xref: /openbmc/linux/drivers/auxdisplay/panel.c (revision 680ef72a)
1 /*
2  * Front panel driver for Linux
3  * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
4  * Copyright (C) 2016-2017 Glider bvba
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  *
11  * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
12  * connected to a parallel printer port.
13  *
14  * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
15  * serial module compatible with Samsung's KS0074. The pins may be connected in
16  * any combination, everything is programmable.
17  *
18  * The keypad consists in a matrix of push buttons connecting input pins to
19  * data output pins or to the ground. The combinations have to be hard-coded
20  * in the driver, though several profiles exist and adding new ones is easy.
21  *
22  * Several profiles are provided for commonly found LCD+keypad modules on the
23  * market, such as those found in Nexcom's appliances.
24  *
25  * FIXME:
26  *      - the initialization/deinitialization process is very dirty and should
27  *        be rewritten. It may even be buggy.
28  *
29  * TODO:
30  *	- document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
31  *      - make the LCD a part of a virtual screen of Vx*Vy
32  *	- make the inputs list smp-safe
33  *      - change the keyboard to a double mapping : signals -> key_id -> values
34  *        so that applications can change values without knowing signals
35  *
36  */
37 
38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39 
40 #include <linux/module.h>
41 
42 #include <linux/types.h>
43 #include <linux/errno.h>
44 #include <linux/signal.h>
45 #include <linux/sched.h>
46 #include <linux/spinlock.h>
47 #include <linux/interrupt.h>
48 #include <linux/miscdevice.h>
49 #include <linux/slab.h>
50 #include <linux/ioport.h>
51 #include <linux/fcntl.h>
52 #include <linux/init.h>
53 #include <linux/delay.h>
54 #include <linux/kernel.h>
55 #include <linux/ctype.h>
56 #include <linux/parport.h>
57 #include <linux/list.h>
58 
59 #include <linux/io.h>
60 #include <linux/uaccess.h>
61 
62 #include <misc/charlcd.h>
63 
64 #define KEYPAD_MINOR		185
65 
66 #define LCD_MAXBYTES		256	/* max burst write */
67 
68 #define KEYPAD_BUFFER		64
69 
70 /* poll the keyboard this every second */
71 #define INPUT_POLL_TIME		(HZ / 50)
72 /* a key starts to repeat after this times INPUT_POLL_TIME */
73 #define KEYPAD_REP_START	(10)
74 /* a key repeats this times INPUT_POLL_TIME */
75 #define KEYPAD_REP_DELAY	(2)
76 
77 /* converts an r_str() input to an active high, bits string : 000BAOSE */
78 #define PNL_PINPUT(a)		((((unsigned char)(a)) ^ 0x7F) >> 3)
79 
80 #define PNL_PBUSY		0x80	/* inverted input, active low */
81 #define PNL_PACK		0x40	/* direct input, active low */
82 #define PNL_POUTPA		0x20	/* direct input, active high */
83 #define PNL_PSELECD		0x10	/* direct input, active high */
84 #define PNL_PERRORP		0x08	/* direct input, active low */
85 
86 #define PNL_PBIDIR		0x20	/* bi-directional ports */
87 /* high to read data in or-ed with data out */
88 #define PNL_PINTEN		0x10
89 #define PNL_PSELECP		0x08	/* inverted output, active low */
90 #define PNL_PINITP		0x04	/* direct output, active low */
91 #define PNL_PAUTOLF		0x02	/* inverted output, active low */
92 #define PNL_PSTROBE		0x01	/* inverted output */
93 
94 #define PNL_PD0			0x01
95 #define PNL_PD1			0x02
96 #define PNL_PD2			0x04
97 #define PNL_PD3			0x08
98 #define PNL_PD4			0x10
99 #define PNL_PD5			0x20
100 #define PNL_PD6			0x40
101 #define PNL_PD7			0x80
102 
103 #define PIN_NONE		0
104 #define PIN_STROBE		1
105 #define PIN_D0			2
106 #define PIN_D1			3
107 #define PIN_D2			4
108 #define PIN_D3			5
109 #define PIN_D4			6
110 #define PIN_D5			7
111 #define PIN_D6			8
112 #define PIN_D7			9
113 #define PIN_AUTOLF		14
114 #define PIN_INITP		16
115 #define PIN_SELECP		17
116 #define PIN_NOT_SET		127
117 
118 #define NOT_SET			-1
119 
120 /* macros to simplify use of the parallel port */
121 #define r_ctr(x)        (parport_read_control((x)->port))
122 #define r_dtr(x)        (parport_read_data((x)->port))
123 #define r_str(x)        (parport_read_status((x)->port))
124 #define w_ctr(x, y)     (parport_write_control((x)->port, (y)))
125 #define w_dtr(x, y)     (parport_write_data((x)->port, (y)))
126 
127 /* this defines which bits are to be used and which ones to be ignored */
128 /* logical or of the output bits involved in the scan matrix */
129 static __u8 scan_mask_o;
130 /* logical or of the input bits involved in the scan matrix */
131 static __u8 scan_mask_i;
132 
133 enum input_type {
134 	INPUT_TYPE_STD,
135 	INPUT_TYPE_KBD,
136 };
137 
138 enum input_state {
139 	INPUT_ST_LOW,
140 	INPUT_ST_RISING,
141 	INPUT_ST_HIGH,
142 	INPUT_ST_FALLING,
143 };
144 
145 struct logical_input {
146 	struct list_head list;
147 	__u64 mask;
148 	__u64 value;
149 	enum input_type type;
150 	enum input_state state;
151 	__u8 rise_time, fall_time;
152 	__u8 rise_timer, fall_timer, high_timer;
153 
154 	union {
155 		struct {	/* valid when type == INPUT_TYPE_STD */
156 			void (*press_fct)(int);
157 			void (*release_fct)(int);
158 			int press_data;
159 			int release_data;
160 		} std;
161 		struct {	/* valid when type == INPUT_TYPE_KBD */
162 			/* strings can be non null-terminated */
163 			char press_str[sizeof(void *) + sizeof(int)];
164 			char repeat_str[sizeof(void *) + sizeof(int)];
165 			char release_str[sizeof(void *) + sizeof(int)];
166 		} kbd;
167 	} u;
168 };
169 
170 static LIST_HEAD(logical_inputs);	/* list of all defined logical inputs */
171 
172 /* physical contacts history
173  * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
174  * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
175  * corresponds to the ground.
176  * Within each group, bits are stored in the same order as read on the port :
177  * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
178  * So, each __u64 is represented like this :
179  * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
180  * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
181  */
182 
183 /* what has just been read from the I/O ports */
184 static __u64 phys_read;
185 /* previous phys_read */
186 static __u64 phys_read_prev;
187 /* stabilized phys_read (phys_read|phys_read_prev) */
188 static __u64 phys_curr;
189 /* previous phys_curr */
190 static __u64 phys_prev;
191 /* 0 means that at least one logical signal needs be computed */
192 static char inputs_stable;
193 
194 /* these variables are specific to the keypad */
195 static struct {
196 	bool enabled;
197 } keypad;
198 
199 static char keypad_buffer[KEYPAD_BUFFER];
200 static int keypad_buflen;
201 static int keypad_start;
202 static char keypressed;
203 static wait_queue_head_t keypad_read_wait;
204 
205 /* lcd-specific variables */
206 static struct {
207 	bool enabled;
208 	bool initialized;
209 
210 	int charset;
211 	int proto;
212 
213 	/* TODO: use union here? */
214 	struct {
215 		int e;
216 		int rs;
217 		int rw;
218 		int cl;
219 		int da;
220 		int bl;
221 	} pins;
222 
223 	struct charlcd *charlcd;
224 } lcd;
225 
226 /* Needed only for init */
227 static int selected_lcd_type = NOT_SET;
228 
229 /*
230  * Bit masks to convert LCD signals to parallel port outputs.
231  * _d_ are values for data port, _c_ are for control port.
