1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Arch specific cpu topology information 4 * 5 * Copyright (C) 2016, ARM Ltd. 6 * Written by: Juri Lelli, ARM Ltd. 7 */ 8 9 #include <linux/acpi.h> 10 #include <linux/cpu.h> 11 #include <linux/cpufreq.h> 12 #include <linux/device.h> 13 #include <linux/of.h> 14 #include <linux/slab.h> 15 #include <linux/sched/topology.h> 16 #include <linux/cpuset.h> 17 #include <linux/cpumask.h> 18 #include <linux/init.h> 19 #include <linux/rcupdate.h> 20 #include <linux/sched.h> 21 22 static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data); 23 static struct cpumask scale_freq_counters_mask; 24 static bool scale_freq_invariant; 25 static DEFINE_PER_CPU(u32, freq_factor) = 1; 26 27 static bool supports_scale_freq_counters(const struct cpumask *cpus) 28 { 29 return cpumask_subset(cpus, &scale_freq_counters_mask); 30 } 31 32 bool topology_scale_freq_invariant(void) 33 { 34 return cpufreq_supports_freq_invariance() || 35 supports_scale_freq_counters(cpu_online_mask); 36 } 37 38 static void update_scale_freq_invariant(bool status) 39 { 40 if (scale_freq_invariant == status) 41 return; 42 43 /* 44 * Task scheduler behavior depends on frequency invariance support, 45 * either cpufreq or counter driven. If the support status changes as 46 * a result of counter initialisation and use, retrigger the build of 47 * scheduling domains to ensure the information is propagated properly. 48 */ 49 if (topology_scale_freq_invariant() == status) { 50 scale_freq_invariant = status; 51 rebuild_sched_domains_energy(); 52 } 53 } 54 55 void topology_set_scale_freq_source(struct scale_freq_data *data, 56 const struct cpumask *cpus) 57 { 58 struct scale_freq_data *sfd; 59 int cpu; 60 61 /* 62 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is 63 * supported by cpufreq. 64 */ 65 if (cpumask_empty(&scale_freq_counters_mask)) 66 scale_freq_invariant = topology_scale_freq_invariant(); 67 68 rcu_read_lock(); 69 70 for_each_cpu(cpu, cpus) { 71 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu)); 72 73 /* Use ARCH provided counters whenever possible */ 74 if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) { 75 rcu_assign_pointer(per_cpu(sft_data, cpu), data); 76 cpumask_set_cpu(cpu, &scale_freq_counters_mask); 77 } 78 } 79 80 rcu_read_unlock(); 81 82 update_scale_freq_invariant(true); 83 } 84 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source); 85 86 void topology_clear_scale_freq_source(enum scale_freq_source source, 87 const struct cpumask *cpus) 88 { 89 struct scale_freq_data *sfd; 90 int cpu; 91 92 rcu_read_lock(); 93 94 for_each_cpu(cpu, cpus) { 95 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu)); 96 97 if (sfd && sfd->source == source) { 98 rcu_assign_pointer(per_cpu(sft_data, cpu), NULL); 99 cpumask_clear_cpu(cpu, &scale_freq_counters_mask); 100 } 101 } 102 103 rcu_read_unlock(); 104 105 /* 106 * Make sure all references to previous sft_data are dropped to avoid 107 * use-after-free races. 108 */ 109 synchronize_rcu(); 110 111 update_scale_freq_invariant(false); 112 } 113 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source); 114 115 void topology_scale_freq_tick(void) 116 { 117 struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data)); 118 119 if (sfd) 120 sfd->set_freq_scale(); 121 } 122 123 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE; 124 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale); 125 126 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq, 127 unsigned long max_freq) 128 { 129 unsigned long scale; 130 int i; 131 132 if (WARN_ON_ONCE(!cur_freq || !max_freq)) 133 return; 134 135 /* 136 * If the use of counters for FIE is enabled, just return as we don't 137 * want to update the scale factor with information from CPUFREQ. 