xref: /openbmc/linux/drivers/auxdisplay/panel.c (revision 4bb1eb3c)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Front panel driver for Linux
4  * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
5  * Copyright (C) 2016-2017 Glider bvba
6  *
7  * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
8  * connected to a parallel printer port.
9  *
10  * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
11  * serial module compatible with Samsung's KS0074. The pins may be connected in
12  * any combination, everything is programmable.
13  *
14  * The keypad consists in a matrix of push buttons connecting input pins to
15  * data output pins or to the ground. The combinations have to be hard-coded
16  * in the driver, though several profiles exist and adding new ones is easy.
17  *
18  * Several profiles are provided for commonly found LCD+keypad modules on the
19  * market, such as those found in Nexcom's appliances.
20  *
21  * FIXME:
22  *      - the initialization/deinitialization process is very dirty and should
23  *        be rewritten. It may even be buggy.
24  *
25  * TODO:
26  *	- document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
27  *      - make the LCD a part of a virtual screen of Vx*Vy
28  *	- make the inputs list smp-safe
29  *      - change the keyboard to a double mapping : signals -> key_id -> values
30  *        so that applications can change values without knowing signals
31  *
32  */
33 
34 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
35 
36 #include <linux/module.h>
37 
38 #include <linux/types.h>
39 #include <linux/errno.h>
40 #include <linux/signal.h>
41 #include <linux/sched.h>
42 #include <linux/spinlock.h>
43 #include <linux/interrupt.h>
44 #include <linux/miscdevice.h>
45 #include <linux/slab.h>
46 #include <linux/ioport.h>
47 #include <linux/fcntl.h>
48 #include <linux/init.h>
49 #include <linux/delay.h>
50 #include <linux/kernel.h>
51 #include <linux/ctype.h>
52 #include <linux/parport.h>
53 #include <linux/list.h>
54 
55 #include <linux/io.h>
56 #include <linux/uaccess.h>
57 
58 #include "charlcd.h"
59 
60 #define LCD_MAXBYTES		256	/* max burst write */
61 
62 #define KEYPAD_BUFFER		64
63 
64 /* poll the keyboard this every second */
65 #define INPUT_POLL_TIME		(HZ / 50)
66 /* a key starts to repeat after this times INPUT_POLL_TIME */
67 #define KEYPAD_REP_START	(10)
68 /* a key repeats this times INPUT_POLL_TIME */
69 #define KEYPAD_REP_DELAY	(2)
70 
71 /* converts an r_str() input to an active high, bits string : 000BAOSE */
72 #define PNL_PINPUT(a)		((((unsigned char)(a)) ^ 0x7F) >> 3)
73 
74 #define PNL_PBUSY		0x80	/* inverted input, active low */
75 #define PNL_PACK		0x40	/* direct input, active low */
76 #define PNL_POUTPA		0x20	/* direct input, active high */
77 #define PNL_PSELECD		0x10	/* direct input, active high */
78 #define PNL_PERRORP		0x08	/* direct input, active low */
79 
80 #define PNL_PBIDIR		0x20	/* bi-directional ports */
81 /* high to read data in or-ed with data out */
82 #define PNL_PINTEN		0x10
83 #define PNL_PSELECP		0x08	/* inverted output, active low */
84 #define PNL_PINITP		0x04	/* direct output, active low */
85 #define PNL_PAUTOLF		0x02	/* inverted output, active low */
86 #define PNL_PSTROBE		0x01	/* inverted output */
87 
88 #define PNL_PD0			0x01
89 #define PNL_PD1			0x02
90 #define PNL_PD2			0x04
91 #define PNL_PD3			0x08
92 #define PNL_PD4			0x10
93 #define PNL_PD5			0x20
94 #define PNL_PD6			0x40
95 #define PNL_PD7			0x80
96 
97 #define PIN_NONE		0
98 #define PIN_STROBE		1
99 #define PIN_D0			2
100 #define PIN_D1			3
101 #define PIN_D2			4
102 #define PIN_D3			5
103 #define PIN_D4			6
104 #define PIN_D5			7
105 #define PIN_D6			8
106 #define PIN_D7			9
107 #define PIN_AUTOLF		14
108 #define PIN_INITP		16
109 #define PIN_SELECP		17
110 #define PIN_NOT_SET		127
111 
112 #define NOT_SET			-1
113 
114 /* macros to simplify use of the parallel port */
115 #define r_ctr(x)        (parport_read_control((x)->port))
116 #define r_dtr(x)        (parport_read_data((x)->port))
117 #define r_str(x)        (parport_read_status((x)->port))
118 #define w_ctr(x, y)     (parport_write_control((x)->port, (y)))
119 #define w_dtr(x, y)     (parport_write_data((x)->port, (y)))
120 
121 /* this defines which bits are to be used and which ones to be ignored */
122 /* logical or of the output bits involved in the scan matrix */
123 static __u8 scan_mask_o;
124 /* logical or of the input bits involved in the scan matrix */
125 static __u8 scan_mask_i;
126 
127 enum input_type {
128 	INPUT_TYPE_STD,
129 	INPUT_TYPE_KBD,
130 };
131 
132 enum input_state {
133 	INPUT_ST_LOW,
134 	INPUT_ST_RISING,
135 	INPUT_ST_HIGH,
136 	INPUT_ST_FALLING,
137 };
138 
139 struct logical_input {
140 	struct list_head list;
141 	__u64 mask;
142 	__u64 value;
143 	enum input_type type;
144 	enum input_state state;
145 	__u8 rise_time, fall_time;
146 	__u8 rise_timer, fall_timer, high_timer;
147 
148 	union {
149 		struct {	/* valid when type == INPUT_TYPE_STD */
150 			void (*press_fct)(int);
151 			void (*release_fct)(int);
152 			int press_data;
153 			int release_data;
154 		} std;
155 		struct {	/* valid when type == INPUT_TYPE_KBD */
156 			char press_str[sizeof(void *) + sizeof(int)] __nonstring;
157 			char repeat_str[sizeof(void *) + sizeof(int)] __nonstring;
158 			char release_str[sizeof(void *) + sizeof(int)] __nonstring;
159 		} kbd;
160 	} u;
161 };
162 
163 static LIST_HEAD(logical_inputs);	/* list of all defined logical inputs */
164 
165 /* physical contacts history
166  * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
167  * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
168  * corresponds to the ground.
169  * Within each group, bits are stored in the same order as read on the port :
170  * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
171  * So, each __u64 is represented like this :
172  * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
173  * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
174  */
175 
176 /* what has just been read from the I/O ports */
177 static __u64 phys_read;
178 /* previous phys_read */
179 static __u64 phys_read_prev;
180 /* stabilized phys_read (phys_read|phys_read_prev) */
181 static __u64 phys_curr;
182 /* previous phys_curr */
183 static __u64 phys_prev;
184 /* 0 means that at least one logical signal needs be computed */
185 static char inputs_stable;
186 
187 /* these variables are specific to the keypad */
188 static struct {
189 	bool enabled;
190 } keypad;
191 
192 static char keypad_buffer[KEYPAD_BUFFER];
193 static int keypad_buflen;
194 static int keypad_start;
195 static char keypressed;
196 static wait_queue_head_t keypad_read_wait;
197 
198 /* lcd-specific variables */
199 static struct {
200 	bool enabled;
201 	bool initialized;
202 
203 	int charset;
204 	int proto;
205 
206 	/* TODO: use union here? */
207 	struct {
208 		int e;
209 		int rs;
210 		int rw;
211 		int cl;
212 		int da;
213 		int bl;
214 	} pins;
215 
216 	struct charlcd *charlcd;
217 } lcd;
218 
219 /* Needed only for init */
220 static int selected_lcd_type = NOT_SET;
221 
222 /*
223  * Bit masks to convert LCD signals to parallel port outputs.
224  * _d_ are values for data port, _c_ are for control port.
