xref: /openbmc/linux/drivers/auxdisplay/panel.c (revision f79e4d5f)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Front panel driver for Linux
4  * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
5  * Copyright (C) 2016-2017 Glider bvba
6  *
7  * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
8  * connected to a parallel printer port.
9  *
10  * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
11  * serial module compatible with Samsung's KS0074. The pins may be connected in
12  * any combination, everything is programmable.
13  *
14  * The keypad consists in a matrix of push buttons connecting input pins to
15  * data output pins or to the ground. The combinations have to be hard-coded
16  * in the driver, though several profiles exist and adding new ones is easy.
17  *
18  * Several profiles are provided for commonly found LCD+keypad modules on the
19  * market, such as those found in Nexcom's appliances.
20  *
21  * FIXME:
22  *      - the initialization/deinitialization process is very dirty and should
23  *        be rewritten. It may even be buggy.
24  *
25  * TODO:
26  *	- document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
27  *      - make the LCD a part of a virtual screen of Vx*Vy
28  *	- make the inputs list smp-safe
29  *      - change the keyboard to a double mapping : signals -> key_id -> values
30  *        so that applications can change values without knowing signals
31  *
32  */
33 
34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
35 
36 #include <linux/module.h>
37 
38 #include <linux/types.h>
39 #include <linux/errno.h>
40 #include <linux/signal.h>
41 #include <linux/sched.h>
42 #include <linux/spinlock.h>
43 #include <linux/interrupt.h>
44 #include <linux/miscdevice.h>
45 #include <linux/slab.h>
46 #include <linux/ioport.h>
47 #include <linux/fcntl.h>
48 #include <linux/init.h>
49 #include <linux/delay.h>
50 #include <linux/kernel.h>
51 #include <linux/ctype.h>
52 #include <linux/parport.h>
53 #include <linux/list.h>
54 
55 #include <linux/io.h>
56 #include <linux/uaccess.h>
57 
58 #include <misc/charlcd.h>
59 
60 #define KEYPAD_MINOR		185
61 
62 #define LCD_MAXBYTES		256	/* max burst write */
63 
64 #define KEYPAD_BUFFER		64
65 
66 /* poll the keyboard this every second */
67 #define INPUT_POLL_TIME		(HZ / 50)
68 /* a key starts to repeat after this times INPUT_POLL_TIME */
69 #define KEYPAD_REP_START	(10)
70 /* a key repeats this times INPUT_POLL_TIME */
71 #define KEYPAD_REP_DELAY	(2)
72 
73 /* converts an r_str() input to an active high, bits string : 000BAOSE */
74 #define PNL_PINPUT(a)		((((unsigned char)(a)) ^ 0x7F) >> 3)
75 
76 #define PNL_PBUSY		0x80	/* inverted input, active low */
77 #define PNL_PACK		0x40	/* direct input, active low */
78 #define PNL_POUTPA		0x20	/* direct input, active high */
79 #define PNL_PSELECD		0x10	/* direct input, active high */
80 #define PNL_PERRORP		0x08	/* direct input, active low */
81 
82 #define PNL_PBIDIR		0x20	/* bi-directional ports */
83 /* high to read data in or-ed with data out */
84 #define PNL_PINTEN		0x10
85 #define PNL_PSELECP		0x08	/* inverted output, active low */
86 #define PNL_PINITP		0x04	/* direct output, active low */
87 #define PNL_PAUTOLF		0x02	/* inverted output, active low */
88 #define PNL_PSTROBE		0x01	/* inverted output */
89 
90 #define PNL_PD0			0x01
91 #define PNL_PD1			0x02
92 #define PNL_PD2			0x04
93 #define PNL_PD3			0x08
94 #define PNL_PD4			0x10
95 #define PNL_PD5			0x20
96 #define PNL_PD6			0x40
97 #define PNL_PD7			0x80
98 
99 #define PIN_NONE		0
100 #define PIN_STROBE		1
101 #define PIN_D0			2
102 #define PIN_D1			3
103 #define PIN_D2			4
104 #define PIN_D3			5
105 #define PIN_D4			6
106 #define PIN_D5			7
107 #define PIN_D6			8
108 #define PIN_D7			9
109 #define PIN_AUTOLF		14
110 #define PIN_INITP		16
111 #define PIN_SELECP		17
112 #define PIN_NOT_SET		127
113 
114 #define NOT_SET			-1
115 
116 /* macros to simplify use of the parallel port */
117 #define r_ctr(x)        (parport_read_control((x)->port))
118 #define r_dtr(x)        (parport_read_data((x)->port))
119 #define r_str(x)        (parport_read_status((x)->port))
120 #define w_ctr(x, y)     (parport_write_control((x)->port, (y)))
121 #define w_dtr(x, y)     (parport_write_data((x)->port, (y)))
122 
123 /* this defines which bits are to be used and which ones to be ignored */
124 /* logical or of the output bits involved in the scan matrix */
125 static __u8 scan_mask_o;
126 /* logical or of the input bits involved in the scan matrix */
127 static __u8 scan_mask_i;
128 
129 enum input_type {
130 	INPUT_TYPE_STD,
131 	INPUT_TYPE_KBD,
132 };
133 
134 enum input_state {
135 	INPUT_ST_LOW,
136 	INPUT_ST_RISING,
137 	INPUT_ST_HIGH,
138 	INPUT_ST_FALLING,
139 };
140 
141 struct logical_input {
142 	struct list_head list;
143 	__u64 mask;
144 	__u64 value;
145 	enum input_type type;
146 	enum input_state state;
147 	__u8 rise_time, fall_time;
148 	__u8 rise_timer, fall_timer, high_timer;
149 
150 	union {
151 		struct {	/* valid when type == INPUT_TYPE_STD */
152 			void (*press_fct)(int);
153 			void (*release_fct)(int);
154 			int press_data;
155 			int release_data;
156 		} std;
157 		struct {	/* valid when type == INPUT_TYPE_KBD */
158 			/* strings can be non null-terminated */
159 			char press_str[sizeof(void *) + sizeof(int)];
160 			char repeat_str[sizeof(void *) + sizeof(int)];
161 			char release_str[sizeof(void *) + sizeof(int)];
162 		} kbd;
163 	} u;
164 };
165 
166 static LIST_HEAD(logical_inputs);	/* list of all defined logical inputs */
167 
168 /* physical contacts history
169  * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
170  * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
171  * corresponds to the ground.
172  * Within each group, bits are stored in the same order as read on the port :
173  * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
174  * So, each __u64 is represented like this :
175  * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
176  * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
177  */
178 
179 /* what has just been read from the I/O ports */
180 static __u64 phys_read;
181 /* previous phys_read */
182 static __u64 phys_read_prev;
183 /* stabilized phys_read (phys_read|phys_read_prev) */
184 static __u64 phys_curr;
185 /* previous phys_curr */
186 static __u64 phys_prev;
187 /* 0 means that at least one logical signal needs be computed */
188 static char inputs_stable;
189 
190 /* these variables are specific to the keypad */
191 static struct {
192 	bool enabled;
193 } keypad;
194 
195 static char keypad_buffer[KEYPAD_BUFFER];
196 static int keypad_buflen;
197 static int keypad_start;
198 static char keypressed;
199 static wait_queue_head_t keypad_read_wait;
200 
201 /* lcd-specific variables */
202 static struct {
203 	bool enabled;
204 	bool initialized;
205 
206 	int charset;
207 	int proto;
208 
209 	/* TODO: use union here? */
210 	struct {
211 		int e;
212 		int rs;
213 		int rw;
214 		int cl;
215 		int da;
216 		int bl;
217 	} pins;
218 
219 	struct charlcd *charlcd;
220 } lcd;
221 
222 /* Needed only for init */
223 static int selected_lcd_type = NOT_SET;
224 
225 /*
226  * Bit masks to convert LCD signals to parallel port outputs.
227  * _d_ are values for data port, _c_ are for control port.
