xref: /openbmc/linux/drivers/base/cacheinfo.c (revision aff69273)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cacheinfo support - processor cache information via sysfs
4  *
5  * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6  * Author: Sudeep Holla <sudeep.holla@arm.com>
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of_device.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
22 
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu)	(&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu)	(ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu)	(ci_cacheinfo(cpu)->info_list)
28 #define per_cpu_cacheinfo_idx(cpu, idx)		\
29 				(per_cpu_cacheinfo(cpu) + (idx))
30 
31 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
32 {
33 	return ci_cacheinfo(cpu);
34 }
35 
36 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
37 					   struct cacheinfo *sib_leaf)
38 {
39 	/*
40 	 * For non DT/ACPI systems, assume unique level 1 caches,
41 	 * system-wide shared caches for all other levels. This will be used
42 	 * only if arch specific code has not populated shared_cpu_map
43 	 */
44 	if (!(IS_ENABLED(CONFIG_OF) || IS_ENABLED(CONFIG_ACPI)))
45 		return !(this_leaf->level == 1);
46 
47 	if ((sib_leaf->attributes & CACHE_ID) &&
48 	    (this_leaf->attributes & CACHE_ID))
49 		return sib_leaf->id == this_leaf->id;
50 
51 	return sib_leaf->fw_token == this_leaf->fw_token;
52 }
53 
54 bool last_level_cache_is_valid(unsigned int cpu)
55 {
56 	struct cacheinfo *llc;
57 
58 	if (!cache_leaves(cpu))
59 		return false;
60 
61 	llc = per_cpu_cacheinfo_idx(cpu, cache_leaves(cpu) - 1);
62 
63 	return (llc->attributes & CACHE_ID) || !!llc->fw_token;
64 
65 }
66 
67 bool last_level_cache_is_shared(unsigned int cpu_x, unsigned int cpu_y)
68 {
69 	struct cacheinfo *llc_x, *llc_y;
70 
71 	if (!last_level_cache_is_valid(cpu_x) ||
72 	    !last_level_cache_is_valid(cpu_y))
73 		return false;
74 
75 	llc_x = per_cpu_cacheinfo_idx(cpu_x, cache_leaves(cpu_x) - 1);
76 	llc_y = per_cpu_cacheinfo_idx(cpu_y, cache_leaves(cpu_y) - 1);
77 
78 	return cache_leaves_are_shared(llc_x, llc_y);
79 }
80 
81 #ifdef CONFIG_OF
82 /* OF properties to query for a given cache type */
83 struct cache_type_info {
84 	const char *size_prop;
85 	const char *line_size_props[2];
86 	const char *nr_sets_prop;
87 };
88 
89 static const struct cache_type_info cache_type_info[] = {
90 	{
91 		.size_prop       = "cache-size",
92 		.line_size_props = { "cache-line-size",
93 				     "cache-block-size", },
94 		.nr_sets_prop    = "cache-sets",
95 	}, {
96 		.size_prop       = "i-cache-size",
97 		.line_size_props = { "i-cache-line-size",
98 				     "i-cache-block-size", },
99 		.nr_sets_prop    = "i-cache-sets",
100 	}, {
101 		.size_prop       = "d-cache-size",
102 		.line_size_props = { "d-cache-line-size",
103 				     "d-cache-block-size", },
104 		.nr_sets_prop    = "d-cache-sets",
105 	},
106 };
107 
108 static inline int get_cacheinfo_idx(enum cache_type type)
109 {
110 	if (type == CACHE_TYPE_UNIFIED)
111 		return 0;
112 	return type;
113 }
114 
115 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
116 {
117 	const char *propname;
118 	int ct_idx;
119 
120 	ct_idx = get_cacheinfo_idx(this_leaf->type);
121 	propname = cache_type_info[ct_idx].size_prop;
122 
123 	of_property_read_u32(np, propname, &this_leaf->size);
124 }
125 
126 /* not cache_line_size() because that's a macro in include/linux/cache.h */
