xref: /openbmc/linux/drivers/auxdisplay/panel.c (revision 8795a739)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Front panel driver for Linux
4  * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
5  * Copyright (C) 2016-2017 Glider bvba
6  *
7  * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
8  * connected to a parallel printer port.
9  *
10  * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
11  * serial module compatible with Samsung's KS0074. The pins may be connected in
12  * any combination, everything is programmable.
13  *
14  * The keypad consists in a matrix of push buttons connecting input pins to
15  * data output pins or to the ground. The combinations have to be hard-coded
16  * in the driver, though several profiles exist and adding new ones is easy.
17  *
18  * Several profiles are provided for commonly found LCD+keypad modules on the
19  * market, such as those found in Nexcom's appliances.
20  *
21  * FIXME:
22  *      - the initialization/deinitialization process is very dirty and should
23  *        be rewritten. It may even be buggy.
24  *
25  * TODO:
26  *	- document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
27  *      - make the LCD a part of a virtual screen of Vx*Vy
28  *	- make the inputs list smp-safe
29  *      - change the keyboard to a double mapping : signals -> key_id -> values
30  *        so that applications can change values without knowing signals
31  *
32  */
33 
34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
35 
36 #include <linux/module.h>
37 
38 #include <linux/types.h>
39 #include <linux/errno.h>
40 #include <linux/signal.h>
41 #include <linux/sched.h>
42 #include <linux/spinlock.h>
43 #include <linux/interrupt.h>
44 #include <linux/miscdevice.h>
45 #include <linux/slab.h>
46 #include <linux/ioport.h>
47 #include <linux/fcntl.h>
48 #include <linux/init.h>
49 #include <linux/delay.h>
50 #include <linux/kernel.h>
51 #include <linux/ctype.h>
52 #include <linux/parport.h>
53 #include <linux/list.h>
54 
55 #include <linux/io.h>
56 #include <linux/uaccess.h>
57 
58 #include "charlcd.h"
59 
60 #define KEYPAD_MINOR		185
61 
62 #define LCD_MAXBYTES		256	/* max burst write */
63 
64 #define KEYPAD_BUFFER		64
65 
66 /* poll the keyboard this every second */
67 #define INPUT_POLL_TIME		(HZ / 50)
68 /* a key starts to repeat after this times INPUT_POLL_TIME */
69 #define KEYPAD_REP_START	(10)
70 /* a key repeats this times INPUT_POLL_TIME */
71 #define KEYPAD_REP_DELAY	(2)
72 
73 /* converts an r_str() input to an active high, bits string : 000BAOSE */
74 #define PNL_PINPUT(a)		((((unsigned char)(a)) ^ 0x7F) >> 3)
75 
76 #define PNL_PBUSY		0x80	/* inverted input, active low */
77 #define PNL_PACK		0x40	/* direct input, active low */
78 #define PNL_POUTPA		0x20	/* direct input, active high */
79 #define PNL_PSELECD		0x10	/* direct input, active high */
80 #define PNL_PERRORP		0x08	/* direct input, active low */
81 
82 #define PNL_PBIDIR		0x20	/* bi-directional ports */
83 /* high to read data in or-ed with data out */
84 #define PNL_PINTEN		0x10
85 #define PNL_PSELECP		0x08	/* inverted output, active low */
86 #define PNL_PINITP		0x04	/* direct output, active low */
87 #define PNL_PAUTOLF		0x02	/* inverted output, active low */
88 #define PNL_PSTROBE		0x01	/* inverted output */
89 
90 #define PNL_PD0			0x01
91 #define PNL_PD1			0x02
92 #define PNL_PD2			0x04
93 #define PNL_PD3			0x08
94 #define PNL_PD4			0x10
95 #define PNL_PD5			0x20
96 #define PNL_PD6			0x40
97 #define PNL_PD7			0x80
98 
99 #define PIN_NONE		0
100 #define PIN_STROBE		1
101 #define PIN_D0			2
102 #define PIN_D1			3
103 #define PIN_D2			4
104 #define PIN_D3			5
105 #define PIN_D4			6
106 #define PIN_D5			7
107 #define PIN_D6			8
108 #define PIN_D7			9
109 #define PIN_AUTOLF		14
110 #define PIN_INITP		16
111 #define PIN_SELECP		17
112 #define PIN_NOT_SET		127
113 
114 #define NOT_SET			-1
115 
116 /* macros to simplify use of the parallel port */
117 #define r_ctr(x)        (parport_read_control((x)->port))
118 #define r_dtr(x)        (parport_read_data((x)->port))
119 #define r_str(x)        (parport_read_status((x)->port))
120 #define w_ctr(x, y)     (parport_write_control((x)->port, (y)))
121 #define w_dtr(x, y)     (parport_write_data((x)->port, (y)))
122 
123 /* this defines which bits are to be used and which ones to be ignored */
124 /* logical or of the output bits involved in the scan matrix */
125 static __u8 scan_mask_o;
126 /* logical or of the input bits involved in the scan matrix */
127 static __u8 scan_mask_i;
128 
129 enum input_type {
130 	INPUT_TYPE_STD,
131 	INPUT_TYPE_KBD,
132 };
133 
134 enum input_state {
135 	INPUT_ST_LOW,
136 	INPUT_ST_RISING,
137 	INPUT_ST_HIGH,
138 	INPUT_ST_FALLING,
139 };
140 
141 struct logical_input {
142 	struct list_head list;
143 	__u64 mask;
144 	__u64 value;
145 	enum input_type type;
146 	enum input_state state;
147 	__u8 rise_time, fall_time;
148 	__u8 rise_timer, fall_timer, high_timer;
149 
150 	union {
151 		struct {	/* valid when type == INPUT_TYPE_STD */
152 			void (*press_fct)(int);
153 			void (*release_fct)(int);
154 			int press_data;
155 			int release_data;
156 		} std;
157 		struct {	/* valid when type == INPUT_TYPE_KBD */
158 			char press_str[sizeof(void *) + sizeof(int)] __nonstring;
159 			char repeat_str[sizeof(void *) + sizeof(int)] __nonstring;
160 			char release_str[sizeof(void *) + sizeof(int)] __nonstring;
161 		} kbd;
162 	} u;
163 };
164 
165 static LIST_HEAD(logical_inputs);	/* list of all defined logical inputs */
166 
167 /* physical contacts history
168  * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
169  * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
170  * corresponds to the ground.
171  * Within each group, bits are stored in the same order as read on the port :
172  * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
173  * So, each __u64 is represented like this :
174  * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
175  * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
176  */
177 
178 /* what has just been read from the I/O ports */
179 static __u64 phys_read;
180 /* previous phys_read */
181 static __u64 phys_read_prev;
182 /* stabilized phys_read (phys_read|phys_read_prev) */
183 static __u64 phys_curr;
184 /* previous phys_curr */
185 static __u64 phys_prev;
186 /* 0 means that at least one logical signal needs be computed */
187 static char inputs_stable;
188 
189 /* these variables are specific to the keypad */
190 static struct {
191 	bool enabled;
192 } keypad;
193 
194 static char keypad_buffer[KEYPAD_BUFFER];
195 static int keypad_buflen;
196 static int keypad_start;
197 static char keypressed;
198 static wait_queue_head_t keypad_read_wait;
199 
200 /* lcd-specific variables */
201 static struct {
202 	bool enabled;
203 	bool initialized;
204 
205 	int charset;
206 	int proto;
207 
208 	/* TODO: use union here? */
209 	struct {
210 		int e;
211 		int rs;
212 		int rw;
213 		int cl;
214 		int da;
215 		int bl;
216 	} pins;
217 
218 	struct charlcd *charlcd;
219 } lcd;
220 
221 /* Needed only for init */
222 static int selected_lcd_type = NOT_SET;
223 
224 /*
225  * Bit masks to convert LCD signals to parallel port outputs.
226  * _d_ are values for data port, _c_ are for control port.