228  * [0] = signal OFF, [1] = signal ON, [2] = mask
229  */
230 #define BIT_CLR		0
231 #define BIT_SET		1
232 #define BIT_MSK		2
233 #define BIT_STATES	3
234 /*
235  * one entry for each bit on the LCD
236  */
237 #define LCD_BIT_E	0
238 #define LCD_BIT_RS	1
239 #define LCD_BIT_RW	2
240 #define LCD_BIT_BL	3
241 #define LCD_BIT_CL	4
242 #define LCD_BIT_DA	5
243 #define LCD_BITS	6
244 
245 /*
246  * each bit can be either connected to a DATA or CTRL port
247  */
248 #define LCD_PORT_C	0
249 #define LCD_PORT_D	1
250 #define LCD_PORTS	2
251 
252 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
253 
254 /*
255  * LCD protocols
256  */
257 #define LCD_PROTO_PARALLEL      0
258 #define LCD_PROTO_SERIAL        1
259 #define LCD_PROTO_TI_DA8XX_LCD	2
260 
261 /*
262  * LCD character sets
263  */
264 #define LCD_CHARSET_NORMAL      0
265 #define LCD_CHARSET_KS0074      1
266 
267 /*
268  * LCD types
269  */
270 #define LCD_TYPE_NONE		0
271 #define LCD_TYPE_CUSTOM		1
272 #define LCD_TYPE_OLD		2
273 #define LCD_TYPE_KS0074		3
274 #define LCD_TYPE_HANTRONIX	4
275 #define LCD_TYPE_NEXCOM		5
276 
277 /*
278  * keypad types
279  */
280 #define KEYPAD_TYPE_NONE	0
281 #define KEYPAD_TYPE_OLD		1
282 #define KEYPAD_TYPE_NEW		2
283 #define KEYPAD_TYPE_NEXCOM	3
284 
285 /*
286  * panel profiles
287  */
288 #define PANEL_PROFILE_CUSTOM	0
289 #define PANEL_PROFILE_OLD	1
290 #define PANEL_PROFILE_NEW	2
291 #define PANEL_PROFILE_HANTRONIX	3
292 #define PANEL_PROFILE_NEXCOM	4
293 #define PANEL_PROFILE_LARGE	5
294 
295 /*
296  * Construct custom config from the kernel's configuration
297  */
298 #define DEFAULT_PARPORT         0
299 #define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
300 #define DEFAULT_KEYPAD_TYPE     KEYPAD_TYPE_OLD
301 #define DEFAULT_LCD_TYPE        LCD_TYPE_OLD
302 #define DEFAULT_LCD_HEIGHT      2
303 #define DEFAULT_LCD_WIDTH       40
304 #define DEFAULT_LCD_BWIDTH      40
305 #define DEFAULT_LCD_HWIDTH      64
306 #define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
307 #define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
308 
309 #define DEFAULT_LCD_PIN_E       PIN_AUTOLF
310 #define DEFAULT_LCD_PIN_RS      PIN_SELECP
311 #define DEFAULT_LCD_PIN_RW      PIN_INITP
312 #define DEFAULT_LCD_PIN_SCL     PIN_STROBE
313 #define DEFAULT_LCD_PIN_SDA     PIN_D0
314 #define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
315 
316 #ifdef CONFIG_PANEL_PARPORT
317 #undef DEFAULT_PARPORT
318 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
319 #endif
320 
321 #ifdef CONFIG_PANEL_PROFILE
322 #undef DEFAULT_PROFILE
323 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
324 #endif
325 
326 #if DEFAULT_PROFILE == 0	/* custom */
327 #ifdef CONFIG_PANEL_KEYPAD
328 #undef DEFAULT_KEYPAD_TYPE
329 #define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
330 #endif
331 
332 #ifdef CONFIG_PANEL_LCD
333 #undef DEFAULT_LCD_TYPE
334 #define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
335 #endif
336 
337 #ifdef CONFIG_PANEL_LCD_HEIGHT
338 #undef DEFAULT_LCD_HEIGHT
339 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
340 #endif
341 
342 #ifdef CONFIG_PANEL_LCD_WIDTH
343 #undef DEFAULT_LCD_WIDTH
344 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
345 #endif
346 
347 #ifdef CONFIG_PANEL_LCD_BWIDTH
348 #undef DEFAULT_LCD_BWIDTH
349 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
350 #endif
351 
352 #ifdef CONFIG_PANEL_LCD_HWIDTH
353 #undef DEFAULT_LCD_HWIDTH
354 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
355 #endif
356 
357 #ifdef CONFIG_PANEL_LCD_CHARSET
358 #undef DEFAULT_LCD_CHARSET
359 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
360 #endif
361 
362 #ifdef CONFIG_PANEL_LCD_PROTO
363 #undef DEFAULT_LCD_PROTO
364 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
365 #endif
366 
367 #ifdef CONFIG_PANEL_LCD_PIN_E
368 #undef DEFAULT_LCD_PIN_E
369 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
370 #endif
371 
372 #ifdef CONFIG_PANEL_LCD_PIN_RS
373 #undef DEFAULT_LCD_PIN_RS
374 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
375 #endif
376 
377 #ifdef CONFIG_PANEL_LCD_PIN_RW
378 #undef DEFAULT_LCD_PIN_RW
379 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
380 #endif
381 
382 #ifdef CONFIG_PANEL_LCD_PIN_SCL
383 #undef DEFAULT_LCD_PIN_SCL
384 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
385 #endif
386 
387 #ifdef CONFIG_PANEL_LCD_PIN_SDA
388 #undef DEFAULT_LCD_PIN_SDA
389 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
390 #endif
391 
392 #ifdef CONFIG_PANEL_LCD_PIN_BL
393 #undef DEFAULT_LCD_PIN_BL
394 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
395 #endif
396 
397 #endif /* DEFAULT_PROFILE == 0 */
398 
399 /* global variables */
400 
401 /* Device single-open policy control */
402 static atomic_t keypad_available = ATOMIC_INIT(1);
403 
404 static struct pardevice *pprt;
405 
406 static int keypad_initialized;
407 
408 static DEFINE_SPINLOCK(pprt_lock);
409 static struct timer_list scan_timer;
410 
411 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
412 
413 static int parport = DEFAULT_PARPORT;
414 module_param(parport, int, 0000);
415 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
416 
417 static int profile = DEFAULT_PROFILE;
418 module_param(profile, int, 0000);
419 MODULE_PARM_DESC(profile,
420 		 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
421 		 "4=16x2 nexcom; default=40x2, old kp");
422 
423 static int keypad_type = NOT_SET;
424 module_param(keypad_type, int, 0000);
425 MODULE_PARM_DESC(keypad_type,
426 		 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
427 
428 static int lcd_type = NOT_SET;
429 module_param(lcd_type, int, 0000);
430 MODULE_PARM_DESC(lcd_type,
431 		 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
432 
433 static int lcd_height = NOT_SET;
434 module_param(lcd_height, int, 0000);
435 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
436 
437 static int lcd_width = NOT_SET;
438 module_param(lcd_width, int, 0000);
439 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
440 
441 static int lcd_bwidth = NOT_SET;	/* internal buffer width (usually 40) */
442 module_param(lcd_bwidth, int, 0000);
443 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
444 
445 static int lcd_hwidth = NOT_SET;	/* hardware buffer width (usually 64) */
446 module_param(lcd_hwidth, int, 0000);
447 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
448 
449 static int lcd_charset = NOT_SET;
450 module_param(lcd_charset, int, 0000);
451 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
452 
453 static int lcd_proto = NOT_SET;
454 module_param(lcd_proto, int, 0000);
455 MODULE_PARM_DESC(lcd_proto,
456 		 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
457 
458 /*
459  * These are the parallel port pins the LCD control signals are connected to.
460  * Set this to 0 if the signal is not used. Set it to its opposite value
461  * (negative) if the signal is negated. -MAXINT is used to indicate that the
462  * pin has not been explicitly specified.
463  *
464  * WARNING! no check will be performed about collisions with keypad !