225  * [0] = signal OFF, [1] = signal ON, [2] = mask
226  */
227 #define BIT_CLR		0
228 #define BIT_SET		1
229 #define BIT_MSK		2
230 #define BIT_STATES	3
231 /*
232  * one entry for each bit on the LCD
233  */
234 #define LCD_BIT_E	0
235 #define LCD_BIT_RS	1
236 #define LCD_BIT_RW	2
237 #define LCD_BIT_BL	3
238 #define LCD_BIT_CL	4
239 #define LCD_BIT_DA	5
240 #define LCD_BITS	6
241 
242 /*
243  * each bit can be either connected to a DATA or CTRL port
244  */
245 #define LCD_PORT_C	0
246 #define LCD_PORT_D	1
247 #define LCD_PORTS	2
248 
249 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
250 
251 /*
252  * LCD protocols
253  */
254 #define LCD_PROTO_PARALLEL      0
255 #define LCD_PROTO_SERIAL        1
256 #define LCD_PROTO_TI_DA8XX_LCD	2
257 
258 /*
259  * LCD character sets
260  */
261 #define LCD_CHARSET_NORMAL      0
262 #define LCD_CHARSET_KS0074      1
263 
264 /*
265  * LCD types
266  */
267 #define LCD_TYPE_NONE		0
268 #define LCD_TYPE_CUSTOM		1
269 #define LCD_TYPE_OLD		2
270 #define LCD_TYPE_KS0074		3
271 #define LCD_TYPE_HANTRONIX	4
272 #define LCD_TYPE_NEXCOM		5
273 
274 /*
275  * keypad types
276  */
277 #define KEYPAD_TYPE_NONE	0
278 #define KEYPAD_TYPE_OLD		1
279 #define KEYPAD_TYPE_NEW		2
280 #define KEYPAD_TYPE_NEXCOM	3
281 
282 /*
283  * panel profiles
284  */
285 #define PANEL_PROFILE_CUSTOM	0
286 #define PANEL_PROFILE_OLD	1
287 #define PANEL_PROFILE_NEW	2
288 #define PANEL_PROFILE_HANTRONIX	3
289 #define PANEL_PROFILE_NEXCOM	4
290 #define PANEL_PROFILE_LARGE	5
291 
292 /*
293  * Construct custom config from the kernel's configuration
294  */
295 #define DEFAULT_PARPORT         0
296 #define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
297 #define DEFAULT_KEYPAD_TYPE     KEYPAD_TYPE_OLD
298 #define DEFAULT_LCD_TYPE        LCD_TYPE_OLD
299 #define DEFAULT_LCD_HEIGHT      2
300 #define DEFAULT_LCD_WIDTH       40
301 #define DEFAULT_LCD_BWIDTH      40
302 #define DEFAULT_LCD_HWIDTH      64
303 #define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
304 #define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
305 
306 #define DEFAULT_LCD_PIN_E       PIN_AUTOLF
307 #define DEFAULT_LCD_PIN_RS      PIN_SELECP
308 #define DEFAULT_LCD_PIN_RW      PIN_INITP
309 #define DEFAULT_LCD_PIN_SCL     PIN_STROBE
310 #define DEFAULT_LCD_PIN_SDA     PIN_D0
311 #define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
312 
313 #ifdef CONFIG_PANEL_PARPORT
314 #undef DEFAULT_PARPORT
315 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
316 #endif
317 
318 #ifdef CONFIG_PANEL_PROFILE
319 #undef DEFAULT_PROFILE
320 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
321 #endif
322 
323 #if DEFAULT_PROFILE == 0	/* custom */
324 #ifdef CONFIG_PANEL_KEYPAD
325 #undef DEFAULT_KEYPAD_TYPE
326 #define DEFAULT_KEYPAD_TYPE CONFIG_PANEL_KEYPAD
327 #endif
328 
329 #ifdef CONFIG_PANEL_LCD
330 #undef DEFAULT_LCD_TYPE
331 #define DEFAULT_LCD_TYPE CONFIG_PANEL_LCD
332 #endif
333 
334 #ifdef CONFIG_PANEL_LCD_HEIGHT
335 #undef DEFAULT_LCD_HEIGHT
336 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
337 #endif
338 
339 #ifdef CONFIG_PANEL_LCD_WIDTH
340 #undef DEFAULT_LCD_WIDTH
341 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
342 #endif
343 
344 #ifdef CONFIG_PANEL_LCD_BWIDTH
345 #undef DEFAULT_LCD_BWIDTH
346 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
347 #endif
348 
349 #ifdef CONFIG_PANEL_LCD_HWIDTH
350 #undef DEFAULT_LCD_HWIDTH
351 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
352 #endif
353 
354 #ifdef CONFIG_PANEL_LCD_CHARSET
355 #undef DEFAULT_LCD_CHARSET
356 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
357 #endif
358 
359 #ifdef CONFIG_PANEL_LCD_PROTO
360 #undef DEFAULT_LCD_PROTO
361 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
362 #endif
363 
364 #ifdef CONFIG_PANEL_LCD_PIN_E
365 #undef DEFAULT_LCD_PIN_E
366 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
367 #endif
368 
369 #ifdef CONFIG_PANEL_LCD_PIN_RS
370 #undef DEFAULT_LCD_PIN_RS
371 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
372 #endif
373 
374 #ifdef CONFIG_PANEL_LCD_PIN_RW
375 #undef DEFAULT_LCD_PIN_RW
376 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
377 #endif
378 
379 #ifdef CONFIG_PANEL_LCD_PIN_SCL
380 #undef DEFAULT_LCD_PIN_SCL
381 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
382 #endif
383 
384 #ifdef CONFIG_PANEL_LCD_PIN_SDA
385 #undef DEFAULT_LCD_PIN_SDA
386 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
387 #endif
388 
389 #ifdef CONFIG_PANEL_LCD_PIN_BL
390 #undef DEFAULT_LCD_PIN_BL
391 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
392 #endif
393 
394 #endif /* DEFAULT_PROFILE == 0 */
395 
396 /* global variables */
397 
398 /* Device single-open policy control */
399 static atomic_t keypad_available = ATOMIC_INIT(1);
400 
401 static struct pardevice *pprt;
402 
403 static int keypad_initialized;
404 
405 static DEFINE_SPINLOCK(pprt_lock);
406 static struct timer_list scan_timer;
407 
408 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
409 
410 static int parport = DEFAULT_PARPORT;
411 module_param(parport, int, 0000);
412 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
413 
414 static int profile = DEFAULT_PROFILE;
415 module_param(profile, int, 0000);
416 MODULE_PARM_DESC(profile,
417 		 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
418 		 "4=16x2 nexcom; default=40x2, old kp");
419 
420 static int keypad_type = NOT_SET;
421 module_param(keypad_type, int, 0000);
422 MODULE_PARM_DESC(keypad_type,
423 		 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
424 
425 static int lcd_type = NOT_SET;
426 module_param(lcd_type, int, 0000);
427 MODULE_PARM_DESC(lcd_type,
428 		 "LCD type: 0=none, 1=compiled-in, 2=old, 3=serial ks0074, 4=hantronix, 5=nexcom");
429 
430 static int lcd_height = NOT_SET;
431 module_param(lcd_height, int, 0000);
432 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
433 
434 static int lcd_width = NOT_SET;
435 module_param(lcd_width, int, 0000);
436 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
437 
438 static int lcd_bwidth = NOT_SET;	/* internal buffer width (usually 40) */
439 module_param(lcd_bwidth, int, 0000);
440 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
441 
442 static int lcd_hwidth = NOT_SET;	/* hardware buffer width (usually 64) */
443 module_param(lcd_hwidth, int, 0000);
444 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
445 
446 static int lcd_charset = NOT_SET;
447 module_param(lcd_charset, int, 0000);
448 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
449 
450 static int lcd_proto = NOT_SET;
451 module_param(lcd_proto, int, 0000);
452 MODULE_PARM_DESC(lcd_proto,
453 		 "LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
454 
455 /*
456  * These are the parallel port pins the LCD control signals are connected to.
457  * Set this to 0 if the signal is not used. Set it to its opposite value
458  * (negative) if the signal is negated. -MAXINT is used to indicate that the
459  * pin has not been explicitly specified.
460  *
461  * WARNING! no check will be performed about collisions with keypad !