232  * [0] = signal OFF, [1] = signal ON, [2] = mask
233  */
234 #define BIT_CLR		0
235 #define BIT_SET		1
236 #define BIT_MSK		2
237 #define BIT_STATES	3
238 /*
239  * one entry for each bit on the LCD
240  */
241 #define LCD_BIT_E	0
242 #define LCD_BIT_RS	1
243 #define LCD_BIT_RW	2
244 #define LCD_BIT_BL	3
245 #define LCD_BIT_CL	4
246 #define LCD_BIT_DA	5
247 #define LCD_BITS	6
248 
249 /*
250  * each bit can be either connected to a DATA or CTRL port
251  */
252 #define LCD_PORT_C	0
253 #define LCD_PORT_D	1
254 #define LCD_PORTS	2
255 
256 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
257 
258 /*
259  * LCD protocols
260  */
261 #define LCD_PROTO_PARALLEL      0
262 #define LCD_PROTO_SERIAL        1
263 #define LCD_PROTO_TI_DA8XX_LCD	2
264 
265 /*
266  * LCD character sets
267  */
268 #define LCD_CHARSET_NORMAL      0
269 #define LCD_CHARSET_KS0074      1
270 
271 /*
272  * LCD types
273  */
274 #define LCD_TYPE_NONE		0
275 #define LCD_TYPE_CUSTOM		1
276 #define LCD_TYPE_OLD		2
277 #define LCD_TYPE_KS0074		3
278 #define LCD_TYPE_HANTRONIX	4
279 #define LCD_TYPE_NEXCOM		5
280 
281 /*
282  * keypad types
283  */
284 #define KEYPAD_TYPE_NONE	0
285 #define KEYPAD_TYPE_OLD		1
286 #define KEYPAD_TYPE_NEW		2
287 #define KEYPAD_TYPE_NEXCOM	3
288 
289 /*
290  * panel profiles
291  */
292 #define PANEL_PROFILE_CUSTOM	0
293 #define PANEL_PROFILE_OLD	1
294 #define PANEL_PROFILE_NEW	2
295 #define PANEL_PROFILE_HANTRONIX	3
296 #define PANEL_PROFILE_NEXCOM	4
297 #define PANEL_PROFILE_LARGE	5
298 
299 /*
300  * Construct custom config from the kernel's configuration
301  */
302 #define DEFAULT_PARPORT         0
303 #define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
304 #define DEFAULT_KEYPAD_TYPE     KEYPAD_TYPE_OLD
305 #define DEFAULT_LCD_TYPE        LCD_TYPE_OLD
306 #define DEFAULT_LCD_HEIGHT      2
307 #define DEFAULT_LCD_WIDTH       40
308 #define DEFAULT_LCD_BWIDTH      40
309 #define DEFAULT_LCD_HWIDTH      64
310 #define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
311 #define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
312 
313 #define DEFAULT_LCD_PIN_E       PIN_AUTOLF
314 #define DEFAULT_LCD_PIN_RS      PIN_SELECP
315 #define DEFAULT_LCD_PIN_RW      PIN_INITP
316 #define DEFAULT_LCD_PIN_SCL     PIN_STROBE
317 #define DEFAULT_LCD_PIN_SDA     PIN_D0
318 #define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
319 
320 #ifdef CONFIG_PANEL_PARPORT
321 #undef DEFAULT_PARPORT
322 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
323 #endif
324 
325 #ifdef CONFIG_PANEL_PROFILE
326 #undef DEFAULT_PROFILE
327 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
328 #endif
329 
330 #if DEFAULT_PROFILE == 0	/* custom */
331 #ifdef CONFIG_PANEL_KEYPAD
332 #undef DEFAULT_KEYPAD_TYPE
333 #define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
334 #endif
335 
336 #ifdef CONFIG_PANEL_LCD
337 #undef DEFAULT_LCD_TYPE
338 #define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
339 #endif
340 
341 #ifdef CONFIG_PANEL_LCD_HEIGHT
342 #undef DEFAULT_LCD_HEIGHT
343 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
344 #endif
345 
346 #ifdef CONFIG_PANEL_LCD_WIDTH
347 #undef DEFAULT_LCD_WIDTH
348 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
349 #endif
350 
351 #ifdef CONFIG_PANEL_LCD_BWIDTH
352 #undef DEFAULT_LCD_BWIDTH
353 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
354 #endif
355 
356 #ifdef CONFIG_PANEL_LCD_HWIDTH
357 #undef DEFAULT_LCD_HWIDTH
358 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
359 #endif
360 
361 #ifdef CONFIG_PANEL_LCD_CHARSET
362 #undef DEFAULT_LCD_CHARSET
363 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
364 #endif
365 
366 #ifdef CONFIG_PANEL_LCD_PROTO
367 #undef DEFAULT_LCD_PROTO
368 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
369 #endif
370 
371 #ifdef CONFIG_PANEL_LCD_PIN_E
372 #undef DEFAULT_LCD_PIN_E
373 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
374 #endif
375 
376 #ifdef CONFIG_PANEL_LCD_PIN_RS
377 #undef DEFAULT_LCD_PIN_RS
378 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
379 #endif
380 
381 #ifdef CONFIG_PANEL_LCD_PIN_RW
382 #undef DEFAULT_LCD_PIN_RW
383 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
384 #endif
385 
386 #ifdef CONFIG_PANEL_LCD_PIN_SCL
387 #undef DEFAULT_LCD_PIN_SCL
388 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
389 #endif
390 
391 #ifdef CONFIG_PANEL_LCD_PIN_SDA
392 #undef DEFAULT_LCD_PIN_SDA
393 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
394 #endif
395 
396 #ifdef CONFIG_PANEL_LCD_PIN_BL
397 #undef DEFAULT_LCD_PIN_BL
398 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
399 #endif
400 
401 #endif /* DEFAULT_PROFILE == 0 */
402 
403 /* global variables */
404 
405 /* Device single-open policy control */
406 static atomic_t keypad_available = ATOMIC_INIT(1);
407 
408 static struct pardevice *pprt;
409 
410 static int keypad_initialized;
411 
412 static DEFINE_SPINLOCK(pprt_lock);
413 static struct timer_list scan_timer;
414 
415 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
416 
417 static int parport = DEFAULT_PARPORT;
418 module_param(parport, int, 0000);
419 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
420 
421 static int profile = DEFAULT_PROFILE;
422 module_param(profile, int, 0000);
423 MODULE_PARM_DESC(profile,
424 		 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
425 		 "4=16x2 nexcom; default=40x2, old kp");
426 
427 static int keypad_type = NOT_SET;
428 module_param(keypad_type, int, 0000);
429 MODULE_PARM_DESC(keypad_type,
430 		 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
431 
432 static int lcd_type = NOT_SET;
433 module_param(lcd_type, int, 0000);
434 MODULE_PARM_DESC(lcd_type,
435 		 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
436 
437 static int lcd_height = NOT_SET;
438 module_param(lcd_height, int, 0000);
439 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
440 
441 static int lcd_width = NOT_SET;
442 module_param(lcd_width, int, 0000);
443 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
444 
445 static int lcd_bwidth = NOT_SET;	/* internal buffer width (usually 40) */
446 module_param(lcd_bwidth, int, 0000);
447 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
448 
449 static int lcd_hwidth = NOT_SET;	/* hardware buffer width (usually 64) */
450 module_param(lcd_hwidth, int, 0000);
451 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
452 
453 static int lcd_charset = NOT_SET;
454 module_param(lcd_charset, int, 0000);
455 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
456 
457 static int lcd_proto = NOT_SET;
458 module_param(lcd_proto, int, 0000);
459 MODULE_PARM_DESC(lcd_proto,
460 		 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
461 
462 /*
463  * These are the parallel port pins the LCD control signals are connected to.
464  * Set this to 0 if the signal is not used. Set it to its opposite value
465  * (negative) if the signal is negated. -MAXINT is used to indicate that the
466  * pin has not been explicitly specified.
467  *
468  * WARNING! no check will be performed about collisions with keypad !