138 * Instead the scale factor will be updated from arch_scale_freq_tick. 139 */ 140 if (supports_scale_freq_counters(cpus)) 141 return; 142 143 scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq; 144 145 for_each_cpu(i, cpus) 146 per_cpu(arch_freq_scale, i) = scale; 147 } 148 149 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE; 150 EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale); 151 152 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity) 153 { 154 per_cpu(cpu_scale, cpu) = capacity; 155 } 156 157 DEFINE_PER_CPU(unsigned long, thermal_pressure); 158 159 /** 160 * topology_update_thermal_pressure() - Update thermal pressure for CPUs 161 * @cpus : The related CPUs for which capacity has been reduced 162 * @capped_freq : The maximum allowed frequency that CPUs can run at 163 * 164 * Update the value of thermal pressure for all @cpus in the mask. The 165 * cpumask should include all (online+offline) affected CPUs, to avoid 166 * operating on stale data when hot-plug is used for some CPUs. The 167 * @capped_freq reflects the currently allowed max CPUs frequency due to 168 * thermal capping. It might be also a boost frequency value, which is bigger 169 * than the internal 'freq_factor' max frequency. In such case the pressure 170 * value should simply be removed, since this is an indication that there is 171 * no thermal throttling. The @capped_freq must be provided in kHz. 172 */ 173 void topology_update_thermal_pressure(const struct cpumask *cpus, 174 unsigned long capped_freq) 175 { 176 unsigned long max_capacity, capacity, th_pressure; 177 u32 max_freq; 178 int cpu; 179 180 cpu = cpumask_first(cpus); 181 max_capacity = arch_scale_cpu_capacity(cpu); 182 max_freq = per_cpu(freq_factor, cpu); 183 184 /* Convert to MHz scale which is used in 'freq_factor' */ 185 capped_freq /= 1000; 186 187 /* 188 * Handle properly the boost frequencies, which should simply clean 189 * the thermal pressure value. 190 */ 191 if (max_freq <= capped_freq) 192 capacity = max_capacity; 193 else 194 capacity = mult_frac(max_capacity, capped_freq, max_freq); 195 196 th_pressure = max_capacity - capacity; 197 198 for_each_cpu(cpu, cpus) 199 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure); 200 } 201 EXPORT_SYMBOL_GPL(topology_update_thermal_pressure); 202 203 static ssize_t cpu_capacity_show(struct device *dev, 204 struct device_attribute *attr, 205 char *buf) 206 { 207 struct cpu *cpu = container_of(dev, struct cpu, dev); 208 209 return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id)); 210 } 211 212 static void update_topology_flags_workfn(struct work_struct *work); 213 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn); 214 215 static DEVICE_ATTR_RO(cpu_capacity); 216 217 static int register_cpu_capacity_sysctl(void) 218 { 219 int i; 220 struct device *cpu; 221 222 for_each_possible_cpu(i) { 223 cpu = get_cpu_device(i); 224 if (!cpu) { 225 pr_err("%s: too early to get CPU%d device!\n", 226 __func__, i); 227 continue; 228 } 229 device_create_file(cpu, &dev_attr_cpu_capacity); 230 } 231 232 return 0; 233 } 234 subsys_initcall(register_cpu_capacity_sysctl); 235 236 static int update_topology; 237 238 int topology_update_cpu_topology(void) 239 { 240 return update_topology; 241 } 242 243 /* 244 * Updating the sched_domains can't be done directly from cpufreq callbacks 245 * due to locking, so queue the work for later. 246 */ 247 static void update_topology_flags_workfn(struct work_struct *work) 248 { 249 update_topology = 1; 250 rebuild_sched_domains(); 251 pr_debug("sched_domain hierarchy rebuilt, flags updated\n"); 252 update_topology = 0; 253 } 254 255 static u32 *raw_capacity; 256 257 static int free_raw_capacity(void) 258 { 259 kfree(raw_capacity); 260 raw_capacity = NULL; 261 262 return 0; 263 } 264 265 void topology_normalize_cpu_scale(void) 266 { 267 u64 capacity; 268 u64 capacity_scale; 269 int cpu; 270 271 if (!raw_capacity) 272 return; 273 274 capacity_scale = 1; 275 for_each_possible_cpu(cpu) { 276 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu); 277 capacity_scale = max(capacity, capacity_scale); 278 } 279 280 pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale); 281 for_each_possible_cpu(cpu) { 282 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu); 283 