xref: /openbmc/linux/drivers/base/arch_topology.c (revision 9fa996c5f003beae0d8ca323caf06a2b73e471ec)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arch specific cpu topology information
4  *
5  * Copyright (C) 2016, ARM Ltd.
6  * Written by: Juri Lelli, ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/device.h>
13 #include <linux/of.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/sched/topology.h>
17 #include <linux/cpuset.h>
18 #include <linux/cpumask.h>
19 #include <linux/init.h>
20 #include <linux/percpu.h>
21 #include <linux/sched.h>
22 #include <linux/smp.h>
23 
24 static DEFINE_PER_CPU(struct scale_freq_data *, sft_data);
25 static struct cpumask scale_freq_counters_mask;
26 static bool scale_freq_invariant;
27 
28 static bool supports_scale_freq_counters(const struct cpumask *cpus)
29 {
30 	return cpumask_subset(cpus, &scale_freq_counters_mask);
31 }
32 
33 bool topology_scale_freq_invariant(void)
34 {
35 	return cpufreq_supports_freq_invariance() ||
36 	       supports_scale_freq_counters(cpu_online_mask);
37 }
38 
39 static void update_scale_freq_invariant(bool status)
40 {
41 	if (scale_freq_invariant == status)
42 		return;
43 
44 	/*
45 	 * Task scheduler behavior depends on frequency invariance support,
46 	 * either cpufreq or counter driven. If the support status changes as
47 	 * a result of counter initialisation and use, retrigger the build of
48 	 * scheduling domains to ensure the information is propagated properly.
49 	 */
50 	if (topology_scale_freq_invariant() == status) {
51 		scale_freq_invariant = status;
52 		rebuild_sched_domains_energy();
53 	}
54 }
55 
56 void topology_set_scale_freq_source(struct scale_freq_data *data,
57 				    const struct cpumask *cpus)
58 {
59 	struct scale_freq_data *sfd;
60 	int cpu;
61 
62 	/*
63 	 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
64 	 * supported by cpufreq.
65 	 */
66 	if (cpumask_empty(&scale_freq_counters_mask))
67 		scale_freq_invariant = topology_scale_freq_invariant();
68 
69 	for_each_cpu(cpu, cpus) {
70 		sfd = per_cpu(sft_data, cpu);
71 
72 		/* Use ARCH provided counters whenever possible */
73 		if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
74 			per_cpu(sft_data, cpu) = data;
75 			cpumask_set_cpu(cpu, &scale_freq_counters_mask);
76 		}
77 	}
78 
79 	update_scale_freq_invariant(true);
80 }
81 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
82 
83 void topology_clear_scale_freq_source(enum scale_freq_source source,
84 				      const struct cpumask *cpus)
85 {
86 	struct scale_freq_data *sfd;
87 	int cpu;
88 
89 	for_each_cpu(cpu, cpus) {
90 		sfd = per_cpu(sft_data, cpu);
91 
92 		if (sfd && sfd->source == source) {
93 			per_cpu(sft_data, cpu) = NULL;
94 			cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
95 		}
96 	}
97 
98 	update_scale_freq_invariant(false);
99 }
100 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
101 
102 void topology_scale_freq_tick(void)
103 {
104 	struct scale_freq_data *sfd = *this_cpu_ptr(&sft_data);
105 
106 	if (sfd)
107 		sfd->set_freq_scale();
108 }
109 
110 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
111 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
112 
113 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
114 			     unsigned long max_freq)
115 {
116 	unsigned long scale;
117 	int i;
118 
119 	if (WARN_ON_ONCE(!cur_freq || !max_freq))
120 		return;
121 
122 	/*
123 	 * If the use of counters for FIE is enabled, just return as we don't
124 	 * want to update the scale factor with information from CPUFREQ.
125 	 * Instead the scale factor will be updated from arch_scale_freq_tick.