227  * [0] = signal OFF, [1] = signal ON, [2] = mask
228  */
229 #define BIT_CLR		0
230 #define BIT_SET		1
231 #define BIT_MSK		2
232 #define BIT_STATES	3
233 /*
234  * one entry for each bit on the LCD
235  */
236 #define LCD_BIT_E	0
237 #define LCD_BIT_RS	1
238 #define LCD_BIT_RW	2
239 #define LCD_BIT_BL	3
240 #define LCD_BIT_CL	4
241 #define LCD_BIT_DA	5
242 #define LCD_BITS	6
243 
244 /*
245  * each bit can be either connected to a DATA or CTRL port
246  */
247 #define LCD_PORT_C	0
248 #define LCD_PORT_D	1
249 #define LCD_PORTS	2
250 
251 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
252 
253 /*
254  * LCD protocols
255  */
256 #define LCD_PROTO_PARALLEL      0
257 #define LCD_PROTO_SERIAL        1
258 #define LCD_PROTO_TI_DA8XX_LCD	2
259 
260 /*
261  * LCD character sets
262  */
263 #define LCD_CHARSET_NORMAL      0
264 #define LCD_CHARSET_KS0074      1
265 
266 /*
267  * LCD types
268  */
269 #define LCD_TYPE_NONE		0
270 #define LCD_TYPE_CUSTOM		1
271 #define LCD_TYPE_OLD		2
272 #define LCD_TYPE_KS0074		3
273 #define LCD_TYPE_HANTRONIX	4
274 #define LCD_TYPE_NEXCOM		5
275 
276 /*
277  * keypad types
278  */
279 #define KEYPAD_TYPE_NONE	0
280 #define KEYPAD_TYPE_OLD		1
281 #define KEYPAD_TYPE_NEW		2
282 #define KEYPAD_TYPE_NEXCOM	3
283 
284 /*
285  * panel profiles
286  */
287 #define PANEL_PROFILE_CUSTOM	0
288 #define PANEL_PROFILE_OLD	1
289 #define PANEL_PROFILE_NEW	2
290 #define PANEL_PROFILE_HANTRONIX	3
291 #define PANEL_PROFILE_NEXCOM	4
292 #define PANEL_PROFILE_LARGE	5
293 
294 /*
295  * Construct custom config from the kernel's configuration
296  */
297 #define DEFAULT_PARPORT         0
298 #define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
299 #define DEFAULT_KEYPAD_TYPE     KEYPAD_TYPE_OLD
300 #define DEFAULT_LCD_TYPE        LCD_TYPE_OLD
301 #define DEFAULT_LCD_HEIGHT      2
302 #define DEFAULT_LCD_WIDTH       40
303 #define DEFAULT_LCD_BWIDTH      40
304 #define DEFAULT_LCD_HWIDTH      64
305 #define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
306 #define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
307 
308 #define DEFAULT_LCD_PIN_E       PIN_AUTOLF
309 #define DEFAULT_LCD_PIN_RS      PIN_SELECP
310 #define DEFAULT_LCD_PIN_RW      PIN_INITP
311 #define DEFAULT_LCD_PIN_SCL     PIN_STROBE
312 #define DEFAULT_LCD_PIN_SDA     PIN_D0
313 #define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
314 
315 #ifdef CONFIG_PANEL_PARPORT
316 #undef DEFAULT_PARPORT
317 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
318 #endif
319 
320 #ifdef CONFIG_PANEL_PROFILE
321 #undef DEFAULT_PROFILE
322 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
323 #endif
324 
325 #if DEFAULT_PROFILE == 0	/* custom */
326 #ifdef CONFIG_PANEL_KEYPAD
327 #undef DEFAULT_KEYPAD_TYPE
328 #define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
329 #endif
330 
331 #ifdef CONFIG_PANEL_LCD
332 #undef DEFAULT_LCD_TYPE
333 #define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
334 #endif
335 
336 #ifdef CONFIG_PANEL_LCD_HEIGHT
337 #undef DEFAULT_LCD_HEIGHT
338 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
339 #endif
340 
341 #ifdef CONFIG_PANEL_LCD_WIDTH
342 #undef DEFAULT_LCD_WIDTH
343 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
344 #endif
345 
346 #ifdef CONFIG_PANEL_LCD_BWIDTH
347 #undef DEFAULT_LCD_BWIDTH
348 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
349 #endif
350 
351 #ifdef CONFIG_PANEL_LCD_HWIDTH
352 #undef DEFAULT_LCD_HWIDTH
353 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
354 #endif
355 
356 #ifdef CONFIG_PANEL_LCD_CHARSET
357 #undef DEFAULT_LCD_CHARSET
358 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
359 #endif
360 
361 #ifdef CONFIG_PANEL_LCD_PROTO
362 #undef DEFAULT_LCD_PROTO
363 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
364 #endif
365 
366 #ifdef CONFIG_PANEL_LCD_PIN_E
367 #undef DEFAULT_LCD_PIN_E
368 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
369 #endif
370 
371 #ifdef CONFIG_PANEL_LCD_PIN_RS
372 #undef DEFAULT_LCD_PIN_RS
373 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
374 #endif
375 
376 #ifdef CONFIG_PANEL_LCD_PIN_RW
377 #undef DEFAULT_LCD_PIN_RW
378 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
379 #endif
380 
381 #ifdef CONFIG_PANEL_LCD_PIN_SCL
382 #undef DEFAULT_LCD_PIN_SCL
383 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
384 #endif
385 
386 #ifdef CONFIG_PANEL_LCD_PIN_SDA
387 #undef DEFAULT_LCD_PIN_SDA
388 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
389 #endif
390 
391 #ifdef CONFIG_PANEL_LCD_PIN_BL
392 #undef DEFAULT_LCD_PIN_BL
393 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
394 #endif
395 
396 #endif /* DEFAULT_PROFILE == 0 */
397 
398 /* global variables */
399 
400 /* Device single-open policy control */
401 static atomic_t keypad_available = ATOMIC_INIT(1);
402 
403 static struct pardevice *pprt;
404 
405 static int keypad_initialized;
406 
407 static DEFINE_SPINLOCK(pprt_lock);
408 static struct timer_list scan_timer;
409 
410 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
411 
412 static int parport = DEFAULT_PARPORT;
413 module_param(parport, int, 0000);
414 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
415 
416 static int profile = DEFAULT_PROFILE;
417 module_param(profile, int, 0000);
418 MODULE_PARM_DESC(profile,
419 		 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
420 		 "4=16x2 nexcom; default=40x2, old kp");
421 
422 static int keypad_type = NOT_SET;
423 module_param(keypad_type, int, 0000);
424 MODULE_PARM_DESC(keypad_type,
425 		 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
426 
427 static int lcd_type = NOT_SET;
428 module_param(lcd_type, int, 0000);
429 MODULE_PARM_DESC(lcd_type,
430 		 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
431 
432 static int lcd_height = NOT_SET;
433 module_param(lcd_height, int, 0000);
434 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
435 
436 static int lcd_width = NOT_SET;
437 module_param(lcd_width, int, 0000);
438 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
439 
440 static int lcd_bwidth = NOT_SET;	/* internal buffer width (usually 40) */
441 module_param(lcd_bwidth, int, 0000);
442 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
443 
444 static int lcd_hwidth = NOT_SET;	/* hardware buffer width (usually 64) */
445 module_param(lcd_hwidth, int, 0000);
446 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
447 
448 static int lcd_charset = NOT_SET;
449 module_param(lcd_charset, int, 0000);
450 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
451 
452 static int lcd_proto = NOT_SET;
453 module_param(lcd_proto, int, 0000);
454 MODULE_PARM_DESC(lcd_proto,
455 		 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
456 
457 /*
458  * These are the parallel port pins the LCD control signals are connected to.
459  * Set this to 0 if the signal is not used. Set it to its opposite value
460  * (negative) if the signal is negated. -MAXINT is used to indicate that the
461  * pin has not been explicitly specified.
462  *
463  * WARNING! no check will be performed about collisions with keypad !
