1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Front panel driver for Linux 4 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu> 5 * Copyright (C) 2016-2017 Glider bvba 6 * 7 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad) 8 * connected to a parallel printer port. 9 * 10 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit 11 * serial module compatible with Samsung's KS0074. The pins may be connected in 12 * any combination, everything is programmable. 13 * 14 * The keypad consists in a matrix of push buttons connecting input pins to 15 * data output pins or to the ground. The combinations have to be hard-coded 16 * in the driver, though several profiles exist and adding new ones is easy. 17 * 18 * Several profiles are provided for commonly found LCD+keypad modules on the 19 * market, such as those found in Nexcom's appliances. 20 * 21 * FIXME: 22 * - the initialization/deinitialization process is very dirty and should 23 * be rewritten. It may even be buggy. 24 * 25 * TODO: 26 * - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs) 27 * - make the LCD a part of a virtual screen of Vx*Vy 28 * - make the inputs list smp-safe 29 * - change the keyboard to a double mapping : signals -> key_id -> values 30 * so that applications can change values without knowing signals 31 * 32 */ 33 34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 35 36 #include <linux/module.h> 37 38 #include <linux/types.h> 39 #include <linux/errno.h> 40 #include <linux/signal.h> 41 #include <linux/sched.h> 42 #include <linux/spinlock.h> 43 #include <linux/interrupt.h> 44 #include <linux/miscdevice.h> 45 #include <linux/slab.h> 46 #include <linux/ioport.h> 47 #include <linux/fcntl.h> 48 #include <linux/init.h> 49 #include <linux/delay.h> 50 #include <linux/kernel.h> 51 #include <linux/ctype.h> 52 #include <linux/parport.h> 53 #include <linux/list.h> 54 55 #include <linux/io.h> 56 #include <linux/uaccess.h> 57 58 #include <misc/charlcd.h> 59 60 #define KEYPAD_MINOR 185 61 62 #define LCD_MAXBYTES 256 /* max burst write */ 63 64 #define KEYPAD_BUFFER 64 65 66 /* poll the keyboard this every second */ 67 #define INPUT_POLL_TIME (HZ / 50) 68 /* a key starts to repeat after this times INPUT_POLL_TIME */ 69 #define KEYPAD_REP_START (10) 70 /* a key repeats this times INPUT_POLL_TIME */ 71 #define KEYPAD_REP_DELAY (2) 72 73 /* converts an r_str() input to an active high, bits string : 000BAOSE */ 74 #define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3) 75 76 #define PNL_PBUSY 0x80 /* inverted input, active low */ 77 #define PNL_PACK 0x40 /* direct input, active low */ 78 #define PNL_POUTPA 0x20 /* direct input, active high */ 79 #define PNL_PSELECD 0x10 /* direct input, active high */ 80 #define PNL_PERRORP 0x08 /* direct input, active low */ 81 82 #define PNL_PBIDIR 0x20 /* bi-directional ports */ 83 /* high to read data in or-ed with data out */ 84 #define PNL_PINTEN 0x10 85 #define PNL_PSELECP 0x08 /* inverted output, active low */ 86 #define PNL_PINITP 0x04 /* direct output, active low */ 87 #define PNL_PAUTOLF 0x02 /* inverted output, active low */ 88 #define PNL_PSTROBE 0x01 /* inverted output */ 89 90 #define PNL_PD0 0x01 91 #define PNL_PD1 0x02 92 #define PNL_PD2 0x04 93 #define PNL_PD3 0x08 94 #define PNL_PD4 0x10 95 #define PNL_PD5 0x20 96 #define PNL_PD6 0x40 97 #define PNL_PD7 0x80 98 99 #define PIN_NONE 0 100 #define PIN_STROBE 1 101 #define PIN_D0 2 102 #define PIN_D1 3 103 #define PIN_D2 4 104 #define PIN_D3 5 105 #define PIN_D4 6 106 #define PIN_D5 7 107 #define PIN_D6 8 108 #define PIN_D7 9 109 #define PIN_AUTOLF 14 110 #define PIN_INITP 16 111 #define PIN_SELECP 17 112 #define PIN_NOT_SET 127 113 114 #define NOT_SET -1 115 116 /* macros to simplify use of the parallel port */ 117 #define r_ctr(x) (parport_read_control((x)->port)) 118 #define r_dtr(x) (parport_read_data((x)->port)) 119 #define r_str(x) (parport_read_status((x)->port)) 120 #define w_ctr(x, y) (parport_write_control((x)->port, (y))) 121 #define w_dtr(x, y) (parport_write_data((x)->port, (y))) 122 123 /* this defines which bits are to be used and which ones to be ignored */ 124 /* logical or of the output bits involved in the scan matrix */ 125 static __u8 scan_mask_o; 126 /* logical or of the input bits involved in the scan matrix */ 127 static __u8 scan_mask_i; 128 129 enum input_type { 130 INPUT_TYPE_STD, 131 INPUT_TYPE_KBD, 132 }; 133 134 enum input_state { 135 INPUT_ST_LOW, 136 INPUT_ST_RISING, 137 INPUT_ST_HIGH, 138 INPUT_ST_FALLING, 139 }; 140 141 struct logical_input { 142 struct list_head list; 143 __u64 mask; 144 __u64 value; 145 enum input_type type; 146 enum input_state state; 147 __u8 rise_time, fall_time; 148 __u8 rise_timer, fall_timer, high_timer; 149 150 union { 151 struct { /* valid when type == INPUT_TYPE_STD */ 152 void (*press_fct)(int); 153 void (*release_fct)(int); 154 int press_data; 155 int release_data; 156 } std; 157 struct { /* valid when type == INPUT_TYPE_KBD */ 158 char press_str[sizeof(void *) + sizeof(int)] __nonstring; 159 char repeat_str[sizeof(void *) + sizeof(int)] __nonstring; 160 char release_str[sizeof(void *) + sizeof(int)] __nonstring; 161 } kbd; 162 } u; 163 }; 164 165 static LIST_HEAD(logical_inputs); /* list of all defined logical inputs */ 166 167 /* physical contacts history 168 * Physical contacts are a 45 bits string of 9 groups of 5 bits each. 169 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group 170 * corresponds to the ground. 171 * Within each group, bits are stored in the same order as read on the port : 172 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0). 173 * So, each __u64 is represented like this : 174 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE 175 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00> 176 */ 177 178 /* what has just been read from the I/O ports */ 179 static __u64 phys_read; 180 /* previous phys_read */ 181 static __u64 phys_read_prev; 182 /* stabilized phys_read (phys_read|phys_read_prev) */ 183 static __u64 phys_curr; 184 /* previous phys_curr */ 185 static __u64 phys_prev; 186 /* 0 means that at least one logical signal needs be computed */ 187 static char inputs_stable; 188 189 /* these variables are specific to the keypad */ 190 static struct { 191 bool enabled; 192 } keypad; 193 194 static char keypad_buffer[KEYPAD_BUFFER]; 195 static int keypad_buflen; 196 static int keypad_start; 197 static char keypressed; 198 static wait_queue_head_t keypad_read_wait; 199 200 /* lcd-specific variables */ 201 static struct { 202 bool enabled; 203 bool initialized; 204 205 int charset; 206 int proto; 207 208 /* TODO: use union here? */ 209 struct { 210 int e; 211 int rs; 212 int rw; 213 int cl; 214 int da; 215 int bl; 216 } pins; 217 218 struct charlcd *charlcd; 219 } lcd; 220 221 /* Needed only for init */ 222 static int selected_lcd_type = NOT_SET; 223 224 /* 225 * Bit masks to convert LCD signals to parallel port outputs. 