xref: /openbmc/linux/drivers/base/arch_topology.c (revision 1fe3a33b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arch specific cpu topology information
4  *
5  * Copyright (C) 2016, ARM Ltd.
6  * Written by: Juri Lelli, ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/device.h>
13 #include <linux/of.h>
14 #include <linux/slab.h>
15 #include <linux/sched/topology.h>
16 #include <linux/cpuset.h>
17 #include <linux/cpumask.h>
18 #include <linux/init.h>
19 #include <linux/rcupdate.h>
20 #include <linux/sched.h>
21 
22 static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
23 static struct cpumask scale_freq_counters_mask;
24 static bool scale_freq_invariant;
25 static DEFINE_PER_CPU(u32, freq_factor) = 1;
26 
27 static bool supports_scale_freq_counters(const struct cpumask *cpus)
28 {
29 	return cpumask_subset(cpus, &scale_freq_counters_mask);
30 }
31 
32 bool topology_scale_freq_invariant(void)
33 {
34 	return cpufreq_supports_freq_invariance() ||
35 	       supports_scale_freq_counters(cpu_online_mask);
36 }
37 
38 static void update_scale_freq_invariant(bool status)
39 {
40 	if (scale_freq_invariant == status)
41 		return;
42 
43 	/*
44 	 * Task scheduler behavior depends on frequency invariance support,
45 	 * either cpufreq or counter driven. If the support status changes as
46 	 * a result of counter initialisation and use, retrigger the build of
47 	 * scheduling domains to ensure the information is propagated properly.
48 	 */
49 	if (topology_scale_freq_invariant() == status) {
50 		scale_freq_invariant = status;
51 		rebuild_sched_domains_energy();
52 	}
53 }
54 
55 void topology_set_scale_freq_source(struct scale_freq_data *data,
56 				    const struct cpumask *cpus)
57 {
58 	struct scale_freq_data *sfd;
59 	int cpu;
60 
61 	/*
62 	 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
63 	 * supported by cpufreq.
64 	 */
65 	if (cpumask_empty(&scale_freq_counters_mask))
66 		scale_freq_invariant = topology_scale_freq_invariant();
67 
68 	rcu_read_lock();
69 
70 	for_each_cpu(cpu, cpus) {
71 		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
72 
73 		/* Use ARCH provided counters whenever possible */
74 		if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
75 			rcu_assign_pointer(per_cpu(sft_data, cpu), data);
76 			cpumask_set_cpu(cpu, &scale_freq_counters_mask);
77 		}
78 	}
79 
80 	rcu_read_unlock();
81 
82 	update_scale_freq_invariant(true);
83 }
84 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
85 
86 void topology_clear_scale_freq_source(enum scale_freq_source source,
87 				      const struct cpumask *cpus)
88 {
89 	struct scale_freq_data *sfd;
90 	int cpu;
91 
92 	rcu_read_lock();
93 
94 	for_each_cpu(cpu, cpus) {
95 		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
96 
97 		if (sfd && sfd->source == source) {
98 			rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
99 			cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
100 		}
101 	}
102 
103 	rcu_read_unlock();
104 
105 	/*
106 	 * Make sure all references to previous sft_data are dropped to avoid
107 	 * use-after-free races.
108 	 */
109 	synchronize_rcu();
110 
111 	update_scale_freq_invariant(false);
112 }
113 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
114 
115 void topology_scale_freq_tick(void)
116 {
117 	struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
118 
119 	if (sfd)
120 		sfd->set_freq_scale();
121 }
122 
123 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
124 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
125 
126 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
127 			     unsigned long max_freq)
128 {
129 	unsigned long scale;
130 	int i;
131 
132 	if (WARN_ON_ONCE(!cur_freq || !max_freq))
133 		return;
134 
135 	/*
136 	 * If the use of counters for FIE is enabled, just return as we don't
137 	 * want to update the scale factor with information from CPUFREQ.
138 	 * Instead the scale factor will be updated from arch_scale_freq_tick.
