xref: /openbmc/linux/drivers/atm/nicstar.c (revision fb8d6c8d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * nicstar.c
4  *
5  * Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards.
6  *
7  * IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME.
8  *            It was taken from the frle-0.22 device driver.
9  *            As the file doesn't have a copyright notice, in the file
10  *            nicstarmac.copyright I put the copyright notice from the
11  *            frle-0.22 device driver.
12  *            Some code is based on the nicstar driver by M. Welsh.
13  *
14  * Author: Rui Prior (rprior@inescn.pt)
15  * PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999
16  *
17  *
18  * (C) INESC 1999
19  */
20 
21 /*
22  * IMPORTANT INFORMATION
23  *
24  * There are currently three types of spinlocks:
25  *
26  * 1 - Per card interrupt spinlock (to protect structures and such)
27  * 2 - Per SCQ scq spinlock
28  * 3 - Per card resource spinlock (to access registers, etc.)
29  *
30  * These must NEVER be grabbed in reverse order.
31  *
32  */
33 
34 /* Header files */
35 
36 #include <linux/module.h>
37 #include <linux/kernel.h>
38 #include <linux/skbuff.h>
39 #include <linux/atmdev.h>
40 #include <linux/atm.h>
41 #include <linux/pci.h>
42 #include <linux/dma-mapping.h>
43 #include <linux/types.h>
44 #include <linux/string.h>
45 #include <linux/delay.h>
46 #include <linux/init.h>
47 #include <linux/sched.h>
48 #include <linux/timer.h>
49 #include <linux/interrupt.h>
50 #include <linux/bitops.h>
51 #include <linux/slab.h>
52 #include <linux/idr.h>
53 #include <asm/io.h>
54 #include <linux/uaccess.h>
55 #include <linux/atomic.h>
56 #include <linux/etherdevice.h>
57 #include "nicstar.h"
58 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
59 #include "suni.h"
60 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
61 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
62 #include "idt77105.h"
63 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
64 
65 /* Additional code */
66 
67 #include "nicstarmac.c"
68 
69 /* Configurable parameters */
70 
71 #undef PHY_LOOPBACK
72 #undef TX_DEBUG
73 #undef RX_DEBUG
74 #undef GENERAL_DEBUG
75 #undef EXTRA_DEBUG
76 
77 /* Do not touch these */
78 
79 #ifdef TX_DEBUG
80 #define TXPRINTK(args...) printk(args)
81 #else
82 #define TXPRINTK(args...)
83 #endif /* TX_DEBUG */
84 
85 #ifdef RX_DEBUG
86 #define RXPRINTK(args...) printk(args)
87 #else
88 #define RXPRINTK(args...)
89 #endif /* RX_DEBUG */
90 
91 #ifdef GENERAL_DEBUG
92 #define PRINTK(args...) printk(args)
93 #else
94 #define PRINTK(args...)
95 #endif /* GENERAL_DEBUG */
96 
97 #ifdef EXTRA_DEBUG
98 #define XPRINTK(args...) printk(args)
99 #else
100 #define XPRINTK(args...)
101 #endif /* EXTRA_DEBUG */
102 
103 /* Macros */
104 
105 #define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ)
106 
107 #define NS_DELAY mdelay(1)
108 
109 #define PTR_DIFF(a, b)	((u32)((unsigned long)(a) - (unsigned long)(b)))
110 
111 #ifndef ATM_SKB
112 #define ATM_SKB(s) (&(s)->atm)
113 #endif
114 
115 #define scq_virt_to_bus(scq, p) \
116 		(scq->dma + ((unsigned long)(p) - (unsigned long)(scq)->org))
117 
118 /* Function declarations */
119 
120 static u32 ns_read_sram(ns_dev * card, u32 sram_address);
121 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
122 			  int count);
123 static int ns_init_card(int i, struct pci_dev *pcidev);
124 static void ns_init_card_error(ns_dev * card, int error);
125 static scq_info *get_scq(ns_dev *card, int size, u32 scd);
126 static void free_scq(ns_dev *card, scq_info * scq, struct atm_vcc *vcc);
127 static void push_rxbufs(ns_dev *, struct sk_buff *);
128 static irqreturn_t ns_irq_handler(int irq, void *dev_id);
129 static int ns_open(struct atm_vcc *vcc);
130 static void ns_close(struct atm_vcc *vcc);
131 static void fill_tst(ns_dev * card, int n, vc_map * vc);
132 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb);
133 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
134 		     struct sk_buff *skb);
135 static void process_tsq(ns_dev * card);
136 static void drain_scq(ns_dev * card, scq_info * scq, int pos);
137 static void process_rsq(ns_dev * card);
138 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe);
139 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb);
140 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count);
141 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb);
142 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb);
143 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb);
144 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page);
145 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg);
146 #ifdef EXTRA_DEBUG
147 static void which_list(ns_dev * card, struct sk_buff *skb);
148 #endif
149 static void ns_poll(struct timer_list *unused);
150 static void ns_phy_put(struct atm_dev *dev, unsigned char value,
151 		       unsigned long addr);
152 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr);
153 
154 /* Global variables */
155 
156 static struct ns_dev *cards[NS_MAX_CARDS];
157 static unsigned num_cards;
158 static const struct atmdev_ops atm_ops = {
159 	.open = ns_open,
160 	.close = ns_close,
161 	.ioctl = ns_ioctl,
162 	.send = ns_send,
163 	.phy_put = ns_phy_put,
164 	.phy_get = ns_phy_get,
165 	.proc_read = ns_proc_read,
166 	.owner = THIS_MODULE,
167 };
168 
169 static struct timer_list ns_timer;
170 static char *mac[NS_MAX_CARDS];
171 module_param_array(mac, charp, NULL, 0);
172 MODULE_LICENSE("GPL");
173 
174 /* Functions */
175 
176 static int nicstar_init_one(struct pci_dev *pcidev,
177 			    const struct pci_device_id *ent)
178 {
179 	static int index = -1;
180 	unsigned int error;
181 
182 	index++;
183 	cards[index] = NULL;
184 
185 	error = ns_init_card(index, pcidev);
186 	if (error) {
187 		cards[index--] = NULL;	/* don't increment index */
188 		goto err_out;
189 	}
190 
191 	return 0;
192 err_out:
193 	return -ENODEV;
194 }
195 
196 static void nicstar_remove_one(struct pci_dev *pcidev)
197 {
198 	int i, j;
199 	ns_dev *card = pci_get_drvdata(pcidev);
200 	struct sk_buff *hb;
201 	struct sk_buff *iovb;
202 	struct sk_buff *lb;
203 	struct sk_buff *sb;
204 
205 	i = card->index;
206 
207 	if (cards[i] == NULL)
208 		return;
209 
210 	if (card->atmdev->phy && card->atmdev->phy->stop)
211 		card->atmdev->phy->stop(card->atmdev);
212 
213 	/* Stop everything */
214 	writel(0x00000000, card->membase + CFG);
215 
216 	/* De-register device */
217 	atm_dev_deregister(card->atmdev);
218 
219 	/* Disable PCI device */
220 	pci_disable_device(pcidev);
221 
222 	/* Free up resources */
223 	j = 0;
224 	PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count);
225 	while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) {
226 		dev_kfree_skb_any(hb);
227 		j++;
228 	}
229 	PRINTK("nicstar%d: %d huge buffers freed.\n", i, j);
230 	j = 0;
231 	PRINTK("nicstar%d: freeing %d iovec buffers.\n", i,
232 	       card->iovpool.count);
233 	while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) {
234 		dev_kfree_skb_any(iovb);
235 		j++;
236 	}
237 	PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j);
238 	while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
239 		dev_kfree_skb_any(lb);
240 	while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
241 		dev_kfree_skb_any(sb);
242 	free_scq(card, card->scq0, NULL);
243 	for (j = 0; j < NS_FRSCD_NUM; j++) {
244 		if (card->scd2vc[j] != NULL)
245 			free_scq(card, card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc);
246 	}
247 	idr_destroy(&card->idr);
248 	dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
249 			  card->rsq.org, card->rsq.dma);
250 	dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
251 			  card->tsq.org, card->tsq.dma);
252 	free_irq(card->pcidev->irq, card);
253 	iounmap(card->membase);
254 	kfree(card);
255 }
256 
257 static const struct pci_device_id nicstar_pci_tbl[] = {
258 	{ PCI_VDEVICE(IDT, PCI_DEVICE_ID_IDT_IDT77201), 0 },
259 	{0,}			/* terminate list */
260 };
261 
262 MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl);
263 
264 static struct pci_driver nicstar_driver = {
265 	.name = "nicstar",
266 	.id_table = nicstar_pci_tbl,
267 	.probe = nicstar_init_one,
268 	.remove = nicstar_remove_one,
269 };
270 
271 static int __init nicstar_init(void)
272 {
273 	unsigned error = 0;	/* Initialized to remove compile warning */
274 
275 	XPRINTK("nicstar: nicstar_init() called.\n");
276 
277 	error = pci_register_driver(&nicstar_driver);
278 
279 	TXPRINTK("nicstar: TX debug enabled.\n");
280 	RXPRINTK("nicstar: RX debug enabled.\n");
281 	PRINTK("nicstar: General debug enabled.\n");
282 #ifdef PHY_LOOPBACK
283 	printk("nicstar: using PHY loopback.\n");
284 #endif /* PHY_LOOPBACK */
285 	XPRINTK("nicstar: nicstar_init() returned.\n");
286 
287 	if (!error) {
288 		timer_setup(&ns_timer, ns_poll, 0);
289 		ns_timer.expires = jiffies + NS_POLL_PERIOD;
290 		add_timer(&ns_timer);
291 	}
292 
293 	return error;
294 }
295 
296 static void __exit nicstar_cleanup(void)
297 {
298 	XPRINTK("nicstar: nicstar_cleanup() called.\n");
299 
300 	del_timer(&ns_timer);
301 
302 	pci_unregister_driver(&nicstar_driver);
303 
304 	XPRINTK("nicstar: nicstar_cleanup() returned.\n");
305 }
306 
307 static u32 ns_read_sram(ns_dev * card, u32 sram_address)
308 {
309 	unsigned long flags;
310 	u32 data;
311 	sram_address <<= 2;
312 	sram_address &= 0x0007FFFC;	/* address must be dword aligned */
313 	sram_address |= 0x50000000;	/* SRAM read command */
314 	spin_lock_irqsave(&card->res_lock, flags);
315 	while (CMD_BUSY(card)) ;
316 	writel(sram_address, card->membase + CMD);
317 	while (CMD_BUSY(card)) ;
318 	data = readl(card->membase + DR0);
319 	spin_unlock_irqrestore(&card->res_lock, flags);
320 	return data;
321 }
322 
323 static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
324 			  int count)
325 {
326 	unsigned long flags;
327 	int i, c;
328 	count--;		/* count range now is 0..3 instead of 1..4 */
329 	c = count;
330 	c <<= 2;		/* to use increments of 4 */
331 	spin_lock_irqsave(&card->res_lock, flags);
332 	while (CMD_BUSY(card)) ;
333 	for (i = 0; i <= c; i += 4)
334 		writel(*(value++), card->membase + i);
335 	/* Note: DR# registers are the first 4 dwords in nicstar's memspace,
336 	   so card->membase + DR0 == card->membase */
337 	sram_address <<= 2;
338 	sram_address &= 0x0007FFFC;
339 	sram_address |= (0x40000000 | count);
340 	writel(sram_address, card->membase + CMD);
341 	spin_unlock_irqrestore(&card->res_lock, flags);
342 }
343 
344 static int ns_init_card(int i, struct pci_dev *pcidev)
345 {
346 	int j;
347 	struct ns_dev *card = NULL;
348 	unsigned char pci_latency;
349 	unsigned error;
350 	u32 data;
351 	u32 u32d[4];
352 	u32 ns_cfg_rctsize;
353 	int bcount;
354 	unsigned long membase;
355 
356 	error = 0;
357 
358 	if (pci_enable_device(pcidev)) {