226 * _d_ are values for data port, _c_ are for control port. 227 * [0] = signal OFF, [1] = signal ON, [2] = mask 228 */ 229 #define BIT_CLR 0 230 #define BIT_SET 1 231 #define BIT_MSK 2 232 #define BIT_STATES 3 233 /* 234 * one entry for each bit on the LCD 235 */ 236 #define LCD_BIT_E 0 237 #define LCD_BIT_RS 1 238 #define LCD_BIT_RW 2 239 #define LCD_BIT_BL 3 240 #define LCD_BIT_CL 4 241 #define LCD_BIT_DA 5 242 #define LCD_BITS 6 243 244 /* 245 * each bit can be either connected to a DATA or CTRL port 246 */ 247 #define LCD_PORT_C 0 248 #define LCD_PORT_D 1 249 #define LCD_PORTS 2 250 251 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES]; 252 253 /* 254 * LCD protocols 255 */ 256 #define LCD_PROTO_PARALLEL 0 257 #define LCD_PROTO_SERIAL 1 258 #define LCD_PROTO_TI_DA8XX_LCD 2 259 260 /* 261 * LCD character sets 262 */ 263 #define LCD_CHARSET_NORMAL 0 264 #define LCD_CHARSET_KS0074 1 265 266 /* 267 * LCD types 268 */ 269 #define LCD_TYPE_NONE 0 270 #define LCD_TYPE_CUSTOM 1 271 #define LCD_TYPE_OLD 2 272 #define LCD_TYPE_KS0074 3 273 #define LCD_TYPE_HANTRONIX 4 274 #define LCD_TYPE_NEXCOM 5 275 276 /* 277 * keypad types 278 */ 279 #define KEYPAD_TYPE_NONE 0 280 #define KEYPAD_TYPE_OLD 1 281 #define KEYPAD_TYPE_NEW 2 282 #define KEYPAD_TYPE_NEXCOM 3 283 284 /* 285 * panel profiles 286 */ 287 #define PANEL_PROFILE_CUSTOM 0 288 #define PANEL_PROFILE_OLD 1 289 #define PANEL_PROFILE_NEW 2 290 #define PANEL_PROFILE_HANTRONIX 3 291 #define PANEL_PROFILE_NEXCOM 4 292 #define PANEL_PROFILE_LARGE 5 293 294 /* 295 * Construct custom config from the kernel's configuration 296 */ 297 #define DEFAULT_PARPORT 0 298 #define DEFAULT_PROFILE PANEL_PROFILE_LARGE 299 #define DEFAULT_KEYPAD_TYPE KEYPAD_TYPE_OLD 300 #define DEFAULT_LCD_TYPE LCD_TYPE_OLD 301 #define DEFAULT_LCD_HEIGHT 2 302 #define DEFAULT_LCD_WIDTH 40 303 #define DEFAULT_LCD_BWIDTH 40 304 #define DEFAULT_LCD_HWIDTH 64 305 #define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL 306 #define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL 307 308 #define DEFAULT_LCD_PIN_E PIN_AUTOLF 309 #define DEFAULT_LCD_PIN_RS PIN_SELECP 310 #define DEFAULT_LCD_PIN_RW PIN_INITP 311 #define DEFAULT_LCD_PIN_SCL PIN_STROBE 312 #define DEFAULT_LCD_PIN_SDA PIN_D0 313 #define DEFAULT_LCD_PIN_BL PIN_NOT_SET 314 315 #ifdef CONFIG_PANEL_PARPORT 316 #undef DEFAULT_PARPORT 317 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT 318 #endif 319 320 #ifdef CONFIG_PANEL_PROFILE 321 #undef DEFAULT_PROFILE 322 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE 323 #endif 324 325 #if DEFAULT_PROFILE == 0 /* custom */ 326 #ifdef CONFIG_PANEL_KEYPAD 327 #undef DEFAULT_KEYPAD_TYPE 328 #define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD 329 #endif 330 331 #ifdef CONFIG_PANEL_LCD 332 #undef DEFAULT_LCD_TYPE 333 #define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD 334 #endif 335 336 #ifdef CONFIG_PANEL_LCD_HEIGHT 337 #undef DEFAULT_LCD_HEIGHT 338 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT 339 #endif 340 341 #ifdef CONFIG_PANEL_LCD_WIDTH 342 #undef DEFAULT_LCD_WIDTH 343 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH 344 #endif 345 346 #ifdef CONFIG_PANEL_LCD_BWIDTH 347 #undef DEFAULT_LCD_BWIDTH 348 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH 349 #endif 350 351 #ifdef CONFIG_PANEL_LCD_HWIDTH 352 #undef DEFAULT_LCD_HWIDTH 353 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH 354 #endif 355 356 #ifdef CONFIG_PANEL_LCD_CHARSET 357 #undef DEFAULT_LCD_CHARSET 358 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET 359 #endif 360 361 #ifdef CONFIG_PANEL_LCD_PROTO 362 #undef DEFAULT_LCD_PROTO 363 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO 364 #endif 365 366 #ifdef CONFIG_PANEL_LCD_PIN_E 367 #undef DEFAULT_LCD_PIN_E 368 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E 369 #endif 370 371 #ifdef CONFIG_PANEL_LCD_PIN_RS 372 #undef DEFAULT_LCD_PIN_RS 373 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS 374 #endif 375 376 #ifdef CONFIG_PANEL_LCD_PIN_RW 377 #undef DEFAULT_LCD_PIN_RW 378 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW 379 #endif 380 381 #ifdef CONFIG_PANEL_LCD_PIN_SCL 382 #undef DEFAULT_LCD_PIN_SCL 383 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL 384 #endif 385 386 #ifdef CONFIG_PANEL_LCD_PIN_SDA 387 #undef DEFAULT_LCD_PIN_SDA 388 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA 389 #endif 390 391 #ifdef CONFIG_PANEL_LCD_PIN_BL 392 #undef DEFAULT_LCD_PIN_BL 393 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL 394 #endif 395 396 #endif /* DEFAULT_PROFILE == 0 */ 397 398 /* global variables */ 399 400 /* Device single-open policy control */ 401 static atomic_t keypad_available = ATOMIC_INIT(1); 402 403 static struct pardevice *pprt; 404 405 static int keypad_initialized; 406 407 static DEFINE_SPINLOCK(pprt_lock); 408 static struct timer_list scan_timer; 409 410 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver"); 411 412 static int parport = DEFAULT_PARPORT; 413 module_param(parport, int, 0000); 414 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)"); 415 416 static int profile = DEFAULT_PROFILE; 417 module_param(profile, int, 0000); 418 MODULE_PARM_DESC(profile, 419 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; " 420 "4=16x2 nexcom; default=40x2, old kp"); 421 422 static int keypad_type = NOT_SET; 423 module_param(keypad_type, int, 0000); 424 MODULE_PARM_DESC(keypad_type, 425 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys"); 426 427 static int lcd_type = NOT_SET; 428 module_param(lcd_type, int, 0000); 429 MODULE_PARM_DESC(lcd_type, 430 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom"); 431 432 static int lcd_height = NOT_SET; 433 module_param(lcd_height, int, 0000); 434 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD"); 435 436 static int lcd_width = NOT_SET; 437 module_param(lcd_width, int, 0000); 438 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD"); 439 440 static int lcd_bwidth = NOT_SET; /* internal buffer width (usually 40) */ 441 module_param(lcd_bwidth, int, 0000); 442 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)"); 443 444 static int lcd_hwidth = NOT_SET; /* hardware buffer width (usually 64) */ 445 module_param(lcd_hwidth, int, 0000); 446 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)"); 447 448 static int lcd_charset = NOT_SET; 449 module_param(lcd_charset, int, 0000); 450 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074"); 451 452 static int lcd_proto = NOT_SET; 453 module_param(lcd_proto, int, 0000); 454 MODULE_PARM_DESC(lcd_proto, 455 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface"); 456 457 /* 458 * These are the parallel port pins the LCD control signals are connected to. 459 * Set this to 0 if the signal is not used. Set it to its opposite value 460 * (negative) if the signal is negated. -MAXINT is used to indicate that the 461 * pin has not been explicitly specified. 