127 static void cache_get_line_size(struct cacheinfo *this_leaf,
128 				struct device_node *np)
129 {
130 	int i, lim, ct_idx;
131 
132 	ct_idx = get_cacheinfo_idx(this_leaf->type);
133 	lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
134 
135 	for (i = 0; i < lim; i++) {
136 		int ret;
137 		u32 line_size;
138 		const char *propname;
139 
140 		propname = cache_type_info[ct_idx].line_size_props[i];
141 		ret = of_property_read_u32(np, propname, &line_size);
142 		if (!ret) {
143 			this_leaf->coherency_line_size = line_size;
144 			break;
145 		}
146 	}
147 }
148 
149 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
150 {
151 	const char *propname;
152 	int ct_idx;
153 
154 	ct_idx = get_cacheinfo_idx(this_leaf->type);
155 	propname = cache_type_info[ct_idx].nr_sets_prop;
156 
157 	of_property_read_u32(np, propname, &this_leaf->number_of_sets);
158 }
159 
160 static void cache_associativity(struct cacheinfo *this_leaf)
161 {
162 	unsigned int line_size = this_leaf->coherency_line_size;
163 	unsigned int nr_sets = this_leaf->number_of_sets;
164 	unsigned int size = this_leaf->size;
165 
166 	/*
167 	 * If the cache is fully associative, there is no need to
168 	 * check the other properties.
169 	 */
170 	if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
171 		this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
172 }
173 
174 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
175 				  struct device_node *np)
176 {
177 	return of_property_read_bool(np, "cache-unified");
178 }
179 
180 static void cache_of_set_props(struct cacheinfo *this_leaf,
181 			       struct device_node *np)
182 {
183 	/*
184 	 * init_cache_level must setup the cache level correctly
185 	 * overriding the architecturally specified levels, so
186 	 * if type is NONE at this stage, it should be unified
187 	 */
188 	if (this_leaf->type == CACHE_TYPE_NOCACHE &&
189 	    cache_node_is_unified(this_leaf, np))
190 		this_leaf->type = CACHE_TYPE_UNIFIED;
191 	cache_size(this_leaf, np);
192 	cache_get_line_size(this_leaf, np);
193 	cache_nr_sets(this_leaf, np);
194 	cache_associativity(this_leaf);
195 }
196 
197 static int cache_setup_of_node(unsigned int cpu)
198 {
199 	struct device_node *np, *prev;
200 	struct cacheinfo *this_leaf;
201 	unsigned int index = 0;
202 
203 	np = of_cpu_device_node_get(cpu);
204 	if (!np) {
205 		pr_err("Failed to find cpu%d device node\n", cpu);
206 		return -ENOENT;
207 	}
208 
209 	prev = np;
210 
211 	while (index < cache_leaves(cpu)) {
212 		this_leaf = per_cpu_cacheinfo_idx(cpu, index);
213 		if (this_leaf->level != 1) {
214 			np = of_find_next_cache_node(np);
215 			of_node_put(prev);
216 			prev = np;
217 			if (!np)
218 				break;
219 		}
220 		cache_of_set_props(this_leaf, np);
221 		this_leaf->fw_token = np;
222 		index++;
223 	}
224 
225 	of_node_put(np);
226 
227 	if (index != cache_leaves(cpu)) /* not all OF nodes populated */
228 		return -ENOENT;
229 
230 	return 0;
231 }
232 
233 static int of_count_cache_leaves(struct device_node *np)
234 {
235 	unsigned int leaves = 0;
236 
237 	if (of_property_read_bool(np, "cache-size"))
238 		++leaves;
239 	if (of_property_read_bool(np, "i-cache-size"))
240 		++leaves;
241 	if (of_property_read_bool(np, "d-cache-size"))
242 		++leaves;
243 
244 	if (!leaves) {
245 		/* The '[i-|d-|]cache-size' property is required, but
246 		 * if absent, fallback on the 'cache-unified' property.
