1 /* 2 * cacheinfo support - processor cache information via sysfs 3 * 4 * Based on arch/x86/kernel/cpu/intel_cacheinfo.c 5 * Author: Sudeep Holla <sudeep.holla@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed "as is" WITHOUT ANY WARRANTY of any 12 * kind, whether express or implied; without even the implied warranty 13 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 20 21 #include <linux/acpi.h> 22 #include <linux/bitops.h> 23 #include <linux/cacheinfo.h> 24 #include <linux/compiler.h> 25 #include <linux/cpu.h> 26 #include <linux/device.h> 27 #include <linux/init.h> 28 #include <linux/of.h> 29 #include <linux/sched.h> 30 #include <linux/slab.h> 31 #include <linux/smp.h> 32 #include <linux/sysfs.h> 33 34 /* pointer to per cpu cacheinfo */ 35 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo); 36 #define ci_cacheinfo(cpu) (&per_cpu(ci_cpu_cacheinfo, cpu)) 37 #define cache_leaves(cpu) (ci_cacheinfo(cpu)->num_leaves) 38 #define per_cpu_cacheinfo(cpu) (ci_cacheinfo(cpu)->info_list) 39 40 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu) 41 { 42 return ci_cacheinfo(cpu); 43 } 44 45 #ifdef CONFIG_OF 46 static int cache_setup_of_node(unsigned int cpu) 47 { 48 struct device_node *np; 49 struct cacheinfo *this_leaf; 50 struct device *cpu_dev = get_cpu_device(cpu); 51 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 52 unsigned int index = 0; 53 54 /* skip if of_node is already populated */ 55 if (this_cpu_ci->info_list->of_node) 56 return 0; 57 58 if (!cpu_dev) { 59 pr_err("No cpu device for CPU %d\n", cpu); 60 return -ENODEV; 61 } 62 np = cpu_dev->of_node; 63 if (!np) { 64 pr_err("Failed to find cpu%d device node\n", cpu); 65 return -ENOENT; 66 } 67 68 while (index < cache_leaves(cpu)) { 69 this_leaf = this_cpu_ci->info_list + index; 70 if (this_leaf->level != 1) 71 np = of_find_next_cache_node(np); 72 else 73 np = of_node_get(np);/* cpu node itself */ 74 if (!np) 75 break; 76 this_leaf->of_node = np; 77 index++; 78 } 79 80 if (index != cache_leaves(cpu)) /* not all OF nodes populated */ 81 return -ENOENT; 82 83 return 0; 84 } 85 86 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf, 87 struct cacheinfo *sib_leaf) 88 { 89 return sib_leaf->of_node == this_leaf->of_node; 90 } 91 92 /* OF properties to query for a given cache type */ 93 struct cache_type_info { 94 const char *size_prop; 95 const char *line_size_props[2]; 96 const char *nr_sets_prop; 97 }; 98 99 static const struct cache_type_info cache_type_info[] = { 100 { 101 .size_prop = "cache-size", 102 .line_size_props = { "cache-line-size", 103 "cache-block-size", }, 104 .nr_sets_prop = "cache-sets", 105 }, { 106 .size_prop = "i-cache-size", 107 .line_size_props = { "i-cache-line-size", 108 "i-cache-block-size", }, 109 .nr_sets_prop = "i-cache-sets", 110 }, { 111 .size_prop = "d-cache-size", 112 .line_size_props = { "d-cache-line-size", 113 "d-cache-block-size", }, 114 .nr_sets_prop = "d-cache-sets", 115 }, 116 }; 117 118 static inline int get_cacheinfo_idx(enum cache_type type) 119 { 120 if (type == CACHE_TYPE_UNIFIED) 121 return 0; 122 return type; 123 } 124 125 static void cache_size(struct cacheinfo *this_leaf) 126 { 127 const char *propname; 128 const __be32 *cache_size; 129 int ct_idx; 130 131 ct_idx = get_cacheinfo_idx(this_leaf->type); 132 propname = cache_type_info[ct_idx].size_prop; 133 134 cache_size = of_get_property(this_leaf->of_node, propname, NULL); 135 if (cache_size) 136 this_leaf->size = of_read_number(cache_size, 1); 137 } 138 139 /* not cache_line_size() because that's a macro in include/linux/cache.h */ 140 static void cache_get_line_size(struct cacheinfo *this_leaf) 141 { 142 const __be32 *line_size; 143 int i, lim, ct_idx; 144 145 ct_idx = get_cacheinfo_idx(this_leaf->type); 146 lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props); 147 148 for (i = 0; i < lim; i++) { 149 const char *propname; 