xref: /openbmc/linux/drivers/base/cacheinfo.c (revision c000c4f1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cacheinfo support - processor cache information via sysfs
4  *
5  * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6  * Author: Sudeep Holla <sudeep.holla@arm.com>
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
22 
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu)	(&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu)	(ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu)	(ci_cacheinfo(cpu)->info_list)
28 
29 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
30 {
31 	return ci_cacheinfo(cpu);
32 }
33 
34 #ifdef CONFIG_OF
35 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
36 					   struct cacheinfo *sib_leaf)
37 {
38 	return sib_leaf->fw_token == this_leaf->fw_token;
39 }
40 
41 /* OF properties to query for a given cache type */
42 struct cache_type_info {
43 	const char *size_prop;
44 	const char *line_size_props[2];
45 	const char *nr_sets_prop;
46 };
47 
48 static const struct cache_type_info cache_type_info[] = {
49 	{
50 		.size_prop       = "cache-size",
51 		.line_size_props = { "cache-line-size",
52 				     "cache-block-size", },
53 		.nr_sets_prop    = "cache-sets",
54 	}, {
55 		.size_prop       = "i-cache-size",
56 		.line_size_props = { "i-cache-line-size",
57 				     "i-cache-block-size", },
58 		.nr_sets_prop    = "i-cache-sets",
59 	}, {
60 		.size_prop       = "d-cache-size",
61 		.line_size_props = { "d-cache-line-size",
62 				     "d-cache-block-size", },
63 		.nr_sets_prop    = "d-cache-sets",
64 	},
65 };
66 
67 static inline int get_cacheinfo_idx(enum cache_type type)
68 {
69 	if (type == CACHE_TYPE_UNIFIED)
70 		return 0;
71 	return type;
72 }
73 
74 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
75 {
76 	const char *propname;
77 	const __be32 *cache_size;
78 	int ct_idx;
79 
80 	ct_idx = get_cacheinfo_idx(this_leaf->type);
81 	propname = cache_type_info[ct_idx].size_prop;
82 
83 	cache_size = of_get_property(np, propname, NULL);
84 	if (cache_size)
85 		this_leaf->size = of_read_number(cache_size, 1);
86 }
87 
88 /* not cache_line_size() because that's a macro in include/linux/cache.h */
89 static void cache_get_line_size(struct cacheinfo *this_leaf,
90 				struct device_node *np)
91 {
92 	const __be32 *line_size;
93 	int i, lim, ct_idx;
94 
95 	ct_idx = get_cacheinfo_idx(this_leaf->type);
96 	lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
97 
98 	for (i = 0; i < lim; i++) {
99 		const char *propname;
100 
101 		propname = cache_type_info[ct_idx].line_size_props[i];
102 		line_size = of_get_property(np, propname, NULL);
103 		if (line_size)
104 			break;
105 	}
106 
107 	if (line_size)
108 		this_leaf->coherency_line_size = of_read_number(line_size, 1);
109 }
110 
111 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
112 {
113 	const char *propname;
114 	const __be32 *nr_sets;
115 	int ct_idx;
116 
117 	ct_idx = get_cacheinfo_idx(this_leaf->type);
118 	propname = cache_type_info[ct_idx].nr_sets_prop;
119 
120 	nr_sets = of_get_property(np, propname, NULL);
121 	if (nr_sets)
122 		this_leaf->number_of_sets = of_read_number(nr_sets, 1);
123 }
124 
125 static void cache_associativity(struct cacheinfo *this_leaf)
126 {
127 	unsigned int line_size = this_leaf->coherency_line_size;
128 	unsigned int nr_sets = this_leaf->number_of_sets;
129 	unsigned int size = this_leaf->size;
130 
131 	/*
132 	 * If the cache is fully associative, there is no need to
133 	 * check the other properties.