464  */
465 
466 static int lcd_e_pin  = PIN_NOT_SET;
467 module_param(lcd_e_pin, int, 0000);
468 MODULE_PARM_DESC(lcd_e_pin,
469 		 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
470 
471 static int lcd_rs_pin = PIN_NOT_SET;
472 module_param(lcd_rs_pin, int, 0000);
473 MODULE_PARM_DESC(lcd_rs_pin,
474 		 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
475 
476 static int lcd_rw_pin = PIN_NOT_SET;
477 module_param(lcd_rw_pin, int, 0000);
478 MODULE_PARM_DESC(lcd_rw_pin,
479 		 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
480 
481 static int lcd_cl_pin = PIN_NOT_SET;
482 module_param(lcd_cl_pin, int, 0000);
483 MODULE_PARM_DESC(lcd_cl_pin,
484 		 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
485 
486 static int lcd_da_pin = PIN_NOT_SET;
487 module_param(lcd_da_pin, int, 0000);
488 MODULE_PARM_DESC(lcd_da_pin,
489 		 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
490 
491 static int lcd_bl_pin = PIN_NOT_SET;
492 module_param(lcd_bl_pin, int, 0000);
493 MODULE_PARM_DESC(lcd_bl_pin,
494 		 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
495 
496 /* Deprecated module parameters - consider not using them anymore */
497 
498 static int lcd_enabled = NOT_SET;
499 module_param(lcd_enabled, int, 0000);
500 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
501 
502 static int keypad_enabled = NOT_SET;
503 module_param(keypad_enabled, int, 0000);
504 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
505 
506 /* for some LCD drivers (ks0074) we need a charset conversion table. */
507 static const unsigned char lcd_char_conv_ks0074[256] = {
508 	/*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
509 	/* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
510 	/* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
511 	/* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
512 	/* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
513 	/* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
514 	/* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
515 	/* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
516 	/* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
517 	/* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
518 	/* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
519 	/* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
520 	/* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
521 	/* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
522 	/* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
523 	/* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
524 	/* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
525 	/* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
526 	/* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
527 	/* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
528 	/* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
529 	/* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
530 	/* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
531 	/* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
532 	/* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
533 	/* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
534 	/* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
535 	/* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
536 	/* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
537 	/* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
538 	/* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
539 	/* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
540 	/* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
541 };
542 
543 static const char old_keypad_profile[][4][9] = {
544 	{"S0", "Left\n", "Left\n", ""},
545 	{"S1", "Down\n", "Down\n", ""},
546 	{"S2", "Up\n", "Up\n", ""},
547 	{"S3", "Right\n", "Right\n", ""},
548 	{"S4", "Esc\n", "Esc\n", ""},
549 	{"S5", "Ret\n", "Ret\n", ""},
550 	{"", "", "", ""}
551 };
552 
553 /* signals, press, repeat, release */
554 static const char new_keypad_profile[][4][9] = {
555 	{"S0", "Left\n", "Left\n", ""},
556 	{"S1", "Down\n", "Down\n", ""},
557 	{"S2", "Up\n", "Up\n", ""},
558 	{"S3", "Right\n", "Right\n", ""},
559 	{"S4s5", "", "Esc\n", "Esc\n"},
560 	{"s4S5", "", "Ret\n", "Ret\n"},
561 	{"S4S5", "Help\n", "", ""},
562 	/* add new signals above this line */
563 	{"", "", "", ""}
564 };
565 
566 /* signals, press, repeat, release */
567 static const char nexcom_keypad_profile[][4][9] = {
568 	{"a-p-e-", "Down\n", "Down\n", ""},
569 	{"a-p-E-", "Ret\n", "Ret\n", ""},
570 	{"a-P-E-", "Esc\n", "Esc\n", ""},
571 	{"a-P-e-", "Up\n", "Up\n", ""},
572 	/* add new signals above this line */
573 	{"", "", "", ""}
574 };
575 
576 static const char (*keypad_profile)[4][9] = old_keypad_profile;
577 
578 static DECLARE_BITMAP(bits, LCD_BITS);
579 
580 static void lcd_get_bits(unsigned int port, int *val)
581 {
582 	unsigned int bit, state;
583 
584 	for (bit = 0; bit < LCD_BITS; bit++) {
585 		state = test_bit(bit, bits) ? BIT_SET : BIT_CLR;
586 		*val &= lcd_bits[port][bit][BIT_MSK];
587 		*val |= lcd_bits[port][bit][state];
588 	}
589 }
590 
591 /* sets data port bits according to current signals values */
592 static int set_data_bits(void)
593 {
594 	int val;
595 
596 	val = r_dtr(pprt);
597 	lcd_get_bits(LCD_PORT_D, &val);
598 	w_dtr(pprt, val);
599 	return val;
600 }
601 
602 /* sets ctrl port bits according to current signals values */
603 static int set_ctrl_bits(void)
604 {
605 	int val;
606 
607 	val = r_ctr(pprt);
608 	lcd_get_bits(LCD_PORT_C, &val);
609 	w_ctr(pprt, val);
610 	return val;
611 }
612 
613 /* sets ctrl & data port bits according to current signals values */
614 static void panel_set_bits(void)
615 {
616 	set_data_bits();
617 	set_ctrl_bits();
618 }
619 
620 /*
621  * Converts a parallel port pin (from -25 to 25) to data and control ports
622  * masks, and data and control port bits. The signal will be considered
623  * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
624  *
625  * Result will be used this way :
626  *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
627  *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
628  */
629 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
630 {
631 	int d_bit, c_bit, inv;
632 
633 	d_val[0] = 0;
634 	c_val[0] = 0;
635 	d_val[1] = 0;
636 	c_val[1] = 0;
637 	d_val[2] = 0xFF;
638 	c_val[2] = 0xFF;
639 
640 	if (pin == 0)
641 		return;
642 
643 	inv = (pin < 0);
644 	if (inv)
645 		pin = -pin;
646 
647 	d_bit = 0;
648 	c_bit = 0;
649 
650 	switch (pin) {
651 	case PIN_STROBE:	/* strobe, inverted */
652 		c_bit = PNL_PSTROBE;
653 		inv = !inv;
654 		break;
655 	case PIN_D0...PIN_D7:	/* D0 - D7 = 2 - 9 */
656 		d_bit = 1 << (pin - 2);
657 		break;
658 	case PIN_AUTOLF:	/* autofeed, inverted */
659 		c_bit = PNL_PAUTOLF;
660 		inv = !inv;
661 		break;
662 	case PIN_INITP:		/* init, direct */
663 		c_bit = PNL_PINITP;
664 		break;
665 	case PIN_SELECP:	/* select_in, inverted */
666 		c_bit = PNL_PSELECP;
667 		inv = !inv;
668 		break;
669 	default:		/* unknown pin, ignore */
670 		break;
671 	}
672 
673 	if (c_bit) {
674 		c_val[2] &= ~c_bit;
675 		c_val[!inv] = c_bit;
676 	} else if (d_bit) {
677 		d_val[2] &= ~d_bit;
678 		d_val[!inv] = d_bit;
679 	}
680 }
681 
682 /*
683  * send a serial byte to the LCD panel. The caller is responsible for locking
684  * if needed.
685  */
686 static void lcd_send_serial(int byte)
687 {
688 	int bit;
689 
690 	/*
691 	 * the data bit is set on D0, and the clock on STROBE.
692 	 * LCD reads D0 on STROBE's rising edge.