139 	 */
140 	if (supports_scale_freq_counters(cpus))
141 		return;
142 
143 	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
144 
145 	for_each_cpu(i, cpus)
146 		per_cpu(arch_freq_scale, i) = scale;
147 }
148 
149 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
150 EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
151 
152 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
153 {
154 	per_cpu(cpu_scale, cpu) = capacity;
155 }
156 
157 DEFINE_PER_CPU(unsigned long, thermal_pressure);
158 
159 /**
160  * topology_update_thermal_pressure() - Update thermal pressure for CPUs
161  * @cpus        : The related CPUs for which capacity has been reduced
162  * @capped_freq : The maximum allowed frequency that CPUs can run at
163  *
164  * Update the value of thermal pressure for all @cpus in the mask. The
165  * cpumask should include all (online+offline) affected CPUs, to avoid
166  * operating on stale data when hot-plug is used for some CPUs. The
167  * @capped_freq reflects the currently allowed max CPUs frequency due to
168  * thermal capping. It might be also a boost frequency value, which is bigger
169  * than the internal 'freq_factor' max frequency. In such case the pressure
170  * value should simply be removed, since this is an indication that there is
171  * no thermal throttling. The @capped_freq must be provided in kHz.
172  */
173 void topology_update_thermal_pressure(const struct cpumask *cpus,
174 				      unsigned long capped_freq)
175 {
176 	unsigned long max_capacity, capacity, th_pressure;
177 	u32 max_freq;
178 	int cpu;
179 
180 	cpu = cpumask_first(cpus);
181 	max_capacity = arch_scale_cpu_capacity(cpu);
182 	max_freq = per_cpu(freq_factor, cpu);
183 
184 	/* Convert to MHz scale which is used in 'freq_factor' */
185 	capped_freq /= 1000;
186 
187 	/*
188 	 * Handle properly the boost frequencies, which should simply clean
189 	 * the thermal pressure value.
190 	 */
191 	if (max_freq <= capped_freq)
192 		capacity = max_capacity;
193 	else
194 		capacity = mult_frac(max_capacity, capped_freq, max_freq);
195 
196 	th_pressure = max_capacity - capacity;
197 
198 	for_each_cpu(cpu, cpus)
199 		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
200 }
201 EXPORT_SYMBOL_GPL(topology_update_thermal_pressure);
202 
203 static ssize_t cpu_capacity_show(struct device *dev,
204 				 struct device_attribute *attr,
205 				 char *buf)
206 {
207 	struct cpu *cpu = container_of(dev, struct cpu, dev);
208 
209 	return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
210 }
211 
212 static void update_topology_flags_workfn(struct work_struct *work);
213 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
214 
215 static DEVICE_ATTR_RO(cpu_capacity);
216 
217 static int register_cpu_capacity_sysctl(void)
218 {
219 	int i;
220 	struct device *cpu;
221 
222 	for_each_possible_cpu(i) {
223 		cpu = get_cpu_device(i);
224 		if (!cpu) {
225 			pr_err("%s: too early to get CPU%d device!\n",
226 			       __func__, i);
227 			continue;
228 		}
229 		device_create_file(cpu, &dev_attr_cpu_capacity);
230 	}
231 
232 	return 0;
233 }
234 subsys_initcall(register_cpu_capacity_sysctl);
235 
236 static int update_topology;
237 
238 int topology_update_cpu_topology(void)
239 {
240 	return update_topology;
241 }
242 
243 /*
244  * Updating the sched_domains can't be done directly from cpufreq callbacks
245  * due to locking, so queue the work for later.
246  */
247 static void update_topology_flags_workfn(struct work_struct *work)
248 {
249 	update_topology = 1;
250 	rebuild_sched_domains();
251 	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
252 	update_topology = 0;
253 }
254 
255 static u32 *raw_capacity;
256 
257 static int free_raw_capacity(void)
258 {
259 	kfree(raw_capacity);
260 	raw_capacity = NULL;
261 
262 	return 0;
263 }
264 
265 void topology_normalize_cpu_scale(void)
266 {
267 	u64 capacity;
268 	u64 capacity_scale;
269 	int cpu;
270 
271 	if (!raw_capacity)
272 		return;
273 
274 	capacity_scale = 1;
275 	for_each_possible_cpu(cpu) {
276 		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
277 		capacity_scale = max(capacity, capacity_scale);
278 	}
279 
280 	pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
281 	for_each_possible_cpu(cpu) {
282 		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
283 		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
284 			capacity_scale);
285 		topology_set_cpu_scale(cpu, capacity);
286 		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
287 			cpu, topology_get_cpu_scale(cpu));
288 	}
289 }
290 
291 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
292 {
293 	struct clk *cpu_clk;
294 	static bool cap_parsing_failed;
295 	int ret;
296 	u32 cpu_capacity;
297 
298 	if (cap_parsing_failed)
299 		return false;
300 
301 	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
302 				   &cpu_capacity);
303 	if (!ret) {
304 		if (!raw_capacity) {
305 			raw_capacity = kcalloc(num_possible_cpus(),
306 					       sizeof(*raw_capacity),
307 					       GFP_KERNEL);
308 			if (!raw_capacity) {
309 				cap_parsing_failed = true;
310 				return false;
311 			}
312 		}
313 		raw_capacity[cpu] = cpu_capacity;
314 		pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
315 			cpu_node, raw_capacity[cpu]);
316 
317 		/*
318 		 * Update freq_factor for calculating early boot cpu capacities.