134 	 */
135 	if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
136 		this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
137 }
138 
139 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
140 				  struct device_node *np)
141 {
142 	return of_property_read_bool(np, "cache-unified");
143 }
144 
145 static void cache_of_set_props(struct cacheinfo *this_leaf,
146 			       struct device_node *np)
147 {
148 	/*
149 	 * init_cache_level must setup the cache level correctly
150 	 * overriding the architecturally specified levels, so
151 	 * if type is NONE at this stage, it should be unified
152 	 */
153 	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
154 	    cache_node_is_unified(this_leaf, np))
155 		this_leaf->type = CACHE_TYPE_UNIFIED;
156 	cache_size(this_leaf, np);
157 	cache_get_line_size(this_leaf, np);
158 	cache_nr_sets(this_leaf, np);
159 	cache_associativity(this_leaf);
160 }
161 
162 static int cache_setup_of_node(unsigned int cpu)
163 {
164 	struct device_node *np;
165 	struct cacheinfo *this_leaf;
166 	struct device *cpu_dev = get_cpu_device(cpu);
167 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
168 	unsigned int index = 0;
169 
170 	/* skip if fw_token is already populated */
171 	if (this_cpu_ci->info_list->fw_token) {
172 		return 0;
173 	}
174 
175 	if (!cpu_dev) {
176 		pr_err("No cpu device for CPU %d\n", cpu);
177 		return -ENODEV;
178 	}
179 	np = cpu_dev->of_node;
180 	if (!np) {
181 		pr_err("Failed to find cpu%d device node\n", cpu);
182 		return -ENOENT;
183 	}
184 
185 	while (index < cache_leaves(cpu)) {
186 		this_leaf = this_cpu_ci->info_list + index;
187 		if (this_leaf->level != 1)
188 			np = of_find_next_cache_node(np);
189 		else
190 			np = of_node_get(np);/* cpu node itself */
191 		if (!np)
192 			break;
193 		cache_of_set_props(this_leaf, np);
194 		this_leaf->fw_token = np;
195 		index++;
196 	}
197 
198 	if (index != cache_leaves(cpu)) /* not all OF nodes populated */
199 		return -ENOENT;
200 
201 	return 0;
202 }
203 #else
204 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
205 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
206 					   struct cacheinfo *sib_leaf)
207 {
208 	/*
209 	 * For non-DT/ACPI systems, assume unique level 1 caches, system-wide
210 	 * shared caches for all other levels. This will be used only if
211 	 * arch specific code has not populated shared_cpu_map
212 	 */
213 	return !(this_leaf->level == 1);
214 }
215 #endif
216 
217 int __weak cache_setup_acpi(unsigned int cpu)
218 {
219 	return -ENOTSUPP;
220 }
221 
222 static int cache_shared_cpu_map_setup(unsigned int cpu)
223 {
224 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
225 	struct cacheinfo *this_leaf, *sib_leaf;
226 	unsigned int index;
227 	int ret = 0;
228 
229 	if (this_cpu_ci->cpu_map_populated)
230 		return 0;
231 
232 	if (of_have_populated_dt())
233 		ret = cache_setup_of_node(cpu);
234 	else if (!acpi_disabled)
235 		ret = cache_setup_acpi(cpu);
236 
237 	if (ret)
238 		return ret;
239 
240 	for (index = 0; index < cache_leaves(cpu); index++) {
241 		unsigned int i;
242 
243 		this_leaf = this_cpu_ci->info_list + index;
244 		/* skip if shared_cpu_map is already populated */
245 		if (!cpumask_empty(&this_leaf->shared_cpu_map))
246 			continue;
247 
248 		cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
249 		for_each_online_cpu(i) {
250 			struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
251 
252 			if (i == cpu || !sib_cpu_ci->info_list)
253 				continue;/* skip if itself or no cacheinfo */
254 			sib_leaf = sib_cpu_ci->info_list + index;
255 			if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
256 				cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
257 				cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
258 			}
259 		}
260 	}
261 
262 	return 0;
263 }
264 
265 static void cache_shared_cpu_map_remove(unsigned int cpu)
266 {
267 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
268 	struct cacheinfo *this_leaf, *sib_leaf;
269 	unsigned int sibling, index;
270 
271 	for (index = 0; index < cache_leaves(cpu); index++) {
272 		this_leaf = this_cpu_ci->info_list + index;
273 		for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
274 			struct cpu_cacheinfo *sib_cpu_ci;
275 
276 			if (sibling == cpu) /* skip itself */
277 				continue;
278 
279 			sib_cpu_ci = get_cpu_cacheinfo(sibling);
280 			if (!sib_cpu_ci->info_list)
281 				continue;
282 
283 			sib_leaf = sib_cpu_ci->info_list + index;
284 			cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
285 			cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
286 		}
287 		if (of_have_populated_dt())
288 			of_node_put(this_leaf->fw_token);
289 	}
290 }
291 
292 static void free_cache_attributes(unsigned int cpu)
293 {
294 	if (!per_cpu_cacheinfo(cpu))
295 		return;
296 
297 	cache_shared_cpu_map_remove(cpu);
298 
299 	kfree(per_cpu_cacheinfo(cpu));
300 	per_cpu_cacheinfo(cpu) = NULL;
301 }
302 
303 int __weak init_cache_level(unsigned int cpu)
304 {
305 	return -ENOENT;
306 }
307 
308 int __weak populate_cache_leaves(unsigned int cpu)
309 {
310 	return -ENOENT;
311 }
312 
313 static int detect_cache_attributes(unsigned int cpu)
314 {
315 	int ret;
316 
317 	if (init_cache_level(cpu) || !cache_leaves(cpu))
318 		return -ENOENT;
319 
320 	per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
321 					 sizeof(struct cacheinfo), GFP_KERNEL);
322 	if (per_cpu_cacheinfo(cpu) == NULL)
323 		return -ENOMEM;
324 
325 	/*
326 	 * populate_cache_leaves() may completely setup the cache leaves and
327 	 * shared_cpu_map or it may leave it partially setup.