462  */
463 
464 static int lcd_e_pin  = PIN_NOT_SET;
465 module_param(lcd_e_pin, int, 0000);
466 MODULE_PARM_DESC(lcd_e_pin,
467 		 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
468 
469 static int lcd_rs_pin = PIN_NOT_SET;
470 module_param(lcd_rs_pin, int, 0000);
471 MODULE_PARM_DESC(lcd_rs_pin,
472 		 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
473 
474 static int lcd_rw_pin = PIN_NOT_SET;
475 module_param(lcd_rw_pin, int, 0000);
476 MODULE_PARM_DESC(lcd_rw_pin,
477 		 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
478 
479 static int lcd_cl_pin = PIN_NOT_SET;
480 module_param(lcd_cl_pin, int, 0000);
481 MODULE_PARM_DESC(lcd_cl_pin,
482 		 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
483 
484 static int lcd_da_pin = PIN_NOT_SET;
485 module_param(lcd_da_pin, int, 0000);
486 MODULE_PARM_DESC(lcd_da_pin,
487 		 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
488 
489 static int lcd_bl_pin = PIN_NOT_SET;
490 module_param(lcd_bl_pin, int, 0000);
491 MODULE_PARM_DESC(lcd_bl_pin,
492 		 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
493 
494 /* Deprecated module parameters - consider not using them anymore */
495 
496 static int lcd_enabled = NOT_SET;
497 module_param(lcd_enabled, int, 0000);
498 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
499 
500 static int keypad_enabled = NOT_SET;
501 module_param(keypad_enabled, int, 0000);
502 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
503 
504 /* for some LCD drivers (ks0074) we need a charset conversion table. */
505 static const unsigned char lcd_char_conv_ks0074[256] = {
506 	/*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
507 	/* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
508 	/* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
509 	/* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
510 	/* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
511 	/* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
512 	/* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
513 	/* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
514 	/* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
515 	/* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
516 	/* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
517 	/* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
518 	/* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
519 	/* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
520 	/* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
521 	/* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
522 	/* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
523 	/* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
524 	/* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
525 	/* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
526 	/* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
527 	/* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
528 	/* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
529 	/* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
530 	/* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
531 	/* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
532 	/* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
533 	/* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
534 	/* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
535 	/* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
536 	/* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
537 	/* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
538 	/* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
539 };
540 
541 static const char old_keypad_profile[][4][9] = {
542 	{"S0", "Left\n", "Left\n", ""},
543 	{"S1", "Down\n", "Down\n", ""},
544 	{"S2", "Up\n", "Up\n", ""},
545 	{"S3", "Right\n", "Right\n", ""},
546 	{"S4", "Esc\n", "Esc\n", ""},
547 	{"S5", "Ret\n", "Ret\n", ""},
548 	{"", "", "", ""}
549 };
550 
551 /* signals, press, repeat, release */
552 static const char new_keypad_profile[][4][9] = {
553 	{"S0", "Left\n", "Left\n", ""},
554 	{"S1", "Down\n", "Down\n", ""},
555 	{"S2", "Up\n", "Up\n", ""},
556 	{"S3", "Right\n", "Right\n", ""},
557 	{"S4s5", "", "Esc\n", "Esc\n"},
558 	{"s4S5", "", "Ret\n", "Ret\n"},
559 	{"S4S5", "Help\n", "", ""},
560 	/* add new signals above this line */
561 	{"", "", "", ""}
562 };
563 
564 /* signals, press, repeat, release */
565 static const char nexcom_keypad_profile[][4][9] = {
566 	{"a-p-e-", "Down\n", "Down\n", ""},
567 	{"a-p-E-", "Ret\n", "Ret\n", ""},
568 	{"a-P-E-", "Esc\n", "Esc\n", ""},
569 	{"a-P-e-", "Up\n", "Up\n", ""},
570 	/* add new signals above this line */
571 	{"", "", "", ""}
572 };
573 
574 static const char (*keypad_profile)[4][9] = old_keypad_profile;
575 
576 static DECLARE_BITMAP(bits, LCD_BITS);
577 
578 static void lcd_get_bits(unsigned int port, int *val)
579 {
580 	unsigned int bit, state;
581 
582 	for (bit = 0; bit < LCD_BITS; bit++) {
583 		state = test_bit(bit, bits) ? BIT_SET : BIT_CLR;
584 		*val &= lcd_bits[port][bit][BIT_MSK];
585 		*val |= lcd_bits[port][bit][state];
586 	}
587 }
588 
589 /* sets data port bits according to current signals values */
590 static int set_data_bits(void)
591 {
592 	int val;
593 
594 	val = r_dtr(pprt);
595 	lcd_get_bits(LCD_PORT_D, &val);
596 	w_dtr(pprt, val);
597 	return val;
598 }
599 
600 /* sets ctrl port bits according to current signals values */
601 static int set_ctrl_bits(void)
602 {
603 	int val;
604 
605 	val = r_ctr(pprt);
606 	lcd_get_bits(LCD_PORT_C, &val);
607 	w_ctr(pprt, val);
608 	return val;
609 }
610 
611 /* sets ctrl & data port bits according to current signals values */
612 static void panel_set_bits(void)
613 {
614 	set_data_bits();
615 	set_ctrl_bits();
616 }
617 
618 /*
619  * Converts a parallel port pin (from -25 to 25) to data and control ports
620  * masks, and data and control port bits. The signal will be considered
621  * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
622  *
623  * Result will be used this way :
624  *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
625  *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
626  */
627 static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
628 {
629 	int d_bit, c_bit, inv;
630 
631 	d_val[0] = 0;
632 	c_val[0] = 0;
633 	d_val[1] = 0;
634 	c_val[1] = 0;
635 	d_val[2] = 0xFF;
636 	c_val[2] = 0xFF;
637 
638 	if (pin == 0)
639 		return;
640 
641 	inv = (pin < 0);
642 	if (inv)
643 		pin = -pin;
644 
645 	d_bit = 0;
646 	c_bit = 0;
647 
648 	switch (pin) {
649 	case PIN_STROBE:	/* strobe, inverted */
650 		c_bit = PNL_PSTROBE;
651 		inv = !inv;
652 		break;
653 	case PIN_D0...PIN_D7:	/* D0 - D7 = 2 - 9 */
654 		d_bit = 1 << (pin - 2);
655 		break;
656 	case PIN_AUTOLF:	/* autofeed, inverted */
657 		c_bit = PNL_PAUTOLF;
658 		inv = !inv;
659 		break;
660 	case PIN_INITP:		/* init, direct */
661 		c_bit = PNL_PINITP;
662 		break;
663 	case PIN_SELECP:	/* select_in, inverted */
664 		c_bit = PNL_PSELECP;
665 		inv = !inv;
666 		break;
667 	default:		/* unknown pin, ignore */
668 		break;
669 	}
670 
671 	if (c_bit) {
672 		c_val[2] &= ~c_bit;
673 		c_val[!inv] = c_bit;
674 	} else if (d_bit) {
675 		d_val[2] &= ~d_bit;
676 		d_val[!inv] = d_bit;
677 	}
678 }
679 
680 /*
681  * send a serial byte to the LCD panel. The caller is responsible for locking
682  * if needed.
683  */
684 static void lcd_send_serial(int byte)
685 {
686 	int bit;
687 
688 	/*
689 	 * the data bit is set on D0, and the clock on STROBE.
690 	 * LCD reads D0 on STROBE's rising edge.
