xref: /openbmc/linux/drivers/base/arch_topology.c (revision 827beb77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arch specific cpu topology information
4  *
5  * Copyright (C) 2016, ARM Ltd.
6  * Written by: Juri Lelli, ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/device.h>
13 #include <linux/of.h>
14 #include <linux/slab.h>
15 #include <linux/string.h>
16 #include <linux/sched/topology.h>
17 #include <linux/cpuset.h>
18 #include <linux/cpumask.h>
19 #include <linux/init.h>
20 #include <linux/percpu.h>
21 #include <linux/rcupdate.h>
22 #include <linux/sched.h>
23 #include <linux/smp.h>
24 
25 static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
26 static struct cpumask scale_freq_counters_mask;
27 static bool scale_freq_invariant;
28 
29 static bool supports_scale_freq_counters(const struct cpumask *cpus)
30 {
31 	return cpumask_subset(cpus, &scale_freq_counters_mask);
32 }
33 
34 bool topology_scale_freq_invariant(void)
35 {
36 	return cpufreq_supports_freq_invariance() ||
37 	       supports_scale_freq_counters(cpu_online_mask);
38 }
39 
40 static void update_scale_freq_invariant(bool status)
41 {
42 	if (scale_freq_invariant == status)
43 		return;
44 
45 	/*
46 	 * Task scheduler behavior depends on frequency invariance support,
47 	 * either cpufreq or counter driven. If the support status changes as
48 	 * a result of counter initialisation and use, retrigger the build of
49 	 * scheduling domains to ensure the information is propagated properly.
50 	 */
51 	if (topology_scale_freq_invariant() == status) {
52 		scale_freq_invariant = status;
53 		rebuild_sched_domains_energy();
54 	}
55 }
56 
57 void topology_set_scale_freq_source(struct scale_freq_data *data,
58 				    const struct cpumask *cpus)
59 {
60 	struct scale_freq_data *sfd;
61 	int cpu;
62 
63 	/*
64 	 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
65 	 * supported by cpufreq.
66 	 */
67 	if (cpumask_empty(&scale_freq_counters_mask))
68 		scale_freq_invariant = topology_scale_freq_invariant();
69 
70 	rcu_read_lock();
71 
72 	for_each_cpu(cpu, cpus) {
73 		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
74 
75 		/* Use ARCH provided counters whenever possible */
76 		if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
77 			rcu_assign_pointer(per_cpu(sft_data, cpu), data);
78 			cpumask_set_cpu(cpu, &scale_freq_counters_mask);
79 		}
80 	}
81 
82 	rcu_read_unlock();
83 
84 	update_scale_freq_invariant(true);
85 }
86 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
87 
88 void topology_clear_scale_freq_source(enum scale_freq_source source,
89 				      const struct cpumask *cpus)
90 {
91 	struct scale_freq_data *sfd;
92 	int cpu;
93 
94 	rcu_read_lock();
95 
96 	for_each_cpu(cpu, cpus) {
97 		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
98 
99 		if (sfd && sfd->source == source) {
100 			rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
101 			cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
102 		}
103 	}
104 
105 	rcu_read_unlock();
106 
107 	/*
108 	 * Make sure all references to previous sft_data are dropped to avoid
109 	 * use-after-free races.
110 	 */
111 	synchronize_rcu();
112 
113 	update_scale_freq_invariant(false);
114 }
115 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
116 
117 void topology_scale_freq_tick(void)
118 {
119 	struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
120 
121 	if (sfd)
122 		sfd->set_freq_scale();
123 }
124 
125 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
126 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
127 
128 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
129 			     unsigned long max_freq)
130 {
131 	unsigned long scale;
132 	int i;
133 
134 	if (WARN_ON_ONCE(!cur_freq || !max_freq))
135 		return;
136 
137 	/*
138 	 * If the use of counters for FIE is enabled, just return as we don't
139 	 * want to update the scale factor with information from CPUFREQ.
140 	 * Instead the scale factor will be updated from arch_scale_freq_tick.
