282 283 static void take_down_master(struct master *master) 284 { 285 if (master->bound) { 286 master->ops->unbind(master->dev); 287 devres_release_group(master->dev, NULL); 288 master->bound = false; 289 } 290 } 291 292 static void component_match_release(struct device *master, 293 struct component_match *match) 294 { 295 unsigned int i; 296 297 for (i = 0; i < match->num; i++) { 298 struct component_match_array *mc = &match->compare[i]; 299 300 if (mc->release) 301 mc->release(master, mc->data); 302 } 303 304 kfree(match->compare); 305 } 306 307 static void devm_component_match_release(struct device *dev, void *res) 308 { 309 component_match_release(dev, res); 310 } 311 312 static int component_match_realloc(struct device *dev, 313 struct component_match *match, size_t num) 314 { 315 struct component_match_array *new; 316 317 if (match->alloc == num) 318 return 0; 319 320 new = kmalloc_array(num, sizeof(*new), GFP_KERNEL); 321 if (!new) 322 return -ENOMEM; 323 324 if (match->compare) { 325 memcpy(new, match->compare, sizeof(*new) * 326 min(match->num, num)); 327 kfree(match->compare); 328 } 329 match->compare = new; 330 match->alloc = num; 331 332 return 0; 333 } 334 335 static void __component_match_add(struct device *master, 336 struct component_match **matchptr, 337 void (*release)(struct device *, void *), 338 int (*compare)(struct device *, void *), 339 int (*compare_typed)(struct device *, int, void *), 340 void *compare_data) 341 { 342 struct component_match *match = *matchptr; 343 344 if (IS_ERR(match)) 345 return; 346 347 if (!match) { 348 match = devres_alloc(devm_component_match_release, 349 sizeof(*match), GFP_KERNEL); 350 if (!match) { 351 *matchptr = ERR_PTR(-ENOMEM); 352 return; 353 } 354 355 devres_add(master, match); 356 357 *matchptr = match; 358 } 359 360 if (match->num == match->alloc) { 361 size_t new_size = match->alloc + 16; 362 int ret; 363 364 ret = component_match_realloc(master, match, new_size); 365 if (ret) { 366 *matchptr = ERR_PTR(ret); 367 return; 368 } 369 } 370 371 match->compare[match->num].compare = compare; 372 match->compare[match->num].compare_typed = compare_typed; 373 match->compare[match->num].release = release; 374 match->compare[match->num].data = compare_data; 375 match->compare[match->num].component = NULL; 376 match->num++; 377 } 378 379 /** 380 * component_match_add_release - add a component match entry with release callback 381 * @master: device with the aggregate driver 382 * @matchptr: pointer to the list of component matches 383 * @release: release function for @compare_data 384 * @compare: compare function to match against all components 385 * @compare_data: opaque pointer passed to the @compare function 386 * 387 * Adds a new component match to the list stored in @matchptr, which the @master 388 * aggregate driver needs to function. The list of component matches pointed to 389 * by @matchptr must be initialized to NULL before adding the first match. This 390 * only matches against components added with component_add(). 391 * 392 * The allocated match list in @matchptr is automatically released using devm 393 * actions, where upon @release will be called to free any references held by 394 * @compare_data, e.g. when @compare_data is a &device_node that must be 395 * released with of_node_put(). 396 * 397 * See also component_match_add() and component_match_add_typed(). 398 */ 399 void component_match_add_release(struct device *master, 400 struct component_match **matchptr, 401 void (*release)(struct device *, void *), 402 int (*compare)(struct device *, void *), void *compare_data) 403 { 404 __component_match_add(master, matchptr, release, compare, NULL, 405 compare_data); 406 } 407 EXPORT_SYMBOL(component_match_add_release); 408 409 /** 410 * component_match_add_typed - add a component match entry for a typed component 411 * @master: device with the aggregate driver 412 * @matchptr: pointer to the list of component matches 413 * @compare_typed: compare function to match against all typed components 414 * @compare_data: opaque pointer passed to the @compare function 415 * 416 * Adds a new component match to the list stored in @matchptr, which the @master 417 * aggregate driver needs to function. The list of component matches pointed to 418 * by @matchptr must be initialized to NULL before adding the first match. This 419 * only matches against components added with component_add_typed(). 420 * 421 * The allocated match list in @matchptr is automatically released using devm 422 * actions. 423 * 424 * See also component_match_add_release() and component_match_add_typed(). 