691 	 */
692 	for (bit = 0; bit < 8; bit++) {
693 		clear_bit(LCD_BIT_CL, bits);	/* CLK low */
694 		panel_set_bits();
695 		if (byte & 1) {
696 			set_bit(LCD_BIT_DA, bits);
697 		} else {
698 			clear_bit(LCD_BIT_DA, bits);
699 		}
700 
701 		panel_set_bits();
702 		udelay(2);  /* maintain the data during 2 us before CLK up */
703 		set_bit(LCD_BIT_CL, bits);	/* CLK high */
704 		panel_set_bits();
705 		udelay(1);  /* maintain the strobe during 1 us */
706 		byte >>= 1;
707 	}
708 }
709 
710 /* turn the backlight on or off */
711 static void lcd_backlight(struct charlcd *charlcd, int on)
712 {
713 	if (lcd.pins.bl == PIN_NONE)
714 		return;
715 
716 	/* The backlight is activated by setting the AUTOFEED line to +5V  */
717 	spin_lock_irq(&pprt_lock);
718 	if (on)
719 		set_bit(LCD_BIT_BL, bits);
720 	else
721 		clear_bit(LCD_BIT_BL, bits);
722 	panel_set_bits();
723 	spin_unlock_irq(&pprt_lock);
724 }
725 
726 /* send a command to the LCD panel in serial mode */
727 static void lcd_write_cmd_s(struct charlcd *charlcd, int cmd)
728 {
729 	spin_lock_irq(&pprt_lock);
730 	lcd_send_serial(0x1F);	/* R/W=W, RS=0 */
731 	lcd_send_serial(cmd & 0x0F);
732 	lcd_send_serial((cmd >> 4) & 0x0F);
733 	udelay(40);		/* the shortest command takes at least 40 us */
734 	spin_unlock_irq(&pprt_lock);
735 }
736 
737 /* send data to the LCD panel in serial mode */
738 static void lcd_write_data_s(struct charlcd *charlcd, int data)
739 {
740 	spin_lock_irq(&pprt_lock);
741 	lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
742 	lcd_send_serial(data & 0x0F);
743 	lcd_send_serial((data >> 4) & 0x0F);
744 	udelay(40);		/* the shortest data takes at least 40 us */
745 	spin_unlock_irq(&pprt_lock);
746 }
747 
748 /* send a command to the LCD panel in 8 bits parallel mode */
749 static void lcd_write_cmd_p8(struct charlcd *charlcd, int cmd)
750 {
751 	spin_lock_irq(&pprt_lock);
752 	/* present the data to the data port */
753 	w_dtr(pprt, cmd);
754 	udelay(20);	/* maintain the data during 20 us before the strobe */
755 
756 	set_bit(LCD_BIT_E, bits);
757 	clear_bit(LCD_BIT_RS, bits);
758 	clear_bit(LCD_BIT_RW, bits);
759 	set_ctrl_bits();
760 
761 	udelay(40);	/* maintain the strobe during 40 us */
762 
763 	clear_bit(LCD_BIT_E, bits);
764 	set_ctrl_bits();
765 
766 	udelay(120);	/* the shortest command takes at least 120 us */
767 	spin_unlock_irq(&pprt_lock);
768 }
769 
770 /* send data to the LCD panel in 8 bits parallel mode */
771 static void lcd_write_data_p8(struct charlcd *charlcd, int data)
772 {
773 	spin_lock_irq(&pprt_lock);
774 	/* present the data to the data port */
775 	w_dtr(pprt, data);
776 	udelay(20);	/* maintain the data during 20 us before the strobe */
777 
778 	set_bit(LCD_BIT_E, bits);
779 	set_bit(LCD_BIT_RS, bits);
780 	clear_bit(LCD_BIT_RW, bits);
781 	set_ctrl_bits();
782 
783 	udelay(40);	/* maintain the strobe during 40 us */
784 
785 	clear_bit(LCD_BIT_E, bits);
786 	set_ctrl_bits();
787 
788 	udelay(45);	/* the shortest data takes at least 45 us */
789 	spin_unlock_irq(&pprt_lock);
790 }
791 
792 /* send a command to the TI LCD panel */
793 static void lcd_write_cmd_tilcd(struct charlcd *charlcd, int cmd)
794 {
795 	spin_lock_irq(&pprt_lock);
796 	/* present the data to the control port */
797 	w_ctr(pprt, cmd);
798 	udelay(60);
799 	spin_unlock_irq(&pprt_lock);
800 }
801 
802 /* send data to the TI LCD panel */
803 static void lcd_write_data_tilcd(struct charlcd *charlcd, int data)
804 {
805 	spin_lock_irq(&pprt_lock);
806 	/* present the data to the data port */
807 	w_dtr(pprt, data);
808 	udelay(60);
809 	spin_unlock_irq(&pprt_lock);
810 }
811 
812 /* fills the display with spaces and resets X/Y */
813 static void lcd_clear_fast_s(struct charlcd *charlcd)
814 {
815 	int pos;
816 
817 	spin_lock_irq(&pprt_lock);
818 	for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
819 		lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
820 		lcd_send_serial(' ' & 0x0F);
821 		lcd_send_serial((' ' >> 4) & 0x0F);
822 		/* the shortest data takes at least 40 us */
823 		udelay(40);
824 	}
825 	spin_unlock_irq(&pprt_lock);
826 }
827 
828 /* fills the display with spaces and resets X/Y */
829 static void lcd_clear_fast_p8(struct charlcd *charlcd)
830 {
831 	int pos;
832 
833 	spin_lock_irq(&pprt_lock);
834 	for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
835 		/* present the data to the data port */
836 		w_dtr(pprt, ' ');
837 
838 		/* maintain the data during 20 us before the strobe */
839 		udelay(20);
840 
841 		set_bit(LCD_BIT_E, bits);
842 		set_bit(LCD_BIT_RS, bits);
843 		clear_bit(LCD_BIT_RW, bits);
844 		set_ctrl_bits();
845 
846 		/* maintain the strobe during 40 us */
847 		udelay(40);
848 
849 		clear_bit(LCD_BIT_E, bits);
850 		set_ctrl_bits();
851 
852 		/* the shortest data takes at least 45 us */
853 		udelay(45);
854 	}
855 	spin_unlock_irq(&pprt_lock);
856 }
857 
858 /* fills the display with spaces and resets X/Y */
859 static void lcd_clear_fast_tilcd(struct charlcd *charlcd)
860 {
861 	int pos;
862 
863 	spin_lock_irq(&pprt_lock);
864 	for (pos = 0; pos < charlcd->height * charlcd->hwidth; pos++) {
865 		/* present the data to the data port */
866 		w_dtr(pprt, ' ');
867 		udelay(60);
868 	}
869 
870 	spin_unlock_irq(&pprt_lock);
871 }
872 
873 static const struct charlcd_ops charlcd_serial_ops = {
874 	.write_cmd	= lcd_write_cmd_s,
875 	.write_data	= lcd_write_data_s,
876 	.clear_fast	= lcd_clear_fast_s,
877 	.backlight	= lcd_backlight,
878 };
879 
880 static const struct charlcd_ops charlcd_parallel_ops = {
881 	.write_cmd	= lcd_write_cmd_p8,
882 	.write_data	= lcd_write_data_p8,
883 	.clear_fast	= lcd_clear_fast_p8,
884 	.backlight	= lcd_backlight,
885 };
886 
887 static const struct charlcd_ops charlcd_tilcd_ops = {
888 	.write_cmd	= lcd_write_cmd_tilcd,
889 	.write_data	= lcd_write_data_tilcd,
890 	.clear_fast	= lcd_clear_fast_tilcd,
891 	.backlight	= lcd_backlight,
892 };
893 
894 /* initialize the LCD driver */
895 static void lcd_init(void)
896 {
897 	struct charlcd *charlcd;
898 
899 	charlcd = charlcd_alloc(0);
900 	if (!charlcd)
901 		return;
902 
903 	/*
904 	 * Init lcd struct with load-time values to preserve exact
905 	 * current functionality (at least for now).