319 		 * For non-clk CPU DVFS mechanism, there's no way to get the
320 		 * frequency value now, assuming they are running at the same
321 		 * frequency (by keeping the initial freq_factor value).
322 		 */
323 		cpu_clk = of_clk_get(cpu_node, 0);
324 		if (!PTR_ERR_OR_ZERO(cpu_clk)) {
325 			per_cpu(freq_factor, cpu) =
326 				clk_get_rate(cpu_clk) / 1000;
327 			clk_put(cpu_clk);
328 		}
329 	} else {
330 		if (raw_capacity) {
331 			pr_err("cpu_capacity: missing %pOF raw capacity\n",
332 				cpu_node);
333 			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
334 		}
335 		cap_parsing_failed = true;
336 		free_raw_capacity();
337 	}
338 
339 	return !ret;
340 }
341 
342 #ifdef CONFIG_CPU_FREQ
343 static cpumask_var_t cpus_to_visit;
344 static void parsing_done_workfn(struct work_struct *work);
345 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
346 
347 static int
348 init_cpu_capacity_callback(struct notifier_block *nb,
349 			   unsigned long val,
350 			   void *data)
351 {
352 	struct cpufreq_policy *policy = data;
353 	int cpu;
354 
355 	if (!raw_capacity)
356 		return 0;
357 
358 	if (val != CPUFREQ_CREATE_POLICY)
359 		return 0;
360 
361 	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
362 		 cpumask_pr_args(policy->related_cpus),
363 		 cpumask_pr_args(cpus_to_visit));
364 
365 	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
366 
367 	for_each_cpu(cpu, policy->related_cpus)
368 		per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
369 
370 	if (cpumask_empty(cpus_to_visit)) {
371 		topology_normalize_cpu_scale();
372 		schedule_work(&update_topology_flags_work);
373 		free_raw_capacity();
374 		pr_debug("cpu_capacity: parsing done\n");
375 		schedule_work(&parsing_done_work);
376 	}
377 
378 	return 0;
379 }
380 
381 static struct notifier_block init_cpu_capacity_notifier = {
382 	.notifier_call = init_cpu_capacity_callback,
383 };
384 
385 static int __init register_cpufreq_notifier(void)
386 {
387 	int ret;
388 
389 	/*
390 	 * on ACPI-based systems we need to use the default cpu capacity
391 	 * until we have the necessary code to parse the cpu capacity, so
392 	 * skip registering cpufreq notifier.
393 	 */
394 	if (!acpi_disabled || !raw_capacity)
395 		return -EINVAL;
396 
397 	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
398 		return -ENOMEM;
399 
400 	cpumask_copy(cpus_to_visit, cpu_possible_mask);
401 
402 	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
403 					CPUFREQ_POLICY_NOTIFIER);
404 
405 	if (ret)
406 		free_cpumask_var(cpus_to_visit);
407 
408 	return ret;
409 }
410 core_initcall(register_cpufreq_notifier);
411 
412 static void parsing_done_workfn(struct work_struct *work)
413 {
414 	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
415 					 CPUFREQ_POLICY_NOTIFIER);
416 	free_cpumask_var(cpus_to_visit);
417 }
418 
419 #else
420 core_initcall(free_raw_capacity);
421 #endif
422 
423 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
424 /*
425  * This function returns the logic cpu number of the node.
426  * There are basically three kinds of return values:
427  * (1) logic cpu number which is > 0.
428  * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
429  * there is no possible logical CPU in the kernel to match. This happens
430  * when CONFIG_NR_CPUS is configure to be smaller than the number of
431  * CPU nodes in DT. We need to just ignore this case.