126 	 */
127 	if (supports_scale_freq_counters(cpus))
128 		return;
129 
130 	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
131 
132 	for_each_cpu(i, cpus)
133 		per_cpu(arch_freq_scale, i) = scale;
134 }
135 
136 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
137 
138 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
139 {
140 	per_cpu(cpu_scale, cpu) = capacity;
141 }
142 
143 DEFINE_PER_CPU(unsigned long, thermal_pressure);
144 
145 void topology_set_thermal_pressure(const struct cpumask *cpus,
146 			       unsigned long th_pressure)
147 {
148 	int cpu;
149 
150 	for_each_cpu(cpu, cpus)
151 		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
152 }
153 
154 static ssize_t cpu_capacity_show(struct device *dev,
155 				 struct device_attribute *attr,
156 				 char *buf)
157 {
158 	struct cpu *cpu = container_of(dev, struct cpu, dev);
159 
160 	return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
161 }
162 
163 static void update_topology_flags_workfn(struct work_struct *work);
164 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
165 
166 static DEVICE_ATTR_RO(cpu_capacity);
167 
168 static int register_cpu_capacity_sysctl(void)
169 {
170 	int i;
171 	struct device *cpu;
172 
173 	for_each_possible_cpu(i) {
174 		cpu = get_cpu_device(i);
175 		if (!cpu) {
176 			pr_err("%s: too early to get CPU%d device!\n",
177 			       __func__, i);
178 			continue;
179 		}
180 		device_create_file(cpu, &dev_attr_cpu_capacity);
181 	}
182 
183 	return 0;
184 }
185 subsys_initcall(register_cpu_capacity_sysctl);
186 
187 static int update_topology;
188 
189 int topology_update_cpu_topology(void)
190 {
191 	return update_topology;
192 }
193 
194 /*
195  * Updating the sched_domains can't be done directly from cpufreq callbacks
196  * due to locking, so queue the work for later.
197  */
198 static void update_topology_flags_workfn(struct work_struct *work)
199 {
200 	update_topology = 1;
201 	rebuild_sched_domains();
202 	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
203 	update_topology = 0;
204 }
205 
206 static DEFINE_PER_CPU(u32, freq_factor) = 1;
207 static u32 *raw_capacity;
208 
209 static int free_raw_capacity(void)
210 {
211 	kfree(raw_capacity);
212 	raw_capacity = NULL;
213 
214 	return 0;
215 }
216 
217 void topology_normalize_cpu_scale(void)
218 {
219 	u64 capacity;
220 	u64 capacity_scale;
221 	int cpu;
222 
223 	if (!raw_capacity)
224 		return;
225 
226 	capacity_scale = 1;
227 	for_each_possible_cpu(cpu) {
228 		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
229 		capacity_scale = max(capacity, capacity_scale);
230 	}
231 
232 	pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
233 	for_each_possible_cpu(cpu) {
234 		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
235 		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
236 			capacity_scale);
237 		topology_set_cpu_scale(cpu, capacity);
238 		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
239 			cpu, topology_get_cpu_scale(cpu));
240 	}
241 }
242 
243 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
244 {
245 	struct clk *cpu_clk;
246 	static bool cap_parsing_failed;
247 	int ret;
248 	u32 cpu_capacity;
249 
250 	if (cap_parsing_failed)
251 		return false;
252 
253 	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
254 				   &cpu_capacity);
255 	if (!ret) {
256 		if (!raw_capacity) {
257 			raw_capacity = kcalloc(num_possible_cpus(),
258 					       sizeof(*raw_capacity),
259 					       GFP_KERNEL);
260 			if (!raw_capacity) {
261 				cap_parsing_failed = true;
262 				return false;
263 			}
264 		}
265 		raw_capacity[cpu] = cpu_capacity;
266 		pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
267 			cpu_node, raw_capacity[cpu]);
268 
269 		/*
270 		 * Update freq_factor for calculating early boot cpu capacities.
271 		 * For non-clk CPU DVFS mechanism, there's no way to get the
272 		 * frequency value now, assuming they are running at the same
273 		 * frequency (by keeping the initial freq_factor value).