469  */
470 
471 static int lcd_e_pin  = PIN_NOT_SET;
472 module_param(lcd_e_pin, int, 0000);
473 MODULE_PARM_DESC(lcd_e_pin,
474 		 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
475 
476 static int lcd_rs_pin = PIN_NOT_SET;
477 module_param(lcd_rs_pin, int, 0000);
478 MODULE_PARM_DESC(lcd_rs_pin,
479 		 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
480 
481 static int lcd_rw_pin = PIN_NOT_SET;
482 module_param(lcd_rw_pin, int, 0000);
483 MODULE_PARM_DESC(lcd_rw_pin,
484 		 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
485 
486 static int lcd_cl_pin = PIN_NOT_SET;
487 module_param(lcd_cl_pin, int, 0000);
488 MODULE_PARM_DESC(lcd_cl_pin,
489 		 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
490 
491 static int lcd_da_pin = PIN_NOT_SET;
492 module_param(lcd_da_pin, int, 0000);
493 MODULE_PARM_DESC(lcd_da_pin,
494 		 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
495 
496 static int lcd_bl_pin = PIN_NOT_SET;
497 module_param(lcd_bl_pin, int, 0000);
498 MODULE_PARM_DESC(lcd_bl_pin,
499 		 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
500 
501 /* Deprecated module parameters - consider not using them anymore */
502 
503 static int lcd_enabled = NOT_SET;
504 module_param(lcd_enabled, int, 0000);
505 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
506 
507 static int keypad_enabled = NOT_SET;
508 module_param(keypad_enabled, int, 0000);
509 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
510 
511 /* for some LCD drivers (ks0074) we need a charset conversion table. */
512 static const unsigned char lcd_char_conv_ks0074[256] = {
513 	/*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
514 	/* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
515 	/* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
516 	/* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
517 	/* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
518 	/* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
519 	/* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
520 	/* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
521 	/* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
522 	/* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
523 	/* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
524 	/* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
525 	/* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
526 	/* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
527 	/* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
528 	/* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
529 	/* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
530 	/* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
531 	/* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
532 	/* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
533 	/* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
534 	/* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
535 	/* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
536 	/* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
537 	/* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
538 	/* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
539 	/* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
540 	/* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
541 	/* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
542 	/* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
543 	/* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
544 	/* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
545 	/* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
546 };
547 
548 static const char old_keypad_profile[][4][9] = {
549 	{"S0", "Left\n", "Left\n", ""},
550 	{"S1", "Down\n", "Down\n", ""},
551 	{"S2", "Up\n", "Up\n", ""},
552 	{"S3", "Right\n", "Right\n", ""},
553 	{"S4", "Esc\n", "Esc\n", ""},
554 	{"S5", "Ret\n", "Ret\n", ""},
555 	{"", "", "", ""}
556 };
557 
558 /* signals, press, repeat, release */
559 static const char new_keypad_profile[][4][9] = {
560 	{"S0", "Left\n", "Left\n", ""},
561 	{"S1", "Down\n", "Down\n", ""},
562 	{"S2", "Up\n", "Up\n", ""},
563 	{"S3", "Right\n", "Right\n", ""},
564 	{"S4s5", "", "Esc\n", "Esc\n"},
565 	{"s4S5", "", "Ret\n", "Ret\n"},
566 	{"S4S5", "Help\n", "", ""},
567 	/* add new signals above this line */
568 	{"", "", "", ""}
569 };
570 
571 /* signals, press, repeat, release */
572 static const char nexcom_keypad_profile[][4][9] = {
573 	{"a-p-e-", "Down\n", "Down\n", ""},
574 	{"a-p-E-", "Ret\n", "Ret\n", ""},
575 	{"a-P-E-", "Esc\n", "Esc\n", ""},
576 	{"a-P-e-", "Up\n", "Up\n", ""},
577 	/* add new signals above this line */
578 	{"", "", "", ""}
579 };
580 
581 static const char (*keypad_profile)[4][9] = old_keypad_profile;
582 
583 static DECLARE_BITMAP(bits, LCD_BITS);
584 
585 static void lcd_get_bits(unsigned int port, int *val)
586 {
587 	unsigned int bit, state;
588 
589 	for (bit = 0; bit < LCD_BITS; bit++) {
590 		state = test_bit(bit, bits) ? BIT_SET : BIT_CLR;
591 		*val &= lcd_bits[port][bit][BIT_MSK];
592 		*val |= lcd_bits[port][bit][state];
593 	}
594 }
595 
596 /* sets data port bits according to current signals values */
597 static int set_data_bits(void)
598 {
599 	int val;
600 
601 	val = r_dtr(pprt);
602 	lcd_get_bits(LCD_PORT_D, &val);
603 	w_dtr(pprt, val);
604 	return val;
605 }
606 
607 /* sets ctrl port bits according to current signals values */
608 static int set_ctrl_bits(void)
609 {
610 	int val;
611 
612 	val = r_ctr(pprt);
613 	lcd_get_bits(LCD_PORT_C, &val);
614 	w_ctr(pprt, val);
615 	return val;
616 }
617 
618 /* sets ctrl & data port bits according to current signals values */
619 static void panel_set_bits(void)
620 {
621 	set_data_bits();
622 	set_ctrl_bits();
623 }
624 
625 /*
626  * Converts a parallel port pin (from -25 to 25) to data and control ports
627  * masks, and data and control port bits. The signal will be considered
628  * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
629  *
630  * Result will be used this way :
631  *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
632  *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
633  */
634 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
635 {
636 	int d_bit, c_bit, inv;
637 
638 	d_val[0] = 0;
639 	c_val[0] = 0;
640 	d_val[1] = 0;
641 	c_val[1] = 0;
642 	d_val[2] = 0xFF;
643 	c_val[2] = 0xFF;
644 
645 	if (pin == 0)
646 		return;
647 
648 	inv = (pin < 0);
649 	if (inv)
650 		pin = -pin;
651 
652 	d_bit = 0;
653 	c_bit = 0;
654 
655 	switch (pin) {
656 	case PIN_STROBE:	/* strobe, inverted */
657 		c_bit = PNL_PSTROBE;
658 		inv = !inv;
659 		break;
660 	case PIN_D0...PIN_D7:	/* D0 - D7 = 2 - 9 */
661 		d_bit = 1 << (pin - 2);
662 		break;
663 	case PIN_AUTOLF:	/* autofeed, inverted */
664 		c_bit = PNL_PAUTOLF;
665 		inv = !inv;
666 		break;
667 	case PIN_INITP:		/* init, direct */
668 		c_bit = PNL_PINITP;
669 		break;
670 	case PIN_SELECP:	/* select_in, inverted */
671 		c_bit = PNL_PSELECP;
672 		inv = !inv;
673 		break;
674 	default:		/* unknown pin, ignore */
675 		break;
676 	}
677 
678 	if (c_bit) {
679 		c_val[2] &= ~c_bit;
680 		c_val[!inv] = c_bit;
681 	} else if (d_bit) {
682 		d_val[2] &= ~d_bit;
683 		d_val[!inv] = d_bit;
684 	}
685 }
686 
687 /*
688  * send a serial byte to the LCD panel. The caller is responsible for locking
689  * if needed.
690  */
691 static void lcd_send_serial(int byte)
692 {
693 	int bit;
694 
695 	/*
696 	 * the data bit is set on D0, and the clock on STROBE.
697 	 * LCD reads D0 on STROBE's rising edge.