247 		 */
248 		if (of_property_read_bool(np, "cache-unified"))
249 			return 1;
250 		else
251 			return 2;
252 	}
253 
254 	return leaves;
255 }
256 
257 int init_of_cache_level(unsigned int cpu)
258 {
259 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
260 	struct device_node *np = of_cpu_device_node_get(cpu);
261 	struct device_node *prev = NULL;
262 	unsigned int levels = 0, leaves, level;
263 
264 	leaves = of_count_cache_leaves(np);
265 	if (leaves > 0)
266 		levels = 1;
267 
268 	prev = np;
269 	while ((np = of_find_next_cache_node(np))) {
270 		of_node_put(prev);
271 		prev = np;
272 		if (!of_device_is_compatible(np, "cache"))
273 			goto err_out;
274 		if (of_property_read_u32(np, "cache-level", &level))
275 			goto err_out;
276 		if (level <= levels)
277 			goto err_out;
278 
279 		leaves += of_count_cache_leaves(np);
280 		levels = level;
281 	}
282 
283 	of_node_put(np);
284 	this_cpu_ci->num_levels = levels;
285 	this_cpu_ci->num_leaves = leaves;
286 
287 	return 0;
288 
289 err_out:
290 	of_node_put(np);
291 	return -EINVAL;
292 }
293 
294 #else
295 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
296 int init_of_cache_level(unsigned int cpu) { return 0; }
297 #endif
298 
299 int __weak cache_setup_acpi(unsigned int cpu)
300 {
301 	return -ENOTSUPP;
302 }
303 
304 unsigned int coherency_max_size;
305 
306 static int cache_setup_properties(unsigned int cpu)
307 {
308 	int ret = 0;
309 
310 	if (of_have_populated_dt())
311 		ret = cache_setup_of_node(cpu);
312 	else if (!acpi_disabled)
313 		ret = cache_setup_acpi(cpu);
314 
315 	return ret;
316 }
317 
318 static int cache_shared_cpu_map_setup(unsigned int cpu)
319 {
320 	struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
321 	struct cacheinfo *this_leaf, *sib_leaf;
322 	unsigned int index, sib_index;
323 	int ret = 0;
324 
325 	if (this_cpu_ci->cpu_map_populated)
326 		return 0;
327 
328 	/*
329 	 * skip setting up cache properties if LLC is valid, just need
330 	 * to update the shared cpu_map if the cache attributes were
331 	 * populated early before all the cpus are brought online
332 	 */
333 	if (!last_level_cache_is_valid(cpu)) {
334 		ret = cache_setup_properties(cpu);
335 		if (ret)
336 			return ret;
337 	}
338 
339 	for (index = 0; index < cache_leaves(cpu); index++) {
340 		unsigned int i;
341 
342 		this_leaf = per_cpu_cacheinfo_idx(cpu, index);
343 
344 		cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
345 		for_each_online_cpu(i) {
346 			struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
347 
348 			if (i == cpu || !sib_cpu_ci->info_list)
349 				continue;/* skip if itself or no cacheinfo */
350 			for (sib_index = 0; sib_index < cache_leaves(i); sib_index++) {
351 				sib_leaf = per_cpu_cacheinfo_idx(i, sib_index);
352 				if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
353 					cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
354 					cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
355 					break;
356 				}
357 			}
358 		}
359 		/* record the maximum cache line size */
360 		if (this_leaf->coherency_line_size > coherency_max_size)
361 			coherency_max_size = this_leaf->coherency_line_size;
362 	}
363 
364 	return 0;