462 * 463 * WARNING! no check will be performed about collisions with keypad ! 464 */ 465 466 static int lcd_e_pin = PIN_NOT_SET; 467 module_param(lcd_e_pin, int, 0000); 468 MODULE_PARM_DESC(lcd_e_pin, 469 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)"); 470 471 static int lcd_rs_pin = PIN_NOT_SET; 472 module_param(lcd_rs_pin, int, 0000); 473 MODULE_PARM_DESC(lcd_rs_pin, 474 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)"); 475 476 static int lcd_rw_pin = PIN_NOT_SET; 477 module_param(lcd_rw_pin, int, 0000); 478 MODULE_PARM_DESC(lcd_rw_pin, 479 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)"); 480 481 static int lcd_cl_pin = PIN_NOT_SET; 482 module_param(lcd_cl_pin, int, 0000); 483 MODULE_PARM_DESC(lcd_cl_pin, 484 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)"); 485 486 static int lcd_da_pin = PIN_NOT_SET; 487 module_param(lcd_da_pin, int, 0000); 488 MODULE_PARM_DESC(lcd_da_pin, 489 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)"); 490 491 static int lcd_bl_pin = PIN_NOT_SET; 492 module_param(lcd_bl_pin, int, 0000); 493 MODULE_PARM_DESC(lcd_bl_pin, 494 "# of the // port pin connected to LCD backlight, with polarity (-17..17)"); 495 496 /* Deprecated module parameters - consider not using them anymore */ 497 498 static int lcd_enabled = NOT_SET; 499 module_param(lcd_enabled, int, 0000); 500 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead"); 501 502 static int keypad_enabled = NOT_SET; 503 module_param(keypad_enabled, int, 0000); 504 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead"); 505 506 /* for some LCD drivers (ks0074) we need a charset conversion table. */ 507 static const unsigned char lcd_char_conv_ks0074[256] = { 508 /* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */ 509 /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 510 /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 511 /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 512 /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 513 /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27, 514 /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 515 /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 516 /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 517 /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 518 /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 519 /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 520 /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4, 521 /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 522 /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 523 /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 524 /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20, 525 /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 526 /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 527 /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 528 /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 529 /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f, 530 /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96, 531 /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd, 532 /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60, 533 /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9, 534 /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3, 535 /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78, 536 /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe, 537 /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8, 538 /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69, 539 /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25, 540 /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79, 541 }; 542 543 static const char old_keypad_profile[][4][9] = { 544 {"S0", "Left\n", "Left\n", ""}, 545 {"S1", "Down\n", "Down\n", ""}, 546 {"S2", "Up\n", "Up\n", ""}, 547 {"S3", "Right\n", "Right\n", ""}, 548 {"S4", "Esc\n", "Esc\n", ""}, 549 {"S5", "Ret\n", "Ret\n", ""}, 550 {"", "", "", ""} 551 }; 552 553 /* signals, press, repeat, release */ 554 static const char new_keypad_profile[][4][9] = { 555 {"S0", "Left\n", "Left\n", ""}, 556 {"S1", "Down\n", "Down\n", ""}, 557 {"S2", "Up\n", "Up\n", ""}, 558 {"S3", "Right\n", "Right\n", ""}, 559 {"S4s5", "", "Esc\n", "Esc\n"}, 560 {"s4S5", "", "Ret\n", "Ret\n"}, 561 {"S4S5", "Help\n", "", ""}, 562 /* add new signals above this line */ 563 {"", "", "", ""} 564 }; 565 566 /* signals, press, repeat, release */ 567 static const char nexcom_keypad_profile[][4][9] = { 568 {"a-p-e-", "Down\n", "Down\n", ""}, 569 {"a-p-E-", "Ret\n", "Ret\n", ""}, 570 {"a-P-E-", "Esc\n", "Esc\n", ""}, 571 {"a-P-e-", "Up\n", "Up\n", ""}, 572 /* add new signals above this line */ 573 {"", "", "", ""} 574 }; 575 576 static const char (*keypad_profile)[4][9] = old_keypad_profile; 577 578 static DECLARE_BITMAP(bits, LCD_BITS); 579 580 static void lcd_get_bits(unsigned int port, int *val) 581 { 582 unsigned int bit, state; 583 584 for (bit = 0; bit < LCD_BITS; bit++) { 585 state = test_bit(bit, bits) ? BIT_SET : BIT_CLR; 586 *val &= lcd_bits[port][bit][BIT_MSK]; 587 *val |= lcd_bits[port][bit][state]; 588 } 589 } 590 591 /* sets data port bits according to current signals values */ 592 static int set_data_bits(void) 593 { 594 int val; 595 596 val = r_dtr(pprt); 597 lcd_get_bits(LCD_PORT_D, &val); 598 w_dtr(pprt, val); 599 return val; 600 } 601 602 /* sets ctrl port bits according to current signals values */ 603 static int set_ctrl_bits(void) 604 { 605 int val; 606 607 val = r_ctr(pprt); 608 lcd_get_bits(LCD_PORT_C, &val); 609 w_ctr(pprt, val); 610 return val; 611 } 612 613 /* sets ctrl & data port bits according to current signals values */ 614 static void panel_set_bits(void) 615 { 616 set_data_bits(); 617 set_ctrl_bits(); 618 } 619 620 /* 621 * Converts a parallel port pin (from -25 to 25) to data and control ports 622 * masks, and data and control port bits. The signal will be considered 623 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25). 