425 */ 426 void component_match_add_typed(struct device *master, 427 struct component_match **matchptr, 428 int (*compare_typed)(struct device *, int, void *), void *compare_data) 429 { 430 __component_match_add(master, matchptr, NULL, NULL, compare_typed, 431 compare_data); 432 } 433 EXPORT_SYMBOL(component_match_add_typed); 434 435 static void free_master(struct master *master) 436 { 437 struct component_match *match = master->match; 438 int i; 439 440 component_master_debugfs_del(master); 441 list_del(&master->node); 442 443 if (match) { 444 for (i = 0; i < match->num; i++) { 445 struct component *c = match->compare[i].component; 446 if (c) 447 c->master = NULL; 448 } 449 } 450 451 kfree(master); 452 } 453 454 /** 455 * component_master_add_with_match - register an aggregate driver 456 * @dev: device with the aggregate driver 457 * @ops: callbacks for the aggregate driver 458 * @match: component match list for the aggregate driver 459 * 460 * Registers a new aggregate driver consisting of the components added to @match 461 * by calling one of the component_match_add() functions. Once all components in 462 * @match are available, it will be assembled by calling 463 * &component_master_ops.bind from @ops. Must be unregistered by calling 464 * component_master_del(). 465 */ 466 int component_master_add_with_match(struct device *dev, 467 const struct component_master_ops *ops, 468 struct component_match *match) 469 { 470 struct master *master; 471 int ret; 472 473 /* Reallocate the match array for its true size */ 474 ret = component_match_realloc(dev, match, match->num); 475 if (ret) 476 return ret; 477 478 master = kzalloc(sizeof(*master), GFP_KERNEL); 479 if (!master) 480 return -ENOMEM; 481 482 master->dev = dev; 483 master->ops = ops; 484 master->match = match; 485 486 component_master_debugfs_add(master); 487 /* Add to the list of available masters. */ 488 mutex_lock(&component_mutex); 489 list_add(&master->node, &masters); 490 491 ret = try_to_bring_up_master(master, NULL); 492 493 if (ret < 0) 494 free_master(master); 495 496 mutex_unlock(&component_mutex); 497 498 return ret < 0 ? ret : 0; 499 } 500 EXPORT_SYMBOL_GPL(component_master_add_with_match); 501 502 /** 503 * component_master_del - unregister an aggregate driver 504 * @dev: device with the aggregate driver 505 * @ops: callbacks for the aggregate driver 506 * 507 * Unregisters an aggregate driver registered with 508 * component_master_add_with_match(). If necessary the aggregate driver is first 509 * disassembled by calling &component_master_ops.unbind from @ops. 510 */ 511 void component_master_del(struct device *dev, 512 const struct component_master_ops *ops) 513 { 514 struct master *master; 515 516 mutex_lock(&component_mutex); 517 master = __master_find(dev, ops); 518 if (master) { 519 take_down_master(master); 520 free_master(master); 521 } 522 mutex_unlock(&component_mutex); 523 } 524 EXPORT_SYMBOL_GPL(component_master_del); 525 526 static void component_unbind(struct component *component, 527 struct master *master, void *data) 528 { 529 WARN_ON(!component->bound); 530 531 if (component->ops && component->ops->unbind) 532 component->ops->unbind(component->dev, master->dev, data); 533 component->bound = false; 534 535 /* Release all resources claimed in the binding of this component */ 536 devres_release_group(component->dev, component); 537 } 538 539 /** 540 * component_unbind_all - unbind all components of an aggregate driver 541 * @master_dev: device with the aggregate driver 542 * @data: opaque pointer, passed to all components 543 * 544 * Unbinds all components of the aggregate @dev by passing @data to their 545 * &component_ops.unbind functions. Should be called from 546 * &component_master_ops.unbind. 547 */ 548 void component_unbind_all(struct device *master_dev, void *data) 549 { 550 struct master *master; 551 struct component *c; 552 size_t i; 553 554 WARN_ON(!mutex_is_locked(&component_mutex)); 555 556 master = __master_find(master_dev, NULL); 557 if (!master) 558 return; 559 560 /* Unbind components in reverse order */ 561 for (i = master->match->num; i--; ) 562 if (!master->match->compare[i].duplicate) { 563 c = master->match->compare[i].component; 564 component_unbind(c, master, data); 565 } 566 } 567 EXPORT_SYMBOL_GPL(component_unbind_all); 568 569 static int component_bind(struct component *component, struct master *master, 570 void *data) 571 { 572 int ret; 573 574 /* 575 * Each component initialises inside its own devres group. 576 * This allows us to roll-back a failed component without 577 * affecting anything else. 578 */ 579 if (!devres_open_group(master->dev, NULL, GFP_KERNEL)) 580 return -ENOMEM; 581 582 /* 583 * Also open a group for the device itself: this allows us 584 * to release the resources claimed against the sub-device 585 * at the appropriate moment. 586 */ 587 if (!devres_open_group(component->dev, component, GFP_KERNEL)) { 588 devres_release_group(master->dev, NULL); 589 return -ENOMEM; 590 } 591 592 dev_dbg(master->dev, "binding %s (ops %ps)\n", 593 dev_name(component->dev), component->ops); 594 595 ret = component->ops->bind(component->dev, master->dev, data); 596 if (!ret) { 597 component->bound = true; 598 599 /* 600 * Close the component device's group so that resources 601 * allocated in the binding are encapsulated for removal 602 * at unbind. Remove the group on the DRM device as we 603 * can clean those resources up independently. 