xref: /openbmc/linux/drivers/base/arch_topology.c (revision e657c18a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arch specific cpu topology information
4  *
5  * Copyright (C) 2016, ARM Ltd.
6  * Written by: Juri Lelli, ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/arch_topology.h>
11 #include <linux/cpu.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/of.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/sched/topology.h>
18 #include <linux/cpuset.h>
19 
20 DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE;
21 
22 void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
23 			 unsigned long max_freq)
24 {
25 	unsigned long scale;
26 	int i;
27 
28 	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
29 
30 	for_each_cpu(i, cpus)
31 		per_cpu(freq_scale, i) = scale;
32 }
33 
34 static DEFINE_MUTEX(cpu_scale_mutex);
35 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
36 
37 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
38 {
39 	per_cpu(cpu_scale, cpu) = capacity;
40 }
41 
42 static ssize_t cpu_capacity_show(struct device *dev,
43 				 struct device_attribute *attr,
44 				 char *buf)
45 {
46 	struct cpu *cpu = container_of(dev, struct cpu, dev);
47 
48 	return sprintf(buf, "%lu\n", topology_get_cpu_scale(NULL, cpu->dev.id));
49 }
50 
51 static void update_topology_flags_workfn(struct work_struct *work);
52 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
53 
54 static ssize_t cpu_capacity_store(struct device *dev,
55 				  struct device_attribute *attr,
56 				  const char *buf,
57 				  size_t count)
58 {
59 	struct cpu *cpu = container_of(dev, struct cpu, dev);
60 	int this_cpu = cpu->dev.id;
61 	int i;
62 	unsigned long new_capacity;
63 	ssize_t ret;
64 
65 	if (!count)
66 		return 0;
67 
68 	ret = kstrtoul(buf, 0, &new_capacity);
69 	if (ret)
70 		return ret;
71 	if (new_capacity > SCHED_CAPACITY_SCALE)
72 		return -EINVAL;
73 
74 	mutex_lock(&cpu_scale_mutex);
75 	for_each_cpu(i, &cpu_topology[this_cpu].core_sibling)
76 		topology_set_cpu_scale(i, new_capacity);
77 	mutex_unlock(&cpu_scale_mutex);
78 
79 	schedule_work(&update_topology_flags_work);
80 
81 	return count;
82 }
83 
84 static DEVICE_ATTR_RW(cpu_capacity);
85 
86 static int register_cpu_capacity_sysctl(void)
87 {
88 	int i;
89 	struct device *cpu;
90 
91 	for_each_possible_cpu(i) {
92 		cpu = get_cpu_device(i);
93 		if (!cpu) {
94 			pr_err("%s: too early to get CPU%d device!\n",
95 			       __func__, i);
96 			continue;
97 		}
98 		device_create_file(cpu, &dev_attr_cpu_capacity);
99 	}
100 
101 	return 0;
102 }
103 subsys_initcall(register_cpu_capacity_sysctl);
104 
105 static int update_topology;
106 
107 int topology_update_cpu_topology(void)
108 {
109 	return update_topology;
110 }
111 
112 /*
113  * Updating the sched_domains can't be done directly from cpufreq callbacks
114  * due to locking, so queue the work for later.