359 		printk("nicstar%d: can't enable PCI device\n", i);
360 		error = 2;
361 		ns_init_card_error(card, error);
362 		return error;
363 	}
364         if (dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32)) != 0) {
365                 printk(KERN_WARNING
366 		       "nicstar%d: No suitable DMA available.\n", i);
367 		error = 2;
368 		ns_init_card_error(card, error);
369 		return error;
370         }
371 
372 	card = kmalloc(sizeof(*card), GFP_KERNEL);
373 	if (!card) {
374 		printk
375 		    ("nicstar%d: can't allocate memory for device structure.\n",
376 		     i);
377 		error = 2;
378 		ns_init_card_error(card, error);
379 		return error;
380 	}
381 	cards[i] = card;
382 	spin_lock_init(&card->int_lock);
383 	spin_lock_init(&card->res_lock);
384 
385 	pci_set_drvdata(pcidev, card);
386 
387 	card->index = i;
388 	card->atmdev = NULL;
389 	card->pcidev = pcidev;
390 	membase = pci_resource_start(pcidev, 1);
391 	card->membase = ioremap(membase, NS_IOREMAP_SIZE);
392 	if (!card->membase) {
393 		printk("nicstar%d: can't ioremap() membase.\n", i);
394 		error = 3;
395 		ns_init_card_error(card, error);
396 		return error;
397 	}
398 	PRINTK("nicstar%d: membase at 0x%p.\n", i, card->membase);
399 
400 	pci_set_master(pcidev);
401 
402 	if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) {
403 		printk("nicstar%d: can't read PCI latency timer.\n", i);
404 		error = 6;
405 		ns_init_card_error(card, error);
406 		return error;
407 	}
408 #ifdef NS_PCI_LATENCY
409 	if (pci_latency < NS_PCI_LATENCY) {
410 		PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i,
411 		       NS_PCI_LATENCY);
412 		for (j = 1; j < 4; j++) {
413 			if (pci_write_config_byte
414 			    (pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0)
415 				break;
416 		}
417 		if (j == 4) {
418 			printk
419 			    ("nicstar%d: can't set PCI latency timer to %d.\n",
420 			     i, NS_PCI_LATENCY);
421 			error = 7;
422 			ns_init_card_error(card, error);
423 			return error;
424 		}
425 	}
426 #endif /* NS_PCI_LATENCY */
427 
428 	/* Clear timer overflow */
429 	data = readl(card->membase + STAT);
430 	if (data & NS_STAT_TMROF)
431 		writel(NS_STAT_TMROF, card->membase + STAT);
432 
433 	/* Software reset */
434 	writel(NS_CFG_SWRST, card->membase + CFG);
435 	NS_DELAY;
436 	writel(0x00000000, card->membase + CFG);
437 
438 	/* PHY reset */
439 	writel(0x00000008, card->membase + GP);
440 	NS_DELAY;
441 	writel(0x00000001, card->membase + GP);
442 	NS_DELAY;
443 	while (CMD_BUSY(card)) ;
444 	writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD);	/* Sync UTOPIA with SAR clock */
445 	NS_DELAY;
446 
447 	/* Detect PHY type */
448 	while (CMD_BUSY(card)) ;
449 	writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD);
450 	while (CMD_BUSY(card)) ;
451 	data = readl(card->membase + DR0);
452 	switch (data) {
453 	case 0x00000009:
454 		printk("nicstar%d: PHY seems to be 25 Mbps.\n", i);
455 		card->max_pcr = ATM_25_PCR;
456 		while (CMD_BUSY(card)) ;
457 		writel(0x00000008, card->membase + DR0);
458 		writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD);
459 		/* Clear an eventual pending interrupt */
460 		writel(NS_STAT_SFBQF, card->membase + STAT);
461 #ifdef PHY_LOOPBACK
462 		while (CMD_BUSY(card)) ;
463 		writel(0x00000022, card->membase + DR0);
464 		writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD);
465 #endif /* PHY_LOOPBACK */
466 		break;
467 	case 0x00000030:
468 	case 0x00000031:
469 		printk("nicstar%d: PHY seems to be 155 Mbps.\n", i);
470 		card->max_pcr = ATM_OC3_PCR;
471 #ifdef PHY_LOOPBACK
472 		while (CMD_BUSY(card)) ;
473 		writel(0x00000002, card->membase + DR0);
474 		writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD);
475 #endif /* PHY_LOOPBACK */
476 		break;
477 	default:
478 		printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data);
479 		error = 8;
480 		ns_init_card_error(card, error);
481 		return error;
482 	}
483 	writel(0x00000000, card->membase + GP);
484 
485 	/* Determine SRAM size */
486 	data = 0x76543210;
487 	ns_write_sram(card, 0x1C003, &data, 1);
488 	data = 0x89ABCDEF;
489 	ns_write_sram(card, 0x14003, &data, 1);
490 	if (ns_read_sram(card, 0x14003) == 0x89ABCDEF &&
491 	    ns_read_sram(card, 0x1C003) == 0x76543210)
492 		card->sram_size = 128;
493 	else
494 		card->sram_size = 32;
495 	PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size);
496 
497 	card->rct_size = NS_MAX_RCTSIZE;
498 
499 #if (NS_MAX_RCTSIZE == 4096)
500 	if (card->sram_size == 128)
501 		printk
502 		    ("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n",
503 		     i);
504 #elif (NS_MAX_RCTSIZE == 16384)
505 	if (card->sram_size == 32) {
506 		printk
507 		    ("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n",
508 		     i);
509 		card->rct_size = 4096;
510 	}
511 #else
512 #error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c
513 #endif
514 
515 	card->vpibits = NS_VPIBITS;
516 	if (card->rct_size == 4096)
517 		card->vcibits = 12 - NS_VPIBITS;
518 	else			/* card->rct_size == 16384 */
519 		card->vcibits = 14 - NS_VPIBITS;
520 
521 	/* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */
522 	if (mac[i] == NULL)
523 		nicstar_init_eprom(card->membase);
524 
525 	/* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */
526 	writel(0x00000000, card->membase + VPM);
527 
528 	/* Initialize TSQ */
529 	card->tsq.org = dma_alloc_coherent(&card->pcidev->dev,
530 					   NS_TSQSIZE + NS_TSQ_ALIGNMENT,
531 					   &card->tsq.dma, GFP_KERNEL);
532 	if (card->tsq.org == NULL) {
533 		printk("nicstar%d: can't allocate TSQ.\n", i);
534 		error = 10;
535 		ns_init_card_error(card, error);
536 		return error;
537 	}
538 	card->tsq.base = PTR_ALIGN(card->tsq.org, NS_TSQ_ALIGNMENT);
539 	card->tsq.next = card->tsq.base;
540 	card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1);
541 	for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++)
542 		ns_tsi_init(card->tsq.base + j);
543 	writel(0x00000000, card->membase + TSQH);
544 	writel(ALIGN(card->tsq.dma, NS_TSQ_ALIGNMENT), card->membase + TSQB);
545 	PRINTK("nicstar%d: TSQ base at 0x%p.\n", i, card->tsq.base);
546 
547 	/* Initialize RSQ */
548 	card->rsq.org = dma_alloc_coherent(&card->pcidev->dev,
549 					   NS_RSQSIZE + NS_RSQ_ALIGNMENT,
550 					   &card->rsq.dma, GFP_KERNEL);
551 	if (card->rsq.org == NULL) {
552 		printk("nicstar%d: can't allocate RSQ.\n", i);
553 		error = 11;
554 		ns_init_card_error(card, error);
555 		return error;
556 	}
557 	card->rsq.base = PTR_ALIGN(card->rsq.org, NS_RSQ_ALIGNMENT);
558 	card->rsq.next = card->rsq.base;
559 	card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1);
560 	for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++)
561 		ns_rsqe_init(card->rsq.base + j);
562 	writel(0x00000000, card->membase + RSQH);
563 	writel(ALIGN(card->rsq.dma, NS_RSQ_ALIGNMENT), card->membase + RSQB);
564 	PRINTK("nicstar%d: RSQ base at 0x%p.\n", i, card->rsq.base);
565 
566 	/* Initialize SCQ0, the only VBR SCQ used */
567 	card->scq1 = NULL;
568 	card->scq2 = NULL;
569 	card->scq0 = get_scq(card, VBR_SCQSIZE, NS_VRSCD0);
570 	if (card->scq0 == NULL) {
571 		printk("nicstar%d: can't get SCQ0.\n", i);
572 		error = 12;
573 		ns_init_card_error(card, error);
574 		return error;
575 	}
576 	u32d[0] = scq_virt_to_bus(card->scq0, card->scq0->base);
577 	u32d[1] = (u32) 0x00000000;
578 	u32d[2] = (u32) 0xffffffff;
579 	u32d[3] = (u32) 0x00000000;
580 	ns_write_sram(card, NS_VRSCD0, u32d, 4);
581 	ns_write_sram(card, NS_VRSCD1, u32d, 4);	/* These last two won't be used */
582 	ns_write_sram(card, NS_VRSCD2, u32d, 4);	/* but are initialized, just in case... */
583 	card->scq0->scd = NS_VRSCD0;
584 	PRINTK("nicstar%d: VBR-SCQ0 base at 0x%p.\n", i, card->scq0->base);
585 
586 	/* Initialize TSTs */
587 	card->tst_addr = NS_TST0;
588 	card->tst_free_entries = NS_TST_NUM_ENTRIES;
589 	data = NS_TST_OPCODE_VARIABLE;
590 	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
591 		ns_write_sram(card, NS_TST0 + j, &data, 1);
592 	data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0);
593 	ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1);
594 	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
595 		ns_write_sram(card, NS_TST1 + j, &data, 1);
596 	data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1);
597 	ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1);
598 	for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
599 		card->tste2vc[j] = NULL;
600 	writel(NS_TST0 << 2, card->membase + TSTB);
601 
602 	/* Initialize RCT. AAL type is set on opening the VC. */
603 #ifdef RCQ_SUPPORT
604 	u32d[0] = NS_RCTE_RAWCELLINTEN;
605 #else
606 	u32d[0] = 0x00000000;
607 #endif /* RCQ_SUPPORT */
608 	u32d[1] = 0x00000000;
609 	u32d[2] = 0x00000000;
610 	u32d[3] = 0xFFFFFFFF;
611 	for (j = 0; j < card->rct_size; j++)
612 		ns_write_sram(card, j * 4, u32d, 4);
613 
614 	memset(card->vcmap, 0, sizeof(card->vcmap));
615 
616 	for (j = 0; j < NS_FRSCD_NUM; j++)
617 		card->scd2vc[j] = NULL;
618 
619 	/* Initialize buffer levels */
620 	card->sbnr.min = MIN_SB;
621 	card->sbnr.init = NUM_SB;
622 	card->sbnr.max = MAX_SB;
623 	card->lbnr.min = MIN_LB;
624 	card->lbnr.init = NUM_LB;
625 	card->lbnr.max = MAX_LB;
626 	card->iovnr.min = MIN_IOVB;
627 	card->iovnr.init = NUM_IOVB;
628 	card->iovnr.max = MAX_IOVB;
629 	card->hbnr.min = MIN_HB;
630 	card->hbnr.init = NUM_HB;
631 	card->hbnr.max = MAX_HB;
632 
633 	card->sm_handle = NULL;
634 	card->sm_addr = 0x00000000;
635 	card->lg_handle = NULL;
636 	card->lg_addr = 0x00000000;
637 
638 	card->efbie = 1;	/* To prevent push_rxbufs from enabling the interrupt */
639 
640 	idr_init(&card->idr);
641 
642 	/* Pre-allocate some huge buffers */
643 	skb_queue_head_init(&card->hbpool.queue);
644 	card->hbpool.count = 0;
645 	for (j = 0; j < NUM_HB; j++) {
646 		struct sk_buff *hb;
647 		hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
648 		if (hb == NULL) {
649 			printk
650 			    ("nicstar%d: can't allocate %dth of %d huge buffers.\n",
651 			     i, j, NUM_HB);
652 			error = 13;
653 			ns_init_card_error(card, error);
654 			return error;
655 		}
656 		NS_PRV_BUFTYPE(hb) = BUF_NONE;
657 		skb_queue_tail(&card->hbpool.queue, hb);
658 		card->hbpool.count++;
659 	}
660 
661 	/* Allocate large buffers */
662 	skb_queue_head_init(&card->lbpool.queue);
663 	card->lbpool.count = 0;	/* Not used */
664 	for (j = 0; j < NUM_LB; j++) {
665 		struct sk_buff *lb;
666 		lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
667 		if (lb == NULL) {
668 			printk
669 			    ("nicstar%d: can't allocate %dth of %d large buffers.\n",
670 			     i, j, NUM_LB);
671 			error = 14;
672 			ns_init_card_error(card, error);
673 			return error;
674 		}
675 		NS_PRV_BUFTYPE(lb) = BUF_LG;
676 		skb_queue_tail(&card->lbpool.queue, lb);
677 		skb_reserve(lb, NS_SMBUFSIZE);
678 		push_rxbufs(card, lb);