693 	 */
694 	for (bit = 0; bit < 8; bit++) {
695 		clear_bit(LCD_BIT_CL, bits);	/* CLK low */
696 		panel_set_bits();
697 		if (byte & 1) {
698 			set_bit(LCD_BIT_DA, bits);
699 		} else {
700 			clear_bit(LCD_BIT_DA, bits);
701 		}
702 
703 		panel_set_bits();
704 		udelay(2);  /* maintain the data during 2 us before CLK up */
705 		set_bit(LCD_BIT_CL, bits);	/* CLK high */
706 		panel_set_bits();
707 		udelay(1);  /* maintain the strobe during 1 us */
708 		byte >>= 1;
709 	}
710 }
711 
712 /* turn the backlight on or off */
713 static void lcd_backlight(struct charlcd *charlcd, int on)
714 {
715 	if (lcd.pins.bl == PIN_NONE)
716 		return;
717 
718 	/* The backlight is activated by setting the AUTOFEED line to +5V  */
719 	spin_lock_irq(&pprt_lock);
720 	if (on)
721 		set_bit(LCD_BIT_BL, bits);
722 	else
723 		clear_bit(LCD_BIT_BL, bits);
724 	panel_set_bits();
725 	spin_unlock_irq(&pprt_lock);
726 }
727 
728 /* send a command to the LCD panel in serial mode */
729 static void lcd_write_cmd_s(struct charlcd *charlcd, int cmd)
730 {
731 	spin_lock_irq(&pprt_lock);
732 	lcd_send_serial(0x1F);	/* R/W=W, RS=0 */
733 	lcd_send_serial(cmd & 0x0F);
734 	lcd_send_serial((cmd >> 4) & 0x0F);
735 	udelay(40);		/* the shortest command takes at least 40 us */
736 	spin_unlock_irq(&pprt_lock);
737 }
738 
739 /* send data to the LCD panel in serial mode */
740 static void lcd_write_data_s(struct charlcd *charlcd, int data)
741 {
742 	spin_lock_irq(&pprt_lock);
743 	lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
744 	lcd_send_serial(data & 0x0F);
745 	lcd_send_serial((data >> 4) & 0x0F);
746 	udelay(40);		/* the shortest data takes at least 40 us */
747 	spin_unlock_irq(&pprt_lock);
748 }
749 
750 /* send a command to the LCD panel in 8 bits parallel mode */
751 static void lcd_write_cmd_p8(struct charlcd *charlcd, int cmd)
752 {
753 	spin_lock_irq(&pprt_lock);
754 	/* present the data to the data port */
755 	w_dtr(pprt, cmd);
756 	udelay(20);	/* maintain the data during 20 us before the strobe */
757 
758 	set_bit(LCD_BIT_E, bits);
759 	clear_bit(LCD_BIT_RS, bits);
760 	clear_bit(LCD_BIT_RW, bits);
761 	set_ctrl_bits();
762 
763 	udelay(40);	/* maintain the strobe during 40 us */
764 
765 	clear_bit(LCD_BIT_E, bits);
766 	set_ctrl_bits();
767 
768 	udelay(120);	/* the shortest command takes at least 120 us */
769 	spin_unlock_irq(&pprt_lock);
770 }
771 
772 /* send data to the LCD panel in 8 bits parallel mode */
773 static void lcd_write_data_p8(struct charlcd *charlcd, int data)
774 {
775 	spin_lock_irq(&pprt_lock);
776 	/* present the data to the data port */
777 	w_dtr(pprt, data);
778 	udelay(20);	/* maintain the data during 20 us before the strobe */
779 
780 	set_bit(LCD_BIT_E, bits);
781 	set_bit(LCD_BIT_RS, bits);
782 	clear_bit(LCD_BIT_RW, bits);
783 	set_ctrl_bits();
784 
785 	udelay(40);	/* maintain the strobe during 40 us */
786 
787 	clear_bit(LCD_BIT_E, bits);
788 	set_ctrl_bits();
789 
790 	udelay(45);	/* the shortest data takes at least 45 us */
791 	spin_unlock_irq(&pprt_lock);
792 }
793 
794 /* send a command to the TI LCD panel */
795 static void lcd_write_cmd_tilcd(struct charlcd *charlcd, int cmd)
796 {
797 	spin_lock_irq(&pprt_lock);
798 	/* present the data to the control port */
799 	w_ctr(pprt, cmd);
800 	udelay(60);
801 	spin_unlock_irq(&pprt_lock);
802 }
803 
804 /* send data to the TI LCD panel */
805 static void lcd_write_data_tilcd(struct charlcd *charlcd, int data)
806 {
807 	spin_lock_irq(&pprt_lock);
808 	/* present the data to the data port */
809 	w_dtr(pprt, data);
810 	udelay(60);
811 	spin_unlock_irq(&pprt_lock);
812 }
813 
814 /* fills the display with spaces and resets X/Y */
815 static void lcd_clear_fast_s(struct charlcd *charlcd)
816 {
817 	int pos;
818 
819 	spin_lock_irq(&pprt_lock);
820 	for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
821 		lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
822 		lcd_send_serial(' ' & 0x0F);
823 		lcd_send_serial((' ' >> 4) & 0x0F);
824 		/* the shortest data takes at least 40 us */
825 		udelay(40);
826 	}
827 	spin_unlock_irq(&pprt_lock);
828 }
829 
830 /* fills the display with spaces and resets X/Y */
831 static void lcd_clear_fast_p8(struct charlcd *charlcd)
832 {
833 	int pos;
834 
835 	spin_lock_irq(&pprt_lock);
836 	for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
837 		/* present the data to the data port */
838 		w_dtr(pprt, ' ');
839 
840 		/* maintain the data during 20 us before the strobe */
841 		udelay(20);
842 
843 		set_bit(LCD_BIT_E, bits);
844 		set_bit(LCD_BIT_RS, bits);
845 		clear_bit(LCD_BIT_RW, bits);
846 		set_ctrl_bits();
847 
848 		/* maintain the strobe during 40 us */
849 		udelay(40);
850 
851 		clear_bit(LCD_BIT_E, bits);
852 		set_ctrl_bits();
853 
854 		/* the shortest data takes at least 45 us */
855 		udelay(45);
856 	}
857 	spin_unlock_irq(&pprt_lock);
858 }
859 
860 /* fills the display with spaces and resets X/Y */
861 static void lcd_clear_fast_tilcd(struct charlcd *charlcd)
862 {
863 	int pos;
864 
865 	spin_lock_irq(&pprt_lock);
866 	for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
867 		/* present the data to the data port */
868 		w_dtr(pprt, ' ');
869 		udelay(60);
870 	}
871 
872 	spin_unlock_irq(&pprt_lock);
873 }
874 
875 static const struct charlcd_ops charlcd_serial_ops = {
876 	.write_cmd	= lcd_write_cmd_s,
877 	.write_data	= lcd_write_data_s,
878 	.clear_fast	= lcd_clear_fast_s,
879 	.backlight	= lcd_backlight,
880 };
881 
882 static const struct charlcd_ops charlcd_parallel_ops = {
883 	.write_cmd	= lcd_write_cmd_p8,
884 	.write_data	= lcd_write_data_p8,
885 	.clear_fast	= lcd_clear_fast_p8,
886 	.backlight	= lcd_backlight,
887 };
888 
889 static const struct charlcd_ops charlcd_tilcd_ops = {
890 	.write_cmd	= lcd_write_cmd_tilcd,
891 	.write_data	= lcd_write_data_tilcd,
892 	.clear_fast	= lcd_clear_fast_tilcd,
893 	.backlight	= lcd_backlight,
894 };
895 
896 /* initialize the LCD driver */
897 static void lcd_init(void)
898 {
899 	struct charlcd *charlcd;
900 
901 	charlcd = charlcd_alloc(0);
902 	if (!charlcd)
903 		return;
904 
905 	/*
906 	 * Init lcd struct with load-time values to preserve exact
907 	 * current functionality (at least for now).