906 	 */
907 	charlcd->height = lcd_height;
908 	charlcd->width = lcd_width;
909 	charlcd->bwidth = lcd_bwidth;
910 	charlcd->hwidth = lcd_hwidth;
911 
912 	switch (selected_lcd_type) {
913 	case LCD_TYPE_OLD:
914 		/* parallel mode, 8 bits */
915 		lcd.proto = LCD_PROTO_PARALLEL;
916 		lcd.charset = LCD_CHARSET_NORMAL;
917 		lcd.pins.e = PIN_STROBE;
918 		lcd.pins.rs = PIN_AUTOLF;
919 
920 		charlcd->width = 40;
921 		charlcd->bwidth = 40;
922 		charlcd->hwidth = 64;
923 		charlcd->height = 2;
924 		break;
925 	case LCD_TYPE_KS0074:
926 		/* serial mode, ks0074 */
927 		lcd.proto = LCD_PROTO_SERIAL;
928 		lcd.charset = LCD_CHARSET_KS0074;
929 		lcd.pins.bl = PIN_AUTOLF;
930 		lcd.pins.cl = PIN_STROBE;
931 		lcd.pins.da = PIN_D0;
932 
933 		charlcd->width = 16;
934 		charlcd->bwidth = 40;
935 		charlcd->hwidth = 16;
936 		charlcd->height = 2;
937 		break;
938 	case LCD_TYPE_NEXCOM:
939 		/* parallel mode, 8 bits, generic */
940 		lcd.proto = LCD_PROTO_PARALLEL;
941 		lcd.charset = LCD_CHARSET_NORMAL;
942 		lcd.pins.e = PIN_AUTOLF;
943 		lcd.pins.rs = PIN_SELECP;
944 		lcd.pins.rw = PIN_INITP;
945 
946 		charlcd->width = 16;
947 		charlcd->bwidth = 40;
948 		charlcd->hwidth = 64;
949 		charlcd->height = 2;
950 		break;
951 	case LCD_TYPE_CUSTOM:
952 		/* customer-defined */
953 		lcd.proto = DEFAULT_LCD_PROTO;
954 		lcd.charset = DEFAULT_LCD_CHARSET;
955 		/* default geometry will be set later */
956 		break;
957 	case LCD_TYPE_HANTRONIX:
958 		/* parallel mode, 8 bits, hantronix-like */
959 	default:
960 		lcd.proto = LCD_PROTO_PARALLEL;
961 		lcd.charset = LCD_CHARSET_NORMAL;
962 		lcd.pins.e = PIN_STROBE;
963 		lcd.pins.rs = PIN_SELECP;
964 
965 		charlcd->width = 16;
966 		charlcd->bwidth = 40;
967 		charlcd->hwidth = 64;
968 		charlcd->height = 2;
969 		break;
970 	}
971 
972 	/* Overwrite with module params set on loading */
973 	if (lcd_height != NOT_SET)
974 		charlcd->height = lcd_height;
975 	if (lcd_width != NOT_SET)
976 		charlcd->width = lcd_width;
977 	if (lcd_bwidth != NOT_SET)
978 		charlcd->bwidth = lcd_bwidth;
979 	if (lcd_hwidth != NOT_SET)
980 		charlcd->hwidth = lcd_hwidth;
981 	if (lcd_charset != NOT_SET)
982 		lcd.charset = lcd_charset;
983 	if (lcd_proto != NOT_SET)
984 		lcd.proto = lcd_proto;
985 	if (lcd_e_pin != PIN_NOT_SET)
986 		lcd.pins.e = lcd_e_pin;
987 	if (lcd_rs_pin != PIN_NOT_SET)
988 		lcd.pins.rs = lcd_rs_pin;
989 	if (lcd_rw_pin != PIN_NOT_SET)
990 		lcd.pins.rw = lcd_rw_pin;
991 	if (lcd_cl_pin != PIN_NOT_SET)
992 		lcd.pins.cl = lcd_cl_pin;
993 	if (lcd_da_pin != PIN_NOT_SET)
994 		lcd.pins.da = lcd_da_pin;
995 	if (lcd_bl_pin != PIN_NOT_SET)
996 		lcd.pins.bl = lcd_bl_pin;
997 
998 	/* this is used to catch wrong and default values */
999 	if (charlcd->width <= 0)
1000 		charlcd->width = DEFAULT_LCD_WIDTH;
1001 	if (charlcd->bwidth <= 0)
1002 		charlcd->bwidth = DEFAULT_LCD_BWIDTH;
1003 	if (charlcd->hwidth <= 0)
1004 		charlcd->hwidth = DEFAULT_LCD_HWIDTH;
1005 	if (charlcd->height <= 0)
1006 		charlcd->height = DEFAULT_LCD_HEIGHT;
1007 
1008 	if (lcd.proto == LCD_PROTO_SERIAL) {	/* SERIAL */
1009 		charlcd->ops = &charlcd_serial_ops;
1010 
1011 		if (lcd.pins.cl == PIN_NOT_SET)
1012 			lcd.pins.cl = DEFAULT_LCD_PIN_SCL;
1013 		if (lcd.pins.da == PIN_NOT_SET)
1014 			lcd.pins.da = DEFAULT_LCD_PIN_SDA;
1015 
1016 	} else if (lcd.proto == LCD_PROTO_PARALLEL) {	/* PARALLEL */
1017 		charlcd->ops = &charlcd_parallel_ops;
1018 
1019 		if (lcd.pins.e == PIN_NOT_SET)
1020 			lcd.pins.e = DEFAULT_LCD_PIN_E;
1021 		if (lcd.pins.rs == PIN_NOT_SET)
1022 			lcd.pins.rs = DEFAULT_LCD_PIN_RS;
1023 		if (lcd.pins.rw == PIN_NOT_SET)
1024 			lcd.pins.rw = DEFAULT_LCD_PIN_RW;
1025 	} else {
1026 		charlcd->ops = &charlcd_tilcd_ops;
1027 	}
1028 
1029 	if (lcd.pins.bl == PIN_NOT_SET)
1030 		lcd.pins.bl = DEFAULT_LCD_PIN_BL;
1031 
1032 	if (lcd.pins.e == PIN_NOT_SET)
1033 		lcd.pins.e = PIN_NONE;
1034 	if (lcd.pins.rs == PIN_NOT_SET)
1035 		lcd.pins.rs = PIN_NONE;
1036 	if (lcd.pins.rw == PIN_NOT_SET)
1037 		lcd.pins.rw = PIN_NONE;
1038 	if (lcd.pins.bl == PIN_NOT_SET)
1039 		lcd.pins.bl = PIN_NONE;
1040 	if (lcd.pins.cl == PIN_NOT_SET)
1041 		lcd.pins.cl = PIN_NONE;
1042 	if (lcd.pins.da == PIN_NOT_SET)
1043 		lcd.pins.da = PIN_NONE;
1044 
1045 	if (lcd.charset == NOT_SET)
1046 		lcd.charset = DEFAULT_LCD_CHARSET;
1047 
1048 	if (lcd.charset == LCD_CHARSET_KS0074)
1049 		charlcd->char_conv = lcd_char_conv_ks0074;
1050 	else
1051 		charlcd->char_conv = NULL;
1052 
1053 	pin_to_bits(lcd.pins.e, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1054 		    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1055 	pin_to_bits(lcd.pins.rs, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1056 		    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1057 	pin_to_bits(lcd.pins.rw, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1058 		    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1059 	pin_to_bits(lcd.pins.bl, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1060 		    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1061 	pin_to_bits(lcd.pins.cl, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1062 		    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1063 	pin_to_bits(lcd.pins.da, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1064 		    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1065 
1066 	lcd.charlcd = charlcd;
1067 	lcd.initialized = true;
1068 }
1069 
1070 /*
1071  * These are the file operation function for user access to /dev/keypad
1072  */
1073 
1074 static ssize_t keypad_read(struct file *file,
1075 			   char __user *buf, size_t count, loff_t *ppos)
1076 {
1077 	unsigned i = *ppos;
1078 	char __user *tmp = buf;
1079 
1080 	if (keypad_buflen == 0) {
1081 		if (file->f_flags & O_NONBLOCK)
1082 			return -EAGAIN;
1083 
1084 		if (wait_event_interruptible(keypad_read_wait,
1085 					     keypad_buflen != 0))
1086 			return -EINTR;
1087 	}
1088 
1089 	for (; count-- > 0 && (keypad_buflen > 0);
1090 	     ++i, ++tmp, --keypad_buflen) {
1091 		put_user(keypad_buffer[keypad_start], tmp);
1092 		keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1093 	}
1094 	*ppos = i;
1095 
1096 	return tmp - buf;
1097 }
1098 
1099 static int keypad_open(struct inode *inode, struct file *file)
1100 {
1101 	int ret;
1102 
1103 	ret = -EBUSY;
1104 	if (!atomic_dec_and_test(&keypad_available))
1105 		goto fail;	/* open only once at a time */
1106 
1107 	ret = -EPERM;
1108 	if (file->f_mode & FMODE_WRITE)	/* device is read-only */
1109 		goto fail;
1110 
1111 	keypad_buflen = 0;	/* flush the buffer on opening */
1112 	return 0;
1113  fail:
1114 	atomic_inc(&keypad_available);
1115 	return ret;
1116 }
1117 
1118 static int keypad_release(struct inode *inode, struct file *file)
1119 {
1120 	atomic_inc(&keypad_available);
1121 	return 0;
1122 }
1123 
1124 static const struct file_operations keypad_fops = {
1125 	.read    = keypad_read,		/* read */
1126 	.open    = keypad_open,		/* open */
1127 	.release = keypad_release,	/* close */
1128 	.llseek  = default_llseek,
1129 };
1130 
1131 static struct miscdevice keypad_dev = {
1132 	.minor	= KEYPAD_MINOR,
1133 	.name	= "keypad",
1134 	.fops	= &keypad_fops,
1135 };
1136 
1137 static void keypad_send_key(const char *string, int max_len)
1138 {
1139 	/* send the key to the device only if a process is attached to it. */
1140 	if (!atomic_read(&keypad_available)) {
1141 		while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1142 			keypad_buffer[(keypad_start + keypad_buflen++) %
1143 				      KEYPAD_BUFFER] = *string++;
1144 		}
1145 		wake_up_interruptible(&keypad_read_wait);
1146 	}
1147 }
1148 
1149 /* this function scans all the bits involving at least one logical signal,
1150  * and puts the results in the bitfield "phys_read" (one bit per established
1151  * contact), and sets "phys_read_prev" to "phys_read".