274 		 */
275 		cpu_clk = of_clk_get(cpu_node, 0);
276 		if (!PTR_ERR_OR_ZERO(cpu_clk)) {
277 			per_cpu(freq_factor, cpu) =
278 				clk_get_rate(cpu_clk) / 1000;
279 			clk_put(cpu_clk);
280 		}
281 	} else {
282 		if (raw_capacity) {
283 			pr_err("cpu_capacity: missing %pOF raw capacity\n",
284 				cpu_node);
285 			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
286 		}
287 		cap_parsing_failed = true;
288 		free_raw_capacity();
289 	}
290 
291 	return !ret;
292 }
293 
294 #ifdef CONFIG_CPU_FREQ
295 static cpumask_var_t cpus_to_visit;
296 static void parsing_done_workfn(struct work_struct *work);
297 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
298 
299 static int
300 init_cpu_capacity_callback(struct notifier_block *nb,
301 			   unsigned long val,
302 			   void *data)
303 {
304 	struct cpufreq_policy *policy = data;
305 	int cpu;
306 
307 	if (!raw_capacity)
308 		return 0;
309 
310 	if (val != CPUFREQ_CREATE_POLICY)
311 		return 0;
312 
313 	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
314 		 cpumask_pr_args(policy->related_cpus),
315 		 cpumask_pr_args(cpus_to_visit));
316 
317 	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
318 
319 	for_each_cpu(cpu, policy->related_cpus)
320 		per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
321 
322 	if (cpumask_empty(cpus_to_visit)) {
323 		topology_normalize_cpu_scale();
324 		schedule_work(&update_topology_flags_work);
325 		free_raw_capacity();
326 		pr_debug("cpu_capacity: parsing done\n");
327 		schedule_work(&parsing_done_work);
328 	}
329 
330 	return 0;
331 }
332 
333 static struct notifier_block init_cpu_capacity_notifier = {
334 	.notifier_call = init_cpu_capacity_callback,
335 };
336 
337 static int __init register_cpufreq_notifier(void)
338 {
339 	int ret;
340 
341 	/*
342 	 * on ACPI-based systems we need to use the default cpu capacity
343 	 * until we have the necessary code to parse the cpu capacity, so
344 	 * skip registering cpufreq notifier.
345 	 */
346 	if (!acpi_disabled || !raw_capacity)
347 		return -EINVAL;
348 
349 	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
350 		return -ENOMEM;
351 
352 	cpumask_copy(cpus_to_visit, cpu_possible_mask);
353 
354 	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
355 					CPUFREQ_POLICY_NOTIFIER);
356 
357 	if (ret)
358 		free_cpumask_var(cpus_to_visit);
359 
360 	return ret;
361 }
362 core_initcall(register_cpufreq_notifier);
363 
364 static void parsing_done_workfn(struct work_struct *work)
365 {
366 	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
367 					 CPUFREQ_POLICY_NOTIFIER);
368 	free_cpumask_var(cpus_to_visit);
369 }
370 
371 #else
372 core_initcall(free_raw_capacity);
373 #endif
374 
375 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
376 /*
377  * This function returns the logic cpu number of the node.
378  * There are basically three kinds of return values:
379  * (1) logic cpu number which is > 0.
380  * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
381  * there is no possible logical CPU in the kernel to match. This happens
382  * when CONFIG_NR_CPUS is configure to be smaller than the number of
383  * CPU nodes in DT. We need to just ignore this case.