908 	 */
909 	charlcd->height = lcd_height;
910 	charlcd->width = lcd_width;
911 	charlcd->bwidth = lcd_bwidth;
912 	charlcd->hwidth = lcd_hwidth;
913 
914 	switch (selected_lcd_type) {
915 	case LCD_TYPE_OLD:
916 		/* parallel mode, 8 bits */
917 		lcd.proto = LCD_PROTO_PARALLEL;
918 		lcd.charset = LCD_CHARSET_NORMAL;
919 		lcd.pins.e = PIN_STROBE;
920 		lcd.pins.rs = PIN_AUTOLF;
921 
922 		charlcd->width = 40;
923 		charlcd->bwidth = 40;
924 		charlcd->hwidth = 64;
925 		charlcd->height = 2;
926 		break;
927 	case LCD_TYPE_KS0074:
928 		/* serial mode, ks0074 */
929 		lcd.proto = LCD_PROTO_SERIAL;
930 		lcd.charset = LCD_CHARSET_KS0074;
931 		lcd.pins.bl = PIN_AUTOLF;
932 		lcd.pins.cl = PIN_STROBE;
933 		lcd.pins.da = PIN_D0;
934 
935 		charlcd->width = 16;
936 		charlcd->bwidth = 40;
937 		charlcd->hwidth = 16;
938 		charlcd->height = 2;
939 		break;
940 	case LCD_TYPE_NEXCOM:
941 		/* parallel mode, 8 bits, generic */
942 		lcd.proto = LCD_PROTO_PARALLEL;
943 		lcd.charset = LCD_CHARSET_NORMAL;
944 		lcd.pins.e = PIN_AUTOLF;
945 		lcd.pins.rs = PIN_SELECP;
946 		lcd.pins.rw = PIN_INITP;
947 
948 		charlcd->width = 16;
949 		charlcd->bwidth = 40;
950 		charlcd->hwidth = 64;
951 		charlcd->height = 2;
952 		break;
953 	case LCD_TYPE_CUSTOM:
954 		/* customer-defined */
955 		lcd.proto = DEFAULT_LCD_PROTO;
956 		lcd.charset = DEFAULT_LCD_CHARSET;
957 		/* default geometry will be set later */
958 		break;
959 	case LCD_TYPE_HANTRONIX:
960 		/* parallel mode, 8 bits, hantronix-like */
961 	default:
962 		lcd.proto = LCD_PROTO_PARALLEL;
963 		lcd.charset = LCD_CHARSET_NORMAL;
964 		lcd.pins.e = PIN_STROBE;
965 		lcd.pins.rs = PIN_SELECP;
966 
967 		charlcd->width = 16;
968 		charlcd->bwidth = 40;
969 		charlcd->hwidth = 64;
970 		charlcd->height = 2;
971 		break;
972 	}
973 
974 	/* Overwrite with module params set on loading */
975 	if (lcd_height != NOT_SET)
976 		charlcd->height = lcd_height;
977 	if (lcd_width != NOT_SET)
978 		charlcd->width = lcd_width;
979 	if (lcd_bwidth != NOT_SET)
980 		charlcd->bwidth = lcd_bwidth;
981 	if (lcd_hwidth != NOT_SET)
982 		charlcd->hwidth = lcd_hwidth;
983 	if (lcd_charset != NOT_SET)
984 		lcd.charset = lcd_charset;
985 	if (lcd_proto != NOT_SET)
986 		lcd.proto = lcd_proto;
987 	if (lcd_e_pin != PIN_NOT_SET)
988 		lcd.pins.e = lcd_e_pin;
989 	if (lcd_rs_pin != PIN_NOT_SET)
990 		lcd.pins.rs = lcd_rs_pin;
991 	if (lcd_rw_pin != PIN_NOT_SET)
992 		lcd.pins.rw = lcd_rw_pin;
993 	if (lcd_cl_pin != PIN_NOT_SET)
994 		lcd.pins.cl = lcd_cl_pin;
995 	if (lcd_da_pin != PIN_NOT_SET)
996 		lcd.pins.da = lcd_da_pin;
997 	if (lcd_bl_pin != PIN_NOT_SET)
998 		lcd.pins.bl = lcd_bl_pin;
999 
1000 	/* this is used to catch wrong and default values */
1001 	if (charlcd->width <= 0)
1002 		charlcd->width = DEFAULT_LCD_WIDTH;
1003 	if (charlcd->bwidth <= 0)
1004 		charlcd->bwidth = DEFAULT_LCD_BWIDTH;
1005 	if (charlcd->hwidth <= 0)
1006 		charlcd->hwidth = DEFAULT_LCD_HWIDTH;
1007 	if (charlcd->height <= 0)
1008 		charlcd->height = DEFAULT_LCD_HEIGHT;
1009 
1010 	if (lcd.proto == LCD_PROTO_SERIAL) {	/* SERIAL */
1011 		charlcd->ops = &charlcd_serial_ops;
1012 
1013 		if (lcd.pins.cl == PIN_NOT_SET)
1014 			lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1015 		if (lcd.pins.da == PIN_NOT_SET)
1016 			lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1017 
1018 	} else if (lcd.proto == LCD_PROTO_PARALLEL) {	/* PARALLEL */
1019 		charlcd->ops = &charlcd_parallel_ops;
1020 
1021 		if (lcd.pins.e == PIN_NOT_SET)
1022 			lcd.pins.e = DEFAULT_LCD_PIN_E;
1023 		if (lcd.pins.rs == PIN_NOT_SET)
1024 			lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1025 		if (lcd.pins.rw == PIN_NOT_SET)
1026 			lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1027 	} else {
1028 		charlcd->ops = &charlcd_tilcd_ops;
1029 	}
1030 
1031 	if (lcd.pins.bl == PIN_NOT_SET)
1032 		lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1033 
1034 	if (lcd.pins.e == PIN_NOT_SET)
1035 		lcd.pins.e = PIN_NONE;
1036 	if (lcd.pins.rs == PIN_NOT_SET)
1037 		lcd.pins.rs = PIN_NONE;
1038 	if (lcd.pins.rw == PIN_NOT_SET)
1039 		lcd.pins.rw = PIN_NONE;
1040 	if (lcd.pins.bl == PIN_NOT_SET)
1041 		lcd.pins.bl = PIN_NONE;
1042 	if (lcd.pins.cl == PIN_NOT_SET)
1043 		lcd.pins.cl = PIN_NONE;
1044 	if (lcd.pins.da == PIN_NOT_SET)
1045 		lcd.pins.da = PIN_NONE;
1046 
1047 	if (lcd.charset == NOT_SET)
1048 		lcd.charset = DEFAULT_LCD_CHARSET;
1049 
1050 	if (lcd.charset == LCD_CHARSET_KS0074)
1051 		charlcd->char_conv = lcd_char_conv_ks0074;
1052 	else
1053 		charlcd->char_conv = NULL;
1054 
1055 	pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1056 		    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1057 	pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1058 		    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1059 	pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1060 		    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1061 	pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1062 		    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1063 	pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1064 		    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1065 	pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1066 		    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1067 
1068 	lcd.charlcd = charlcd;
1069 	lcd.initialized = true;
1070 }
1071 
1072 /*
1073  * These are the file operation function for user access to /dev/keypad
1074  */
1075 
1076 static ssize_t keypad_read(struct file *file,
1077 			   char __user *buf, size_t count, loff_t *ppos)
1078 {
1079 	unsigned i = *ppos;
1080 	char __user *tmp = buf;
1081 
1082 	if (keypad_buflen == 0) {
1083 		if (file->f_flags & O_NONBLOCK)
1084 			return -EAGAIN;
1085 
1086 		if (wait_event_interruptible(keypad_read_wait,
1087 					     keypad_buflen != 0))
1088 			return -EINTR;
1089 	}
1090 
1091 	for (; count-- > 0 && (keypad_buflen > 0);
1092 	     ++i, ++tmp, --keypad_buflen) {
1093 		put_user(keypad_buffer[keypad_start], tmp);
1094 		keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1095 	}
1096 	*ppos = i;
1097 
1098 	return tmp - buf;
1099 }
1100 
1101 static int keypad_open(struct inode *inode, struct file *file)
1102 {
1103 	int ret;
1104 
1105 	ret = -EBUSY;
1106 	if (!atomic_dec_and_test(&keypad_available))
1107 		goto fail;	/* open only once at a time */
1108 
1109 	ret = -EPERM;
1110 	if (file->f_mode & FMODE_WRITE)	/* device is read-only */
1111 		goto fail;
1112 
1113 	keypad_buflen = 0;	/* flush the buffer on opening */
1114 	return 0;
1115  fail:
1116 	atomic_inc(&keypad_available);
1117 	return ret;
1118 }
1119 
1120 static int keypad_release(struct inode *inode, struct file *file)
1121 {
1122 	atomic_inc(&keypad_available);
1123 	return 0;
1124 }
1125 
1126 static const struct file_operations keypad_fops = {
1127 	.read    = keypad_read,		/* read */
1128 	.open    = keypad_open,		/* open */
1129 	.release = keypad_release,	/* close */
1130 	.llseek  = default_llseek,
1131 };
1132 
1133 static struct miscdevice keypad_dev = {
1134 	.minor	= KEYPAD_MINOR,
1135 	.name	= "keypad",
1136 	.fops	= &keypad_fops,
1137 };
1138 
1139 static void keypad_send_key(const char *string, int max_len)
1140 {
1141 	/* send the key to the device only if a process is attached to it. */
1142 	if (!atomic_read(&keypad_available)) {
1143 		while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1144 			keypad_buffer[(keypad_start + keypad_buflen++) %
1145 				      KEYPAD_BUFFER] = *string++;
1146 		}
1147 		wake_up_interruptible(&keypad_read_wait);
1148 	}
1149 }
1150 
1151 /* this function scans all the bits involving at least one logical signal,
1152  * and puts the results in the bitfield "phys_read" (one bit per established
1153  * contact), and sets "phys_read_prev" to "phys_read".