328 	 */
329 	ret = populate_cache_leaves(cpu);
330 	if (ret)
331 		goto free_ci;
332 	/*
333 	 * For systems using DT for cache hierarchy, fw_token
334 	 * and shared_cpu_map will be set up here only if they are
335 	 * not populated already
336 	 */
337 	ret = cache_shared_cpu_map_setup(cpu);
338 	if (ret) {
339 		pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
340 		goto free_ci;
341 	}
342 
343 	return 0;
344 
345 free_ci:
346 	free_cache_attributes(cpu);
347 	return ret;
348 }
349 
350 /* pointer to cpuX/cache device */
351 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
352 #define per_cpu_cache_dev(cpu)	(per_cpu(ci_cache_dev, cpu))
353 
354 static cpumask_t cache_dev_map;
355 
356 /* pointer to array of devices for cpuX/cache/indexY */
357 static DEFINE_PER_CPU(struct device **, ci_index_dev);
358 #define per_cpu_index_dev(cpu)	(per_cpu(ci_index_dev, cpu))
359 #define per_cache_index_dev(cpu, idx)	((per_cpu_index_dev(cpu))[idx])
360 
361 #define show_one(file_name, object)				\
362 static ssize_t file_name##_show(struct device *dev,		\
363 		struct device_attribute *attr, char *buf)	\
364 {								\
365 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);	\
366 	return sprintf(buf, "%u\n", this_leaf->object);		\
367 }
368 
369 show_one(id, id);
370 show_one(level, level);
371 show_one(coherency_line_size, coherency_line_size);
372 show_one(number_of_sets, number_of_sets);
373 show_one(physical_line_partition, physical_line_partition);
374 show_one(ways_of_associativity, ways_of_associativity);
375 
376 static ssize_t size_show(struct device *dev,
377 			 struct device_attribute *attr, char *buf)
378 {
379 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
380 
381 	return sprintf(buf, "%uK\n", this_leaf->size >> 10);
382 }
383 
384 static ssize_t shared_cpumap_show_func(struct device *dev, bool list, char *buf)
385 {
386 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
387 	const struct cpumask *mask = &this_leaf->shared_cpu_map;
388 
389 	return cpumap_print_to_pagebuf(list, buf, mask);
390 }
391 
392 static ssize_t shared_cpu_map_show(struct device *dev,
393 				   struct device_attribute *attr, char *buf)
394 {
395 	return shared_cpumap_show_func(dev, false, buf);
396 }
397 
398 static ssize_t shared_cpu_list_show(struct device *dev,
399 				    struct device_attribute *attr, char *buf)
400 {
401 	return shared_cpumap_show_func(dev, true, buf);
402 }
403 
404 static ssize_t type_show(struct device *dev,
405 			 struct device_attribute *attr, char *buf)
406 {
407 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
408 
409 	switch (this_leaf->type) {
410 	case CACHE_TYPE_DATA:
411 		return sprintf(buf, "Data\n");
412 	case CACHE_TYPE_INST:
413 		return sprintf(buf, "Instruction\n");
414 	case CACHE_TYPE_UNIFIED:
415 		return sprintf(buf, "Unified\n");
416 	default:
417 		return -EINVAL;
418 	}
419 }
420 
421 static ssize_t allocation_policy_show(struct device *dev,
422 				      struct device_attribute *attr, char *buf)
423 {
424 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
425 	unsigned int ci_attr = this_leaf->attributes;
426 	int n = 0;
427 
428 	if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
429 		n = sprintf(buf, "ReadWriteAllocate\n");
430 	else if (ci_attr & CACHE_READ_ALLOCATE)
431 		n = sprintf(buf, "ReadAllocate\n");
432 	else if (ci_attr & CACHE_WRITE_ALLOCATE)
433 		n = sprintf(buf, "WriteAllocate\n");
434 	return n;