465  */
466 
467 static int lcd_e_pin  = PIN_NOT_SET;
468 module_param(lcd_e_pin, int, 0000);
469 MODULE_PARM_DESC(lcd_e_pin,
470 		 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
471 
472 static int lcd_rs_pin = PIN_NOT_SET;
473 module_param(lcd_rs_pin, int, 0000);
474 MODULE_PARM_DESC(lcd_rs_pin,
475 		 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
476 
477 static int lcd_rw_pin = PIN_NOT_SET;
478 module_param(lcd_rw_pin, int, 0000);
479 MODULE_PARM_DESC(lcd_rw_pin,
480 		 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
481 
482 static int lcd_cl_pin = PIN_NOT_SET;
483 module_param(lcd_cl_pin, int, 0000);
484 MODULE_PARM_DESC(lcd_cl_pin,
485 		 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
486 
487 static int lcd_da_pin = PIN_NOT_SET;
488 module_param(lcd_da_pin, int, 0000);
489 MODULE_PARM_DESC(lcd_da_pin,
490 		 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
491 
492 static int lcd_bl_pin = PIN_NOT_SET;
493 module_param(lcd_bl_pin, int, 0000);
494 MODULE_PARM_DESC(lcd_bl_pin,
495 		 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
496 
497 /* Deprecated module parameters - consider not using them anymore */
498 
499 static int lcd_enabled = NOT_SET;
500 module_param(lcd_enabled, int, 0000);
501 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
502 
503 static int keypad_enabled = NOT_SET;
504 module_param(keypad_enabled, int, 0000);
505 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
506 
507 /* for some LCD drivers (ks0074) we need a charset conversion table. */
508 static const unsigned char lcd_char_conv_ks0074[256] = {
509 	/*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
510 	/* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
511 	/* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
512 	/* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
513 	/* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
514 	/* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
515 	/* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
516 	/* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
517 	/* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
518 	/* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
519 	/* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
520 	/* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
521 	/* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
522 	/* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
523 	/* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
524 	/* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
525 	/* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
526 	/* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
527 	/* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
528 	/* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
529 	/* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
530 	/* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
531 	/* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
532 	/* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
533 	/* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
534 	/* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
535 	/* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
536 	/* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
537 	/* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
538 	/* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
539 	/* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
540 	/* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
541 	/* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
542 };
543 
544 static const char old_keypad_profile[][4][9] = {
545 	{"S0", "Left\n", "Left\n", ""},
546 	{"S1", "Down\n", "Down\n", ""},
547 	{"S2", "Up\n", "Up\n", ""},
548 	{"S3", "Right\n", "Right\n", ""},
549 	{"S4", "Esc\n", "Esc\n", ""},
550 	{"S5", "Ret\n", "Ret\n", ""},
551 	{"", "", "", ""}
552 };
553 
554 /* signals, press, repeat, release */
555 static const char new_keypad_profile[][4][9] = {
556 	{"S0", "Left\n", "Left\n", ""},
557 	{"S1", "Down\n", "Down\n", ""},
558 	{"S2", "Up\n", "Up\n", ""},
559 	{"S3", "Right\n", "Right\n", ""},
560 	{"S4s5", "", "Esc\n", "Esc\n"},
561 	{"s4S5", "", "Ret\n", "Ret\n"},
562 	{"S4S5", "Help\n", "", ""},
563 	/* add new signals above this line */
564 	{"", "", "", ""}
565 };
566 
567 /* signals, press, repeat, release */
568 static const char nexcom_keypad_profile[][4][9] = {
569 	{"a-p-e-", "Down\n", "Down\n", ""},
570 	{"a-p-E-", "Ret\n", "Ret\n", ""},
571 	{"a-P-E-", "Esc\n", "Esc\n", ""},
572 	{"a-P-e-", "Up\n", "Up\n", ""},
573 	/* add new signals above this line */
574 	{"", "", "", ""}
575 };
576 
577 static const char (*keypad_profile)[4][9] = old_keypad_profile;
578 
579 static DECLARE_BITMAP(bits, LCD_BITS);
580 
581 static void lcd_get_bits(unsigned int port, int *val)
582 {
583 	unsigned int bit, state;
584 
585 	for (bit = 0; bit < LCD_BITS; bit++) {
586 		state = test_bit(bit, bits) ? BIT_SET : BIT_CLR;
587 		*val &= lcd_bits[port][bit][BIT_MSK];
588 		*val |= lcd_bits[port][bit][state];
589 	}
590 }
591 
592 /* sets data port bits according to current signals values */
593 static int set_data_bits(void)
594 {
595 	int val;
596 
597 	val = r_dtr(pprt);
598 	lcd_get_bits(LCD_PORT_D, &val);
599 	w_dtr(pprt, val);
600 	return val;
601 }
602 
603 /* sets ctrl port bits according to current signals values */
604 static int set_ctrl_bits(void)
605 {
606 	int val;
607 
608 	val = r_ctr(pprt);
609 	lcd_get_bits(LCD_PORT_C, &val);
610 	w_ctr(pprt, val);
611 	return val;
612 }
613 
614 /* sets ctrl & data port bits according to current signals values */
615 static void panel_set_bits(void)
616 {
617 	set_data_bits();
618 	set_ctrl_bits();
619 }
620 
621 /*
622  * Converts a parallel port pin (from -25 to 25) to data and control ports
623  * masks, and data and control port bits. The signal will be considered
624  * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
625  *
626  * Result will be used this way :
627  *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
628  *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
629  */
630 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
631 {
632 	int d_bit, c_bit, inv;
633 
634 	d_val[0] = 0;
635 	c_val[0] = 0;
636 	d_val[1] = 0;
637 	c_val[1] = 0;
638 	d_val[2] = 0xFF;
639 	c_val[2] = 0xFF;
640 
641 	if (pin == 0)
642 		return;
643 
644 	inv = (pin < 0);
645 	if (inv)
646 		pin = -pin;
647 
648 	d_bit = 0;
649 	c_bit = 0;
650 
651 	switch (pin) {
652 	case PIN_STROBE:	/* strobe, inverted */
653 		c_bit = PNL_PSTROBE;
654 		inv = !inv;
655 		break;
656 	case PIN_D0...PIN_D7:	/* D0 - D7 = 2 - 9 */
657 		d_bit = 1 << (pin - 2);
658 		break;
659 	case PIN_AUTOLF:	/* autofeed, inverted */
660 		c_bit = PNL_PAUTOLF;
661 		inv = !inv;
662 		break;
663 	case PIN_INITP:		/* init, direct */
664 		c_bit = PNL_PINITP;
665 		break;
666 	case PIN_SELECP:	/* select_in, inverted */
667 		c_bit = PNL_PSELECP;
668 		inv = !inv;
669 		break;
670 	default:		/* unknown pin, ignore */
671 		break;
672 	}
673 
674 	if (c_bit) {
675 		c_val[2] &= ~c_bit;
676 		c_val[!inv] = c_bit;
677 	} else if (d_bit) {
678 		d_val[2] &= ~d_bit;
679 		d_val[!inv] = d_bit;
680 	}
681 }
682 
683 /*
684  * send a serial byte to the LCD panel. The caller is responsible for locking
685  * if needed.
686  */
687 static void lcd_send_serial(int byte)
688 {
689 	int bit;
690 
691 	/*
692 	 * the data bit is set on D0, and the clock on STROBE.
693 	 * LCD reads D0 on STROBE's rising edge.