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT, 284 capacity_scale); 285 topology_set_cpu_scale(cpu, capacity); 286 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n", 287 cpu, topology_get_cpu_scale(cpu)); 288 } 289 } 290 291 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu) 292 { 293 struct clk *cpu_clk; 294 static bool cap_parsing_failed; 295 int ret; 296 u32 cpu_capacity; 297 298 if (cap_parsing_failed) 299 return false; 300 301 ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz", 302 &cpu_capacity); 303 if (!ret) { 304 if (!raw_capacity) { 305 raw_capacity = kcalloc(num_possible_cpus(), 306 sizeof(*raw_capacity), 307 GFP_KERNEL); 308 if (!raw_capacity) { 309 cap_parsing_failed = true; 310 return false; 311 } 312 } 313 raw_capacity[cpu] = cpu_capacity; 314 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n", 315 cpu_node, raw_capacity[cpu]); 316 317 /* 318 * Update freq_factor for calculating early boot cpu capacities. 319 * For non-clk CPU DVFS mechanism, there's no way to get the 320 * frequency value now, assuming they are running at the same 321 * frequency (by keeping the initial freq_factor value). 322 */ 323 cpu_clk = of_clk_get(cpu_node, 0); 324 if (!PTR_ERR_OR_ZERO(cpu_clk)) { 325 per_cpu(freq_factor, cpu) = 326 clk_get_rate(cpu_clk) / 1000; 327 clk_put(cpu_clk); 328 } 329 } else { 330 if (raw_capacity) { 331 pr_err("cpu_capacity: missing %pOF raw capacity\n", 332 cpu_node); 333 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n"); 334 } 335 cap_parsing_failed = true; 336 free_raw_capacity(); 337 } 338 339 return !ret; 340 } 341 342 #ifdef CONFIG_CPU_FREQ 343 static cpumask_var_t cpus_to_visit; 344 static void parsing_done_workfn(struct work_struct *work); 345 static DECLARE_WORK(parsing_done_work, parsing_done_workfn); 346 347 static int 348 init_cpu_capacity_callback(struct notifier_block *nb, 349 unsigned long val, 350 void *data) 351 { 352 struct cpufreq_policy *policy = data; 353 int cpu; 354 355 if (!raw_capacity) 356 return 0; 357 358 if (val != CPUFREQ_CREATE_POLICY) 359 return 0; 360 361 pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n", 362 cpumask_pr_args(policy->related_cpus), 363 cpumask_pr_args(cpus_to_visit)); 364 365 cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus); 366 367 for_each_cpu(cpu, policy->related_cpus) 368 per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000; 369 370 if (cpumask_empty(cpus_to_visit)) { 371 topology_normalize_cpu_scale(); 372 schedule_work(&update_topology_flags_work); 373 free_raw_capacity(); 374 pr_debug("cpu_capacity: parsing done\n"); 375 schedule_work(&parsing_done_work); 376 } 377 378 return 0; 379 } 380 381 static struct notifier_block init_cpu_capacity_notifier = { 382 .notifier_call = init_cpu_capacity_callback, 383 }; 384 385 static int __init register_cpufreq_notifier(void) 386 { 387 int ret; 388 389 /* 390 * on ACPI-based systems we need to use the default cpu capacity 391 * until we have the necessary code to parse the cpu capacity, so 392 * skip registering cpufreq notifier. 393 */ 394 if (!acpi_disabled || !raw_capacity) 395 return -EINVAL; 396 397 if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) 398 return -ENOMEM; 399 400 cpumask_copy(cpus_to_visit, cpu_possible_mask); 401 402 ret = cpufreq_register_notifier(&init_cpu_capacity_notifier, 403 CPUFREQ_POLICY_NOTIFIER); 404 405 if (ret) 406 free_cpumask_var(cpus_to_visit); 407 408 return ret; 409 } 410 core_initcall(register_cpufreq_notifier); 411 412 static void parsing_done_workfn(struct work_struct *work) 413 { 414 cpufreq_unregister_notifier(&init_cpu_capacity_notifier, 415 CPUFREQ_POLICY_NOTIFIER); 416 free_cpumask_var(cpus_to_visit); 417 } 418 419 #else 420 core_initcall(free_raw_capacity); 421 #endif 422 423 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) 424 /* 425 * This function returns the logic cpu number of the node. 426 * There are basically three kinds of return values: 427 * (1) logic cpu number which is > 0. 