150 151 propname = cache_type_info[ct_idx].line_size_props[i]; 152 line_size = of_get_property(this_leaf->of_node, propname, NULL); 153 if (line_size) 154 break; 155 } 156 157 if (line_size) 158 this_leaf->coherency_line_size = of_read_number(line_size, 1); 159 } 160 161 static void cache_nr_sets(struct cacheinfo *this_leaf) 162 { 163 const char *propname; 164 const __be32 *nr_sets; 165 int ct_idx; 166 167 ct_idx = get_cacheinfo_idx(this_leaf->type); 168 propname = cache_type_info[ct_idx].nr_sets_prop; 169 170 nr_sets = of_get_property(this_leaf->of_node, propname, NULL); 171 if (nr_sets) 172 this_leaf->number_of_sets = of_read_number(nr_sets, 1); 173 } 174 175 static void cache_associativity(struct cacheinfo *this_leaf) 176 { 177 unsigned int line_size = this_leaf->coherency_line_size; 178 unsigned int nr_sets = this_leaf->number_of_sets; 179 unsigned int size = this_leaf->size; 180 181 /* 182 * If the cache is fully associative, there is no need to 183 * check the other properties. 184 */ 185 if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0)) 186 this_leaf->ways_of_associativity = (size / nr_sets) / line_size; 187 } 188 189 static bool cache_node_is_unified(struct cacheinfo *this_leaf) 190 { 191 return of_property_read_bool(this_leaf->of_node, "cache-unified"); 192 } 193 194 static void cache_of_override_properties(unsigned int cpu) 195 { 196 int index; 197 struct cacheinfo *this_leaf; 198 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 199 200 for (index = 0; index < cache_leaves(cpu); index++) { 201 this_leaf = this_cpu_ci->info_list + index; 202 /* 203 * init_cache_level must setup the cache level correctly 204 * overriding the architecturally specified levels, so 205 * if type is NONE at this stage, it should be unified 206 */ 207 if (this_leaf->type == CACHE_TYPE_NOCACHE && 208 cache_node_is_unified(this_leaf)) 209 this_leaf->type = CACHE_TYPE_UNIFIED; 210 cache_size(this_leaf); 211 cache_get_line_size(this_leaf); 212 cache_nr_sets(this_leaf); 213 cache_associativity(this_leaf); 214 } 215 } 216 #else 217 static void cache_of_override_properties(unsigned int cpu) { } 218 static inline int cache_setup_of_node(unsigned int cpu) { return 0; } 219 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf, 220 struct cacheinfo *sib_leaf) 221 { 222 /* 223 * For non-DT systems, assume unique level 1 cache, system-wide 224 * shared caches for all other levels. This will be used only if 225 * arch specific code has not populated shared_cpu_map 226 */ 227 return !(this_leaf->level == 1); 228 } 229 #endif 230 231 static int cache_shared_cpu_map_setup(unsigned int cpu) 232 { 233 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 234 struct cacheinfo *this_leaf, *sib_leaf; 235 unsigned int index; 236 int ret = 0; 237 238 if (this_cpu_ci->cpu_map_populated) 239 return 0; 240 241 if (of_have_populated_dt()) 242 ret = cache_setup_of_node(cpu); 243 else if (!acpi_disabled) 244 /* No cache property/hierarchy support yet in ACPI */ 245 ret = -ENOTSUPP; 246 if (ret) 247 return ret; 248 249 for (index = 0; index < cache_leaves(cpu); index++) { 250 unsigned int i; 251 252 this_leaf = this_cpu_ci->info_list + index; 253 /* skip if shared_cpu_map is already populated */ 254 if (!cpumask_empty(&this_leaf->shared_cpu_map)) 255 continue; 256 257 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map); 258 for_each_online_cpu(i) { 259 struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i); 260 261 if (i == cpu || !sib_cpu_ci->info_list) 262 continue;/* skip if itself or no cacheinfo */ 263 sib_leaf = sib_cpu_ci->info_list + index; 264 if (cache_leaves_are_shared(this_leaf, sib_leaf)) { 265 cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map); 266 cpumask_set_cpu(i, &this_leaf->shared_cpu_map); 267 } 268 } 269 } 270 271 return 0; 272 } 273 274 static void cache_shared_cpu_map_remove(unsigned int