694 	 */
695 	for (bit = 0; bit < 8; bit++) {
696 		clear_bit(LCD_BIT_CL, bits);	/* CLK low */
697 		panel_set_bits();
698 		if (byte & 1) {
699 			set_bit(LCD_BIT_DA, bits);
700 		} else {
701 			clear_bit(LCD_BIT_DA, bits);
702 		}
703 
704 		panel_set_bits();
705 		udelay(2);  /* maintain the data during 2 us before CLK up */
706 		set_bit(LCD_BIT_CL, bits);	/* CLK high */
707 		panel_set_bits();
708 		udelay(1);  /* maintain the strobe during 1 us */
709 		byte >>= 1;
710 	}
711 }
712 
713 /* turn the backlight on or off */
714 static void lcd_backlight(struct charlcd *charlcd, int on)
715 {
716 	if (lcd.pins.bl == PIN_NONE)
717 		return;
718 
719 	/* The backlight is activated by setting the AUTOFEED line to +5V  */
720 	spin_lock_irq(&pprt_lock);
721 	if (on)
722 		set_bit(LCD_BIT_BL, bits);
723 	else
724 		clear_bit(LCD_BIT_BL, bits);
725 	panel_set_bits();
726 	spin_unlock_irq(&pprt_lock);
727 }
728 
729 /* send a command to the LCD panel in serial mode */
730 static void lcd_write_cmd_s(struct charlcd *charlcd, int cmd)
731 {
732 	spin_lock_irq(&pprt_lock);
733 	lcd_send_serial(0x1F);	/* R/W=W, RS=0 */
734 	lcd_send_serial(cmd & 0x0F);
735 	lcd_send_serial((cmd >> 4) & 0x0F);
736 	udelay(40);		/* the shortest command takes at least 40 us */
737 	spin_unlock_irq(&pprt_lock);
738 }
739 
740 /* send data to the LCD panel in serial mode */
741 static void lcd_write_data_s(struct charlcd *charlcd, int data)
742 {
743 	spin_lock_irq(&pprt_lock);
744 	lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
745 	lcd_send_serial(data & 0x0F);
746 	lcd_send_serial((data >> 4) & 0x0F);
747 	udelay(40);		/* the shortest data takes at least 40 us */
748 	spin_unlock_irq(&pprt_lock);
749 }
750 
751 /* send a command to the LCD panel in 8 bits parallel mode */
752 static void lcd_write_cmd_p8(struct charlcd *charlcd, int cmd)
753 {
754 	spin_lock_irq(&pprt_lock);
755 	/* present the data to the data port */
756 	w_dtr(pprt, cmd);
757 	udelay(20);	/* maintain the data during 20 us before the strobe */
758 
759 	set_bit(LCD_BIT_E, bits);
760 	clear_bit(LCD_BIT_RS, bits);
761 	clear_bit(LCD_BIT_RW, bits);
762 	set_ctrl_bits();
763 
764 	udelay(40);	/* maintain the strobe during 40 us */
765 
766 	clear_bit(LCD_BIT_E, bits);
767 	set_ctrl_bits();
768 
769 	udelay(120);	/* the shortest command takes at least 120 us */
770 	spin_unlock_irq(&pprt_lock);
771 }
772 
773 /* send data to the LCD panel in 8 bits parallel mode */
774 static void lcd_write_data_p8(struct charlcd *charlcd, int data)
775 {
776 	spin_lock_irq(&pprt_lock);
777 	/* present the data to the data port */
778 	w_dtr(pprt, data);
779 	udelay(20);	/* maintain the data during 20 us before the strobe */
780 
781 	set_bit(LCD_BIT_E, bits);
782 	set_bit(LCD_BIT_RS, bits);
783 	clear_bit(LCD_BIT_RW, bits);
784 	set_ctrl_bits();
785 
786 	udelay(40);	/* maintain the strobe during 40 us */
787 
788 	clear_bit(LCD_BIT_E, bits);
789 	set_ctrl_bits();
790 
791 	udelay(45);	/* the shortest data takes at least 45 us */
792 	spin_unlock_irq(&pprt_lock);
793 }
794 
795 /* send a command to the TI LCD panel */
796 static void lcd_write_cmd_tilcd(struct charlcd *charlcd, int cmd)
797 {
798 	spin_lock_irq(&pprt_lock);
799 	/* present the data to the control port */
800 	w_ctr(pprt, cmd);
801 	udelay(60);
802 	spin_unlock_irq(&pprt_lock);
803 }
804 
805 /* send data to the TI LCD panel */
806 static void lcd_write_data_tilcd(struct charlcd *charlcd, int data)
807 {
808 	spin_lock_irq(&pprt_lock);
809 	/* present the data to the data port */
810 	w_dtr(pprt, data);
811 	udelay(60);
812 	spin_unlock_irq(&pprt_lock);
813 }
814 
815 /* fills the display with spaces and resets X/Y */
816 static void lcd_clear_fast_s(struct charlcd *charlcd)
817 {
818 	int pos;
819 
820 	spin_lock_irq(&pprt_lock);
821 	for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
822 		lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
823 		lcd_send_serial(' ' & 0x0F);
824 		lcd_send_serial((' ' >> 4) & 0x0F);
825 		/* the shortest data takes at least 40 us */
826 		udelay(40);
827 	}
828 	spin_unlock_irq(&pprt_lock);
829 }
830 
831 /* fills the display with spaces and resets X/Y */
832 static void lcd_clear_fast_p8(struct charlcd *charlcd)
833 {
834 	int pos;
835 
836 	spin_lock_irq(&pprt_lock);
837 	for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
838 		/* present the data to the data port */
839 		w_dtr(pprt, ' ');
840 
841 		/* maintain the data during 20 us before the strobe */
842 		udelay(20);
843 
844 		set_bit(LCD_BIT_E, bits);
845 		set_bit(LCD_BIT_RS, bits);
846 		clear_bit(LCD_BIT_RW, bits);
847 		set_ctrl_bits();
848 
849 		/* maintain the strobe during 40 us */
850 		udelay(40);
851 
852 		clear_bit(LCD_BIT_E, bits);
853 		set_ctrl_bits();
854 
855 		/* the shortest data takes at least 45 us */
856 		udelay(45);
857 	}
858 	spin_unlock_irq(&pprt_lock);
859 }
860 
861 /* fills the display with spaces and resets X/Y */
862 static void lcd_clear_fast_tilcd(struct charlcd *charlcd)
863 {
864 	int pos;
865 
866 	spin_lock_irq(&pprt_lock);
867 	for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
868 		/* present the data to the data port */
869 		w_dtr(pprt, ' ');
870 		udelay(60);
871 	}
872 
873 	spin_unlock_irq(&pprt_lock);
874 }
875 
876 static const struct charlcd_ops charlcd_serial_ops = {
877 	.write_cmd	= lcd_write_cmd_s,
878 	.write_data	= lcd_write_data_s,
879 	.clear_fast	= lcd_clear_fast_s,
880 	.backlight	= lcd_backlight,
881 };
882 
883 static const struct charlcd_ops charlcd_parallel_ops = {
884 	.write_cmd	= lcd_write_cmd_p8,
885 	.write_data	= lcd_write_data_p8,
886 	.clear_fast	= lcd_clear_fast_p8,
887 	.backlight	= lcd_backlight,
888 };
889 
890 static const struct charlcd_ops charlcd_tilcd_ops = {
891 	.write_cmd	= lcd_write_cmd_tilcd,
892 	.write_data	= lcd_write_data_tilcd,
893 	.clear_fast	= lcd_clear_fast_tilcd,
894 	.backlight	= lcd_backlight,
895 };
896 
897 /* initialize the LCD driver */
898 static void lcd_init(void)
899 {
900 	struct charlcd *charlcd;
901 
902 	charlcd = charlcd_alloc(0);
903 	if (!charlcd)
904 		return;
905 
906 	/*
907 	 * Init lcd struct with load-time values to preserve exact
908 	 * current functionality (at least for now).