384  * (3) -1 if the node does not exist in the device tree
385  */
386 static int __init get_cpu_for_node(struct device_node *node)
387 {
388 	struct device_node *cpu_node;
389 	int cpu;
390 
391 	cpu_node = of_parse_phandle(node, "cpu", 0);
392 	if (!cpu_node)
393 		return -1;
394 
395 	cpu = of_cpu_node_to_id(cpu_node);
396 	if (cpu >= 0)
397 		topology_parse_cpu_capacity(cpu_node, cpu);
398 	else
399 		pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
400 			cpu_node, cpumask_pr_args(cpu_possible_mask));
401 
402 	of_node_put(cpu_node);
403 	return cpu;
404 }
405 
406 static int __init parse_core(struct device_node *core, int package_id,
407 			     int core_id)
408 {
409 	char name[20];
410 	bool leaf = true;
411 	int i = 0;
412 	int cpu;
413 	struct device_node *t;
414 
415 	do {
416 		snprintf(name, sizeof(name), "thread%d", i);
417 		t = of_get_child_by_name(core, name);
418 		if (t) {
419 			leaf = false;
420 			cpu = get_cpu_for_node(t);
421 			if (cpu >= 0) {
422 				cpu_topology[cpu].package_id = package_id;
423 				cpu_topology[cpu].core_id = core_id;
424 				cpu_topology[cpu].thread_id = i;
425 			} else if (cpu != -ENODEV) {
426 				pr_err("%pOF: Can't get CPU for thread\n", t);
427 				of_node_put(t);
428 				return -EINVAL;
429 			}
430 			of_node_put(t);
431 		}
432 		i++;
433 	} while (t);
434 
435 	cpu = get_cpu_for_node(core);
436 	if (cpu >= 0) {
437 		if (!leaf) {
438 			pr_err("%pOF: Core has both threads and CPU\n",
439 			       core);
440 			return -EINVAL;
441 		}
442 
443 		cpu_topology[cpu].package_id = package_id;
444 		cpu_topology[cpu].core_id = core_id;
445 	} else if (leaf && cpu != -ENODEV) {
446 		pr_err("%pOF: Can't get CPU for leaf core\n", core);
447 		return -EINVAL;
448 	}
449 
450 	return 0;
451 }
452 
453 static int __init parse_cluster(struct device_node *cluster, int depth)
454 {
455 	char name[20];
456 	bool leaf = true;
457 	bool has_cores = false;
458 	struct device_node *c;
459 	static int package_id __initdata;
460 	int core_id = 0;
461 	int i, ret;
462 
463 	/*
464 	 * First check for child clusters; we currently ignore any
465 	 * information about the nesting of clusters and present the
466 	 * scheduler with a flat list of them.
467 	 */
468 	i = 0;
469 	do {
470 		snprintf(name, sizeof(name), "cluster%d", i);
471 		c = of_get_child_by_name(cluster, name);
472 		if (c) {
473 			leaf = false;
474 			ret = parse_cluster(c, depth + 1);
475 			of_node_put(c);
476 			if (ret != 0)
477 				return ret;
478 		}
479 		i++;
480 	} while (c);
481 
482 	/* Now check for cores */
483 	i = 0;
484 	do {
485 		snprintf(name, sizeof(name), "core%d", i);
486 		c = of_get_child_by_name(cluster, name);
487 		if (c) {
488 			has_cores = true;
489 
490 			if (depth == 0) {
491 				pr_err("%pOF: cpu-map children should be clusters\n",
492 				       c);
493 				of_node_put(c);
494 				return -EINVAL;
495 			}
496 
497 			if (leaf) {
498 				ret = parse_core(c, package_id, core_id++);
499 			} else {
500 				pr_err("%pOF: Non-leaf cluster with core %s\n",
501 				       cluster, name);
502 				ret = -EINVAL;
503 			}
504 
505 			of_node_put(c);
506 			if (ret != 0)
507 				return ret;
508 		}
509 		i++;
510 	} while (c);
511 
512 	if (leaf && !has_cores)
513 		pr_warn("%pOF: empty cluster\n", cluster);
514 
515 	if (leaf)
516 		package_id++;
517 
518 	return 0;
519 }
520 
521 static int __init parse_dt_topology(void)
522 {
523 	struct device_node *cn, *map;
524 	int ret = 0;
525 	int cpu;
526 
527 	cn = of_find_node_by_path("/cpus");
528 	if (!cn) {
529 		pr_err("No CPU information found in DT\n");
530 		return 0;
531 	}
532 
533 	/*
534 	 * When topology is provided cpu-map is essentially a root
535 	 * cluster with restricted subnodes.