cpu) 275 { 276 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 277 struct cacheinfo *this_leaf, *sib_leaf; 278 unsigned int sibling, index; 279 280 for (index = 0; index < cache_leaves(cpu); index++) { 281 this_leaf = this_cpu_ci->info_list + index; 282 for_each_cpu(sibling, &this_leaf->shared_cpu_map) { 283 struct cpu_cacheinfo *sib_cpu_ci; 284 285 if (sibling == cpu) /* skip itself */ 286 continue; 287 288 sib_cpu_ci = get_cpu_cacheinfo(sibling); 289 if (!sib_cpu_ci->info_list) 290 continue; 291 292 sib_leaf = sib_cpu_ci->info_list + index; 293 cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map); 294 cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map); 295 } 296 of_node_put(this_leaf->of_node); 297 } 298 } 299 300 static void cache_override_properties(unsigned int cpu) 301 { 302 if (of_have_populated_dt()) 303 return cache_of_override_properties(cpu); 304 } 305 306 static void free_cache_attributes(unsigned int cpu) 307 { 308 if (!per_cpu_cacheinfo(cpu)) 309 return; 310 311 cache_shared_cpu_map_remove(cpu); 312 313 kfree(per_cpu_cacheinfo(cpu)); 314 per_cpu_cacheinfo(cpu) = NULL; 315 } 316 317 int __weak init_cache_level(unsigned int cpu) 318 { 319 return -ENOENT; 320 } 321 322 int __weak populate_cache_leaves(unsigned int cpu) 323 { 324 return -ENOENT; 325 } 326 327 static int detect_cache_attributes(unsigned int cpu) 328 { 329 int ret; 330 331 if (init_cache_level(cpu) || !cache_leaves(cpu)) 332 return -ENOENT; 333 334 per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu), 335 sizeof(struct cacheinfo), GFP_KERNEL); 336 if (per_cpu_cacheinfo(cpu) == NULL) 337 return -ENOMEM; 338 339 ret = populate_cache_leaves(cpu); 340 if (ret) 341 goto free_ci; 342 /* 343 * For systems using DT for cache hierarchy, of_node and shared_cpu_map 344 * will be set up here only if they are not populated already 345 */ 346 ret = cache_shared_cpu_map_setup(cpu); 347 if (ret) { 348 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu); 349 goto free_ci; 350 } 351 352 cache_override_properties(cpu); 353 return 0; 354 355 free_ci: 356 free_cache_attributes(cpu); 357 return ret; 358 } 359 360 /* pointer to cpuX/cache device */ 361 static DEFINE_PER_CPU(struct device *, ci_cache_dev); 362 #define per_cpu_cache_dev(cpu) (per_cpu(ci_cache_dev, cpu)) 363 364 static cpumask_t cache_dev_map; 365 366 /* pointer to array of devices for cpuX/cache/indexY */ 367 static DEFINE_PER_CPU(struct device **, ci_index_dev); 368 #define per_cpu_index_dev(cpu) (per_cpu(ci_index_dev, cpu)) 369 #define per_cache_index_dev(cpu, idx) ((per_cpu_index_dev(cpu))[idx]) 370 371 #define show_one(file_name, object) \ 372 static ssize_t file_name##_show(struct device *dev, \ 373 struct device_attribute *attr, char *buf) \ 374 { \ 375 struct cacheinfo *this_leaf = dev_get_drvdata(dev); \ 376 return sprintf(buf, "%u\n", this_leaf->object); \ 377 } 378 379 show_one(id, id); 380 show_one(level, level); 381 show_one(coherency_line_size, coherency_line_size); 382 show_one(number_of_sets, number_of_sets); 383 show_one(physical_line_partition, physical_line_partition); 384 show_one(ways_of_associativity, ways_of_associativity); 385 386 static ssize_t size_show(struct device *dev, 387 struct device_attribute *attr, char *buf) 388 { 389 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 390 391 return sprintf(buf, "%uK\n", this_leaf->size >> 10); 392 } 393 394 static ssize_t shared_cpumap_show_func(struct device *dev, bool list, char *buf) 395 { 396 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 397 const struct cpumask *mask = &this_leaf->shared_cpu_map; 398 399 return cpumap_print_to_pagebuf(list, buf, mask); 400 } 401 402 static ssize_t shared_cpu_map_show(struct device *dev, 403 struct device_attribute *attr, char *buf) 404 { 405 return shared_cpumap_show_func(dev, false, buf); 406 } 407 408 static ssize_t shared_cpu_list_show(struct