909 	 */
910 	charlcd->height = lcd_height;
911 	charlcd->width = lcd_width;
912 	charlcd->bwidth = lcd_bwidth;
913 	charlcd->hwidth = lcd_hwidth;
914 
915 	switch (selected_lcd_type) {
916 	case LCD_TYPE_OLD:
917 		/* parallel mode, 8 bits */
918 		lcd.proto = LCD_PROTO_PARALLEL;
919 		lcd.charset = LCD_CHARSET_NORMAL;
920 		lcd.pins.e = PIN_STROBE;
921 		lcd.pins.rs = PIN_AUTOLF;
922 
923 		charlcd->width = 40;
924 		charlcd->bwidth = 40;
925 		charlcd->hwidth = 64;
926 		charlcd->height = 2;
927 		break;
928 	case LCD_TYPE_KS0074:
929 		/* serial mode, ks0074 */
930 		lcd.proto = LCD_PROTO_SERIAL;
931 		lcd.charset = LCD_CHARSET_KS0074;
932 		lcd.pins.bl = PIN_AUTOLF;
933 		lcd.pins.cl = PIN_STROBE;
934 		lcd.pins.da = PIN_D0;
935 
936 		charlcd->width = 16;
937 		charlcd->bwidth = 40;
938 		charlcd->hwidth = 16;
939 		charlcd->height = 2;
940 		break;
941 	case LCD_TYPE_NEXCOM:
942 		/* parallel mode, 8 bits, generic */
943 		lcd.proto = LCD_PROTO_PARALLEL;
944 		lcd.charset = LCD_CHARSET_NORMAL;
945 		lcd.pins.e = PIN_AUTOLF;
946 		lcd.pins.rs = PIN_SELECP;
947 		lcd.pins.rw = PIN_INITP;
948 
949 		charlcd->width = 16;
950 		charlcd->bwidth = 40;
951 		charlcd->hwidth = 64;
952 		charlcd->height = 2;
953 		break;
954 	case LCD_TYPE_CUSTOM:
955 		/* customer-defined */
956 		lcd.proto = DEFAULT_LCD_PROTO;
957 		lcd.charset = DEFAULT_LCD_CHARSET;
958 		/* default geometry will be set later */
959 		break;
960 	case LCD_TYPE_HANTRONIX:
961 		/* parallel mode, 8 bits, hantronix-like */
962 	default:
963 		lcd.proto = LCD_PROTO_PARALLEL;
964 		lcd.charset = LCD_CHARSET_NORMAL;
965 		lcd.pins.e = PIN_STROBE;
966 		lcd.pins.rs = PIN_SELECP;
967 
968 		charlcd->width = 16;
969 		charlcd->bwidth = 40;
970 		charlcd->hwidth = 64;
971 		charlcd->height = 2;
972 		break;
973 	}
974 
975 	/* Overwrite with module params set on loading */
976 	if (lcd_height != NOT_SET)
977 		charlcd->height = lcd_height;
978 	if (lcd_width != NOT_SET)
979 		charlcd->width = lcd_width;
980 	if (lcd_bwidth != NOT_SET)
981 		charlcd->bwidth = lcd_bwidth;
982 	if (lcd_hwidth != NOT_SET)
983 		charlcd->hwidth = lcd_hwidth;
984 	if (lcd_charset != NOT_SET)
985 		lcd.charset = lcd_charset;
986 	if (lcd_proto != NOT_SET)
987 		lcd.proto = lcd_proto;
988 	if (lcd_e_pin != PIN_NOT_SET)
989 		lcd.pins.e = lcd_e_pin;
990 	if (lcd_rs_pin != PIN_NOT_SET)
991 		lcd.pins.rs = lcd_rs_pin;
992 	if (lcd_rw_pin != PIN_NOT_SET)
993 		lcd.pins.rw = lcd_rw_pin;
994 	if (lcd_cl_pin != PIN_NOT_SET)
995 		lcd.pins.cl = lcd_cl_pin;
996 	if (lcd_da_pin != PIN_NOT_SET)
997 		lcd.pins.da = lcd_da_pin;
998 	if (lcd_bl_pin != PIN_NOT_SET)
999 		lcd.pins.bl = lcd_bl_pin;
1000 
1001 	/* this is used to catch wrong and default values */
1002 	if (charlcd->width <= 0)
1003 		charlcd->width = DEFAULT_LCD_WIDTH;
1004 	if (charlcd->bwidth <= 0)
1005 		charlcd->bwidth = DEFAULT_LCD_BWIDTH;
1006 	if (charlcd->hwidth <= 0)
1007 		charlcd->hwidth = DEFAULT_LCD_HWIDTH;
1008 	if (charlcd->height <= 0)
1009 		charlcd->height = DEFAULT_LCD_HEIGHT;
1010 
1011 	if (lcd.proto == LCD_PROTO_SERIAL) {	/* SERIAL */
1012 		charlcd->ops = &charlcd_serial_ops;
1013 
1014 		if (lcd.pins.cl == PIN_NOT_SET)
1015 			lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1016 		if (lcd.pins.da == PIN_NOT_SET)
1017 			lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1018 
1019 	} else if (lcd.proto == LCD_PROTO_PARALLEL) {	/* PARALLEL */
1020 		charlcd->ops = &charlcd_parallel_ops;
1021 
1022 		if (lcd.pins.e == PIN_NOT_SET)
1023 			lcd.pins.e = DEFAULT_LCD_PIN_E;
1024 		if (lcd.pins.rs == PIN_NOT_SET)
1025 			lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1026 		if (lcd.pins.rw == PIN_NOT_SET)
1027 			lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1028 	} else {
1029 		charlcd->ops = &charlcd_tilcd_ops;
1030 	}
1031 
1032 	if (lcd.pins.bl == PIN_NOT_SET)
1033 		lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1034 
1035 	if (lcd.pins.e == PIN_NOT_SET)
1036 		lcd.pins.e = PIN_NONE;
1037 	if (lcd.pins.rs == PIN_NOT_SET)
1038 		lcd.pins.rs = PIN_NONE;
1039 	if (lcd.pins.rw == PIN_NOT_SET)
1040 		lcd.pins.rw = PIN_NONE;
1041 	if (lcd.pins.bl == PIN_NOT_SET)
1042 		lcd.pins.bl = PIN_NONE;
1043 	if (lcd.pins.cl == PIN_NOT_SET)
1044 		lcd.pins.cl = PIN_NONE;
1045 	if (lcd.pins.da == PIN_NOT_SET)
1046 		lcd.pins.da = PIN_NONE;
1047 
1048 	if (lcd.charset == NOT_SET)
1049 		lcd.charset = DEFAULT_LCD_CHARSET;
1050 
1051 	if (lcd.charset == LCD_CHARSET_KS0074)
1052 		charlcd->char_conv = lcd_char_conv_ks0074;
1053 	else
1054 		charlcd->char_conv = NULL;
1055 
1056 	pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1057 		    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1058 	pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1059 		    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1060 	pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1061 		    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1062 	pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1063 		    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1064 	pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1065 		    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1066 	pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1067 		    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1068 
1069 	lcd.charlcd = charlcd;
1070 	lcd.initialized = true;
1071 }
1072 
1073 /*
1074  * These are the file operation function for user access to /dev/keypad
1075  */
1076 
1077 static ssize_t keypad_read(struct file *file,
1078 			   char __user *buf, size_t count, loff_t *ppos)
1079 {
1080 	unsigned i = *ppos;
1081 	char __user *tmp = buf;
1082 
1083 	if (keypad_buflen == 0) {
1084 		if (file->f_flags & O_NONBLOCK)
1085 			return -EAGAIN;
1086 
1087 		if (wait_event_interruptible(keypad_read_wait,
1088 					     keypad_buflen != 0))
1089 			return -EINTR;
1090 	}
1091 
1092 	for (; count-- > 0 && (keypad_buflen > 0);
1093 	     ++i, ++tmp, --keypad_buflen) {
1094 		put_user(keypad_buffer[keypad_start], tmp);
1095 		keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1096 	}
1097 	*ppos = i;
1098 
1099 	return tmp - buf;
1100 }
1101 
1102 static int keypad_open(struct inode *inode, struct file *file)
1103 {
1104 	int ret;
1105 
1106 	ret = -EBUSY;
1107 	if (!atomic_dec_and_test(&keypad_available))
1108 		goto fail;	/* open only once at a time */
1109 
1110 	ret = -EPERM;
1111 	if (file->f_mode & FMODE_WRITE)	/* device is read-only */
1112 		goto fail;
1113 
1114 	keypad_buflen = 0;	/* flush the buffer on opening */
1115 	return 0;
1116  fail:
1117 	atomic_inc(&keypad_available);
1118 	return ret;
1119 }
1120 
1121 static int keypad_release(struct inode *inode, struct file *file)
1122 {
1123 	atomic_inc(&keypad_available);
1124 	return 0;
1125 }
1126 
1127 static const struct file_operations keypad_fops = {
1128 	.read    = keypad_read,		/* read */
1129 	.open    = keypad_open,		/* open */
1130 	.release = keypad_release,	/* close */
1131 	.llseek  = default_llseek,
1132 };
1133 
1134 static struct miscdevice keypad_dev = {
1135 	.minor	= KEYPAD_MINOR,
1136 	.name	= "keypad",
1137 	.fops	= &keypad_fops,
1138 };
1139 
1140 static void keypad_send_key(const char *string, int max_len)
1141 {
1142 	/* send the key to the device only if a process is attached to it. */
1143 	if (!atomic_read(&keypad_available)) {
1144 		while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1145 			keypad_buffer[(keypad_start + keypad_buflen++) %
1146 				      KEYPAD_BUFFER] = *string++;
1147 		}
1148 		wake_up_interruptible(&keypad_read_wait);
1149 	}
1150 }
1151 
1152 /* this function scans all the bits involving at least one logical signal,
1153  * and puts the results in the bitfield "phys_read" (one bit per established
1154  * contact), and sets "phys_read_prev" to "phys_read".