428 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but 429 * there is no possible logical CPU in the kernel to match. This happens 430 * when CONFIG_NR_CPUS is configure to be smaller than the number of 431 * CPU nodes in DT. We need to just ignore this case. 432 * (3) -1 if the node does not exist in the device tree 433 */ 434 static int __init get_cpu_for_node(struct device_node *node) 435 { 436 struct device_node *cpu_node; 437 int cpu; 438 439 cpu_node = of_parse_phandle(node, "cpu", 0); 440 if (!cpu_node) 441 return -1; 442 443 cpu = of_cpu_node_to_id(cpu_node); 444 if (cpu >= 0) 445 topology_parse_cpu_capacity(cpu_node, cpu); 446 else 447 pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n", 448 cpu_node, cpumask_pr_args(cpu_possible_mask)); 449 450 of_node_put(cpu_node); 451 return cpu; 452 } 453 454 static int __init parse_core(struct device_node *core, int package_id, 455 int core_id) 456 { 457 char name[20]; 458 bool leaf = true; 459 int i = 0; 460 int cpu; 461 struct device_node *t; 462 463 do { 464 snprintf(name, sizeof(name), "thread%d", i); 465 t = of_get_child_by_name(core, name); 466 if (t) { 467 leaf = false; 468 cpu = get_cpu_for_node(t); 469 if (cpu >= 0) { 470 cpu_topology[cpu].package_id = package_id; 471 cpu_topology[cpu].core_id = core_id; 472 cpu_topology[cpu].thread_id = i; 473 } else if (cpu != -ENODEV) { 474 pr_err("%pOF: Can't get CPU for thread\n", t); 475 of_node_put(t); 476 return -EINVAL; 477 } 478 of_node_put(t); 479 } 480 i++; 481 } while (t); 482 483 cpu = get_cpu_for_node(core); 484 if (cpu >= 0) { 485 if (!leaf) { 486 pr_err("%pOF: Core has both threads and CPU\n", 487 core); 488 return -EINVAL; 489 } 490 491 cpu_topology[cpu].package_id = package_id; 492 cpu_topology[cpu].core_id = core_id; 493 } else if (leaf && cpu != -ENODEV) { 494 pr_err("%pOF: Can't get CPU for leaf core\n", core); 495 return -EINVAL; 496 } 497 498 return 0; 499 } 500 501 static int __init parse_cluster(struct device_node *cluster, int depth) 502 { 503 char name[20]; 504 bool leaf = true; 505 bool has_cores = false; 506 struct device_node *c; 507 static int package_id __initdata; 508 int core_id = 0; 509 int i, ret; 510 511 /* 512 * First check for child clusters; we currently ignore any 513 * information about the nesting of clusters and present the 514 * scheduler with a flat list of them. 515 */ 516 i = 0; 517 do { 518 snprintf(name, sizeof(name), "cluster%d", i); 519 c = of_get_child_by_name(cluster, name); 520 if (c) { 521 leaf = false; 522 ret = parse_cluster(c, depth + 1); 523 of_node_put(c); 524 if (ret != 0) 525 return ret; 526 } 527 i++; 528 } while (c); 529 530 /* Now check for cores */ 531 i = 0; 532 do { 533 snprintf(name, sizeof(name), "core%d", i); 534 c = of_get_child_by_name(cluster, name); 535 if (c) { 536 has_cores = true; 537 538 if (depth == 0) { 539 pr_err("%pOF: cpu-map children should be clusters\n", 540 c); 541 of_node_put(c); 542 return -EINVAL; 543 } 544 545 if (leaf) { 546 ret = parse_core(c, package_id, core_id++); 547 } else { 548 pr_err("%pOF: Non-leaf cluster with core %s\n", 549 cluster, name); 550 ret = -EINVAL; 551 } 552 553 of_node_put(c); 554 if (ret != 0) 555 return ret; 556 } 557 i++; 558 } while (c); 559 560 if (leaf && !has_cores) 561 pr_warn("%pOF: empty cluster\n", cluster); 562 563 if (leaf) 564 package_id++; 565 566 return 0; 567 } 568 569 static int __init parse_dt_topology(void) 570 { 571 struct device_node *cn, *map; 572 int ret = 0; 573 int cpu; 574 575 cn = of_find_node_by_path("/cpus"); 576 if (!cn) { 577 pr_err("No CPU information found in DT\n"); 578 return 0; 579 } 580 581 /* 582 * When topology is provided cpu-map is essentially a root 583 * cluster with restricted subnodes. 584 */ 585 map = of_get_child_by_name(cn, "cpu-map"); 586 if (!map) 587 goto out; 588 589 ret = parse_cluster(map, 0); 590 if (ret != 0) 591 goto out_map; 592 593 topology_normalize_cpu_scale(); 594 595 /* 596 * Check that all cores are in the topology; the SMP code will 597 * only mark cores described in the DT as possible. 