679 		/* Due to the implementation of push_rxbufs() this is 1, not 0 */
680 		if (j == 1) {
681 			card->rcbuf = lb;
682 			card->rawcell = (struct ns_rcqe *) lb->data;
683 			card->rawch = NS_PRV_DMA(lb);
684 		}
685 	}
686 	/* Test for strange behaviour which leads to crashes */
687 	if ((bcount =
688 	     ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) {
689 		printk
690 		    ("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n",
691 		     i, j, bcount);
692 		error = 14;
693 		ns_init_card_error(card, error);
694 		return error;
695 	}
696 
697 	/* Allocate small buffers */
698 	skb_queue_head_init(&card->sbpool.queue);
699 	card->sbpool.count = 0;	/* Not used */
700 	for (j = 0; j < NUM_SB; j++) {
701 		struct sk_buff *sb;
702 		sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
703 		if (sb == NULL) {
704 			printk
705 			    ("nicstar%d: can't allocate %dth of %d small buffers.\n",
706 			     i, j, NUM_SB);
707 			error = 15;
708 			ns_init_card_error(card, error);
709 			return error;
710 		}
711 		NS_PRV_BUFTYPE(sb) = BUF_SM;
712 		skb_queue_tail(&card->sbpool.queue, sb);
713 		skb_reserve(sb, NS_AAL0_HEADER);
714 		push_rxbufs(card, sb);
715 	}
716 	/* Test for strange behaviour which leads to crashes */
717 	if ((bcount =
718 	     ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) {
719 		printk
720 		    ("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n",
721 		     i, j, bcount);
722 		error = 15;
723 		ns_init_card_error(card, error);
724 		return error;
725 	}
726 
727 	/* Allocate iovec buffers */
728 	skb_queue_head_init(&card->iovpool.queue);
729 	card->iovpool.count = 0;
730 	for (j = 0; j < NUM_IOVB; j++) {
731 		struct sk_buff *iovb;
732 		iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
733 		if (iovb == NULL) {
734 			printk
735 			    ("nicstar%d: can't allocate %dth of %d iovec buffers.\n",
736 			     i, j, NUM_IOVB);
737 			error = 16;
738 			ns_init_card_error(card, error);
739 			return error;
740 		}
741 		NS_PRV_BUFTYPE(iovb) = BUF_NONE;
742 		skb_queue_tail(&card->iovpool.queue, iovb);
743 		card->iovpool.count++;
744 	}
745 
746 	/* Configure NICStAR */
747 	if (card->rct_size == 4096)
748 		ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES;
749 	else			/* (card->rct_size == 16384) */
750 		ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES;
751 
752 	card->efbie = 1;
753 
754 	card->intcnt = 0;
755 	if (request_irq
756 	    (pcidev->irq, &ns_irq_handler, IRQF_SHARED, "nicstar", card) != 0) {
757 		printk("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq);
758 		error = 9;
759 		ns_init_card_error(card, error);
760 		return error;
761 	}
762 
763 	/* Register device */
764 	card->atmdev = atm_dev_register("nicstar", &card->pcidev->dev, &atm_ops,
765 					-1, NULL);
766 	if (card->atmdev == NULL) {
767 		printk("nicstar%d: can't register device.\n", i);
768 		error = 17;
769 		ns_init_card_error(card, error);
770 		return error;
771 	}
772 
773 	if (mac[i] == NULL || !mac_pton(mac[i], card->atmdev->esi)) {
774 		nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET,
775 				   card->atmdev->esi, 6);
776 		if (ether_addr_equal(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00")) {
777 			nicstar_read_eprom(card->membase,
778 					   NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT,
779 					   card->atmdev->esi, 6);
780 		}
781 	}
782 
783 	printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi);
784 
785 	card->atmdev->dev_data = card;
786 	card->atmdev->ci_range.vpi_bits = card->vpibits;
787 	card->atmdev->ci_range.vci_bits = card->vcibits;
788 	card->atmdev->link_rate = card->max_pcr;
789 	card->atmdev->phy = NULL;
790 
791 #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
792 	if (card->max_pcr == ATM_OC3_PCR)
793 		suni_init(card->atmdev);
794 #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
795 
796 #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
797 	if (card->max_pcr == ATM_25_PCR)
798 		idt77105_init(card->atmdev);
799 #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
800 
801 	if (card->atmdev->phy && card->atmdev->phy->start)
802 		card->atmdev->phy->start(card->atmdev);
803 
804 	writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE |	/* Only enabled if RCQ_SUPPORT */
805 	       NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT |	/* Only enabled if ENABLE_TSQFIE */
806 	       NS_CFG_PHYIE, card->membase + CFG);
807 
808 	num_cards++;
809 
810 	return error;
811 }
812 
813 static void ns_init_card_error(ns_dev *card, int error)
814 {
815 	if (error >= 17) {
816 		writel(0x00000000, card->membase + CFG);
817 	}
818 	if (error >= 16) {
819 		struct sk_buff *iovb;
820 		while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL)
821 			dev_kfree_skb_any(iovb);
822 	}
823 	if (error >= 15) {
824 		struct sk_buff *sb;
825 		while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
826 			dev_kfree_skb_any(sb);
827 		free_scq(card, card->scq0, NULL);
828 	}
829 	if (error >= 14) {
830 		struct sk_buff *lb;
831 		while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
832 			dev_kfree_skb_any(lb);
833 	}
834 	if (error >= 13) {
835 		struct sk_buff *hb;
836 		while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL)
837 			dev_kfree_skb_any(hb);
838 	}
839 	if (error >= 12) {
840 		kfree(card->rsq.org);
841 	}
842 	if (error >= 11) {
843 		kfree(card->tsq.org);
844 	}
845 	if (error >= 10) {
846 		free_irq(card->pcidev->irq, card);
847 	}
848 	if (error >= 4) {
849 		iounmap(card->membase);
850 	}
851 	if (error >= 3) {
852 		pci_disable_device(card->pcidev);
853 		kfree(card);
854 	}
855 }
856 
857 static scq_info *get_scq(ns_dev *card, int size, u32 scd)
858 {
859 	scq_info *scq;
860 	int i;
861 
862 	if (size != VBR_SCQSIZE && size != CBR_SCQSIZE)
863 		return NULL;
864 
865 	scq = kmalloc(sizeof(*scq), GFP_KERNEL);
866 	if (!scq)
867 		return NULL;
868         scq->org = dma_alloc_coherent(&card->pcidev->dev,
869 				      2 * size,  &scq->dma, GFP_KERNEL);
870 	if (!scq->org) {
871 		kfree(scq);
872 		return NULL;
873 	}
874 	scq->skb = kmalloc_array(size / NS_SCQE_SIZE,
875 				 sizeof(*scq->skb),
876 				 GFP_KERNEL);
877 	if (!scq->skb) {
878 		dma_free_coherent(&card->pcidev->dev,
879 				  2 * size, scq->org, scq->dma);
880 		kfree(scq);
881 		return NULL;
882 	}
883 	scq->num_entries = size / NS_SCQE_SIZE;
884 	scq->base = PTR_ALIGN(scq->org, size);
885 	scq->next = scq->base;
886 	scq->last = scq->base + (scq->num_entries - 1);
887 	scq->tail = scq->last;
888 	scq->scd = scd;
889 	scq->num_entries = size / NS_SCQE_SIZE;
890 	scq->tbd_count = 0;
891 	init_waitqueue_head(&scq->scqfull_waitq);
892 	scq->full = 0;
893 	spin_lock_init(&scq->lock);
894 
895 	for (i = 0; i < scq->num_entries; i++)
896 		scq->skb[i] = NULL;
897 
898 	return scq;
899 }
900 
901 /* For variable rate SCQ vcc must be NULL */
902 static void free_scq(ns_dev *card, scq_info *scq, struct atm_vcc *vcc)
903 {
904 	int i;
905 
906 	if (scq->num_entries == VBR_SCQ_NUM_ENTRIES)
907 		for (i = 0; i < scq->num_entries; i++) {
908 			if (scq->skb[i] != NULL) {
909 				vcc = ATM_SKB(scq->skb[i])->vcc;
910 				if (vcc->pop != NULL)
911 					vcc->pop(vcc, scq->skb[i]);
912 				else
913 					dev_kfree_skb_any(scq->skb[i]);
914 			}
915 	} else {		/* vcc must be != NULL */
916 
917 		if (vcc == NULL) {
918 			printk
919 			    ("nicstar: free_scq() called with vcc == NULL for fixed rate scq.");
920 			for (i = 0; i < scq->num_entries; i++)
921 				dev_kfree_skb_any(scq->skb[i]);
922 		} else
923 			for (i = 0; i < scq->num_entries; i++) {
924 				if (scq->skb[i] != NULL) {
925 					if (vcc->pop != NULL)
926 						vcc->pop(vcc, scq->skb[i]);
927 					else
928 						dev_kfree_skb_any(scq->skb[i]);
929 				}
930 			}
931 	}
932 	kfree(scq->skb);
933 	dma_free_coherent(&card->pcidev->dev,
934 			  2 * (scq->num_entries == VBR_SCQ_NUM_ENTRIES ?
935 			       VBR_SCQSIZE : CBR_SCQSIZE),
936 			  scq->org, scq->dma);
937 	kfree(scq);
938 }
939 
940 /* The handles passed must be pointers to the sk_buff containing the small
941    or large buffer(s) cast to u32. */
942 static void push_rxbufs(ns_dev * card, struct sk_buff *skb)
943 {
944 	struct sk_buff *handle1, *handle2;
945 	int id1, id2;
946 	u32 addr1, addr2;
947 	u32 stat;
948 	unsigned long flags;
949 
950 	/* *BARF* */
951 	handle2 = NULL;
952 	addr2 = 0;
953 	handle1 = skb;
954 	addr1 = dma_map_single(&card->pcidev->dev,
955 			       skb->data,
956 			       (NS_PRV_BUFTYPE(skb) == BUF_SM
957 				? NS_SMSKBSIZE : NS_LGSKBSIZE),
958 			       DMA_TO_DEVICE);
959 	NS_PRV_DMA(skb) = addr1; /* save so we can unmap later */
960 
961 #ifdef GENERAL_DEBUG
962 	if (!addr1)
963 		printk("nicstar%d: push_rxbufs called with addr1 = 0.\n",
964 		       card->index);
965 #endif /* GENERAL_DEBUG */
966 
967 	stat = readl(card->membase + STAT);
968 	card->sbfqc = ns_stat_sfbqc_get(stat);
969 	card->lbfqc = ns_stat_lfbqc_get(stat);
970 	if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
971 		if (!addr2) {
972 			if (card->sm_addr) {
973 				addr2 = card->sm_addr;
974 				handle2 = card->sm_handle;
975 				card->sm_addr = 0x00000000;
976 				card->sm_handle = NULL;
977 			} else {	/* (!sm_addr) */
978 
979 				card->sm_addr = addr1;
980 				card->sm_handle = handle1;
981 			}
982 		}
983 	} else {		/* buf_type == BUF_LG */
984 
985 		if (!addr2) {
986 			if (card->lg_addr) {
987 				addr2 = card->lg_addr;
988 				handle2 = card->lg_handle;
989 				card->lg_addr = 0x00000000;
990 				card->lg_handle = NULL;
991 			} else {	/* (!lg_addr) */
992 
993 				card->lg_addr = addr1;
994 				card->lg_handle = handle1;
995 			}
996 		}
997 	}
998 
999 	if (addr2) {
1000 		if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
1001 			if (card->sbfqc >= card->sbnr.max) {
1002 				skb_unlink(handle1, &card->sbpool.queue);
1003 				dev_kfree_skb_any(handle1);
1004 				skb_unlink(handle2, &card->sbpool.queue);
1005 				dev_kfree_skb_any(handle2);
1006 				return;
1007 			} else
1008 				card->sbfqc += 2;
1009 		} else {	/* (buf_type == BUF_LG) */
1010 
1011 			if (card->lbfqc >= card->lbnr.max) {
1012 				skb_unlink(handle1, &card->lbpool.queue);
1013 				dev_kfree_skb_any(handle1);
1014 				skb_unlink(handle2, &card->lbpool.queue);
1015 				dev_kfree_skb_any(handle2);
1016 				return;
1017 			} else
1018 				card->lbfqc += 2;
1019 		}
1020 
1021 		id1 = idr_alloc(&card->idr, handle1, 0, 0, GFP_ATOMIC);
1022 		if (id1 < 0)
1023 			goto out;
1024 
1025 		id2 = idr_alloc(&card->idr, handle2, 0, 0, GFP_ATOMIC);
1026 		if (id2 < 0)
1027 			goto out;
1028 
1029 		spin_lock_irqsave(&card->res_lock, flags);
1030 		while (CMD_BUSY(card)) ;
1031 		writel(addr2, card->membase + DR3);
1032 		writel(id2, card->membase + DR2);
1033 		writel(addr1, card->membase + DR1);
1034 		writel(id1, card->membase + DR0);