432  * (3) -1 if the node does not exist in the device tree
433  */
434 static int __init get_cpu_for_node(struct device_node *node)
435 {
436 	struct device_node *cpu_node;
437 	int cpu;
438 
439 	cpu_node = of_parse_phandle(node, "cpu", 0);
440 	if (!cpu_node)
441 		return -1;
442 
443 	cpu = of_cpu_node_to_id(cpu_node);
444 	if (cpu >= 0)
445 		topology_parse_cpu_capacity(cpu_node, cpu);
446 	else
447 		pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
448 			cpu_node, cpumask_pr_args(cpu_possible_mask));
449 
450 	of_node_put(cpu_node);
451 	return cpu;
452 }
453 
454 static int __init parse_core(struct device_node *core, int package_id,
455 			     int core_id)
456 {
457 	char name[20];
458 	bool leaf = true;
459 	int i = 0;
460 	int cpu;
461 	struct device_node *t;
462 
463 	do {
464 		snprintf(name, sizeof(name), "thread%d", i);
465 		t = of_get_child_by_name(core, name);
466 		if (t) {
467 			leaf = false;
468 			cpu = get_cpu_for_node(t);
469 			if (cpu >= 0) {
470 				cpu_topology[cpu].package_id = package_id;
471 				cpu_topology[cpu].core_id = core_id;
472 				cpu_topology[cpu].thread_id = i;
473 			} else if (cpu != -ENODEV) {
474 				pr_err("%pOF: Can't get CPU for thread\n", t);
475 				of_node_put(t);
476 				return -EINVAL;
477 			}
478 			of_node_put(t);
479 		}
480 		i++;
481 	} while (t);
482 
483 	cpu = get_cpu_for_node(core);
484 	if (cpu >= 0) {
485 		if (!leaf) {
486 			pr_err("%pOF: Core has both threads and CPU\n",
487 			       core);
488 			return -EINVAL;
489 		}
490 
491 		cpu_topology[cpu].package_id = package_id;
492 		cpu_topology[cpu].core_id = core_id;
493 	} else if (leaf && cpu != -ENODEV) {
494 		pr_err("%pOF: Can't get CPU for leaf core\n", core);
495 		return -EINVAL;
496 	}
497 
498 	return 0;
499 }
500 
501 static int __init parse_cluster(struct device_node *cluster, int depth)
502 {
503 	char name[20];
504 	bool leaf = true;
505 	bool has_cores = false;
506 	struct device_node *c;
507 	static int package_id __initdata;
508 	int core_id = 0;
509 	int i, ret;
510 
511 	/*
512 	 * First check for child clusters; we currently ignore any
513 	 * information about the nesting of clusters and present the
514 	 * scheduler with a flat list of them.
515 	 */
516 	i = 0;
517 	do {
518 		snprintf(name, sizeof(name), "cluster%d", i);
519 		c = of_get_child_by_name(cluster, name);
520 		if (c) {
521 			leaf = false;
522 			ret = parse_cluster(c, depth + 1);
523 			of_node_put(c);
524 			if (ret != 0)
525 				return ret;
526 		}
527 		i++;
528 	} while (c);
529 
530 	/* Now check for cores */
531 	i = 0;
532 	do {
533 		snprintf(name, sizeof(name), "core%d", i);
534 		c = of_get_child_by_name(cluster, name);
535 		if (c) {
536 			has_cores = true;
537 
538 			if (depth == 0) {
539 				pr_err("%pOF: cpu-map children should be clusters\n",
540 				       c);
541 				of_node_put(c);
542 				return -EINVAL;
543 			}
544 
545 			if (leaf) {
546 				ret = parse_core(c, package_id, core_id++);
547 			} else {
548 				pr_err("%pOF: Non-leaf cluster with core %s\n",
549 				       cluster, name);
550 				ret = -EINVAL;
551 			}
552 
553 			of_node_put(c);
554 			if (ret != 0)
555 				return ret;
556 		}
557 		i++;
558 	} while (c);
559 
560 	if (leaf && !has_cores)
561 		pr_warn("%pOF: empty cluster\n", cluster);
562 
563 	if (leaf)
564 		package_id++;
565 
566 	return 0;
567 }
568 
569 static int __init parse_dt_topology(void)
570 {
571 	struct device_node *cn, *map;
572 	int ret = 0;
573 	int cpu;
574 
575 	cn = of_find_node_by_path("/cpus");
576 	if (!cn) {
577 		pr_err("No CPU information found in DT\n");
578 		return 0;
579 	}
580 
581 	/*
582 	 * When topology is provided cpu-map is essentially a root
583 	 * cluster with restricted subnodes.