1152  *
1153  * Note: to debounce input signals, we will only consider as switched a signal
1154  * which is stable across 2 measures. Signals which are different between two
1155  * reads will be kept as they previously were in their logical form (phys_prev).
1156  * A signal which has just switched will have a 1 in
1157  * (phys_read ^ phys_read_prev).
1158  */
1159 static void phys_scan_contacts(void)
1160 {
1161 	int bit, bitval;
1162 	char oldval;
1163 	char bitmask;
1164 	char gndmask;
1165 
1166 	phys_prev = phys_curr;
1167 	phys_read_prev = phys_read;
1168 	phys_read = 0;		/* flush all signals */
1169 
1170 	/* keep track of old value, with all outputs disabled */
1171 	oldval = r_dtr(pprt) | scan_mask_o;
1172 	/* activate all keyboard outputs (active low) */
1173 	w_dtr(pprt, oldval & ~scan_mask_o);
1174 
1175 	/* will have a 1 for each bit set to gnd */
1176 	bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1177 	/* disable all matrix signals */
1178 	w_dtr(pprt, oldval);
1179 
1180 	/* now that all outputs are cleared, the only active input bits are
1181 	 * directly connected to the ground
1182 	 */
1183 
1184 	/* 1 for each grounded input */
1185 	gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1186 
1187 	/* grounded inputs are signals 40-44 */
1188 	phys_read |= (__u64)gndmask << 40;
1189 
1190 	if (bitmask != gndmask) {
1191 		/*
1192 		 * since clearing the outputs changed some inputs, we know
1193 		 * that some input signals are currently tied to some outputs.
1194 		 * So we'll scan them.
1195 		 */
1196 		for (bit = 0; bit < 8; bit++) {
1197 			bitval = BIT(bit);
1198 
1199 			if (!(scan_mask_o & bitval))	/* skip unused bits */
1200 				continue;
1201 
1202 			w_dtr(pprt, oldval & ~bitval);	/* enable this output */
1203 			bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1204 			phys_read |= (__u64)bitmask << (5 * bit);
1205 		}
1206 		w_dtr(pprt, oldval);	/* disable all outputs */
1207 	}
1208 	/*
1209 	 * this is easy: use old bits when they are flapping,
1210 	 * use new ones when stable
1211 	 */
1212 	phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1213 		    (phys_read & ~(phys_read ^ phys_read_prev));
1214 }
1215 
1216 static inline int input_state_high(struct logical_input *input)
1217 {
1218 #if 0
1219 	/* FIXME:
1220 	 * this is an invalid test. It tries to catch
1221 	 * transitions from single-key to multiple-key, but
1222 	 * doesn't take into account the contacts polarity.
1223 	 * The only solution to the problem is to parse keys
1224 	 * from the most complex to the simplest combinations,
1225 	 * and mark them as 'caught' once a combination
1226 	 * matches, then unmatch it for all other ones.
1227 	 */
1228 
1229 	/* try to catch dangerous transitions cases :
1230 	 * someone adds a bit, so this signal was a false
1231 	 * positive resulting from a transition. We should
1232 	 * invalidate the signal immediately and not call the
1233 	 * release function.
1234 	 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1235 	 */
1236 	if (((phys_prev & input->mask) == input->value) &&
1237 	    ((phys_curr & input->mask) >  input->value)) {
1238 		input->state = INPUT_ST_LOW; /* invalidate */
1239 		return 1;
1240 	}
1241 #endif
1242 
1243 	if ((phys_curr & input->mask) == input->value) {
1244 		if ((input->type == INPUT_TYPE_STD) &&
1245 		    (input->high_timer == 0)) {
1246 			input->high_timer++;
1247 			if (input->u.std.press_fct)
1248 				input->u.std.press_fct(input->u.std.press_data);
1249 		} else if (input->type == INPUT_TYPE_KBD) {
1250 			/* will turn on the light */
1251 			keypressed = 1;
1252 
1253 			if (input->high_timer == 0) {
1254 				char *press_str = input->u.kbd.press_str;
1255 
1256 				if (press_str[0]) {
1257 					int s = sizeof(input->u.kbd.press_str);
1258 
1259 					keypad_send_key(press_str, s);
1260 				}
1261 			}
1262 
1263 			if (input->u.kbd.repeat_str[0]) {
1264 				char *repeat_str = input->u.kbd.repeat_str;
1265 
1266 				if (input->high_timer >= KEYPAD_REP_START) {
1267 					int s = sizeof(input->u.kbd.repeat_str);
1268 
1269 					input->high_timer -= KEYPAD_REP_DELAY;
1270 					keypad_send_key(repeat_str, s);
1271 				}
1272 				/* we will need to come back here soon */
1273 				inputs_stable = 0;
1274 			}
1275 
1276 			if (input->high_timer < 255)
1277 				input->high_timer++;
1278 		}
1279 		return 1;
1280 	}
1281 
1282 	/* else signal falling down. Let's fall through. */
1283 	input->state = INPUT_ST_FALLING;
1284 	input->fall_timer = 0;
1285 
1286 	return 0;
1287 }
1288 
1289 static inline void input_state_falling(struct logical_input *input)
1290 {
1291 #if 0
1292 	/* FIXME !!! same comment as in input_state_high */
1293 	if (((phys_prev & input->mask) == input->value) &&
1294 	    ((phys_curr & input->mask) >  input->value)) {
1295 		input->state = INPUT_ST_LOW;	/* invalidate */
1296 		return;
1297 	}
1298 #endif
1299 
1300 	if ((phys_curr & input->mask) == input->value) {
1301 		if (input->type == INPUT_TYPE_KBD) {
1302 			/* will turn on the light */
1303 			keypressed = 1;
1304 
1305 			if (input->u.kbd.repeat_str[0]) {
1306 				char *repeat_str = input->u.kbd.repeat_str;
1307 
1308 				if (input->high_timer >= KEYPAD_REP_START) {
1309 					int s = sizeof(input->u.kbd.repeat_str);
1310 
1311 					input->high_timer -= KEYPAD_REP_DELAY;
1312 					keypad_send_key(repeat_str, s);
1313 				}
1314 				/* we will need to come back here soon */
1315 				inputs_stable = 0;
1316 			}
1317 
1318 			if (input->high_timer < 255)
1319 				input->high_timer++;
1320 		}
1321 		input->state = INPUT_ST_HIGH;
1322 	} else if (input->fall_timer >= input->fall_time) {
1323 		/* call release event */
1324 		if (input->type == INPUT_TYPE_STD) {
1325 			void (*release_fct)(int) = input->u.std.release_fct;
1326 
1327 			if (release_fct)
1328 				release_fct(input->u.std.release_data);
1329 		} else if (input->type == INPUT_TYPE_KBD) {
1330 			char *release_str = input->u.kbd.release_str;
1331 
1332 			if (release_str[0]) {
1333 				int s = sizeof(input->u.kbd.release_str);
1334 
1335 				keypad_send_key(release_str, s);
1336 			}
1337 		}
1338 
1339 		input->state = INPUT_ST_LOW;
1340 	} else {
1341 		input->fall_timer++;
1342 		inputs_stable = 0;
1343 	}
1344 }
1345 
1346 static void panel_process_inputs(void)
1347 {
1348 	struct logical_input *input;
1349 
1350 	keypressed = 0;
1351 	inputs_stable = 1;
1352 	list_for_each_entry(input, &logical_inputs, list) {
1353 		switch (input->state) {
1354 		case INPUT_ST_LOW:
1355 			if ((phys_curr & input->mask) != input->value)
1356 				break;
1357 			/* if all needed ones were already set previously,
1358 			 * this means that this logical signal has been
1359 			 * activated by the releasing of another combined
1360 			 * signal, so we don't want to match.