141 	 */
142 	if (supports_scale_freq_counters(cpus))
143 		return;
144 
145 	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
146 
147 	for_each_cpu(i, cpus)
148 		per_cpu(arch_freq_scale, i) = scale;
149 }
150 
151 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
152 EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
153 
154 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
155 {
156 	per_cpu(cpu_scale, cpu) = capacity;
157 }
158 
159 DEFINE_PER_CPU(unsigned long, thermal_pressure);
160 
161 void topology_set_thermal_pressure(const struct cpumask *cpus,
162 			       unsigned long th_pressure)
163 {
164 	int cpu;
165 
166 	for_each_cpu(cpu, cpus)
167 		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
168 }
169 EXPORT_SYMBOL_GPL(topology_set_thermal_pressure);
170 
171 static ssize_t cpu_capacity_show(struct device *dev,
172 				 struct device_attribute *attr,
173 				 char *buf)
174 {
175 	struct cpu *cpu = container_of(dev, struct cpu, dev);
176 
177 	return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
178 }
179 
180 static void update_topology_flags_workfn(struct work_struct *work);
181 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
182 
183 static DEVICE_ATTR_RO(cpu_capacity);
184 
185 static int register_cpu_capacity_sysctl(void)
186 {
187 	int i;
188 	struct device *cpu;
189 
190 	for_each_possible_cpu(i) {
191 		cpu = get_cpu_device(i);
192 		if (!cpu) {
193 			pr_err("%s: too early to get CPU%d device!\n",
194 			       __func__, i);
195 			continue;
196 		}
197 		device_create_file(cpu, &dev_attr_cpu_capacity);
198 	}
199 
200 	return 0;
201 }
202 subsys_initcall(register_cpu_capacity_sysctl);
203 
204 static int update_topology;
205 
206 int topology_update_cpu_topology(void)
207 {
208 	return update_topology;
209 }
210 
211 /*
212  * Updating the sched_domains can't be done directly from cpufreq callbacks
213  * due to locking, so queue the work for later.
214  */
215 static void update_topology_flags_workfn(struct work_struct *work)
216 {
217 	update_topology = 1;
218 	rebuild_sched_domains();
219 	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
220 	update_topology = 0;
221 }
222 
223 static DEFINE_PER_CPU(u32, freq_factor) = 1;
224 static u32 *raw_capacity;
225 
226 static int free_raw_capacity(void)
227 {
228 	kfree(raw_capacity);
229 	raw_capacity = NULL;
230 
231 	return 0;
232 }
233 
234 void topology_normalize_cpu_scale(void)
235 {
236 	u64 capacity;
237 	u64 capacity_scale;
238 	int cpu;
239 
240 	if (!raw_capacity)
241 		return;
242 
243 	capacity_scale = 1;
244 	for_each_possible_cpu(cpu) {
245 		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
246 		capacity_scale = max(capacity, capacity_scale);
247 	}
248 
249 	pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
250 	for_each_possible_cpu(cpu) {
251 		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
252 		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
253 			capacity_scale);
254 		topology_set_cpu_scale(cpu, capacity);
255 		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
256 			cpu, topology_get_cpu_scale(cpu));
257 	}
258 }
259 
260 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
261 {
262 	struct clk *cpu_clk;
263 	static bool cap_parsing_failed;
264 	int ret;
265 	u32 cpu_capacity;
266 
267 	if (cap_parsing_failed)
268 		return false;
269 
270 	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
271 				   &cpu_capacity);
272 	if (!ret) {
273 		if (!raw_capacity) {
274 			raw_capacity = kcalloc(num_possible_cpus(),
275 					       sizeof(*raw_capacity),
276 					       GFP_KERNEL);
277 			if (!raw_capacity) {
278 				cap_parsing_failed = true;
279 				return false;
280 			}
281 		}
282 		raw_capacity[cpu] = cpu_capacity;
283 		pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
284 			cpu_node, raw_capacity[cpu]);
285 
286 		/*
287 		 * Update freq_factor for calculating early boot cpu capacities.
288 		 * For non-clk CPU DVFS mechanism, there's no way to get the
289 		 * frequency value now, assuming they are running at the same
290 		 * frequency (by keeping the initial freq_factor value).