1035 		writel(NS_CMD_WRITE_FREEBUFQ | NS_PRV_BUFTYPE(skb),
1036 		       card->membase + CMD);
1037 		spin_unlock_irqrestore(&card->res_lock, flags);
1038 
1039 		XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n",
1040 			card->index,
1041 			(NS_PRV_BUFTYPE(skb) == BUF_SM ? "small" : "large"),
1042 			addr1, addr2);
1043 	}
1044 
1045 	if (!card->efbie && card->sbfqc >= card->sbnr.min &&
1046 	    card->lbfqc >= card->lbnr.min) {
1047 		card->efbie = 1;
1048 		writel((readl(card->membase + CFG) | NS_CFG_EFBIE),
1049 		       card->membase + CFG);
1050 	}
1051 
1052 out:
1053 	return;
1054 }
1055 
1056 static irqreturn_t ns_irq_handler(int irq, void *dev_id)
1057 {
1058 	u32 stat_r;
1059 	ns_dev *card;
1060 	struct atm_dev *dev;
1061 	unsigned long flags;
1062 
1063 	card = (ns_dev *) dev_id;
1064 	dev = card->atmdev;
1065 	card->intcnt++;
1066 
1067 	PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index);
1068 
1069 	spin_lock_irqsave(&card->int_lock, flags);
1070 
1071 	stat_r = readl(card->membase + STAT);
1072 
1073 	/* Transmit Status Indicator has been written to T. S. Queue */
1074 	if (stat_r & NS_STAT_TSIF) {
1075 		TXPRINTK("nicstar%d: TSI interrupt\n", card->index);
1076 		process_tsq(card);
1077 		writel(NS_STAT_TSIF, card->membase + STAT);
1078 	}
1079 
1080 	/* Incomplete CS-PDU has been transmitted */
1081 	if (stat_r & NS_STAT_TXICP) {
1082 		writel(NS_STAT_TXICP, card->membase + STAT);
1083 		TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n",
1084 			 card->index);
1085 	}
1086 
1087 	/* Transmit Status Queue 7/8 full */
1088 	if (stat_r & NS_STAT_TSQF) {
1089 		writel(NS_STAT_TSQF, card->membase + STAT);
1090 		PRINTK("nicstar%d: TSQ full.\n", card->index);
1091 		process_tsq(card);
1092 	}
1093 
1094 	/* Timer overflow */
1095 	if (stat_r & NS_STAT_TMROF) {
1096 		writel(NS_STAT_TMROF, card->membase + STAT);
1097 		PRINTK("nicstar%d: Timer overflow.\n", card->index);
1098 	}
1099 
1100 	/* PHY device interrupt signal active */
1101 	if (stat_r & NS_STAT_PHYI) {
1102 		writel(NS_STAT_PHYI, card->membase + STAT);
1103 		PRINTK("nicstar%d: PHY interrupt.\n", card->index);
1104 		if (dev->phy && dev->phy->interrupt) {
1105 			dev->phy->interrupt(dev);
1106 		}
1107 	}
1108 
1109 	/* Small Buffer Queue is full */
1110 	if (stat_r & NS_STAT_SFBQF) {
1111 		writel(NS_STAT_SFBQF, card->membase + STAT);
1112 		printk("nicstar%d: Small free buffer queue is full.\n",
1113 		       card->index);
1114 	}
1115 
1116 	/* Large Buffer Queue is full */
1117 	if (stat_r & NS_STAT_LFBQF) {
1118 		writel(NS_STAT_LFBQF, card->membase + STAT);
1119 		printk("nicstar%d: Large free buffer queue is full.\n",
1120 		       card->index);
1121 	}
1122 
1123 	/* Receive Status Queue is full */
1124 	if (stat_r & NS_STAT_RSQF) {
1125 		writel(NS_STAT_RSQF, card->membase + STAT);
1126 		printk("nicstar%d: RSQ full.\n", card->index);
1127 		process_rsq(card);
1128 	}
1129 
1130 	/* Complete CS-PDU received */
1131 	if (stat_r & NS_STAT_EOPDU) {
1132 		RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index);
1133 		process_rsq(card);
1134 		writel(NS_STAT_EOPDU, card->membase + STAT);
1135 	}
1136 
1137 	/* Raw cell received */
1138 	if (stat_r & NS_STAT_RAWCF) {
1139 		writel(NS_STAT_RAWCF, card->membase + STAT);
1140 #ifndef RCQ_SUPPORT
1141 		printk("nicstar%d: Raw cell received and no support yet...\n",
1142 		       card->index);
1143 #endif /* RCQ_SUPPORT */
1144 		/* NOTE: the following procedure may keep a raw cell pending until the
1145 		   next interrupt. As this preliminary support is only meant to
1146 		   avoid buffer leakage, this is not an issue. */
1147 		while (readl(card->membase + RAWCT) != card->rawch) {
1148 
1149 			if (ns_rcqe_islast(card->rawcell)) {
1150 				struct sk_buff *oldbuf;
1151 
1152 				oldbuf = card->rcbuf;
1153 				card->rcbuf = idr_find(&card->idr,
1154 						       ns_rcqe_nextbufhandle(card->rawcell));
1155 				card->rawch = NS_PRV_DMA(card->rcbuf);
1156 				card->rawcell = (struct ns_rcqe *)
1157 						card->rcbuf->data;
1158 				recycle_rx_buf(card, oldbuf);
1159 			} else {
1160 				card->rawch += NS_RCQE_SIZE;
1161 				card->rawcell++;
1162 			}
1163 		}
1164 	}
1165 
1166 	/* Small buffer queue is empty */
1167 	if (stat_r & NS_STAT_SFBQE) {
1168 		int i;
1169 		struct sk_buff *sb;
1170 
1171 		writel(NS_STAT_SFBQE, card->membase + STAT);
1172 		printk("nicstar%d: Small free buffer queue empty.\n",
1173 		       card->index);
1174 		for (i = 0; i < card->sbnr.min; i++) {
1175 			sb = dev_alloc_skb(NS_SMSKBSIZE);
1176 			if (sb == NULL) {
1177 				writel(readl(card->membase + CFG) &
1178 				       ~NS_CFG_EFBIE, card->membase + CFG);
1179 				card->efbie = 0;
1180 				break;
1181 			}
1182 			NS_PRV_BUFTYPE(sb) = BUF_SM;
1183 			skb_queue_tail(&card->sbpool.queue, sb);
1184 			skb_reserve(sb, NS_AAL0_HEADER);
1185 			push_rxbufs(card, sb);
1186 		}
1187 		card->sbfqc = i;
1188 		process_rsq(card);
1189 	}
1190 
1191 	/* Large buffer queue empty */
1192 	if (stat_r & NS_STAT_LFBQE) {
1193 		int i;
1194 		struct sk_buff *lb;
1195 
1196 		writel(NS_STAT_LFBQE, card->membase + STAT);
1197 		printk("nicstar%d: Large free buffer queue empty.\n",
1198 		       card->index);
1199 		for (i = 0; i < card->lbnr.min; i++) {
1200 			lb = dev_alloc_skb(NS_LGSKBSIZE);
1201 			if (lb == NULL) {
1202 				writel(readl(card->membase + CFG) &
1203 				       ~NS_CFG_EFBIE, card->membase + CFG);
1204 				card->efbie = 0;
1205 				break;
1206 			}
1207 			NS_PRV_BUFTYPE(lb) = BUF_LG;
1208 			skb_queue_tail(&card->lbpool.queue, lb);
1209 			skb_reserve(lb, NS_SMBUFSIZE);
1210 			push_rxbufs(card, lb);
1211 		}
1212 		card->lbfqc = i;
1213 		process_rsq(card);
1214 	}
1215 
1216 	/* Receive Status Queue is 7/8 full */
1217 	if (stat_r & NS_STAT_RSQAF) {
1218 		writel(NS_STAT_RSQAF, card->membase + STAT);
1219 		RXPRINTK("nicstar%d: RSQ almost full.\n", card->index);
1220 		process_rsq(card);
1221 	}
1222 
1223 	spin_unlock_irqrestore(&card->int_lock, flags);
1224 	PRINTK("nicstar%d: end of interrupt service\n", card->index);
1225 	return IRQ_HANDLED;
1226 }
1227 
1228 static int ns_open(struct atm_vcc *vcc)
1229 {
1230 	ns_dev *card;
1231 	vc_map *vc;
1232 	unsigned long tmpl, modl;
1233 	int tcr, tcra;		/* target cell rate, and absolute value */
1234 	int n = 0;		/* Number of entries in the TST. Initialized to remove
1235 				   the compiler warning. */
1236 	u32 u32d[4];
1237 	int frscdi = 0;		/* Index of the SCD. Initialized to remove the compiler
1238 				   warning. How I wish compilers were clever enough to
1239 				   tell which variables can truly be used
1240 				   uninitialized... */
1241 	int inuse;		/* tx or rx vc already in use by another vcc */
1242 	short vpi = vcc->vpi;
1243 	int vci = vcc->vci;
1244 
1245 	card = (ns_dev *) vcc->dev->dev_data;
1246 	PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi,
1247 	       vci);
1248 	if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
1249 		PRINTK("nicstar%d: unsupported AAL.\n", card->index);
1250 		return -EINVAL;
1251 	}
1252 
1253 	vc = &(card->vcmap[vpi << card->vcibits | vci]);
1254 	vcc->dev_data = vc;
1255 
1256 	inuse = 0;
1257 	if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx)
1258 		inuse = 1;
1259 	if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx)
1260 		inuse += 2;
1261 	if (inuse) {
1262 		printk("nicstar%d: %s vci already in use.\n", card->index,
1263 		       inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx");
1264 		return -EINVAL;
1265 	}
1266 
1267 	set_bit(ATM_VF_ADDR, &vcc->flags);
1268 
1269 	/* NOTE: You are not allowed to modify an open connection's QOS. To change
1270 	   that, remove the ATM_VF_PARTIAL flag checking. There may be other changes
1271 	   needed to do that. */
1272 	if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) {
1273 		scq_info *scq;
1274 
1275 		set_bit(ATM_VF_PARTIAL, &vcc->flags);
1276 		if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1277 			/* Check requested cell rate and availability of SCD */
1278 			if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0
1279 			    && vcc->qos.txtp.min_pcr == 0) {
1280 				PRINTK
1281 				    ("nicstar%d: trying to open a CBR vc with cell rate = 0 \n",
1282 				     card->index);
1283 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1284 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1285 				return -EINVAL;
1286 			}
1287 
1288 			tcr = atm_pcr_goal(&(vcc->qos.txtp));
1289 			tcra = tcr >= 0 ? tcr : -tcr;
1290 
1291 			PRINTK("nicstar%d: target cell rate = %d.\n",
1292 			       card->index, vcc->qos.txtp.max_pcr);
1293 
1294 			tmpl =
1295 			    (unsigned long)tcra *(unsigned long)
1296 			    NS_TST_NUM_ENTRIES;
1297 			modl = tmpl % card->max_pcr;
1298 
1299 			n = (int)(tmpl / card->max_pcr);
1300 			if (tcr > 0) {
1301 				if (modl > 0)
1302 					n++;
1303 			} else if (tcr == 0) {
1304 				if ((n =
1305 				     (card->tst_free_entries -
1306 				      NS_TST_RESERVED)) <= 0) {
1307 					PRINTK
1308 					    ("nicstar%d: no CBR bandwidth free.\n",
1309 					     card->index);
1310 					clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1311 					clear_bit(ATM_VF_ADDR, &vcc->flags);
1312 					return -EINVAL;
1313 				}
1314 			}
1315 
1316 			if (n == 0) {
1317 				printk
1318 				    ("nicstar%d: selected bandwidth < granularity.\n",
1319 				     card->index);
1320 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1321 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1322 				return -EINVAL;
1323 			}
1324 
1325 			if (n > (card->tst_free_entries - NS_TST_RESERVED)) {
1326 				PRINTK
1327 				    ("nicstar%d: not enough free CBR bandwidth.\n",
1328 				     card->index);
1329 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1330 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1331 				return -EINVAL;
1332 			} else
1333 				card->tst_free_entries -= n;
1334 
1335 			XPRINTK("nicstar%d: writing %d tst entries.\n",
1336 				card->index, n);
1337 			for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) {
1338 				if (card->scd2vc[frscdi] == NULL) {
1339 					card->scd2vc[frscdi] = vc;
1340 					break;
1341 				}
1342 			}
1343 			if (frscdi == NS_FRSCD_NUM) {
1344 				PRINTK
1345 				    ("nicstar%d: no SCD available for CBR channel.\n",
1346 				     card->index);
1347 				card->tst_free_entries += n;
1348 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1349 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1350 				return -EBUSY;
1351 			}
1352 
1353 			vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE;
1354 
1355 			scq = get_scq(card, CBR_SCQSIZE, vc->cbr_scd);
1356 			if (scq == NULL) {
1357 				PRINTK("nicstar%d: can't get fixed rate SCQ.\n",
1358 				       card->index);
1359 				card->scd2vc[frscdi] = NULL;
1360 				card->tst_free_entries += n;
1361 				clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1362 				clear_bit(ATM_VF_ADDR, &vcc->flags);