device *dev, 409 struct device_attribute *attr, char *buf) 410 { 411 return shared_cpumap_show_func(dev, true, buf); 412 } 413 414 static ssize_t type_show(struct device *dev, 415 struct device_attribute *attr, char *buf) 416 { 417 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 418 419 switch (this_leaf->type) { 420 case CACHE_TYPE_DATA: 421 return sprintf(buf, "Data\n"); 422 case CACHE_TYPE_INST: 423 return sprintf(buf, "Instruction\n"); 424 case CACHE_TYPE_UNIFIED: 425 return sprintf(buf, "Unified\n"); 426 default: 427 return -EINVAL; 428 } 429 } 430 431 static ssize_t allocation_policy_show(struct device *dev, 432 struct device_attribute *attr, char *buf) 433 { 434 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 435 unsigned int ci_attr = this_leaf->attributes; 436 int n = 0; 437 438 if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE)) 439 n = sprintf(buf, "ReadWriteAllocate\n"); 440 else if (ci_attr & CACHE_READ_ALLOCATE) 441 n = sprintf(buf, "ReadAllocate\n"); 442 else if (ci_attr & CACHE_WRITE_ALLOCATE) 443 n = sprintf(buf, "WriteAllocate\n"); 444 return n; 445 } 446 447 static ssize_t write_policy_show(struct device *dev, 448 struct device_attribute *attr, char *buf) 449 { 450 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 451 unsigned int ci_attr = this_leaf->attributes; 452 int n = 0; 453 454 if (ci_attr & CACHE_WRITE_THROUGH) 455 n = sprintf(buf, "WriteThrough\n"); 456 else if (ci_attr & CACHE_WRITE_BACK) 457 n = sprintf(buf, "WriteBack\n"); 458 return n; 459 } 460 461 static DEVICE_ATTR_RO(id); 462 static DEVICE_ATTR_RO(level); 463 static DEVICE_ATTR_RO(type); 464 static DEVICE_ATTR_RO(coherency_line_size); 465 static DEVICE_ATTR_RO(ways_of_associativity); 466 static DEVICE_ATTR_RO(number_of_sets); 467 static DEVICE_ATTR_RO(size); 468 static DEVICE_ATTR_RO(allocation_policy); 469 static DEVICE_ATTR_RO(write_policy); 470 static DEVICE_ATTR_RO(shared_cpu_map); 471 static DEVICE_ATTR_RO(shared_cpu_list); 472 static DEVICE_ATTR_RO(physical_line_partition); 473 474 static struct attribute *cache_default_attrs[] = { 475 &dev_attr_id.attr, 476 &dev_attr_type.attr, 477 &dev_attr_level.attr, 478 &dev_attr_shared_cpu_map.attr, 479 &dev_attr_shared_cpu_list.attr, 480 &dev_attr_coherency_line_size.attr, 481 &dev_attr_ways_of_associativity.attr, 482 &dev_attr_number_of_sets.attr, 483 &dev_attr_size.attr, 484 &dev_attr_allocation_policy.attr, 485 &dev_attr_write_policy.attr, 486 &dev_attr_physical_line_partition.attr, 487 NULL 488 }; 489 490 static umode_t 491 cache_default_attrs_is_visible(struct kobject *kobj, 492 struct attribute *attr, int unused) 493 { 494 struct device *dev = kobj_to_dev(kobj); 495 struct cacheinfo *this_leaf = dev_get_drvdata(dev); 496 const struct cpumask *mask = &this_leaf->shared_cpu_map; 497 umode_t mode = attr->mode; 498 499 if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID)) 500 return mode; 501 if ((attr == &dev_attr_type.attr) && this_leaf->type) 502 return mode; 503 if ((attr == &dev_attr_level.attr) && this_leaf->level) 504 return mode; 505 if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask)) 506 return mode; 507 if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask)) 508 return mode; 509 if ((attr == &dev_attr_coherency_line_size.attr) && 510 this_leaf->coherency_line_size) 511 return mode; 512 if ((attr == &dev_attr_ways_of_associativity.attr) && 513 this_leaf->size) /* allow 0 = full associativity */ 514 return mode; 515 if ((attr == &dev_attr_number_of_sets.attr) && 516 this_leaf->number_of_sets) 517 return mode; 518 if ((attr == &dev_attr_size.attr) && this_leaf->size) 519 return mode; 520 if ((attr == &dev_attr_write_policy.attr) && 521 (this_leaf->attributes & CACHE_WRITE_POLICY_MASK)) 522 return mode; 523 if ((attr == &dev_attr_allocation_policy.attr) && 524 (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK)) 