698 	 */
699 	for (bit = 0; bit < 8; bit++) {
700 		clear_bit(LCD_BIT_CL, bits);	/* CLK low */
701 		panel_set_bits();
702 		if (byte & 1) {
703 			set_bit(LCD_BIT_DA, bits);
704 		} else {
705 			clear_bit(LCD_BIT_DA, bits);
706 		}
707 
708 		panel_set_bits();
709 		udelay(2);  /* maintain the data during 2 us before CLK up */
710 		set_bit(LCD_BIT_CL, bits);	/* CLK high */
711 		panel_set_bits();
712 		udelay(1);  /* maintain the strobe during 1 us */
713 		byte >>= 1;
714 	}
715 }
716 
717 /* turn the backlight on or off */
718 static void lcd_backlight(struct charlcd *charlcd, int on)
719 {
720 	if (lcd.pins.bl == PIN_NONE)
721 		return;
722 
723 	/* The backlight is activated by setting the AUTOFEED line to +5V  */
724 	spin_lock_irq(&pprt_lock);
725 	if (on)
726 		set_bit(LCD_BIT_BL, bits);
727 	else
728 		clear_bit(LCD_BIT_BL, bits);
729 	panel_set_bits();
730 	spin_unlock_irq(&pprt_lock);
731 }
732 
733 /* send a command to the LCD panel in serial mode */
734 static void lcd_write_cmd_s(struct charlcd *charlcd, int cmd)
735 {
736 	spin_lock_irq(&pprt_lock);
737 	lcd_send_serial(0x1F);	/* R/W=W, RS=0 */
738 	lcd_send_serial(cmd & 0x0F);
739 	lcd_send_serial((cmd >> 4) & 0x0F);
740 	udelay(40);		/* the shortest command takes at least 40 us */
741 	spin_unlock_irq(&pprt_lock);
742 }
743 
744 /* send data to the LCD panel in serial mode */
745 static void lcd_write_data_s(struct charlcd *charlcd, int data)
746 {
747 	spin_lock_irq(&pprt_lock);
748 	lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
749 	lcd_send_serial(data & 0x0F);
750 	lcd_send_serial((data >> 4) & 0x0F);
751 	udelay(40);		/* the shortest data takes at least 40 us */
752 	spin_unlock_irq(&pprt_lock);
753 }
754 
755 /* send a command to the LCD panel in 8 bits parallel mode */
756 static void lcd_write_cmd_p8(struct charlcd *charlcd, int cmd)
757 {
758 	spin_lock_irq(&pprt_lock);
759 	/* present the data to the data port */
760 	w_dtr(pprt, cmd);
761 	udelay(20);	/* maintain the data during 20 us before the strobe */
762 
763 	set_bit(LCD_BIT_E, bits);
764 	clear_bit(LCD_BIT_RS, bits);
765 	clear_bit(LCD_BIT_RW, bits);
766 	set_ctrl_bits();
767 
768 	udelay(40);	/* maintain the strobe during 40 us */
769 
770 	clear_bit(LCD_BIT_E, bits);
771 	set_ctrl_bits();
772 
773 	udelay(120);	/* the shortest command takes at least 120 us */
774 	spin_unlock_irq(&pprt_lock);
775 }
776 
777 /* send data to the LCD panel in 8 bits parallel mode */
778 static void lcd_write_data_p8(struct charlcd *charlcd, int data)
779 {
780 	spin_lock_irq(&pprt_lock);
781 	/* present the data to the data port */
782 	w_dtr(pprt, data);
783 	udelay(20);	/* maintain the data during 20 us before the strobe */
784 
785 	set_bit(LCD_BIT_E, bits);
786 	set_bit(LCD_BIT_RS, bits);
787 	clear_bit(LCD_BIT_RW, bits);
788 	set_ctrl_bits();
789 
790 	udelay(40);	/* maintain the strobe during 40 us */
791 
792 	clear_bit(LCD_BIT_E, bits);
793 	set_ctrl_bits();
794 
795 	udelay(45);	/* the shortest data takes at least 45 us */
796 	spin_unlock_irq(&pprt_lock);
797 }
798 
799 /* send a command to the TI LCD panel */
800 static void lcd_write_cmd_tilcd(struct charlcd *charlcd, int cmd)
801 {
802 	spin_lock_irq(&pprt_lock);
803 	/* present the data to the control port */
804 	w_ctr(pprt, cmd);
805 	udelay(60);
806 	spin_unlock_irq(&pprt_lock);
807 }
808 
809 /* send data to the TI LCD panel */
810 static void lcd_write_data_tilcd(struct charlcd *charlcd, int data)
811 {
812 	spin_lock_irq(&pprt_lock);
813 	/* present the data to the data port */
814 	w_dtr(pprt, data);
815 	udelay(60);
816 	spin_unlock_irq(&pprt_lock);
817 }
818 
819 /* fills the display with spaces and resets X/Y */
820 static void lcd_clear_fast_s(struct charlcd *charlcd)
821 {
822 	int pos;
823 
824 	spin_lock_irq(&pprt_lock);
825 	for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
826 		lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
827 		lcd_send_serial(' ' & 0x0F);
828 		lcd_send_serial((' ' >> 4) & 0x0F);
829 		/* the shortest data takes at least 40 us */
830 		udelay(40);
831 	}
832 	spin_unlock_irq(&pprt_lock);
833 }
834 
835 /* fills the display with spaces and resets X/Y */
836 static void lcd_clear_fast_p8(struct charlcd *charlcd)
837 {
838 	int pos;
839 
840 	spin_lock_irq(&pprt_lock);
841 	for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
842 		/* present the data to the data port */
843 		w_dtr(pprt, ' ');
844 
845 		/* maintain the data during 20 us before the strobe */
846 		udelay(20);
847 
848 		set_bit(LCD_BIT_E, bits);
849 		set_bit(LCD_BIT_RS, bits);
850 		clear_bit(LCD_BIT_RW, bits);
851 		set_ctrl_bits();
852 
853 		/* maintain the strobe during 40 us */
854 		udelay(40);
855 
856 		clear_bit(LCD_BIT_E, bits);
857 		set_ctrl_bits();
858 
859 		/* the shortest data takes at least 45 us */
860 		udelay(45);
861 	}
862 	spin_unlock_irq(&pprt_lock);
863 }
864 
865 /* fills the display with spaces and resets X/Y */
866 static void lcd_clear_fast_tilcd(struct charlcd *charlcd)
867 {
868 	int pos;
869 
870 	spin_lock_irq(&pprt_lock);
871 	for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
872 		/* present the data to the data port */
873 		w_dtr(pprt, ' ');
874 		udelay(60);
875 	}
876 
877 	spin_unlock_irq(&pprt_lock);
878 }
879 
880 static const struct charlcd_ops charlcd_serial_ops = {
881 	.write_cmd	= lcd_write_cmd_s,
882 	.write_data	= lcd_write_data_s,
883 	.clear_fast	= lcd_clear_fast_s,
884 	.backlight	= lcd_backlight,
885 };
886 
887 static const struct charlcd_ops charlcd_parallel_ops = {
888 	.write_cmd	= lcd_write_cmd_p8,
889 	.write_data	= lcd_write_data_p8,
890 	.clear_fast	= lcd_clear_fast_p8,
891 	.backlight	= lcd_backlight,
892 };
893 
894 static const struct charlcd_ops charlcd_tilcd_ops = {
895 	.write_cmd	= lcd_write_cmd_tilcd,
896 	.write_data	= lcd_write_data_tilcd,
897 	.clear_fast	= lcd_clear_fast_tilcd,
898 	.backlight	= lcd_backlight,
899 };
900 
901 /* initialize the LCD driver */
902 static void lcd_init(void)
903 {
904 	struct charlcd *charlcd;
905 
906 	charlcd = charlcd_alloc(0);
907 	if (!charlcd)
908 		return;
909 
910 	/*
911 	 * Init lcd struct with load-time values to preserve exact
912 	 * current functionality (at least for now).