598 */ 599 for_each_possible_cpu(cpu) 600 if (cpu_topology[cpu].package_id == -1) 601 ret = -EINVAL; 602 603 out_map: 604 of_node_put(map); 605 out: 606 of_node_put(cn); 607 return ret; 608 } 609 #endif 610 611 /* 612 * cpu topology table 613 */ 614 struct cpu_topology cpu_topology[NR_CPUS]; 615 EXPORT_SYMBOL_GPL(cpu_topology); 616 617 const struct cpumask *cpu_coregroup_mask(int cpu) 618 { 619 const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu)); 620 621 /* Find the smaller of NUMA, core or LLC siblings */ 622 if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) { 623 /* not numa in package, lets use the package siblings */ 624 core_mask = &cpu_topology[cpu].core_sibling; 625 } 626 if (cpu_topology[cpu].llc_id != -1) { 627 if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask)) 628 core_mask = &cpu_topology[cpu].llc_sibling; 629 } 630 631 return core_mask; 632 } 633 634 const struct cpumask *cpu_clustergroup_mask(int cpu) 635 { 636 return &cpu_topology[cpu].cluster_sibling; 637 } 638 639 void update_siblings_masks(unsigned int cpuid) 640 { 641 struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid]; 642 int cpu; 643 644 /* update core and thread sibling masks */ 645 for_each_online_cpu(cpu) { 646 cpu_topo = &cpu_topology[cpu]; 647 648 if (cpuid_topo->llc_id == cpu_topo->llc_id) { 649 cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling); 650 cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling); 651 } 652 653 if (cpuid_topo->package_id != cpu_topo->package_id) 654 continue; 655 656 if (cpuid_topo->cluster_id == cpu_topo->cluster_id && 657 cpuid_topo->cluster_id != -1) { 658 cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling); 659 cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling); 660 } 661 662 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling); 663 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling); 664 665 if (cpuid_topo->core_id != cpu_topo->core_id) 666 continue; 667 668 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling); 669 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling); 670 } 671 } 672 673 static void clear_cpu_topology(int cpu) 674 { 675 struct cpu_topology *cpu_topo = &cpu_topology[cpu]; 676 677 cpumask_clear(&cpu_topo->llc_sibling); 678 cpumask_set_cpu(cpu, &cpu_topo->llc_sibling); 679 680 cpumask_clear(&cpu_topo->cluster_sibling); 681 cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling); 682 683 cpumask_clear(&cpu_topo->core_sibling); 684 cpumask_set_cpu(cpu, &cpu_topo->core_sibling); 685 cpumask_clear(&cpu_topo->thread_sibling); 686 cpumask_set_cpu(cpu, &cpu_topo->thread_sibling); 687 } 688 689 void __init reset_cpu_topology(void) 690 { 691 unsigned int cpu; 692 693 for_each_possible_cpu(cpu) { 694 struct cpu_topology *cpu_topo = &cpu_topology[cpu]; 695 696 cpu_topo->thread_id = -1; 697 cpu_topo->core_id = -1; 698 cpu_topo->cluster_id = -1; 699 cpu_topo->package_id = -1; 700 cpu_topo->llc_id = -1; 701 702 clear_cpu_topology(cpu); 703 } 704 } 705 706 void remove_cpu_topology(unsigned int cpu) 707 { 708 int sibling; 709 710 for_each_cpu(sibling, topology_core_cpumask(cpu)) 711 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling)); 712 for_each_cpu(sibling, topology_sibling_cpumask(cpu)) 713 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling)); 714 for_each_cpu(sibling, topology_cluster_cpumask(cpu)) 715 cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling)); 716 for_each_cpu(sibling, topology_llc_cpumask(cpu)) 717 cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling)); 718 719 clear_cpu_topology(cpu); 720 } 721 722 __weak int __init parse_acpi_topology(void) 723 { 724 return 0; 725 } 726 727 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV) 728 void __init init_cpu_topology(void) 729 { 730 reset_cpu_topology(); 731 732 /* 733 * Discard anything that was parsed if we hit an error so we 734 * don't use partial information. 735 */ 736 if (parse_acpi_topology()) 737 reset_cpu_topology(); 738 else if (of_have_populated_dt() && parse_dt_topology()) 739 reset_cpu_topology(); 740 } 741 #endif 742