435 }
436 
437 static ssize_t write_policy_show(struct device *dev,
438 				 struct device_attribute *attr, char *buf)
439 {
440 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
441 	unsigned int ci_attr = this_leaf->attributes;
442 	int n = 0;
443 
444 	if (ci_attr & CACHE_WRITE_THROUGH)
445 		n = sprintf(buf, "WriteThrough\n");
446 	else if (ci_attr & CACHE_WRITE_BACK)
447 		n = sprintf(buf, "WriteBack\n");
448 	return n;
449 }
450 
451 static DEVICE_ATTR_RO(id);
452 static DEVICE_ATTR_RO(level);
453 static DEVICE_ATTR_RO(type);
454 static DEVICE_ATTR_RO(coherency_line_size);
455 static DEVICE_ATTR_RO(ways_of_associativity);
456 static DEVICE_ATTR_RO(number_of_sets);
457 static DEVICE_ATTR_RO(size);
458 static DEVICE_ATTR_RO(allocation_policy);
459 static DEVICE_ATTR_RO(write_policy);
460 static DEVICE_ATTR_RO(shared_cpu_map);
461 static DEVICE_ATTR_RO(shared_cpu_list);
462 static DEVICE_ATTR_RO(physical_line_partition);
463 
464 static struct attribute *cache_default_attrs[] = {
465 	&dev_attr_id.attr,
466 	&dev_attr_type.attr,
467 	&dev_attr_level.attr,
468 	&dev_attr_shared_cpu_map.attr,
469 	&dev_attr_shared_cpu_list.attr,
470 	&dev_attr_coherency_line_size.attr,
471 	&dev_attr_ways_of_associativity.attr,
472 	&dev_attr_number_of_sets.attr,
473 	&dev_attr_size.attr,
474 	&dev_attr_allocation_policy.attr,
475 	&dev_attr_write_policy.attr,
476 	&dev_attr_physical_line_partition.attr,
477 	NULL
478 };
479 
480 static umode_t
481 cache_default_attrs_is_visible(struct kobject *kobj,
482 			       struct attribute *attr, int unused)
483 {
484 	struct device *dev = kobj_to_dev(kobj);
485 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
486 	const struct cpumask *mask = &this_leaf->shared_cpu_map;
487 	umode_t mode = attr->mode;
488 
489 	if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
490 		return mode;
491 	if ((attr == &dev_attr_type.attr) && this_leaf->type)
492 		return mode;
493 	if ((attr == &dev_attr_level.attr) && this_leaf->level)
494 		return mode;
495 	if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
496 		return mode;
497 	if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
498 		return mode;
499 	if ((attr == &dev_attr_coherency_line_size.attr) &&
500 	    this_leaf->coherency_line_size)
501 		return mode;
502 	if ((attr == &dev_attr_ways_of_associativity.attr) &&
503 	    this_leaf->size) /* allow 0 = full associativity */
504 		return mode;
505 	if ((attr == &dev_attr_number_of_sets.attr) &&
506 	    this_leaf->number_of_sets)
507 		return mode;
508 	if ((attr == &dev_attr_size.attr) && this_leaf->size)
509 		return mode;
510 	if ((attr == &dev_attr_write_policy.attr) &&
511 	    (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
512 		return mode;
513 	if ((attr == &dev_attr_allocation_policy.attr) &&
514 	    (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
515 		return mode;
516 	if ((attr == &dev_attr_physical_line_partition.attr) &&
517 	    this_leaf->physical_line_partition)
518 		return mode;
519 
520 	return 0;
521 }
522 
523 static const struct attribute_group cache_default_group = {
524 	.attrs = cache_default_attrs,
525 	.is_visible = cache_default_attrs_is_visible,
526 };
527 
528 static const struct attribute_group *cache_default_groups[] = {
529 	&cache_default_group,
530 	NULL,
531 };
532 
533 static const struct attribute_group *cache_private_groups[] = {
534 	&cache_default_group,
535 	NULL, /* Place holder for private group */