913 	 */
914 	charlcd->height = lcd_height;
915 	charlcd->width = lcd_width;
916 	charlcd->bwidth = lcd_bwidth;
917 	charlcd->hwidth = lcd_hwidth;
918 
919 	switch (selected_lcd_type) {
920 	case LCD_TYPE_OLD:
921 		/* parallel mode, 8 bits */
922 		lcd.proto = LCD_PROTO_PARALLEL;
923 		lcd.charset = LCD_CHARSET_NORMAL;
924 		lcd.pins.e = PIN_STROBE;
925 		lcd.pins.rs = PIN_AUTOLF;
926 
927 		charlcd->width = 40;
928 		charlcd->bwidth = 40;
929 		charlcd->hwidth = 64;
930 		charlcd->height = 2;
931 		break;
932 	case LCD_TYPE_KS0074:
933 		/* serial mode, ks0074 */
934 		lcd.proto = LCD_PROTO_SERIAL;
935 		lcd.charset = LCD_CHARSET_KS0074;
936 		lcd.pins.bl = PIN_AUTOLF;
937 		lcd.pins.cl = PIN_STROBE;
938 		lcd.pins.da = PIN_D0;
939 
940 		charlcd->width = 16;
941 		charlcd->bwidth = 40;
942 		charlcd->hwidth = 16;
943 		charlcd->height = 2;
944 		break;
945 	case LCD_TYPE_NEXCOM:
946 		/* parallel mode, 8 bits, generic */
947 		lcd.proto = LCD_PROTO_PARALLEL;
948 		lcd.charset = LCD_CHARSET_NORMAL;
949 		lcd.pins.e = PIN_AUTOLF;
950 		lcd.pins.rs = PIN_SELECP;
951 		lcd.pins.rw = PIN_INITP;
952 
953 		charlcd->width = 16;
954 		charlcd->bwidth = 40;
955 		charlcd->hwidth = 64;
956 		charlcd->height = 2;
957 		break;
958 	case LCD_TYPE_CUSTOM:
959 		/* customer-defined */
960 		lcd.proto = DEFAULT_LCD_PROTO;
961 		lcd.charset = DEFAULT_LCD_CHARSET;
962 		/* default geometry will be set later */
963 		break;
964 	case LCD_TYPE_HANTRONIX:
965 		/* parallel mode, 8 bits, hantronix-like */
966 	default:
967 		lcd.proto = LCD_PROTO_PARALLEL;
968 		lcd.charset = LCD_CHARSET_NORMAL;
969 		lcd.pins.e = PIN_STROBE;
970 		lcd.pins.rs = PIN_SELECP;
971 
972 		charlcd->width = 16;
973 		charlcd->bwidth = 40;
974 		charlcd->hwidth = 64;
975 		charlcd->height = 2;
976 		break;
977 	}
978 
979 	/* Overwrite with module params set on loading */
980 	if (lcd_height != NOT_SET)
981 		charlcd->height = lcd_height;
982 	if (lcd_width != NOT_SET)
983 		charlcd->width = lcd_width;
984 	if (lcd_bwidth != NOT_SET)
985 		charlcd->bwidth = lcd_bwidth;
986 	if (lcd_hwidth != NOT_SET)
987 		charlcd->hwidth = lcd_hwidth;
988 	if (lcd_charset != NOT_SET)
989 		lcd.charset = lcd_charset;
990 	if (lcd_proto != NOT_SET)
991 		lcd.proto = lcd_proto;
992 	if (lcd_e_pin != PIN_NOT_SET)
993 		lcd.pins.e = lcd_e_pin;
994 	if (lcd_rs_pin != PIN_NOT_SET)
995 		lcd.pins.rs = lcd_rs_pin;
996 	if (lcd_rw_pin != PIN_NOT_SET)
997 		lcd.pins.rw = lcd_rw_pin;
998 	if (lcd_cl_pin != PIN_NOT_SET)
999 		lcd.pins.cl = lcd_cl_pin;
1000 	if (lcd_da_pin != PIN_NOT_SET)
1001 		lcd.pins.da = lcd_da_pin;
1002 	if (lcd_bl_pin != PIN_NOT_SET)
1003 		lcd.pins.bl = lcd_bl_pin;
1004 
1005 	/* this is used to catch wrong and default values */
1006 	if (charlcd->width <= 0)
1007 		charlcd->width = DEFAULT_LCD_WIDTH;
1008 	if (charlcd->bwidth <= 0)
1009 		charlcd->bwidth = DEFAULT_LCD_BWIDTH;
1010 	if (charlcd->hwidth <= 0)
1011 		charlcd->hwidth = DEFAULT_LCD_HWIDTH;
1012 	if (charlcd->height <= 0)
1013 		charlcd->height = DEFAULT_LCD_HEIGHT;
1014 
1015 	if (lcd.proto == LCD_PROTO_SERIAL) {	/* SERIAL */
1016 		charlcd->ops = &charlcd_serial_ops;
1017 
1018 		if (lcd.pins.cl == PIN_NOT_SET)
1019 			lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1020 		if (lcd.pins.da == PIN_NOT_SET)
1021 			lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1022 
1023 	} else if (lcd.proto == LCD_PROTO_PARALLEL) {	/* PARALLEL */
1024 		charlcd->ops = &charlcd_parallel_ops;
1025 
1026 		if (lcd.pins.e == PIN_NOT_SET)
1027 			lcd.pins.e = DEFAULT_LCD_PIN_E;
1028 		if (lcd.pins.rs == PIN_NOT_SET)
1029 			lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1030 		if (lcd.pins.rw == PIN_NOT_SET)
1031 			lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1032 	} else {
1033 		charlcd->ops = &charlcd_tilcd_ops;
1034 	}
1035 
1036 	if (lcd.pins.bl == PIN_NOT_SET)
1037 		lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1038 
1039 	if (lcd.pins.e == PIN_NOT_SET)
1040 		lcd.pins.e = PIN_NONE;
1041 	if (lcd.pins.rs == PIN_NOT_SET)
1042 		lcd.pins.rs = PIN_NONE;
1043 	if (lcd.pins.rw == PIN_NOT_SET)
1044 		lcd.pins.rw = PIN_NONE;
1045 	if (lcd.pins.bl == PIN_NOT_SET)
1046 		lcd.pins.bl = PIN_NONE;
1047 	if (lcd.pins.cl == PIN_NOT_SET)
1048 		lcd.pins.cl = PIN_NONE;
1049 	if (lcd.pins.da == PIN_NOT_SET)
1050 		lcd.pins.da = PIN_NONE;
1051 
1052 	if (lcd.charset == NOT_SET)
1053 		lcd.charset = DEFAULT_LCD_CHARSET;
1054 
1055 	if (lcd.charset == LCD_CHARSET_KS0074)
1056 		charlcd->char_conv = lcd_char_conv_ks0074;
1057 	else
1058 		charlcd->char_conv = NULL;
1059 
1060 	pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1061 		    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1062 	pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1063 		    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1064 	pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1065 		    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1066 	pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1067 		    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1068 	pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1069 		    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1070 	pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1071 		    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1072 
1073 	lcd.charlcd = charlcd;
1074 	lcd.initialized = true;
1075 }
1076 
1077 /*
1078  * These are the file operation function for user access to /dev/keypad
1079  */
1080 
1081 static ssize_t keypad_read(struct file *file,
1082 			   char __user *buf, size_t count, loff_t *ppos)
1083 {
1084 	unsigned i = *ppos;
1085 	char __user *tmp = buf;
1086 
1087 	if (keypad_buflen == 0) {
1088 		if (file->f_flags & O_NONBLOCK)
1089 			return -EAGAIN;
1090 
1091 		if (wait_event_interruptible(keypad_read_wait,
1092 					     keypad_buflen != 0))
1093 			return -EINTR;
1094 	}
1095 
1096 	for (; count-- > 0 && (keypad_buflen > 0);
1097 	     ++i, ++tmp, --keypad_buflen) {
1098 		put_user(keypad_buffer[keypad_start], tmp);
1099 		keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1100 	}
1101 	*ppos = i;
1102 
1103 	return tmp - buf;
1104 }
1105 
1106 static int keypad_open(struct inode *inode, struct file *file)
1107 {
1108 	int ret;
1109 
1110 	ret = -EBUSY;
1111 	if (!atomic_dec_and_test(&keypad_available))
1112 		goto fail;	/* open only once at a time */
1113 
1114 	ret = -EPERM;
1115 	if (file->f_mode & FMODE_WRITE)	/* device is read-only */
1116 		goto fail;
1117 
1118 	keypad_buflen = 0;	/* flush the buffer on opening */
1119 	return 0;
1120  fail:
1121 	atomic_inc(&keypad_available);
1122 	return ret;
1123 }
1124 
1125 static int keypad_release(struct inode *inode, struct file *file)
1126 {
1127 	atomic_inc(&keypad_available);
1128 	return 0;
1129 }
1130 
1131 static const struct file_operations keypad_fops = {
1132 	.read    = keypad_read,		/* read */
1133 	.open    = keypad_open,		/* open */
1134 	.release = keypad_release,	/* close */
1135 	.llseek  = default_llseek,
1136 };
1137 
1138 static struct miscdevice keypad_dev = {
1139 	.minor	= KEYPAD_MINOR,
1140 	.name	= "keypad",
1141 	.fops	= &keypad_fops,
1142 };
1143 
1144 static void keypad_send_key(const char *string, int max_len)
1145 {
1146 	/* send the key to the device only if a process is attached to it. */
1147 	if (!atomic_read(&keypad_available)) {
1148 		while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1149 			keypad_buffer[(keypad_start + keypad_buflen++) %
1150 				      KEYPAD_BUFFER] = *string++;
1151 		}
1152 		wake_up_interruptible(&keypad_read_wait);
1153 	}
1154 }
1155 
1156 /* this function scans all the bits involving at least one logical signal,
1157  * and puts the results in the bitfield "phys_read" (one bit per established
1158  * contact), and sets "phys_read_prev" to "phys_read".