525 return mode; 526 if ((attr == &dev_attr_physical_line_partition.attr) && 527 this_leaf->physical_line_partition) 528 return mode; 529 530 return 0; 531 } 532 533 static const struct attribute_group cache_default_group = { 534 .attrs = cache_default_attrs, 535 .is_visible = cache_default_attrs_is_visible, 536 }; 537 538 static const struct attribute_group *cache_default_groups[] = { 539 &cache_default_group, 540 NULL, 541 }; 542 543 static const struct attribute_group *cache_private_groups[] = { 544 &cache_default_group, 545 NULL, /* Place holder for private group */ 546 NULL, 547 }; 548 549 const struct attribute_group * 550 __weak cache_get_priv_group(struct cacheinfo *this_leaf) 551 { 552 return NULL; 553 } 554 555 static const struct attribute_group ** 556 cache_get_attribute_groups(struct cacheinfo *this_leaf) 557 { 558 const struct attribute_group *priv_group = 559 cache_get_priv_group(this_leaf); 560 561 if (!priv_group) 562 return cache_default_groups; 563 564 if (!cache_private_groups[1]) 565 cache_private_groups[1] = priv_group; 566 567 return cache_private_groups; 568 } 569 570 /* Add/Remove cache interface for CPU device */ 571 static void cpu_cache_sysfs_exit(unsigned int cpu) 572 { 573 int i; 574 struct device *ci_dev; 575 576 if (per_cpu_index_dev(cpu)) { 577 for (i = 0; i < cache_leaves(cpu); i++) { 578 ci_dev = per_cache_index_dev(cpu, i); 579 if (!ci_dev) 580 continue; 581 device_unregister(ci_dev); 582 } 583 kfree(per_cpu_index_dev(cpu)); 584 per_cpu_index_dev(cpu) = NULL; 585 } 586 device_unregister(per_cpu_cache_dev(cpu)); 587 per_cpu_cache_dev(cpu) = NULL; 588 } 589 590 static int cpu_cache_sysfs_init(unsigned int cpu) 591 { 592 struct device *dev = get_cpu_device(cpu); 593 594 if (per_cpu_cacheinfo(cpu) == NULL) 595 return -ENOENT; 596 597 per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache"); 598 if (IS_ERR(per_cpu_cache_dev(cpu))) 599 return PTR_ERR(per_cpu_cache_dev(cpu)); 600 601 /* Allocate all required memory */ 602 per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu), 603 sizeof(struct device *), GFP_KERNEL); 604 if (unlikely(per_cpu_index_dev(cpu) == NULL)) 605 goto err_out; 606 607 return 0; 608 609 err_out: 610 cpu_cache_sysfs_exit(cpu); 611 return -ENOMEM; 612 } 613 614 static int cache_add_dev(unsigned int cpu) 615 { 616 unsigned int i; 617 int rc; 618 struct device *ci_dev, *parent; 619 struct cacheinfo *this_leaf; 620 struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu); 621 const struct attribute_group **cache_groups; 622 623 rc = cpu_cache_sysfs_init(cpu); 624 if (unlikely(rc < 0)) 625 return rc; 626 627 parent = per_cpu_cache_dev(cpu); 628 for (i = 0; i < cache_leaves(cpu); i++) { 629 this_leaf = this_cpu_ci->info_list + i; 630 if (this_leaf->disable_sysfs) 631 continue; 632 cache_groups = cache_get_attribute_groups(this_leaf); 633 ci_dev = cpu_device_create(parent, this_leaf, cache_groups, 634 "index%1u", i); 635 if (IS_ERR(ci_dev)) { 636 rc = PTR_ERR(ci_dev); 637 goto err; 638 } 639 per_cache_index_dev(cpu, i) = ci_dev; 640 } 641 cpumask_set_cpu(cpu, &cache_dev_map); 642 643 return 0; 644 err: 645 cpu_cache_sysfs_exit(cpu); 646 return rc; 647 } 648 649 static int cacheinfo_cpu_online(unsigned int cpu) 650 { 651 int rc = detect_cache_attributes(cpu); 652 653 if (rc) 654 return rc; 655 rc = cache_add_dev(cpu); 656 if (rc) 657 free_cache_attributes(cpu); 658 return rc; 659 } 660 661 static int cacheinfo_cpu_pre_down(unsigned int cpu) 662 { 663 if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map)) 664 cpu_cache_sysfs_exit(cpu); 665 666 free_cache_attributes(cpu); 667 return 0; 668 } 669 670 static int __init cacheinfo_sysfs_init(void) 671 { 672 return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "base/cacheinfo:online", 673 cacheinfo_cpu_online, cacheinfo_cpu_pre_down); 674 } 675 device_initcall(cacheinfo_sysfs_init); 676