536 	NULL,
537 };
538 
539 const struct attribute_group *
540 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
541 {
542 	return NULL;
543 }
544 
545 static const struct attribute_group **
546 cache_get_attribute_groups(struct cacheinfo *this_leaf)
547 {
548 	const struct attribute_group *priv_group =
549 			cache_get_priv_group(this_leaf);
550 
551 	if (!priv_group)
552 		return cache_default_groups;
553 
554 	if (!cache_private_groups[1])
555 		cache_private_groups[1] = priv_group;
556 
557 	return cache_private_groups;
558 }
559 
560 /* Add/Remove cache interface for CPU device */
561 static void cpu_cache_sysfs_exit(unsigned int cpu)
562 {
563 	int i;
564 	struct device *ci_dev;
565 
566 	if (per_cpu_index_dev(cpu)) {
567 		for (i = 0; i < cache_leaves(cpu); i++) {
568 			ci_dev = per_cache_index_dev(cpu, i);
569 			if (!ci_dev)
570 				continue;
571 			device_unregister(ci_dev);
572 		}
573 		kfree(per_cpu_index_dev(cpu));
574 		per_cpu_index_dev(cpu) = NULL;
575 	}
576 	device_unregister(per_cpu_cache_dev(cpu));
577 	per_cpu_cache_dev(cpu) = NULL;
578 }
579 
580 static int cpu_cache_sysfs_init(unsigned int cpu)
581 {
582 	struct device *dev = get_cpu_device(cpu);
583 
584 	if (per_cpu_cacheinfo(cpu) == NULL)
585 		return -ENOENT;
586 
587 	per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
588 	if (IS_ERR(per_cpu_cache_dev(cpu)))
589 		return PTR_ERR(per_cpu_cache_dev(cpu));
590 
591 	/* Allocate all required memory */
592 	per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
593 					 sizeof(struct device *), GFP_KERNEL);
594 	if (unlikely(per_cpu_index_dev(cpu) == NULL))
595 		goto err_out;
596 
597 	return 0;
598 
599 err_out:
600 	cpu_cache_sysfs_exit(cpu);
601 	return -ENOMEM;
602 }
603 
604 static int cache_add_dev(unsigned int cpu)
605 {
606 	unsigned int i;
607 	int rc;
608 	struct device *ci_dev, *parent;
609 	struct cacheinfo *this_leaf;
610 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
611 	const struct attribute_group **cache_groups;
612 
613 	rc = cpu_cache_sysfs_init(cpu);
614 	if (unlikely(rc < 0))
615 		return rc;
616 
617 	parent = per_cpu_cache_dev(cpu);
618 	for (i = 0; i < cache_leaves(cpu); i++) {
619 		this_leaf = this_cpu_ci->info_list + i;
620 		if (this_leaf->disable_sysfs)
621 			continue;
622 		cache_groups = cache_get_attribute_groups(this_leaf);
623 		ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
624 					   "index%1u", i);
625 		if (IS_ERR(ci_dev)) {
626 			rc = PTR_ERR(ci_dev);
627 			goto err;
628 		}
629 		per_cache_index_dev(cpu, i) = ci_dev;
630 	}
631 	cpumask_set_cpu(cpu, &cache_dev_map);
632 
633 	return 0;
634 err:
635 	cpu_cache_sysfs_exit(cpu);
636 	return rc;
637 }
638 
639 static int cacheinfo_cpu_online(unsigned int cpu)
640 {
641 	int rc = detect_cache_attributes(cpu);
642 
643 	if (rc)
644 		return rc;
645 	rc = cache_add_dev(cpu);
646 	if (rc)
647 		free_cache_attributes(cpu);
648 	return rc;
649 }
650 
651 static int cacheinfo_cpu_pre_down(unsigned int cpu)
652 {
653 	if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
654 		cpu_cache_sysfs_exit(cpu);
655 
656 	free_cache_attributes(cpu);
657 	return 0;
658 }
659 
660 static int __init cacheinfo_sysfs_init(void)
661 {
662 	return cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "base/cacheinfo:online",
663 				 cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
664 }
665 device_initcall(cacheinfo_sysfs_init);
666