1363 				return -ENOMEM;
1364 			}
1365 			vc->scq = scq;
1366 			u32d[0] = scq_virt_to_bus(scq, scq->base);
1367 			u32d[1] = (u32) 0x00000000;
1368 			u32d[2] = (u32) 0xffffffff;
1369 			u32d[3] = (u32) 0x00000000;
1370 			ns_write_sram(card, vc->cbr_scd, u32d, 4);
1371 
1372 			fill_tst(card, n, vc);
1373 		} else if (vcc->qos.txtp.traffic_class == ATM_UBR) {
1374 			vc->cbr_scd = 0x00000000;
1375 			vc->scq = card->scq0;
1376 		}
1377 
1378 		if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1379 			vc->tx = 1;
1380 			vc->tx_vcc = vcc;
1381 			vc->tbd_count = 0;
1382 		}
1383 		if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
1384 			u32 status;
1385 
1386 			vc->rx = 1;
1387 			vc->rx_vcc = vcc;
1388 			vc->rx_iov = NULL;
1389 
1390 			/* Open the connection in hardware */
1391 			if (vcc->qos.aal == ATM_AAL5)
1392 				status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN;
1393 			else	/* vcc->qos.aal == ATM_AAL0 */
1394 				status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN;
1395 #ifdef RCQ_SUPPORT
1396 			status |= NS_RCTE_RAWCELLINTEN;
1397 #endif /* RCQ_SUPPORT */
1398 			ns_write_sram(card,
1399 				      NS_RCT +
1400 				      (vpi << card->vcibits | vci) *
1401 				      NS_RCT_ENTRY_SIZE, &status, 1);
1402 		}
1403 
1404 	}
1405 
1406 	set_bit(ATM_VF_READY, &vcc->flags);
1407 	return 0;
1408 }
1409 
1410 static void ns_close(struct atm_vcc *vcc)
1411 {
1412 	vc_map *vc;
1413 	ns_dev *card;
1414 	u32 data;
1415 	int i;
1416 
1417 	vc = vcc->dev_data;
1418 	card = vcc->dev->dev_data;
1419 	PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index,
1420 	       (int)vcc->vpi, vcc->vci);
1421 
1422 	clear_bit(ATM_VF_READY, &vcc->flags);
1423 
1424 	if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
1425 		u32 addr;
1426 		unsigned long flags;
1427 
1428 		addr =
1429 		    NS_RCT +
1430 		    (vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE;
1431 		spin_lock_irqsave(&card->res_lock, flags);
1432 		while (CMD_BUSY(card)) ;
1433 		writel(NS_CMD_CLOSE_CONNECTION | addr << 2,
1434 		       card->membase + CMD);
1435 		spin_unlock_irqrestore(&card->res_lock, flags);
1436 
1437 		vc->rx = 0;
1438 		if (vc->rx_iov != NULL) {
1439 			struct sk_buff *iovb;
1440 			u32 stat;
1441 
1442 			stat = readl(card->membase + STAT);
1443 			card->sbfqc = ns_stat_sfbqc_get(stat);
1444 			card->lbfqc = ns_stat_lfbqc_get(stat);
1445 
1446 			PRINTK
1447 			    ("nicstar%d: closing a VC with pending rx buffers.\n",
1448 			     card->index);
1449 			iovb = vc->rx_iov;
1450 			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
1451 					      NS_PRV_IOVCNT(iovb));
1452 			NS_PRV_IOVCNT(iovb) = 0;
1453 			spin_lock_irqsave(&card->int_lock, flags);
1454 			recycle_iov_buf(card, iovb);
1455 			spin_unlock_irqrestore(&card->int_lock, flags);
1456 			vc->rx_iov = NULL;
1457 		}
1458 	}
1459 
1460 	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1461 		vc->tx = 0;
1462 	}
1463 
1464 	if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1465 		unsigned long flags;
1466 		ns_scqe *scqep;
1467 		scq_info *scq;
1468 
1469 		scq = vc->scq;
1470 
1471 		for (;;) {
1472 			spin_lock_irqsave(&scq->lock, flags);
1473 			scqep = scq->next;
1474 			if (scqep == scq->base)
1475 				scqep = scq->last;
1476 			else
1477 				scqep--;
1478 			if (scqep == scq->tail) {
1479 				spin_unlock_irqrestore(&scq->lock, flags);
1480 				break;
1481 			}
1482 			/* If the last entry is not a TSR, place one in the SCQ in order to
1483 			   be able to completely drain it and then close. */
1484 			if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) {
1485 				ns_scqe tsr;
1486 				u32 scdi, scqi;
1487 				u32 data;
1488 				int index;
1489 
1490 				tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
1491 				scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
1492 				scqi = scq->next - scq->base;
1493 				tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
1494 				tsr.word_3 = 0x00000000;
1495 				tsr.word_4 = 0x00000000;
1496 				*scq->next = tsr;
1497 				index = (int)scqi;
1498 				scq->skb[index] = NULL;
1499 				if (scq->next == scq->last)
1500 					scq->next = scq->base;
1501 				else
1502 					scq->next++;
1503 				data = scq_virt_to_bus(scq, scq->next);
1504 				ns_write_sram(card, scq->scd, &data, 1);
1505 			}
1506 			spin_unlock_irqrestore(&scq->lock, flags);
1507 			schedule();
1508 		}
1509 
1510 		/* Free all TST entries */
1511 		data = NS_TST_OPCODE_VARIABLE;
1512 		for (i = 0; i < NS_TST_NUM_ENTRIES; i++) {
1513 			if (card->tste2vc[i] == vc) {
1514 				ns_write_sram(card, card->tst_addr + i, &data,
1515 					      1);
1516 				card->tste2vc[i] = NULL;
1517 				card->tst_free_entries++;
1518 			}
1519 		}
1520 
1521 		card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL;
1522 		free_scq(card, vc->scq, vcc);
1523 	}
1524 
1525 	/* remove all references to vcc before deleting it */
1526 	if (vcc->qos.txtp.traffic_class != ATM_NONE) {
1527 		unsigned long flags;
1528 		scq_info *scq = card->scq0;
1529 
1530 		spin_lock_irqsave(&scq->lock, flags);
1531 
1532 		for (i = 0; i < scq->num_entries; i++) {
1533 			if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) {
1534 				ATM_SKB(scq->skb[i])->vcc = NULL;
1535 				atm_return(vcc, scq->skb[i]->truesize);
1536 				PRINTK
1537 				    ("nicstar: deleted pending vcc mapping\n");
1538 			}
1539 		}
1540 
1541 		spin_unlock_irqrestore(&scq->lock, flags);
1542 	}
1543 
1544 	vcc->dev_data = NULL;
1545 	clear_bit(ATM_VF_PARTIAL, &vcc->flags);
1546 	clear_bit(ATM_VF_ADDR, &vcc->flags);
1547 
1548 #ifdef RX_DEBUG
1549 	{
1550 		u32 stat, cfg;
1551 		stat = readl(card->membase + STAT);
1552 		cfg = readl(card->membase + CFG);
1553 		printk("STAT = 0x%08X  CFG = 0x%08X  \n", stat, cfg);
1554 		printk
1555 		    ("TSQ: base = 0x%p  next = 0x%p  last = 0x%p  TSQT = 0x%08X \n",
1556 		     card->tsq.base, card->tsq.next,
1557 		     card->tsq.last, readl(card->membase + TSQT));
1558 		printk
1559 		    ("RSQ: base = 0x%p  next = 0x%p  last = 0x%p  RSQT = 0x%08X \n",
1560 		     card->rsq.base, card->rsq.next,
1561 		     card->rsq.last, readl(card->membase + RSQT));
1562 		printk("Empty free buffer queue interrupt %s \n",
1563 		       card->efbie ? "enabled" : "disabled");
1564 		printk("SBCNT = %d  count = %d   LBCNT = %d count = %d \n",
1565 		       ns_stat_sfbqc_get(stat), card->sbpool.count,
1566 		       ns_stat_lfbqc_get(stat), card->lbpool.count);
1567 		printk("hbpool.count = %d  iovpool.count = %d \n",
1568 		       card->hbpool.count, card->iovpool.count);
1569 	}
1570 #endif /* RX_DEBUG */
1571 }
1572 
1573 static void fill_tst(ns_dev * card, int n, vc_map * vc)
1574 {
1575 	u32 new_tst;
1576 	unsigned long cl;
1577 	int e, r;
1578 	u32 data;
1579 
1580 	/* It would be very complicated to keep the two TSTs synchronized while
1581 	   assuring that writes are only made to the inactive TST. So, for now I
1582 	   will use only one TST. If problems occur, I will change this again */
1583 
1584 	new_tst = card->tst_addr;
1585 
1586 	/* Fill procedure */
1587 
1588 	for (e = 0; e < NS_TST_NUM_ENTRIES; e++) {
1589 		if (card->tste2vc[e] == NULL)
1590 			break;
1591 	}
1592 	if (e == NS_TST_NUM_ENTRIES) {
1593 		printk("nicstar%d: No free TST entries found. \n", card->index);
1594 		return;
1595 	}
1596 
1597 	r = n;
1598 	cl = NS_TST_NUM_ENTRIES;
1599 	data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd);
1600 
1601 	while (r > 0) {
1602 		if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) {
1603 			card->tste2vc[e] = vc;
1604 			ns_write_sram(card, new_tst + e, &data, 1);
1605 			cl -= NS_TST_NUM_ENTRIES;
1606 			r--;
1607 		}
1608 
1609 		if (++e == NS_TST_NUM_ENTRIES) {
1610 			e = 0;
1611 		}
1612 		cl += n;
1613 	}
1614 
1615 	/* End of fill procedure */
1616 
1617 	data = ns_tste_make(NS_TST_OPCODE_END, new_tst);
1618 	ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1);
1619 	ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1);
1620 	card->tst_addr = new_tst;
1621 }
1622 
1623 static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb)
1624 {
1625 	ns_dev *card;
1626 	vc_map *vc;
1627 	scq_info *scq;
1628 	unsigned long buflen;
1629 	ns_scqe scqe;
1630 	u32 flags;		/* TBD flags, not CPU flags */
1631 
1632 	card = vcc->dev->dev_data;
1633 	TXPRINTK("nicstar%d: ns_send() called.\n", card->index);
1634 	if ((vc = (vc_map *) vcc->dev_data) == NULL) {
1635 		printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n",
1636 		       card->index);
1637 		atomic_inc(&vcc->stats->tx_err);
1638 		dev_kfree_skb_any(skb);
1639 		return -EINVAL;
1640 	}
1641 
1642 	if (!vc->tx) {
1643 		printk("nicstar%d: Trying to transmit on a non-tx VC.\n",
1644 		       card->index);
1645 		atomic_inc(&vcc->stats->tx_err);
1646 		dev_kfree_skb_any(skb);
1647 		return -EINVAL;
1648 	}
1649 
1650 	if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
1651 		printk("nicstar%d: Only AAL0 and AAL5 are supported.\n",
1652 		       card->index);
1653 		atomic_inc(&vcc->stats->tx_err);
1654 		dev_kfree_skb_any(skb);
1655 		return -EINVAL;
1656 	}
1657 
1658 	if (skb_shinfo(skb)->nr_frags != 0) {
1659 		printk("nicstar%d: No scatter-gather yet.\n", card->index);
1660 		atomic_inc(&vcc->stats->tx_err);
1661 		dev_kfree_skb_any(skb);
1662 		return -EINVAL;
1663 	}
1664 
1665 	ATM_SKB(skb)->vcc = vcc;
1666 
1667 	NS_PRV_DMA(skb) = dma_map_single(&card->pcidev->dev, skb->data,
1668 					 skb->len, DMA_TO_DEVICE);
1669 
1670 	if (vcc->qos.aal == ATM_AAL5) {
1671 		buflen = (skb->len + 47 + 8) / 48 * 48;	/* Multiple of 48 */
1672 		flags = NS_TBD_AAL5;
1673 		scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb));
1674 		scqe.word_3 = cpu_to_le32(skb->len);
1675 		scqe.word_4 =
1676 		    ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0,
1677 				    ATM_SKB(skb)->
1678 				    atm_options & ATM_ATMOPT_CLP ? 1 : 0);
1679 		flags |= NS_TBD_EOPDU;
1680 	} else {		/* (vcc->qos.aal == ATM_AAL0) */
1681 
1682 		buflen = ATM_CELL_PAYLOAD;	/* i.e., 48 bytes */
1683 		flags = NS_TBD_AAL0;
1684 		scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb) + NS_AAL0_HEADER);
1685 		scqe.word_3 = cpu_to_le32(0x00000000);
1686 		if (*skb->data & 0x02)	/* Payload type 1 - end of pdu */
1687 			flags |= NS_TBD_EOPDU;
1688 		scqe.word_4 =
1689 		    cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK);
1690 		/* Force the VPI/VCI to be the same as in VCC struct */
1691 		scqe.word_4 |=
1692 		    cpu_to_le32((((u32) vcc->
1693 				  vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc->
1694 							      vci) <<
1695 				 NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK);
1696 	}
1697 
1698 	if (vcc->qos.txtp.traffic_class == ATM_CBR) {
1699 		scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen);
1700 		scq = ((vc_map *) vcc->dev_data)->scq;