624 * 625 * Result will be used this way : 626 * out(dport, in(dport) & d_val[2] | d_val[signal_state]) 627 * out(cport, in(cport) & c_val[2] | c_val[signal_state]) 628 */ 629 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val) 630 { 631 int d_bit, c_bit, inv; 632 633 d_val[0] = 0; 634 c_val[0] = 0; 635 d_val[1] = 0; 636 c_val[1] = 0; 637 d_val[2] = 0xFF; 638 c_val[2] = 0xFF; 639 640 if (pin == 0) 641 return; 642 643 inv = (pin < 0); 644 if (inv) 645 pin = -pin; 646 647 d_bit = 0; 648 c_bit = 0; 649 650 switch (pin) { 651 case PIN_STROBE: /* strobe, inverted */ 652 c_bit = PNL_PSTROBE; 653 inv = !inv; 654 break; 655 case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */ 656 d_bit = 1 << (pin - 2); 657 break; 658 case PIN_AUTOLF: /* autofeed, inverted */ 659 c_bit = PNL_PAUTOLF; 660 inv = !inv; 661 break; 662 case PIN_INITP: /* init, direct */ 663 c_bit = PNL_PINITP; 664 break; 665 case PIN_SELECP: /* select_in, inverted */ 666 c_bit = PNL_PSELECP; 667 inv = !inv; 668 break; 669 default: /* unknown pin, ignore */ 670 break; 671 } 672 673 if (c_bit) { 674 c_val[2] &= ~c_bit; 675 c_val[!inv] = c_bit; 676 } else if (d_bit) { 677 d_val[2] &= ~d_bit; 678 d_val[!inv] = d_bit; 679 } 680 } 681 682 /* 683 * send a serial byte to the LCD panel. The caller is responsible for locking 684 * if needed. 685 */ 686 static void lcd_send_serial(int byte) 687 { 688 int bit; 689 690 /* 691 * the data bit is set on D0, and the clock on STROBE. 692 * LCD reads D0 on STROBE's rising edge. 693 */ 694 for (bit = 0; bit < 8; bit++) { 695 clear_bit(LCD_BIT_CL, bits); /* CLK low */ 696 panel_set_bits(); 697 if (byte & 1) { 698 set_bit(LCD_BIT_DA, bits); 699 } else { 700 clear_bit(LCD_BIT_DA, bits); 701 } 702 703 panel_set_bits(); 704 udelay(2); /* maintain the data during 2 us before CLK up */ 705 set_bit(LCD_BIT_CL, bits); /* CLK high */ 706 panel_set_bits(); 707 udelay(1); /* maintain the strobe during 1 us */ 708 byte >>= 1; 709 } 710 } 711 712 /* turn the backlight on or off */ 713 static void lcd_backlight(struct charlcd *charlcd, int on) 714 { 715 if (lcd.pins.bl == PIN_NONE) 716 return; 717 718 /* The backlight is activated by setting the AUTOFEED line to +5V */ 719 spin_lock_irq(&pprt_lock); 720 if (on) 721 set_bit(LCD_BIT_BL, bits); 722 else 723 clear_bit(LCD_BIT_BL, bits); 724 panel_set_bits(); 725 spin_unlock_irq(&pprt_lock); 726 } 727 728 /* send a command to the LCD panel in serial mode */ 729 static void lcd_write_cmd_s(struct charlcd *charlcd, int cmd) 730 { 731 spin_lock_irq(&pprt_lock); 732 lcd_send_serial(0x1F); /* R/W=W, RS=0 */ 733 lcd_send_serial(cmd & 0x0F); 734 lcd_send_serial((cmd >> 4) & 0x0F); 735 udelay(40); /* the shortest command takes at least 40 us */ 736 spin_unlock_irq(&pprt_lock); 737 } 738 739 /* send data to the LCD panel in serial mode */ 740 static void lcd_write_data_s(struct charlcd *charlcd, int data) 741 { 742 spin_lock_irq(&pprt_lock); 743 lcd_send_serial(0x5F); /* R/W=W, RS=1 */ 744 lcd_send_serial(data & 0x0F); 745 lcd_send_serial((data >> 4) & 0x0F); 746 udelay(40); /* the shortest data takes at least 40 us */ 747 spin_unlock_irq(&pprt_lock); 748 } 749 750 /* send a command to the LCD panel in 8 bits parallel mode */ 751 static void lcd_write_cmd_p8(struct charlcd *charlcd, int cmd) 752 { 753 spin_lock_irq(&pprt_lock); 754 /* present the data to the data port */ 755 w_dtr(pprt, cmd); 756 udelay(20); /* maintain the data during 20 us before the strobe */ 757 758 set_bit(LCD_BIT_E, bits); 759 clear_bit(LCD_BIT_RS, bits); 760 clear_bit(LCD_BIT_RW, bits); 761 set_ctrl_bits(); 762 763 udelay(40); /* maintain the strobe during 40 us */ 764 765 clear_bit(LCD_BIT_E, bits); 766 set_ctrl_bits(); 767 768 udelay(120); /* the shortest command takes at least 120 us */ 769 spin_unlock_irq(&pprt_lock); 770 } 771 772 /* send data to the LCD panel in 8 bits parallel mode */ 773 static void lcd_write_data_p8(struct charlcd *charlcd, int data) 774 { 775 spin_lock_irq(&pprt_lock); 776 /* present the data to the data port */ 777 w_dtr(pprt, data); 778 udelay(20); /* maintain the data during 20 us before the strobe */ 779 780 set_bit(LCD_BIT_E, bits); 781 set_bit(LCD_BIT_RS, bits); 782 clear_bit(LCD_BIT_RW, bits); 783 set_ctrl_bits(); 784 785 udelay(40); /* maintain the strobe during 40 us */ 786 787 clear_bit(LCD_BIT_E, bits); 788 set_ctrl_bits(); 789 790 udelay(45); /* the shortest data takes at least 45 us */ 791 spin_unlock_irq(&pprt_lock); 792 } 793 794 /* send a command to the TI LCD panel */ 795 static void lcd_write_cmd_tilcd(struct charlcd *charlcd, int cmd) 796 { 797 spin_lock_irq(&pprt_lock); 798 /* present the data to the control port */ 799 w_ctr(pprt, cmd); 800 udelay(60); 801 spin_unlock_irq(&pprt_lock); 802 } 803 804 /* send data to the TI LCD panel */ 805 static void lcd_write_data_tilcd(struct charlcd *charlcd, int data) 806 { 807 spin_lock_irq(&pprt_lock); 808 /* present the data to the data port */ 809 w_dtr(pprt, data); 810 udelay(60); 811 spin_unlock_irq(&pprt_lock); 812 } 813 814 /* fills the display with spaces and resets X/Y */ 815 static void lcd_clear_fast_s(struct charlcd *charlcd) 816 { 817 int pos; 818 819 spin_lock_irq(&pprt_lock); 820 for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) { 821 lcd_send_serial(0x5F); /* R/W=W, RS=1 */ 822 lcd_send_serial(' ' & 0x0F); 823 lcd_send_serial((' ' >> 4) & 0x0F); 824 /* the shortest data takes at least 40 us */ 825 udelay(40); 826 } 827 spin_unlock_irq(&pprt_lock); 828 } 829 830 /* fills the display with spaces and resets X/Y */ 831 static void lcd_clear_fast_p8(struct charlcd *charlcd) 832 { 833 int pos; 834 835 spin_lock_irq(&pprt_lock); 836 for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) { 837 /* present the data to the data port */ 838 w_dtr(pprt, ' '); 839 840 /* maintain the data during 20 us before the strobe */ 841 udelay(20); 842 843 set_bit(LCD_BIT_E, bits); 844 set_bit(LCD_BIT_RS, bits); 845 clear_bit(LCD_BIT_RW, bits); 846 set_ctrl_bits(); 847 848 /* maintain the strobe during 40 us */ 849 udelay(40); 850 851 clear_bit(LCD_BIT_E, bits); 852 set_ctrl_bits(); 853 854 /* the shortest data takes at least 45 us */ 855 udelay(45); 856 } 857 spin_unlock_irq(&pprt_lock); 858 } 859 860 /* fills the display with spaces and resets X/Y */ 861 static void lcd_clear_fast_tilcd(struct charlcd *charlcd) 862 { 863 int pos; 864 865 spin_lock_irq(&pprt_lock); 866 for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) { 867 /* present the data to the data port */ 868 