1159  *
1160  * Note: to debounce input signals, we will only consider as switched a signal
1161  * which is stable across 2 measures. Signals which are different between two
1162  * reads will be kept as they previously were in their logical form (phys_prev).
1163  * A signal which has just switched will have a 1 in
1164  * (phys_read ^ phys_read_prev).
1165  */
1166 static void phys_scan_contacts(void)
1167 {
1168 	int bit, bitval;
1169 	char oldval;
1170 	char bitmask;
1171 	char gndmask;
1172 
1173 	phys_prev = phys_curr;
1174 	phys_read_prev = phys_read;
1175 	phys_read = 0;		/* flush all signals */
1176 
1177 	/* keep track of old value, with all outputs disabled */
1178 	oldval = r_dtr(pprt) | scan_mask_o;
1179 	/* activate all keyboard outputs (active low) */
1180 	w_dtr(pprt, oldval & ~scan_mask_o);
1181 
1182 	/* will have a 1 for each bit set to gnd */
1183 	bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1184 	/* disable all matrix signals */
1185 	w_dtr(pprt, oldval);
1186 
1187 	/* now that all outputs are cleared, the only active input bits are
1188 	 * directly connected to the ground
1189 	 */
1190 
1191 	/* 1 for each grounded input */
1192 	gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1193 
1194 	/* grounded inputs are signals 40-44 */
1195 	phys_read |= (__u64)gndmask << 40;
1196 
1197 	if (bitmask != gndmask) {
1198 		/*
1199 		 * since clearing the outputs changed some inputs, we know
1200 		 * that some input signals are currently tied to some outputs.
1201 		 * So we'll scan them.
1202 		 */
1203 		for (bit = 0; bit < 8; bit++) {
1204 			bitval = BIT(bit);
1205 
1206 			if (!(scan_mask_o & bitval))	/* skip unused bits */
1207 				continue;
1208 
1209 			w_dtr(pprt, oldval & ~bitval);	/* enable this output */
1210 			bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1211 			phys_read |= (__u64)bitmask << (5 * bit);
1212 		}
1213 		w_dtr(pprt, oldval);	/* disable all outputs */
1214 	}
1215 	/*
1216 	 * this is easy: use old bits when they are flapping,
1217 	 * use new ones when stable
1218 	 */
1219 	phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1220 		    (phys_read & ~(phys_read ^ phys_read_prev));
1221 }
1222 
1223 static inline int input_state_high(struct logical_input *input)
1224 {
1225 #if 0
1226 	/* FIXME:
1227 	 * this is an invalid test. It tries to catch
1228 	 * transitions from single-key to multiple-key, but
1229 	 * doesn't take into account the contacts polarity.
1230 	 * The only solution to the problem is to parse keys
1231 	 * from the most complex to the simplest combinations,
1232 	 * and mark them as 'caught' once a combination
1233 	 * matches, then unmatch it for all other ones.
1234 	 */
1235 
1236 	/* try to catch dangerous transitions cases :
1237 	 * someone adds a bit, so this signal was a false
1238 	 * positive resulting from a transition. We should
1239 	 * invalidate the signal immediately and not call the
1240 	 * release function.
1241 	 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1242 	 */
1243 	if (((phys_prev & input->mask) == input->value) &&
1244 	    ((phys_curr & input->mask) >  input->value)) {
1245 		input->state = INPUT_ST_LOW; /* invalidate */
1246 		return 1;
1247 	}
1248 #endif
1249 
1250 	if ((phys_curr & input->mask) == input->value) {
1251 		if ((input->type == INPUT_TYPE_STD) &&
1252 		    (input->high_timer == 0)) {
1253 			input->high_timer++;
1254 			if (input->u.std.press_fct)
1255 				input->u.std.press_fct(input->u.std.press_data);
1256 		} else if (input->type == INPUT_TYPE_KBD) {
1257 			/* will turn on the light */
1258 			keypressed = 1;
1259 
1260 			if (input->high_timer == 0) {
1261 				char *press_str = input->u.kbd.press_str;
1262 
1263 				if (press_str[0]) {
1264 					int s = sizeof(input->u.kbd.press_str);
1265 
1266 					keypad_send_key(press_str, s);
1267 				}
1268 			}
1269 
1270 			if (input->u.kbd.repeat_str[0]) {
1271 				char *repeat_str = input->u.kbd.repeat_str;
1272 
1273 				if (input->high_timer >= KEYPAD_REP_START) {
1274 					int s = sizeof(input->u.kbd.repeat_str);
1275 
1276 					input->high_timer -= KEYPAD_REP_DELAY;
1277 					keypad_send_key(repeat_str, s);
1278 				}
1279 				/* we will need to come back here soon */
1280 				inputs_stable = 0;
1281 			}
1282 
1283 			if (input->high_timer < 255)
1284 				input->high_timer++;
1285 		}
1286 		return 1;
1287 	}
1288 
1289 	/* else signal falling down. Let's fall through. */
1290 	input->state = INPUT_ST_FALLING;
1291 	input->fall_timer = 0;
1292 
1293 	return 0;
1294 }
1295 
1296 static inline void input_state_falling(struct logical_input *input)
1297 {
1298 #if 0
1299 	/* FIXME !!! same comment as in input_state_high */
1300 	if (((phys_prev & input->mask) == input->value) &&
1301 	    ((phys_curr & input->mask) >  input->value)) {
1302 		input->state = INPUT_ST_LOW;	/* invalidate */
1303 		return;
1304 	}
1305 #endif
1306 
1307 	if ((phys_curr & input->mask) == input->value) {
1308 		if (input->type == INPUT_TYPE_KBD) {
1309 			/* will turn on the light */
1310 			keypressed = 1;
1311 
1312 			if (input->u.kbd.repeat_str[0]) {
1313 				char *repeat_str = input->u.kbd.repeat_str;
1314 
1315 				if (input->high_timer >= KEYPAD_REP_START) {
1316 					int s = sizeof(input->u.kbd.repeat_str);
1317 
1318 					input->high_timer -= KEYPAD_REP_DELAY;
1319 					keypad_send_key(repeat_str, s);
1320 				}
1321 				/* we will need to come back here soon */
1322 				inputs_stable = 0;
1323 			}
1324 
1325 			if (input->high_timer < 255)
1326 				input->high_timer++;
1327 		}
1328 		input->state = INPUT_ST_HIGH;
1329 	} else if (input->fall_timer >= input->fall_time) {
1330 		/* call release event */
1331 		if (input->type == INPUT_TYPE_STD) {
1332 			void (*release_fct)(int) = input->u.std.release_fct;
1333 
1334 			if (release_fct)
1335 				release_fct(input->u.std.release_data);
1336 		} else if (input->type == INPUT_TYPE_KBD) {
1337 			char *release_str = input->u.kbd.release_str;
1338 
1339 			if (release_str[0]) {
1340 				int s = sizeof(input->u.kbd.release_str);
1341 
1342 				keypad_send_key(release_str, s);
1343 			}
1344 		}
1345 
1346 		input->state = INPUT_ST_LOW;
1347 	} else {
1348 		input->fall_timer++;
1349 		inputs_stable = 0;
1350 	}
1351 }
1352 
1353 static void panel_process_inputs(void)
1354 {
1355 	struct logical_input *input;
1356 
1357 	keypressed = 0;
1358 	inputs_stable = 1;
1359 	list_for_each_entry(input, &logical_inputs, list) {
1360 		switch (input->state) {
1361 		case INPUT_ST_LOW:
1362 			if ((phys_curr & input->mask) != input->value)
1363 				break;
1364 			/* if all needed ones were already set previously,
1365 			 * this means that this logical signal has been
1366 			 * activated by the releasing of another combined
1367 			 * signal, so we don't want to match.