1701 	} else {
1702 		scqe.word_1 =
1703 		    ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen);
1704 		scq = card->scq0;
1705 	}
1706 
1707 	if (push_scqe(card, vc, scq, &scqe, skb) != 0) {
1708 		atomic_inc(&vcc->stats->tx_err);
1709 		dev_kfree_skb_any(skb);
1710 		return -EIO;
1711 	}
1712 	atomic_inc(&vcc->stats->tx);
1713 
1714 	return 0;
1715 }
1716 
1717 static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
1718 		     struct sk_buff *skb)
1719 {
1720 	unsigned long flags;
1721 	ns_scqe tsr;
1722 	u32 scdi, scqi;
1723 	int scq_is_vbr;
1724 	u32 data;
1725 	int index;
1726 
1727 	spin_lock_irqsave(&scq->lock, flags);
1728 	while (scq->tail == scq->next) {
1729 		if (in_interrupt()) {
1730 			spin_unlock_irqrestore(&scq->lock, flags);
1731 			printk("nicstar%d: Error pushing TBD.\n", card->index);
1732 			return 1;
1733 		}
1734 
1735 		scq->full = 1;
1736 		wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
1737 							  scq->tail != scq->next,
1738 							  scq->lock,
1739 							  SCQFULL_TIMEOUT);
1740 
1741 		if (scq->full) {
1742 			spin_unlock_irqrestore(&scq->lock, flags);
1743 			printk("nicstar%d: Timeout pushing TBD.\n",
1744 			       card->index);
1745 			return 1;
1746 		}
1747 	}
1748 	*scq->next = *tbd;
1749 	index = (int)(scq->next - scq->base);
1750 	scq->skb[index] = skb;
1751 	XPRINTK("nicstar%d: sending skb at 0x%p (pos %d).\n",
1752 		card->index, skb, index);
1753 	XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
1754 		card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2),
1755 		le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4),
1756 		scq->next);
1757 	if (scq->next == scq->last)
1758 		scq->next = scq->base;
1759 	else
1760 		scq->next++;
1761 
1762 	vc->tbd_count++;
1763 	if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) {
1764 		scq->tbd_count++;
1765 		scq_is_vbr = 1;
1766 	} else
1767 		scq_is_vbr = 0;
1768 
1769 	if (vc->tbd_count >= MAX_TBD_PER_VC
1770 	    || scq->tbd_count >= MAX_TBD_PER_SCQ) {
1771 		int has_run = 0;
1772 
1773 		while (scq->tail == scq->next) {
1774 			if (in_interrupt()) {
1775 				data = scq_virt_to_bus(scq, scq->next);
1776 				ns_write_sram(card, scq->scd, &data, 1);
1777 				spin_unlock_irqrestore(&scq->lock, flags);
1778 				printk("nicstar%d: Error pushing TSR.\n",
1779 				       card->index);
1780 				return 0;
1781 			}
1782 
1783 			scq->full = 1;
1784 			if (has_run++)
1785 				break;
1786 			wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
1787 								  scq->tail != scq->next,
1788 								  scq->lock,
1789 								  SCQFULL_TIMEOUT);
1790 		}
1791 
1792 		if (!scq->full) {
1793 			tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
1794 			if (scq_is_vbr)
1795 				scdi = NS_TSR_SCDISVBR;
1796 			else
1797 				scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
1798 			scqi = scq->next - scq->base;
1799 			tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
1800 			tsr.word_3 = 0x00000000;
1801 			tsr.word_4 = 0x00000000;
1802 
1803 			*scq->next = tsr;
1804 			index = (int)scqi;
1805 			scq->skb[index] = NULL;
1806 			XPRINTK
1807 			    ("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
1808 			     card->index, le32_to_cpu(tsr.word_1),
1809 			     le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3),
1810 			     le32_to_cpu(tsr.word_4), scq->next);
1811 			if (scq->next == scq->last)
1812 				scq->next = scq->base;
1813 			else
1814 				scq->next++;
1815 			vc->tbd_count = 0;
1816 			scq->tbd_count = 0;
1817 		} else
1818 			PRINTK("nicstar%d: Timeout pushing TSR.\n",
1819 			       card->index);
1820 	}
1821 	data = scq_virt_to_bus(scq, scq->next);
1822 	ns_write_sram(card, scq->scd, &data, 1);
1823 
1824 	spin_unlock_irqrestore(&scq->lock, flags);
1825 
1826 	return 0;
1827 }
1828 
1829 static void process_tsq(ns_dev * card)
1830 {
1831 	u32 scdi;
1832 	scq_info *scq;
1833 	ns_tsi *previous = NULL, *one_ahead, *two_ahead;
1834 	int serviced_entries;	/* flag indicating at least on entry was serviced */
1835 
1836 	serviced_entries = 0;
1837 
1838 	if (card->tsq.next == card->tsq.last)
1839 		one_ahead = card->tsq.base;
1840 	else
1841 		one_ahead = card->tsq.next + 1;
1842 
1843 	if (one_ahead == card->tsq.last)
1844 		two_ahead = card->tsq.base;
1845 	else
1846 		two_ahead = one_ahead + 1;
1847 
1848 	while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) ||
1849 	       !ns_tsi_isempty(two_ahead))
1850 		/* At most two empty, as stated in the 77201 errata */
1851 	{
1852 		serviced_entries = 1;
1853 
1854 		/* Skip the one or two possible empty entries */
1855 		while (ns_tsi_isempty(card->tsq.next)) {
1856 			if (card->tsq.next == card->tsq.last)
1857 				card->tsq.next = card->tsq.base;
1858 			else
1859 				card->tsq.next++;
1860 		}
1861 
1862 		if (!ns_tsi_tmrof(card->tsq.next)) {
1863 			scdi = ns_tsi_getscdindex(card->tsq.next);
1864 			if (scdi == NS_TSI_SCDISVBR)
1865 				scq = card->scq0;
1866 			else {
1867 				if (card->scd2vc[scdi] == NULL) {
1868 					printk
1869 					    ("nicstar%d: could not find VC from SCD index.\n",
1870 					     card->index);
1871 					ns_tsi_init(card->tsq.next);
1872 					return;
1873 				}
1874 				scq = card->scd2vc[scdi]->scq;
1875 			}
1876 			drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next));
1877 			scq->full = 0;
1878 			wake_up_interruptible(&(scq->scqfull_waitq));
1879 		}
1880 
1881 		ns_tsi_init(card->tsq.next);
1882 		previous = card->tsq.next;
1883 		if (card->tsq.next == card->tsq.last)
1884 			card->tsq.next = card->tsq.base;
1885 		else
1886 			card->tsq.next++;
1887 
1888 		if (card->tsq.next == card->tsq.last)
1889 			one_ahead = card->tsq.base;
1890 		else
1891 			one_ahead = card->tsq.next + 1;
1892 
1893 		if (one_ahead == card->tsq.last)
1894 			two_ahead = card->tsq.base;
1895 		else
1896 			two_ahead = one_ahead + 1;
1897 	}
1898 
1899 	if (serviced_entries)
1900 		writel(PTR_DIFF(previous, card->tsq.base),
1901 		       card->membase + TSQH);
1902 }
1903 
1904 static void drain_scq(ns_dev * card, scq_info * scq, int pos)
1905 {
1906 	struct atm_vcc *vcc;
1907 	struct sk_buff *skb;
1908 	int i;
1909 	unsigned long flags;
1910 
1911 	XPRINTK("nicstar%d: drain_scq() called, scq at 0x%p, pos %d.\n",
1912 		card->index, scq, pos);
1913 	if (pos >= scq->num_entries) {
1914 		printk("nicstar%d: Bad index on drain_scq().\n", card->index);
1915 		return;
1916 	}
1917 
1918 	spin_lock_irqsave(&scq->lock, flags);
1919 	i = (int)(scq->tail - scq->base);
1920 	if (++i == scq->num_entries)
1921 		i = 0;
1922 	while (i != pos) {
1923 		skb = scq->skb[i];
1924 		XPRINTK("nicstar%d: freeing skb at 0x%p (index %d).\n",
1925 			card->index, skb, i);
1926 		if (skb != NULL) {
1927 			dma_unmap_single(&card->pcidev->dev,
1928 					 NS_PRV_DMA(skb),
1929 					 skb->len,
1930 					 DMA_TO_DEVICE);
1931 			vcc = ATM_SKB(skb)->vcc;
1932 			if (vcc && vcc->pop != NULL) {
1933 				vcc->pop(vcc, skb);
1934 			} else {
1935 				dev_kfree_skb_irq(skb);
1936 			}
1937 			scq->skb[i] = NULL;
1938 		}
1939 		if (++i == scq->num_entries)
1940 			i = 0;
1941 	}
1942 	scq->tail = scq->base + pos;
1943 	spin_unlock_irqrestore(&scq->lock, flags);
1944 }
1945 
1946 static void process_rsq(ns_dev * card)
1947 {
1948 	ns_rsqe *previous;
1949 
1950 	if (!ns_rsqe_valid(card->rsq.next))
1951 		return;
1952 	do {
1953 		dequeue_rx(card, card->rsq.next);
1954 		ns_rsqe_init(card->rsq.next);
1955 		previous = card->rsq.next;
1956 		if (card->rsq.next == card->rsq.last)
1957 			card->rsq.next = card->rsq.base;
1958 		else
1959 			card->rsq.next++;
1960 	} while (ns_rsqe_valid(card->rsq.next));
1961 	writel(PTR_DIFF(previous, card->rsq.base), card->membase + RSQH);
1962 }
1963 
1964 static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe)
1965 {
1966 	u32 vpi, vci;
1967 	vc_map *vc;
1968 	struct sk_buff *iovb;
1969 	struct iovec *iov;
1970 	struct atm_vcc *vcc;
1971 	struct sk_buff *skb;
1972 	unsigned short aal5_len;
1973 	int len;
1974 	u32 stat;
1975 	u32 id;
1976 
1977 	stat = readl(card->membase + STAT);
1978 	card->sbfqc = ns_stat_sfbqc_get(stat);
1979 	card->lbfqc = ns_stat_lfbqc_get(stat);
1980 
1981 	id = le32_to_cpu(rsqe->buffer_handle);
1982 	skb = idr_remove(&card->idr, id);
1983 	if (!skb) {
1984 		RXPRINTK(KERN_ERR
1985 			 "nicstar%d: skb not found!\n", card->index);
1986 		return;
1987 	}
1988 	dma_sync_single_for_cpu(&card->pcidev->dev,
1989 				NS_PRV_DMA(skb),
1990 				(NS_PRV_BUFTYPE(skb) == BUF_SM
1991 				 ? NS_SMSKBSIZE : NS_LGSKBSIZE),
1992 				DMA_FROM_DEVICE);
1993 	dma_unmap_single(&card->pcidev->dev,
1994 			 NS_PRV_DMA(skb),
1995 			 (NS_PRV_BUFTYPE(skb) == BUF_SM
1996 			  ? NS_SMSKBSIZE : NS_LGSKBSIZE),
1997 			 DMA_FROM_DEVICE);
1998 	vpi = ns_rsqe_vpi(rsqe);
1999 	vci = ns_rsqe_vci(rsqe);
2000 	if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) {
2001 		printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n",
2002 		       card->index, vpi, vci);
2003 		recycle_rx_buf(card, skb);
2004 		return;
2005 	}
2006 
2007 	vc = &(card->vcmap[vpi << card->vcibits | vci]);
2008 	if (!vc->rx) {
2009 		RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n",
2010 			 card->index, vpi, vci);
2011 		recycle_rx_buf(card, skb);
2012 		return;
2013 	}
2014 
2015 	vcc = vc->rx_vcc;
2016 
2017 	if (vcc->qos.aal == ATM_AAL0) {
2018 		struct sk_buff *sb;
2019 		unsigned char *cell;
2020 		int i;
2021 
2022 		cell = skb->data;
2023 		for (i = ns_rsqe_cellcount(rsqe); i; i--) {
2024 			sb = dev_alloc_skb(NS_SMSKBSIZE);
2025 			if (!sb) {
2026 				printk
2027 				    ("nicstar%d: Can't allocate buffers for aal0.\n",
2028 				     card->index);
2029 				atomic_add(i, &vcc->stats->rx_drop);
2030 				break;
2031 			}
2032 			if (!atm_charge(vcc, sb->truesize)) {
2033 				RXPRINTK
2034 				    ("nicstar%d: atm_charge() dropped aal0 packets.\n",
2035 				     card->index);
2036 				atomic_add(i - 1, &vcc->stats->rx_drop);	/* already increased by 1 */
2037 				dev_kfree_skb_any(sb);
2038 				break;
2039 			}
2040 			/* Rebuild the header */
2041 			*((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 |
2042 			    (ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000);
2043 			if (i == 1 && ns_rsqe_eopdu(rsqe))
2044 				*((u32 *) sb->data) |= 0x00000002;
2045 			skb_put(sb, NS_AAL0_HEADER);
2046 			memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD);
2047 			skb_put(sb, ATM_CELL_PAYLOAD);
2048 			ATM_SKB(sb)->vcc = vcc;
2049 			__net_timestamp(sb);
2050 			vcc->push(vcc, sb);
2051 			atomic_inc(&vcc->stats->rx);
2052 			cell += ATM_CELL_PAYLOAD;
2053 		}
2054 
2055 		recycle_rx_buf(card, skb);
2056 		return;
2057 	}
2058 
2059 	/* To reach this point, the AAL layer can only be AAL5 */
2060 
2061 	if ((iovb = vc->rx_iov) == NULL) {
2062 		iovb = skb_dequeue(&(card->iovpool.queue));
2063 		if (iovb == NULL) {	/* No buffers in the queue */