584 	 */
585 	map = of_get_child_by_name(cn, "cpu-map");
586 	if (!map)
587 		goto out;
588 
589 	ret = parse_cluster(map, 0);
590 	if (ret != 0)
591 		goto out_map;
592 
593 	topology_normalize_cpu_scale();
594 
595 	/*
596 	 * Check that all cores are in the topology; the SMP code will
597 	 * only mark cores described in the DT as possible.
598 	 */
599 	for_each_possible_cpu(cpu)
600 		if (cpu_topology[cpu].package_id == -1)
601 			ret = -EINVAL;
602 
603 out_map:
604 	of_node_put(map);
605 out:
606 	of_node_put(cn);
607 	return ret;
608 }
609 #endif
610 
611 /*
612  * cpu topology table
613  */
614 struct cpu_topology cpu_topology[NR_CPUS];
615 EXPORT_SYMBOL_GPL(cpu_topology);
616 
617 const struct cpumask *cpu_coregroup_mask(int cpu)
618 {
619 	const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
620 
621 	/* Find the smaller of NUMA, core or LLC siblings */
622 	if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
623 		/* not numa in package, lets use the package siblings */
624 		core_mask = &cpu_topology[cpu].core_sibling;
625 	}
626 	if (cpu_topology[cpu].llc_id != -1) {
627 		if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
628 			core_mask = &cpu_topology[cpu].llc_sibling;
629 	}
630 
631 	return core_mask;
632 }
633 
634 const struct cpumask *cpu_clustergroup_mask(int cpu)
635 {
636 	return &cpu_topology[cpu].cluster_sibling;
637 }
638 
639 void update_siblings_masks(unsigned int cpuid)
640 {
641 	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
642 	int cpu;
643 
644 	/* update core and thread sibling masks */
645 	for_each_online_cpu(cpu) {
646 		cpu_topo = &cpu_topology[cpu];
647 
648 		if (cpuid_topo->llc_id == cpu_topo->llc_id) {
649 			cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
650 			cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
651 		}
652 
653 		if (cpuid_topo->package_id != cpu_topo->package_id)
654 			continue;
655 
656 		if (cpuid_topo->cluster_id == cpu_topo->cluster_id &&
657 		    cpuid_topo->cluster_id != -1) {
658 			cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
659 			cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
660 		}
661 
662 		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
663 		cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
664 
665 		if (cpuid_topo->core_id != cpu_topo->core_id)
666 			continue;
667 
668 		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
669 		cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
670 	}
671 }
672 
673 static void clear_cpu_topology(int cpu)
674 {
675 	struct cpu_topology *cpu_topo = &cpu_topology[cpu];
676 
677 	cpumask_clear(&cpu_topo->llc_sibling);
678 	cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
679 
680 	cpumask_clear(&cpu_topo->cluster_sibling);
681 	cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
682 
683 	cpumask_clear(&cpu_topo->core_sibling);
684 	cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
685 	cpumask_clear(&cpu_topo->thread_sibling);
686 	cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
687 }
688 
689 void __init reset_cpu_topology(void)
690 {
691 	unsigned int cpu;
692 
693 	for_each_possible_cpu(cpu) {
694 		struct cpu_topology *cpu_topo = &cpu_topology[cpu];
695 
696 		cpu_topo->thread_id = -1;
697 		cpu_topo->core_id = -1;
698 		cpu_topo->cluster_id = -1;
699 		cpu_topo->package_id = -1;
700 		cpu_topo->llc_id = -1;
701 
702 		clear_cpu_topology(cpu);
703 	}
704 }
705 
706 void remove_cpu_topology(unsigned int cpu)
707 {
708 	int sibling;
709 
710 	for_each_cpu(sibling, topology_core_cpumask(cpu))
711 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
712 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
713 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
714 	for_each_cpu(sibling, topology_cluster_cpumask(cpu))
715 		cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling));
716 	for_each_cpu(sibling, topology_llc_cpumask(cpu))
717 		cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
718 
719 	clear_cpu_topology(cpu);
720 }
721 
722 __weak int __init parse_acpi_topology(void)
723 {
724 	return 0;
725 }
726 
727 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
728 void __init init_cpu_topology(void)
729 {
730 	reset_cpu_topology();
731 
732 	/*
733 	 * Discard anything that was parsed if we hit an error so we
734 	 * don't use partial information.
735 	 */
736 	if (parse_acpi_topology())
737 		reset_cpu_topology();
738 	else if (of_have_populated_dt() && parse_dt_topology())
739 		reset_cpu_topology();
740 }
741 #endif
742