1368 			 * eg: AB -(release B)-> A -(release A)-> 0 :
1369 			 *     don't match A.
1370 			 */
1371 			if ((phys_prev & input->mask) == input->value)
1372 				break;
1373 			input->rise_timer = 0;
1374 			input->state = INPUT_ST_RISING;
1375 			/* no break here, fall through */
1376 		case INPUT_ST_RISING:
1377 			if ((phys_curr & input->mask) != input->value) {
1378 				input->state = INPUT_ST_LOW;
1379 				break;
1380 			}
1381 			if (input->rise_timer < input->rise_time) {
1382 				inputs_stable = 0;
1383 				input->rise_timer++;
1384 				break;
1385 			}
1386 			input->high_timer = 0;
1387 			input->state = INPUT_ST_HIGH;
1388 			/* no break here, fall through */
1389 		case INPUT_ST_HIGH:
1390 			if (input_state_high(input))
1391 				break;
1392 			/* no break here, fall through */
1393 		case INPUT_ST_FALLING:
1394 			input_state_falling(input);
1395 		}
1396 	}
1397 }
1398 
1399 static void panel_scan_timer(struct timer_list *unused)
1400 {
1401 	if (keypad.enabled && keypad_initialized) {
1402 		if (spin_trylock_irq(&pprt_lock)) {
1403 			phys_scan_contacts();
1404 
1405 			/* no need for the parport anymore */
1406 			spin_unlock_irq(&pprt_lock);
1407 		}
1408 
1409 		if (!inputs_stable || phys_curr != phys_prev)
1410 			panel_process_inputs();
1411 	}
1412 
1413 	if (keypressed && lcd.enabled && lcd.initialized)
1414 		charlcd_poke(lcd.charlcd);
1415 
1416 	mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1417 }
1418 
1419 static void init_scan_timer(void)
1420 {
1421 	if (scan_timer.function)
1422 		return;		/* already started */
1423 
1424 	timer_setup(&scan_timer, panel_scan_timer, 0);
1425 	scan_timer.expires = jiffies + INPUT_POLL_TIME;
1426 	add_timer(&scan_timer);
1427 }
1428 
1429 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1430  * if <omask> or <imask> are non-null, they will be or'ed with the bits
1431  * corresponding to out and in bits respectively.
1432  * returns 1 if ok, 0 if error (in which case, nothing is written).
1433  */
1434 static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value,
1435 			  u8 *imask, u8 *omask)
1436 {
1437 	const char sigtab[] = "EeSsPpAaBb";
1438 	u8 im, om;
1439 	__u64 m, v;
1440 
1441 	om = 0;
1442 	im = 0;
1443 	m = 0ULL;
1444 	v = 0ULL;
1445 	while (*name) {
1446 		int in, out, bit, neg;
1447 		const char *idx;
1448 
1449 		idx = strchr(sigtab, *name);
1450 		if (!idx)
1451 			return 0;	/* input name not found */
1452 
1453 		in = idx - sigtab;
1454 		neg = (in & 1);	/* odd (lower) names are negated */
1455 		in >>= 1;
1456 		im |= BIT(in);
1457 
1458 		name++;
1459 		if (*name >= '0' && *name <= '7') {
1460 			out = *name - '0';
1461 			om |= BIT(out);
1462 		} else if (*name == '-') {
1463 			out = 8;
1464 		} else {
1465 			return 0;	/* unknown bit name */
1466 		}
1467 
1468 		bit = (out * 5) + in;
1469 
1470 		m |= 1ULL << bit;
1471 		if (!neg)
1472 			v |= 1ULL << bit;
1473 		name++;
1474 	}
1475 	*mask = m;
1476 	*value = v;
1477 	if (imask)
1478 		*imask |= im;
1479 	if (omask)
1480 		*omask |= om;
1481 	return 1;
1482 }
1483 
1484 /* tries to bind a key to the signal name <name>. The key will send the
1485  * strings <press>, <repeat>, <release> for these respective events.
1486  * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1487  */
1488 static struct logical_input *panel_bind_key(const char *name, const char *press,
1489 					    const char *repeat,
1490 					    const char *release)
1491 {
1492 	struct logical_input *key;
1493 
1494 	key = kzalloc(sizeof(*key), GFP_KERNEL);
1495 	if (!key)
1496 		return NULL;
1497 
1498 	if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1499 			     &scan_mask_o)) {
1500 		kfree(key);
1501 		return NULL;
1502 	}
1503 
1504 	key->type = INPUT_TYPE_KBD;
1505 	key->state = INPUT_ST_LOW;
1506 	key->rise_time = 1;
1507 	key->fall_time = 1;
1508 
1509 	strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
1510 	strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
1511 	strncpy(key->u.kbd.release_str, release,
1512 		sizeof(key->u.kbd.release_str));
1513 	list_add(&key->list, &logical_inputs);
1514 	return key;
1515 }
1516 
1517 #if 0
1518 /* tries to bind a callback function to the signal name <name>. The function
1519  * <press_fct> will be called with the <press_data> arg when the signal is
1520  * activated, and so on for <release_fct>/<release_data>
1521  * Returns the pointer to the new signal if ok, NULL if the signal could not
1522  * be bound.