w_dtr(pprt, ' '); 869 udelay(60); 870 } 871 872 spin_unlock_irq(&pprt_lock); 873 } 874 875 static const struct charlcd_ops charlcd_serial_ops = { 876 .write_cmd = lcd_write_cmd_s, 877 .write_data = lcd_write_data_s, 878 .clear_fast = lcd_clear_fast_s, 879 .backlight = lcd_backlight, 880 }; 881 882 static const struct charlcd_ops charlcd_parallel_ops = { 883 .write_cmd = lcd_write_cmd_p8, 884 .write_data = lcd_write_data_p8, 885 .clear_fast = lcd_clear_fast_p8, 886 .backlight = lcd_backlight, 887 }; 888 889 static const struct charlcd_ops charlcd_tilcd_ops = { 890 .write_cmd = lcd_write_cmd_tilcd, 891 .write_data = lcd_write_data_tilcd, 892 .clear_fast = lcd_clear_fast_tilcd, 893 .backlight = lcd_backlight, 894 }; 895 896 /* initialize the LCD driver */ 897 static void lcd_init(void) 898 { 899 struct charlcd *charlcd; 900 901 charlcd = charlcd_alloc(0); 902 if (!charlcd) 903 return; 904 905 /* 906 * Init lcd struct with load-time values to preserve exact 907 * current functionality (at least for now). 908 */ 909 charlcd->height = lcd_height; 910 charlcd->width = lcd_width; 911 charlcd->bwidth = lcd_bwidth; 912 charlcd->hwidth = lcd_hwidth; 913 914 switch (selected_lcd_type) { 915 case LCD_TYPE_OLD: 916 /* parallel mode, 8 bits */ 917 lcd.proto = LCD_PROTO_PARALLEL; 918 lcd.charset = LCD_CHARSET_NORMAL; 919 lcd.pins.e = PIN_STROBE; 920 lcd.pins.rs = PIN_AUTOLF; 921 922 charlcd->width = 40; 923 charlcd->bwidth = 40; 924 charlcd->hwidth = 64; 925 charlcd->height = 2; 926 break; 927 case LCD_TYPE_KS0074: 928 /* serial mode, ks0074 */ 929 lcd.proto = LCD_PROTO_SERIAL; 930 lcd.charset = LCD_CHARSET_KS0074; 931 lcd.pins.bl = PIN_AUTOLF; 932 lcd.pins.cl = PIN_STROBE; 933 lcd.pins.da = PIN_D0; 934 935 charlcd->width = 16; 936 charlcd->bwidth = 40; 937 charlcd->hwidth = 16; 938 charlcd->height = 2; 939 break; 940 case LCD_TYPE_NEXCOM: 941 /* parallel mode, 8 bits, generic */ 942 lcd.proto = LCD_PROTO_PARALLEL; 943 lcd.charset = LCD_CHARSET_NORMAL; 944 lcd.pins.e = PIN_AUTOLF; 945 lcd.pins.rs = PIN_SELECP; 946 lcd.pins.rw = PIN_INITP; 947 948 charlcd->width = 16; 949 charlcd->bwidth = 40; 950 charlcd->hwidth = 64; 951 charlcd->height = 2; 952 break; 953 case LCD_TYPE_CUSTOM: 954 /* customer-defined */ 955 lcd.proto = DEFAULT_LCD_PROTO; 956 lcd.charset = DEFAULT_LCD_CHARSET; 957 /* default geometry will be set later */ 958 break; 959 case LCD_TYPE_HANTRONIX: 960 /* parallel mode, 8 bits, hantronix-like */ 961 default: 962 lcd.proto = LCD_PROTO_PARALLEL; 963 lcd.charset = LCD_CHARSET_NORMAL; 964 lcd.pins.e = PIN_STROBE; 965 lcd.pins.rs = PIN_SELECP; 966 967 charlcd->width = 16; 968 charlcd->bwidth = 40; 969 charlcd->hwidth = 64; 970 charlcd->height = 2; 971 break; 972 } 973 974 /* Overwrite with module params set on loading */ 975 if (lcd_height != NOT_SET) 976 charlcd->height = lcd_height; 977 if (lcd_width != NOT_SET) 978 charlcd->width = lcd_width; 979 if (lcd_bwidth != NOT_SET) 980 charlcd->bwidth = lcd_bwidth; 981 if (lcd_hwidth != NOT_SET) 982 charlcd->hwidth = lcd_hwidth; 983 if (lcd_charset != NOT_SET) 984 lcd.charset = lcd_charset; 985 if (lcd_proto != NOT_SET) 986 lcd.proto = lcd_proto; 987 if (lcd_e_pin != PIN_NOT_SET) 988 lcd.pins.e = lcd_e_pin; 989 if (lcd_rs_pin != PIN_NOT_SET) 990 lcd.pins.rs = lcd_rs_pin; 991 if (lcd_rw_pin != PIN_NOT_SET) 992 lcd.pins.rw = lcd_rw_pin; 993 if (lcd_cl_pin != PIN_NOT_SET) 994 lcd.pins.cl = lcd_cl_pin; 995 if (lcd_da_pin != PIN_NOT_SET) 996 lcd.pins.da = lcd_da_pin; 997 if (lcd_bl_pin != PIN_NOT_SET) 998 lcd.pins.bl = lcd_bl_pin; 999 1000 /* this is used to catch wrong and default values */ 1001 if (charlcd->width <= 0) 1002 charlcd->width = DEFAULT_LCD_WIDTH; 1003 if (charlcd->bwidth <= 0) 1004 charlcd->bwidth = DEFAULT_LCD_BWIDTH; 1005 if (charlcd->hwidth <= 0) 1006 charlcd->hwidth = DEFAULT_LCD_HWIDTH; 1007 if (charlcd->height <= 0) 1008 charlcd->height = DEFAULT_LCD_HEIGHT; 1009 1010 if (lcd.proto == LCD_PROTO_SERIAL) { /* SERIAL */ 1011 charlcd->ops = &charlcd_serial_ops; 1012 1013 if (lcd.pins.cl == PIN_NOT_SET) 1014 lcd.pins.cl = DEFAULT_LCD_PIN_SCL; 1015 if (lcd.pins.da == PIN_NOT_SET) 1016 lcd.pins.da = DEFAULT_LCD_PIN_SDA; 1017 1018 } else if (lcd.proto == LCD_PROTO_PARALLEL) { /* PARALLEL */ 1019 charlcd->ops = &charlcd_parallel_ops; 1020 1021 if (lcd.pins.e == PIN_NOT_SET) 1022 lcd.pins.e = DEFAULT_LCD_PIN_E; 1023 if (lcd.pins.rs == PIN_NOT_SET) 1024 lcd.pins.rs = DEFAULT_LCD_PIN_RS; 1025 if (lcd.pins.rw == PIN_NOT_SET) 1026 lcd.pins.rw = DEFAULT_LCD_PIN_RW; 1027 } else { 1028 charlcd->ops = &charlcd_tilcd_ops; 1029 } 1030 1031 if (lcd.pins.bl == PIN_NOT_SET) 1032 lcd.pins.bl = DEFAULT_LCD_PIN_BL; 1033 1034 if (lcd.pins.e == PIN_NOT_SET) 1035 lcd.pins.e = PIN_NONE; 1036 if (lcd.pins.rs == PIN_NOT_SET) 1037 lcd.pins.rs = PIN_NONE; 1038 if (lcd.pins.rw == PIN_NOT_SET) 1039 lcd.pins.rw = PIN_NONE; 1040 if (lcd.pins.bl == PIN_NOT_SET) 1041 lcd.pins.bl = PIN_NONE; 1042 if (lcd.pins.cl == PIN_NOT_SET) 1043 lcd.pins.cl = PIN_NONE; 1044 if (lcd.pins.da == PIN_NOT_SET) 1045 lcd.pins.da = PIN_NONE; 1046 1047 if (lcd.charset == NOT_SET) 1048 lcd.charset = DEFAULT_LCD_CHARSET; 1049 1050 if (lcd.charset == LCD_CHARSET_KS0074) 1051 charlcd->char_conv = lcd_char_conv_ks0074; 1052 else 1053 charlcd->char_conv = NULL; 1054 1055 pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E], 1056 lcd_bits[LCD_PORT_C][LCD_BIT_E]); 1057 pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS], 1058 lcd_bits[LCD_PORT_C][LCD_BIT_RS]); 1059 pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW], 1060 lcd_bits[LCD_PORT_C][LCD_BIT_RW]); 1061 pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL], 1062 lcd_bits[LCD_PORT_C][LCD_BIT_BL]); 1063 pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL], 1064 lcd_bits[LCD_PORT_C][LCD_BIT_CL]); 1065 pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA], 1066 lcd_bits[LCD_PORT_C][LCD_BIT_DA]); 1067 1068 lcd.charlcd = charlcd; 1069 lcd.initialized = true; 1070 } 1071 1072 /* 1073 * These are the file operation function for user access to /dev/keypad 1074 */ 1075 1076 static ssize_t keypad_read(struct file *file, 1077 char __user *buf, size_t count, loff_t *ppos) 1078 { 1079 unsigned i = *ppos; 1080 char __user *tmp = buf; 1081 1082 if (keypad_buflen == 0) { 1083 if (file->f_flags & O_NONBLOCK) 1084 return -EAGAIN; 1085 1086 if (wait_event_interruptible(keypad_read_wait, 1087 keypad_buflen != 0)) 1088 return -EINTR; 1089 } 1090 1091 for (; count-- > 0 && (keypad_buflen > 0); 1092 ++i, ++tmp, --keypad_buflen) { 1093 put_user(keypad_buffer[keypad_start], tmp); 1094 keypad_start = (keypad_start + 1) % KEYPAD_BUFFER; 1095 } 1096 *ppos = i; 1097 1098 return tmp - buf; 1099 } 1100 1101 static int keypad_open(struct inode *inode, struct file *file) 1102 { 1103 int ret; 1104 1105 ret = -EBUSY; 1106 if (!atomic_dec_and_test(&keypad_available)) 1107 goto fail; /* open only once at a time */ 1108 1109 ret = -EPERM; 1110 if (file->f_mode & FMODE_WRITE) /* device is read-only */ 1111 goto fail; 1112 1113 keypad_buflen = 0; /* flush the buffer on opening */ 1114 return 0; 1115 fail: 1116 atomic_inc(&keypad_available); 1117 return ret; 1118 } 1119 1120 static int keypad_release(struct inode *inode, struct file *file) 1121 { 1122 atomic_inc(&keypad_available); 1123 return 0; 1124 } 1125 1126 static const struct file_operations keypad_fops = { 1127 .read = keypad_read, /* read */ 1128 .open = keypad_open, /* open */ 1129 .release = keypad_release, /* close */ 1130 .llseek = default_llseek, 1131 }; 1132 1133 static struct miscdevice keypad_dev = { 1134 .minor = KEYPAD_MINOR, 1135 .name = "keypad", 1136 .fops = &keypad_fops, 1137 }; 1138 1139 static void keypad_send_key(const char *string, int max_len) 1140 { 1141 /* send the key to the device only if a process is attached to it. */ 1142 if (!atomic_read(&keypad_available)) { 1143 while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) { 1144 keypad_buffer[(keypad_start + keypad_buflen++) % 1145 KEYPAD_BUFFER] = *string++; 1146 } 1147 wake_up_interruptible(&keypad_read_wait); 1148 } 1149 } 1150 1151 /* this function scans all the bits involving at least one logical signal, 1152 * and puts the results in the bitfield "phys_read" (one bit per established 1153 * contact), and sets "phys_read_prev" to "phys_read". 1154 * 1155 * Note: to debounce input signals, we will only consider as switched a signal 1156 * which is stable across 2 measures. Signals which are different between two 1157 * reads will be kept as they previously were in their logical form (phys_prev). 1158 * A signal which has just switched will have a 1 in 1159 * (phys_read ^ phys_read_prev). 1160 */ 1161 static void phys_scan_contacts(void) 1162 { 1163 int bit, bitval; 1164 char oldval; 1165 char bitmask; 1166 char gndmask; 1167 1168 phys_prev = phys_curr; 1169 phys_read_prev = phys_read; 1170 phys_read = 0; /* flush all signals */ 1171 1172 /* keep track of old value, with all outputs disabled */ 1173 oldval = r_dtr(pprt) | scan_mask_o; 1174 /* activate all keyboard outputs (active low) */ 1175 w_dtr(pprt, oldval & ~scan_mask_o); 1176 1177 /* will have a 1 for each bit set to gnd */ 1178 bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i; 1179 /* disable all matrix signals */ 1180 w_dtr(pprt, oldval); 1181 1182 /* now that all outputs are cleared, the only active input bits are 1183 * directly connected to the ground 1184 */ 1185 1186 /* 1 for each grounded input */ 1187 gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i; 1188 1189 /* grounded inputs are signals 40-44 */ 1190 phys_read |= (__u64)gndmask << 40; 1191 1192 if (bitmask != gndmask) { 1193 /* 1194 * since clearing the outputs changed some inputs, we know 1195 * that some input signals are currently tied to some outputs. 1196 * So we'll scan them. 1197 */ 1198 for (bit = 0; bit < 8; bit++) { 1199 bitval = BIT(bit); 1200 1201 if (!(scan_mask_o & bitval)) /* skip unused bits */ 1202 continue; 1203 1204 w_dtr(pprt, oldval & ~bitval); /* enable this output */ 1205 bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask; 1206 phys_read |= (__u64)bitmask << (5 * bit); 1207 } 1208 w_dtr(pprt, oldval); /* disable all outputs */ 1209 } 1210 /* 1211 * this is easy: use old bits when they are flapping, 1212 * use new ones when stable 1213 */ 1214 phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) | 1215 (phys_read & ~(phys_read ^ phys_read_prev)); 1216 } 1217 1218 static inline int input_state_high(struct logical_input *input) 1219 { 1220 #if 0 1221 /* FIXME: 1222 * this is an invalid test. It tries to catch 1223 * transitions from single-key to multiple-key, but 1224 * doesn't take into account the contacts polarity. 1225 * The only solution to the problem is to parse keys 1226 * from the most complex to the simplest combinations, 1227 * and mark them as 'caught' once a combination 1228 * matches, then unmatch it for all other ones. 1229 */ 1230 1231 /* try to catch dangerous transitions cases : 1232 * someone adds a bit, so this signal was a false 1233 * positive resulting from a transition. We should 1234 * invalidate the signal immediately and not call the 1235 * release function. 1236 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release. 1237 */ 1238 if (((phys_prev & input->mask) == input->value) && 1239 ((phys_curr & input->mask) > input->value)) { 1240 input->state = INPUT_ST_LOW; /* invalidate */ 1241 return 1; 1242 } 1243 #endif 1244 1245 if ((phys_curr & input->mask) == input->value) { 1246 if ((input->type == INPUT_TYPE_STD) && 1247 (input->high_timer == 0)) { 1248 input->high_timer++; 1249 if (input->u.std.press_fct) 1250 input->u.std.press_fct(input->u.std.press_data); 1251 } else if (input->type == INPUT_TYPE_KBD) { 1252 /* will turn on the light */ 1253 keypressed = 1; 1254 1255 if (input->high_timer == 0) { 1256 char *press_str = input->u.kbd.press_str; 1257 1258 if (press_str[0]) { 1259 int s = sizeof(input->u.kbd.press_str); 1260 1261 keypad_send_key(press_str, s); 1262 } 1263 } 1264 1265 if (input->u.kbd.repeat_str[0]) { 1266 char *repeat_str = input->u.kbd.repeat_str; 1267 1268 if (input->high_timer >= KEYPAD_REP_START) { 1269 int s = sizeof(input->u.kbd.repeat_str); 1270 1271 input->high_timer -= KEYPAD_REP_DELAY; 1272 keypad_send_key(repeat_str, s); 1273 } 1274 /* we will need to come back here soon */ 1275 inputs_stable = 0; 1276 } 1277 1278 if (input->high_timer < 255) 1279 input->high_timer++; 1280 } 1281 return 1; 1282 } 1283 1284 /* else signal falling down. Let's fall through. */ 1285 input->state = INPUT_ST_FALLING; 1286 input->fall_timer = 0; 1287 1288 return 0; 1289 } 1290 1291 static inline void input_state_falling(struct logical_input *input) 1292 { 1293 #if 0 1294 /* FIXME !!! same comment as in input_state_high */ 1295 if (((phys_prev & input->mask) == input->value) && 1296 ((phys_curr & input->mask) > input->value)) { 1297 input->state = INPUT_ST_LOW; /* invalidate */ 1298 return; 1299 } 1300 #endif 1301 1302 if ((phys_curr & input->mask) == input->value) { 1303 if (input->type == INPUT_TYPE_KBD) { 1304 /* will turn on the light */ 1305 keypressed = 1; 1306 1307 if (input->u.kbd.repeat_str[0]) { 1308 char *repeat_str = input->u.kbd.repeat_str; 1309 1310 if (input->high_timer >= KEYPAD_REP_START) { 1311 int s = sizeof(input->u.kbd.repeat_str); 1312 1313 input->high_timer -= KEYPAD_REP_DELAY; 1314 keypad_send_key(repeat_str, s); 1315 } 1316 /* we will need to come back here soon */ 1317 inputs_stable = 0; 1318 } 1319 1320 if (input->high_timer < 255) 1321 input->high_timer++; 1322 } 1323 input->state = INPUT_ST_HIGH; 1324 } else if (input->fall_timer >= input->fall_time) { 1325 /* call release event */ 1326 if (input->type == INPUT_TYPE_STD) { 1327 void (*release_fct)(int) = input->u.std.release_fct; 1328 1329 if (release_fct) 1330 release_fct(input->u.std.release_data); 1331 } else if (input->type == INPUT_TYPE_KBD) { 1332 char *release_str = input->u.kbd.release_str; 1333 1334 if (release_str[0]) { 1335 int s = sizeof(input->u.kbd.release_str); 1336 1337 keypad_send_key(release_str, s); 1338 } 1339 } 1340 1341 input->state = INPUT_ST_LOW; 1342 } else { 1343 input->fall_timer++; 1344 inputs_stable = 0; 1345 } 1346 } 1347 1348 static void panel_process_inputs(void) 1349 { 1350 struct logical_input *input; 1351 1352 keypressed = 0; 1353 inputs_stable = 1; 1354 list_for_each_entry(input, &logical_inputs, list) { 1355 switch (input->state) { 1356 case INPUT_ST_LOW: 1357 if ((phys_curr & input->mask) != input->value) 1358 break; 1359 /* if all needed ones were already set previously, 1360 * this means that this logical signal has been 1361 * activated by the releasing of another combined 1362 * signal, so we don't want to match. 1363 * eg: AB -(release B)-> A -(release A)-> 0 : 1364 * don't match A. 1365 */ 1366 if ((phys_prev & input->mask) == input->value) 1367 break; 1368 input->rise_timer = 0; 1369 input->state = INPUT_ST_RISING; 1370 /* fall through */ 1371 case INPUT_ST_RISING: 1372 if ((phys_curr & input->mask) != input->value) { 1373 input->state = INPUT_ST_LOW; 1374 break; 1375 } 1376 if (input->rise_timer < input->rise_time) { 1377 inputs_stable = 0; 1378 input->rise_timer++; 1379 break; 1380 } 1381 input->high_timer = 0; 1382 input->state = INPUT_ST_HIGH; 1383 /* fall through */ 1384 case INPUT_ST_HIGH: 1385 if (input_state_high(input)) 1386 break; 1387 /* fall through */ 1388 case INPUT_ST_FALLING: 1389 input_state_falling(input); 1390 } 1391 } 1392 } 1393 1394 static void panel_scan_timer(struct timer_list *unused) 1395 { 1396 if (keypad.enabled && keypad_initialized) { 1397 if (spin_trylock_irq(&pprt_lock)) { 1398 phys_scan_contacts(); 1399 1400 /* no need for the parport anymore */ 1401 spin_unlock_irq(&pprt_lock); 1402 } 1403 1404 if (!inputs_stable || phys_curr != phys_prev) 1405 panel_process_inputs(); 1406 } 1407 1408 if (keypressed && lcd.enabled && lcd.initialized) 1409 charlcd_poke(lcd.charlcd); 1410 1411 mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME); 1412 } 1413 1414 static void init_scan_timer(void) 1415 { 1416 if (scan_timer.function) 1417 return; /* already started */ 1418 1419 timer_setup(&scan_timer, panel_scan_timer, 0); 1420 scan_timer.expires = jiffies + INPUT_POLL_TIME; 1421 add_timer(&scan_timer); 1422 } 1423 1424 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits. 1425 * if <omask> or <imask> are non-null, they will be or'ed with the bits 1426 * corresponding to out and in bits respectively. 1427 * returns 1 if ok, 0 if error (in which case, nothing is written). 1428 */ 1429 static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value, 1430 u8 *imask, u8 *omask) 1431 { 1432 const char sigtab[] = "EeSsPpAaBb"; 1433 u8 im, om; 1434 __u64 m, v; 1435 1436 om = 0; 1437 im = 0; 1438 m = 0ULL; 1439 v = 0ULL; 1440 while (*name) { 1441 int in, out, bit, neg; 1442 const char *idx; 1443 1444 idx = strchr(sigtab, *name); 1445 if (!idx) 1446 return 0; /* input name not found */ 1447 1448 in = idx - sigtab; 1449 neg = (in & 1); /* odd (lower) names are negated */ 1450 in >>= 1; 1451 im |= BIT(in); 1452 1453 name++; 1454 if (*name >= '0' && *name <= '7') { 1455 out = *name - '0'; 1456 om |= BIT(out); 1457 } else if (*name == '-') { 1458 out = 8; 1459 } else { 1460 return 0; /* unknown bit name */ 1461 } 1462 1463 bit = (out * 5) + in; 1464 1465 m |= 1ULL << bit; 1466 if (!neg) 1467 v |= 1ULL << bit; 1468 name++; 1469 } 1470 *mask = m; 1471 *value = v; 1472 if (imask) 1473 *imask |= im; 1474 if (omask) 1475 *omask |= om; 1476 return 1; 1477 } 1478 1479 /* tries to bind a key to the signal name <name>. The key will send the 1480 * strings <press>, <repeat>, <release> for these respective events. 1481 * Returns the pointer to the new key if ok, NULL if the key could not be bound. 1482 */ 1483 static struct logical_input *panel_bind_key(const char *name, const char *press, 1484 const char *repeat, 1485 const char *release) 1486 { 1487 struct logical_input *key; 1488 1489 key = kzalloc(sizeof(*key), GFP_KERNEL); 1490 if (!key) 1491 return NULL; 1492 1493 if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i, 1494 &scan_mask_o)) { 1495 kfree(key); 1496 return NULL; 1497 } 1498 1499 key->type = INPUT_TYPE_KBD; 1500 key->state = INPUT_ST_LOW; 1501 key->rise_time = 1; 1502 key->fall_time = 1; 1503 1504 strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str)); 1505 strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str)); 1506 strncpy(key->u.kbd.release_str, release, 1507 sizeof(key->u.kbd.release_str)); 1508 list_add(&key->list, &logical_inputs); 1509 return key; 1510 } 1511 1512 #if 0 1513 /* tries to bind a callback function to the signal name <name>. The function 1514 * <press_fct> will be called with the <press_data> arg when the signal is 1515 * activated, and so on for <release_fct>/<release_data> 1516 * Returns the pointer to the new signal if ok, NULL if the signal could not 1517 * be bound. 1518 */ 1519 static struct logical_input *panel_bind_callback(char *name, 1520 void (*press_fct)(int), 1521 int press_data, 1522 void (*release_fct)(int), 1523 int release_data) 1524 { 1525 struct logical_input *callback; 1526 1527 callback = kmalloc(sizeof(*callback), GFP_KERNEL); 1528 if (!callback) 1529 return NULL; 1530 1531 memset(callback, 0, sizeof(struct logical_input)); 1532 if (!input_name2mask(name, &callback->mask, &callback->value, 1533 &scan_mask_i, &scan_mask_o)) 1534 return NULL; 1535 1536 callback->type = INPUT_TYPE_STD; 1537 callback->state = INPUT_ST_LOW; 1538 callback->rise_time = 1; 1539 callback->fall_time = 1; 1540 callback->u.std.press_fct = press_fct; 1541 callback->u.std.press_data = press_data; 1542 callback->u.std.release_fct = release_fct; 1543 callback->u.std.release_data = release_data; 1544 list_add(&callback->list, &logical_inputs); 1545 return callback; 1546 } 1547 #endif 1548 1549 static void keypad_init(void) 1550 { 1551 int keynum; 1552 1553 init_waitqueue_head(&keypad_read_wait); 1554 keypad_buflen = 0; /* flushes any eventual noisy keystroke */ 1555 1556 /* Let's create all known keys */ 1557 1558 for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) { 1559 panel_bind_key(keypad_profile[keynum][0], 1560 keypad_profile[keynum][1], 1561 keypad_profile[keynum][2], 1562 keypad_profile[keynum][3]); 1563 } 1564 1565 init_scan_timer(); 1566 keypad_initialized = 1; 1567 } 1568 1569 /**************************************************/ 1570 /* device initialization */ 1571 /**************************************************/ 1572 1573 static void panel_attach(struct parport *port) 1574 { 1575 struct pardev_cb panel_cb; 1576 1577 if (port->number != parport) 1578 return; 1579 1580 if (pprt) { 1581 pr_err("%s: port->number=%d parport=%d, already registered!