365 }
366 
367 static void cache_shared_cpu_map_remove(unsigned int cpu)
368 {
369 	struct cacheinfo *this_leaf, *sib_leaf;
370 	unsigned int sibling, index, sib_index;
371 
372 	for (index = 0; index < cache_leaves(cpu); index++) {
373 		this_leaf = per_cpu_cacheinfo_idx(cpu, index);
374 		for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
375 			struct cpu_cacheinfo *sib_cpu_ci =
376 						get_cpu_cacheinfo(sibling);
377 
378 			if (sibling == cpu || !sib_cpu_ci->info_list)
379 				continue;/* skip if itself or no cacheinfo */
380 
381 			for (sib_index = 0; sib_index < cache_leaves(sibling); sib_index++) {
382 				sib_leaf = per_cpu_cacheinfo_idx(sibling, sib_index);
383 				if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
384 					cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
385 					cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
386 					break;
387 				}
388 			}
389 		}
390 	}
391 }
392 
393 static void free_cache_attributes(unsigned int cpu)
394 {
395 	if (!per_cpu_cacheinfo(cpu))
396 		return;
397 
398 	cache_shared_cpu_map_remove(cpu);
399 }
400 
401 int __weak init_cache_level(unsigned int cpu)
402 {
403 	return -ENOENT;
404 }
405 
406 int __weak populate_cache_leaves(unsigned int cpu)
407 {
408 	return -ENOENT;
409 }
410 
411 static inline
412 int allocate_cache_info(int cpu)
413 {
414 	per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
415 					 sizeof(struct cacheinfo), GFP_ATOMIC);
416 	if (!per_cpu_cacheinfo(cpu)) {
417 		cache_leaves(cpu) = 0;
418 		return -ENOMEM;
419 	}
420 
421 	return 0;
422 }
423 
424 int fetch_cache_info(unsigned int cpu)
425 {
426 	struct cpu_cacheinfo *this_cpu_ci;
427 	unsigned int levels = 0, split_levels = 0;
428 	int ret;
429 
430 	if (acpi_disabled) {
431 		ret = init_of_cache_level(cpu);
432 		if (ret < 0)
433 			return ret;
434 	} else {
435 		ret = acpi_get_cache_info(cpu, &levels, &split_levels);
436 		if (ret < 0)
437 			return ret;
438 
439 		this_cpu_ci = get_cpu_cacheinfo(cpu);
440 		this_cpu_ci->num_levels = levels;
441 		/*
442 		 * This assumes that:
443 		 * - there cannot be any split caches (data/instruction)
444 		 *   above a unified cache
445 		 * - data/instruction caches come by pair
446 		 */
447 		this_cpu_ci->num_leaves = levels + split_levels;
448 	}
449 	if (!cache_leaves(cpu))
450 		return -ENOENT;
451 
452 	return allocate_cache_info(cpu);
453 }
454 
455 int detect_cache_attributes(unsigned int cpu)
456 {
457 	int ret;
458 
459 	/* Since early initialization/allocation of the cacheinfo is allowed
460 	 * via fetch_cache_info() and this also gets called as CPU hotplug
461 	 * callbacks via cacheinfo_cpu_online, the init/alloc can be skipped
462 	 * as it will happen only once (the cacheinfo memory is never freed).
463 	 * Just populate the cacheinfo.
464 	 */
465 	if (per_cpu_cacheinfo(cpu))
466 		goto populate_leaves;
467 
468 	if (init_cache_level(cpu) || !cache_leaves(cpu))
469 		return -ENOENT;
470 
471 	ret = allocate_cache_info(cpu);
472 	if (ret)
473 		return ret;
474 
475 populate_leaves:
476 	/*
477 	 * populate_cache_leaves() may completely setup the cache leaves and
478 	 * shared_cpu_map or it may leave it partially setup.