115  */
116 static void update_topology_flags_workfn(struct work_struct *work)
117 {
118 	update_topology = 1;
119 	rebuild_sched_domains();
120 	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
121 	update_topology = 0;
122 }
123 
124 static u32 capacity_scale;
125 static u32 *raw_capacity;
126 
127 static int free_raw_capacity(void)
128 {
129 	kfree(raw_capacity);
130 	raw_capacity = NULL;
131 
132 	return 0;
133 }
134 
135 void topology_normalize_cpu_scale(void)
136 {
137 	u64 capacity;
138 	int cpu;
139 
140 	if (!raw_capacity)
141 		return;
142 
143 	pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
144 	mutex_lock(&cpu_scale_mutex);
145 	for_each_possible_cpu(cpu) {
146 		pr_debug("cpu_capacity: cpu=%d raw_capacity=%u\n",
147 			 cpu, raw_capacity[cpu]);
148 		capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
149 			/ capacity_scale;
150 		topology_set_cpu_scale(cpu, capacity);
151 		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
152 			cpu, topology_get_cpu_scale(NULL, cpu));
153 	}
154 	mutex_unlock(&cpu_scale_mutex);
155 }
156 
157 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
158 {
159 	static bool cap_parsing_failed;
160 	int ret;
161 	u32 cpu_capacity;
162 
163 	if (cap_parsing_failed)
164 		return false;
165 
166 	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
167 				   &cpu_capacity);
168 	if (!ret) {
169 		if (!raw_capacity) {
170 			raw_capacity = kcalloc(num_possible_cpus(),
171 					       sizeof(*raw_capacity),
172 					       GFP_KERNEL);
173 			if (!raw_capacity) {
174 				pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
175 				cap_parsing_failed = true;
176 				return false;
177 			}
178 		}
179 		capacity_scale = max(cpu_capacity, capacity_scale);
180 		raw_capacity[cpu] = cpu_capacity;
181 		pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
182 			cpu_node, raw_capacity[cpu]);
183 	} else {
184 		if (raw_capacity) {
185 			pr_err("cpu_capacity: missing %pOF raw capacity\n",
186 				cpu_node);
187 			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
188 		}
189 		cap_parsing_failed = true;
190 		free_raw_capacity();
191 	}
192 
193 	return !ret;
194 }
195 
196 #ifdef CONFIG_CPU_FREQ
197 static cpumask_var_t cpus_to_visit;
198 static void parsing_done_workfn(struct work_struct *work);
199 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
200 
201 static int
202 init_cpu_capacity_callback(struct notifier_block *nb,
203 			   unsigned long val,
204 			   void *data)
205 {
206 	struct cpufreq_policy *policy = data;
207 	int cpu;
208 
209 	if (!raw_capacity)
210 		return 0;
211 
212 	if (val != CPUFREQ_NOTIFY)
213 		return 0;
214 
215 	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
216 		 cpumask_pr_args(policy->related_cpus),
217 		 cpumask_pr_args(cpus_to_visit));
218 
219 	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
220 
221 	for_each_cpu(cpu, policy->related_cpus) {
222 		raw_capacity[cpu] = topology_get_cpu_scale(NULL, cpu) *
223 				    policy->cpuinfo.max_freq / 1000UL;
224 		capacity_scale = max(raw_capacity[cpu], capacity_scale);
225 	}
226 
227 	if (cpumask_empty(cpus_to_visit)) {
228 		topology_normalize_cpu_scale();
229 		schedule_work(&update_topology_flags_work);
230 		free_raw_capacity();
231 		pr_debug("cpu_capacity: parsing done\n");
232 		schedule_work(&parsing_done_work);
233 	}
234 
235 	return 0;
236 }
237 
238 static struct notifier_block init_cpu_capacity_notifier = {
239 	.notifier_call = init_cpu_capacity_callback,
240 };
241 
242 static int __init register_cpufreq_notifier(void)
243 {
244 	int ret;
245 
246 	/*
247 	 * on ACPI-based systems we need to use the default cpu capacity
248 	 * until we have the necessary code to parse the cpu capacity, so
249 	 * skip registering cpufreq notifier.
250 	 */
251 	if (!acpi_disabled || !raw_capacity)
252 		return -EINVAL;
253 
254 	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
255 		pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
256 		return -ENOMEM;
257 	}
258 
259 	cpumask_copy(cpus_to_visit, cpu_possible_mask);
260 
261 	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
262 					CPUFREQ_POLICY_NOTIFIER);
263 
264 	if (ret)
265 		free_cpumask_var(cpus_to_visit);
266 
267 	return ret;
268 }
269 core_initcall(register_cpufreq_notifier);
270 
271 static void parsing_done_workfn(struct work_struct *work)
272 {
273 	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
274 					 CPUFREQ_POLICY_NOTIFIER);
275 	free_cpumask_var(cpus_to_visit);
276 }
277 
278 #else
279 core_initcall(free_raw_capacity);
280 #endif
281