1361 			 * eg: AB -(release B)-> A -(release A)-> 0 :
1362 			 *     don't match A.
1363 			 */
1364 			if ((phys_prev & input->mask) == input->value)
1365 				break;
1366 			input->rise_timer = 0;
1367 			input->state = INPUT_ST_RISING;
1368 			/* fall through */
1369 		case INPUT_ST_RISING:
1370 			if ((phys_curr & input->mask) != input->value) {
1371 				input->state = INPUT_ST_LOW;
1372 				break;
1373 			}
1374 			if (input->rise_timer < input->rise_time) {
1375 				inputs_stable = 0;
1376 				input->rise_timer++;
1377 				break;
1378 			}
1379 			input->high_timer = 0;
1380 			input->state = INPUT_ST_HIGH;
1381 			/* fall through */
1382 		case INPUT_ST_HIGH:
1383 			if (input_state_high(input))
1384 				break;
1385 			/* fall through */
1386 		case INPUT_ST_FALLING:
1387 			input_state_falling(input);
1388 		}
1389 	}
1390 }
1391 
1392 static void panel_scan_timer(struct timer_list *unused)
1393 {
1394 	if (keypad.enabled && keypad_initialized) {
1395 		if (spin_trylock_irq(&pprt_lock)) {
1396 			phys_scan_contacts();
1397 
1398 			/* no need for the parport anymore */
1399 			spin_unlock_irq(&pprt_lock);
1400 		}
1401 
1402 		if (!inputs_stable || phys_curr != phys_prev)
1403 			panel_process_inputs();
1404 	}
1405 
1406 	if (keypressed && lcd.enabled && lcd.initialized)
1407 		charlcd_poke(lcd.charlcd);
1408 
1409 	mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1410 }
1411 
1412 static void init_scan_timer(void)
1413 {
1414 	if (scan_timer.function)
1415 		return;		/* already started */
1416 
1417 	timer_setup(&scan_timer, panel_scan_timer, 0);
1418 	scan_timer.expires = jiffies + INPUT_POLL_TIME;
1419 	add_timer(&scan_timer);
1420 }
1421 
1422 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1423  * if <omask> or <imask> are non-null, they will be or'ed with the bits
1424  * corresponding to out and in bits respectively.
1425  * returns 1 if ok, 0 if error (in which case, nothing is written).
1426  */
1427 static u8 input_name2mask(const char *name, __u64 *mask, __u64 *value,
1428 			  u8 *imask, u8 *omask)
1429 {
1430 	const char sigtab[] = "EeSsPpAaBb";
1431 	u8 im, om;
1432 	__u64 m, v;
1433 
1434 	om = 0;
1435 	im = 0;
1436 	m = 0ULL;
1437 	v = 0ULL;
1438 	while (*name) {
1439 		int in, out, bit, neg;
1440 		const char *idx;
1441 
1442 		idx = strchr(sigtab, *name);
1443 		if (!idx)
1444 			return 0;	/* input name not found */
1445 
1446 		in = idx - sigtab;
1447 		neg = (in & 1);	/* odd (lower) names are negated */
1448 		in >>= 1;
1449 		im |= BIT(in);
1450 
1451 		name++;
1452 		if (*name >= '0' && *name <= '7') {
1453 			out = *name - '0';
1454 			om |= BIT(out);
1455 		} else if (*name == '-') {
1456 			out = 8;
1457 		} else {
1458 			return 0;	/* unknown bit name */
1459 		}
1460 
1461 		bit = (out * 5) + in;
1462 
1463 		m |= 1ULL << bit;
1464 		if (!neg)
1465 			v |= 1ULL << bit;
1466 		name++;
1467 	}
1468 	*mask = m;
1469 	*value = v;
1470 	if (imask)
1471 		*imask |= im;
1472 	if (omask)
1473 		*omask |= om;
1474 	return 1;
1475 }
1476 
1477 /* tries to bind a key to the signal name <name>. The key will send the
1478  * strings <press>, <repeat>, <release> for these respective events.
1479  * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1480  */
1481 static struct logical_input *panel_bind_key(const char *name, const char *press,
1482 					    const char *repeat,
1483 					    const char *release)
1484 {
1485 	struct logical_input *key;
1486 
1487 	key = kzalloc(sizeof(*key), GFP_KERNEL);
1488 	if (!key)
1489 		return NULL;
1490 
1491 	if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1492 			     &scan_mask_o)) {
1493 		kfree(key);
1494 		return NULL;
1495 	}
1496 
1497 	key->type = INPUT_TYPE_KBD;
1498 	key->state = INPUT_ST_LOW;
1499 	key->rise_time = 1;
1500 	key->fall_time = 1;
1501 
1502 	strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
1503 	strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
1504 	strncpy(key->u.kbd.release_str, release,
1505 		sizeof(key->u.kbd.release_str));
1506 	list_add(&key->list, &logical_inputs);
1507 	return key;
1508 }
1509 
1510 #if 0
1511 /* tries to bind a callback function to the signal name <name>. The function
1512  * <press_fct> will be called with the <press_data> arg when the signal is
1513  * activated, and so on for <release_fct>/<release_data>
1514  * Returns the pointer to the new signal if ok, NULL if the signal could not
1515  * be bound.