1154  *
1155  * Note: to debounce input signals, we will only consider as switched a signal
1156  * which is stable across 2 measures. Signals which are different between two
1157  * reads will be kept as they previously were in their logical form (phys_prev).
1158  * A signal which has just switched will have a 1 in
1159  * (phys_read ^ phys_read_prev).
1160  */
1161 static void phys_scan_contacts(void)
1162 {
1163 	int bit, bitval;
1164 	char oldval;
1165 	char bitmask;
1166 	char gndmask;
1167 
1168 	phys_prev = phys_curr;
1169 	phys_read_prev = phys_read;
1170 	phys_read = 0;		/* flush all signals */
1171 
1172 	/* keep track of old value, with all outputs disabled */
1173 	oldval = r_dtr(pprt) | scan_mask_o;
1174 	/* activate all keyboard outputs (active low) */
1175 	w_dtr(pprt, oldval & ~scan_mask_o);
1176 
1177 	/* will have a 1 for each bit set to gnd */
1178 	bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1179 	/* disable all matrix signals */
1180 	w_dtr(pprt, oldval);
1181 
1182 	/* now that all outputs are cleared, the only active input bits are
1183 	 * directly connected to the ground
1184 	 */
1185 
1186 	/* 1 for each grounded input */
1187 	gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1188 
1189 	/* grounded inputs are signals 40-44 */
1190 	phys_read |= (__u64)gndmask << 40;
1191 
1192 	if (bitmask != gndmask) {
1193 		/*
1194 		 * since clearing the outputs changed some inputs, we know
1195 		 * that some input signals are currently tied to some outputs.
1196 		 * So we'll scan them.
1197 		 */
1198 		for (bit = 0; bit < 8; bit++) {
1199 			bitval = BIT(bit);
1200 
1201 			if (!(scan_mask_o & bitval))	/* skip unused bits */
1202 				continue;
1203 
1204 			w_dtr(pprt, oldval & ~bitval);	/* enable this output */
1205 			bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1206 			phys_read |= (__u64)bitmask << (5 * bit);
1207 		}
1208 		w_dtr(pprt, oldval);	/* disable all outputs */
1209 	}
1210 	/*
1211 	 * this is easy: use old bits when they are flapping,
1212 	 * use new ones when stable
1213 	 */
1214 	phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1215 		    (phys_read & ~(phys_read ^ phys_read_prev));
1216 }
1217 
1218 static inline int input_state_high(struct logical_input *input)
1219 {
1220 #if 0
1221 	/* FIXME:
1222 	 * this is an invalid test. It tries to catch
1223 	 * transitions from single-key to multiple-key, but
1224 	 * doesn't take into account the contacts polarity.
1225 	 * The only solution to the problem is to parse keys
1226 	 * from the most complex to the simplest combinations,
1227 	 * and mark them as 'caught' once a combination
1228 	 * matches, then unmatch it for all other ones.
1229 	 */
1230 
1231 	/* try to catch dangerous transitions cases :
1232 	 * someone adds a bit, so this signal was a false
1233 	 * positive resulting from a transition. We should
1234 	 * invalidate the signal immediately and not call the
1235 	 * release function.
1236 	 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1237 	 */
1238 	if (((phys_prev & input->mask) == input->value) &&
1239 	    ((phys_curr & input->mask) >  input->value)) {
1240 		input->state = INPUT_ST_LOW; /* invalidate */
1241 		return 1;
1242 	}
1243 #endif
1244 
1245 	if ((phys_curr & input->mask) == input->value) {
1246 		if ((input->type == INPUT_TYPE_STD) &&
1247 		    (input->high_timer == 0)) {
1248 			input->high_timer++;
1249 			if (input->u.std.press_fct)
1250 				input->u.std.press_fct(input->u.std.press_data);
1251 		} else if (input->type == INPUT_TYPE_KBD) {
1252 			/* will turn on the light */
1253 			keypressed = 1;
1254 
1255 			if (input->high_timer == 0) {
1256 				char *press_str = input->u.kbd.press_str;
1257 
1258 				if (press_str[0]) {
1259 					int s = sizeof(input->u.kbd.press_str);
1260 
1261 					keypad_send_key(press_str, s);
1262 				}
1263 			}
1264 
1265 			if (input->u.kbd.repeat_str[0]) {
1266 				char *repeat_str = input->u.kbd.repeat_str;
1267 
1268 				if (input->high_timer >= KEYPAD_REP_START) {
1269 					int s = sizeof(input->u.kbd.repeat_str);
1270 
1271 					input->high_timer -= KEYPAD_REP_DELAY;
1272 					keypad_send_key(repeat_str, s);
1273 				}
1274 				/* we will need to come back here soon */
1275 				inputs_stable = 0;
1276 			}
1277 
1278 			if (input->high_timer < 255)
1279 				input->high_timer++;
1280 		}
1281 		return 1;
1282 	}
1283 
1284 	/* else signal falling down. Let's fall through. */
1285 	input->state = INPUT_ST_FALLING;
1286 	input->fall_timer = 0;
1287 
1288 	return 0;
1289 }
1290 
1291 static inline void input_state_falling(struct logical_input *input)
1292 {
1293 #if 0
1294 	/* FIXME !!! same comment as in input_state_high */
1295 	if (((phys_prev & input->mask) == input->value) &&
1296 	    ((phys_curr & input->mask) >  input->value)) {
1297 		input->state = INPUT_ST_LOW;	/* invalidate */
1298 		return;
1299 	}
1300 #endif
1301 
1302 	if ((phys_curr & input->mask) == input->value) {
1303 		if (input->type == INPUT_TYPE_KBD) {
1304 			/* will turn on the light */
1305 			keypressed = 1;
1306 
1307 			if (input->u.kbd.repeat_str[0]) {
1308 				char *repeat_str = input->u.kbd.repeat_str;
1309 
1310 				if (input->high_timer >= KEYPAD_REP_START) {
1311 					int s = sizeof(input->u.kbd.repeat_str);
1312 
1313 					input->high_timer -= KEYPAD_REP_DELAY;
1314 					keypad_send_key(repeat_str, s);
1315 				}
1316 				/* we will need to come back here soon */
1317 				inputs_stable = 0;
1318 			}
1319 
1320 			if (input->high_timer < 255)
1321 				input->high_timer++;
1322 		}
1323 		input->state = INPUT_ST_HIGH;
1324 	} else if (input->fall_timer >= input->fall_time) {
1325 		/* call release event */
1326 		if (input->type == INPUT_TYPE_STD) {
1327 			void (*release_fct)(int) = input->u.std.release_fct;
1328 
1329 			if (release_fct)
1330 				release_fct(input->u.std.release_data);
1331 		} else if (input->type == INPUT_TYPE_KBD) {
1332 			char *release_str = input->u.kbd.release_str;
1333 
1334 			if (release_str[0]) {
1335 				int s = sizeof(input->u.kbd.release_str);
1336 
1337 				keypad_send_key(release_str, s);
1338 			}
1339 		}
1340 
1341 		input->state = INPUT_ST_LOW;
1342 	} else {
1343 		input->fall_timer++;
1344 		inputs_stable = 0;
1345 	}
1346 }
1347 
1348 static void panel_process_inputs(void)
1349 {
1350 	struct logical_input *input;
1351 
1352 	keypressed = 0;
1353 	inputs_stable = 1;
1354 	list_for_each_entry(input, &logical_inputs, list) {
1355 		switch (input->state) {
1356 		case INPUT_ST_LOW:
1357 			if ((phys_curr & input->mask) != input->value)
1358 				break;
1359 			/* if all needed ones were already set previously,
1360 			 * this means that this logical signal has been
1361 			 * activated by the releasing of another combined
1362 			 * signal, so we don't want to match.