536 	 */
537 	map = of_get_child_by_name(cn, "cpu-map");
538 	if (!map)
539 		goto out;
540 
541 	ret = parse_cluster(map, 0);
542 	if (ret != 0)
543 		goto out_map;
544 
545 	topology_normalize_cpu_scale();
546 
547 	/*
548 	 * Check that all cores are in the topology; the SMP code will
549 	 * only mark cores described in the DT as possible.
550 	 */
551 	for_each_possible_cpu(cpu)
552 		if (cpu_topology[cpu].package_id == -1)
553 			ret = -EINVAL;
554 
555 out_map:
556 	of_node_put(map);
557 out:
558 	of_node_put(cn);
559 	return ret;
560 }
561 #endif
562 
563 /*
564  * cpu topology table
565  */
566 struct cpu_topology cpu_topology[NR_CPUS];
567 EXPORT_SYMBOL_GPL(cpu_topology);
568 
569 const struct cpumask *cpu_coregroup_mask(int cpu)
570 {
571 	const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
572 
573 	/* Find the smaller of NUMA, core or LLC siblings */
574 	if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
575 		/* not numa in package, lets use the package siblings */
576 		core_mask = &cpu_topology[cpu].core_sibling;
577 	}
578 	if (cpu_topology[cpu].llc_id != -1) {
579 		if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
580 			core_mask = &cpu_topology[cpu].llc_sibling;
581 	}
582 
583 	return core_mask;
584 }
585 
586 void update_siblings_masks(unsigned int cpuid)
587 {
588 	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
589 	int cpu;
590 
591 	/* update core and thread sibling masks */
592 	for_each_online_cpu(cpu) {
593 		cpu_topo = &cpu_topology[cpu];
594 
595 		if (cpuid_topo->llc_id == cpu_topo->llc_id) {
596 			cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
597 			cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
598 		}
599 
600 		if (cpuid_topo->package_id != cpu_topo->package_id)
601 			continue;
602 
603 		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
604 		cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
605 
606 		if (cpuid_topo->core_id != cpu_topo->core_id)
607 			continue;
608 
609 		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
610 		cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
611 	}
612 }
613 
614 static void clear_cpu_topology(int cpu)
615 {
616 	struct cpu_topology *cpu_topo = &cpu_topology[cpu];
617 
618 	cpumask_clear(&cpu_topo->llc_sibling);
619 	cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
620 
621 	cpumask_clear(&cpu_topo->core_sibling);
622 	cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
623 	cpumask_clear(&cpu_topo->thread_sibling);
624 	cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
625 }
626 
627 void __init reset_cpu_topology(void)
628 {
629 	unsigned int cpu;
630 
631 	for_each_possible_cpu(cpu) {
632 		struct cpu_topology *cpu_topo = &cpu_topology[cpu];
633 
634 		cpu_topo->thread_id = -1;
635 		cpu_topo->core_id = -1;
636 		cpu_topo->package_id = -1;
637 		cpu_topo->llc_id = -1;
638 
639 		clear_cpu_topology(cpu);
640 	}
641 }
642 
643 void remove_cpu_topology(unsigned int cpu)
644 {
645 	int sibling;
646 
647 	for_each_cpu(sibling, topology_core_cpumask(cpu))
648 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
649 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
650 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
651 	for_each_cpu(sibling, topology_llc_cpumask(cpu))
652 		cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
653 
654 	clear_cpu_topology(cpu);
655 }
656 
657 __weak int __init parse_acpi_topology(void)
658 {
659 	return 0;
660 }
661 
662 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
663 void __init init_cpu_topology(void)
664 {
665 	reset_cpu_topology();
666 
667 	/*
668 	 * Discard anything that was parsed if we hit an error so we
669 	 * don't use partial information.
670 	 */
671 	if (parse_acpi_topology())
672 		reset_cpu_topology();
673 	else if (of_have_populated_dt() && parse_dt_topology())
674 		reset_cpu_topology();
675 }
676 #endif
677