1516  */
1517 static struct logical_input *panel_bind_callback(char *name,
1518 						 void (*press_fct)(int),
1519 						 int press_data,
1520 						 void (*release_fct)(int),
1521 						 int release_data)
1522 {
1523 	struct logical_input *callback;
1524 
1525 	callback = kmalloc(sizeof(*callback), GFP_KERNEL);
1526 	if (!callback)
1527 		return NULL;
1528 
1529 	memset(callback, 0, sizeof(struct logical_input));
1530 	if (!input_name2mask(name, &callback->mask, &callback->value,
1531 			     &scan_mask_i, &scan_mask_o))
1532 		return NULL;
1533 
1534 	callback->type = INPUT_TYPE_STD;
1535 	callback->state = INPUT_ST_LOW;
1536 	callback->rise_time = 1;
1537 	callback->fall_time = 1;
1538 	callback->u.std.press_fct = press_fct;
1539 	callback->u.std.press_data = press_data;
1540 	callback->u.std.release_fct = release_fct;
1541 	callback->u.std.release_data = release_data;
1542 	list_add(&callback->list, &logical_inputs);
1543 	return callback;
1544 }
1545 #endif
1546 
1547 static void keypad_init(void)
1548 {
1549 	int keynum;
1550 
1551 	init_waitqueue_head(&keypad_read_wait);
1552 	keypad_buflen = 0;	/* flushes any eventual noisy keystroke */
1553 
1554 	/* Let's create all known keys */
1555 
1556 	for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
1557 		panel_bind_key(keypad_profile[keynum][0],
1558 			       keypad_profile[keynum][1],
1559 			       keypad_profile[keynum][2],
1560 			       keypad_profile[keynum][3]);
1561 	}
1562 
1563 	init_scan_timer();
1564 	keypad_initialized = 1;
1565 }
1566 
1567 /**************************************************/
1568 /* device initialization                          */
1569 /**************************************************/
1570 
1571 static void panel_attach(struct parport *port)
1572 {
1573 	struct pardev_cb panel_cb;
1574 
1575 	if (port->number != parport)
1576 		return;
1577 
1578 	if (pprt) {
1579 		pr_err("%s: port->number=%d parport=%d, already registered!\n",
1580 		       __func__, port->number, parport);
1581 		return;
1582 	}
1583 
1584 	memset(&panel_cb, 0, sizeof(panel_cb));
1585 	panel_cb.private = &pprt;
1586 	/* panel_cb.flags = 0 should be PARPORT_DEV_EXCL? */
1587 
1588 	pprt = parport_register_dev_model(port, "panel", &panel_cb, 0);
1589 	if (!pprt) {
1590 		pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
1591 		       __func__, port->number, parport);
1592 		return;
1593 	}
1594 
1595 	if (parport_claim(pprt)) {
1596 		pr_err("could not claim access to parport%d. Aborting.\n",
1597 		       parport);
1598 		goto err_unreg_device;
1599 	}
1600 
1601 	/* must init LCD first, just in case an IRQ from the keypad is
1602 	 * generated at keypad init
1603 	 */
1604 	if (lcd.enabled) {
1605 		lcd_init();
1606 		if (!lcd.charlcd || charlcd_register(lcd.charlcd))
1607 			goto err_unreg_device;
1608 	}
1609 
1610 	if (keypad.enabled) {
1611 		keypad_init();
1612 		if (misc_register(&keypad_dev))
1613 			goto err_lcd_unreg;
1614 	}
1615 	return;
1616 
1617 err_lcd_unreg:
1618 	if (scan_timer.function)
1619 		del_timer_sync(&scan_timer);
1620 	if (lcd.enabled)
1621 		charlcd_unregister(lcd.charlcd);
1622 err_unreg_device:
1623 	charlcd_free(lcd.charlcd);
1624 	lcd.charlcd = NULL;
1625 	parport_unregister_device(pprt);
1626 	pprt = NULL;
1627 }
1628 
1629 static void panel_detach(struct parport *port)
1630 {
1631 	if (port->number != parport)
1632 		return;
1633 
1634 	if (!pprt) {
1635 		pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
1636 		       __func__, port->number, parport);
1637 		return;
1638 	}
1639 	if (scan_timer.function)
1640 		del_timer_sync(&scan_timer);
1641 
1642 	if (keypad.enabled) {
1643 		misc_deregister(&keypad_dev);
1644 		keypad_initialized = 0;
1645 	}
1646 
1647 	if (lcd.enabled) {
1648 		charlcd_unregister(lcd.charlcd);
1649 		lcd.initialized = false;
1650 		charlcd_free(lcd.charlcd);
1651 		lcd.charlcd = NULL;
1652 	}
1653 
1654 	/* TODO: free all input signals */
1655 	parport_release(pprt);
1656 	parport_unregister_device(pprt);
1657 	pprt = NULL;
1658 }
1659 
1660 static struct parport_driver panel_driver = {
1661 	.name = "panel",
1662 	.match_port = panel_attach,
1663 	.detach = panel_detach,
1664 	.devmodel = true,
1665 };
1666 
1667 /* init function */
1668 static int __init panel_init_module(void)
1669 {
1670 	int selected_keypad_type = NOT_SET, err;
1671 
1672 	/* take care of an eventual profile */
1673 	switch (profile) {
1674 	case PANEL_PROFILE_CUSTOM:
1675 		/* custom profile */
1676 		selected_keypad_type = DEFAULT_KEYPAD_TYPE;
1677 		selected_lcd_type = DEFAULT_LCD_TYPE;
1678 		break;
1679 	case PANEL_PROFILE_OLD:
1680 		/* 8 bits, 2*16, old keypad */
1681 		selected_keypad_type = KEYPAD_TYPE_OLD;
1682 		selected_lcd_type = LCD_TYPE_OLD;
1683 
1684 		/* TODO: This two are a little hacky, sort it out later */
1685 		if (lcd_width == NOT_SET)
1686 			lcd_width = 16;
1687 		if (lcd_hwidth == NOT_SET)
1688 			lcd_hwidth = 16;
1689 		break;
1690 	case PANEL_PROFILE_NEW:
1691 		/* serial, 2*16, new keypad */
1692 		selected_keypad_type = KEYPAD_TYPE_NEW;
1693 		selected_lcd_type = LCD_TYPE_KS0074;
1694 		break;
1695 	case PANEL_PROFILE_HANTRONIX:
1696 		/* 8 bits, 2*16 hantronix-like, no keypad */
1697 		selected_keypad_type = KEYPAD_TYPE_NONE;
1698 		selected_lcd_type = LCD_TYPE_HANTRONIX;
1699 		break;
1700 	case PANEL_PROFILE_NEXCOM:
1701 		/* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
1702 		selected_keypad_type = KEYPAD_TYPE_NEXCOM;
1703 		selected_lcd_type = LCD_TYPE_NEXCOM;
1704 		break;
1705 	case PANEL_PROFILE_LARGE:
1706 		/* 8 bits, 2*40, old keypad */
1707 		selected_keypad_type = KEYPAD_TYPE_OLD;
1708 		selected_lcd_type = LCD_TYPE_OLD;
1709 		break;
1710 	}
1711 
1712 	/*
1713 	 * Overwrite selection with module param values (both keypad and lcd),
1714 	 * where the deprecated params have lower prio.
1715 	 */
1716 	if (keypad_enabled != NOT_SET)
1717 		selected_keypad_type = keypad_enabled;
1718 	if (keypad_type != NOT_SET)
1719 		selected_keypad_type = keypad_type;
1720 
1721 	keypad.enabled = (selected_keypad_type > 0);
1722 
1723 	if (lcd_enabled != NOT_SET)
1724 		selected_lcd_type = lcd_enabled;
1725 	if (lcd_type != NOT_SET)
1726 		selected_lcd_type = lcd_type;
1727 
1728 	lcd.enabled = (selected_lcd_type > 0);
1729 
1730 	if (lcd.enabled) {
1731 		/*
1732 		 * Init lcd struct with load-time values to preserve exact
1733 		 * current functionality (at least for now).
1734 		 */
1735 		lcd.charset = lcd_charset;
1736 		lcd.proto = lcd_proto;
1737 		lcd.pins.e = lcd_e_pin;
1738 		lcd.pins.rs = lcd_rs_pin;
1739 		lcd.pins.rw = lcd_rw_pin;
1740 		lcd.pins.cl = lcd_cl_pin;
1741 		lcd.pins.da = lcd_da_pin;
1742 		lcd.pins.bl = lcd_bl_pin;
1743 	}
1744 
1745 	switch (selected_keypad_type) {
1746 	case KEYPAD_TYPE_OLD:
1747 		keypad_profile = old_keypad_profile;
1748 		break;
1749 	case KEYPAD_TYPE_NEW:
1750 		keypad_profile = new_keypad_profile;
1751 		break;
1752 	case KEYPAD_TYPE_NEXCOM:
1753 		keypad_profile = nexcom_keypad_profile;
1754 		break;
1755 	default:
1756 		keypad_profile = NULL;
1757 		break;
1758 	}
1759 
1760 	if (!lcd.enabled && !keypad.enabled) {
1761 		/* no device enabled, let's exit */
1762 		pr_err("panel driver disabled.\n");
1763 		return -ENODEV;
1764 	}
1765 
1766 	err = parport_register_driver(&panel_driver);
1767 	if (err) {
1768 		pr_err("could not register with parport. Aborting.\n");
1769 		return err;
1770 	}
1771 
1772 	if (pprt)
1773 		pr_info("panel driver registered on parport%d (io=0x%lx).\n",
1774 			parport, pprt->port->base);
1775 	else
1776 		pr_info("panel driver not yet registered\n");
1777 	return 0;
1778 }
1779 
1780 static void __exit panel_cleanup_module(void)
1781 {
1782 	parport_unregister_driver(&panel_driver);
1783 }
1784 
1785 module_init(panel_init_module);
1786 module_exit(panel_cleanup_module);
1787 MODULE_AUTHOR("Willy Tarreau");
1788 MODULE_LICENSE("GPL");
1789 
1790 /*
1791  * Local variables:
1792  *  c-indent-level: 4
1793  *  tab-width: 8
1794  * End:
1795  */
1796