479 	 */
480 	ret = populate_cache_leaves(cpu);
481 	if (ret)
482 		goto free_ci;
483 
484 	/*
485 	 * For systems using DT for cache hierarchy, fw_token
486 	 * and shared_cpu_map will be set up here only if they are
487 	 * not populated already
488 	 */
489 	ret = cache_shared_cpu_map_setup(cpu);
490 	if (ret) {
491 		pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
492 		goto free_ci;
493 	}
494 
495 	return 0;
496 
497 free_ci:
498 	free_cache_attributes(cpu);
499 	return ret;
500 }
501 
502 /* pointer to cpuX/cache device */
503 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
504 #define per_cpu_cache_dev(cpu)	(per_cpu(ci_cache_dev, cpu))
505 
506 static cpumask_t cache_dev_map;
507 
508 /* pointer to array of devices for cpuX/cache/indexY */
509 static DEFINE_PER_CPU(struct device **, ci_index_dev);
510 #define per_cpu_index_dev(cpu)	(per_cpu(ci_index_dev, cpu))
511 #define per_cache_index_dev(cpu, idx)	((per_cpu_index_dev(cpu))[idx])
512 
513 #define show_one(file_name, object)				\
514 static ssize_t file_name##_show(struct device *dev,		\
515 		struct device_attribute *attr, char *buf)	\
516 {								\
517 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);	\
518 	return sysfs_emit(buf, "%u\n", this_leaf->object);	\
519 }
520 
521 show_one(id, id);
522 show_one(level, level);
523 show_one(coherency_line_size, coherency_line_size);
524 show_one(number_of_sets, number_of_sets);
525 show_one(physical_line_partition, physical_line_partition);
526 show_one(ways_of_associativity, ways_of_associativity);
527 
528 static ssize_t size_show(struct device *dev,
529 			 struct device_attribute *attr, char *buf)
530 {
531 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
532 
533 	return sysfs_emit(buf, "%uK\n", this_leaf->size >> 10);
534 }
535 
536 static ssize_t shared_cpu_map_show(struct device *dev,
537 				   struct device_attribute *attr, char *buf)
538 {
539 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
540 	const struct cpumask *mask = &this_leaf->shared_cpu_map;
541 
542 	return sysfs_emit(buf, "%*pb\n", nr_cpu_ids, mask);
543 }
544 
545 static ssize_t shared_cpu_list_show(struct device *dev,
546 				    struct device_attribute *attr, char *buf)
547 {
548 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
549 	const struct cpumask *mask = &this_leaf->shared_cpu_map;
550 
551 	return sysfs_emit(buf, "%*pbl\n", nr_cpu_ids, mask);
552 }
553 
554 static ssize_t type_show(struct device *dev,
555 			 struct device_attribute *attr, char *buf)
556 {
557 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
558 	const char *output;
559 
560 	switch (this_leaf->type) {
561 	case CACHE_TYPE_DATA:
562 		output = "Data";
563 		break;
564 	case CACHE_TYPE_INST:
565 		output = "Instruction";
566 		break;
567 	case CACHE_TYPE_UNIFIED:
568 		output = "Unified";
569 		break;
570 	default:
571 		return -EINVAL;
572 	}
573 
574 	return sysfs_emit(buf, "%s\n", output);
575 }
576 
577 static ssize_t allocation_policy_show(struct device *dev,
578 				      struct device_attribute *attr, char *buf)
579 {
580 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
581 	unsigned int ci_attr = this_leaf->attributes;
582 	const char *output;
583 
584 	if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
585 		output = "ReadWriteAllocate";
586 	else if (ci_attr & CACHE_READ_ALLOCATE)
587 		output = "ReadAllocate";
588 	else if (ci_attr & CACHE_WRITE_ALLOCATE)
589 		output = "WriteAllocate";
590 	else