\n", 1582 __func__, port->number, parport); 1583 return; 1584 } 1585 1586 memset(&panel_cb, 0, sizeof(panel_cb)); 1587 panel_cb.private = &pprt; 1588 /* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */ 1589 1590 pprt = parport_register_dev_model(port, "panel", &panel_cb, 0); 1591 if (!pprt) { 1592 pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n", 1593 __func__, port->number, parport); 1594 return; 1595 } 1596 1597 if (parport_claim(pprt)) { 1598 pr_err("could not claim access to parport%d. Aborting.\n", 1599 parport); 1600 goto err_unreg_device; 1601 } 1602 1603 /* must init LCD first, just in case an IRQ from the keypad is 1604 * generated at keypad init 1605 */ 1606 if (lcd.enabled) { 1607 lcd_init(); 1608 if (!lcd.charlcd || charlcd_register(lcd.charlcd)) 1609 goto err_unreg_device; 1610 } 1611 1612 if (keypad.enabled) { 1613 keypad_init(); 1614 if (misc_register(&keypad_dev)) 1615 goto err_lcd_unreg; 1616 } 1617 return; 1618 1619 err_lcd_unreg: 1620 if (lcd.enabled) 1621 charlcd_unregister(lcd.charlcd); 1622 err_unreg_device: 1623 charlcd_free(lcd.charlcd); 1624 lcd.charlcd = NULL; 1625 parport_unregister_device(pprt); 1626 pprt = NULL; 1627 } 1628 1629 static void panel_detach(struct parport *port) 1630 { 1631 if (port->number != parport) 1632 return; 1633 1634 if (!pprt) { 1635 pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n", 1636 __func__, port->number, parport); 1637 return; 1638 } 1639 if (scan_timer.function) 1640 del_timer_sync(&scan_timer); 1641 1642 if (keypad.enabled) { 1643 misc_deregister(&keypad_dev); 1644 keypad_initialized = 0; 1645 } 1646 1647 if (lcd.enabled) { 1648 charlcd_unregister(lcd.charlcd); 1649 lcd.initialized = false; 1650 charlcd_free(lcd.charlcd); 1651 lcd.charlcd = NULL; 1652 } 1653 1654 /* TODO: free all input signals */ 1655 parport_release(pprt); 1656 parport_unregister_device(pprt); 1657 pprt = NULL; 1658 } 1659 1660 static struct parport_driver panel_driver = { 1661 .name = "panel", 1662 .match_port = panel_attach, 1663 .detach = panel_detach, 1664 .devmodel = true, 1665 }; 1666 1667 /* init function */ 1668 static int __init panel_init_module(void) 1669 { 1670 int selected_keypad_type = NOT_SET, err; 1671 1672 /* take care of an eventual profile */ 1673 switch (profile) { 1674 case PANEL_PROFILE_CUSTOM: 1675 /* custom profile */ 1676 selected_keypad_type = DEFAULT_KEYPAD_TYPE; 1677 selected_lcd_type = DEFAULT_LCD_TYPE; 1678 break; 1679 case PANEL_PROFILE_OLD: 1680 /* 8 bits, 2*16, old keypad */ 1681 selected_keypad_type = KEYPAD_TYPE_OLD; 1682 selected_lcd_type = LCD_TYPE_OLD; 1683 1684 /* TODO: This two are a little hacky, sort it out later */ 1685 if (lcd_width == NOT_SET) 1686 lcd_width = 16; 1687 if (lcd_hwidth == NOT_SET) 1688 lcd_hwidth = 16; 1689 break; 1690 case PANEL_PROFILE_NEW: 1691 /* serial, 2*16, new keypad */ 1692 selected_keypad_type = KEYPAD_TYPE_NEW; 1693 selected_lcd_type = LCD_TYPE_KS0074; 1694 break; 1695 case PANEL_PROFILE_HANTRONIX: 1696 /* 8 bits, 2*16 hantronix-like, no keypad */ 1697 selected_keypad_type = KEYPAD_TYPE_NONE; 1698 selected_lcd_type = LCD_TYPE_HANTRONIX; 1699 break; 1700 case PANEL_PROFILE_NEXCOM: 1701 /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */ 1702 selected_keypad_type = KEYPAD_TYPE_NEXCOM; 1703 selected_lcd_type = LCD_TYPE_NEXCOM; 1704 break; 1705 case PANEL_PROFILE_LARGE: 1706 /* 8 bits, 2*40, old keypad */ 1707 selected_keypad_type = KEYPAD_TYPE_OLD; 1708 selected_lcd_type = LCD_TYPE_OLD; 1709 break; 1710 } 1711 1712 /* 1713 * Overwrite selection with module param values (both keypad and lcd), 1714 * where the deprecated params have lower prio. 1715 */ 1716 if (keypad_enabled != NOT_SET) 1717 selected_keypad_type = keypad_enabled; 1718 if (keypad_type != NOT_SET) 1719 selected_keypad_type = keypad_type; 1720 1721 keypad.enabled = (selected_keypad_type > 0); 1722 1723 if (lcd_enabled != NOT_SET) 1724 selected_lcd_type = lcd_enabled; 1725 if (lcd_type != NOT_SET) 1726 selected_lcd_type = lcd_type; 1727 1728 lcd.enabled = (selected_lcd_type > 0); 1729 1730 if (lcd.enabled) { 1731 /* 1732 * Init lcd struct with load-time values to preserve exact 1733 * current functionality (at least for now). 1734 */ 1735 lcd.charset = lcd_charset; 1736 lcd.proto = lcd_proto; 1737 lcd.pins.e = lcd_e_pin; 1738 lcd.pins.rs = lcd_rs_pin; 1739 lcd.pins.rw = lcd_rw_pin; 1740 lcd.pins.cl = lcd_cl_pin; 1741 lcd.pins.da = lcd_da_pin; 1742 lcd.pins.bl = lcd_bl_pin; 1743 } 1744 1745 switch (selected_keypad_type) { 1746 case KEYPAD_TYPE_OLD: 1747 keypad_profile = old_keypad_profile; 1748 break; 1749 case KEYPAD_TYPE_NEW: 1750 keypad_profile = new_keypad_profile; 1751 break; 1752 case KEYPAD_TYPE_NEXCOM: 1753 keypad_profile = nexcom_keypad_profile; 1754 break; 1755 default: 1756 keypad_profile = NULL; 1757 break; 1758 } 1759 1760 if (!lcd.enabled && !keypad.enabled) { 1761 /* no device enabled, let's exit */ 1762 pr_err("panel driver disabled.\n"); 1763 return -ENODEV; 1764 } 1765 1766 err = parport_register_driver(&panel_driver); 1767 if (err) { 1768 pr_err("could not register with parport. Aborting.\n"); 1769 return err; 1770 } 1771 1772 if (pprt) 1773 pr_info("panel driver registered on parport%d (io=0x%lx).\n", 1774 parport, pprt->port->base); 1775 else 1776 pr_info("panel driver not yet registered\n"); 1777 return 0; 1778 } 1779 1780 static void __exit panel_cleanup_module(void) 1781 { 1782 parport_unregister_driver(&panel_driver); 1783 } 1784 1785 module_init(panel_init_module); 1786 module_exit(panel_cleanup_module); 1787 MODULE_AUTHOR("Willy Tarreau"); 1788 MODULE_LICENSE("GPL"); 1789 1790 /* 1791 * Local variables: 1792 * c-indent-level: 4 1793 * tab-width: 8 1794 * End: 1795 */ 1796