291 		 */
292 		cpu_clk = of_clk_get(cpu_node, 0);
293 		if (!PTR_ERR_OR_ZERO(cpu_clk)) {
294 			per_cpu(freq_factor, cpu) =
295 				clk_get_rate(cpu_clk) / 1000;
296 			clk_put(cpu_clk);
297 		}
298 	} else {
299 		if (raw_capacity) {
300 			pr_err("cpu_capacity: missing %pOF raw capacity\n",
301 				cpu_node);
302 			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
303 		}
304 		cap_parsing_failed = true;
305 		free_raw_capacity();
306 	}
307 
308 	return !ret;
309 }
310 
311 #ifdef CONFIG_CPU_FREQ
312 static cpumask_var_t cpus_to_visit;
313 static void parsing_done_workfn(struct work_struct *work);
314 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
315 
316 static int
317 init_cpu_capacity_callback(struct notifier_block *nb,
318 			   unsigned long val,
319 			   void *data)
320 {
321 	struct cpufreq_policy *policy = data;
322 	int cpu;
323 
324 	if (!raw_capacity)
325 		return 0;
326 
327 	if (val != CPUFREQ_CREATE_POLICY)
328 		return 0;
329 
330 	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
331 		 cpumask_pr_args(policy->related_cpus),
332 		 cpumask_pr_args(cpus_to_visit));
333 
334 	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
335 
336 	for_each_cpu(cpu, policy->related_cpus)
337 		per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
338 
339 	if (cpumask_empty(cpus_to_visit)) {
340 		topology_normalize_cpu_scale();
341 		schedule_work(&update_topology_flags_work);
342 		free_raw_capacity();
343 		pr_debug("cpu_capacity: parsing done\n");
344 		schedule_work(&parsing_done_work);
345 	}
346 
347 	return 0;
348 }
349 
350 static struct notifier_block init_cpu_capacity_notifier = {
351 	.notifier_call = init_cpu_capacity_callback,
352 };
353 
354 static int __init register_cpufreq_notifier(void)
355 {
356 	int ret;
357 
358 	/*
359 	 * on ACPI-based systems we need to use the default cpu capacity
360 	 * until we have the necessary code to parse the cpu capacity, so
361 	 * skip registering cpufreq notifier.
362 	 */
363 	if (!acpi_disabled || !raw_capacity)
364 		return -EINVAL;
365 
366 	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
367 		return -ENOMEM;
368 
369 	cpumask_copy(cpus_to_visit, cpu_possible_mask);
370 
371 	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
372 					CPUFREQ_POLICY_NOTIFIER);
373 
374 	if (ret)
375 		free_cpumask_var(cpus_to_visit);
376 
377 	return ret;
378 }
379 core_initcall(register_cpufreq_notifier);
380 
381 static void parsing_done_workfn(struct work_struct *work)
382 {
383 	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
384 					 CPUFREQ_POLICY_NOTIFIER);
385 	free_cpumask_var(cpus_to_visit);
386 }
387 
388 #else
389 core_initcall(free_raw_capacity);
390 #endif
391 
392 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
393 /*
394  * This function returns the logic cpu number of the node.
395  * There are basically three kinds of return values:
396  * (1) logic cpu number which is > 0.
397  * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
398  * there is no possible logical CPU in the kernel to match. This happens
399  * when CONFIG_NR_CPUS is configure to be smaller than the number of
400  * CPU nodes in DT. We need to just ignore this case.