591 		return 0;
592 
593 	return sysfs_emit(buf, "%s\n", output);
594 }
595 
596 static ssize_t write_policy_show(struct device *dev,
597 				 struct device_attribute *attr, char *buf)
598 {
599 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
600 	unsigned int ci_attr = this_leaf->attributes;
601 	int n = 0;
602 
603 	if (ci_attr & CACHE_WRITE_THROUGH)
604 		n = sysfs_emit(buf, "WriteThrough\n");
605 	else if (ci_attr & CACHE_WRITE_BACK)
606 		n = sysfs_emit(buf, "WriteBack\n");
607 	return n;
608 }
609 
610 static DEVICE_ATTR_RO(id);
611 static DEVICE_ATTR_RO(level);
612 static DEVICE_ATTR_RO(type);
613 static DEVICE_ATTR_RO(coherency_line_size);
614 static DEVICE_ATTR_RO(ways_of_associativity);
615 static DEVICE_ATTR_RO(number_of_sets);
616 static DEVICE_ATTR_RO(size);
617 static DEVICE_ATTR_RO(allocation_policy);
618 static DEVICE_ATTR_RO(write_policy);
619 static DEVICE_ATTR_RO(shared_cpu_map);
620 static DEVICE_ATTR_RO(shared_cpu_list);
621 static DEVICE_ATTR_RO(physical_line_partition);
622 
623 static struct attribute *cache_default_attrs[] = {
624 	&dev_attr_id.attr,
625 	&dev_attr_type.attr,
626 	&dev_attr_level.attr,
627 	&dev_attr_shared_cpu_map.attr,
628 	&dev_attr_shared_cpu_list.attr,
629 	&dev_attr_coherency_line_size.attr,
630 	&dev_attr_ways_of_associativity.attr,
631 	&dev_attr_number_of_sets.attr,
632 	&dev_attr_size.attr,
633 	&dev_attr_allocation_policy.attr,
634 	&dev_attr_write_policy.attr,
635 	&dev_attr_physical_line_partition.attr,
636 	NULL
637 };
638 
639 static umode_t
640 cache_default_attrs_is_visible(struct kobject *kobj,
641 			       struct attribute *attr, int unused)
642 {
643 	struct device *dev = kobj_to_dev(kobj);
644 	struct cacheinfo *this_leaf = dev_get_drvdata(dev);
645 	const struct cpumask *mask = &this_leaf->shared_cpu_map;
646 	umode_t mode = attr->mode;
647 
648 	if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
649 		return mode;
650 	if ((attr == &dev_attr_type.attr) && this_leaf->type)
651 		return mode;
652 	if ((attr == &dev_attr_level.attr) && this_leaf->level)
653 		return mode;
654 	if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
655 		return mode;
656 	if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
657 		return mode;
658 	if ((attr == &dev_attr_coherency_line_size.attr) &&
659 	    this_leaf->coherency_line_size)
660 		return mode;
661 	if ((attr == &dev_attr_ways_of_associativity.attr) &&
662 	    this_leaf->size) /* allow 0 = full associativity */
663 		return mode;
664 	if ((attr == &dev_attr_number_of_sets.attr) &&
665 	    this_leaf->number_of_sets)
666 		return mode;
667 	if ((attr == &dev_attr_size.attr) && this_leaf->size)
668 		return mode;
669 	if ((attr == &dev_attr_write_policy.attr) &&
670 	    (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
671 		return mode;
672 	if ((attr == &dev_attr_allocation_policy.attr) &&
673 	    (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
674 		return mode;
675 	if ((attr == &dev_attr_physical_line_partition.attr) &&
676 	    this_leaf->physical_line_partition)
677 		return mode;
678 
679 	return 0;
680 }
681 
682 static const struct attribute_group cache_default_group = {
683 	.attrs = cache_default_attrs,
684 	.is_visible = cache_default_attrs_is_visible,
685 };
686 
687 static const struct attribute_group *cache_default_groups[] = {
688 	&cache_default_group,
689 	NULL,
690 };
691 
692 static const struct attribute_group *cache_private_groups[] = {
693 	&cache_default_group,