1155  *
1156  * Note: to debounce input signals, we will only consider as switched a signal
1157  * which is stable across 2 measures. Signals which are different between two
1158  * reads will be kept as they previously were in their logical form (phys_prev).
1159  * A signal which has just switched will have a 1 in
1160  * (phys_read ^ phys_read_prev).
1161  */
1162 static void phys_scan_contacts(void)
1163 {
1164 	int bit, bitval;
1165 	char oldval;
1166 	char bitmask;
1167 	char gndmask;
1168 
1169 	phys_prev = phys_curr;
1170 	phys_read_prev = phys_read;
1171 	phys_read = 0;		/* flush all signals */
1172 
1173 	/* keep track of old value, with all outputs disabled */
1174 	oldval = r_dtr(pprt) | scan_mask_o;
1175 	/* activate all keyboard outputs (active low) */
1176 	w_dtr(pprt, oldval & ~scan_mask_o);
1177 
1178 	/* will have a 1 for each bit set to gnd */
1179 	bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1180 	/* disable all matrix signals */
1181 	w_dtr(pprt, oldval);
1182 
1183 	/* now that all outputs are cleared, the only active input bits are
1184 	 * directly connected to the ground
1185 	 */
1186 
1187 	/* 1 for each grounded input */
1188 	gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1189 
1190 	/* grounded inputs are signals 40-44 */
1191 	phys_read |= (__u64)gndmask << 40;
1192 
1193 	if (bitmask != gndmask) {
1194 		/*
1195 		 * since clearing the outputs changed some inputs, we know
1196 		 * that some input signals are currently tied to some outputs.
1197 		 * So we'll scan them.
1198 		 */
1199 		for (bit = 0; bit < 8; bit++) {
1200 			bitval = BIT(bit);
1201 
1202 			if (!(scan_mask_o & bitval))	/* skip unused bits */
1203 				continue;
1204 
1205 			w_dtr(pprt, oldval & ~bitval);	/* enable this output */
1206 			bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1207 			phys_read |= (__u64)bitmask << (5 * bit);
1208 		}
1209 		w_dtr(pprt, oldval);	/* disable all outputs */
1210 	}
1211 	/*
1212 	 * this is easy: use old bits when they are flapping,
1213 	 * use new ones when stable
1214 	 */
1215 	phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1216 		    (phys_read & ~(phys_read ^ phys_read_prev));
1217 }
1218 
1219 static inline int input_state_high(struct logical_input *input)
1220 {
1221 #if 0
1222 	/* FIXME:
1223 	 * this is an invalid test. It tries to catch
1224 	 * transitions from single-key to multiple-key, but
1225 	 * doesn't take into account the contacts polarity.
1226 	 * The only solution to the problem is to parse keys
1227 	 * from the most complex to the simplest combinations,
1228 	 * and mark them as 'caught' once a combination
1229 	 * matches, then unmatch it for all other ones.
1230 	 */
1231 
1232 	/* try to catch dangerous transitions cases :
1233 	 * someone adds a bit, so this signal was a false
1234 	 * positive resulting from a transition. We should
1235 	 * invalidate the signal immediately and not call the
1236 	 * release function.
1237 	 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1238 	 */
1239 	if (((phys_prev & input->mask) == input->value) &&
1240 	    ((phys_curr & input->mask) >  input->value)) {
1241 		input->state = INPUT_ST_LOW; /* invalidate */
1242 		return 1;
1243 	}
1244 #endif
1245 
1246 	if ((phys_curr & input->mask) == input->value) {
1247 		if ((input->type == INPUT_TYPE_STD) &&
1248 		    (input->high_timer == 0)) {
1249 			input->high_timer++;
1250 			if (input->u.std.press_fct)
1251 				input->u.std.press_fct(input->u.std.press_data);
1252 		} else if (input->type == INPUT_TYPE_KBD) {
1253 			/* will turn on the light */
1254 			keypressed = 1;
1255 
1256 			if (input->high_timer == 0) {
1257 				char *press_str = input->u.kbd.press_str;
1258 
1259 				if (press_str[0]) {
1260 					int s = sizeof(input->u.kbd.press_str);
1261 
1262 					keypad_send_key(press_str, s);
1263 				}
1264 			}
1265 
1266 			if (input->u.kbd.repeat_str[0]) {
1267 				char *repeat_str = input->u.kbd.repeat_str;
1268 
1269 				if (input->high_timer >= KEYPAD_REP_START) {
1270 					int s = sizeof(input->u.kbd.repeat_str);
1271 
1272 					input->high_timer -= KEYPAD_REP_DELAY;
1273 					keypad_send_key(repeat_str, s);
1274 				}
1275 				/* we will need to come back here soon */
1276 				inputs_stable = 0;
1277 			}
1278 
1279 			if (input->high_timer < 255)
1280 				input->high_timer++;
1281 		}
1282 		return 1;
1283 	}
1284 
1285 	/* else signal falling down. Let's fall through. */
1286 	input->state = INPUT_ST_FALLING;
1287 	input->fall_timer = 0;
1288 
1289 	return 0;
1290 }
1291 
1292 static inline void input_state_falling(struct logical_input *input)
1293 {
1294 #if 0
1295 	/* FIXME !!! same comment as in input_state_high */
1296 	if (((phys_prev & input->mask) == input->value) &&
1297 	    ((phys_curr & input->mask) >  input->value)) {
1298 		input->state = INPUT_ST_LOW;	/* invalidate */
1299 		return;
1300 	}
1301 #endif
1302 
1303 	if ((phys_curr & input->mask) == input->value) {
1304 		if (input->type == INPUT_TYPE_KBD) {
1305 			/* will turn on the light */
1306 			keypressed = 1;
1307 
1308 			if (input->u.kbd.repeat_str[0]) {
1309 				char *repeat_str = input->u.kbd.repeat_str;
1310 
1311 				if (input->high_timer >= KEYPAD_REP_START) {
1312 					int s = sizeof(input->u.kbd.repeat_str);
1313 
1314 					input->high_timer -= KEYPAD_REP_DELAY;
1315 					keypad_send_key(repeat_str, s);
1316 				}
1317 				/* we will need to come back here soon */
1318 				inputs_stable = 0;
1319 			}
1320 
1321 			if (input->high_timer < 255)
1322 				input->high_timer++;
1323 		}
1324 		input->state = INPUT_ST_HIGH;
1325 	} else if (input->fall_timer >= input->fall_time) {
1326 		/* call release event */
1327 		if (input->type == INPUT_TYPE_STD) {
1328 			void (*release_fct)(int) = input->u.std.release_fct;
1329 
1330 			if (release_fct)
1331 				release_fct(input->u.std.release_data);
1332 		} else if (input->type == INPUT_TYPE_KBD) {
1333 			char *release_str = input->u.kbd.release_str;
1334 
1335 			if (release_str[0]) {
1336 				int s = sizeof(input->u.kbd.release_str);
1337 
1338 				keypad_send_key(release_str, s);
1339 			}
1340 		}
1341 
1342 		input->state = INPUT_ST_LOW;
1343 	} else {
1344 		input->fall_timer++;
1345 		inputs_stable = 0;
1346 	}
1347 }
1348 
1349 static void panel_process_inputs(void)
1350 {
1351 	struct logical_input *input;
1352 
1353 	keypressed = 0;
1354 	inputs_stable = 1;
1355 	list_for_each_entry(input, &logical_inputs, list) {
1356 		switch (input->state) {
1357 		case INPUT_ST_LOW:
1358 			if ((phys_curr & input->mask) != input->value)
1359 				break;
1360 			/* if all needed ones were already set previously,
1361 			 * this means that this logical signal has been
1362 			 * activated by the releasing of another combined
1363 			 * signal, so we don't want to match.