604 */ 605 devres_close_group(component->dev, NULL); 606 devres_remove_group(master->dev, NULL); 607 608 dev_info(master->dev, "bound %s (ops %ps)\n", 609 dev_name(component->dev), component->ops); 610 } else { 611 devres_release_group(component->dev, NULL); 612 devres_release_group(master->dev, NULL); 613 614 dev_err(master->dev, "failed to bind %s (ops %ps): %d\n", 615 dev_name(component->dev), component->ops, ret); 616 } 617 618 return ret; 619 } 620 621 /** 622 * component_bind_all - bind all components of an aggregate driver 623 * @master_dev: device with the aggregate driver 624 * @data: opaque pointer, passed to all components 625 * 626 * Binds all components of the aggregate @dev by passing @data to their 627 * &component_ops.bind functions. Should be called from 628 * &component_master_ops.bind. 629 */ 630 int component_bind_all(struct device *master_dev, void *data) 631 { 632 struct master *master; 633 struct component *c; 634 size_t i; 635 int ret = 0; 636 637 WARN_ON(!mutex_is_locked(&component_mutex)); 638 639 master = __master_find(master_dev, NULL); 640 if (!master) 641 return -EINVAL; 642 643 /* Bind components in match order */ 644 for (i = 0; i < master->match->num; i++) 645 if (!master->match->compare[i].duplicate) { 646 c = master->match->compare[i].component; 647 ret = component_bind(c, master, data); 648 if (ret) 649 break; 650 } 651 652 if (ret != 0) { 653 for (; i > 0; i--) 654 if (!master->match->compare[i - 1].duplicate) { 655 c = master->match->compare[i - 1].component; 656 component_unbind(c, master, data); 657 } 658 } 659 660 return ret; 661 } 662 EXPORT_SYMBOL_GPL(component_bind_all); 663 664 static int __component_add(struct device *dev, const struct component_ops *ops, 665 int subcomponent) 666 { 667 struct component *component; 668 int ret; 669 670 component = kzalloc(sizeof(*component), GFP_KERNEL); 671 if (!component) 672 return -ENOMEM; 673 674 component->ops = ops; 675 component->dev = dev; 676 component->subcomponent = subcomponent; 677 678 dev_dbg(dev, "adding component (ops %ps)\n", ops); 679 680 mutex_lock(&component_mutex); 681 list_add_tail(&component->node, &component_list); 682 683 ret = try_to_bring_up_masters(component); 684 if (ret < 0) { 685 if (component->master) 686 remove_component(component->master, component); 687 list_del(&component->node); 688 689 kfree(component); 690 } 691 mutex_unlock(&component_mutex); 692 693 return ret < 0 ? ret : 0; 694 } 695 696 /** 697 * component_add_typed - register a component 698 * @dev: component device 699 * @ops: component callbacks 700 * @subcomponent: nonzero identifier for subcomponents 701 * 702 * Register a new component for @dev. Functions in @ops will be call when the 703 * aggregate driver is ready to bind the overall driver by calling 704 * component_bind_all(). See also &struct component_ops. 705 * 706 * @subcomponent must be nonzero and is used to differentiate between multiple 707 * components registerd on the same device @dev. These components are match 708 * using component_match_add_typed(). 709 * 710 * The component needs to be unregistered at driver unload/disconnect by 711 * calling component_del(). 712 * 713 * See also component_add(). 714 */ 715 int component_add_typed(struct device *dev, const struct component_ops *ops, 716 int subcomponent) 717 { 718 if (WARN_ON(subcomponent == 0)) 719 return -EINVAL; 720 721 return __component_add(dev, ops, subcomponent); 722 } 723 EXPORT_SYMBOL_GPL(component_add_typed); 724 725 /** 726 * component_add - register a component 727 * @dev: component device 728 * @ops: component callbacks 729 * 730 * Register a new component for @dev. Functions in @ops will be called when the 731 * aggregate driver is ready to bind the overall driver by calling 732 * component_bind_all(). See also &struct component_ops. 733 * 734 * The component needs to be unregistered at driver unload/disconnect by 735 * calling component_del(). 736 * 737 * See also component_add_typed() for a variant that allows multipled different 738 * components on the same device. 739 */ 740 int component_add(struct device *dev, const struct component_ops *ops) 741 { 742 return __component_add(dev, ops, 0); 743 } 744 EXPORT_SYMBOL_GPL(component_add); 745 746 /** 747 * component_del - unregister a component 748 * @dev: component device 749 * @ops: component callbacks 750 * 751 * Unregister a component added with component_add(). If the component is bound 752 * into an aggregate driver, this will force the entire aggregate driver, including 753 * all its components, to be unbound. 754 */ 755 void component_del(struct device *dev, const struct component_ops *ops) 756 { 757 struct component *c, *component = NULL; 758 759 mutex_lock(&component_mutex); 760 list_for_each_entry(c, &component_list, node) 761 if (c->dev == dev && c->ops == ops) { 762 list_del(&c->node); 763 component = c; 764 break; 765 } 766 767 if (component && component->master) { 768 take_down_master(component->master); 769 remove_component(component->master, component); 770 } 771 772 mutex_unlock(&component_mutex); 773 774 WARN_ON(!component); 775 kfree(component); 776 } 777 EXPORT_SYMBOL_GPL(component_del); 778