2064 			iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC);
2065 			if (iovb == NULL) {
2066 				printk("nicstar%d: Out of iovec buffers.\n",
2067 				       card->index);
2068 				atomic_inc(&vcc->stats->rx_drop);
2069 				recycle_rx_buf(card, skb);
2070 				return;
2071 			}
2072 			NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2073 		} else if (--card->iovpool.count < card->iovnr.min) {
2074 			struct sk_buff *new_iovb;
2075 			if ((new_iovb =
2076 			     alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) {
2077 				NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2078 				skb_queue_tail(&card->iovpool.queue, new_iovb);
2079 				card->iovpool.count++;
2080 			}
2081 		}
2082 		vc->rx_iov = iovb;
2083 		NS_PRV_IOVCNT(iovb) = 0;
2084 		iovb->len = 0;
2085 		iovb->data = iovb->head;
2086 		skb_reset_tail_pointer(iovb);
2087 		/* IMPORTANT: a pointer to the sk_buff containing the small or large
2088 		   buffer is stored as iovec base, NOT a pointer to the
2089 		   small or large buffer itself. */
2090 	} else if (NS_PRV_IOVCNT(iovb) >= NS_MAX_IOVECS) {
2091 		printk("nicstar%d: received too big AAL5 SDU.\n", card->index);
2092 		atomic_inc(&vcc->stats->rx_err);
2093 		recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2094 				      NS_MAX_IOVECS);
2095 		NS_PRV_IOVCNT(iovb) = 0;
2096 		iovb->len = 0;
2097 		iovb->data = iovb->head;
2098 		skb_reset_tail_pointer(iovb);
2099 	}
2100 	iov = &((struct iovec *)iovb->data)[NS_PRV_IOVCNT(iovb)++];
2101 	iov->iov_base = (void *)skb;
2102 	iov->iov_len = ns_rsqe_cellcount(rsqe) * 48;
2103 	iovb->len += iov->iov_len;
2104 
2105 #ifdef EXTRA_DEBUG
2106 	if (NS_PRV_IOVCNT(iovb) == 1) {
2107 		if (NS_PRV_BUFTYPE(skb) != BUF_SM) {
2108 			printk
2109 			    ("nicstar%d: Expected a small buffer, and this is not one.\n",
2110 			     card->index);
2111 			which_list(card, skb);
2112 			atomic_inc(&vcc->stats->rx_err);
2113 			recycle_rx_buf(card, skb);
2114 			vc->rx_iov = NULL;
2115 			recycle_iov_buf(card, iovb);
2116 			return;
2117 		}
2118 	} else {		/* NS_PRV_IOVCNT(iovb) >= 2 */
2119 
2120 		if (NS_PRV_BUFTYPE(skb) != BUF_LG) {
2121 			printk
2122 			    ("nicstar%d: Expected a large buffer, and this is not one.\n",
2123 			     card->index);
2124 			which_list(card, skb);
2125 			atomic_inc(&vcc->stats->rx_err);
2126 			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2127 					      NS_PRV_IOVCNT(iovb));
2128 			vc->rx_iov = NULL;
2129 			recycle_iov_buf(card, iovb);
2130 			return;
2131 		}
2132 	}
2133 #endif /* EXTRA_DEBUG */
2134 
2135 	if (ns_rsqe_eopdu(rsqe)) {
2136 		/* This works correctly regardless of the endianness of the host */
2137 		unsigned char *L1L2 = (unsigned char *)
2138 						(skb->data + iov->iov_len - 6);
2139 		aal5_len = L1L2[0] << 8 | L1L2[1];
2140 		len = (aal5_len == 0x0000) ? 0x10000 : aal5_len;
2141 		if (ns_rsqe_crcerr(rsqe) ||
2142 		    len + 8 > iovb->len || len + (47 + 8) < iovb->len) {
2143 			printk("nicstar%d: AAL5 CRC error", card->index);
2144 			if (len + 8 > iovb->len || len + (47 + 8) < iovb->len)
2145 				printk(" - PDU size mismatch.\n");
2146 			else
2147 				printk(".\n");
2148 			atomic_inc(&vcc->stats->rx_err);
2149 			recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
2150 					      NS_PRV_IOVCNT(iovb));
2151 			vc->rx_iov = NULL;
2152 			recycle_iov_buf(card, iovb);
2153 			return;
2154 		}
2155 
2156 		/* By this point we (hopefully) have a complete SDU without errors. */
2157 
2158 		if (NS_PRV_IOVCNT(iovb) == 1) {	/* Just a small buffer */
2159 			/* skb points to a small buffer */
2160 			if (!atm_charge(vcc, skb->truesize)) {
2161 				push_rxbufs(card, skb);
2162 				atomic_inc(&vcc->stats->rx_drop);
2163 			} else {
2164 				skb_put(skb, len);
2165 				dequeue_sm_buf(card, skb);
2166 				ATM_SKB(skb)->vcc = vcc;
2167 				__net_timestamp(skb);
2168 				vcc->push(vcc, skb);
2169 				atomic_inc(&vcc->stats->rx);
2170 			}
2171 		} else if (NS_PRV_IOVCNT(iovb) == 2) {	/* One small plus one large buffer */
2172 			struct sk_buff *sb;
2173 
2174 			sb = (struct sk_buff *)(iov - 1)->iov_base;
2175 			/* skb points to a large buffer */
2176 
2177 			if (len <= NS_SMBUFSIZE) {
2178 				if (!atm_charge(vcc, sb->truesize)) {
2179 					push_rxbufs(card, sb);
2180 					atomic_inc(&vcc->stats->rx_drop);
2181 				} else {
2182 					skb_put(sb, len);
2183 					dequeue_sm_buf(card, sb);
2184 					ATM_SKB(sb)->vcc = vcc;
2185 					__net_timestamp(sb);
2186 					vcc->push(vcc, sb);
2187 					atomic_inc(&vcc->stats->rx);
2188 				}
2189 
2190 				push_rxbufs(card, skb);
2191 
2192 			} else {	/* len > NS_SMBUFSIZE, the usual case */
2193 
2194 				if (!atm_charge(vcc, skb->truesize)) {
2195 					push_rxbufs(card, skb);
2196 					atomic_inc(&vcc->stats->rx_drop);
2197 				} else {
2198 					dequeue_lg_buf(card, skb);
2199 					skb_push(skb, NS_SMBUFSIZE);
2200 					skb_copy_from_linear_data(sb, skb->data,
2201 								  NS_SMBUFSIZE);
2202 					skb_put(skb, len - NS_SMBUFSIZE);
2203 					ATM_SKB(skb)->vcc = vcc;
2204 					__net_timestamp(skb);
2205 					vcc->push(vcc, skb);
2206 					atomic_inc(&vcc->stats->rx);
2207 				}
2208 
2209 				push_rxbufs(card, sb);
2210 
2211 			}
2212 
2213 		} else {	/* Must push a huge buffer */
2214 
2215 			struct sk_buff *hb, *sb, *lb;
2216 			int remaining, tocopy;
2217 			int j;
2218 
2219 			hb = skb_dequeue(&(card->hbpool.queue));
2220 			if (hb == NULL) {	/* No buffers in the queue */
2221 
2222 				hb = dev_alloc_skb(NS_HBUFSIZE);
2223 				if (hb == NULL) {
2224 					printk
2225 					    ("nicstar%d: Out of huge buffers.\n",
2226 					     card->index);
2227 					atomic_inc(&vcc->stats->rx_drop);
2228 					recycle_iovec_rx_bufs(card,
2229 							      (struct iovec *)
2230 							      iovb->data,
2231 							      NS_PRV_IOVCNT(iovb));
2232 					vc->rx_iov = NULL;
2233 					recycle_iov_buf(card, iovb);
2234 					return;
2235 				} else if (card->hbpool.count < card->hbnr.min) {
2236 					struct sk_buff *new_hb;
2237 					if ((new_hb =
2238 					     dev_alloc_skb(NS_HBUFSIZE)) !=
2239 					    NULL) {
2240 						skb_queue_tail(&card->hbpool.
2241 							       queue, new_hb);
2242 						card->hbpool.count++;
2243 					}
2244 				}
2245 				NS_PRV_BUFTYPE(hb) = BUF_NONE;
2246 			} else if (--card->hbpool.count < card->hbnr.min) {
2247 				struct sk_buff *new_hb;
2248 				if ((new_hb =
2249 				     dev_alloc_skb(NS_HBUFSIZE)) != NULL) {
2250 					NS_PRV_BUFTYPE(new_hb) = BUF_NONE;
2251 					skb_queue_tail(&card->hbpool.queue,
2252 						       new_hb);
2253 					card->hbpool.count++;
2254 				}
2255 				if (card->hbpool.count < card->hbnr.min) {
2256 					if ((new_hb =
2257 					     dev_alloc_skb(NS_HBUFSIZE)) !=
2258 					    NULL) {
2259 						NS_PRV_BUFTYPE(new_hb) =
2260 						    BUF_NONE;
2261 						skb_queue_tail(&card->hbpool.
2262 							       queue, new_hb);
2263 						card->hbpool.count++;
2264 					}
2265 				}
2266 			}
2267 
2268 			iov = (struct iovec *)iovb->data;
2269 
2270 			if (!atm_charge(vcc, hb->truesize)) {
2271 				recycle_iovec_rx_bufs(card, iov,
2272 						      NS_PRV_IOVCNT(iovb));
2273 				if (card->hbpool.count < card->hbnr.max) {
2274 					skb_queue_tail(&card->hbpool.queue, hb);
2275 					card->hbpool.count++;
2276 				} else
2277 					dev_kfree_skb_any(hb);
2278 				atomic_inc(&vcc->stats->rx_drop);
2279 			} else {
2280 				/* Copy the small buffer to the huge buffer */
2281 				sb = (struct sk_buff *)iov->iov_base;
2282 				skb_copy_from_linear_data(sb, hb->data,
2283 							  iov->iov_len);
2284 				skb_put(hb, iov->iov_len);
2285 				remaining = len - iov->iov_len;
2286 				iov++;
2287 				/* Free the small buffer */
2288 				push_rxbufs(card, sb);
2289 
2290 				/* Copy all large buffers to the huge buffer and free them */
2291 				for (j = 1; j < NS_PRV_IOVCNT(iovb); j++) {
2292 					lb = (struct sk_buff *)iov->iov_base;
2293 					tocopy =
2294 					    min_t(int, remaining, iov->iov_len);
2295 					skb_copy_from_linear_data(lb,
2296 								  skb_tail_pointer
2297 								  (hb), tocopy);
2298 					skb_put(hb, tocopy);
2299 					iov++;
2300 					remaining -= tocopy;
2301 					push_rxbufs(card, lb);
2302 				}
2303 #ifdef EXTRA_DEBUG
2304 				if (remaining != 0 || hb->len != len)
2305 					printk
2306 					    ("nicstar%d: Huge buffer len mismatch.\n",
2307 					     card->index);
2308 #endif /* EXTRA_DEBUG */
2309 				ATM_SKB(hb)->vcc = vcc;
2310 				__net_timestamp(hb);
2311 				vcc->push(vcc, hb);
2312 				atomic_inc(&vcc->stats->rx);
2313 			}
2314 		}
2315 
2316 		vc->rx_iov = NULL;
2317 		recycle_iov_buf(card, iovb);
2318 	}
2319 
2320 }
2321 
2322 static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb)
2323 {
2324 	if (unlikely(NS_PRV_BUFTYPE(skb) == BUF_NONE)) {
2325 		printk("nicstar%d: What kind of rx buffer is this?\n",
2326 		       card->index);
2327 		dev_kfree_skb_any(skb);
2328 	} else
2329 		push_rxbufs(card, skb);
2330 }
2331 
2332 static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count)
2333 {
2334 	while (count-- > 0)
2335 		recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base);
2336 }
2337 
2338 static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb)
2339 {
2340 	if (card->iovpool.count < card->iovnr.max) {
2341 		skb_queue_tail(&card->iovpool.queue, iovb);
2342 		card->iovpool.count++;
2343 	} else
2344 		dev_kfree_skb_any(iovb);
2345 }
2346 
2347 static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb)
2348 {
2349 	skb_unlink(sb, &card->sbpool.queue);
2350 	if (card->sbfqc < card->sbnr.init) {
2351 		struct sk_buff *new_sb;
2352 		if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
2353 			NS_PRV_BUFTYPE(new_sb) = BUF_SM;
2354 			skb_queue_tail(&card->sbpool.queue, new_sb);
2355 			skb_reserve(new_sb, NS_AAL0_HEADER);
2356 			push_rxbufs(card, new_sb);
2357 		}
2358 	}
2359 	if (card->sbfqc < card->sbnr.init)
2360 	{
2361 		struct sk_buff *new_sb;
2362 		if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
2363 			NS_PRV_BUFTYPE(new_sb) = BUF_SM;
2364 			skb_queue_tail(&card->sbpool.queue, new_sb);
2365 			skb_reserve(new_sb, NS_AAL0_HEADER);
2366 			push_rxbufs(card, new_sb);
2367 		}
2368 	}
2369 }
2370 
2371 static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb)
2372 {
2373 	skb_unlink(lb, &card->lbpool.queue);
2374 	if (card->lbfqc < card->lbnr.init) {
2375 		struct sk_buff *new_lb;
2376 		if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
2377 			NS_PRV_BUFTYPE(new_lb) = BUF_LG;
2378 			skb_queue_tail(&card->lbpool.queue, new_lb);
2379 			skb_reserve(new_lb, NS_SMBUFSIZE);
2380 			push_rxbufs(card, new_lb);
2381 		}
2382 	}
2383 	if (card->lbfqc < card->lbnr.init)
2384 	{
2385 		struct sk_buff *new_lb;
2386 		if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
2387 			NS_PRV_BUFTYPE(new_lb) = BUF_LG;
2388 			skb_queue_tail(&card->lbpool.queue, new_lb);
2389 			skb_reserve(new_lb, NS_SMBUFSIZE);