1363 			 * eg: AB -(release B)-> A -(release A)-> 0 :
1364 			 *     don't match A.
1365 			 */
1366 			if ((phys_prev & input->mask) == input->value)
1367 				break;
1368 			input->rise_timer = 0;
1369 			input->state = INPUT_ST_RISING;
1370 			/* fall through */
1371 		case INPUT_ST_RISING:
1372 			if ((phys_curr & input->mask) != input->value) {
1373 				input->state = INPUT_ST_LOW;
1374 				break;
1375 			}
1376 			if (input->rise_timer < input->rise_time) {
1377 				inputs_stable = 0;
1378 				input->rise_timer++;
1379 				break;
1380 			}
1381 			input->high_timer = 0;
1382 			input->state = INPUT_ST_HIGH;
1383 			/* fall through */
1384 		case INPUT_ST_HIGH:
1385 			if (input_state_high(input))
1386 				break;
1387 			/* fall through */
1388 		case INPUT_ST_FALLING:
1389 			input_state_falling(input);
1390 		}
1391 	}
1392 }
1393 
1394 static void panel_scan_timer(struct timer_list *unused)
1395 {
1396 	if (keypad.enabled && keypad_initialized) {
1397 		if (spin_trylock_irq(&pprt_lock)) {
1398 			phys_scan_contacts();
1399 
1400 			/* no need for the parport anymore */
1401 			spin_unlock_irq(&pprt_lock);
1402 		}
1403 
1404 		if (!inputs_stable || phys_curr != phys_prev)
1405 			panel_process_inputs();
1406 	}
1407 
1408 	if (keypressed && lcd.enabled && lcd.initialized)
1409 		charlcd_poke(lcd.charlcd);
1410 
1411 	mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1412 }
1413 
1414 static void init_scan_timer(void)
1415 {
1416 	if (scan_timer.function)
1417 		return;		/* already started */
1418 
1419 	timer_setup(&scan_timer, panel_scan_timer, 0);
1420 	scan_timer.expires = jiffies + INPUT_POLL_TIME;
1421 	add_timer(&scan_timer);
1422 }
1423 
1424 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1425  * if <omask> or <imask> are non-null, they will be or'ed with the bits
1426  * corresponding to out and in bits respectively.
1427  * returns 1 if ok, 0 if error (in which case, nothing is written).
1428  */
1429 static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value,
1430 			  u8 *imask, u8 *omask)
1431 {
1432 	const char sigtab[] = "EeSsPpAaBb";
1433 	u8 im, om;
1434 	__u64 m, v;
1435 
1436 	om = 0;
1437 	im = 0;
1438 	m = 0ULL;
1439 	v = 0ULL;
1440 	while (*name) {
1441 		int in, out, bit, neg;
1442 		const char *idx;
1443 
1444 		idx = strchr(sigtab, *name);
1445 		if (!idx)
1446 			return 0;	/* input name not found */
1447 
1448 		in = idx - sigtab;
1449 		neg = (in & 1);	/* odd (lower) names are negated */
1450 		in >>= 1;
1451 		im |= BIT(in);
1452 
1453 		name++;
1454 		if (*name >= '0' && *name <= '7') {
1455 			out = *name - '0';
1456 			om |= BIT(out);
1457 		} else if (*name == '-') {
1458 			out = 8;
1459 		} else {
1460 			return 0;	/* unknown bit name */
1461 		}
1462 
1463 		bit = (out * 5) + in;
1464 
1465 		m |= 1ULL << bit;
1466 		if (!neg)
1467 			v |= 1ULL << bit;
1468 		name++;
1469 	}
1470 	*mask = m;
1471 	*value = v;
1472 	if (imask)
1473 		*imask |= im;
1474 	if (omask)
1475 		*omask |= om;
1476 	return 1;
1477 }
1478 
1479 /* tries to bind a key to the signal name <name>. The key will send the
1480  * strings <press>, <repeat>, <release> for these respective events.
1481  * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1482  */
1483 static struct logical_input *panel_bind_key(const char *name, const char *press,
1484 					    const char *repeat,
1485 					    const char *release)
1486 {
1487 	struct logical_input *key;
1488 
1489 	key = kzalloc(sizeof(*key), GFP_KERNEL);
1490 	if (!key)
1491 		return NULL;
1492 
1493 	if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1494 			     &scan_mask_o)) {
1495 		kfree(key);
1496 		return NULL;
1497 	}
1498 
1499 	key->type = INPUT_TYPE_KBD;
1500 	key->state = INPUT_ST_LOW;
1501 	key->rise_time = 1;
1502 	key->fall_time = 1;
1503 
1504 	strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
1505 	strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
1506 	strncpy(key->u.kbd.release_str, release,
1507 		sizeof(key->u.kbd.release_str));
1508 	list_add(&key->list, &logical_inputs);
1509 	return key;
1510 }
1511 
1512 #if 0
1513 /* tries to bind a callback function to the signal name <name>. The function
1514  * <press_fct> will be called with the <press_data> arg when the signal is
1515  * activated, and so on for <release_fct>/<release_data>
1516  * Returns the pointer to the new signal if ok, NULL if the signal could not
1517  * be bound.