1364 			 * eg: AB -(release B)-> A -(release A)-> 0 :
1365 			 *     don't match A.
1366 			 */
1367 			if ((phys_prev & input->mask) == input->value)
1368 				break;
1369 			input->rise_timer = 0;
1370 			input->state = INPUT_ST_RISING;
1371 			/* fall through */
1372 		case INPUT_ST_RISING:
1373 			if ((phys_curr & input->mask) != input->value) {
1374 				input->state = INPUT_ST_LOW;
1375 				break;
1376 			}
1377 			if (input->rise_timer < input->rise_time) {
1378 				inputs_stable = 0;
1379 				input->rise_timer++;
1380 				break;
1381 			}
1382 			input->high_timer = 0;
1383 			input->state = INPUT_ST_HIGH;
1384 			/* fall through */
1385 		case INPUT_ST_HIGH:
1386 			if (input_state_high(input))
1387 				break;
1388 			/* fall through */
1389 		case INPUT_ST_FALLING:
1390 			input_state_falling(input);
1391 		}
1392 	}
1393 }
1394 
1395 static void panel_scan_timer(struct timer_list *unused)
1396 {
1397 	if (keypad.enabled && keypad_initialized) {
1398 		if (spin_trylock_irq(&pprt_lock)) {
1399 			phys_scan_contacts();
1400 
1401 			/* no need for the parport anymore */
1402 			spin_unlock_irq(&pprt_lock);
1403 		}
1404 
1405 		if (!inputs_stable || phys_curr != phys_prev)
1406 			panel_process_inputs();
1407 	}
1408 
1409 	if (keypressed && lcd.enabled && lcd.initialized)
1410 		charlcd_poke(lcd.charlcd);
1411 
1412 	mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1413 }
1414 
1415 static void init_scan_timer(void)
1416 {
1417 	if (scan_timer.function)
1418 		return;		/* already started */
1419 
1420 	timer_setup(&scan_timer, panel_scan_timer, 0);
1421 	scan_timer.expires = jiffies + INPUT_POLL_TIME;
1422 	add_timer(&scan_timer);
1423 }
1424 
1425 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1426  * if <omask> or <imask> are non-null, they will be or'ed with the bits
1427  * corresponding to out and in bits respectively.
1428  * returns 1 if ok, 0 if error (in which case, nothing is written).
1429  */
1430 static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value,
1431 			  u8 *imask, u8 *omask)
1432 {
1433 	const char sigtab[] = "EeSsPpAaBb";
1434 	u8 im, om;
1435 	__u64 m, v;
1436 
1437 	om = 0;
1438 	im = 0;
1439 	m = 0ULL;
1440 	v = 0ULL;
1441 	while (*name) {
1442 		int in, out, bit, neg;
1443 		const char *idx;
1444 
1445 		idx = strchr(sigtab, *name);
1446 		if (!idx)
1447 			return 0;	/* input name not found */
1448 
1449 		in = idx - sigtab;
1450 		neg = (in & 1);	/* odd (lower) names are negated */
1451 		in >>= 1;
1452 		im |= BIT(in);
1453 
1454 		name++;
1455 		if (*name >= '0' && *name <= '7') {
1456 			out = *name - '0';
1457 			om |= BIT(out);
1458 		} else if (*name == '-') {
1459 			out = 8;
1460 		} else {
1461 			return 0;	/* unknown bit name */
1462 		}
1463 
1464 		bit = (out * 5) + in;
1465 
1466 		m |= 1ULL << bit;
1467 		if (!neg)
1468 			v |= 1ULL << bit;
1469 		name++;
1470 	}
1471 	*mask = m;
1472 	*value = v;
1473 	if (imask)
1474 		*imask |= im;
1475 	if (omask)
1476 		*omask |= om;
1477 	return 1;
1478 }
1479 
1480 /* tries to bind a key to the signal name <name>. The key will send the
1481  * strings <press>, <repeat>, <release> for these respective events.
1482  * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1483  */
1484 static struct logical_input *panel_bind_key(const char *name, const char *press,
1485 					    const char *repeat,
1486 					    const char *release)
1487 {
1488 	struct logical_input *key;
1489 
1490 	key = kzalloc(sizeof(*key), GFP_KERNEL);
1491 	if (!key)
1492 		return NULL;
1493 
1494 	if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1495 			     &scan_mask_o)) {
1496 		kfree(key);
1497 		return NULL;
1498 	}
1499 
1500 	key->type = INPUT_TYPE_KBD;
1501 	key->state = INPUT_ST_LOW;
1502 	key->rise_time = 1;
1503 	key->fall_time = 1;
1504 
1505 	strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
1506 	strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
1507 	strncpy(key->u.kbd.release_str, release,
1508 		sizeof(key->u.kbd.release_str));
1509 	list_add(&key->list, &logical_inputs);
1510 	return key;
1511 }
1512 
1513 #if 0
1514 /* tries to bind a callback function to the signal name <name>. The function
1515  * <press_fct> will be called with the <press_data> arg when the signal is
1516  * activated, and so on for <release_fct>/<release_data>
1517  * Returns the pointer to the new signal if ok, NULL if the signal could not
1518  * be bound.