401  * (3) -1 if the node does not exist in the device tree
402  */
403 static int __init get_cpu_for_node(struct device_node *node)
404 {
405 	struct device_node *cpu_node;
406 	int cpu;
407 
408 	cpu_node = of_parse_phandle(node, "cpu", 0);
409 	if (!cpu_node)
410 		return -1;
411 
412 	cpu = of_cpu_node_to_id(cpu_node);
413 	if (cpu >= 0)
414 		topology_parse_cpu_capacity(cpu_node, cpu);
415 	else
416 		pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
417 			cpu_node, cpumask_pr_args(cpu_possible_mask));
418 
419 	of_node_put(cpu_node);
420 	return cpu;
421 }
422 
423 static int __init parse_core(struct device_node *core, int package_id,
424 			     int core_id)
425 {
426 	char name[20];
427 	bool leaf = true;
428 	int i = 0;
429 	int cpu;
430 	struct device_node *t;
431 
432 	do {
433 		snprintf(name, sizeof(name), "thread%d", i);
434 		t = of_get_child_by_name(core, name);
435 		if (t) {
436 			leaf = false;
437 			cpu = get_cpu_for_node(t);
438 			if (cpu >= 0) {
439 				cpu_topology[cpu].package_id = package_id;
440 				cpu_topology[cpu].core_id = core_id;
441 				cpu_topology[cpu].thread_id = i;
442 			} else if (cpu != -ENODEV) {
443 				pr_err("%pOF: Can't get CPU for thread\n", t);
444 				of_node_put(t);
445 				return -EINVAL;
446 			}
447 			of_node_put(t);
448 		}
449 		i++;
450 	} while (t);
451 
452 	cpu = get_cpu_for_node(core);
453 	if (cpu >= 0) {
454 		if (!leaf) {
455 			pr_err("%pOF: Core has both threads and CPU\n",
456 			       core);
457 			return -EINVAL;
458 		}
459 
460 		cpu_topology[cpu].package_id = package_id;
461 		cpu_topology[cpu].core_id = core_id;
462 	} else if (leaf && cpu != -ENODEV) {
463 		pr_err("%pOF: Can't get CPU for leaf core\n", core);
464 		return -EINVAL;
465 	}
466 
467 	return 0;
468 }
469 
470 static int __init parse_cluster(struct device_node *cluster, int depth)
471 {
472 	char name[20];
473 	bool leaf = true;
474 	bool has_cores = false;
475 	struct device_node *c;
476 	static int package_id __initdata;
477 	int core_id = 0;
478 	int i, ret;
479 
480 	/*
481 	 * First check for child clusters; we currently ignore any
482 	 * information about the nesting of clusters and present the
483 	 * scheduler with a flat list of them.
484 	 */
485 	i = 0;
486 	do {
487 		snprintf(name, sizeof(name), "cluster%d", i);
488 		c = of_get_child_by_name(cluster, name);
489 		if (c) {
490 			leaf = false;
491 			ret = parse_cluster(c, depth + 1);
492 			of_node_put(c);
493 			if (ret != 0)
494 				return ret;
495 		}
496 		i++;
497 	} while (c);
498 
499 	/* Now check for cores */
500 	i = 0;
501 	do {
502 		snprintf(name, sizeof(name), "core%d", i);
503 		c = of_get_child_by_name(cluster, name);
504 		if (c) {
505 			has_cores = true;
506 
507 			if (depth == 0) {
508 				pr_err("%pOF: cpu-map children should be clusters\n",
509 				       c);
510 				of_node_put(c);
511 				return -EINVAL;
512 			}
513 
514 			if (leaf) {
515 				ret = parse_core(c, package_id, core_id++);
516 			} else {
517 				pr_err("%pOF: Non-leaf cluster with core %s\n",
518 				       cluster, name);
519 				ret = -EINVAL;
520 			}
521 
522 			of_node_put(c);
523 			if (ret != 0)
524 				return ret;
525 		}
526 		i++;
527 	} while (c);
528 
529 	if (leaf && !has_cores)
530 		pr_warn("%pOF: empty cluster\n", cluster);
531 
532 	if (leaf)
533 		package_id++;
534 
535 	return 0;
536 }
537 
538 static int __init parse_dt_topology(void)
539 {
540 	struct device_node *cn, *map;
541 	int ret = 0;
542 	int cpu;
543 
544 	cn = of_find_node_by_path("/cpus");
545 	if (!cn) {
546 		pr_err("No CPU information found in DT\n");
547 		return 0;
548 	}
549 
550 	/*
551 	 * When topology is provided cpu-map is essentially a root
552 	 * cluster with restricted subnodes.
553 	 */
554 	map = of_get_child_by_name(cn, "cpu-map");
555 	if (!map)
556 		goto out;
557 
558 	ret = parse_cluster(map, 0);
559 	if (ret != 0)
560 		goto out_map;
561 
562 	topology_normalize_cpu_scale();
563 
564 	/*
565 	 * Check that all cores are in the topology; the SMP code will
566 	 * only mark cores described in the DT as possible.