1518  */
1519 static struct logical_input *panel_bind_callback(char *name,
1520 						 void (*press_fct)(int),
1521 						 int press_data,
1522 						 void (*release_fct)(int),
1523 						 int release_data)
1524 {
1525 	struct logical_input *callback;
1526 
1527 	callback = kmalloc(sizeof(*callback), GFP_KERNEL);
1528 	if (!callback)
1529 		return NULL;
1530 
1531 	memset(callback, 0, sizeof(struct logical_input));
1532 	if (!input_name2mask(name, &callback->mask, &callback->value,
1533 			     &scan_mask_i, &scan_mask_o))
1534 		return NULL;
1535 
1536 	callback->type = INPUT_TYPE_STD;
1537 	callback->state = INPUT_ST_LOW;
1538 	callback->rise_time = 1;
1539 	callback->fall_time = 1;
1540 	callback->u.std.press_fct = press_fct;
1541 	callback->u.std.press_data = press_data;
1542 	callback->u.std.release_fct = release_fct;
1543 	callback->u.std.release_data = release_data;
1544 	list_add(&callback->list, &logical_inputs);
1545 	return callback;
1546 }
1547 #endif
1548 
1549 static void keypad_init(void)
1550 {
1551 	int keynum;
1552 
1553 	init_waitqueue_head(&keypad_read_wait);
1554 	keypad_buflen = 0;	/* flushes any eventual noisy keystroke */
1555 
1556 	/* Let's create all known keys */
1557 
1558 	for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
1559 		panel_bind_key(keypad_profile[keynum][0],
1560 			       keypad_profile[keynum][1],
1561 			       keypad_profile[keynum][2],
1562 			       keypad_profile[keynum][3]);
1563 	}
1564 
1565 	init_scan_timer();
1566 	keypad_initialized = 1;
1567 }
1568 
1569 /**************************************************/
1570 /* device initialization                          */
1571 /**************************************************/
1572 
1573 static void panel_attach(struct parport *port)
1574 {
1575 	struct pardev_cb panel_cb;
1576 
1577 	if (port->number != parport)
1578 		return;
1579 
1580 	if (pprt) {
1581 		pr_err("%s: port->number=%d parport=%d, already registered!\n",
1582 		       __func__, port->number, parport);
1583 		return;
1584 	}
1585 
1586 	memset(&panel_cb, 0, sizeof(panel_cb));
1587 	panel_cb.private = &pprt;
1588 	/* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
1589 
1590 	pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
1591 	if (!pprt) {
1592 		pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
1593 		       __func__, port->number, parport);
1594 		return;
1595 	}
1596 
1597 	if (parport_claim(pprt)) {
1598 		pr_err("could not claim access to parport%d. Aborting.\n",
1599 		       parport);
1600 		goto err_unreg_device;
1601 	}
1602 
1603 	/* must init LCD first, just in case an IRQ from the keypad is
1604 	 * generated at keypad init
1605 	 */
1606 	if (lcd.enabled) {
1607 		lcd_init();
1608 		if (!lcd.charlcd || charlcd_register(lcd.charlcd))
1609 			goto err_unreg_device;
1610 	}
1611 
1612 	if (keypad.enabled) {
1613 		keypad_init();
1614 		if (misc_register(&keypad_dev))
1615 			goto err_lcd_unreg;
1616 	}
1617 	return;
1618 
1619 err_lcd_unreg:
1620 	if (scan_timer.function)
1621 		del_timer_sync(&scan_timer);
1622 	if (lcd.enabled)
1623 		charlcd_unregister(lcd.charlcd);
1624 err_unreg_device:
1625 	charlcd_free(lcd.charlcd);
1626 	lcd.charlcd = NULL;
1627 	parport_unregister_device(pprt);
1628 	pprt = NULL;
1629 }
1630 
1631 static void panel_detach(struct parport *port)
1632 {
1633 	if (port->number != parport)
1634 		return;
1635 
1636 	if (!pprt) {
1637 		pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
1638 		       __func__, port->number, parport);
1639 		return;
1640 	}
1641 	if (scan_timer.function)
1642 		del_timer_sync(&scan_timer);
1643 
1644 	if (keypad.enabled) {
1645 		misc_deregister(&keypad_dev);
1646 		keypad_initialized = 0;
1647 	}
1648 
1649 	if (lcd.enabled) {
1650 		charlcd_unregister(lcd.charlcd);
1651 		lcd.initialized = false;
1652 		charlcd_free(lcd.charlcd);
1653 		lcd.charlcd = NULL;
1654 	}
1655 
1656 	/* TODO: free all input signals */
1657 	parport_release(pprt);
1658 	parport_unregister_device(pprt);
1659 	pprt = NULL;
1660 }
1661 
1662 static struct parport_driver panel_driver = {
1663 	.name = "panel",
1664 	.match_port = panel_attach,
1665 	.detach = panel_detach,
1666 	.devmodel = true,
1667 };
1668 
1669 /* init function */
1670 static int __init panel_init_module(void)
1671 {
1672 	int selected_keypad_type = NOT_SET, err;
1673 
1674 	/* take care of an eventual profile */
1675 	switch (profile) {
1676 	case PANEL_PROFILE_CUSTOM:
1677 		/* custom profile */
1678 		selected_keypad_type = DEFAULT_KEYPAD_TYPE;
1679 		selected_lcd_type = DEFAULT_LCD_TYPE;
1680 		break;
1681 	case PANEL_PROFILE_OLD:
1682 		/* 8 bits, 2*16, old keypad */
1683 		selected_keypad_type = KEYPAD_TYPE_OLD;
1684 		selected_lcd_type = LCD_TYPE_OLD;
1685 
1686 		/* TODO: This two are a little hacky, sort it out later */
1687 		if (lcd_width == NOT_SET)
1688 			lcd_width = 16;
1689 		if (lcd_hwidth == NOT_SET)
1690 			lcd_hwidth = 16;
1691 		break;
1692 	case PANEL_PROFILE_NEW:
1693 		/* serial, 2*16, new keypad */
1694 		selected_keypad_type = KEYPAD_TYPE_NEW;
1695 		selected_lcd_type = LCD_TYPE_KS0074;
1696 		break;
1697 	case PANEL_PROFILE_HANTRONIX:
1698 		/* 8 bits, 2*16 hantronix-like, no keypad */
1699 		selected_keypad_type = KEYPAD_TYPE_NONE;
1700 		selected_lcd_type = LCD_TYPE_HANTRONIX;
1701 		break;
1702 	case PANEL_PROFILE_NEXCOM:
1703 		/* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
1704 		selected_keypad_type = KEYPAD_TYPE_NEXCOM;
1705 		selected_lcd_type = LCD_TYPE_NEXCOM;
1706 		break;
1707 	case PANEL_PROFILE_LARGE:
1708 		/* 8 bits, 2*40, old keypad */
1709 		selected_keypad_type = KEYPAD_TYPE_OLD;
1710 		selected_lcd_type = LCD_TYPE_OLD;
1711 		break;
1712 	}
1713 
1714 	/*
1715 	 * Overwrite selection with module param values (both keypad and lcd),
1716 	 * where the deprecated params have lower prio.
1717 	 */
1718 	if (keypad_enabled != NOT_SET)
1719 		selected_keypad_type = keypad_enabled;
1720 	if (keypad_type != NOT_SET)
1721 		selected_keypad_type = keypad_type;
1722 
1723 	keypad.enabled = (selected_keypad_type > 0);
1724 
1725 	if (lcd_enabled != NOT_SET)
1726 		selected_lcd_type = lcd_enabled;
1727 	if (lcd_type != NOT_SET)
1728 		selected_lcd_type = lcd_type;
1729 
1730 	lcd.enabled = (selected_lcd_type > 0);
1731 
1732 	if (lcd.enabled) {
1733 		/*
1734 		 * Init lcd struct with load-time values to preserve exact
1735 		 * current functionality (at least for now).
1736 		 */
1737 		lcd.charset = lcd_charset;
1738 		lcd.proto = lcd_proto;
1739 		lcd.pins.e = lcd_e_pin;
1740 		lcd.pins.rs = lcd_rs_pin;
1741 		lcd.pins.rw = lcd_rw_pin;
1742 		lcd.pins.cl = lcd_cl_pin;
1743 		lcd.pins.da = lcd_da_pin;
1744 		lcd.pins.bl = lcd_bl_pin;
1745 	}
1746 
1747 	switch (selected_keypad_type) {
1748 	case KEYPAD_TYPE_OLD:
1749 		keypad_profile = old_keypad_profile;
1750 		break;
1751 	case KEYPAD_TYPE_NEW:
1752 		keypad_profile = new_keypad_profile;
1753 		break;
1754 	case KEYPAD_TYPE_NEXCOM:
1755 		keypad_profile = nexcom_keypad_profile;
1756 		break;
1757 	default:
1758 		keypad_profile = NULL;
1759 		break;
1760 	}
1761 
1762 	if (!lcd.enabled && !keypad.enabled) {
1763 		/* no device enabled, let's exit */
1764 		pr_err("panel driver disabled.\n");
1765 		return -ENODEV;
1766 	}
1767 
1768 	err = parport_register_driver(&panel_driver);
1769 	if (err) {
1770 		pr_err("could not register with parport. Aborting.\n");
1771 		return err;
1772 	}
1773 
1774 	if (pprt)
1775 		pr_info("panel driver registered on parport%d (io=0x%lx).\n",
1776 			parport, pprt->port->base);
1777 	else
1778 		pr_info("panel driver not yet registered\n");
1779 	return 0;
1780 }
1781 
1782 static void __exit panel_cleanup_module(void)
1783 {
1784 	parport_unregister_driver(&panel_driver);
1785 }
1786 
1787 module_init(panel_init_module);
1788 module_exit(panel_cleanup_module);
1789 MODULE_AUTHOR("Willy Tarreau");
1790 MODULE_LICENSE("GPL");
1791 
1792 /*
1793  * Local variables:
1794  *  c-indent-level: 4
1795  *  tab-width: 8
1796  * End:
1797  */
1798