694 	NULL, /* Place holder for private group */
695 	NULL,
696 };
697 
698 const struct attribute_group *
699 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
700 {
701 	return NULL;
702 }
703 
704 static const struct attribute_group **
705 cache_get_attribute_groups(struct cacheinfo *this_leaf)
706 {
707 	const struct attribute_group *priv_group =
708 			cache_get_priv_group(this_leaf);
709 
710 	if (!priv_group)
711 		return cache_default_groups;
712 
713 	if (!cache_private_groups[1])
714 		cache_private_groups[1] = priv_group;
715 
716 	return cache_private_groups;
717 }
718 
719 /* Add/Remove cache interface for CPU device */
720 static void cpu_cache_sysfs_exit(unsigned int cpu)
721 {
722 	int i;
723 	struct device *ci_dev;
724 
725 	if (per_cpu_index_dev(cpu)) {
726 		for (i = 0; i < cache_leaves(cpu); i++) {
727 			ci_dev = per_cache_index_dev(cpu, i);
728 			if (!ci_dev)
729 				continue;
730 			device_unregister(ci_dev);
731 		}
732 		kfree(per_cpu_index_dev(cpu));
733 		per_cpu_index_dev(cpu) = NULL;
734 	}
735 	device_unregister(per_cpu_cache_dev(cpu));
736 	per_cpu_cache_dev(cpu) = NULL;
737 }
738 
739 static int cpu_cache_sysfs_init(unsigned int cpu)
740 {
741 	struct device *dev = get_cpu_device(cpu);
742 
743 	if (per_cpu_cacheinfo(cpu) == NULL)
744 		return -ENOENT;
745 
746 	per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
747 	if (IS_ERR(per_cpu_cache_dev(cpu)))
748 		return PTR_ERR(per_cpu_cache_dev(cpu));
749 
750 	/* Allocate all required memory */
751 	per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
752 					 sizeof(struct device *), GFP_KERNEL);
753 	if (unlikely(per_cpu_index_dev(cpu) == NULL))
754 		goto err_out;
755 
756 	return 0;
757 
758 err_out:
759 	cpu_cache_sysfs_exit(cpu);
760 	return -ENOMEM;
761 }
762 
763 static int cache_add_dev(unsigned int cpu)
764 {
765 	unsigned int i;
766 	int rc;
767 	struct device *ci_dev, *parent;
768 	struct cacheinfo *this_leaf;
769 	const struct attribute_group **cache_groups;
770 
771 	rc = cpu_cache_sysfs_init(cpu);
772 	if (unlikely(rc < 0))
773 		return rc;
774 
775 	parent = per_cpu_cache_dev(cpu);
776 	for (i = 0; i < cache_leaves(cpu); i++) {
777 		this_leaf = per_cpu_cacheinfo_idx(cpu, i);
778 		if (this_leaf->disable_sysfs)
779 			continue;
780 		if (this_leaf->type == CACHE_TYPE_NOCACHE)
781 			break;
782 		cache_groups = cache_get_attribute_groups(this_leaf);
783 		ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
784 					   "index%1u", i);
785 		if (IS_ERR(ci_dev)) {
786 			rc = PTR_ERR(ci_dev);
787 			goto err;
788 		}
789 		per_cache_index_dev(cpu, i) = ci_dev;
790 	}
791 	cpumask_set_cpu(cpu, &cache_dev_map);
792 
793 	return 0;
794 err:
795 	cpu_cache_sysfs_exit(cpu);
796 	return rc;
797 }
798 
799 static int cacheinfo_cpu_online(unsigned int cpu)
800 {
801 	int rc = detect_cache_attributes(cpu);
802 
803 	if (rc)
804 		return rc;
805 	rc = cache_add_dev(cpu);
806 	if (rc)
807 		free_cache_attributes(cpu);
808 	return rc;
809 }
810 
811 static int cacheinfo_cpu_pre_down(unsigned int cpu)
812 {
813 	if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
814 		cpu_cache_sysfs_exit(cpu);
815 
816 	free_cache_attributes(cpu);
817 	return 0;
818 }
819 
820 static int __init cacheinfo_sysfs_init(void)
821 {
822 	return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE,
823 				 "base/cacheinfo:online",
824 				 cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
825 }
826 device_initcall(cacheinfo_sysfs_init);
827