567 	 */
568 	for_each_possible_cpu(cpu)
569 		if (cpu_topology[cpu].package_id == -1)
570 			ret = -EINVAL;
571 
572 out_map:
573 	of_node_put(map);
574 out:
575 	of_node_put(cn);
576 	return ret;
577 }
578 #endif
579 
580 /*
581  * cpu topology table
582  */
583 struct cpu_topology cpu_topology[NR_CPUS];
584 EXPORT_SYMBOL_GPL(cpu_topology);
585 
586 const struct cpumask *cpu_coregroup_mask(int cpu)
587 {
588 	const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
589 
590 	/* Find the smaller of NUMA, core or LLC siblings */
591 	if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
592 		/* not numa in package, lets use the package siblings */
593 		core_mask = &cpu_topology[cpu].core_sibling;
594 	}
595 	if (cpu_topology[cpu].llc_id != -1) {
596 		if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
597 			core_mask = &cpu_topology[cpu].llc_sibling;
598 	}
599 
600 	return core_mask;
601 }
602 
603 const struct cpumask *cpu_clustergroup_mask(int cpu)
604 {
605 	return &cpu_topology[cpu].cluster_sibling;
606 }
607 
608 void update_siblings_masks(unsigned int cpuid)
609 {
610 	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
611 	int cpu;
612 
613 	/* update core and thread sibling masks */
614 	for_each_online_cpu(cpu) {
615 		cpu_topo = &cpu_topology[cpu];
616 
617 		if (cpuid_topo->llc_id == cpu_topo->llc_id) {
618 			cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
619 			cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
620 		}
621 
622 		if (cpuid_topo->package_id != cpu_topo->package_id)
623 			continue;
624 
625 		if (cpuid_topo->cluster_id == cpu_topo->cluster_id &&
626 		    cpuid_topo->cluster_id != -1) {
627 			cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
628 			cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
629 		}
630 
631 		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
632 		cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
633 
634 		if (cpuid_topo->core_id != cpu_topo->core_id)
635 			continue;
636 
637 		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
638 		cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
639 	}
640 }
641 
642 static void clear_cpu_topology(int cpu)
643 {
644 	struct cpu_topology *cpu_topo = &cpu_topology[cpu];
645 
646 	cpumask_clear(&cpu_topo->llc_sibling);
647 	cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
648 
649 	cpumask_clear(&cpu_topo->cluster_sibling);
650 	cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
651 
652 	cpumask_clear(&cpu_topo->core_sibling);
653 	cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
654 	cpumask_clear(&cpu_topo->thread_sibling);
655 	cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
656 }
657 
658 void __init reset_cpu_topology(void)
659 {
660 	unsigned int cpu;
661 
662 	for_each_possible_cpu(cpu) {
663 		struct cpu_topology *cpu_topo = &cpu_topology[cpu];
664 
665 		cpu_topo->thread_id = -1;
666 		cpu_topo->core_id = -1;
667 		cpu_topo->cluster_id = -1;
668 		cpu_topo->package_id = -1;
669 		cpu_topo->llc_id = -1;
670 
671 		clear_cpu_topology(cpu);
672 	}
673 }
674 
675 void remove_cpu_topology(unsigned int cpu)
676 {
677 	int sibling;
678 
679 	for_each_cpu(sibling, topology_core_cpumask(cpu))
680 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
681 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
682 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
683 	for_each_cpu(sibling, topology_llc_cpumask(cpu))
684 		cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
685 
686 	clear_cpu_topology(cpu);
687 }
688 
689 __weak int __init parse_acpi_topology(void)
690 {
691 	return 0;
692 }
693 
694 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
695 void __init init_cpu_topology(void)
696 {
697 	reset_cpu_topology();
698 
699 	/*
700 	 * Discard anything that was parsed if we hit an error so we
701 	 * don't use partial information.
702 	 */
703 	if (parse_acpi_topology())
704 		reset_cpu_topology();
705 	else if (of_have_populated_dt() && parse_dt_topology())
706 		reset_cpu_topology();
707 }
708 #endif
709