1519  */
1520 static struct logical_input *panel_bind_callback(char *name,
1521 						 void (*press_fct)(int),
1522 						 int press_data,
1523 						 void (*release_fct)(int),
1524 						 int release_data)
1525 {
1526 	struct logical_input *callback;
1527 
1528 	callback = kmalloc(sizeof(*callback), GFP_KERNEL);
1529 	if (!callback)
1530 		return NULL;
1531 
1532 	memset(callback, 0, sizeof(struct logical_input));
1533 	if (!input_name2mask(name, &callback->mask, &callback->value,
1534 			     &scan_mask_i, &scan_mask_o))
1535 		return NULL;
1536 
1537 	callback->type = INPUT_TYPE_STD;
1538 	callback->state = INPUT_ST_LOW;
1539 	callback->rise_time = 1;
1540 	callback->fall_time = 1;
1541 	callback->u.std.press_fct = press_fct;
1542 	callback->u.std.press_data = press_data;
1543 	callback->u.std.release_fct = release_fct;
1544 	callback->u.std.release_data = release_data;
1545 	list_add(&callback->list, &logical_inputs);
1546 	return callback;
1547 }
1548 #endif
1549 
1550 static void keypad_init(void)
1551 {
1552 	int keynum;
1553 
1554 	init_waitqueue_head(&keypad_read_wait);
1555 	keypad_buflen = 0;	/* flushes any eventual noisy keystroke */
1556 
1557 	/* Let's create all known keys */
1558 
1559 	for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
1560 		panel_bind_key(keypad_profile[keynum][0],
1561 			       keypad_profile[keynum][1],
1562 			       keypad_profile[keynum][2],
1563 			       keypad_profile[keynum][3]);
1564 	}
1565 
1566 	init_scan_timer();
1567 	keypad_initialized = 1;
1568 }
1569 
1570 /**************************************************/
1571 /* device initialization                          */
1572 /**************************************************/
1573 
1574 static void panel_attach(struct parport *port)
1575 {
1576 	struct pardev_cb panel_cb;
1577 
1578 	if (port->number != parport)
1579 		return;
1580 
1581 	if (pprt) {
1582 		pr_err("%s: port->number=%d parport=%d, already registered!\n",
1583 		       __func__, port->number, parport);
1584 		return;
1585 	}
1586 
1587 	memset(&panel_cb, 0, sizeof(panel_cb));
1588 	panel_cb.private = &pprt;
1589 	/* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
1590 
1591 	pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
1592 	if (!pprt) {
1593 		pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
1594 		       __func__, port->number, parport);
1595 		return;
1596 	}
1597 
1598 	if (parport_claim(pprt)) {
1599 		pr_err("could not claim access to parport%d. Aborting.\n",
1600 		       parport);
1601 		goto err_unreg_device;
1602 	}
1603 
1604 	/* must init LCD first, just in case an IRQ from the keypad is
1605 	 * generated at keypad init
1606 	 */
1607 	if (lcd.enabled) {
1608 		lcd_init();
1609 		if (!lcd.charlcd || charlcd_register(lcd.charlcd))
1610 			goto err_unreg_device;
1611 	}
1612 
1613 	if (keypad.enabled) {
1614 		keypad_init();
1615 		if (misc_register(&keypad_dev))
1616 			goto err_lcd_unreg;
1617 	}
1618 	return;
1619 
1620 err_lcd_unreg:
1621 	if (lcd.enabled)
1622 		charlcd_unregister(lcd.charlcd);
1623 err_unreg_device:
1624 	kfree(lcd.charlcd);
1625 	lcd.charlcd = NULL;
1626 	parport_unregister_device(pprt);
1627 	pprt = NULL;
1628 }
1629 
1630 static void panel_detach(struct parport *port)
1631 {
1632 	if (port->number != parport)
1633 		return;
1634 
1635 	if (!pprt) {
1636 		pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
1637 		       __func__, port->number, parport);
1638 		return;
1639 	}
1640 	if (scan_timer.function)
1641 		del_timer_sync(&scan_timer);
1642 
1643 	if (keypad.enabled) {
1644 		misc_deregister(&keypad_dev);
1645 		keypad_initialized = 0;
1646 	}
1647 
1648 	if (lcd.enabled) {
1649 		charlcd_unregister(lcd.charlcd);
1650 		lcd.initialized = false;
1651 		kfree(lcd.charlcd);
1652 		lcd.charlcd = NULL;
1653 	}
1654 
1655 	/* TODO: free all input signals */
1656 	parport_release(pprt);
1657 	parport_unregister_device(pprt);
1658 	pprt = NULL;
1659 }
1660 
1661 static struct parport_driver panel_driver = {
1662 	.name = "panel",
1663 	.match_port = panel_attach,
1664 	.detach = panel_detach,
1665 	.devmodel = true,
1666 };
1667 
1668 /* init function */
1669 static int __init panel_init_module(void)
1670 {
1671 	int selected_keypad_type = NOT_SET, err;
1672 
1673 	/* take care of an eventual profile */
1674 	switch (profile) {
1675 	case PANEL_PROFILE_CUSTOM:
1676 		/* custom profile */
1677 		selected_keypad_type = DEFAULT_KEYPAD_TYPE;
1678 		selected_lcd_type = DEFAULT_LCD_TYPE;
1679 		break;
1680 	case PANEL_PROFILE_OLD:
1681 		/* 8 bits, 2*16, old keypad */
1682 		selected_keypad_type = KEYPAD_TYPE_OLD;
1683 		selected_lcd_type = LCD_TYPE_OLD;
1684 
1685 		/* TODO: This two are a little hacky, sort it out later */
1686 		if (lcd_width == NOT_SET)
1687 			lcd_width = 16;
1688 		if (lcd_hwidth == NOT_SET)
1689 			lcd_hwidth = 16;
1690 		break;
1691 	case PANEL_PROFILE_NEW:
1692 		/* serial, 2*16, new keypad */
1693 		selected_keypad_type = KEYPAD_TYPE_NEW;
1694 		selected_lcd_type = LCD_TYPE_KS0074;
1695 		break;
1696 	case PANEL_PROFILE_HANTRONIX:
1697 		/* 8 bits, 2*16 hantronix-like, no keypad */
1698 		selected_keypad_type = KEYPAD_TYPE_NONE;
1699 		selected_lcd_type = LCD_TYPE_HANTRONIX;
1700 		break;
1701 	case PANEL_PROFILE_NEXCOM:
1702 		/* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
1703 		selected_keypad_type = KEYPAD_TYPE_NEXCOM;
1704 		selected_lcd_type = LCD_TYPE_NEXCOM;
1705 		break;
1706 	case PANEL_PROFILE_LARGE:
1707 		/* 8 bits, 2*40, old keypad */
1708 		selected_keypad_type = KEYPAD_TYPE_OLD;
1709 		selected_lcd_type = LCD_TYPE_OLD;
1710 		break;
1711 	}
1712 
1713 	/*
1714 	 * Overwrite selection with module param values (both keypad and lcd),
1715 	 * where the deprecated params have lower prio.
1716 	 */
1717 	if (keypad_enabled != NOT_SET)
1718 		selected_keypad_type = keypad_enabled;
1719 	if (keypad_type != NOT_SET)
1720 		selected_keypad_type = keypad_type;
1721 
1722 	keypad.enabled = (selected_keypad_type > 0);
1723 
1724 	if (lcd_enabled != NOT_SET)
1725 		selected_lcd_type = lcd_enabled;
1726 	if (lcd_type != NOT_SET)
1727 		selected_lcd_type = lcd_type;
1728 
1729 	lcd.enabled = (selected_lcd_type > 0);
1730 
1731 	if (lcd.enabled) {
1732 		/*
1733 		 * Init lcd struct with load-time values to preserve exact
1734 		 * current functionality (at least for now).
1735 		 */
1736 		lcd.charset = lcd_charset;
1737 		lcd.proto = lcd_proto;
1738 		lcd.pins.e = lcd_e_pin;
1739 		lcd.pins.rs = lcd_rs_pin;
1740 		lcd.pins.rw = lcd_rw_pin;
1741 		lcd.pins.cl = lcd_cl_pin;
1742 		lcd.pins.da = lcd_da_pin;
1743 		lcd.pins.bl = lcd_bl_pin;
1744 	}
1745 
1746 	switch (selected_keypad_type) {
1747 	case KEYPAD_TYPE_OLD:
1748 		keypad_profile = old_keypad_profile;
1749 		break;
1750 	case KEYPAD_TYPE_NEW:
1751 		keypad_profile = new_keypad_profile;
1752 		break;
1753 	case KEYPAD_TYPE_NEXCOM:
1754 		keypad_profile = nexcom_keypad_profile;
1755 		break;
1756 	default:
1757 		keypad_profile = NULL;
1758 		break;
1759 	}
1760 
1761 	if (!lcd.enabled && !keypad.enabled) {
1762 		/* no device enabled, let's exit */
1763 		pr_err("panel driver disabled.\n");
1764 		return -ENODEV;
1765 	}
1766 
1767 	err = parport_register_driver(&panel_driver);
1768 	if (err) {
1769 		pr_err("could not register with parport. Aborting.\n");
1770 		return err;
1771 	}
1772 
1773 	if (pprt)
1774 		pr_info("panel driver registered on parport%d (io=0x%lx).\n",
1775 			parport, pprt->port->base);
1776 	else
1777 		pr_info("panel driver not yet registered\n");
1778 	return 0;
1779 }
1780 
1781 static void __exit panel_cleanup_module(void)
1782 {
1783 	parport_unregister_driver(&panel_driver);
1784 }
1785 
1786 module_init(panel_init_module);
1787 module_exit(panel_cleanup_module);
1788 MODULE_AUTHOR("Willy Tarreau");
1789 MODULE_LICENSE("GPL");
1790 
1791 /*
1792  * Local variables:
1793  *  c-indent-level: 4
1794  *  tab-width: 8
1795  * End:
1796  */
1797