2390 			push_rxbufs(card, new_lb);
2391 		}
2392 	}
2393 }
2394 
2395 static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page)
2396 {
2397 	u32 stat;
2398 	ns_dev *card;
2399 	int left;
2400 
2401 	left = (int)*pos;
2402 	card = (ns_dev *) dev->dev_data;
2403 	stat = readl(card->membase + STAT);
2404 	if (!left--)
2405 		return sprintf(page, "Pool   count    min   init    max \n");
2406 	if (!left--)
2407 		return sprintf(page, "Small  %5d  %5d  %5d  %5d \n",
2408 			       ns_stat_sfbqc_get(stat), card->sbnr.min,
2409 			       card->sbnr.init, card->sbnr.max);
2410 	if (!left--)
2411 		return sprintf(page, "Large  %5d  %5d  %5d  %5d \n",
2412 			       ns_stat_lfbqc_get(stat), card->lbnr.min,
2413 			       card->lbnr.init, card->lbnr.max);
2414 	if (!left--)
2415 		return sprintf(page, "Huge   %5d  %5d  %5d  %5d \n",
2416 			       card->hbpool.count, card->hbnr.min,
2417 			       card->hbnr.init, card->hbnr.max);
2418 	if (!left--)
2419 		return sprintf(page, "Iovec  %5d  %5d  %5d  %5d \n",
2420 			       card->iovpool.count, card->iovnr.min,
2421 			       card->iovnr.init, card->iovnr.max);
2422 	if (!left--) {
2423 		int retval;
2424 		retval =
2425 		    sprintf(page, "Interrupt counter: %u \n", card->intcnt);
2426 		card->intcnt = 0;
2427 		return retval;
2428 	}
2429 #if 0
2430 	/* Dump 25.6 Mbps PHY registers */
2431 	/* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it
2432 	   here just in case it's needed for debugging. */
2433 	if (card->max_pcr == ATM_25_PCR && !left--) {
2434 		u32 phy_regs[4];
2435 		u32 i;
2436 
2437 		for (i = 0; i < 4; i++) {
2438 			while (CMD_BUSY(card)) ;
2439 			writel(NS_CMD_READ_UTILITY | 0x00000200 | i,
2440 			       card->membase + CMD);
2441 			while (CMD_BUSY(card)) ;
2442 			phy_regs[i] = readl(card->membase + DR0) & 0x000000FF;
2443 		}
2444 
2445 		return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n",
2446 			       phy_regs[0], phy_regs[1], phy_regs[2],
2447 			       phy_regs[3]);
2448 	}
2449 #endif /* 0 - Dump 25.6 Mbps PHY registers */
2450 #if 0
2451 	/* Dump TST */
2452 	if (left-- < NS_TST_NUM_ENTRIES) {
2453 		if (card->tste2vc[left + 1] == NULL)
2454 			return sprintf(page, "%5d - VBR/UBR \n", left + 1);
2455 		else
2456 			return sprintf(page, "%5d - %d %d \n", left + 1,
2457 				       card->tste2vc[left + 1]->tx_vcc->vpi,
2458 				       card->tste2vc[left + 1]->tx_vcc->vci);
2459 	}
2460 #endif /* 0 */
2461 	return 0;
2462 }
2463 
2464 static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg)
2465 {
2466 	ns_dev *card;
2467 	pool_levels pl;
2468 	long btype;
2469 	unsigned long flags;
2470 
2471 	card = dev->dev_data;
2472 	switch (cmd) {
2473 	case NS_GETPSTAT:
2474 		if (get_user
2475 		    (pl.buftype, &((pool_levels __user *) arg)->buftype))
2476 			return -EFAULT;
2477 		switch (pl.buftype) {
2478 		case NS_BUFTYPE_SMALL:
2479 			pl.count =
2480 			    ns_stat_sfbqc_get(readl(card->membase + STAT));
2481 			pl.level.min = card->sbnr.min;
2482 			pl.level.init = card->sbnr.init;
2483 			pl.level.max = card->sbnr.max;
2484 			break;
2485 
2486 		case NS_BUFTYPE_LARGE:
2487 			pl.count =
2488 			    ns_stat_lfbqc_get(readl(card->membase + STAT));
2489 			pl.level.min = card->lbnr.min;
2490 			pl.level.init = card->lbnr.init;
2491 			pl.level.max = card->lbnr.max;
2492 			break;
2493 
2494 		case NS_BUFTYPE_HUGE:
2495 			pl.count = card->hbpool.count;
2496 			pl.level.min = card->hbnr.min;
2497 			pl.level.init = card->hbnr.init;
2498 			pl.level.max = card->hbnr.max;
2499 			break;
2500 
2501 		case NS_BUFTYPE_IOVEC:
2502 			pl.count = card->iovpool.count;
2503 			pl.level.min = card->iovnr.min;
2504 			pl.level.init = card->iovnr.init;
2505 			pl.level.max = card->iovnr.max;
2506 			break;
2507 
2508 		default:
2509 			return -ENOIOCTLCMD;
2510 
2511 		}
2512 		if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl)))
2513 			return (sizeof(pl));
2514 		else
2515 			return -EFAULT;
2516 
2517 	case NS_SETBUFLEV:
2518 		if (!capable(CAP_NET_ADMIN))
2519 			return -EPERM;
2520 		if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl)))
2521 			return -EFAULT;
2522 		if (pl.level.min >= pl.level.init
2523 		    || pl.level.init >= pl.level.max)
2524 			return -EINVAL;
2525 		if (pl.level.min == 0)
2526 			return -EINVAL;
2527 		switch (pl.buftype) {
2528 		case NS_BUFTYPE_SMALL:
2529 			if (pl.level.max > TOP_SB)
2530 				return -EINVAL;
2531 			card->sbnr.min = pl.level.min;
2532 			card->sbnr.init = pl.level.init;
2533 			card->sbnr.max = pl.level.max;
2534 			break;
2535 
2536 		case NS_BUFTYPE_LARGE:
2537 			if (pl.level.max > TOP_LB)
2538 				return -EINVAL;
2539 			card->lbnr.min = pl.level.min;
2540 			card->lbnr.init = pl.level.init;
2541 			card->lbnr.max = pl.level.max;
2542 			break;
2543 
2544 		case NS_BUFTYPE_HUGE:
2545 			if (pl.level.max > TOP_HB)
2546 				return -EINVAL;
2547 			card->hbnr.min = pl.level.min;
2548 			card->hbnr.init = pl.level.init;
2549 			card->hbnr.max = pl.level.max;
2550 			break;
2551 
2552 		case NS_BUFTYPE_IOVEC:
2553 			if (pl.level.max > TOP_IOVB)
2554 				return -EINVAL;
2555 			card->iovnr.min = pl.level.min;
2556 			card->iovnr.init = pl.level.init;
2557 			card->iovnr.max = pl.level.max;
2558 			break;
2559 
2560 		default:
2561 			return -EINVAL;
2562 
2563 		}
2564 		return 0;
2565 
2566 	case NS_ADJBUFLEV:
2567 		if (!capable(CAP_NET_ADMIN))
2568 			return -EPERM;
2569 		btype = (long)arg;	/* a long is the same size as a pointer or bigger */
2570 		switch (btype) {
2571 		case NS_BUFTYPE_SMALL:
2572 			while (card->sbfqc < card->sbnr.init) {
2573 				struct sk_buff *sb;
2574 
2575 				sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
2576 				if (sb == NULL)
2577 					return -ENOMEM;
2578 				NS_PRV_BUFTYPE(sb) = BUF_SM;
2579 				skb_queue_tail(&card->sbpool.queue, sb);
2580 				skb_reserve(sb, NS_AAL0_HEADER);
2581 				push_rxbufs(card, sb);
2582 			}
2583 			break;
2584 
2585 		case NS_BUFTYPE_LARGE:
2586 			while (card->lbfqc < card->lbnr.init) {
2587 				struct sk_buff *lb;
2588 
2589 				lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
2590 				if (lb == NULL)
2591 					return -ENOMEM;
2592 				NS_PRV_BUFTYPE(lb) = BUF_LG;
2593 				skb_queue_tail(&card->lbpool.queue, lb);
2594 				skb_reserve(lb, NS_SMBUFSIZE);
2595 				push_rxbufs(card, lb);
2596 			}
2597 			break;
2598 
2599 		case NS_BUFTYPE_HUGE:
2600 			while (card->hbpool.count > card->hbnr.init) {
2601 				struct sk_buff *hb;
2602 
2603 				spin_lock_irqsave(&card->int_lock, flags);
2604 				hb = skb_dequeue(&card->hbpool.queue);
2605 				card->hbpool.count--;
2606 				spin_unlock_irqrestore(&card->int_lock, flags);
2607 				if (hb == NULL)
2608 					printk
2609 					    ("nicstar%d: huge buffer count inconsistent.\n",
2610 					     card->index);
2611 				else
2612 					dev_kfree_skb_any(hb);
2613 
2614 			}
2615 			while (card->hbpool.count < card->hbnr.init) {
2616 				struct sk_buff *hb;
2617 
2618 				hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
2619 				if (hb == NULL)
2620 					return -ENOMEM;
2621 				NS_PRV_BUFTYPE(hb) = BUF_NONE;
2622 				spin_lock_irqsave(&card->int_lock, flags);
2623 				skb_queue_tail(&card->hbpool.queue, hb);
2624 				card->hbpool.count++;
2625 				spin_unlock_irqrestore(&card->int_lock, flags);
2626 			}
2627 			break;
2628 
2629 		case NS_BUFTYPE_IOVEC:
2630 			while (card->iovpool.count > card->iovnr.init) {
2631 				struct sk_buff *iovb;
2632 
2633 				spin_lock_irqsave(&card->int_lock, flags);
2634 				iovb = skb_dequeue(&card->iovpool.queue);
2635 				card->iovpool.count--;
2636 				spin_unlock_irqrestore(&card->int_lock, flags);
2637 				if (iovb == NULL)
2638 					printk
2639 					    ("nicstar%d: iovec buffer count inconsistent.\n",
2640 					     card->index);
2641 				else
2642 					dev_kfree_skb_any(iovb);
2643 
2644 			}
2645 			while (card->iovpool.count < card->iovnr.init) {
2646 				struct sk_buff *iovb;
2647 
2648 				iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
2649 				if (iovb == NULL)
2650 					return -ENOMEM;
2651 				NS_PRV_BUFTYPE(iovb) = BUF_NONE;
2652 				spin_lock_irqsave(&card->int_lock, flags);
2653 				skb_queue_tail(&card->iovpool.queue, iovb);
2654 				card->iovpool.count++;
2655 				spin_unlock_irqrestore(&card->int_lock, flags);
2656 			}
2657 			break;
2658 
2659 		default:
2660 			return -EINVAL;
2661 
2662 		}
2663 		return 0;
2664 
2665 	default:
2666 		if (dev->phy && dev->phy->ioctl) {
2667 			return dev->phy->ioctl(dev, cmd, arg);
2668 		} else {
2669 			printk("nicstar%d: %s == NULL \n", card->index,
2670 			       dev->phy ? "dev->phy->ioctl" : "dev->phy");
2671 			return -ENOIOCTLCMD;
2672 		}
2673 	}
2674 }
2675 
2676 #ifdef EXTRA_DEBUG
2677 static void which_list(ns_dev * card, struct sk_buff *skb)
2678 {
2679 	printk("skb buf_type: 0x%08x\n", NS_PRV_BUFTYPE(skb));
2680 }
2681 #endif /* EXTRA_DEBUG */
2682 
2683 static void ns_poll(struct timer_list *unused)
2684 {
2685 	int i;
2686 	ns_dev *card;
2687 	unsigned long flags;
2688 	u32 stat_r, stat_w;
2689 
2690 	PRINTK("nicstar: Entering ns_poll().\n");
2691 	for (i = 0; i < num_cards; i++) {
2692 		card = cards[i];
2693 		if (!spin_trylock_irqsave(&card->int_lock, flags)) {
2694 			/* Probably it isn't worth spinning */
2695 			continue;
2696 		}
2697 
2698 		stat_w = 0;
2699 		stat_r = readl(card->membase + STAT);
2700 		if (stat_r & NS_STAT_TSIF)
2701 			stat_w |= NS_STAT_TSIF;
2702 		if (stat_r & NS_STAT_EOPDU)
2703 			stat_w |= NS_STAT_EOPDU;
2704 
2705 		process_tsq(card);
2706 		process_rsq(card);
2707 
2708 		writel(stat_w, card->membase + STAT);
2709 		spin_unlock_irqrestore(&card->int_lock, flags);
2710 	}
2711 	mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD);
2712 	PRINTK("nicstar: Leaving ns_poll().\n");
2713 }
2714 
2715 static void ns_phy_put(struct atm_dev *dev, unsigned char value,
2716 		       unsigned long addr)
2717 {
2718 	ns_dev *card;
2719 	unsigned long flags;
2720 
2721 	card = dev->dev_data;
2722 	spin_lock_irqsave(&card->res_lock, flags);
2723 	while (CMD_BUSY(card)) ;
2724 	writel((u32) value, card->membase + DR0);
2725 	writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF),
2726 	       card->membase + CMD);
2727 	spin_unlock_irqrestore(&card->res_lock, flags);
2728 }
2729 
2730 static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr)
2731 {
2732 	ns_dev *card;
2733 	unsigned long flags;
2734 	u32 data;
2735 
2736 	card = dev->dev_data;
2737 	spin_lock_irqsave(&card->res_lock, flags);
2738 	while (CMD_BUSY(card)) ;
2739 	writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF),
2740 	       card->membase + CMD);
2741 	while (CMD_BUSY(card)) ;
2742 	data = readl(card->membase + DR0) & 0x000000FF;
2743 	spin_unlock_irqrestore(&card->res_lock, flags);
2744 	return (unsigned char)data;
2745 }
2746 
2747 module_init(nicstar_init);
2748 module_exit(nicstar_cleanup);
2749