1523  */
1524 static struct logical_input *panel_bind_callback(char *name,
1525 						 void (*press_fct)(int),
1526 						 int press_data,
1527 						 void (*release_fct)(int),
1528 						 int release_data)
1529 {
1530 	struct logical_input *callback;
1531 
1532 	callback = kmalloc(sizeof(*callback), GFP_KERNEL);
1533 	if (!callback)
1534 		return NULL;
1535 
1536 	memset(callback, 0, sizeof(struct logical_input));
1537 	if (!input_name2mask(name, &callback->mask, &callback->value,
1538 			     &scan_mask_i, &scan_mask_o))
1539 		return NULL;
1540 
1541 	callback->type = INPUT_TYPE_STD;
1542 	callback->state = INPUT_ST_LOW;
1543 	callback->rise_time = 1;
1544 	callback->fall_time = 1;
1545 	callback->u.std.press_fct = press_fct;
1546 	callback->u.std.press_data = press_data;
1547 	callback->u.std.release_fct = release_fct;
1548 	callback->u.std.release_data = release_data;
1549 	list_add(&callback->list, &logical_inputs);
1550 	return callback;
1551 }
1552 #endif
1553 
1554 static void keypad_init(void)
1555 {
1556 	int keynum;
1557 
1558 	init_waitqueue_head(&keypad_read_wait);
1559 	keypad_buflen = 0;	/* flushes any eventual noisy keystroke */
1560 
1561 	/* Let's create all known keys */
1562 
1563 	for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
1564 		panel_bind_key(keypad_profile[keynum][0],
1565 			       keypad_profile[keynum][1],
1566 			       keypad_profile[keynum][2],
1567 			       keypad_profile[keynum][3]);
1568 	}
1569 
1570 	init_scan_timer();
1571 	keypad_initialized = 1;
1572 }
1573 
1574 /**************************************************/
1575 /* device initialization                          */
1576 /**************************************************/
1577 
1578 static void panel_attach(struct parport *port)
1579 {
1580 	struct pardev_cb panel_cb;
1581 
1582 	if (port->number != parport)
1583 		return;
1584 
1585 	if (pprt) {
1586 		pr_err("%s: port->number=%d parport=%d, already registered!\n",
1587 		       __func__, port->number, parport);
1588 		return;
1589 	}
1590 
1591 	memset(&panel_cb, 0, sizeof(panel_cb));
1592 	panel_cb.private = &pprt;
1593 	/* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
1594 
1595 	pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
1596 	if (!pprt) {
1597 		pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
1598 		       __func__, port->number, parport);
1599 		return;
1600 	}
1601 
1602 	if (parport_claim(pprt)) {
1603 		pr_err("could not claim access to parport%d. Aborting.\n",
1604 		       parport);
1605 		goto err_unreg_device;
1606 	}
1607 
1608 	/* must init LCD first, just in case an IRQ from the keypad is
1609 	 * generated at keypad init
1610 	 */
1611 	if (lcd.enabled) {
1612 		lcd_init();
1613 		if (!lcd.charlcd || charlcd_register(lcd.charlcd))
1614 			goto err_unreg_device;
1615 	}
1616 
1617 	if (keypad.enabled) {
1618 		keypad_init();
1619 		if (misc_register(&keypad_dev))
1620 			goto err_lcd_unreg;
1621 	}
1622 	return;
1623 
1624 err_lcd_unreg:
1625 	if (lcd.enabled)
1626 		charlcd_unregister(lcd.charlcd);
1627 err_unreg_device:
1628 	kfree(lcd.charlcd);
1629 	lcd.charlcd = NULL;
1630 	parport_unregister_device(pprt);
1631 	pprt = NULL;
1632 }
1633 
1634 static void panel_detach(struct parport *port)
1635 {
1636 	if (port->number != parport)
1637 		return;
1638 
1639 	if (!pprt) {
1640 		pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
1641 		       __func__, port->number, parport);
1642 		return;
1643 	}
1644 	if (scan_timer.function)
1645 		del_timer_sync(&scan_timer);
1646 
1647 	if (keypad.enabled) {
1648 		misc_deregister(&keypad_dev);
1649 		keypad_initialized = 0;
1650 	}
1651 
1652 	if (lcd.enabled) {
1653 		charlcd_unregister(lcd.charlcd);
1654 		lcd.initialized = false;
1655 		kfree(lcd.charlcd);
1656 		lcd.charlcd = NULL;
1657 	}
1658 
1659 	/* TODO: free all input signals */
1660 	parport_release(pprt);
1661 	parport_unregister_device(pprt);
1662 	pprt = NULL;
1663 }
1664 
1665 static struct parport_driver panel_driver = {
1666 	.name = "panel",
1667 	.match_port = panel_attach,
1668 	.detach = panel_detach,
1669 	.devmodel = true,
1670 };
1671 
1672 /* init function */
1673 static int __init panel_init_module(void)
1674 {
1675 	int selected_keypad_type = NOT_SET, err;
1676 
1677 	/* take care of an eventual profile */
1678 	switch (profile) {
1679 	case PANEL_PROFILE_CUSTOM:
1680 		/* custom profile */
1681 		selected_keypad_type = DEFAULT_KEYPAD_TYPE;
1682 		selected_lcd_type = DEFAULT_LCD_TYPE;
1683 		break;
1684 	case PANEL_PROFILE_OLD:
1685 		/* 8 bits, 2*16, old keypad */
1686 		selected_keypad_type = KEYPAD_TYPE_OLD;
1687 		selected_lcd_type = LCD_TYPE_OLD;
1688 
1689 		/* TODO: This two are a little hacky, sort it out later */
1690 		if (lcd_width == NOT_SET)
1691 			lcd_width = 16;
1692 		if (lcd_hwidth == NOT_SET)
1693 			lcd_hwidth = 16;
1694 		break;
1695 	case PANEL_PROFILE_NEW:
1696 		/* serial, 2*16, new keypad */
1697 		selected_keypad_type = KEYPAD_TYPE_NEW;
1698 		selected_lcd_type = LCD_TYPE_KS0074;
1699 		break;
1700 	case PANEL_PROFILE_HANTRONIX:
1701 		/* 8 bits, 2*16 hantronix-like, no keypad */
1702 		selected_keypad_type = KEYPAD_TYPE_NONE;
1703 		selected_lcd_type = LCD_TYPE_HANTRONIX;
1704 		break;
1705 	case PANEL_PROFILE_NEXCOM:
1706 		/* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
1707 		selected_keypad_type = KEYPAD_TYPE_NEXCOM;
1708 		selected_lcd_type = LCD_TYPE_NEXCOM;
1709 		break;
1710 	case PANEL_PROFILE_LARGE:
1711 		/* 8 bits, 2*40, old keypad */
1712 		selected_keypad_type = KEYPAD_TYPE_OLD;
1713 		selected_lcd_type = LCD_TYPE_OLD;
1714 		break;
1715 	}
1716 
1717 	/*
1718 	 * Overwrite selection with module param values (both keypad and lcd),
1719 	 * where the deprecated params have lower prio.
1720 	 */
1721 	if (keypad_enabled != NOT_SET)
1722 		selected_keypad_type = keypad_enabled;
1723 	if (keypad_type != NOT_SET)
1724 		selected_keypad_type = keypad_type;
1725 
1726 	keypad.enabled = (selected_keypad_type > 0);
1727 
1728 	if (lcd_enabled != NOT_SET)
1729 		selected_lcd_type = lcd_enabled;
1730 	if (lcd_type != NOT_SET)
1731 		selected_lcd_type = lcd_type;
1732 
1733 	lcd.enabled = (selected_lcd_type > 0);
1734 
1735 	if (lcd.enabled) {
1736 		/*
1737 		 * Init lcd struct with load-time values to preserve exact
1738 		 * current functionality (at least for now).
1739 		 */
1740 		lcd.charset = lcd_charset;
1741 		lcd.proto = lcd_proto;
1742 		lcd.pins.e = lcd_e_pin;
1743 		lcd.pins.rs = lcd_rs_pin;
1744 		lcd.pins.rw = lcd_rw_pin;
1745 		lcd.pins.cl = lcd_cl_pin;
1746 		lcd.pins.da = lcd_da_pin;
1747 		lcd.pins.bl = lcd_bl_pin;
1748 	}
1749 
1750 	switch (selected_keypad_type) {
1751 	case KEYPAD_TYPE_OLD:
1752 		keypad_profile = old_keypad_profile;
1753 		break;
1754 	case KEYPAD_TYPE_NEW:
1755 		keypad_profile = new_keypad_profile;
1756 		break;
1757 	case KEYPAD_TYPE_NEXCOM:
1758 		keypad_profile = nexcom_keypad_profile;
1759 		break;
1760 	default:
1761 		keypad_profile = NULL;
1762 		break;
1763 	}
1764 
1765 	if (!lcd.enabled && !keypad.enabled) {
1766 		/* no device enabled, let's exit */
1767 		pr_err("panel driver disabled.\n");
1768 		return -ENODEV;
1769 	}
1770 
1771 	err = parport_register_driver(&panel_driver);
1772 	if (err) {
1773 		pr_err("could not register with parport. Aborting.\n");
1774 		return err;
1775 	}
1776 
1777 	if (pprt)
1778 		pr_info("panel driver registered on parport%d (io=0x%lx).\n",
1779 			parport, pprt->port->base);
1780 	else
1781 		pr_info("panel driver not yet registered\n");
1782 	return 0;
1783 }
1784 
1785 static void __exit panel_cleanup_module(void)
1786 {
1787 	parport_unregister_driver(&panel_driver);
1788 }
1789 
1790 module_init(panel_init_module);
1791 module_exit(panel_cleanup_module);
1792 MODULE_AUTHOR("Willy Tarreau");
1793 MODULE_LICENSE("GPL");
1794 
1795 /*
1796  * Local variables:
1797  *  c-indent-level: 4
1798  *  tab-width: 8
1799  * End:
1800  */
1801